Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Baca geothermal demonstration project. Power plant detail design document  

SciTech Connect (OSTI)

This Baca Geothermal Demonstration Power Plant document presents the design criteria and detail design for power plant equipment and systems, as well as discussing the rationale used to arrive at the design. Where applicable, results of in-house evaluations of alternatives are presented.

Not Available

1981-02-01T23:59:59.000Z

2

BACA Project: geothermal demonstration power plant. Final report  

SciTech Connect (OSTI)

The various activities that have been conducted by Union in the Redondo Creek area while attempting to develop the resource for a 50 MW power plant are described. The results of the geologic work, drilling activities and reservoir studies are summarized. In addition, sections discussing the historical costs for Union's involvement with the project, production engineering (for anticipated surface equipment), and environmental work are included. Nineteen geothermal wells have been drilled in the Redondo Creek area of the Valles Caldera: a prominent geologic feature of the Jemez mountains consisting of Pliocene and Pleistocene age volcanics. The Redondo Creek area is within a complex longitudinal graben on the northwest flank of the resurgent structural dome of Redondo Peak and Redondo Border. The major graben faults, with associated fracturing, are geologically plausible candidates for permeable and productive zones in the reservoir. The distribution of such permeable zones is too erratic and the locations too imprecisely known to offer an attractive drilling target. Log analysis indicates there is a preferred mean fracture strike of N31W in the upper portion of Redondo Creek wells. This is approximately perpendicular to the major structure in the area, the northeast-striking Redondo Creek graben. The geothermal fluid found in the Redondo Creek reservoir is relatively benign with low brine concentrations and moderate H/sub 2/S concentrations. Geothermometer calculations indicate that the reservoir temperature generally lies between 500/sup 0/F and 600/sup 0/F, with near wellbore flashing occurring during the majority of the wells' production.

Not Available

1982-12-01T23:59:59.000Z

3

Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California  

SciTech Connect (OSTI)

The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

Not Available

1980-10-01T23:59:59.000Z

4

Daemen Alternative Energy/Geothermal Technologies Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Project...

5

Executive summaries of reports leading to the construction of the Baca Geothermal Demonstration Project  

SciTech Connect (OSTI)

Executive summaries have been written for 61 reports and compilations of data which in part, have led to the construction of the Baca 50 MW Geothermal Demonstration Project (GDP). The reports and data include environmental research, reservoir and feasibility studies, the project proposal to DOE and the Final Environmental Impact Statement. These executive summaries are intended to give the reader a general overview of each report prior to requesting the report from the GDP Data Manager.

Sherwood, P.B.; Newman, K.L.; Westermeier, J.F.; Giroux, H.D.; Lowe, G.D.; Nienberg, M.W.

1980-05-01T23:59:59.000Z

6

Executive summaries of reports leading to the construction of the Baca Geothermal Demonstration Project  

SciTech Connect (OSTI)

Executive summaries have been written for 61 reports and compilations of data which, in part, have led to the construction of the Baca 50 MW Geothermal Demonstration Project (GDP). The reports and data include environmental research, reservoir and feasibility studies, the project proposal to DOE and the Final Environmental Impact Statement. These executive summaries are intended to give the reader a general overview of each report prior to requesting the report from the GDP Data Manager.

Sherwood, P.B.; Newman, K.L.; Westermeier, J.F.; Giroux, H.D.; Lowe, G.D.; Nienberg, M.W.

1980-05-01T23:59:59.000Z

7

Snake River Geothermal Project - Innovative Approaches to Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration Snake River Geothermal Project - Innovative Approaches to Geothermal Exploration DOE Geothermal...

8

Environmental Assessment and Finding of No Significant Impact: Kalina Geothermal Demonstration Project Steamboat Springs, Nevada  

SciTech Connect (OSTI)

The Department of Energy (DOE) has prepared an Environmental Assessment (EA) to provide the DOE and other public agency decision makers with the environmental documentation required to take informed discretionary action on the proposed Kalina Geothermal Demonstration project. The EA assesses the potential environmental impacts and cumulative impacts, possible ways to minimize effects associated with partial funding of the proposed project, and discusses alternatives to DOE actions. The DOE will use this EA as a basis for their decision to provide financial assistance to Exergy, Inc. (Exergy), the project applicant. Based on the analysis in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human or physical environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement is not required and DOE is issuing this Finding of No Significant Impact (FONSI).

N /A

1999-02-22T23:59:59.000Z

9

A Demonstration System for Capturing Geothermal Energy from Mine...  

Open Energy Info (EERE)

MT Project Type Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type Topic 2 Topic Area 1: Technology Demonstration Projects Project...

10

A Demonstration Project for Capturing Geothermal Energy from Mine Waters beneath Butte, MT  

Broader source: Energy.gov [DOE]

Project objectives. Demonstrate performance of heat pumps in a large HVAC system in a heating-dominated climate.

11

Forrest County Geothermal Energy Project  

Broader source: Energy.gov [DOE]

Project objectives: Retrofit two county facilities with high efficiency geothermal equipment (The two projects combined comprise over 200,000 square feet). Design and Construct a demonstration Facility where the public can see the technology and associated savings. Work with established partnerships to further spread the application of geothermal energy in the region.

12

Southwest Alaska Regional Geothermal Energy Project  

Broader source: Energy.gov (indexed) [DOE]

Project Donna Vukich Gary Friedmann Naknek Electric Association Engineered Geothermal Systems Demonstration Projects May 19, 2010 This presentation does not contain any...

13

Livingston Campus Geothermal Project The Project  

E-Print Network [OSTI]

Livingston Campus Geothermal Project The Project: Geothermal power is a cost effective, reliable is a Closed Loop Geothermal System involving the removal and storage of approximately four feet of dirt from the entire Geothermal Field and the boring of 321 vertical holes reaching a depth of 500 feet. These holes

Delgado, Mauricio

14

Technical Demonstration and Economic Validation of Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technical Demonstration and Economic Validation of Geothermal-Produced Electricity from Coproduced Water at Existing OilGas Wells in Texas Technical Demonstration and Economic...

15

Daemen Alternative Energy/Geothermal Technologies Demonstration...  

Broader source: Energy.gov (indexed) [DOE]

Daemen Alternative EnergyGeothermal Technologies Demonstration Program Erie County Robert C. Beiswanger, Jr. Daemen College May 20, 2010 This presentation does not contain any...

16

Geothermal power plant R and D: an analysis of cost-performance tradeoffs and the Heber Binary-Cycle Demonstration Project  

SciTech Connect (OSTI)

A study of advancements in power plant designs for use at geothermal resources in the low to moderate (300 to 400F) temperature range is reported. In 3 case studies, the benefits of R and D to achieve these advancements are evaluated in terms of expected increases in installed geothermal generating capacity over the next 2 decades. A parametric sensitivity study is discussed which analyzes differential power development for combinations of power plant efficiency and capitol cost. Affordable tradeoffs between plant performance and capital costs are illustrated. The independent review and analysis of the expected costs of construction, operation and maintenance of the Heber Binary Cycle Geothermal Power Demonstration Plant are described. Included in this assessment is an analysis of each of the major cost components of the project, including (1) construction cost, (2) well field development costs, (3) fluid purchase costs, and (4) well field and power plant operation and maintenance costs. The total cost of power generated from the Heber Plant (in terms of mills per kWh) is then compared to the cost of power from alternative fossil-fueled base load units. Also evaluated are the provisions of both: (a) the Cooperative Agreement between the federal government and San Diego Gas and Electric (SDG and E); and (b) the Geothermal Heat Sales Contract with Union Oil Company.

Cassel, T.A.V.; Amundsen, C.B.; Blair, P.D.

1983-06-30T23:59:59.000Z

17

Geothermal Technologies Office: Projects  

Broader source: Energy.gov (indexed) [DOE]

Exploration Technologies (6) Geopressured Resources (1) Geothermal Analysis (14) Heat Pumps (8) High-Temperature Cements (2) High-Temperature Downhole MWD Tools for...

18

South Dakota Geothermal Commercialization Project. Final report, July 1979-October 1985  

SciTech Connect (OSTI)

This report describes the activities of the South Dakota Energy Office in providing technical assistance, planning, and commercialization projects for geothermal energy. Projects included geothermal prospect identification, area development plans, and active demonstration/commercialization projects. (ACR)

Wegman, S.

1985-01-01T23:59:59.000Z

19

Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

20

DOE and Partners Demonstrate Mobile Geothermal Power System at...  

Broader source: Energy.gov (indexed) [DOE]

LLC demonstrated the PureCycle mobile geothermal power generation unit at the 2009 Geothermal Energy Expo in Reno, Nevada. This was the second stop on a demonstration tour...

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Report on Hawaii geothermal power plant project  

SciTech Connect (OSTI)

The Hawaii Geothermal Generator Project is the first power plant in the State of Hawaii to be powered by geothermal energy. This plant, which is located in the Puna District on the Island of Hawaii, produces three (3) megawatts of electricity utilizing the steam phase from the geothermal well. This project represents the climax of the geophysical research efforts going on for two decades in the Hawaiian Islands which resulted in the discovery of a significant reservoir of geothermal energy which could be put to practical use. In 1978 the Department of Energy, in conjunction with the State of Hawaii, entered into negotiations to design and build a power plant. The purpose and objective of this plant was to demonstrate the feasibility of constructing and operating a geothermal power plant located in a remote volcanically active area. A contract was signed in mid 1978 between the Research Corporation of the University of Hawaii (RCUH) and the Department of Energy (DOE). To date, the DOE has provided 8.3 million dollars with the State of Hawaii and others contributing 2.1 million dollars. The cost of the project exceeded its original estimates by approximately 25%. These increases in cost were principally contributed to the higher cost for construction than was originally estimated. Second, the cost of procuring the various pieces of equipment exceed their estimates by 10 to 20 percent, and third, the engineering dollar per man hour rose 20 to 25 percent.

Not Available

1983-06-01T23:59:59.000Z

22

The Geysers Geothermal Field Update1990/2010  

E-Print Network [OSTI]

in  The  Geysers.   Geothermal Resources Council A  planned  Enhanced  Geothermal  System  demonstration project.   Geothermal  Resources  Council  Transactions 33, 

Brophy, P.

2012-01-01T23:59:59.000Z

23

Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County  

SciTech Connect (OSTI)

The purpose of the Daemen Alternative Energy/Geothermal Technologies Demonstration Project is to demonstrate the use of geothermal technology as model for energy and environmental efficiency in heating and cooling older, highly inefficient buildings. The former Marian Library building at Daemen College is a 19,000 square foot building located in the center of campus. Through this project, the building was equipped with geothermal technology and results were disseminated. Gold LEED certification for the building was awarded. 1) How the research adds to the understanding of the area investigated. This project is primarily a demonstration project. Information about the installation is available to other companies, organizations, and higher education institutions that may be interested in using geothermal energy for heating and cooling older buildings. 2) The technical effectiveness and economic feasibility of the methods or techniques investigated or demonstrated. According to the modeling and estimates through Stantec, the energy-efficiency cost savings is estimated at 20%, or $24,000 per year. Over 20 years this represents $480,000 in unrestricted revenue available for College operations. See attached technical assistance report. 3) How the project is otherwise of benefit to the public. The Daemen College Geothermal Technologies Ground Source Heat Pumps project sets a standard for retrofitting older, highly inefficient, energy wasting and environmentally irresponsible buildings�¢����quite typical of many of the buildings on the campuses of regional colleges and universities. As a model, the project serves as an energy-efficient system with significant environmental advantages. Information about the energy-efficiency measures is available to other colleges and universities, organizations and companies, students, and other interested parties. The installation and renovation provided employment for 120 individuals during the award period. Through the new Center, Daemen will continue to host a range of events on campus for the general public. The College does not charge fees for speakers or most other events. This has been a long-standing tradition of the College.

Robert C. Beiswanger, Jr.

2010-05-20T23:59:59.000Z

24

El Paso County Geothermal Project at Fort Bliss | Department...  

Broader source: Energy.gov (indexed) [DOE]

Project at Fort Bliss El Paso County Geothermal Project at Fort Bliss DOE Geothermal Peer Review 2010 - Presentation. Project objective: Determine if, and where, economically...

25

Addendum Added to Innovative Demonstration of Geothermal Energy...  

Broader source: Energy.gov (indexed) [DOE]

released a Funding Opportunity Announcement (FOA) that seeks innovative demonstration of energy production from non-conventional geothermal resources. GTP has filed an addendum...

26

Nucla CFB Demonstration Project  

SciTech Connect (OSTI)

This report documents Colorado-Ute Electric Association's Nucla Circulating Atmospheric Fluidized-Bed Combustion (AFBC) demonstration project. It describes the plant equipment and system design for the first US utility-size circulating AFBC boiler and its support systems. Included are equipment and system descriptions, design/background information and appendices with an equipment list and selected information plus process flow and instrumentation drawings. The purpose of this report is to share the information gathered during the Nucla circulating AFBC demonstration project and present it so that the general public can evaluate the technical feasibility and cost effectiveness of replacing pulverized or stoker-fired boiler units with circulating fluidized-bed boiler units. (VC)

Not Available

1990-12-01T23:59:59.000Z

27

El Paso County Geothermal Project: Innovative Research Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Project: Innovative Research Technologies Applied to the Geothermal Reosurce Potential at Fort Bliss El Paso County Geothermal Project: Innovative Research Technologies Applied to...

28

Geothermal Project Data and Personnel Resumes  

SciTech Connect (OSTI)

Rogers Engineering Co., Inc. is one of the original engineering companies in the US to become involved in geothermal well testing and design of geothermal power plants. Rogers geothermal energy development activities began almost twenty years ago with flow testing of the O'Neill well in Imperial Valley, California and well tests at Tiwi in the Philippines; a geothermal project for the Commission on Volcanology, Republic of the Philippines, and preparation of a feasibility study on the use of geothermal hot water for electric power generation at Casa Diablo, a geothermal area near Mammouth. This report has brief write-ups of recent geothermal resources development and power plant consulting engineering projects undertaken by Rogers in the US and abroad.

None

1980-01-01T23:59:59.000Z

29

Geothermal Small Business Workbook [Geothermal Outreach and Project Financing  

SciTech Connect (OSTI)

Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you--the geothermal entrepreneur, small company, or project developer--step-by-step through the process needed to structure a business and financing plan for a small geothermal project; and Help you develop a financing plan that can be adapted and taken to potential financing sources. The Workbook will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

Elizabeth Battocletti

2003-05-01T23:59:59.000Z

30

California: Next-Generation Geothermal Demonstration Launched...  

Energy Savers [EERE]

hot rock on the margins of existing hydrothermal fields can secure higher field productivity at low cost. The Geothermal Technologies Office researches, develops, and validates...

31

Research Initiative Will Demonstrate Low Temperature Geothermal...  

Office of Environmental Management (EM)

configurations, which will be freely available for industry and public education about geothermal renewable energy possibilities. Read the DOE Progress Alert to learn more....

32

NREL: Geothermal Technologies - Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements ofLiz TorresSolectria Photo of twoCapabilitiesProjects

33

Alligator Geothermal Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergy InformationTuriAlexandria BiomassRuralAlligator Geothermal

34

PFBC Utility Demonstration Project  

SciTech Connect (OSTI)

This report provides a summary of activities by American Electric Power Service Corporation during the first budget period of the PFBC Utility Demonstration Project. In April 1990, AEP signed a Cooperative Agreement with the US Department of Energy to repower the Philip Sporn Plant, Units 3 4 in New Haven, West Virginia, with a 330 KW PFBC plant. The purpose of the program was to demonstrate and verify PFBC in a full-scale commercial plant. The technical and cost baselines of the Cooperative Agreement were based on a preliminary engineering and design and a cost estimate developed by AEP subsequent to AEP's proposal submittal in May 1988, and prior to the signing of the Cooperative Agreement. The Statement of Work in the first budget period of the Cooperative Agreement included a task to develop a preliminary design and cost estimate for erecting a Greenfield plant and to conduct a comparison with the repowering option. The comparative assessment of the options concluded that erecting a Greenfield plant rather than repowering the existing Sporn Plant could be the technically and economically superior alternative. The Greenfield plant would have a capacity of 340 MW. The ten additional MW output is due to the ability to better match the steam cycle to the PFBC system with a new balance of plant design. In addition to this study, the conceptual design of the Sporn Repowering led to several items which warranted optimization studies with the goal to develop a more cost effective design.

Not Available

1992-11-01T23:59:59.000Z

35

Geothermal Energy Research Development and Demonstration Program  

SciTech Connect (OSTI)

The Federal program's goal, strategy, plans, and achievements are summarized. In addition, geothermal development by state and local governments and, where available, by the private sector is described. (MHR)

Not Available

1980-06-01T23:59:59.000Z

36

EIS-0298: Telephone Flat Geothermal Development Project  

Broader source: Energy.gov [DOE]

This EIS is for a Plan of Operation (POO) for Development and Production; and for a POO for Utilization and Disposal for a proposed geothermal development project, including: a power plant, geothermal production and injection wellfield, ancillary facilities, and transmission line on the Modoc National Forest in Siskiyou and Modoc Counties, California.

37

Geothermal: Sponsored by OSTI -- Project Title: Small Scale Electrical...  

Office of Scientific and Technical Information (OSTI)

Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation Geothermal Technologies Legacy Collection HelpFAQ | Site Map |...

38

Geothermal Money Book [Geothermal Outreach and Project Financing  

SciTech Connect (OSTI)

Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve financing problems that are not related to the economic soundness of your project or are caused by things outside of your control.

Elizabeth Battocletti

2004-02-01T23:59:59.000Z

39

Rural Cooperative Geothermal Development Electric & Agriculture...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

2010 Geothermal Program Peer Review; Low Temperature Demonstration Projects lowsilveriaruralelectriccoop.pdf More Documents & Publications Southwest Alaska Regional Geothermal...

40

Livestock Odor Reduction Demonstration Project  

E-Print Network [OSTI]

Livestock Odor Reduction Demonstration Project Objectives The 1996 and 1997 Iowa General Assembly-share basis to livestock producers and operators selected to carry out various demonstration projects. Organization The Livestock Odor Reduction Demonstration Project was administered by ISU Extension. Stewart

Lin, Zhiqun

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Newberry Geothermal Pilot Project : Final Environmental Impact Statement.  

SciTech Connect (OSTI)

BPA has decided to acquire 20 average megawatts (aMW) of electrical power from a privately-owned geothermal power plant on the west flank of Newberry Volcano in Deschutes County, Oregon. The Newberry Project will generate 30 aMW and will be developed, owned, and operated by CE Newberry, Inc. of Portland, Oregon. In addition, BPA has decided to grant billing credits to EWEB for 10 aMW of electrical power and to provide wheeling services to EWEB for the transmission of this power to their system. BPA expects the Newberry Project to be in commercial operation by November 1997. BPA has statutory responsibilities to supply electrical power to its utility industrial and other customers in the Pacific Northwest. The Newberry Project will be used to meet the electrical power supply obligations of these customers. The Newberry Project will also demonstrate the availability of geothermal power to meet power supply needs in the Pacific Northwest and is expected to be the first commercial geothermal plant in the region. The Newberry Project was selected under the BPA Geothermal Pilot Project Program. The goal of the Program is to initiate development of the Pacific Northwest`s large, but essentially untapped, geothermal resources, and to confirm the availability of this resource to meet the energy needs of the region. The primary underlying objective of this Program is to assure the supply of alternative sources of electrical power to help meet growing regional power demands and needs.

US Forest Service; US Bureau of Land Management; US Bonneville Power Administration

1994-09-01T23:59:59.000Z

42

Pumpernickel Valley Geothermal Project Thermal Gradient Wells  

SciTech Connect (OSTI)

The Pumpernickel Valley geothermal project area is located near the eastern edge of the Sonoma Range and is positioned within the structurally complex Winnemucca fold and thrust belt of north-central Nevada. A series of approximately north-northeast-striking faults related to the Basin and Range tectonics are superimposed on the earlier structures within the project area, and are responsible for the final overall geometry and distribution of the pre-existing structural features on the property. Two of these faults, the Pumpernickel Valley fault and Edna Mountain fault, are range-bounding and display numerous characteristics typical of strike-slip fault systems. These characteristics, when combined with geophysical data from Shore (2005), indicate the presence of a pull-apart basin, formed within the releasing bend of the Pumpernickel Valley – Edna Mountain fault system. A substantial body of evidence exists, in the form of available geothermal, geological and geophysical information, to suggest that the property and the pull-apart basin host a structurally controlled, extensive geothermal field. The most evident manifestations of the geothermal activity in the valley are two areas with hot springs, seepages, and wet ground/vegetation anomalies near the Pumpernickel Valley fault, which indicate that the fault focuses the fluid up-flow. There has not been any geothermal production from the Pumpernickel Valley area, but it was the focus of a limited exploration effort by Magma Power Company. In 1974, the company drilled one exploration/temperature gradient borehole east of the Pumpernickel Valley fault and recorded a thermal gradient of 160oC/km. The 1982 temperature data from five unrelated mineral exploration holes to the north of the Magma well indicated geothermal gradients in a range from 66 to 249oC/km for wells west of the fault, and ~283oC/km in a well next to the fault. In 2005, Nevada Geothermal Power Company drilled four geothermal gradient wells, PVTG-1, -2, -3, and -4, and all four encountered geothermal fluids. The holes provided valuable water geochemistry, supporting the geothermometry results obtained from the hot springs and Magma well. The temperature data gathered from all the wells clearly indicates the presence of a major plume of thermal water centered on the Pumpernickel Valley fault, and suggests that the main plume is controlled, at least in part, by flow from this fault system. The temperature data also defines the geothermal resource with gradients >100oC/km, which covers an area a minimum of 8 km2. Structural blocks, down dropped with respect to the Pumpernickel Valley fault, may define an immediate reservoir. The geothermal system almost certainly continues beyond the recently drilled holes and might be open to the east and south, whereas the heat source responsible for the temperatures associated with this plume has not been intersected and must be at a depth greater than 920 meters (depth of the deepest well – Magma well). The geological and structural setting and other characteristics of the Pumpernickel Valley geothermal project area are markedly similar to the portions of the nearby Dixie Valley geothermal field. These similarities include, among others, the numerous, unexposed en echelon faults and large-scale pull-apart structure, which in Dixie Valley may host part of the geothermal field. The Pumpernickel Valley project area, for the majority of which Nevada Geothermal Power Company has geothermal rights, represents a geothermal site with a potential for the discovery of a relatively high temperature reservoir suitable for electric power production. Among locations not previously identified as having high geothermal potential, Pumpernickel Valley has been ranked as one of four sites with the highest potential for electrical power production in Nevada (Shevenell and Garside, 2003). Richards and Blackwell (2002) estimated the total heat loss and the preliminary production capacity for the entire Pumpernickel Valley geothermal system to be at 35MW. A more conservative estimate, for

Z. Adam Szybinski

2006-01-01T23:59:59.000Z

43

LIMB Demonstration Project Extension  

SciTech Connect (OSTI)

The basic goal of the Limestone Injection Multistage Burner (LIMB) demonstration is to extend LIMB technology development to a full- scale application on a representative wall-fired utility boiler. The successful retrofit of LIMB to an existing boiler is expected to demonstrate that (a) reductions of 50 percent or greater in SO{sub x} and NO{sub x} emissions can be achieved at a fraction of the cost of add-on FGD systems, (b) boiler reliability, operability, and steam production can be maintained at levels existing prior to LIMB retrofit, and (c) technical difficulties attributable to LIMB operation, such as additional slagging and fouling, changes in ash disposal requirements, and an increased particulate load, can be resolved in a cost-effective manner. The primary fuel to be used will be an Ohio bituminous coal having a nominal sulfur content of 3 percent or greater.

Not Available

1989-06-15T23:59:59.000Z

44

Solar Thermal Demonstration Project  

SciTech Connect (OSTI)

HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with â??Kalwallâ?? building panels. An added feature of the â??Kalwallâ? system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

Biesinger, K.; Cuppett, D.; Dyer, D.

2012-01-30T23:59:59.000Z

45

LIMB Demonstration Project Extension and Coolside Demonstration  

SciTech Connect (OSTI)

This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO[sub 2]) and nitrogen oxides (NO[sub x]) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison's Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0[sub 2] removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0[sub 2] emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

Goots, T.R.; DePero, M.J.; Nolan, P.S.

1992-11-10T23:59:59.000Z

46

Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects  

SciTech Connect (OSTI)

These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

None

1986-02-12T23:59:59.000Z

47

Low-Temperature and Coproduced Geothermal Projects Poster | Department...  

Office of Environmental Management (EM)

and co-produced geothermal projects across the U.S. funded by the U.S. Department of Energy Geothermal Technologies Office. low-temperature projects More Documents &...

48

New Mexico State University campus geothermal demonstration project: an engineering construction design and economic evaluation. Final technical report, February 25, 1980-April 24, 1981  

SciTech Connect (OSTI)

A detailed engineering construction cost estimate and economic evaluation of low temperature geothermal energy application for the New Mexico State University Campus are provided. Included are results from controlled experiments to acquire design data, design calculations and parameters, detailed cost estimates, and a comprehensive cost and benefit analysis. Detailed designs are given for a system using 140 to 145{sup 0}F geothermal water to displace 79 billion Btu per year of natural gas now being burned to generate steam. This savings represents a displacement of 44 to 46 percent of NMSU central plant natural gas consumption, or 32 to 35 percent of total NMSU natural gas consumption. The report forms the basis for the system construction phase with work scheduled to commence in July 1981, and target on-stream data of February 1982.

Cunniff, R.A.; Ferguson, E.; Archey, J.

1981-07-01T23:59:59.000Z

49

Fairbanks Geothermal Energy Project Final Report  

SciTech Connect (OSTI)

The primary objective for the Fairbanks Geothermal Energy Project is to provide another source of base-load renewable energy in the Fairbanks North Star Borough (FNSB). To accomplish this, Chena Hot Springs Resort (Chena) drilled a re-injection well to 2700 feet and a production well to 2500 feet. The re-injection well allows a greater flow of water to directly replace the water removed from the warmest fractures in the geothermal reservoir. The new production will provide access to warmer temperature water in greater quantities.

Karl, Bernie [CHSR,LLC Owner] [CHSR,LLC Owner

2013-05-31T23:59:59.000Z

50

Toms Creek IGCC Demonstration Project  

SciTech Connect (OSTI)

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020[degree]F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-01-01T23:59:59.000Z

51

Toms Creek IGCC Demonstration Project  

SciTech Connect (OSTI)

The Toms Creek Integrated Gasification Combined Cycle (IGCC) Demonstration Project was selected by DOE in September 1991 to participate in Round Four of the Clean Coal Technology Demonstration Program. The project will demonstrate a simplified IGCC process consisting of an air-blown, fluidized-bed gasifier (Tampella U-Gas), a gas cooler/steam generator, and a hot gas cleanup system in combination with a gas turbine modified for use with a low-Btu content fuel and a conventional steam bottoming cycle. The demonstration plant will be located at the Toms Creek coal mine near Coeburn, Wise County, Virginia. Participants in the project are Tampella Power Corporation and Coastal Power Production Company. The plant will use 430 tons per day of locally mined bituminous coal to produce 55 MW of power from the gasification section of the project. A modern pulverized coal fired unit will be located adjacent to the Demonstration Project producing an additional 150 MW. A total 190 MW of power will be delivered to the electric grid at the completion of the project. In addition, 50,000 pounds per hour of steam will be exported to be used in the nearby coal preparation plant. Dolomite is used for in-bed gasifier sulfur capture and downs cleanup is accomplished in a fluidized-bed of regenerative zinc titanate. Particulate clean-up, before the gas turbine, will be performed by high temperature candle filters (1020{degree}F). The demonstration plant heat rate is estimated to be 8,700 Btu/kWh. The design of the project goes through mid 1995, with site construction activities commencing late in 1995 and leading to commissioning and start-up by the end of 1997. This is followed by a three year demonstration period.

Virr, M.J.

1992-11-01T23:59:59.000Z

52

Granite Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio: Energy ResourcesGordon,Granite Springs Geothermal Project Project

53

Grid Connectivity Research, Development & Demonstration Projects...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Connectivity Research, Development & Demonstration Projects Grid Connectivity Research, Development & Demonstration Projects 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

54

Geothermal Mill Redevelopment Project in Massachusetts  

SciTech Connect (OSTI)

Anwelt Heritage Apartments, LLC redeveloped a 120-year old mill complex into a mixed-use development in a lower-income neighborhood in Fitchburg, Massachusetts. Construction included 84 residential apartments rented as affordable housing to persons aged 62 and older. The Department of Energy (“DOE”) award was used as an essential component of financing the project to include the design and installation of a 200 ton geothermal system for space heating and cooling.

Vale, A.Q.

2009-03-17T23:59:59.000Z

55

Mount Spurr Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr Geothermal Project Jump to: navigation, search

56

White Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative Jump to:Westview,Geothermal Project Jump to: navigation, search

57

Kelsey North Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 ClimateKamas,Kelsey North Geothermal Project Jump to:

58

Kelsey South Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429 Throttled (botOpen6 ClimateKamas,Kelsey North Geothermal Project Jump

59

Time frames for geothermal project development  

SciTech Connect (OSTI)

Geothermal development can generally be broken down into distinct phases: Exploration and Leasing; Project Development And Feasibility Studies; Well Field Development; Project Finance, Construction and Start-up Operations; and Commercial Operations. Each phase represents different levels of cost and risk and different types of management teams that are needed to assess and manage the project and associated risk. Orderly transitions of management at each major phase are needed. Exploration programs are largely science based, the primary focus of the science based investigations should be to: secure the lease position, and develop sufficient information to identify and characterize an economical geothermal resource. Project development specialists build on the exploration data to: pull together a project design, develop a detailed cost estimate; prepare an environmental assessment; and collect all data needed for project financing. Construction specialist build from the development phase to: develop detailed engineering, procure equipment and materials, schedule and manage the facilities construction programs, and start and test the power plant. Operations specialists take over from construction during start-up and are responsible for sustainable and reliable operations of the resource and power generation equipment over the life of the project.

McClain, David W.

2001-04-17T23:59:59.000Z

60

Demonstration of an Enhanced Geothermal System at the Northwest...  

Broader source: Energy.gov (indexed) [DOE]

Bradys Hot Springs, Nevada Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010 Geothermal Technology Program...

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

EA-1746: Blue Mountain Geothermal Development Project, Humboldt...  

Broader source: Energy.gov (indexed) [DOE]

December 3, 2007 EA-1746: Final Environmental Assessment Blue Mountain Geothermal Development Project April 26, 2010 EA-1746: Finding of No Significant Impact Blue Mountain...

62

Preliminary reliability and availability analysis of the Heber geothermal binary demonstration plant. Final report  

SciTech Connect (OSTI)

An assessment is presented of the reliability and availability of the Heber Geothermal Binary Demonstration Plant on the basis of preliminary design information. It also identifies and ranks components of the plant in order of their criticality to system operation and their contribution to system unavailability. The sensitivity of the various components to uncertainties of data and the potential for reliability growth are also examined. The assessment results were obtained through the adaptation and application of an existing reliability and availability methodology to the Heber plant design. These preliminary assessments were made to assist (1) in evaluating design alternatives for the plant and (2) in demonstrating that the closed-loop, multiple-fluid, binary cycle geothermal concept is competitive with the more conventional flashed steam cycle technology. The Heber Geothermal Binary Demonstration Plant Project is a cooperative effort directed toward accelerating geothermal development for power generation and establishing the binary cycle technology as a proven alternative to the flashed steam cycle for moderate temperature hydrothermal resources. The binary power plant would have a capacity of 45 MW/sub e/ net and would derive its energy from the low salinity (14,000 ppM), moderate temperature (360/sup 0/F, 182/sup 0/C) fluid from the Heber reservoir in southern California.

Himpler, H.; White, J.; Witt, J.

1981-10-01T23:59:59.000Z

63

Clean Coal Diesel Demonstration Project  

SciTech Connect (OSTI)

A Clean Coal Diesel project was undertaken to demonstrate a new Clean Coal Technology that offers technical, economic and environmental advantages over conventional power generating methods. This innovative technology (developed to the prototype stage in an earlier DOE project completed in 1992) enables utilization of pre-processed clean coal fuel in large-bore, medium-speed, diesel engines. The diesel engines are conventional modern engines in many respects, except they are specially fitted with hardened parts to be compatible with the traces of abrasive ash in the coal-slurry fuel. Industrial and Municipal power generating applications in the 10 to 100 megawatt size range are the target applications. There are hundreds of such reciprocating engine power-plants operating throughout the world today on natural gas and/or heavy fuel oil.

Robert Wilson

2006-10-31T23:59:59.000Z

64

Thanksgiving Goodwill: West Valley Demonstration Project Food...  

Broader source: Energy.gov (indexed) [DOE]

Goodwill: West Valley Demonstration Project Food Drive Provides 640 Turkeys to People in Need Thanksgiving Goodwill: West Valley Demonstration Project Food Drive Provides...

65

EIS-0207: Newberry Geothermal Pilot Project  

Broader source: Energy.gov [DOE]

The U.S. Forest Service prepared this statement to analyze three alternatives and associated environmental impacts for it to enable the CEE Exploration Company of Portland, Oregon to build and operate a geothermal pilot project and supporting facilities capable of generating 33 megawatts of electric power in the Deschutes National Forest in central Oregon. The Department of Energy’s Bonneville Power Administration (BPA) served as a cooperating agency in preparing this statement in order to fulfill its National Environmental Policy Act obligations ahead of its statutory obligations to purchase and transmit power to customers in the Pacific Northwest, if it is decided that the project will proceed. BPA adopted this statement by October 1994.

66

Geothermal policy project. Quarterly report, March 1-May 30, 1980  

SciTech Connect (OSTI)

Efforts continued to initiate geothermal and groundwater heat pump study activities in newly selected project states and to carry forward policy development in existing project states. Minnesota and South Carolina have agreed to a groundwater heat pump study, and Maryland and Virginia have agreed to a follow-up geothermal study in 1980. Follow-up contacts were made with several other existing project states and state meetings and workshops were held in eleven project states. Two generic documents were prepared, the Geothermal Guidebook and the Guidebook to Groundwater Heat Pumps, in addition to several state-specific documents.

Connor, T.D.

1980-06-01T23:59:59.000Z

67

Oregon: DOE Advances Game-Changing EGS Geothermal Technology...  

Office of Environmental Management (EM)

demonstration project, at Newberry Volcano near Bend, Oregon, represents a key step in geothermal energy development, demonstrating that an engineered geothermal reservoir can...

68

E-Print Network 3.0 - agency geothermal project Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy sources, it is foreseen that geothermal energy projects (geothermal heat pumps and direct... the Renewable heating and cooling fund, that makes ... Source: Ecole...

69

Demonstrating the Commercial Feasibility of Geopressured-Geothermal...  

Open Energy Info (EERE)

Geopressured-Geothermal Program. At the close of that program it was determined that the energy prices at the time could not support commercial production of the resource....

70

Demonstration of an Enhanced Geothermal System at the Northwest...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(EGS) Fact Sheet Characterizing Fractures in the Geysers Geothermal Field by Micro-seismic Data, Using Soft Computing, Fractals, and Shear Wave Anisotropy EA-1733: Final...

71

Two-Meter Temperature Surveys for Geothermal Exploration Project...  

Open Energy Info (EERE)

Two-Meter Temperature Surveys for Geothermal Exploration Project at NAS Fallon Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Two-Meter...

72

DOE Offers Loan Guarantees to Geothermal Projects in Nevada and...  

Broader source: Energy.gov (indexed) [DOE]

is the developer of Faulkner 1, a 49.5-megawatt (MW) geothermal power project at NGP's Blue Mountain site in northwestern Nevada. DOE is acting as loan guarantor for up to 80% of...

73

Geothermal Energy Research and Development Program; Project Summaries  

SciTech Connect (OSTI)

This is an internal DOE Geothermal Program document. This document contains summaries of projects related to exploration technology, reservoir technology, drilling technology, conversion technology, materials, biochemical processes, and direct heat applications. [DJE-2005

None

1994-03-01T23:59:59.000Z

74

Variation of direct-heat geothermal economics with project size  

SciTech Connect (OSTI)

A comparision of the economics of large, intermediate, and small direct-heat goethermal projects is presented. An attempt is made to define which types of direct-heat geothermal projects are most cost-efficient and produce the most energy for the least amount of money. The potential energy contribution of fourteen different sizes of direct heat projects is used to determine the number of projects of a given size required to produce 1 Quad of energy. The cost of developing 1 Quad of direct-heat geothermal energy from large, intermediate, and small projects is compared to the cost of 1 Quad of energy from conventional sources. The engineering and resource parameters controlling project size are defined. The development of large-scale projects is stressed as the way in which direct-heat geothermal energy can make the most significant contribution to the nation's energy requirements. (MJF)

Struhsacker, D.W.

1981-10-01T23:59:59.000Z

75

Vehicle to Grid Demonstration Project  

SciTech Connect (OSTI)

This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

2010-12-31T23:59:59.000Z

76

OM-300 - MWD Geothermal Navigation Instrument Geothermal Project | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company)ReferencesNuiqsut, Alaska:Nutley,EnergyOHm GeothermalEnergy

77

National Conference of State Legislatures Geothermal Project. Final report, February 1978--September 1982  

SciTech Connect (OSTI)

The principal objectives of the NCSL Geothermal Project was to stimulate and assist state legislative action to encourage the efficient development of geothermal resources, including the use of groundwater heat pumps. The project had the following work tasks: (1) initiate state geothermal policy reviews; (2) provide technical assistance to state geothermal policy reviews; (3) serve as liaison with geothermal community; and (4) perform project evaluation.

None

1983-01-31T23:59:59.000Z

78

Navy fuel cell demonstration project.  

SciTech Connect (OSTI)

This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

Black, Billy D.; Akhil, Abbas Ali

2008-08-01T23:59:59.000Z

79

Enterprise Assessments Review, West Valley Demonstration Project...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

conducted an independent oversight review of activity-level implementation of the radiation protection program at the West Valley Demonstration Project. The onsite review was...

80

Independent Oversight Review, West Valley Demonstration Project...  

Office of Environmental Management (EM)

West Valley Demonstration Project - December 2014 3Q CY2005 (PDF), Facility Representative Program Performance Indicators Quarterly Report EA-1552: Final Environmental Assessment...

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Oak Ridge City Center Technology Demonstration Project  

Broader source: Energy.gov (indexed) [DOE]

Oak Ridge City Center Technology Demonstration Project David Thrash, Principal Investigator Oak Ridge City Center, LLC Track Name May 18, 2010 This presentation does not contain...

82

Sapphire Energy, Inc. Demonstration-Scale Project  

Broader source: Energy.gov (indexed) [DOE]

and run the facility. The success of this project will demonstrate the technical and economic feasibility of the algae-to- fuels process for commercial-scale biorefineries....

83

Independent Activity Report, West Valley Demonstration Project...  

Broader source: Energy.gov (indexed) [DOE]

July 2012 Operational Awareness Oversight of the West Valley Demonstration Project HIAR WVDP-2012-07-30 This Independent Activity Report documents an operational awareness...

84

A Technology Roadmap for Strategic Development of Enhanced Geothermal...  

Energy Savers [EERE]

Development of Enhanced Geothermal Systems DOE Project Partner AltaRock Energy drills for geothermal energy at the Newberry Volcano EGS Demonstration site, near Bend, Oregon. DOE...

85

A Roadmap for Strategic Development of Geothermal Exploration...  

Office of Environmental Management (EM)

Report -- Geothermal Technologies Office DOE Project Partner AltaRock Energy drills for geothermal energy at the Newberry Volcano EGS Demonstration site, near Bend, Oregon. A...

86

EIS-0266: Glass Mountain/Four Mile Hill Geothermal Project, California  

Broader source: Energy.gov [DOE]

The EIS analyzes BPA's proposed action to approve the Transmission Services Agreements (TSAs) and Power Purchase Agreements (PPAs) with Calpine Siskiyou Geothermal Partners, L.P. (Calpine) to acquire output from the Fourmile Hill Geothermal Development Project (Project).

87

Geothermal Reservoir Technology Research Program: Abstracts of selected research projects  

SciTech Connect (OSTI)

Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

Reed, M.J. (ed.)

1993-03-01T23:59:59.000Z

88

Olene Gap Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/Geothermal < Oklahoma Jump to: navigation,Olene Gap Geothermal

89

DOE and Partners Demonstrate Mobile Geothermal Power System at 2009  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContract atInc.,House,Geothermal Energy Expo |

90

Large Scale Geothermal Exchange System for Residential, Office...  

Open Energy Info (EERE)

Project Type Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type Topic 2 Topic Area 1: Technology Demonstration Projects Project...

91

Geothermal direct-heat utilization assistance: Quarterly project progress report, January--March 1995  

SciTech Connect (OSTI)

The report summarizes geothermal activities of the Geo-Heat Center at Oregon Institute of Technology for the second quarter of FY-95. It describes 92 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources and equipment. Research activities are summarized on geothermal energy cost evaluation, low temperature resource assessment and ground-source heat pump case studies and utility programs. Outreach activities include the publication of a geothermal direct heat Bulletin, dissemination of information, geothermal library, and progress monitor reports on geothermal resources and utilization.

NONE

1995-05-01T23:59:59.000Z

92

LIMB Demonstration Project Extension and Coolside Demonstration. [Final report  

SciTech Connect (OSTI)

This report presents results from the limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. LIMB is a furnace sorbent injection technology designed for the reduction of sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) emissions from coal-fired utility boilers. The testing was conducted on the 105 Mwe, coal-fired, Unit 4 boiler at Ohio Edison`s Edgewater Station in Lorain, Ohio. In addition to the LIMB Extension activities, the overall project included demonstration of the Coolside process for S0{sub 2} removal for which a separate report has been issued. The primary purpose of the DOE LIMB Extension testing, was to demonstrate the generic applicability of LIMB technology. The program sought to characterize the S0{sub 2} emissions that result when various calcium-based sorbents are injected into the furnace, while burning coals having sulfur content ranging from 1.6 to 3.8 weight percent. The four sorbents used included calcitic limestone, dolomitic hydrated lime, calcitic hydrated lime, and calcitic hydrated lime with a small amount of added calcium lignosulfonate. The results include those obtained for the various coal/sorbent combinations and the effects of the LIMB process on boiler and plant operations.

Goots, T.R.; DePero, M.J.; Nolan, P.S.

1992-11-10T23:59:59.000Z

93

Geothermal EGS Demonstration Photo Library | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office0-72.pdfGeorge Waldmann George Waldmann Phone 202-586-9904Geothermal EGS

94

North Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) JumpNorth Haven, Maine:Ohio:Pole,NorthNorth Valley Geothermal

95

Patua Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrange County isParadise, Nevada:

96

Trail Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,LtdInformation Dixie Valley Geothermal Area

97

Kenya geothermal private power project: A prefeasibility study  

SciTech Connect (OSTI)

Twenty-eight geothermal areas in Kenya were evaluated and prioritized for development. The prioritization was based on the potential size, resource temperature, level of exploration risk, location, and exploration/development costs for each geothermal area. Suswa, Eburru and Arus are found to offer the best short-term prospects for successful private power development. It was found that cost per kill developed are significantly lower for the larger (50MW) than for smaller-sized (10 or 20 NW) projects. In addition to plant size, the cost per kill developed is seen to be a function of resource temperature, generation mode (binary or flash cycle) and transmission distance.

Not Available

1992-10-01T23:59:59.000Z

98

What is the Federal Demonstration Project  

SciTech Connect (OSTI)

The Federal Demonstration Project is a cooperative effort between a number of universities, a private research institute, and several federal agencies to increase research productivity by eliminating unnecessary administrative procedures and by streamlining and standardizing needed controls. The Project aims to locate responsibility for decision-making as close as possible to principal investigators while maintaining necessary institutional and agency oversight to ensure accountability. By freeing researchers from some of their paperwork burden, more efficient research administration systems will enable investigators to spend more of their time doing science and engineering. The Federal Demonstration Project is an outgrowth of an earlier activity sponsored by five major federal R D agencies at the Florida State University System and the University of Miami. In Florida, the focus was on standardizing and streamlining procedures for administering research grants after the grants had been awarded to the universities. (See Attachment 1 for descriptions of the demonstrations carried out under the Florida Demonstration Project). In May 1988, the most successful of the demonstrated procedures were approved by the US Office of Management and Budget for use in grants awarded by any federal agency to any research organization. The new procedures give agencies authority to waive requirements that grantees obtain federal approval prior to taking a number of administrative actions with respect to grant management. The FDP institutions together with the participating federal agencies are designing and demonstrating innovative research administration procedures and are assessing the impact of those new procedures.

Not Available

1990-01-01T23:59:59.000Z

99

Prototypical Consolidation Demonstration Project: Final report  

SciTech Connect (OSTI)

This is the final report of the Prototypical Consolidation Demonstration Project, which was funded by the US Department of Energy`s Office of Civilian Radioactive Waste Management. The project had two objectives: (a) to develop and demonstrate a prototype of production-scale equipment for the dry, horizontal consolidation and packaging of spent nuclear fuel rods from commercial boiling water reactor and pressurized water reactor fuel assemblies, and (b) to report the development and demonstration results to the US Department of Energy, Idaho Operations Office. This report summarizes the activities and conclusions of the project management contractor, EG&G Idaho, Inc., and the fabrication and testing contractor, NUS Corporation (NUS). The report also presents EG&G Idaho`s assessments of the equipment and procedures developed by NUS.

Gili, J.A.; Poston, V.K.

1993-11-01T23:59:59.000Z

100

LIFAC sorbent injection desulfurization demonstration project  

SciTech Connect (OSTI)

In December 1990, the US Department of Energy selected 13 projects for funding under the Federal Clean Coal Technology Program (Round 3). One of the projects selected was the project sponsored by LIFAC North America, (LIFAC NA), titled LIFAC Sorbent Injection Desulfurization Demonstration Project.'' The host site for this $17 million, three-phase project is Richmond Power and Light's Whitewater Valley Unit No. 2 in Richmond, Indiana. The LIFAC technology uses upper-furnace limestone injection with patented humidification of the flue gas to remove 75--80% of the sulfur dioxide (SO{sub 2}) in the flue gas. In November 1990, after a ten (10) month negotiation period, LIFAC NA and the US DOE entered into a Cooperative Agreement for the design, construction, and demonstration of the LIFAC system. This report is the first Technical Progress Report covering the period from project execution through the end of December 1990. Due to the power plant's planned outage schedule, and the time needed for engineering, design and procurement of critical equipment, DOE and LIFAC NA agreed to execute the Design Phase of the project in August 1990, with DOE funding contingent upon final signing of the Cooperative Agreement.

Not Available

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Mammoth Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay(Held &InformationWindMali WesternGeothermal

102

High Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi Gtel Jump to: navigation,Solar Power PlantWells GeothermalHigh

103

Mt. Baker Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3 ClimateSpurr GeothermalCarmel Public Utility Co JumpRanierMt StMt.

104

Silver Peak Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton AbbeyARaftPadomaSierraSilver Peak Geothermal

105

Bald Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectricEnergyCT BiomassArnprior,Aurantia SACitasUSFWSBay HotMountain Geothermal

106

Wister I Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamson County,Bay,° LoadingWiseEnergy Jump to:WistaI Geothermal

107

Dixie Meadows Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has TypeGeothermal Area Jump to:

108

Dixie Valley Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has TypeGeothermal Area Jump

109

Hot Pot Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII Wind Farm FacilityPot Geothermal

110

U.S. Offshore Wind Advanced Technology Demonstration Projects...  

Broader source: Energy.gov (indexed) [DOE]

Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations U.S. Offshore Wind Advanced Technology Demonstration Projects...

111

Demonstration of an Enhanced Geothermal System at the Northwest...  

Broader source: Energy.gov (indexed) [DOE]

well documented project that should provide objective evidence regarding the efficacy of thermal stimulation efforts. Would consideration of possible hydraulic stimulation (albeit...

112

Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project  

E-Print Network [OSTI]

Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project Northwest Power and Conservation Council Lee Hall, BPA Smart Grid Program Manager Tracy Yount, Battelle Electric Grid Research Manager April 14, 2010 PNWD-SA-8921 #12;Agenda ¡ Smart Grid ­ What is it? ¡ PNW

113

Parcperdue Geopressure -- Geothermal Project: Appendix E  

SciTech Connect (OSTI)

The mechanical and transport properties and characteristics of rock samples obtained from DOW-DOE L.R. SWEEZY NO. 1 TEST WELL at the Parcperdue Geopressure/Geothermal Site have been investigated in the laboratory. Elastic moduli, compressibility, uniaxial compaction coefficient, strength, creep parameters, permeability, acoustic velocities (all at reservoir conditions) and changes in these quantities induced by simulated reservoir production have been obtained from tests on several sandstone and shale samples from different depths. Most important results are that the compaction coefficients are approximately an order of magnitude lower than those generally accepted for the reservoir sand in the Gulf Coast area and that the creep behavior is significant. Geologic characterization includes lithological description, SEM micrographs and mercury intrusion tests to obtain pore distributions. Petrographic analysis shows that approximately half of the total sand interval has excellent reservoir potential and that most of the effective porosity in the Cib Jeff Sand is formed by secondary porosity development.

Sweezy, L.R.

1981-10-05T23:59:59.000Z

114

Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources  

SciTech Connect (OSTI)

A variable phase turbine assembly will be designed and manufactured having a turbine, operable with transcritical, two-phase or vapor flow, and a generator – on the same shaft supported by process lubricated bearings. The assembly will be hermetically sealed and the generator cooled by the refrigerant. A compact plate-fin heat exchanger or tube and shell heat exchanger will be used to transfer heat from the geothermal fluid to the refrigerant. The demonstration turbine will be operated separately with two-phase flow and with vapor flow to demonstrate performance and applicability to the entire range of low temperature geothermal resources. The vapor leaving the turbine is condensed in a plate-fin refrigerant condenser. The heat exchanger, variable phase turbine assembly and condenser are all mounted on single skids to enable factory assembly and checkout and minimize installation costs. The system will be demonstrated using low temperature (237F) well flow from an existing large geothermal field. The net power generated, 1 megawatt, will be fed into the existing power system at the demonstration site. The system will demonstrate reliable generation of inexpensive power from low temperature resources. The system will be designed for mass manufacturing and factory assembly and should cost less than $1,200/kWe installed, when manufactured in large quantities. The estimated cost of power for 300F resources is predicted to be less than 5 cents/kWh. This should enable a substantial increase in power generated from low temperature geothermal resources.

Hays, Lance G

2014-07-07T23:59:59.000Z

115

Calderon Cokemaking Process/Demonstration Project  

SciTech Connect (OSTI)

This project deals with the demonstration of a coking process using proprietary technology of Calderon with the following objectives in order to enable its commercialization: (i) making coke of such quality as to be suitable for use in high driving (highly productive) blast furnaces; (ii) providing proof that such process is continuous and environmentally closed to prevent emissions; and (iii) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process. The activities of the past quarter were entirely focused on operating the Calderon Process Development Unit (PDU-I) in Alliance, Ohio conducting a series of tests under steady state using coal from Bethlehem Steel and U.S. Steel in order to demonstrate the above. The objectives mentioned above were successfully demonstrated.

None

1998-04-08T23:59:59.000Z

116

CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT  

SciTech Connect (OSTI)

This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (1) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (2) providing proof that such process is continuous and environmentally closed to prevent emissions; (3) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; (4) conducting a blast furnace test to demonstrate the compatibility of the coke produced; and (5) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on the following: Detailed workings of the team; Proposal to FETC for Phase II; Permitting and Environmental Work; and Engineering Progress.

Albert Calderon

1999-09-22T23:59:59.000Z

117

Raft River III Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, search RAPIDColoradosource HistoryRaft River Sector Geothermal energyProject

118

Geothermal direct-heat utilization assistance. Quarterly project progress report, April--June 1993  

SciTech Connect (OSTI)

Technical assistance was provided to 60 requests from 19 states. R&D progress is reported on: evaluation of lineshaft turbine pump problems, geothermal district heating marketing strategy, and greenhouse peaking analysis. Two presentations and one tour were conducted, and three technical papers were prepared. The Geothermal Progress Monitor reported: USGS Forum on Mineral Resources, Renewable Energy Tax Credits Not Working as Congress Intended, Geothermal Industry Tells House Panel, Newberry Pilot Project, and Low-Temperature Geothermal Resources in Nevada.

Lienau, P.

1993-06-01T23:59:59.000Z

119

Southern Nevada Alternative Fuels Demonstration Project  

SciTech Connect (OSTI)

The Southern Nevada Alternative Fuels Program is designed to demonstrate, in a day-to-day bus operation, the reliability and efficiency of a hydrogen bus operation under extreme conditions. By using ICE technology and utilizing a virtually emission free fuel, benefits to be derived include air quality enhancement and vehicle performance improvements from domestically produced, renewable energy sources. The project objective is to help both Ford and the City demonstrate and evaluate the performance characteristics of the E-450 H2ICE shuttle buses developed by Ford, which use a 6.8-liter supercharged Triton V-10 engine with a hydrogen storage system equivalent to 29 gallons of gasoline. The technology used during the demonstration project in the Ford buses is a modified internal combustion engine that allows the vehicles to run on 100% hydrogen fuel. Hydrogen gives a more thorough fuel burn which results in more power and responsiveness and less pollution. The resultant emissions from the tailpipe are 2010 Phase II compliant with NO after treatment. The City will lease two of these E-450 H2ICE buses from Ford for two years. The buses are outfitted with additional equipment used to gather information needed for the evaluation. Performance, reliability, safety, efficiency, and rider comments data will be collected. The method of data collection will be both electronically and manually. Emissions readings were not obtained during the project. The City planned to measure the vehicle exhaust with an emissions analyzer machine but discovered the bus emission levels were below the capability of their machine. Passenger comments were solicited on the survey cards. The majority of comments were favorable. The controllable issues encountered during this demonstration project were mainly due to the size of the hydrogen fuel tanks at the site and the amount of fuel that could be dispensed during a specified period of time. The uncontrollable issues encountered during this project were related to the economy and the budget cutbacks required during the project duration, which resulted in fewer bus drivers than expected the ultimate shut down of the City’s downtown bus operations.

Hyde, Dan; Fast, Matthew

2009-12-31T23:59:59.000Z

120

Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1996  

SciTech Connect (OSTI)

This report summarizes geothermal technical assistance, R&D, and technology transfer activities of the Geo-Heat Center. It describes 95 contacts with parties during this period related to technical assistance with goethermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics, and resources. Research activities are summarized on geothermal district heating system cost evaluation and silica waste utilization project. Outreach activities include publication of a geothermal direct use Bulletin, dissemination of information, goethermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

NONE

1996-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Canby Cascaded Geothermal Project Phase 1 Feasibility  

Broader source: Energy.gov (indexed) [DOE]

community and project partner - Evergreen Energy Stephen Anderson, P.E. - Brian Brown Engineering - Panorama Environmental Consulting - Plumas Geo-Hydrology 6 | US DOE...

122

Daemen Alternative Energy/Geothermal Technologies Demonstration Program Erie County  

Broader source: Energy.gov [DOE]

Project objectives: Replacement of the inefficient Marian Library Heating System with a state of the art, open loop, geo-exchange system in conjunction withthe Daemen College sustainable campus objectives. Coursework to be developed to engage students in the evaluation and future modifications of our campus buildings.

123

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY  

E-Print Network [OSTI]

BY USDOE/DIVISION OF GEOTHERMAL ENERGY J J. H. Howard and W.BY USWE/DIVISION O GEOTHERMAL ENERGY F Berkeley, CaliforniaWE), Division of Geothermal Energy (mS) proposed that

Howard, J.H.

2011-01-01T23:59:59.000Z

124

STATUS OF GEOTHERMAL RESERVOIR ENGINEERING RESEARCH PROJECTS SUPPORTED BY USDOE/DIVISION OF GEOTHERMAL ENERGY  

E-Print Network [OSTI]

the authors. Wairakei geothermal field: Lawrence BerkeleyR. C. , Evaluation of potential geothermal well-head and17, "S"r78" for use in geothermal reservoir 25 p. (LBL-

Howard, J.H.

2011-01-01T23:59:59.000Z

125

Research and Development of Information on Geothermal Direct Heat Application Projects  

SciTech Connect (OSTI)

This is the first annual report of ICF's geothermal R&D project for the Department of Energy's Idaho Operations Office. The overall objective of this project is to compile, analyze, and report on data from geothermal direct heat application projects. Ultimately, this research should convey the information developed through DOE's and Program Opportunity Notice (PON) activities as well as through other pioneering geothermal direct heat application projects to audiences which can use the early results in new, independent initiatives. A key audience is potential geothermal investors.

Hederman, William F., Jr.; Cohen, Laura A.

1981-10-01T23:59:59.000Z

126

CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT  

SciTech Connect (OSTI)

This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (i) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (ii) providing proof that such process is continuous and environmentally closed to prevent emissions; (iii) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; and (iv) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on the following: ? Consolidation of the project team-players; ? Recruiting Koppers Industries as an additional stakeholder; ? Developing a closed system for the production of binder pitch from tar in the Calderon coking process as the incentive for Koppers to join the team; ? Gathering appropriate equipment for conducting a set of experiments at bench scale to simulate tar quality produced from the Calderon coking process for the production of binder pitch; and ? Further progress made in the design of the commercial coking reactor.

ALBERT CALDERON

1998-09-22T23:59:59.000Z

127

Secure Interoperable Open Smart Grid Demonstration Project  

SciTech Connect (OSTI)

The Consolidated Edison, Inc., of New York (Con Edison) Secure Interoperable Open Smart Grid Demonstration Project (SGDP), sponsored by the United States (US) Department of Energy (DOE), demonstrated that the reliability, efficiency, and flexibility of the grid can be improved through a combination of enhanced monitoring and control capabilities using systems and resources that interoperate within a secure services framework. The project demonstrated the capability to shift, balance, and reduce load where and when needed in response to system contingencies or emergencies by leveraging controllable field assets. The range of field assets includes curtailable customer loads, distributed generation (DG), battery storage, electric vehicle (EV) charging stations, building management systems (BMS), home area networks (HANs), high-voltage monitoring, and advanced metering infrastructure (AMI). The SGDP enables the seamless integration and control of these field assets through a common, cyber-secure, interoperable control platform, which integrates a number of existing legacy control and data systems, as well as new smart grid (SG) systems and applications. By integrating advanced technologies for monitoring and control, the SGDP helps target and reduce peak load growth, improves the reliability and efficiency of Con Edison’s grid, and increases the ability to accommodate the growing use of distributed resources. Con Edison is dedicated to lowering costs, improving reliability and customer service, and reducing its impact on the environment for its customers. These objectives also align with the policy objectives of New York State as a whole. To help meet these objectives, Con Edison’s long-term vision for the distribution grid relies on the successful integration and control of a growing penetration of distributed resources, including demand response (DR) resources, battery storage units, and DG. For example, Con Edison is expecting significant long-term growth of DG. The SGDP enables the efficient, flexible integration of these disparate resources and lays the architectural foundations for future scalability. Con Edison assembled an SGDP team of more than 16 different project partners, including technology vendors, and participating organizations, and the Con Edison team provided overall guidance and project management. Project team members are listed in Table 1-1.

Magee, Thoman

2014-12-31T23:59:59.000Z

128

West Valley Demonstration Project - North Plateau Strontium-90...  

Office of Environmental Management (EM)

Demonstration Project - North Plateau Strontium-90 West Valley Demonstration Project - North Plateau Strontium-90 January 1, 2014 - 12:00pm Addthis US Department of Energy...

129

Data Analysis from Ground Source Heat Pump Demonstration Projects...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Analysis from Ground Source Heat Pump Demonstration Projects Data Analysis from Ground Source Heat Pump Demonstration Projects Comparison of building energy use before and after...

130

Demonstration of an Enhanced Geothermal System at the Northwest Geysers  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services Audit Report Department ofDecouplingDemonstration

131

Nucla circulating atmospheric fluidized bed demonstration project  

SciTech Connect (OSTI)

Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute's decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

Keith, Raymond E.

1991-10-01T23:59:59.000Z

132

CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT  

SciTech Connect (OSTI)

This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (i) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (ii) providing proof that such process is continuous and environmentally closed to prevent emissions; (iii) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; (iv) conducting a blast furnace test to demonstrate the compatibility of the coke produced; and (v) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter continued to be focused on the following: Concluding the Negotiation and completing Contracts among Stakeholders of the Team; Revision of Final Report for Phase I; Engineering Design Progress; Selection of Systems Associates, Inc. for design of Control System; Conclusion of Secrecy Agreement with Carborundum (St. Gobain); and Permitting Work and Revisions.

Albert Calderon

2000-03-22T23:59:59.000Z

133

Calderon cokemaking process/demonstration project  

SciTech Connect (OSTI)

This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (1) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (2) providing proof that such a process is continuous and environmentally closed to prevent emissions; (3) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; (4) conducting a blast furnace test to demonstrate the compatibility of the coke produced; and (5) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter continued to be focused on the following: Drafting of Contracts among the Stakeholders of the Team, Completion and Delivery of Proposal for Phase 2 Permitting and Environmental Work Engineering Progress Preparation of Final Report for Phase 1 DCAA Audit Funding for Phase 2.

Albert Calderon

1999-12-21T23:59:59.000Z

134

CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT  

SciTech Connect (OSTI)

This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitate commercialization: (i) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (ii) providing proof that such process is continuous and environmentally closed to prevent emissions; (iii) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; (iv) conducting a blast furnace test to demonstrate the compatibility of the coke produced; and (v) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter continued to be focused on the following: Concluding the Negotiation and completing Contracts among Stakeholders of the Team; Revision of Final Report for Phase I; Engineering Design Progress; Selection of Systems Associates, Inc. for design of Control System; Conclusion of Secrecy Agreement with Carborundum (St. Gobain); and Permitting Work and Revisions.

Albert Calderon

2000-06-21T23:59:59.000Z

135

Lightning Dock Geothermal Space Heating Project: Lightning Dock...  

Open Energy Info (EERE)

geothermal greenhouse and home heating systems, which consisted of pumping geothermal water and steam through passive steam heaters, and convert the systems to one using modern...

136

Opportunities for Small Geothermal Projects: Rural Power for Latin America, the Caribbean, and the Philippines  

SciTech Connect (OSTI)

The objective of this report is to provide information on small geothermal project (less than 5 MW) opportunities in Latin America, the Caribbean, and the Philippines. This overview of issues facing small geothermal projects is intended especially for those who are not already familiar with small geothermal opportunities. This is a summary of issues and opportunities and serves as a starting point in determining next steps to develop this market.

Vimmerstedt, L.

1998-11-30T23:59:59.000Z

137

CALDERON COKEMAKING PROCESS/DEMONSTRATION PROJECT  

SciTech Connect (OSTI)

This project deals with the demonstration of a coking process using proprietary technology of Calderon, with the following objectives geared to facilitating commercialization: (1) making coke of such quality as to be suitable for use in hard-driving, large blast furnaces; (2) providing proof that such process is continuous and environmentally closed to prevent emissions; (3) demonstrating that high-coking-pressure (non-traditional) coal blends which cannot be safely charged into conventional by-product coke ovens can be used in the Calderon process; and (4) demonstrating that coke can be produced economically, at a level competitive with coke imports. The activities of the past quarter were focused on three main activities: Continuation of design of the coking reactor; Raising funds from the private sector; and Detailed analysis of the tests conducted in Alliance, Ohio. The design of the reactor work centered on the provision for the capability to inspect and maintain the internals of the reactor. The activities relating to raising funds from the steel industry have been fruitful. Bethlehem Steel has agreed to contribute funds. The collected data from the tests at Alliance were analyzed and a detailed report was completed and presented to the International Iron & Steel Institute by invitation.

ALBERT CALDERON

1998-06-22T23:59:59.000Z

138

EIS-0049: Geothermal Demonstration Program 50-MW Power Plant-Baca Ranch, Sandoval and Rio Arriba Counties, New Mexico  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) developed this EIS to evaluate the environmental impacts of joint funding by DOE and commercial partners of a 50-megawatt demonstration geothermal, power plant at the Baca Location in Sandoval County, New Mexico, including construction of the geothermal well field and transmission line.

139

Geothermal heating  

SciTech Connect (OSTI)

The aim of the study is to demonstrate the viability of geothermal heating projects in energy and economic terms and to provide nomograms from which an initial estimate may be made without having to use data-processing facilities. The effect of flow rate and temperature of the geothermal water on drilling and on the network, and the effect of climate on the type of housing are considered.

Aureille, M.

1982-01-01T23:59:59.000Z

140

West Valley Demonstration Project Site Environmental Report Calendar Year 2000  

SciTech Connect (OSTI)

The annual site environmental monitoring report for the West Valley Demonstration Project nuclear waste management facility.

NONE

2001-08-31T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Calderon cokemaking process/demonstration project  

SciTech Connect (OSTI)

The Clean Air Act Amendments of 1990 set new emission standards for hazardous air pollutants from coke ovens. Congress, recognizing that the coke industry faces technological and financial difficulties in meeting these new, stringent emission standards, required the U.S. Environmental Protection Agency and DOE to conduct a joint six-year research and development program to assist the industry in developing and commercializing new technologies and work practices that would significantly reduce hazardous coke oven emissions. DOE`s purpose for sponsoring the proposed demonstration project is to provide the coke industry with a new option for the economical production of high quality coke that significantly reduces the quantity of pollutants entering the environment.

NONE

1995-10-01T23:59:59.000Z

142

Controlled Hydrogen Fleet and Infrastructure Demonstration Project  

SciTech Connect (OSTI)

This program was undertaken in response to the US Department of Energy Solicitation DE-PS30-03GO93010, resulting in this Cooperative Agreement with the Ford Motor Company and BP to demonstrate and evaluate hydrogen fuel cell vehicles and required fueling infrastructure. Ford initially placed 18 hydrogen fuel cell vehicles (FCV) in three geographic regions of the US (Sacramento, CA; Orlando, FL; and southeast Michigan). Subsequently, 8 advanced technology vehicles were developed and evaluated by the Ford engineering team in Michigan. BP is Ford's principal partner and co-applicant on this project and provided the hydrogen infrastructure to support the fuel cell vehicles. BP ultimately provided three new fueling stations. The Ford-BP program consists of two overlapping phases. The deliverables of this project, combined with those of other industry consortia, are to be used to provide critical input to hydrogen economy commercialization decisions by 2015. The program's goal is to support industry efforts of the US President's Hydrogen Fuel Initiative in developing a path to a hydrogen economy. This program was designed to seek complete systems solutions to address hydrogen infrastructure and vehicle development, and possible synergies between hydrogen fuel electricity generation and transportation applications. This project, in support of that national goal, was designed to gain real world experience with Hydrogen powered Fuel Cell Vehicles (H2FCV) 'on the road' used in everyday activities, and further, to begin the development of the required supporting H2 infrastructure. Implementation of a new hydrogen vehicle technology is, as expected, complex because of the need for parallel introduction of a viable, available fuel delivery system and sufficient numbers of vehicles to buy fuel to justify expansion of the fueling infrastructure. Viability of the fuel structure means widespread, affordable hydrogen which can return a reasonable profit to the fuel provider, while viability of the vehicle requires an expected level of cost, comfort, safety and operation, especially driving range, that consumers require. This presents a classic 'chicken and egg' problem, which Ford believes can be solved with thoughtful implementation plans. The eighteen Ford Focus FCV vehicles that were operated for this demonstration project provided the desired real world experience. Some things worked better than expected. Most notable was the robustness and life of the fuel cell. This is thought to be the result of the full hybrid configuration of the drive system where the battery helps to overcome the performance reduction associated with time related fuel cell degradation. In addition, customer satisfaction surveys indicated that people like the cars and the concept and operated them with little hesitation. Although the demonstrated range of the cars was near 200 miles, operators felt constrained because of the lack of a number of conveniently located fueling stations. Overcoming this major concern requires overcoming a key roadblock, fuel storage, in a manner that permits sufficient quantity of fuel without sacrificing passenger or cargo capability. Fueling infrastructure, on the other hand, has been problematic. Only three of a planned seven stations were opened. The difficulty in obtaining public approval and local government support for hydrogen fuel, based largely on the fear of hydrogen that grew from past disasters and atomic weaponry, has inhibited progress and presents a major roadblock to implementation. In addition the cost of hydrogen production, in any of the methodologies used in this program, does not show a rapid reduction to commercially viable rates. On the positive side of this issue was the demonstrated safety of the fueling station, equipment and process. In the Ford program, there were no reported safety incidents.

Dr. Scott Staley

2010-03-31T23:59:59.000Z

143

Cove Fort Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:EnergyWisconsin:2003) |Cordova Electric633211°,ofSector Biomass FacilityProject

144

Drum Mountain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address:011-DNA Jump to:52c8ff988c1DeringDolgeville,Massachusetts:DraxProject Jump to: navigation,

145

Newberry I Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithunCenterInformation thsourceenergy grid |Project

146

Salt Wells Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm(CTIhinderProject SmartSalt Wells

147

Weiser Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & Associates Jump to:Project Jump to:

148

Desert Queen Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision has beenFinancialSilver PeakProject Jump to:

149

Form:GeothermalProject | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublicIDAPowerPlantSitingConstruction.pdfNotify98.pdf JumpFlix SolarBlackFluvanna3°,Forestville,DJumpis thePROJECT

150

Hawthorne Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealth Division | OpenReleaseWindProject Jump to:

151

Wave Power Demonstration Project at Reedsport, Oregon  

SciTech Connect (OSTI)

Ocean wave power can be a significant source of large?scale, renewable energy for the US electrical grid. The Electrical Power Research Institute (EPRI) conservatively estimated that 20% of all US electricity could be generated by wave energy. Ocean Power Technologies, Inc. (OPT), with funding from private sources and the US Navy, developed the PowerBuoy? to generate renewable energy from the readily available power in ocean waves. OPT's PowerBuoy converts the energy in ocean waves to electricity using the rise and fall of waves to move the buoy up and down (mechanical stroking) which drives an electric generator. This electricity is then conditioned and transmitted ashore as high?voltage power via underwater cable. OPT's wave power generation system includes sophisticated techniques to automatically tune the system for efficient conversion of random wave energy into low cost green electricity, for disconnecting the system in large waves for hardware safety and protection, and for automatically restoring operation when wave conditions normalize. As the first utility scale wave power project in the US, the Wave Power Demonstration Project at Reedsport, OR, will consist of 10 PowerBuoys located 2.5 miles off the coast. This U.S. Department of Energy Grant funding along with funding from PNGC Power, an Oregon?based electric power cooperative, was utilized for the design completion, fabrication, assembly and factory testing of the first PowerBuoy for the Reedsport project. At this time, the design and fabrication of this first PowerBuoy and factory testing of the power take?off subsystem are complete; additionally the power take?off subsystem has been successfully integrated into the spar.

Mekhiche, Mike [Principal Investigator] [Principal Investigator; Downie, Bruce [Project Manager] [Project Manager

2013-10-21T23:59:59.000Z

152

Draft Executive Summary Hawaii Geothermal Project - EIS Scoping Meetings  

SciTech Connect (OSTI)

After introductions by the facilitator and the program director from DOE, process questions were entertained. It was also sometimes necessary to make clarifications as to process throughout the meetings. Topics covered federal involvement in the HGP-EIS; NEPA compliance; public awareness, review, and access to information; Native Hawaiian concerns; the record of decision, responsibility with respect to international issues; the impacts of prior and on-going geothermal development activities; project definition; alternatives to the proposed action; necessary studies; Section 7 consultations; socioeconomic impacts; and risk analysis. Presentations followed, in ten meetings, 163 people presented issues and concerns, 1 additional person raised process questions only.

None

1992-03-01T23:59:59.000Z

153

China Lake South Range Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin:Energy InformationLake South Range Geothermal Project Jump to: navigation,

154

PFBC Utility Demonstration Project. Annual report, 1991  

SciTech Connect (OSTI)

This report provides a summary of activities by American Electric Power Service Corporation during the first budget period of the PFBC Utility Demonstration Project. In April 1990, AEP signed a Cooperative Agreement with the US Department of Energy to repower the Philip Sporn Plant, Units 3 & 4 in New Haven, West Virginia, with a 330 KW PFBC plant. The purpose of the program was to demonstrate and verify PFBC in a full-scale commercial plant. The technical and cost baselines of the Cooperative Agreement were based on a preliminary engineering and design and a cost estimate developed by AEP subsequent to AEP`s proposal submittal in May 1988, and prior to the signing of the Cooperative Agreement. The Statement of Work in the first budget period of the Cooperative Agreement included a task to develop a preliminary design and cost estimate for erecting a Greenfield plant and to conduct a comparison with the repowering option. The comparative assessment of the options concluded that erecting a Greenfield plant rather than repowering the existing Sporn Plant could be the technically and economically superior alternative. The Greenfield plant would have a capacity of 340 MW. The ten additional MW output is due to the ability to better match the steam cycle to the PFBC system with a new balance of plant design. In addition to this study, the conceptual design of the Sporn Repowering led to several items which warranted optimization studies with the goal to develop a more cost effective design.

Not Available

1992-11-01T23:59:59.000Z

155

Demonstration of an Enhanced Geothermal System at the Northwest Geysers Geothermal Field, CA  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit Services Audit Report Department ofDecouplingDemonstrationDemonstration of

156

Technologies for Extracting Valuable Metals and Compounds from Geothermal Fluids  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Demonstrate geothermal mineral extraction; Demonstrate technical and economic feasibility; Produce products for market development; Generate operational data and scale up data so a commercial scale plant can be designed and built.

157

CNCC Craig Campus Geothermal Project: 82-well closed loop GHP well field to provide geothermal energy as a common utilitiy for a new community college campus  

SciTech Connect (OSTI)

Colorado Northwestern Community College (CNCC) is working collaboratively with recipient vendor Chevron Energy Solutions, an energy services company (ESCO), to develop an innovative GHP project at the new CNCC Campus constructed in 2010/2011 in Craig, Colorado. The purpose of the CNCC Craig Campus Geothermal Program scope was to utilize an energy performance contracting approach to develop a geothermal system with a shared closed-loop field providing geothermal energy to each building's GHP mechanical system. Additional benefits to the project include promoting good jobs and clean energy while reducing operating costs for the college. The project has demonstrated that GHP technology is viable for new construction using the energy performance contracting model. The project also enabled the project team to evaluate several options to give the College a best value proposition for not only the initial design and construction costs but build high performance facilities that will save the College for many years to come. The design involved comparing the economic feasibility of GHP by comparing its cost to that of traditional HVAC systems via energy model, financial life cycle cost analysis of energy savings and capital cost, and finally by evaluating the compatibility of the mechanical design for GHP compared to traditional HVAC design. The project shows that GHP system design can be incorporated into the design of new commercial buildings if the design teams, architect, contractor, and owner coordinate carefully during the early phases of design. The public also benefits because the new CNCC campus is a center of education for the much of Northwestern Colorado, and students in K-12 programs (Science Spree 2010) through the CNCC two-year degree programs are already integrating geothermal and GHP technology. One of the greatest challenges met during this program was coordination of multiple engineering and development stakeholders. The leadership of Principle Investigator Pres. John Boyd of CNCC met this challenge by showing clear leadership in setting common goals and resolving conflicts early in the program.

Chevron Energy Solutions; Matt Rush; Scott Shulda

2011-01-03T23:59:59.000Z

158

Integrated monitoring and surveillance system demonstration project  

SciTech Connect (OSTI)

We present a summary of efforts associated with the installation of an integrated system for the surveillance and monitoring of stabilized plutonium metals and oxides in long-term storage. The product of this effort will include a Pu storage requirements document, baseline integrated monitoring and surveillance system (IMSS) prototype and test bed that will be installed in the Fuel Manufacturing Facility (FMF) nuclear material vault at Argonne National Laboratory - West (ANL-W), and a Pu tracking database including data analysis capabilities. The prototype will be based on a minimal set of vault and package monitoring requirements as derived from applicable DOE documentation and guidelines, detailed in the requirements document, including DOE-STD-3013-96. The use of standardized requirements will aid individual sites in the selection of sensors that best suit their needs while the prototype IMSS, located at ANL-W, will be used as a test bed to compare and contrast sensor performance against a baseline integrated system (the IMSS), demonstrate system capabilities, evaluate potential technology gaps, and test new hardware and software designs using various storage configurations. With efforts currently underway to repackage and store a substantial quantity of plutonium and plutonium-bearing material within the DOE complex, this is an opportune time to undertake such a project. 4 refs.

Aumeier, S.E.; Walters, G. [Argonne National Lab., Idaho Falls, ID (United States); Kotter, D.; Walrath, W.M.; Zamecnik, R.J. [Lockheed-Martin Idaho Technologies Company, Idaho Falls, ID (United States)

1997-07-01T23:59:59.000Z

159

Big Island Demonstration Project – Black Liquor  

Broader source: Energy.gov [DOE]

This fact sheet summarizes a U.S. Department of Energy Biomass Program research and development project.

160

Geothermal Technologies Program Multi-Year Research, Development and Demonstration Plan  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdf Flash2006-53.pdf0.pdfCostAnalysis Geothermal PlayDemonstration Plan:Demonstration

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

WSF Biodiesel Demonstration Project Final Report  

SciTech Connect (OSTI)

In 2004, WSF canceled a biodiesel fuel test because of “product quality issues” that caused the fuel purifiers to clog. The cancelation of this test and the poor results negatively impacted the use of biodiesel in marine application in the Pacific Northwest. In 2006, The U.S. Department of Energy awarded the Puget Sound Clean Air Agency a grant to manage a scientific study investigating appropriate fuel specifications for biodiesel, fuel handling procedures and to conduct a fuel test using biodiesel fuels in WSF operations. The Agency put together a project team comprised of experts in fields of biodiesel research and analysis, biodiesel production, marine engineering and WSF personnel. The team reviewed biodiesel technical papers, reviewed the 2004 fuel test results, designed a fuel test plan and provided technical assistance during the test. The research reviewed the available information on the 2004 fuel test and conducted mock laboratory experiments, but was not able to determine why the fuel filters clogged. The team then conducted a literature review and designed a fuel test plan. The team implemented a controlled introduction of biodiesel fuels to the test vessels while monitoring the environmental conditions on the vessels and checking fuel quality throughout the fuel distribution system. The fuel test was conducted on the same three vessels that participated in the canceled 2004 test using the same ferry routes. Each vessel used biodiesel produced from a different feedstock (i.e. soy, canola and yellow grease). The vessels all ran on ultra low sulfur diesel blended with biodiesel. The percentage of biodiesel was incrementally raised form from 5 to 20 percent. Once the vessels reached the 20 percent level, they continued at this blend ratio for the remainder of the test. Fuel samples were taken from the fuel manufacturer, during fueling operations and at several points onboard each vessel. WSF Engineers monitored the performance of the fuel systems and engines. Each test vessel did experience a microbial growth bloom that produced a build up of material in the fuel purifiers similar to material witnessed in the 2004 fuel test. A biocide was added with each fuel shipment and the problem subsided. In January of 2009, the WSF successfully completed an eleven month biodiesel fuel test using approximately 1,395,000 gallons of biodiesel blended fuels. The project demonstrated that biodiesel can be used successfully in marine vessels and that current ASTM specifications are satisfactory for marine vessels. Microbial growth in biodiesel diesel interface should be monitored. An inspection of the engines showed no signs of being negatively impacted by the test.

Washington State University; University of Idaho; The Glosten Associates, Inc.; Imperium Renewables, Inc.

2009-04-30T23:59:59.000Z

162

Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade  

Broader source: Energy.gov [DOE]

Project Will Take Advantage of Abundant Water in Shallow Aquifer. Demonstrate Low Temperature GSHP System Design. Provides a Baseline for Local Industrial Geothermal Project Costs and Benefits.

163

Environmental Assessment: geothermal direct heat project, Marlin, Texas  

SciTech Connect (OSTI)

The Federal action addressed by this Environmental Assessment (EA) is joint funding the retrofitting of a heating and hot water system in a hospital at Marlin, Texas, with a geothermal preheat system. The project will be located within the existing hospital boiler room. One supply well was drilled in an existing adjacent parking lot. It was necessary to drill the well prior to completion of this environmental assessment in order to confirm the reservoir and to obtain fluids for analysis in order to assess the environmental effects of fluid disposal. Fluid from operation will be disposed of by discharging it directly into existing street drains, which will carry the fluid to Park Lake and eventually the Brazos River. Fluid disposal activities are regulated by the Texas Railroad Commission. The local geology is determined by past displacements in the East Texas Basin. Boundaries are marked by the Balcones and the Mexia-Talco fault systems. All important water-bearing formations are in the cretaceous sedimentary rocks and are slightly to highly saline. Geothermal fluids are produced from the Trinity Group; they range from approximately 3600 to 4000 ppM TDS. Temperatures are expected to be above 64/sup 0/C (147/sup 0/F). Surface water flows southeastward as a part of the Brazos River Basin. The nearest perennial stream is the Brazos River 5.6 km (3.5 miles) away, to which surface fluids will eventually discharge. Environmental impacts of construction were small because of the existing structures and paved areas. Construction run-off and geothermal flow-test fluid passed through a small pond in the city park, lowering its water quality, at least temporarily. Construction noise was not out of character with existing noises around the hospital.

Not Available

1980-08-01T23:59:59.000Z

164

NEPA COMPLIANCE SURVEY Project Information Project TitJe: Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

0 18 0 Hazardous Air Pollutants? Is the project subject to emissions limitations in an Air Quality 0 18 0 Control Region? 2 Revised on: 11122008 NEPA COMPLIANCE SURVEY Impacts...

165

HTI retrieval demonstration project execution plan  

SciTech Connect (OSTI)

This plan describes the process for demonstrating the retrieval of difficult Hanford tank waste forms utilizing commercial technologies and the private sector to conduct the operations. The demonstration is to be conducted in Tank 241-C-106.

Ellingson, D.R.

1997-09-04T23:59:59.000Z

166

WEST VALLEY DEMONSTRATION PROJECT SITE ENVIRONMENTAL REPORT CALENDARY YEAR 2001  

SciTech Connect (OSTI)

THE ANNUAL (CALENDAR YEAR 2001) SITE ENVIRONMENTAL MONITORING REPORT FOR THE WEST VALLEY DEMONSTRATION PROJECT NUCLEAR WASTE MANAGEMENT FACILITY.

NONE

2002-09-30T23:59:59.000Z

167

Geothermal direct-heat utilization assistance. Quarterly project progress report, July--September 1997  

SciTech Connect (OSTI)

This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-97 (July--September 1997). It describes 213 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps, geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, acquaculture, equipment, district heating, resorts and spas, and industrial applications. Research activities include the completion of a Comprehensive Greenhouse Developer Package. Work accomplished on the revision of the Geothermal Direct Use Engineering and Design Guidebook are discussed. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 3), dissemination of information mainly through mailings of publications, geothermal library acquisition and use, participation in workshops, short courses, and technical meetings by the staff, and progress monitor reports on geothermal activities.

NONE

1997-10-01T23:59:59.000Z

168

GEOTHERMAL SUBSIDENCE RESEARCH PROGRAM PLAN  

E-Print Network [OSTI]

of Subsiding Areas and Geothermal Subsidence Potential25 Project 2-Geothermal Subsidence Potential Maps . . . . .Subsidence Caused by a Geothermal Project and Subsidence Due

Lippmann, Marcello J.

2010-01-01T23:59:59.000Z

169

Grid Connectivity Research, Development & Demonstration Projects  

Broader source: Energy.gov (indexed) [DOE]

and communication technology * Engage demonstration partners to validate NIST smart grid standards for utility network and sub-meter requirements (includes ANSI, NEMA...

170

Selection Criteria for Demonstration Projects | Department of...  

Broader source: Energy.gov (indexed) [DOE]

and Logistical Challenges to Smart Grid Implementation Demonstration and Deployment Workshop Day 1 Offshore Resource Assessment and Design Conditions Public Meeting Summary Report...

171

Enforcement Documents - West Valley Demonstration Project | Department...  

Broader source: Energy.gov (indexed) [DOE]

Services - EA-1999-09 Issued to West Valley Nuclear Services, related to a High-Level Radioactive Waste Contamination Event at the West Valley Demonstration...

172

EA-1116: Kalina Geothermal Demonstration Project, Steamboat Springs, Nevada  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal for the U.S. Department of Energy Golden Field Office to partially fund assistance for the construction and operation of a privately...

173

DOE-Backed Project Will Demonstrate Innovative Geothermal Technology...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EGS is a process of extracting heat from the Earth by creating a subsurface fracture system and circulating water through these fractures using deep well bores. Creating...

174

Newberry Volcano EGS Demonstration Geothermal Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to:City) Jump to: navigation,Newark is a city71.

175

Enhanced Geothermal Systems Demonstration Projects | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehiclesTanklessDOJ TitleDr.DoubleInitiativesEnforcement EnforcementSystems

176

DOE-Backed Project Will Demonstrate Innovative Geothermal Technology |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Deliciouscritical_materials_workshop_presentations.pdf MoreProgramofContractto Host aDesignDOE's Use ofDOE, NEPA,

177

Demand Response Projects: Technical and Market Demonstrations  

E-Print Network [OSTI]

-progress) ­ AMI dispatched remote control of water heaters and smart thermostats Wind Integration Pilot Project heaters, smart thermostats Residential Wind Integration Pilot (41 customer units) ¡ Water heaters, thermal Pacific Northwest GridwiseTM Testbed Program (2005 ­ 2007) ­ Internet based remote control of water

178

Geothermal R and D Project report for period April 1, 1976 to...  

Open Energy Info (EERE)

search OpenEI Reference LibraryAdd to library Report: Geothermal R and D Project report for period April 1, 1976 to June 30, 1976 Abstract Progress during April to July...

179

GATEWAY Demonstration Indoor Projects | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for Fast-TrackApplicationsIndoor Projects

180

DOE`s annealing prototype demonstration projects  

SciTech Connect (OSTI)

One of the challenges U.S. utilities face in addressing technical issues associated with the aging of nuclear power plants is the long-term effect of plant operation on reactor pressure vessels (RPVs). As a nuclear plant operates, its RPV is exposed to neutrons. For certain plants, this neutron exposure can cause embrittlement of some of the RPV welds which can shorten the useful life of the RPV. This RPV embrittlement issue has the potential to affect the continued operation of a number of operating U.S. pressurized water reactor (PWR) plants. However, RPV material properties affected by long-term irradiation are recoverable through a thermal annealing treatment of the RPV. Although a dozen Russian-designed RPVs and several U.S. military vessels have been successfully annealed, U.S. utilities have stated that a successful annealing demonstration of a U.S. RPV is a prerequisite for annealing a licensed U.S. nuclear power plant. In May 1995, the Department of Energy`s Sandia National Laboratories awarded two cost-shared contracts to evaluate the feasibility of annealing U.S. licensed plants by conducting an anneal of an installed RPV using two different heating technologies. The contracts were awarded to the American Society of Mechanical Engineers (ASME) Center for Research and Technology Development (CRTD) and MPR Associates (MPR). The ASME team completed its annealing prototype demonstration in July 1996, using an indirect gas furnace at the uncompleted Public Service of Indiana`s Marble Hill nuclear power plant. The MPR team`s annealing prototype demonstration was scheduled to be completed in early 1997, using a direct heat electrical furnace at the uncompleted Consumers Power Company`s nuclear power plant at Midland, Michigan. This paper describes the Department`s annealing prototype demonstration goals and objectives; the tasks, deliverables, and results to date for each annealing prototype demonstration; and the remaining annealing technology challenges.

Warren, J.; Nakos, J.; Rochau, G.

1997-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Cryogenic Barrier Demonstration Project. Final report  

SciTech Connect (OSTI)

A long-term frozen soil barrier was implemented at the HRE (Homogeneous Reactor Experiment) Pond facility at the Oak Ridge National Laboratory in 1997. This was performed to verify the technical feasibility and costs of deploying a frozen barrier at a radiologically contaminated site. Work began in September 1996 and progressed through to December 1999. The frozen barrier has been operational since November 1997. Verification of the barrier integrity was performed independently by the EPA's SITE Program. This project showed frozen barriers offer a proven technology to retain below grade hazardous substances at relatively low costs with minimal effect on the environment.

Johnson, L.A.; Yarmak, E.; Long, E.L.

2000-03-01T23:59:59.000Z

182

The Way Ahead - West Valley Demonstration Project  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNGInternationalTechnology ValidationMilestoneDepartmentDepartment ofProject

183

Independent Oversight Review, West Valley Demonstration Project  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department ofHTS CableDepartment ofDepartment20112014 |Project -May 2013

184

Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1996--September 1996. Federal Assistance Program  

SciTech Connect (OSTI)

This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the fourth quarter of FY-96. It describes 152 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

Lienau, P.

1996-11-01T23:59:59.000Z

185

Great Western Malting Company geothermal project, Pocatello, Idaho. Final report  

SciTech Connect (OSTI)

The Great Western Malting Company recently constructed a barley malting facility in Pocatello, Idaho, designed to produce 6.0 million bushels per year of brewing malt. This facility uses natural gas to supply the energy for germination and kilning processes. The escalating cost of natural gas has prompted the company to look at alternate and more economical sources of energy. Trans Energy Systems has investigated the viabiity of using geothermal energy at the new barley processing plant. Preliminary investigations show that a geothermal resource probably exists, and payback on the installation of a system to utilize the resource will occur in under 2 years. The Great Western Malting plant site has geological characteristics which are similar to areas where productive geothermal wells have been established. Geological investigations indicate that resource water temperatures will be in the 150 to 200/sup 0/F range. Geothermal energy of this quality will supply 30 to 98% of the heating requirements currently supplied by natural gas for this malting plant. Trans Energy Systems has analyzed several systems of utilizing the geothermal resource at the Great Western barley malting facility. These systems included: direct use of geothermal water; geothermal energy heating process water through an intermediary heat exchanger; coal or gas boosted geothermal systems; and heat pump boosted geothermal system. The analysis examined the steps that are required to process the grain.

Christensen, N.T.; McGeen, M.A.; Corlett, D.F.; Urmston, R.

1981-12-23T23:59:59.000Z

186

U.S. and Australian Advanced Geothermal Projects Face Setbacks...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EGS involves injecting water at high pressure into deep, hot rock formations to fracture the rock, creating either a new geothermal reservoir of hot water embedded in hot...

187

Egs Exploration Methodology Project Using the Dixie Valley Geothermal...  

Open Energy Info (EERE)

Mahesh Thakur, Fletcher H. Ibser, Jennifer Lewicki, B. Mack. Kennedy and Michael Swyer Conference Thirty-Eighth Workshop on Geothermal Reservoir Engineering; Stanford,...

188

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project  

SciTech Connect (OSTI)

The report summarizes unit operating experience and test program progress for 1989 on Colorado-Ute Electric Association's Nucla CFB Demonstration Program. During this period, the objectives of the Nucla Station operating group were to correct problems with refractory durability, resolve primary air fan capacity limitations, complete the high ash and high sulfur coal tests, switch to Salt Creek coal as the operating fuel, and make the unit available for testing without capacity restrictions. Each of these objectives was addressed and accomplished, to varying degrees, except for the completion of the high sulfur coal acceptance tests. (VC)

Not Available

1992-02-01T23:59:59.000Z

189

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project  

SciTech Connect (OSTI)

This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

Not Available

1991-01-01T23:59:59.000Z

190

EA-1970: Fishermen's Energy LLC Offshore Wind Demonstration Project...  

Office of Environmental Management (EM)

to Fishermen's Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical...

191

Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1997  

SciTech Connect (OSTI)

This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-98 (October--December 1997). It describes 216 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include requests for general information including maps and material for high school debates, and material on geothermal heat pumps, resource and well data, space heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, electric power and snow melting. Research activities include work on model construction specifications of lineshaft submersible pumps and plate heat exchangers, a comprehensive aquaculture developer package and revisions to the Geothermal Direct Use Engineering and Design Guidebook. Outreach activities include the publication of the Quarterly Bulletin (Vol. 18, No. 4) which was devoted entirely to geothermal activities in South Dakota, dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisition and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

NONE

1997-01-01T23:59:59.000Z

192

Geothermal: Sponsored by OSTI -- Recovery Act: Geothermal Data...  

Office of Scientific and Technical Information (OSTI)

Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014 Geothermal...

193

Geothermal: Sponsored by OSTI -- Calpine geothermal visitor center...  

Office of Scientific and Technical Information (OSTI)

Calpine geothermal visitor center upgrade project An interactive approach to geothermal outreach and education at The Geysers Geothermal Technologies Legacy Collection HelpFAQ |...

194

Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report  

SciTech Connect (OSTI)

The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

Iovenitti, Joe

2013-05-15T23:59:59.000Z

195

Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodlogy calibration purposes because, in the public domain, it is a highly characterized geothermal systems in the Basin and Range with a considerable amount of geoscience and most importantly, well data. This Baseline Conceptual Model report summarizes the results of the first three project tasks (1) collect and assess the existing public domain geoscience data, (2) design and populate a GIS database, and (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area (Dixie Valley Geothermal Wellfield) to identify EGS drilling targets at a scale of 5km x 5km. It presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region.

Iovenitti, Joe

196

Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...  

Office of Scientific and Technical Information (OSTI)

(NREL) at www.nrel.govpublications. Executive Summary Many binary-cycle geothermal power plants use air as the heat rejection medium. An air-cooled condenser (ACC) system is...

197

Recycling and composting demonstration projects for the Memphis region  

SciTech Connect (OSTI)

This report documents the development and implementation of the project entitled Recycling and Composting Demonstration Projects for the Memphis Region.'' The project was funded by the Energy Task Force of the Urban Consortium for Technology Initiatives. This Project was implemented by the staff of the Special Programs Section of the Memphis and Shelby County Division of Planning and Development. The project began November 1, 1990, and was completed December 31, 1991. The purpose of the project was to evaluate the feasibility of a variety of solid waste disposal alternatives.

Muller, D. (Memphis and Shelby County Div. of Planning and Development, TN (United States))

1992-05-01T23:59:59.000Z

198

Recycling and composting demonstration projects for the Memphis region  

SciTech Connect (OSTI)

This report documents the development and implementation of the project entitled ``Recycling and Composting Demonstration Projects for the Memphis Region.`` The project was funded by the Energy Task Force of the Urban Consortium for Technology Initiatives. This Project was implemented by the staff of the Special Programs Section of the Memphis and Shelby County Division of Planning and Development. The project began November 1, 1990, and was completed December 31, 1991. The purpose of the project was to evaluate the feasibility of a variety of solid waste disposal alternatives.

Muller, D. [Memphis and Shelby County Div. of Planning and Development, TN (United States)

1992-05-01T23:59:59.000Z

199

Geothermal: Sponsored by OSTI -- Telephone Flat Geothermal Development...  

Office of Scientific and Technical Information (OSTI)

Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments Geothermal Technologies Legacy...

200

Geothermal direct-heat utilization assistance. Quarterly project progress report, January--March 1994  

SciTech Connect (OSTI)

The Geo-Heat Center provides technical assistance on geothermal direct heat applications to developers, consultants and the public which could include: data and information on low-temperature (< 1500 C) resources, space and district heating, geothermal heat pumps, greenhouses, aquaculture, industrial processes and other technologies. This assistance could include preliminary engineering feasibility studies, review of direct-use project plans, assistance in project material and equipment selection, analysis and solutions of project operating problems, and information on resources and utilization. The following are brief descriptions of technical assistance provided during the second quarter of the program.

Not Available

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Geothermal: Sponsored by OSTI -- Pre-stimulation coupled THM...  

Office of Scientific and Technical Information (OSTI)

coupled THM modeling related to the Northwest Geysers EGS Demonstration Project Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us HomeBasic Search...

202

MHK Projects/Pulse Stream 100 Demonstration Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Projects3.362°duInformation Humber

203

Surface water supply for the Clearlake, California Hot Dry Rock Geothermal Project  

SciTech Connect (OSTI)

It is proposed to construct a demonstration Hot Dry Rock (HDR) geothermal plant in the vicinity of the City of Clearlake. An interim evaluation has been made of the availability of surface water to supply the plant. The evaluation has required consideration of the likely water consumption of such a plant. It has also required consideration of population, land, and water uses in the drainage basins adjacent to Clear Lake, where the HDR demonstration project is likely to be located. Five sources were identified that appear to be able to supply water of suitable quality in adequate quantity for initial filling of the reservoir, and on a continuing basis, as makeup for water losses during operation. Those sources are California Cities Water Company, a municipal supplier to the City of Clearlake; Clear Lake, controlled by Yolo County Flood Control and Water Conservation District; Borax Lake, controlled by a local developer; Southeast Regional Wastewater Treatment Plant, controlled by Lake County; and wells, ponds, and streams on private land. The evaluation involved the water uses, water rights, stream flows, precipitation, evaporation, a water balance, and water quality. In spite of California`s prolonged drought, the interim conclusion is that adequate water is available at a reasonable cost to supply the proposed HDR demonstration project.

Jager, A.R.

1996-03-01T23:59:59.000Z

204

New River Geothermal Research Program  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation: Project objectives: Demonstration of an innovative blend of modern tectonic research applied to the Imperial Valley with a proprietary compilation of existing thermal and drilling data. The developed geologic model will guide the targeting of two test wells and the identification of permeable zones capable of commercial geothermal power production.

205

Vitrification facility at the West Valley Demonstration Project  

SciTech Connect (OSTI)

This report is a description of the West Valley Demonstration Project`s vitrification facilities from the establishment of the West Valley, NY site as a federal and state cooperative project to the completion of all activities necessary to begin solidification of radioactive waste into glass by vitrification. Topics discussed in this report include the Project`s background, high-level radioactive waste consolidation, vitrification process and component testing, facilities design and construction, waste/glass recipe development, integrated facility testing, and readiness activities for radioactive waste processing.

DesCamp, V.A.; McMahon, C.L.

1996-07-01T23:59:59.000Z

206

International Partnership for Geothermal Technology - 2012 Peer...  

Broader source: Energy.gov (indexed) [DOE]

River Geothermal Drilling Project Canada The Snake River Geothermal Drilling Project GermanyEU Toward the Understanding of Induced Seismicity in Enhanced Geothermal Systems...

207

The ethanol heavy-duty truck fleet demonstration project  

SciTech Connect (OSTI)

This project was designed to test and demonstrate the use of a high- percentage ethanol-blended fuel in a fleet of heavy-duty, over-the- road trucks, paying particular attention to emissions, performance, and repair and maintenance costs. This project also represents the first public demonstration of the use of ethanol fuels as a viable alternative to conventional diesel fuel in heavy-duty engines.

NONE

1997-06-01T23:59:59.000Z

208

Radiation safety at the West Valley Demonstration Project  

SciTech Connect (OSTI)

This is a report on the Radiation Safety Program at the West Valley Demonstration Project (WVDP). This Program covers a number of activities that support high-level waste solidification, stabilization of facilities, and decontamination and decommissioning activities at the Project. The conduct of the Program provides confidence that all occupational radiation exposures received during operational tasks at the Project are within limits, standards, and program requirements, and are as low as reasonably achievable.

Hoffman, R.L.

1997-05-06T23:59:59.000Z

209

DMEC-1 Pressurized Circulating Fluidized-Bed Demonstration Project  

SciTech Connect (OSTI)

The DMEC-1 project will demonstrate the use of Pyropower`s PYROFLOW pressurized circulating fluidized bed technology to repower an existing coal fired generating station. This will be the first commercial application of this technology in the world. The project is now in budget period 1, the preliminary design phase.

Kruempel, G.E.; Ambrose, S.J. [Midwest Power, Des Moines, IA (United States); Provol, S.J. [Pyropower Corp., San Diego, CA (United States)

1992-12-01T23:59:59.000Z

210

Milliken Clean Coal Demonstration Project: A DOE Assessment  

SciTech Connect (OSTI)

The goal of the U.S. Department of Energy's (DOE) Clean Coal Technology (CCT) program is to furnish the energy marketplace with a number of advanced, more efficient, and environmentally responsible coal-utilization technologies through demonstration projects. These projects seek to establish the commercial feasibility of the most promising advanced coal technologies that have developed beyond the proof-of-concept stage.

National Energy Technology Laboratory

2001-08-15T23:59:59.000Z

211

Qualification Plan for Phase One of True-MidPacific Geothermal Venture: James Campbell - Kahaualea Project, Island of Hawaii  

SciTech Connect (OSTI)

The objective of this project is to develop the geothermal resources of the James Campbell Estate, comprising acres in the Puna District of the Island of Hawaii. The geothermal resource is assumed to exist in the vicinity of the East Rift of the Kilauea volcano. The location of the proposed geothermal well field and the geothermal-electric power plant are shown on Dwg. No. E-04-001. Access to the project area will be provided by a new road extension from the boundary road south from Glenwood on Highway 11.

None

1981-06-01T23:59:59.000Z

212

Community Geothermal Technology Program: Silica bronze project. Final report  

SciTech Connect (OSTI)

Objective was to incorporate waste silica from the HGP-A geothermal well in Pohoiki with other refractory materials for investment casting of bronze sculpture. The best composition for casting is about 50% silica, 25% red cinders, and 25% brick dust; remaining ingredient is a binder, such as plaster and water.

Bianchini, H.

1989-10-01T23:59:59.000Z

213

Santa Clara County Planar Solid Oxide Fuel Cell Demonstration Project  

SciTech Connect (OSTI)

The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project demonstrated the technical viability of pre-commercial PSOFC technology at the County 911 Communications headquarters, as well as the input fuel flexibility of the PSOFC. PSOFC operation was demonstrated on natural gas and denatured ethanol. The Santa Clara County Planar Solid Oxide Fuel Cell (PSOFC) project goals were to acquire, site, and demonstrate the technical viability of a pre-commercial PSOFC technology at the County 911 Communications headquarters. Additional goals included educating local permit approval authorities, and other governmental entities about PSOFC technology, existing fuel cell standards and specific code requirements. The project demonstrated the Bloom Energy (BE) PSOFC technology in grid parallel mode, delivering a minimum 15 kW over 8760 operational hours. The PSOFC system demonstrated greater than 81% electricity availability and 41% electrical efficiency (LHV net AC), providing reliable, stable power to a critical, sensitive 911 communications system that serves geographical boundaries of the entire Santa Clara County. The project also demonstrated input fuel flexibility. BE developed and demonstrated the capability to run its prototype PSOFC system on ethanol. BE designed the hardware necessary to deliver ethanol into its existing PSOFC system. Operational parameters were determined for running the system on ethanol, natural gas (NG), and a combination of both. Required modeling was performed to determine viable operational regimes and regimes where coking could occur.

Fred Mitlitsky; Sara Mulhauser; David Chien; Deepak Shukla; David Weingaertner

2009-11-14T23:59:59.000Z

214

EA-1925: Midnight Point and Mahogany Geothermal Exploration Projects, Glass Buttes, Oregon  

Broader source: Energy.gov [DOE]

This EA evaluates Ormat Nevada, Inc.’s (Ormat’s) proposed geothermal project consists of drilling up to 16 wells for geothermal exploration approximately 70 miles southeast of Bend, Oregon and 50 miles northwest of Burns, Oregon just south of U.S. Highway 20. The proposed project includes three distinct drilling areas. Up to three wells would be drilled on lands managed by the Bureau of Land Management (BLM) Prineville District (Mahogany), up to ten wells would be drilled on lands managed by the BLM Burns District (Midnight Point), and up to three wells would be drilled on private land located adjacent to the federal geothermal leases west of Glass Butte (Private Lands). DOE funding would be associated with three of the sixteen proposed wells. BLM is the lead agency and DOE is participating as a cooperating agency.

215

High Temperature, High Pressure Devices for Zonal Isolation in Geothermal Wells  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Design, demonstrate, and qualify high-temperature high pressure zonal isolation devices compatible with the high temperature downhole Enhanced Geothermal Systems (EGS) environment.

216

BMDO: New Mexico Technology Transfer Demonstration Project. Interim final report  

SciTech Connect (OSTI)

The BMDO-New Mexico Technology Transfer Demonstration Project(BMDO-NM) was a collaborative effort among the national laboratories to identify and evaluate the commercial potential of selected SDI-funded technologies. The project was funded by BMDO (formerly known as the Strategic Defense Initiative Office or SDIO), the Technology Enterprise Division (NM-TED) of the NM Economic Development Division, and the three National Laboratories. The project was managed and supervised by SAGE Management Partners of Albuquerque, and project funding was administered through the University of New Mexico. The BMDO-NM Demonstration Project focused on the development of a process to assist technology developers in the evaluation of selected BMDO technology programs so that commercialization decisions can be made in an accelerated manner. The project brought together BMDO, the NM-TED, the University of New Mexico, and three New Mexico Federal laboratories -- Los Alamos (DOE), Phillips (DOD) and Sandia (DOE). Each national laboratory actively participated throughout the project through its technology transfer offices. New Mexico was selected as the site for the Demonstration Program because of its three national and federal research laboratories engaged in BMDO programs, and the existing relationship among state govemment, the labs, universities and local economic development and business assistance organizations. Subsequent Commercialization and Implementation phases for the selected technologies from LANL and SNL were completed by SAGE and the Project Team. Funding for those phases was provided by the individual labs as well as BMDO and NM-TED in kind services. NM-TED played a proactive role in this New Mexico partnership. Its mandate is to promote technology-based economic development, with a commitment to facilitate the use of technology by industry and business statewide. TED assumed the role of program manager and executing agent for BMDO in this demonstration project.

Not Available

1993-11-01T23:59:59.000Z

217

FINAL TECHNICAL REPORT, U.S. Department of Energy: Award No. DE-EE0002855 "Demonstrating the Commercial Feasibility of Geopressured-Geothermal Power Development at Sweet Lake Field - Cameron Parish, Louisiana"  

SciTech Connect (OSTI)

The goal of the project was to demonstrate the commercial feasibility of geopressured-geothermal power development by exploiting the extraordinarily high pressured hot brines know to exist at depth near the Sweet Lake oil and gas field in Cameron Parish, Louisiana. The existence of a geopressured-geothermal system at Sweet Lake was confirmed in the 1970's and 1980's as part of DOE's Geopressured-Geothermal Program. That program showed that the energy prices at the time could not support commercial production of the resource. Increased electricity prices and technological advancements over the last two decades, combined with the current national support for developing clean, renewable energy and the job creation it would entail, provided the justification necessary to reevaluate the commercial feasibility of power generation from this vast resource.

Gayle, Phillip A., Jr.

2012-01-13T23:59:59.000Z

218

Integrated monitoring and surveillance system demonstration project: Phase I accomplishments  

SciTech Connect (OSTI)

The authors present the results of the Integrated Monitoring and Surveillance System (IMSS) demonstration project Phase I efforts. The rationale behind IMSS development is reviewed and progress in each of the 5 basic tasks is detailed. Significant results include decisions to use Echelon LonWorks networking protocol and Microsoft Access for the data system needs, a preliminary design for the plutonium canning system glovebox, identification of facilities and materials available for the demonstration, determination of possibly affected facility documentation, and a preliminary list of available sensor technologies. Recently imposed changes in the overall project schedule and scope are also discussed and budgetary requirements for competition of Phase II presented. The results show that the IMSS demonstration project team has met and in many cases exceeded the commitments made for Phase I deliverables.

Aumeier, S.E.; Walters, B.G.; Crawford, D.C. [and others

1997-01-15T23:59:59.000Z

219

Final Report - Navajo Electrification Demonstration Project - FY2004  

SciTech Connect (OSTI)

The Navajo Electrification Demonstration Project (NEDP) is a multi-year projects which addresses the needs of unserved Navajo Nation residents without basic electricity services. The Navajo Nation is the United States' largest tribe, in terms of population and land. An estimated 18,000 Navajo Nation homes do not have basic grid-tied electricity--and this third year of funding, known as NEDP-3, provided 351 power line extensions to Navajo families.

Kenneth L. Craig, Interim General Manager

2007-03-31T23:59:59.000Z

220

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling and Testing  

SciTech Connect (OSTI)

This report covers the drilling and testing of the slim well 56-4 at the Reese River Geothermal Project in Lander County, Nevada. This well was partially funded through a GRED III Cooperative Funding Agreement # DE-FC36-04GO14344, from USDOE.

Henkle, William R.; Ronne, Joel

2008-06-15T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Residential Energy Efficiency Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect (OSTI)

In order to meet its energy goals, the Department of Defense (DOD) has partnered with the Department of Energy (DOE) to rapidly demonstrate and deploy cost-effective renewable energy and energy-efficiency technologies. The scope of this project was to demonstrate tools and technologies to reduce energy use in military housing, with particular emphasis on measuring and reducing loads related to consumer electronics (commonly referred to as 'plug loads'), hot water, and whole-house cooling.

Earle, L.; Sparn, B.; Rutter, A.; Briggs, D.

2014-03-01T23:59:59.000Z

222

The Snake River Geothermal Drilling Project - Innovative Approaches...  

Open Energy Info (EERE)

a complete record of the volcanic stratigraphy that can be used in complementary science projects. This project will function in tandem with Project Hotspot, a continental...

223

New River Geothermal Research Project, Imperial Valley, California  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to: navigation,0558143° Loading map...Paltz,Geothermal

224

Hot Springs Point Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHi GtelHomer, Alaska:Horace,Geothermal Area Jump to:

225

Pilgrim Hot Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine: EnergyPierce County, Nebraska:Pilgrim Hot Springs Geothermal

226

Farmer's Market, Demonstration Gardens, and Research Projects Expand Outreach  

E-Print Network [OSTI]

Farmer's Market, Demonstration Gardens, and Research Projects Expand Outreach of Extension Master. A workshop format was used at the Annual Conference of the American Society for Horticultural Science on 31 volunteer outreach, leading to increased extension effectiveness. One program leader described how EMGs

227

Black Rock III Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:form ViewBlack Diamond Power Co JumpHawkIII Geothermal

228

San Emidio II Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to: navigation, searchVirginiaRooseveltVI Solaris a city inSamak,222°Diego,II Geothermal

229

Low-Temperature and Coproduced Geothermal Projects Poster | Department of  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUAL REPORT TOJaredKansas1IncreaseLosEnergy Geothermal

230

The Snake River Geothermal Drilling Project - Innovative Approaches to  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump Jump to:InformationThe Potomac EdisonEnergyGeothermal

231

Hawaii Geothermal Project annotated bibliography: Biological resources of the geothermal subzones, the transmission corridors and the Puna District, Island of Hawaii  

SciTech Connect (OSTI)

Task 1 of the Hawaii Geothermal Project Interagency Agreement between the Fish and Wildlife Service and the Department of Energy-Oak Ridge National Laboratory (DOE) includes an annotated bibliography of published and unpublished documents that cover biological issues related to the lowland rain forest in Puna, adjacent areas, transmission corridors, and in the proposed Hawaii Geothermal Project (HGP). The 51 documents reviewed in this report cover the main body of biological information for these projects. The full table of contents and bibliography for each document is included along with two copies (as requested in the Interagency Agreement) of the biological sections of each document. The documents are reviewed in five main categories: (1) geothermal subzones (29 documents); (2) transmission cable routes (8 documents); (3) commercial satellite launching facility (Spaceport; 1 document); (4) manganese nodule processing facility (2 documents); (5) water resource development (1 document); and (6) ecosystem stability and introduced species (11 documents).

Miller, S.E.; Burgett, J.M. [Fish and Wildlife Service, Honolulu, HI (United States). Pacific Islands Office

1993-10-01T23:59:59.000Z

232

McIntosh Unit 4 PCFB demonstration project  

SciTech Connect (OSTI)

The City of Lakeland, Foster Wheeler Corporation and Westinghouse Electric Corporation have embarked on a utility scale demonstration of Pressurized Circulating Fluidized Bed (PCFB) technology at Lakeland`s McIntosh Power Station in Lakeland, Florida. The US Department of Energy will be providing approximately $195 million of funding for the project through two Cooperative Agreements under the auspices of the Clean Coal Technology Program. The project will involve the commercial demonstration of Foster Wheeler Pyroflow PCFB technology integrated with Westinghouse`s Hot Gas Filter (HGF) and power generation technologies. The total project duration will be approximately eight years and will be structured into three separate phases; two years of design and permitting, followed by an initial period of two years of fabrication and construction and concluding with a four year demonstration (commercial operation) period. It is expected that the project will show that Foster Wheeler`s Pyroflow PCFB technology coupled with Westinghouse`s HGF and power generation technologies represents a cost effective, high efficiency, low emissions means of adding greenfield generation capacity and that this same technology is also well suited for repowering applications.

Dodd, A.M. [Lakeland Electric and Water, FL (United States); Dryden, R.J. [Foster Wheeler Development Corp., San Diego, CA (United States); Morehead, H.T. [Westinghouse Electric Corp., Orlando, FL (United States)

1997-12-31T23:59:59.000Z

233

Solar Two: A successful power tower demonstration project  

SciTech Connect (OSTI)

Solar Two, a 10MWe power tower plant in Barstow, California, successfully demonstrated the production of grid electricity at utility-scale with a molten-salt solar power tower. This paper provides an overview of the project, from inception in 1993 to closure in the spring of 1999. Included are discussions of the goals of the Solar Two consortium, the planned-vs.-actual timeline, plant performance, problems encountered, and highlights and successes of the project. The paper concludes with a number of key results of the Solar Two test and evaluation program.

REILLY,HUGH E.; PACHECO,JAMES E.

2000-03-02T23:59:59.000Z

234

Induced seismicity associated with enhanced geothermal system  

E-Print Network [OSTI]

Cooper Basin, Australia. Geothermal Resources Council Trans.a hot fractured rock geothermal project. Engineering Geologyseismicity in The Geysers geothermal area, California. J.

Majer, Ernest L.

2006-01-01T23:59:59.000Z

235

Geothermal development opportunities in developing countries  

SciTech Connect (OSTI)

This report is the proceedings of the Seminar on geothermal development opportunities in developing countries, sponsored by the Geothermal Division of the US Department of Energy and presented by the National Geothermal Association. The overall objectives of the seminar are: (1) Provide sufficient information to the attendees to encourage their interest in undertaking more geothermal projects within selected developing countries, and (2) Demonstrate the technological leadership of US technology and the depth of US industry experience and capabilities to best perform on these projects.

Kenkeremath, D.C.

1989-11-16T23:59:59.000Z

236

FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

SciTech Connect (OSTI)

This project has two primary purposes: (1) Build a small-footprint (SFP) fuel production plant to prove the feasibility of this relatively transportable technology on an intermediate scale (i.e. between laboratory-bench and commercial capacity) and produce as much as 150,000 gallons of hydrogen-saturated Fischer-Tropsch (FT) diesel fuel; and (2) Use the virtually sulfur-free fuel produced to demonstrate (over a period of at least six months) that it can not only be used in existing diesel engines, but that it also can enable significantly increased effectiveness and life of the next-generation exhaust-after-treatment emission control systems that are currently under development and that will be required for future diesel engines. Furthermore, a well-to-wheels economic analysis will be performed to characterize the overall costs and benefits that would be associated with the actual commercial production, distribution and use of such FT diesel fuel made by the process under consideration, from the currently underutilized (or entirely un-used) energy resources targeted, primarily natural gas that is stranded, sub-quality, off-shore, etc. During the first year of the project, which is the subject of this report, there have been two significant areas of progress: (1) Most of the preparatory work required to build the SFP fuel-production plant has been completed, and (2) Relationships have been established, and necessary project coordination has been started, with the half dozen project-partner organizations that will have a role in the fuel demonstration and evaluation phase of the project. Additional project tasks directly related to the State of Alaska have also been added to the project. These include: A study of underutilized potential Alaska energy resources that could contribute to domestic diesel and distillate fuel production by providing input energy for future commercial-size SFP fuel production plants; Demonstration of the use of the product fuel in a heavy-duty diesel vehicle during the Alaska winter; a comparative study of the cold-starting characteristics of FT and conventional diesel fuel; and demonstration of the use of the fuel to generate electricity for rural Alaskan villages using both a diesel generator set, and a reformer-equipped fuel cell.

Stephen P. Bergin

2003-04-23T23:59:59.000Z

237

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

SciTech Connect (OSTI)

General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

Stottler, Gary

2012-02-08T23:59:59.000Z

238

McIntosh Unit 4 PCFB demonstration project  

SciTech Connect (OSTI)

The City of Lakeland, Foster Wheeler Corporation and Westinghouse Electric Corporation have initiated a full scale demonstration of Pressurized Circulating Fluidized Bed (PCFB) Technology at Lakeland`s McIntosh Power Station in Lakeland, Florida. Two technologies will be demonstrated sequentially in the project: (1) the non-topping version of the PCFB where the gas turbine is driven directly by hot flue gases exhausted from the boiler, and (2) the topping version of the PCFB where the hot flue gases from the boiler are fired with syngas to raise the gas turbine inlet temperature. Each of these versions of the technology has its advantages and both will serve different future markets. The total project duration will be approximately eight years and will be structured into three separate phases: two years of design and permitting, followed by an initial period of two years of fabrication and construction and concluding with a four year demonstration (commercial operation) period. It is expected that the project will show that Foster Wheeler`s PCFB technology coupled with Westinghouse`s Hot Gas filter and power generation technologies represents a cost effective, high efficiency, low emissions means of adding greenfield generation capacity and that this same technology is also well suited for repowering applications.

Dodd, A.M. [Lakeland Electric and Water, FL (United States); Dryden, R.J.; Provol, S.J. [Foster Wheeler Development Corp., San Diego, CA (United States); Morehead, H.T. [Westinghouse Electric Corp. (United States)

1997-09-01T23:59:59.000Z

239

Geothermal direct-heat utilization assistance. Federal Assistance Program quarterly project progress report, April 1--June 30, 1998  

SciTech Connect (OSTI)

This report summarizes geothermal technical assistance, R and D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the third quarter of FY98 (April--June, 1998). It describes 231 contacts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with included requests for general information including material for high school and university students, and material on geothermal heat pumps, resource and well data, spacing heating and cooling, greenhouses, aquaculture, equipment, district heating, resorts and spas, industrial applications, snow melting and electric power. Research activities include work on model construction specifications for line shaft submersible pumps and plate heat exchangers, and a comprehensive aquaculture developers package. A brochure on Geothermal Energy in Klamath County was developed for state and local tourism use. Outreach activities include the publication of the Quarterly Bulletin (Vol. 19, No. 2) with articles on research at the Geo-Heat Center, sustainability of geothermal resources, injection well drilling in Boise, ID and a greenhouse project in the Azores. Other outreach activities include dissemination of information mainly through mailings of publications, tours of local geothermal uses, geothermal library acquisitions and use, participation in workshops, short courses and technical meetings by the staff, and progress monitor reports on geothermal activities.

NONE

1998-07-01T23:59:59.000Z

240

High-Temperature Motor Windings for Downhole Pumps Used in Geothermal Energy Production  

Broader source: Energy.gov [DOE]

Project objective: Develop and demonstrate high-temperature ESP motor windings for use in Enhanced Geothermal Systems and operation at 300?C.

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Ionic Liquids for Utilization of Geothermal Energy  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: to develop ionic liquids for two geothermal energy related applications.

242

Seismic Fracture Characterization Methods for Enhanced Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Seismic Fracture Characterization Methods for Enhanced Geothermal Systems Project objective: Make Seismic...

243

Air-blown Integrated Gasification Combined Cycle demonstration project  

SciTech Connect (OSTI)

Clean Power Cogeneration, Inc. (CPC) has requested financial assistance from DOE for the design construction, and operation of a normal 1270 ton-per-day (120-MWe), air-blown integrated gasification combined-cycle (IGCC) demonstration plant. The demonstration plant would produce both power for the utility grid and steam for a nearby industrial user. The objective of the proposed project is to demonstrate air-blown, fixed-bed Integrated Gasification Combined Cycle (IGCC) technology. The integrated performance to be demonstrated will involve all the subsystems in the air-blown IGCC system to include coal feeding; a pressurized air-blown, fixed-bed gasifier capable of utilizing caking coal; a hot gas conditioning systems for removing sulfur compounds, particulates, and other contaminants as necessary to meet environmental and combustion turbine fuel requirements; a conventional combustion turbine appropriately modified to utilize low-Btu coal gas as fuel; a briquetting system for improved coal feed performance; the heat recovery steam generation system appropriately modified to accept a NO{sub x} reduction system such as the selective catalytic reduction process; the steam cycle; the IGCC control systems; and the balance of plant. The base feed stock for the project is an Illinois Basin bituminous high-sulfur coal, which is a moderately caking coal. 5 figs., 1 tab.

Not Available

1991-01-01T23:59:59.000Z

244

New River Geothermal Research Project, Imperial Valley, California...  

Open Energy Info (EERE)

Share 9,339,420.00 Total Project Cost 14,339,420.00 Principal Investigator(s) Stuart Johnson Location of Project Imperial Valley, CA About the Area The shallow New River thermal...

245

Predicting the spatial extent of injection-induced zones of enhanced permeability at the Northwest Geysers EGS Demonstration Project  

SciTech Connect (OSTI)

We present the results of coupled thermal, hydraulic, and mechanical (THM) modeling of a proposed stimulation injection associated with an Enhanced Geothermal System (EGS) demonstration project at the northwest part of The Geysers geothermal field, California. The project aims at creating an EGS by directly and systematically injecting cool water at relatively low pressure into a known High Temperature (about 280 to 350 C) Zone (HTZ) located under the conventional (240 C) steam reservoir at depths below 3 km. Accurate micro-earthquake monitoring from the start of the injection will be used as a tool for tracking the development of the EGS. We first analyzed historic injection and micro-earthquake data from an injection well (Aidlin 11), located about 3 miles to the west of the new EGS demonstration area. Thereafter, we used the same modeling approach to predict the likely extent of the zone of enhanced permeability for a proposed initial injection in two wells (Prati State 31 and Prati 32) at the new EGS demonstration area. Our modeling indicates that the proposed injection scheme will provide additional steam production in the area by creating a zone of permeability enhancement extending about 0.5 km from each injection well which will connect to the overlying conventional steam reservoir.

Rutqvist, J.; Oldenburg, C.M.; Dobson, P.F.

2010-02-01T23:59:59.000Z

246

Post-NEPA environmental investigations at DOE geopressured-geothermal project sites  

SciTech Connect (OSTI)

In 1982, the Oak Ridge National Laboratory (ORNL) conducted follow-up environmental reviews of four US Department of Energy (DOE) geopressured-geothermal design well projects: Dow Parcperdue, Sweet Lake, Gladys McCall and Pleasant Bayou. The reviews determined the implementation and effectiveness of monitoring and mitigation commitments made by DOE in National Environmental Policy Act (NEPA) documents prepared for the individual projects. This paper briefly describes post-NEPA environmental investigations at DOE's geopressured-geothermal design well sites and focuses on three environmental problems that were identified and subsequently mitigated by DOE. These were (1) a breech in the brine pit liner and (2) a torn mud pit liner at the Dow Parcperdue well site, and (3) the disposal of potentially hazardous contents of the reserve pit at the Pleasant Bayou well site. The nature of the environmental problems, recommendations for mitigation of each, and remedial actions that were taken are presented.

Reed, A.W.

1985-01-01T23:59:59.000Z

247

West Valley Demonstration Project site environmental report, calendar year 1999  

SciTech Connect (OSTI)

This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1999 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

None Available

2000-06-01T23:59:59.000Z

248

West Valley Demonstration Project site environmental report, calendar year 1997  

SciTech Connect (OSTI)

This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1997 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

None

1998-06-01T23:59:59.000Z

249

West Valley Demonstration Project site environmental report calendar year 1998  

SciTech Connect (OSTI)

This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1998 by environmental monitoring personnel for the West Valley Demonstration Project (WVDP), West Valley, New York. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. The data collected provide an historical record of radionuclide and radiation levels from natural and manmade sources in the survey area and document the quality of the groundwater on and around the WVDP and the quality of the air and water discharged by the WVDP.

NONE

1999-06-01T23:59:59.000Z

250

Geothermal probabilistic cost study  

SciTech Connect (OSTI)

A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

1981-08-01T23:59:59.000Z

251

Nucla circulating atmospheric fluidized bed demonstration project. Final report  

SciTech Connect (OSTI)

Colorado-Ute Electric Association began a study to evaluate options for upgrading and extending the life of its Nucla power station in 1982. Located in southwestern Colorado near the town of Nucla, this station was commissioned in 1959 with a local bituminous coal as its design fuel for three identical stoker-fired units, each rated at 12.6 MW(e). Poor station efficiency, high fuel costs, and spiraling boiler maintenance costs forced the Nucla Station into low priority in the CUEA dispatch order as early as 1981. Among the options CUEA considered was to serve as a host utility to demonstrate Atmospheric Fluidized Bed Combustion (AFBC) technology. The anticipated environmental benefits and apparent attractive economics of a circulating AFBC led to Colorado-Ute`s decision to proceed with the design and construction of a demonstration project in 1984 at the Nucla facility.

Not Available

1991-10-01T23:59:59.000Z

252

American Recovery and Reinvestment Act (ARRA) FEMP Technical Assistance for Geothermal Resource Evaluation Projects  

SciTech Connect (OSTI)

The purpose of this document is to report on the evaluation of geothermal resource potential on and around three different United States (U. S.) Air Force Bases (AFBs): Nellis AFB and Air Force Range (AFR) in the State of Nevada (see maps 1 and 5), Holloman AFB in the State of New Mexico (see map 2), and Mountain Home AFB in the State of Idaho (see map 3). All three sites are located in semi-arid parts of the western U. S. The U. S. Air Force, through its Air Combat Command (ACC) located at Langley AFB in the State of Virginia, asked the Federal Energy Management Program (FEMP) for technical assistance to conduct technical and feasibility evaluations for the potential to identify viable geothermal resources on or around three different AFBs. Idaho National Laboratory (INL) is supporting FEMP in providing technical assistance to a number of different Federal Agencies. For this report, the three different AFBs are considered one project because they all deal with potential geothermal resource evaluations. The three AFBs will be evaluated primarily for their opportunity to develop a geothermal resource of high enough quality grade (i.e., temperature, productivity, depth, etc.) to consider the possibility for generation of electricity through a power plant. Secondarily, if the resource for the three AFBs is found to be not sufficient enough for electricity generation, then they will be described in enough detail to allow the base energy managers to evaluate if the resource is suitable for direct heating or cooling. Site visits and meetings by INL personnel with the staff at each AFB were held in late FY-2009 and FY-2010. This report provides a technical evaluation of the opportunities and challenges for developing geothermal resources on and around the AFBs. An extensive amount of literature and geographic information was evaluated as a part of this assessment. Resource potential maps were developed for each of the AFBs.

Robert P. Breckenridge; Thomas R. Wood; Joel Renner

2010-09-01T23:59:59.000Z

253

Geothermal Heat Pump System for the New 500-bed 200,000 SF Student Housing Project at the University at Albanys Main Campus  

Broader source: Energy.gov [DOE]

This project proposes to heat and cool planned 500-bed apartment-style student housing with closed loop vertical bore geothermal heat pump system installation.

254

NSTAR Electric & Gas Corporation Smart Grid Demonstration Project | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 -Energieprojekte3Informationof Energy Calculator JumpGeothermal ResourcesEnergy

255

Primus Power Corporation Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:JobInformation Mccoy

256

Native Hawaiian Ethnographic Study for the Hawaii Geothermal Project Proposed for Puna and Southeast Maui  

SciTech Connect (OSTI)

This report makes available and archives the background scientific data and related information collected for an ethnographic study of selected areas on the islands of Hawaii and Maui. The task was undertaken during preparation of an environmental impact statement for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. Information is included on the ethnohistory of Puna and southeast Maui; ethnographic fieldwork comparing Puna and southeast Maui; and Pele beliefs, customs, and practices.

Matsuoka, J.K; Minerbi, L. [Cultural Advocacy Network for Developing Options (CANDO) (United States); Kanahele, P.; Kelly, M.; Barney-Campbell, N.; Saulsbury [Oak Ridge National Lab., TN (United States); Trettin, L.D. [Tennessee Univ., Knoxville, TN (United States)

1996-05-01T23:59:59.000Z

257

Guidebook to Geothermal Finance  

SciTech Connect (OSTI)

This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

2011-03-01T23:59:59.000Z

258

Recovery Act-Funded Geothermal Heat Pump projects  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) was allocated funding from the American Recovery and Reinvestment Act to conduct research into ground source heat pump technologies and applications. Projects...

259

Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report  

SciTech Connect (OSTI)

The Engineered Geothermal System (EGS) Exploration Methodology Project is developing an exploration approach for EGS through the integration of geoscientific data. The Project chose the Dixie Valley Geothermal System in Nevada as a field laboratory site for methodology calibration purposes because, in the public domain, it is a highly characterized geothermal system in the Basin and Range with a considerable amount of geoscience and most importantly, well data. The overall project area is 2500km2 with the Calibration Area (Dixie Valley Geothermal Wellfield) being about 170km2. The project was subdivided into five tasks (1) collect and assess the existing public domain geoscience data; (2) design and populate a GIS database; (3) develop a baseline (existing data) geothermal conceptual model, evaluate geostatistical relationships, and generate baseline, coupled EGS favorability/trust maps from +1km above sea level (asl) to -4km asl for the Calibration Area at 0.5km intervals to identify EGS drilling targets at a scale of 5km x 5km; (4) collect new geophysical and geochemical data, and (5) repeat Task 3 for the enhanced (baseline + new ) data. Favorability maps were based on the integrated assessment of the three critical EGS exploration parameters of interest: rock type, temperature and stress. A complimentary trust map was generated to compliment the favorability maps to graphically illustrate the cumulative confidence in the data used in the favorability mapping. The Final Scientific Report (FSR) is submitted in two parts with Part I describing the results of project Tasks 1 through 3 and Part II covering the results of project Tasks 4 through 5 plus answering nine questions posed in the proposal for the overall project. FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region.

Iovenitti, Joe

2014-01-02T23:59:59.000Z

260

El Paso County Geothermal Project: Innovative Research Technologies...  

Broader source: Energy.gov (indexed) [DOE]

(EGI) - Demonstrate a low-impact rig technology with potential to reduce the cost of drilling temperature gradient wells (Aerospect) - Identify best locale within designated area...

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

AEP Ohio gridSMART Demonstration Project Real-Time Pricing Demonstration Analysis  

SciTech Connect (OSTI)

This report contributes initial findings from an analysis of significant aspects of the gridSMARTŽ Real-Time Pricing (RTP) – Double Auction demonstration project. Over the course of four years, Pacific Northwest National Laboratory (PNNL) worked with American Electric Power (AEP), Ohio and Battelle Memorial Institute to design, build, and operate an innovative system to engage residential consumers and their end-use resources in a participatory approach to electric system operations, an incentive-based approach that has the promise of providing greater efficiency under normal operating conditions and greater flexibility to react under situations of system stress. The material contained in this report supplements the findings documented by AEP Ohio in the main body of the gridSMART report. It delves into three main areas: impacts on system operations, impacts on households, and observations about the sensitivity of load to price changes.

Widergren, Steven E.; Subbarao, Krishnappa; Fuller, Jason C.; Chassin, David P.; Somani, Abhishek; Marinovici, Maria C.; Hammerstrom, Janelle L.

2014-02-01T23:59:59.000Z

262

Northwest Open Automated Demand Response Technology Demonstration Project  

SciTech Connect (OSTI)

The Lawrence Berkeley National Laboratory (LBNL) Demand Response Research Center (DRRC) demonstrated and evaluated open automated demand response (OpenADR) communication infrastructure to reduce winter morning and summer afternoon peak electricity demand in commercial buildings the Seattle area. LBNL performed this demonstration for the Bonneville Power Administration (BPA) in the Seattle City Light (SCL) service territory at five sites: Seattle Municipal Tower, Seattle University, McKinstry, and two Target stores. This report describes the process and results of the demonstration. OpenADR is an information exchange model that uses a client-server architecture to automate demand-response (DR) programs. These field tests evaluated the feasibility of deploying fully automated DR during both winter and summer peak periods. DR savings were evaluated for several building systems and control strategies. This project studied DR during hot summer afternoons and cold winter mornings, both periods when electricity demand is typically high. This is the DRRC project team's first experience using automation for year-round DR resources and evaluating the flexibility of commercial buildings end-use loads to participate in DR in dual-peaking climates. The lessons learned contribute to understanding end-use loads that are suitable for dispatch at different times of the year. The project was funded by BPA and SCL. BPA is a U.S. Department of Energy agency headquartered in Portland, Oregon and serving the Pacific Northwest. BPA operates an electricity transmission system and markets wholesale electrical power at cost from federal dams, one non-federal nuclear plant, and other non-federal hydroelectric and wind energy generation facilities. Created by the citizens of Seattle in 1902, SCL is the second-largest municipal utility in America. SCL purchases approximately 40% of its electricity and the majority of its transmission from BPA through a preference contract. SCL also provides ancillary services within its own balancing authority. The relationship between BPA and SCL creates a unique opportunity to create DR programs that address both BPA's and SCL's markets simultaneously. Although simultaneously addressing both market could significantly increase the value of DR programs for BPA, SCL, and the end user, establishing program parameters that maximize this value is challenging because of complex contractual arrangements and the absence of a central Independent System Operator or Regional Transmission Organization in the northwest.

Kiliccote, Sila; Piette, Mary Ann; Dudley, Junqiao

2010-03-17T23:59:59.000Z

263

U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes U.S. Fuel Cell Electric Vehicle Demonstration Project 2010 Status Update.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2010-10-21T23:59:59.000Z

264

Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment  

SciTech Connect (OSTI)

The AFGD process as demonstrated by Pure Air at the Bailly Station offers a reliable and cost-effective means of achieving a high degree of SO{sub 2} emissions reduction when burning high-sulfur coals. Many innovative features have been successfully incorporated in this process, and it is ready for widespread commercial use. The system uses a single-loop cocurrent scrubbing process with in-situ oxidation to produce wallboard-grade gypsum instead of wet sludge. A novel wastewater evaporation system minimizes effluents. The advanced scrubbing process uses a common absorber to serve multiple boilers, thereby saving on capital through economies of scale. Major results of the project are: (1) SO{sub 2} removal of over 94 percent was achieved over the three-year demonstration period, with a system availability exceeding 99.5 percent; (2) a large, single absorber handled the combined flue gas of boilers generating 528 MWe of power, and no spares were required; (3) direct injection of pulverized limestone into the absorber was successful; (4) Wastewater evaporation eliminated the need for liquid waste disposal; and (5) the gypsum by-product was used directly for wallboard manufacture, eliminating the need to dispose of waste sludge.

National Energy Technology Laboratory

2001-08-31T23:59:59.000Z

265

New York Canyon Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoading map...(Utility Company) Jump to: navigation,0558143° LoadingNorthSuffolk,NewNewProject

266

Geothermal Resource Exploration And Definition Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County,Information(EC-LEDS)Et1957)Information Project

267

Property:Geothermal/TotalProjectCost | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:PlugNumberOfArraProjectTypeTopic2 Jump to:

268

Property:GeothermalArraProjectFunding | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:PlugNumberOfArraProjectTypeTopic2

269

Lightning Dock I Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:KeystoneSolar (Texas) Jump to: navigation,BeachProject Jump

270

McCoy Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermal System,WindMaxWestMcAdamsMcClellan,Project

271

Newberry I Geothermal Project (2) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's HeatMexico: EnergyMithunCenterInformation thsourceenergy grid |Project (2)

272

Salt Wells Geothermal Energy Projects Environmental Impact Statement | Open  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g Grant ofRichardton Abbey Wind Farm(CTIhinderProject Smart GridEnergy

273

Property:Geothermal/ProjectEndDate | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFY Jump to:Partner6Website JumpProjectEndDate Jump

274

Property:Geothermal/ProjectStartDate | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProceduresFY Jump to:Partner6Website JumpProjectEndDate

275

Drum Mountain Geothermal Project (3) | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Power Basics (The followingDirect EnergyOrganization ofVirginiaYouProject (3)

276

Leach Hot Springs Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpInc Place:Keystone CleanLaton, California:Laxenburg,Project Jump to:

277

INTEGRATED GASIFICATION COMBINED CYCLE PROJECT 2 MW FUEL CELL DEMONSTRATION  

SciTech Connect (OSTI)

With about 50% of power generation in the United States derived from coal and projections indicating that coal will continue to be the primary fuel for power generation in the next two decades, the Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCTDP) has been conducted since 1985 to develop innovative, environmentally friendly processes for the world energy market place. The 2 MW Fuel Cell Demonstration was part of the Kentucky Pioneer Energy (KPE) Integrated Gasification Combined Cycle (IGCC) project selected by DOE under Round Five of the Clean Coal Technology Demonstration Program. The participant in the CCTDP V Project was Kentucky Pioneer Energy for the IGCC plant. FuelCell Energy, Inc. (FCE), under subcontract to KPE, was responsible for the design, construction and operation of the 2 MW fuel cell power plant. Duke Fluor Daniel provided engineering design and procurement support for the balance-of-plant skids. Colt Engineering Corporation provided engineering design, fabrication and procurement of the syngas processing skids. Jacobs Applied Technology provided the fabrication of the fuel cell module vessels. Wabash River Energy Ltd (WREL) provided the test site. The 2 MW fuel cell power plant utilizes FuelCell Energy's Direct Fuel Cell (DFC) technology, which is based on the internally reforming carbonate fuel cell. This plant is capable of operating on coal-derived syngas as well as natural gas. Prior testing (1992) of a subscale 20 kW carbonate fuel cell stack at the Louisiana Gasification Technology Inc. (LGTI) site using the Dow/Destec gasification plant indicated that operation on coal derived gas provided normal performance and stable operation. Duke Fluor Daniel and FuelCell Energy developed a commercial plant design for the 2 MW fuel cell. The plant was designed to be modular, factory assembled and truck shippable to the site. Five balance-of-plant skids incorporating fuel processing, anode gas oxidation, heat recovery, water treatment/instrument air, and power conditioning/controls were built and shipped to the site. The two fuel cell modules, each rated at 1 MW on natural gas, were fabricated by FuelCell Energy in its Torrington, CT manufacturing facility. The fuel cell modules were conditioned and tested at FuelCell Energy in Danbury and shipped to the site. Installation of the power plant and connection to all required utilities and syngas was completed. Pre-operation checkout of the entire power plant was conducted and the plant was ready to operate in July 2004. However, fuel gas (natural gas or syngas) was not available at the WREL site due to technical difficulties with the gasifier and other issues. The fuel cell power plant was therefore not operated, and subsequently removed by October of 2005. The WREL fuel cell site was restored to the satisfaction of WREL. FuelCell Energy continues to market carbonate fuel cells for natural gas and digester gas applications. A fuel cell/turbine hybrid is being developed and tested that provides higher efficiency with potential to reach the DOE goal of 60% HHV on coal gas. A system study was conducted for a 40 MW direct fuel cell/turbine hybrid (DFC/T) with potential for future coal gas applications. In addition, FCE is developing Solid Oxide Fuel Cell (SOFC) power plants with Versa Power Systems (VPS) as part of the Solid State Energy Conversion Alliance (SECA) program and has an on-going program for co-production of hydrogen. Future development in these technologies can lead to future coal gas fuel cell applications.

FuelCell Energy

2005-05-16T23:59:59.000Z

278

LOW SULFUR HOME HEATING OIL DEMONSTRATION PROJECT SUMMARY REPORT.  

SciTech Connect (OSTI)

This project was funded by NYSERDA and has clearly demonstrated many advantages of using low sulfur content heating oil to provide thermal comfort in homes. Prior laboratory research in the United States and Canada had indicated a number of potential benefits of using lower sulfur (0.05%) heating oil. However, this prior research has not resulted in the widespread use of low sulfur fuel oil in the marketplace. The research project described in this report was conducted with the assistance of a well-established fuel oil marketer in New York State (NYS) and has provided clear proof of the many real-world advantages of marketing and using low sulfur content No. 2 fuel oil. The very positive experience of the participating marketer over the past three years has already helped to establish low sulfur heating oil as a viable option for many other fuel marketers. In large part, based on the initial findings of this project and the experience of the participating NYS oilheat marketer, the National Oilheat Research Alliance (NORA) has already fully supported a resolution calling for the voluntary use of low sulfur (0.05 percent) home heating oil nationwide. The NORA resolution has the goal of converting eighty percent of all oil-heated homes to the lower sulfur fuel (0.05 percent by weight) by the year 2007. The Oilheat Manufacturers Association (OMA) has also passed a resolution fully supporting the use of lower sulfur home heating oil in the equipment they manufacture. These are important endorsements by prominent national oil heat associations. Using lower sulfur heating oil substantially lowers boiler and furnace fouling rates. Laboratory studies had indicated an almost linear relationship between sulfur content in the oil and fouling rates. The completed NYSERDA project has verified past laboratory studies in over 1,000 occupied residential homes over the course of three heating seasons. In fact, the reduction in fouling rates so clearly demonstrated by this project is almost the same as predicted by past laboratory studies. Fouling deposition rates are reduced by a factor of two to three by using lower sulfur oil. This translates to a potential for substantial service cost savings by extending the interval between labor-intensive cleanings of the internal surfaces of the heating systems in these homes. In addition, the time required for annual service calls can be lowered, reducing service costs and customer inconvenience. The analyses conducted as part of this field demonstration project indicates that service costs can be reduced by up to $200 million a year nationwide by using lower sulfur oil and extending vacuum cleaning intervals depending on the labor costs and existing cleaning intervals. The ratio of cost savings to added fuel costs is economically attractive based on past fuel price differentials for the lower sulfur product. The ratio of cost savings to added costs vary widely as a function of hourly service rates and the additional cost for lower sulfur oil. For typical values, the expected benefit is a factor of two to four higher than the added fuel cost. This means that for every dollar spent on higher fuel cost, two to four dollars can be saved by lowered vacuum cleaning costs when the cleaning intervals are extended. Information contained in this report can be used by individual oil marketers to estimate the benefit to cost ratio for their specific applications. Sulfur oxide and nitrogen oxide air emissions are reduced substantially by using lower sulfur fuel oil in homes. Sulfur oxides emissions are lowered by 75 percent by switching from fuel 0.20 percent to 0.05 percent sulfur oil. This is a reduction of 63,000 tons a year nationwide. In New York State, sulfur oxide emissions are reduced by 13,000 tons a year. This translates to a total value of $12 million a year in Sulfur Oxide Emission Reduction Credits for an emission credit cost of $195 a ton. While this ''environmental cost'' dollar savings is smaller than the potential service costs reduction, it is very significant. It represents an important red

BATEY, J.E.; MCDONALD, R.J.

2005-06-01T23:59:59.000Z

279

RESEARCH PROJECTS February 13  

E-Print Network [OSTI]

will demonstrate geothermal heat pump (GSHP) systems for heating and cooling of measured SPF>5,0 in 8 demonstration systems for heating and cooling in Mediterranean climate PROJECT REFERENCE: 218895 CALL: FP7-ENERGY-2007

Schenato, Luca

280

Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners  

SciTech Connect (OSTI)

Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

Not Available

1991-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DIMETHYL ETHER (DME)-FUELED SHUTTLE BUS DEMONSTRATION PROJECT  

SciTech Connect (OSTI)

The objectives of this research and demonstration program are to convert a campus shuttle bus to operation on dimethyl ether, a potential ultra-clean alternative diesel fuel. To accomplish this objective, this project includes laboratory evaluation of a fuel conversion strategy, as well as, field demonstration of the DME-fueled shuttle bus. Since DME is a fuel with no lubricity (i.e., it does not possess the lubricating quality of diesel fuel), conventional fuel delivery and fuel injection systems are not compatible with dimethyl ether. Therefore, to operate a diesel engine on DME one must develop a fuel-tolerant injection system, or find a way to provide the necessary lubricity to the DME. In this project, they have chosen the latter strategy in order to achieve the objective with minimal need to modify the engine. Their strategy is to blend DME with diesel fuel, to obtain the necessary lubricity to protect the fuel injection system and to achieve low emissions. The bulk of the efforts over the past year were focused on the conversion of the campus shuttle bus. This process, started in August 2001, took until April 2002 to complete. The process culminated in an event to celebrate the launching of the shuttle bus on DME-diesel operation on April 19, 2002. The design of the system on the shuttle bus was patterned after the system developed in the engine laboratory, but also was subjected to a rigorous failure modes effects analysis (FMEA, referred to by Air Products as a ''HAZOP'' analysis) with help from Dr. James Hansel of Air Products. The result of this FMEA was the addition of layers of redundancy and over-pressure protection to the system on the shuttle bus. The system became operational in February 2002. Preliminary emissions tests and basic operation of the shuttle bus took place at the Pennsylvania Transportation Institute's test track facility near the University Park airport. After modification and optimization of the system on the bus, operation on the campus shuttle route began in early June 2002. However, the work and challenges continued as it has been difficult to maintain operability of the shuttle bus due to fuel and component difficulties. In late June 2002, the pump head itself developed operational problems (loss of smooth function) leading to excessive stress on the magnetic coupling and excessive current draw to operate. A new pump head was installed on the system to alleviate this problem and the shuttle bus operated successfully on DME blends from 10-25 vol% on the shuttle bus loop until September 30, 2002. During the period of operation on the campus loop, the bus was pulled from service, operated at the PTI test track and real-time emissions measurements were obtained using an on-board emissions analyzer from Clean Air Technologies International, Inc. Particulate emissions reductions of 60% and 80% were observed at DME blend ratios of 12 vol.% and 25 vol.%, respectively, as the bus was operated over the Orange County driving cycle. Increases in NOx, CO and HC emissions were observed, however. In summary, the conversion of the shuttle bus was successfully accomplished, particulate emissions reductions were observed, but there were operational challenges in the field. Nonetheless, they were able to demonstrate reliable operation of the shuttle bus on DME-diesel blends.

Elana M. Chapman; Shirish Bhide; Jennifer Stefanik; Howard Glunt; Andre L. Boehman; Allen Homan; David Klinikowski

2003-04-01T23:59:59.000Z

282

Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project  

SciTech Connect (OSTI)

This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology and interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.

None

2013-12-31T23:59:59.000Z

283

Environmental Assessment for the Accelerated Tank Closure Demonstration Project  

SciTech Connect (OSTI)

The U.S. Department of Energy's (DOE) Office of River Protection (ORP) needs to collect engineering and technical information on (1) the physical response and behavior of a Phase I grout fill in an actual tank, (2) field deployment of grout production equipment and (3) the conduct of component closure activities for single-shell tank (SST) 241-C-106 (C-106). Activities associated with this Accelerated Tank Closure Demonstration (ATCD) project include placement of grout in C-106 following retrieval, and associated component closure activities. The activities will provide information that will be used in determining future closure actions for the remaining SSTs and tank farms at the Hanford Site. This information may also support preparation of the Environmental Impact Statement (EIS) for Retrieval, Treatment, and Disposal of Tank Waste and Closure of Single-Shell Tanks at the Hanford Site, Richland, Washington (Tank Closure EIS). Information will be obtained from the various activities associated with the component closure activities for C-106 located in the 241-C tank farm (C tank farm) under the ''Resource Conservation and Recovery Act of 1976'' (RCRA) and the Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1989). The impacts of retrieving waste from C-106 are bounded by the analysis in the Tank Waste Remediation System (TWRS) EIS (DOE/EIS-0189), hereinafter referred to as the TWRS EIS. DOE has conducted and continues to conduct retrieval activities at C-106 in preparation for the ATCD Project. For major federal actions significantly affecting the quality of the human environment, the ''National Environmental Policy Act of 1969'' (NEPA) requires that federal agencies evaluate the environmental effects of their proposed and alternative actions before making decisions to take action. The President's Council on Environmental Quality (CEQ) has developed regulations for implementing NEPA. These regulations are found in Title 40 of the Code of Federal Regulations (CFR), Parts 1500-1508. They require the preparation of an Environmental Assessment (EA) that includes an evaluation of alternative means of addressing the problem and a discussion of the potential environmental impacts of a proposed federal action. An EA provides analysis to determine whether an EIS or a finding of no significant impact should be prepared.

N /A

2003-06-16T23:59:59.000Z

284

VALUE DISTRIBUTION ASSESSMENT OF GEOTHERMAL DEVELOPMENT IN LAKE COUNTY, CA  

E-Print Network [OSTI]

Eleven: Lake County Geothermal Energy Resource. . . .of Susanville, Susanville Geothermal Energy Project Workshopparts of the state. Geothermal energy is only one of Lake

Churchman, C.W.

2011-01-01T23:59:59.000Z

285

Commercial demonstration of biomass gasification the Vermont project  

SciTech Connect (OSTI)

Thermal gasification of biomass for use in gas turbine combined cycle plants will improve efficiencies and reduce capital intensity in the forest and paper industry. One such technology has over 20,000 successful hours of operation at Battelle Columbus Labs (BCL) process research unit (PRU), including the first U.S. demonstration of a gas turbine operating on fuel gas produced by the thermal gasification biomass. A commercial scale demo of the technology (rated at 200 dry tons per day) will be constructed and put into operation during the first quarter of 1997. The initial project phase will provide fuel gas to McNeil`s power boiler. A subsequent phase will utilize the fuel gas in a combustion gas turbine. The technology utilizes an extremely high throughput circulating fluid bed (CFB) gasifier in which biomass (which typically contains 85 percent to 90 percent volatiles) is fully devolatilized with hot sand from a CFB char combustor. The fuel gas is then cooled and conditioned by a conventional scrubbing system to remove particulate, condensable organics, ammonia and metal aerosols which could otherwise cause turbine emission and blade fouling problems. Alternate hot gas conditioning systems are also being developed for final gas clean-up. The fuel gas heating value is 450 to 500 Btus per standard cubic foot. A mid size gas turbine combined cycle plant utilizing the technology will have an approximate net cycle efficiency of 35-40 percent. This compares to a conventional biomass plant with an overall net cycle efficiency of 20-25 percent. Capital costs are expected to be low as the process operates at low pressures without the requirement of an oxygen plant.

Farris, S.G.; Weeks, S.T. [Ruture Energy Resources Corp., Atlanta, GA (United States)

1996-12-31T23:59:59.000Z

286

administration demonstration project: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Energy Storage, Conversion and Utilization Websites Summary: GM Project G.6 R - 1 October 2000 REFERENCES Administration on Aging. 1997.Demographic Changes. U.S:...

287

Status of U.S. FCEV and Infrastructure Learning Demonstration Project (Presentation)  

SciTech Connect (OSTI)

Presented at the Japan Hydrogen and Fuel Cell Demonstration Project (JHFC), 1 March 2011, Tokyo, Japan. This presentation summarizes the status of U.S. fuel cell electric vehicles and infrastructure learning demonstration project.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

2011-03-01T23:59:59.000Z

288

West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2004  

SciTech Connect (OSTI)

Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2004. The report summarizes the environmental protection program at the West Valley Demonstration Project for CY 2004.

West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

2005-09-30T23:59:59.000Z

289

Working Fluids and Their Effect on Geothermal Turbines  

Broader source: Energy.gov [DOE]

DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: Identify new working fluids for binary geothermal plants.

290

Performance Analysis of XCPC Powered Solar Cooling Demonstration Project  

E-Print Network [OSTI]

demonstrated. A linear Fresnel collector system in Sevilleeconomical. Linear Fresnel and parabolic trough collectortemperature collectors (parabolic trough, linear Fresnel,

Widyolar, Bennett

2013-01-01T23:59:59.000Z

291

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2008  

SciTech Connect (OSTI)

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2008.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2008-10-01T23:59:59.000Z

292

Geothermal Power and Interconnection: The Economics of Getting to Market  

SciTech Connect (OSTI)

This report provides a baseline description of the transmission issues affecting geothermal technologies. The report begins with a comprehensive overview of the grid, how it is planned, how it is used, and how it is paid for. The report then overlays onto this 'big picture' three types of geothermal technologies: conventional hydrothermal systems; emerging technologies such as enhanced engineered geothermal systems (EGS) and geopressured geothermal; and geothermal co-production with existing oil and gas wells. Each category of geothermal technology has its own set of interconnection issues, and these are examined separately for each. The report draws conclusions about each technology's market affinities as defined by factors related to transmission and distribution infrastructure. It finishes with an assessment of selected markets with known geothermal potential, identifying those that offer the best prospects for near-term commercial development and for demonstration projects.

Hurlbut, D.

2012-04-01T23:59:59.000Z

293

Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report  

SciTech Connect (OSTI)

The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

NONE

1996-04-30T23:59:59.000Z

294

Retro-Commissioning Phase I Demonstration Project Shanghai, China  

E-Print Network [OSTI]

for this project included a cursory review of all available documentation, interviews with the building operations staff, physical inspections of all HVAC and lighting control related systems and limited functional testing and data-logging of HVAC related...

Keithly, P.

2006-01-01T23:59:59.000Z

295

Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

project, now complete FOR MORE INFORMATION: Rick Knori (307) 739-6038 www.lvenergy.com Cold-climate co-op heats up with smart grid Lower Valley Energy provides electricity to...

296

Next Steps for the FCEV Learning Demonstration Project (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes project goals; vehicle and H2 station deployment status, critical performance compared to targets; highlights of latest vehicle and infrastructure analysis results and progress; learning demo next steps; highlights of partner activities and summary.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Ainscough, C.; Saur, G.

2011-02-01T23:59:59.000Z

297

Pacific Northwest Smart Grid Demonstration Project SUCCESS STORIES  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

program and tested some newer technologies, such as voltage reduction and voltage-sensing water heaters. Of the 60,000 metered-customers involved in the regionwide project,...

298

area demonstration project: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

a solar array, metered the environmental impacts, new and offsetting Demonstrate the potential for viable small scale initiatives in urban;Concept Description A series of working...

299

DOE-Sponsored Syngas Cleanup Demonstration Project Reaches Development...  

Energy Savers [EERE]

of Energy (DOE), a demonstration-scale application of RTI International's warm synthesis gas (syngas) cleanup process technology has achieved a key operational milestone at Tampa...

300

Analysis of how changed federal regulations and economic incentives affect financing of geothermal projects  

SciTech Connect (OSTI)

The effects of various financial incentives on potential developers of geothermal electric energy are studied and the impact of timing of plant construction costs on geothermal electricity costs is assessed. The effect of the geothermal loan guarantee program on decisions by investor-owned utilities to build geothermal electric power plants was examined. The usefulness of additional investment tax credits was studied as a method for encouraging utilities to invest in geothermal energy. The independent firms which specialize in geothermal resource development are described. The role of municipal and cooperative utilities in geothermal resource development was assessed in detail. Busbar capital costs were calculated for geothermal energy under a variety of ownerships with several assumptions about financial incentives. (MHR)

Meyers, D.; Wiseman, E.; Bennett, V.

1980-11-04T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Final Technical Resource Confirmation Testing at the Raft River Geothermal Project, Cassia County, Idaho  

SciTech Connect (OSTI)

Incorporates the results of flow tests for geothermal production and injection wells in the Raft River geothermal field in southern Idaho. Interference testing was also accomplished across the wellfield.

Glaspey, Douglas J.

2008-01-30T23:59:59.000Z

302

Demonstration of a Variable Phase Turbine Power System for Low Temperature Geothermal Resources  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department1 Prepared1217 Release NotesFinal ReportLowDemonstration

303

Geothermal Permeability Enhancement - Final Report  

SciTech Connect (OSTI)

The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

Joe Beall; Mark Walters

2009-06-30T23:59:59.000Z

304

Phase 1 Feasibility Study, Canby Cascaded Geothermal Project, April 2, 2013  

SciTech Connect (OSTI)

A small community in Northern California is attempting to use a local geothermal resource to generate electrical power and cascade residual energy to an existing geothermal district heating system, greenhouse, and future fish farm and subsequent reinjection into the geothermal aquifer, creating a net-zero energy community, not including transportation.

Merrick, Dale E [CanbyGeo, LLC] [CanbyGeo, LLC

2013-04-02T23:59:59.000Z

305

AVTA: Chevrolet Volt ARRA Vehicle Demonstration Project Data  

Broader source: Energy.gov [DOE]

The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The American Recovery and Reinvestment Act supported a number of projects that together made up the largest ever deployment of plug-in electric vehicles and charging infrastructure in the U.S. The following reports summarize data collected from a project General Motors conducted to deploy 150 2011 Chevrolet Volts around the country. This research was conducted by Idaho National Laboratory.

306

MHK Projects/Race Rocks Demonstration | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalway Bay IE < MHK Project City Tunica0, LA ProjectRace

307

Urban Options Solar Greenhouse Demonstration Project. Final report  

SciTech Connect (OSTI)

The following are included: the design process, construction, thermal performance, horticulture, educational activities, and future plans. Included in appendices are: greenhouse blueprints, insulating curtain details, workshop schedules, sample data forms, summary of performance calculations on the Urban Options Solar Greenhouse, data on vegetable production, publications, news articles on th Solar Greenhouse Project, and the financial statement. (MHR)

Cipparone, L.

1980-10-15T23:59:59.000Z

308

SRC-I Project Baseline. [SRC-I demonstration project near Owensboro, Kentucky  

SciTech Connect (OSTI)

The Process Design Criteria Specification forms the basis for process design for the 6000-TPSD SRC-I Demonstration Plant. It sets forth: basic engineering data, e.g., type and size of plant, feedstocks, product specifications, and atmospheric emission and waste disposal limits; utility conditions; equipment design criteria and sparing philosophy; and estimating criteria for economic considerations. Previously the formal ICRC Document No. 0001-01-002 has been submitted to DOE and revised, as necessary, to be consistent with the SRC-I Project Baseline. Revision 6, dated 19 March 1982, 51 pages, was forwarded to DOE on 19 March 1982.

None

1982-03-01T23:59:59.000Z

309

Niland development project geothermal loan guaranty: 49-MW (net) power plant and geothermal well field development, Imperial County, California: Environmental assessment  

SciTech Connect (OSTI)

The proposed federal action addressed by this environmental assessment is the authorization of disbursements under a loan guaranteed by the US Department of Energy for the Niland Geothermal Energy Program. The disbursements will partially finance the development of a geothermal well field in the Imperial Valley of California to supply a 25-MW(e) (net) power plant. Phase I of the project is the production of 25 MW(e) (net) of power; the full rate of 49 MW (net) would be achieved during Phase II. The project is located on approximately 1600 acres (648 ha) near the city of Niland in Imperial County, California. Well field development includes the initial drilling of 8 production wells for Phase I, 8 production wells for Phase II, and the possible need for as many as 16 replacement wells over the anticipated 30-year life of the facility. Activities associated with the power plant in addition to operation are excavation and construction of the facility and associated systems (such as cooling towers). Significant environmental impacts, as defined in Council on Environmental Quality regulation 40 CFR Part 1508.27, are not expected to occur as a result of this project. Minor impacts could include the following: local degradation of ambient air quality due to particulate and/or hydrogen sulfide emissions, temporarily increased ambient noise levels due to drilling and construction activities, and increased traffic. Impacts could be significant in the event of a major spill of geothermal fluid, which could contaminate groundwater and surface waters and alter or eliminate nearby habitat. Careful land use planning and engineering design, implementation of mitigation measures for pollution control, and design and implementation of an environmental monitoring program that can provide an early indication of potential problems should ensure that impacts, except for certain accidents, will be minimized.

Not Available

1984-10-01T23:59:59.000Z

310

U.S. Offshore Wind Advanced Technology Demonstration Projects Public Meeting Transcript for Offshore Wind Demonstrations  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track |Weatherized BySolarBodman U.S. DEPARTMENT OF

311

LIFAC sorbent injection desulfurization demonstration project. Final report, volume II: Project performance and economics  

SciTech Connect (OSTI)

This publication discusses the demonstration of the LIFAC sorbent injection technology at Richmond Power and Light`s Whitewater Valley Unit No. 2, performed under the auspices of the U.S. Department of Energy`s (DOE) Clean Coal Technology Program. LIFAC is a sorbent injection technology capable of removing 75 to 85 percent of a power plant`s SO{sub 2} emissions using limestone at calcium to sulfur molar ratios of between 2 and 2.5 to 1. The site of the demonstration is a coal-fired electric utility power plant located in Richmond, Indiana. The project is being conducted by LIFAC North America (LIFAC NA), a joint venture partnership of Tampella Power Corporation and ICF Kaiser Engineers, in cooperation with DOE, RP&L, and Research Institute (EPRI), the State of Indiana, and Black Beauty Coal Company. The purpose of Public Design Report Volume 2: Project Performance and Economics is to consolidate, for public use, the technical efficiency and economy of the LIFAC Process. The report has been prepared pursuant to the Cooperative Agreement No. DE-FC22-90PC90548 between LIFAC NA and the U.S. Department of Energy.

NONE

1996-01-01T23:59:59.000Z

312

MHK Projects/MORILD Demonstration Plant | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAK Technologies JumpLuangwa Zambia Project < MHKKvalsundet

313

The Boeing Company Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump Jump to:Information 'Grand Paris' Project:Beam Jump

314

Green River Formation water flood demonstration project. Final report  

SciTech Connect (OSTI)

The objectives of the project were to understand the oil production mechanisms in the Monument Butte unit via reservoir characterization and reservoir simulations and to transfer the water flooding technology to similar units in the vicinity, particularly the Travis and the Boundary units. The reservoir characterization activity in the project basically consisted of extraction and analysis of a full diameter core, Formation Micro Imaging (FMI) logs from several wells and Magnetic Resonance Imaging (MRI) logs from two wells. In addition, several side-wall cores were drilled and analyzed, oil samples from a number of wells were physically and chemically characterized (using high-temperature gas chromatography), oil-water relative permeabilities were measured and pour points and cloud points of a few oil samples were determined. The reservoir modeling activity comprised of reservoir simulation of all the three units at different scales and near well-bore modeling of the wax precipitation effects. The reservoir simulation activities established the extent of pressurization of the sections of the reservoirs in the immediate vicinity of the Monument Butte unit. This resulted in a major expansion of the unit and the production from this expanded unit increased from about 300 barrels per day to about 2,000 barrels per day.

Pennington, B.I.; Dyer, J.E.; Lomax, J.D. [Inland Resources, Inc. (United States); [Lomax Exploration Co., Salt Lake City, UT (United States); Deo, M.D. [Utah Univ., Salt Lake City, UT (United States). Dept. of Chemical and Fuels Engineering

1996-11-01T23:59:59.000Z

315

SMU Geothermal Conference 2011 - Geothermal Technologies Program...  

Energy Savers [EERE]

SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation...

316

Advanced Seismic Probabilistic Risk Assessment Demonstration Project Plan  

SciTech Connect (OSTI)

Idaho National Laboratories (INL) has an ongoing research and development (R&D) project to remove excess conservatism from seismic probabilistic risk assessments (SPRA) calculations. These risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. This report presents a plan for improving our current traditional SPRA process using a seismic event recorded at a nuclear power plant site, with known outcomes, to improve the decision making process. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

Justin Coleman

2014-09-01T23:59:59.000Z

317

NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project. Annual report, 1988  

SciTech Connect (OSTI)

This Annual Report on Colorado-Ute Electric Association`s NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

Not Available

1991-01-01T23:59:59.000Z

318

East Penn Manufacturing Co. Smart Grid Demonstration Project | Open Energy  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 No revision hasESEInformation Smart Grid Demonstration

319

Geothermal Demonstration Plant  

Office of Scientific and Technical Information (OSTI)

a 50 W e binary conversion plant at Heber was initiated and is presented herein. Chevron Oil Company (the field operator) predicts that the reservoir i ill decline from an initial...

320

Geothermal Demonstration Plant  

Office of Scientific and Technical Information (OSTI)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinan antagonist Journal Article: Crystal structureComposite--FOR IMMEDIATEDOEFinal R eportGas

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.  

SciTech Connect (OSTI)

Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

Goranson, Colin

2005-03-01T23:59:59.000Z

322

Project Title: Small Scale Electrical Power Generation from Heat Co-Produced in Geothermal Fluids: Mining Operation  

SciTech Connect (OSTI)

Demonstrate the technical and economic feasibility of small scale power generation from low temperature co-produced fluids. Phase I is to Develop, Design and Test an economically feasible low temperature ORC solution to generate power from lower temperature co-produced geothermal fluids. Phase II &III are to fabricate, test and site a fully operational demonstrator unit on a gold mine working site and operate, remotely monitor and collect data per the DOE recommended data package for one year.

Clark, Thomas M [Principal Investigator; Erlach, Celeste [Communications Mgr.

2014-12-30T23:59:59.000Z

323

Energy Storage/Conservation and Carbon Emissions Reduction Demonstration Project  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) awarded the Center for Transportation and the Environment (CTE) federal assistance for the management of a project to develop and test a prototype flywheel-­?based energy recovery and storage system in partnership with Test Devices, Inc. (TDI). TDI specializes in the testing of jet engine and power generation turbines, which uses a great deal of electrical power for long periods of time. In fact, in 2007, the company consumed 3,498,500 kW-­?hr of electricity in their operations, which is equivalent to the electricity of 328 households. For this project, CTE and TDI developed and tested a prototype flywheel-­?based energy recovery and storage system. This technology is being developed at TDI’s facilities to capture and reuse the energy necessary for the company’s core process. The new technology and equipment is expected to save approximately 80% of the energy used in the TDI process, reducing total annual consumption of power by approximately 60%, saving approximately two million kilowatt-­?hours annually. Additionally, the energy recycling system will allow TDI and other end users to lower their peak power demand and reduce associated utility demand charges. The use of flywheels in this application is novel and requires significant development work from TDI. Flywheels combine low maintenance costs with very high cycle life with little to no degradation over time, resulting in lifetimes measured in decades. All of these features make flywheels a very attractive option compared to other forms of energy storage, including batteries. Development and deployment of this energy recycling technology will reduce energy consumption during jet engine and stationary turbine development. By reengineering the current inefficient testing process, TDI will reduce risk and time to market of efficiency upgrades of gas turbines across the entire spectrum of applications. Once in place the results from this program will also help other US industries to utilize energy recycling technology to lower domestic energy use and see higher net energy efficiency. The prototype system and results will be used to seek additional resources to carry out full deployment of a system. Ultimately, this innovative technology is expected to be transferable to other testing applications involving energy-­?based cycling within the company as well as throughout the industry.

Bigelow, Erik

2012-10-30T23:59:59.000Z

324

Performance of Deep Geothermal Energy Systems .  

E-Print Network [OSTI]

??Geothermal energy is an important source of clean and renewable energy. This project deals with the study of deep geothermal power plants for the generation… (more)

Manikonda, Nikhil

2012-01-01T23:59:59.000Z

325

Comprehensive Evaluation of the Geothermal Resource Potential...  

Broader source: Energy.gov (indexed) [DOE]

data for the National Geothermal Database * Validate state-of-the-art reservoir simulation techniques to reduce model uncertainty and project risk 4 | US DOE Geothermal...

326

Funding Mechanisms for Federal Geothermal Permitting (Presentation)  

SciTech Connect (OSTI)

This presentation is about the GRC paper, which discusses federal agency revenues received for geothermal projects and potential federal agency budget sources for processing geothermal applications.

Witherbee, K.

2014-03-01T23:59:59.000Z

327

GEOTHERMAL POWER GENERATION PLANT | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

POWER GENERATION PLANT GEOTHERMAL POWER GENERATION PLANT Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls,...

328

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Science STANFORD staff who have helped me finish this project. Financial support was provided by the Geothermal

Stanford University

329

Geothermal Resources and Transmission Planning  

Broader source: Energy.gov [DOE]

This project addresses transmission-related barriers to utility-scale deployment of geothermal electric generation technologies.

330

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Pre-Solicitation Meeting: Supporting Information  

Broader source: Energy.gov [DOE]

Supporting information and objectives for the pre-solicitation meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project held March 19, 2003 in Southfield, Michigan.

331

Voluntary Protection Program Onsite Review, West Valley Demonstration Project- November 2009  

Broader source: Energy.gov [DOE]

Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition.

332

Voluntary Protection Program Onsite Review, West Valley Demonstration Project- June 2008  

Broader source: Energy.gov [DOE]

Evaluation to determine whether West Valley Demonstration Project is continuing to perform at a level deserving DOE-VPP Star recognition.

333

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Pre-Solicitation Meeting: Questions and Answers  

Broader source: Energy.gov [DOE]

Questions and answers from the pre-solicitation meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project held March 19, 2003, in Southfield, Michigan.

334

E-Print Network 3.0 - afgd demonstration project Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

11 Department Human Resources Bulletin, 027, FY06, dated August 1,2006 DOC Demonstration Project Operating Procedures Summary: setting pay for Presidential Management Fellows...

335

Data Management Plan for The Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

Broader source: Energy.gov [DOE]

The Data Management Plan describes how DOE will handle data submitted by recipients as deliverables under the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

336

Geothermal direct-heat utilization assistance. Quarterly project progress report, July 1994--September 1994  

SciTech Connect (OSTI)

This paper is a third quarter 1994 report of activities of the Geo-Heat Center of Oregon Institute of Technology. It describes contacts with parties during this period related to assistance with geothermal direct heat applications. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, resources, and equipment. Research is also being conducted on failures of vertical lineshaft turbines in geothermal wells.

Not Available

1994-10-01T23:59:59.000Z

337

Environmental assessment for a geothermal direct utilization project in Reno, Nevada  

SciTech Connect (OSTI)

The proposed action involves the development of geothermal wells to provide hot water and heat for five users in Reno, Nevada. Data from nearby wells indicate the sufficient hot water is available from the Moana Known Geothermal Resource Area for this action. Construction activities have been planned to minimize or eliminate problems with noise, runoff, and disturbance of biota as well as other potential environmental effects. Disposal of the geothermal fluids via surface water or injection will be determined based on water quality of the geothermal fluids and geologic effects of injection. The affected environment is described by this document and needed mitigation procedures discussed.

Perino, J.V.; McCloskey, M.H.; Wolterink, T.J.; Wallace, R.C.; Baker, D.W.; Harper, D.L.; Anderson, D.T.; Siteman, J.V.; Sherrill, K.T.

1980-08-20T23:59:59.000Z

338

EIS-0318: Kentucky Pioneer Integrated Gasification Combined Cycle (IGCC) Demonstration Project, Trapp, Kentucky (Clark County)  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's decision to provide cost-shared financial support for The Kentucky Pioneer IGCC Demonstration Project, an electrical power station demonstrating use of a Clean Coal Technology in Clark County, Kentucky.

339

Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final: Comments and Responses to Comments  

SciTech Connect (OSTI)

This document is the Comments and Responses to Comments volume of the Final Environmental Impact Statement and Environmental Impact Report prepared for the proposed Telephone Flat Geothermal Development Project (Final EIS/EIR). This volume of the Final EIS/EIR provides copies of the written comments received on the Draft EIS/EIR and the leady agency responses to those comments in conformance with the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA).

None

1999-02-01T23:59:59.000Z

340

Feasibility of using geothermal effluents for waterfowl wetlands  

SciTech Connect (OSTI)

This project was conducted to evaluate the feasibility of using geothermal effluents for developing and maintaining waterfowl wetlands. Information in the document pertains to a seven State area the West where geothermal resources have development potential. Information is included on physiochemical characteristics of geothermal effluents; known effects of constituents in the water on a wetland ecosystem and water quality criteria for maintaining a viable wetland; potential of sites for wetland development and disposal of effluent water from geothermal facilities; methods of disposal of effluents, including advantages of each method and associated costs; legal and institutional constraints which could affect geothermal wetland development; potential problems associated with depletion of geothermal resources and subsidence of wetland areas; potential interference (adverse and beneficial) of wetlands with ground water; special considerations for wetlands requirements including size, flows, and potential water usage; and final conclusions and recommendations for suitable sites for developing demonstration wetlands.

None

1981-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

GEOTHERMAL POWER GENERATION PLANT  

Broader source: Energy.gov (indexed) [DOE]

injection wells capacity; temperature; costs; legal reviews by Oregon DoJ. * Partners: Johnson Controls?? Overview 3 | US DOE Geothermal Program eere.energy.gov Project Objectives...

342

Geothermal Financing Workbook  

SciTech Connect (OSTI)

This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

Battocletti, E.C.

1998-02-01T23:59:59.000Z

343

Dixie Valley Engineered Geothermal System Exploration Methodology Project, Baseline Conceptual Model Report  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

FSR Part I presents (1) an assessment of the readily available public domain data and some proprietary data provided by Terra-Gen Power, LLC, (2) a re-interpretation of these data as required, (3) an exploratory geostatistical data analysis, (4) the baseline geothermal conceptual model, and (5) the EGS favorability/trust mapping. The conceptual model presented applies to both the hydrothermal system and EGS in the Dixie Valley region. FSR Part II presents (1) 278 new gravity stations; (2) enhanced gravity-magnetic modeling; (3) 42 new ambient seismic noise survey stations; (4) an integration of the new seismic noise data with a regional seismic network; (5) a new methodology and approach to interpret this data; (5) a novel method to predict rock type and temperature based on the newly interpreted data; (6) 70 new magnetotelluric (MT) stations; (7) an integrated interpretation of the enhanced MT data set; (8) the results of a 308 station soil CO2 gas survey; (9) new conductive thermal modeling in the project area; (10) new convective modeling in the Calibration Area; (11) pseudo-convective modeling in the Calibration Area; (12) enhanced data implications and qualitative geoscience correlations at three scales (a) Regional, (b) Project, and (c) Calibration Area; (13) quantitative geostatistical exploratory data analysis; and (14) responses to nine questions posed in the proposal for this investigation. Enhanced favorability/trust maps were not generated because there was not a sufficient amount of new, fully-vetted (see below) rock type, temperature, and stress data. The enhanced seismic data did generate a new method to infer rock type and temperature. However, in the opinion of the Principal Investigator for this project, this new methodology needs to be tested and evaluated at other sites in the Basin and Range before it is used to generate the referenced maps. As in the baseline conceptual model, the enhanced findings can be applied to both the hydrothermal system and EGS in the Dixie Valley region.

Iovenitti, Joe

344

California PRC Section 21065.5, Definitions for Geothermal Exploratory...  

Open Energy Info (EERE)

21065.5, as provided by the California Department of Conservation, Division of Oil, Gas, and Geothermal Resources: "'Geothermal exploratory project' means a project as...

345

Development Wells At Long Valley Caldera Geothermal Area (Holt...  

Open Energy Info (EERE)

Ben Holt, Richard G. Campbell (1984) Mammoth Geothermal Project Environmental Science Associates (1987) Mammoth Pacific Geothermal Development Projects: Units II and III...

346

Predicting the spatial extent of injection-induced zones of enhanced permeability at the Northwest Geysers EGS Demonstration Project  

E-Print Network [OSTI]

of the recoverable geothermal energy in the Geysers system,the production of geothermal energy at The Geysers. The

Rutqvist, J.

2010-01-01T23:59:59.000Z

347

Abstract--This paper describes Nice Grid, a demonstration project part of the European initiative Grid4EU. The project  

E-Print Network [OSTI]

Grid4EU. The project aims at developing a smart solar neighbourhood in the urban area of the city with forecasts of solar power production and load in a local energy management system. The paper, which demonstration projects on Smart Grid. Index Terms-- Energy storage, Forecasting, Photovoltaic systems, Smart

Paris-Sud XI, Université de

348

Geothermal drilling technology update  

SciTech Connect (OSTI)

Sandia National Laboratories conducts a comprehensive geothermal drilling research program for the US Department of Energy, Office of Geothermal Technologies. The program currently includes seven areas: lost circulation technology, hard-rock drill bit technology, high-temperature instrumentation, wireless data telemetry, slimhole drilling technology, Geothermal Drilling Organization (GDO) projects, and drilling systems studies. This paper describes the current status of the projects under way in each of these program areas.

Glowka, D.A.

1997-04-01T23:59:59.000Z

349

Geothermal Policymakers Guidebook, State-by-state Developers' Checklist, & Geothermal Developers' Financing Handbook  

Broader source: Energy.gov [DOE]

Project objectives: Assist policymakers in identifying the niche they can fill to reduce barriers to geothermal energy development. Empower local leaders to develop policies that facilitate growth of geothermal energy and prepare the local workforce to serve geothermal industry needs.

350

Status of the U.S. Department of Energy's Motor Challenge Showcase Demonstration Projects  

E-Print Network [OSTI]

Project team consists of a host demonstration site and supporting partners (e.g. utilities, motor and process equipment suppliers, and contractors). Each team is expected to provide DOE with sufficient data to substantiate and document the energy...

Szady, A. J.; Jallouk, P. A.; Olszewski, M.; Scheihing, P.

351

Pre-solicitation Meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

Broader source: Energy.gov [DOE]

This presentation was given to attendees of the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project pre-solicitation meeting held in Detroit, Michigan, on March 19, 2003.

352

300°C Capable Electronics Platform and Temperature Sensor System For Enhanced Geothermal Systems  

Broader source: Energy.gov [DOE]

Project objectives: Enable geothermal wellbore monitoring through the development of SiC based electronics and ceramic packaging capable of sustained operation at temperatures up to 300?C and 10 km depth. Demonstrate the technology with a temperature sensor system.

353

Stanford Geothermal Workshop - Geothermal Technologies Office...  

Energy Savers [EERE]

- Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford...

354

LOCAL POPULATION IMPACTS OF GEOTHERMAL ENERGY DEVELOPMENT IN THE GEYSERS - CALISTOGA REGION  

E-Print Network [OSTI]

Kegion KGKA 2. On-going Geothermal Power Plant Activity inof 50MW Demonstration Geothermal Power Plant, Presentationrates Table 2 On-Going Geothermal Power Plane Activity in

Haven, Kendal F.

2012-01-01T23:59:59.000Z

355

Comprehensive Summary and Analysis of Oral and Written Scoping Comments on the Hawaii Geothermal Project EIS (DOE Review Draft)  

SciTech Connect (OSTI)

This report contains summaries of the oral and written comments received during the scoping process for the Hawaii Geothermal Project (HGP) Environmental Impact Statement (EIS). Oral comments were presented during public scoping meetings; written comments were solicited at the public scoping meetings and in the ''Advance Notice of Intent'' and ''Notice of Intent'' (published in the ''Federal Register'') to prepare the HGP EIS. This comprehensive summary of scoping inputs provides an overview of the issues that have been suggested for inclusion in the HGP EIS.

None

1992-09-18T23:59:59.000Z

356

Geothermal direct-heat utilization assistance. Quarterly project progress report, October--December 1993  

SciTech Connect (OSTI)

This report consists of brief summaries of the activities of the Geo-Heat Center during the report period. Technical assistance was given to requests from 20 states in the following applications: space and district heating; geothermal heat pumps; greenhouses; aquaculture; industrial plants; electric power; resource/well; equipment; and resort/spa. Research and development activities progressed on (1) compilation of data on low-temperature resources and (2) evaluation of groundwater vs. ground-coupled heat pumps. Also summarized are technology transfer activities and geothermal progress monitoring activities.

Not Available

1993-12-31T23:59:59.000Z

357

LARGE-SCALE DEMONSTRATION AND DEPLOYMENT PROJECT-TECHNOLOGY INFORMATION SYSTEM (LSDDP-TIS)  

SciTech Connect (OSTI)

In recent years, an increasing demand for remediation technologies has fueled rapid growth in the D&D technologies. The D&D project managers are now faced with the task of selecting from among the many commercially available and innovative technologies, the most appropriate technology, or combination of technologies, that will address their specific D&D needs. The DOE's Office of Science and Technology (OST) sponsored the Large-Scale Demonstration and Deployment Projects (LSDDP) to demonstrate improved and innovative technologies that are potentially beneficial to DOE's environmental project. To date, three LSDDPS have been conducted at DOE's nuclear production and research facilities at the Fernald Environmental Management Project--Plant-1 (FEMP), Chicago Pile-5 Research Reactor (CP-5), and Hanford Production Reactor 105-C, Now four new LSDDPS have been launched at the Los Alamos National Laboratory (LANL), Idaho National Engineering and Environmental Laboratory (INEEL), Savannah River Site (SRS), and Mound Environmental Management Project (MEMP). In the LSDDPS, an extensive search is first conducted to identify candidate technologies that can potentially address the identified problems The candidate technologies then go through a screening process to select those technologies with the best potential for addressing remediation problems at the LSDDP site as well as project sites across the DOE complex. This selection process can be overwhelming and time-consuming. The result is that D&D project managers for the new LSDDPS are challenged to avoid duplication of demonstrated technologies.

M.A. Ebadian, Ph.D.

1999-01-01T23:59:59.000Z

358

Reducing Plug Loads in Office Spaces: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect (OSTI)

As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with the Department of Energy's National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This project was one of several demonstrations of new or underutilized commercial energy technologies. The common goal was to demonstrate and measure the performance and economic benefit of the system while monitoring any ancillary impacts to related standards of service and operation and maintenance (O&M) practices. In short, demonstrations at naval facilities simultaneously evaluate the benefits and compatibility of the technology with the U.S. Department of Defense (DOD) mission, and with NAVFAC's design, construction, operations, and maintenance practices, in particular. This project demonstrated the performance of commercially available advanced power strips (APSs) for plug load energy reductions in building A4 at Joint Base Pearl Harbor-Hickam (JBPHH), Hawaii.

Sheppy, M.; Metzger, I.; Cutler, D.; Holland, G.; Hanada, A.

2014-01-01T23:59:59.000Z

359

Iceland Geothermal Conference 2013 - Geothermal Policies and...  

Energy Savers [EERE]

Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal...

360

Update of the Status of the U.S. Department of Energy's Motor Challenge Showcase Demonstration Projects  

E-Print Network [OSTI]

This paper presents an update on the status of the U.S. Department of Energy's (DOE) Showcase Demonstration Projects. These projects are part of the DOE Motor Challenge Program, and are aimed at demonstrating increased electric motor system...

Szady, A. J.; Jallouk, P. A.; Olszewski, M.; Scheihing, P.

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Baker-Barry Tunnel Lighting: Evaluation of a Potential GATEWAY Demonstrations Project  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) is evaluating the Baker-Barry Tunnel as a potential GATEWAY Demonstrations project for deployment of solid-state lighting (SSL) technology. The National Park Service (NPS) views this project as a possible proving ground and template for implementation of light-emitting diode (LED) luminaires in other NPS tunnels, thereby expanding the estimated 40% energy savings from 132 MWh/yr for this tunnel to a much larger figure national

Tuenge, Jason R.

2011-06-01T23:59:59.000Z

362

Pacific Northwest GridWise™ Testbed Demonstration Projects; Part I. Olympic Peninsula Project  

SciTech Connect (OSTI)

This report describes the implementation and results of a field demonstration wherein residential electric water heaters and thermostats, commercial building space conditioning, municipal water pump loads, and several distributed generators were coordinated to manage constrained feeder electrical distribution through the two-way communication of load status and electric price signals. The field demonstration took place in Washington and Oregon and was paid for by the U.S. Department of Energy and several northwest utilities. Price is found to be an effective control signal for managing transmission or distribution congestion. Real-time signals at 5-minute intervals are shown to shift controlled load in time. The behaviors of customers and their responses under fixed, time-of-use, and real-time price contracts are compared. Peak loads are effectively reduced on the experimental feeder. A novel application of portfolio theory is applied to the selection of an optimal mix of customer contract types.

Hammerstrom, Donald J.; Ambrosio, Ron; Carlon, Teresa A.; DeSteese, John G.; Horst, Gale R.; Kajfasz, Robert; Kiesling, Laura L.; Michie, Preston; Pratt, Robert G.; Yao, Mark; Brous, Jerry; Chassin, David P.; Guttromson, Ross T.; Jarvegren, Olof M.; Katipamula, Srinivas; Le, N. T.; Oliver, Terry V.; Thompson, Sandra E.

2008-01-09T23:59:59.000Z

363

51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development  

Broader source: Energy.gov [DOE]

51-Mile Hydroelectric Power Project Demonstration of new methodologies to reduce the LCOE for small, hydropower development

364

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2010-11-08T23:59:59.000Z

365

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2009; Composite Data Products, Final Version September 11, 2009  

SciTech Connect (OSTI)

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2009.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2009-09-01T23:59:59.000Z

366

Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2010; Composite Data Products, Final Version March 29, 2010  

SciTech Connect (OSTI)

Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through March 2010.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

2010-05-01T23:59:59.000Z

367

Los Alamos National Laboratory Tritium Technology Deployments Large Scale Demonstration and Deployment Project  

SciTech Connect (OSTI)

This paper describes the organization, planning and initial implementation of a DOE OST program to deploy proven, cost effective technologies into D&D programs throughout the complex. The primary intent is to accelerate closure of the projects thereby saving considerable funds and at the same time being protective of worker health and the environment. Most of the technologies in the ''toolkit'' for this program have been demonstrated at a DOE site as part of a Large Scale Demonstration and Deployment Project (LSDDP). The Mound Tritium D&D LSDDP served as the base program for the technologies being deployed in this project but other LSDDP demonstrated technologies or ready-for-use commercial technologies will also be considered. The project team will evaluate needs provided by site D&D project managers, match technologies against those needs and rank deployments using a criteria listing. After selecting deployments the project will purchase the equipment and provide a deployment engineer to facilitate the technology implementation. Other cost associated with the use of the technology will be borne by the site including operating staff, safety and health reviews etc. A cost and performance report will be prepared following the deployment to document the results.

McFee, J.; Blauvelt, D.; Stallings, E.; Willms, S.

2002-02-26T23:59:59.000Z

368

Human Health Science Building Geothermal Heat Pumps | Department...  

Broader source: Energy.gov (indexed) [DOE]

Human Health Science Building Geothermal Heat Pumps Human Health Science Building Geothermal Heat Pumps Project objectives: Construct a ground sourced heat pump, heating,...

369

Flathead Electric Cooperative Facility Geothermal Heat Pump System...  

Broader source: Energy.gov (indexed) [DOE]

Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade Project Will Take Advantage of...

370

Development of Design and Simulation Tool for Hybrid Geothermal...  

Broader source: Energy.gov (indexed) [DOE]

Development of Design and Simulation Tool for Hybrid Geothermal Heat Pump System Development of Design and Simulation Tool for Hybrid Geothermal Heat Pump System This project will...

371

Compound and Elemental Analysis At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Unknown Exploration Basis The goal of this project was to create a database of rare earth elements found in exploration for geothermal resources. Notes Geothermal fluids from...

372

National Geothermal Data Systems Data Acquisition and Access...  

Broader source: Energy.gov (indexed) [DOE]

National Geothermal Data Systems Data Acquisition and Access National Geothermal Data Systems Data Acquisition and Access Project objective: To support the acquisition of new and...

373

Novel Energy Conversion Equipment for Low Temperature Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Novel Energy Conversion Equipment for Low Temperature Geothermal Resources Project objective: Develop...

374

Novel Energy Conversion Equipment for Low Temperatures Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Novel Energy Conversion Equipment for Low Temperature Geothermal Resources City of Eagan Civic Ice Arena Renovation Canby Cascaded Geothermal Project Phase 1 Feasibility...

375

ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

SciTech Connect (OSTI)

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: SFP Construction and Fuel Production, Impact of SFP Fuel on Engine Performance, Fleet Testing at WMATA and Denali National Park, Demonstration of Clean Diesel Fuels in Diesel Electric Generators in Alaska, and Economic Analysis. ICRC provided overall project organization and budget management for the project. ICRC held meetings with various project participants. ICRC presented at the Department of Energy's annual project review meeting. The plant began producing fuel in October 2004. The first delivery of finished fuel was made in March of 2004 after the initial start-up period.

Steve Bergin

2004-10-18T23:59:59.000Z

376

Geothermal Electricity Technology Evaluation Model (GETEM) Development...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electricity Technology Evaluation Model (GETEM) Development Geothermal Electricity Technology Evaluation Model (GETEM) Development Project objective: Provide a tool for estimating...

377

Environmental monitoring for the DOE coolside and LIMB demonstration extension projects  

SciTech Connect (OSTI)

The purpose of this document is to present environmental monitoring data collected during the US DOE Limestone Injection Multistage Burner (LIMB) Demonstration Project Extension. The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators. (VC)

White, T.; Contos, L.; Adams, L. (Radian Corp., Research Triangle Park, NC (United States). Progress Center)

1992-02-01T23:59:59.000Z

378

Ultra-Clean Fischer-Tropsch Fuels Production and Demonstration Project  

SciTech Connect (OSTI)

The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: Dynamometer Durability Testing, the Denali Bus Fleet Demonstration, Bus Fleet Demonstrations Emissions Analysis, Impact of SFP Fuel on Engine Performance, Emissions Analysis, Feasibility Study of SFPs for Rural Alaska, and Cold Weather Testing of Ultra Clean Fuel.

Steve Bergin

2005-10-14T23:59:59.000Z

379

Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects  

SciTech Connect (OSTI)

This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2 describes the approach and methods for this work and identifies the four power plant scenarios evaluated: a 20-MW EGS binary plant, a 50-MW EGS binary plant, a 10-MW hydrothermal binary plant, and a 50-MW hydrothermal flash plant. The methods focus on (1) the collection of data to improve estimation of EGS stimulation volumes, aboveground operational consumption for all geothermal technologies, and belowground operational consumption for EGS; and (2) the mapping of the geothermal and water resources of the western United States to assist in the identification of potential water challenges to geothermal growth. Chapters 3 and 4 present the water requirements for the power plant life cycle. Chapter 3 presents the results of the current data collection effort, and Chapter 4 presents the normalized volume of fresh water consumed at each life cycle stage per lifetime energy output for the power plant scenarios evaluated. Over the life cycle of a geothermal power plant, from construction through 30 years of operation, the majority of water is consumed by plant operations. For the EGS binary scenarios, where dry cooling was assumed, belowground operational water loss is the greatest contributor depending upon the physical and operational conditions of the reservoir. Total life cycle water consumption requirements for air-cooled EGS binary scenarios vary between 0.22 and 1.85 gal/kWh, depending upon the extent of belowground operational water consumption. The air-cooled hydrothermal binary and flash plants experience far less fresh water consumption over the life cycle, at 0.04 gal/kWh. Fresh water requirements associated with air- cooled binary operations are primarily from aboveground water needs, including dust control, maintenance, and domestic use. Although wet-cooled hydrothermal flash systems require water for cooling, these plants generally rely upon the geofluid, fluid from the geothermal reservoir, which typically has high salinity and total dissolved solids concentration and is much warmer than normal groundwater sources, for their cooling water needs; thus,

Clark, Corrie E. [Environmental Science Division] [Environmental Science Division; Harto, Christopher B. [Environmental Science Division] [Environmental Science Division; Schroeder, Jenna N. [Environmental Science Division] [Environmental Science Division; Martino, Louis E. [Environmental Science Division] [Environmental Science Division; Horner, Robert M. [Environmental Science Division] [Environmental Science Division

2013-11-05T23:59:59.000Z

380

Milliken Clean Coal Technology Demonstration Project. Environmental monitoring report, July--September 1996  

SciTech Connect (OSTI)

New York State Electric and Gas Corporation (NYSEG) has installed and is presently operating a high-efficiency flue gas desulfurization (FGD) system to demonstrate innovative emissions control technology and comply with the Clean Air Act Amendments of 1990. The host facility for this demonstration project is NYSEG`s Milliken Station, in the Town of Lansing, New York. The primary objective of this project is to demonstrate a retrofit of energy-efficient SO{sub 2} and NO{sub x} control systems with minimal impact on overall plant efficiency. The demonstration project has added a forced oxidation, formic acid-enhanced wet limestone FGD system, which is expected to reduce SO{sub 2} emissions by at least 90 percent. NYSEG also made combustion modifications to each boiler and plans to demonstrate selective non-catalytic reduction (SNCR) technology on unit 1, which will reduce NO{sub x} emissions. Goals of the proposed demonstration include up to 98 percent SO{sub 2} removal efficiency while burning high-sulfur coal, 30 percent NO{sub x} reductions through combustion modifications, additional NO{sub x} reductions using SNCR technology, production of marketable commercial-grade gypsum and calcium chloride by-products to minimize solid waste disposal, and zero wastewater discharge.

NONE

1998-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Recovery Act: Geothermal Data Aggregation: Submission of Information into the National Geothermal Data System, Final Report DOE Project DE-EE0002852 June 24, 2014  

SciTech Connect (OSTI)

The National Geothermal Data System (NGDS) is a Department of Energy funded effort to create a single cataloged source for a variety of geothermal information through a distributed network of databases made available via web services. The NGDS will help identify regions suitable for potential development and further scientific data collection and analysis of geothermal resources as a source for clean, renewable energy. A key NGDS repository or ‘node’ is located at Southern Methodist University developed by a consortium made up of: • SMU Geothermal Laboratory • Siemens Corporate Technology, a division of Siemens Corporation • Bureau of Economic Geology at the University of Texas at Austin • Cornell Energy Institute, Cornell University • Geothermal Resources Council • MLKay Technologies • Texas Tech University • University of North Dakota. The focus of resources and research encompass the United States with particular emphasis on the Gulf Coast (on and off shore), the Great Plains, and the Eastern U.S. The data collection includes the thermal, geological and geophysical characteristics of these area resources. Types of data include, but are not limited to, temperature, heat flow, thermal conductivity, radiogenic heat production, porosity, permeability, geological structure, core geophysical logs, well tests, estimated reservoir volume, in situ stress, oil and gas well fluid chemistry, oil and gas well information, and conventional and enhanced geothermal system related resources. Libraries of publications and reports are combined into a unified, accessible, catalog with links for downloading non-copyrighted items. Field notes, individual temperature logs, site maps and related resources are included to increase data collection knowledge. Additional research based on legacy data to improve quality increases our understanding of the local and regional geology and geothermal characteristics. The software to enable the integration, analysis, and dissemination of this team’s NGDS contributions was developed by Siemens Corporate Technology. The SMU Node interactive application is accessible at http://geothermal.smu.edu. Additionally, files may be downloaded from either http://geothermal.smu.edu:9000/geoserver/web/ or through http://geothermal.smu.edu/static/DownloadFilesButtonPage.htm. The Geothermal Resources Council Library is available at https://www.geothermal-library.org/.

Blackwell, David D. [SMU Geothermal Laboratory; Chickering Pace, Cathy [SMU Geothermal Laboratory] (ORCID:0000000228898620); Richards, Maria C. [SMU Geothermal Laboratory

2014-06-24T23:59:59.000Z

382

West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2007  

SciTech Connect (OSTI)

Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2007. The report summarizes the calendar year (CY) 2007 environmental protection program at the WVDP. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment.

West Valley Environmental Services LLC (WVES) and URS - Washington Division

2008-12-17T23:59:59.000Z

383

EA-1970: Fishermen’s Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey  

Broader source: Energy.gov [DOE]

DOE is proposing to provide funding to Fishermen’s Energy LLC to construct and operate up to five 5.0 MW wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

384

Environmental monitoring for the DOE coolside and LIMB demonstration extension projects  

SciTech Connect (OSTI)

The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. These data were collected by implementing the Environmental Monitoring Plan (EMP) for the DOE LIMB Demonstration Project Extension, dated August 1988. This document is the fifth EMP status report to be published and presents the data generated during November and December 1990, and January 1991. These reports review a three or four month period and have been published since the project's start in October 1989. The DOE project is an extension of the US Environmental Protection Agency's (EPA) original LIMB Demonstration. The program is operated under DOE's Clean Coal Technology Program of emerging clean coal technologies'' under the categories of in boiler control of oxides of sulfur and nitrogen'' as well as post-combustion clean-up.'' The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs). 5 figs., 12 tabs.

White, T.; Contos, L.

1991-09-01T23:59:59.000Z

385

Lessons Learned from the U.S. Department of Energy's Motor Challenge Showcase Demonstration Projects  

E-Print Network [OSTI]

industrial operations and processes. Each Showcase Project is made up of a team that consists of a host demonstration site and supporting partners (e.g. utilities, motor and process equipment suppliers, and contractors). Each team is expected to provide DOE...

Szady, A. J.; Jallouk, P. A.; Olszewski, M.; Scheihing, P.

386

West Valley Demonstration Project Annual Site Environmental Report Calendard Year 2005  

SciTech Connect (OSTI)

Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2005. The report summarizes calendar year (CY) 2005 environmental monitoring data so as to describe the performance of the WVDP's environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs.

West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

2006-09-21T23:59:59.000Z

387

West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2006  

SciTech Connect (OSTI)

Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2006. The report summarizes calendar year (CY) 2006 environmental monitoring data so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs that protect public health and safety and the environment.

West Valley Nuclear Services Company (WVNSCO) and URS Group, Inc.

2007-09-27T23:59:59.000Z

388

Technical Services Contract Awarded for West Valley Demonstration Project Support Services  

Broader source: Energy.gov [DOE]

Cincinnati - The U.S. Department of Energy (DOE) today awarded a task order to Safety and Ecology Corporation of Knoxville, Tennessee, for technical services at the West Valley Demonstration Project, West Valley, New York. The task order has a three-year performance period with a $1.3 million value.

389

Environmental Assessment for the Warren Station externally fired combined cycle demonstration project  

SciTech Connect (OSTI)

The proposed Penelec project is one of 5 projects for potential funding under the fifth solicitation under the Clean Coal Technology program. In Penelec, two existing boilers would be replaced at Warren Station, PA; the new unit would produce 73 MW(e) in a combined cycle mode (using both gas-fired and steam turbines). The project would fill the need for a full utility-size demonstration of externally fire combined cycle (EFCC) technology as the next step toward commercialization. This environmental assessment was prepared for compliance with NEPA; its purpose is to provide sufficient basis for determining whether to prepare an environmental impact statement or to issue a finding of no significant impact. It is divided into the sections: purpose and need for proposed action; alternatives; brief description of affected environment; environmental consequences, including discussion of commercial operation beyond the demonstration period.

NONE

1995-04-01T23:59:59.000Z

390

Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1995--March 31, 1995  

SciTech Connect (OSTI)

This detailed report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project. This U.S. Department of Energy (DOE) Clean Coal Technology Project demonstrates an advanced thermal coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to high-quality, low-sulfur fuel. During this reporting period, the primary focus for the project was to expand market awareness and acceptability for the products and the technology. The use of covered hopper cars has been successful and marketing efforts have focused on this technique. Operational improvements are currently aimed at developing fines marketing systems, increasing throughput capacity, decreasing operation costs, and developing standardized continuous operator training. Testburns at industrial user sites were also conducted. A detailed process description; technical progress report including facility operations/plant production, facility testing, product testing, and testburn product; and process stability report are included. 3 figs., 8 tabs.

NONE

1996-06-01T23:59:59.000Z

391

Water Use Optimization Toolset Project: Development and Demonstration Phase Draft Report  

SciTech Connect (OSTI)

This report summarizes the results of the development and demonstration phase of the Water Use Optimization Toolset (WUOT) project. It identifies the objective and goals that guided the project, as well as demonstrating potential benefits that could be obtained by applying the WUOT in different geo-hydrologic systems across the United States. A major challenge facing conventional hydropower plants is to operate more efficiently while dealing with an increasingly uncertain water-constrained environment and complex electricity markets. The goal of this 3-year WUOT project, which is funded by the U.S. Department of Energy (DOE), is to improve water management, resulting in more energy, revenues, and grid services from available water, and to enhance environmental benefits from improved hydropower operations and planning while maintaining institutional water delivery requirements. The long-term goal is for the WUOT to be used by environmental analysts and deployed by hydropower schedulers and operators to assist in market, dispatch, and operational decisions.

Gasper, John R. [Argonne National Laboratory] [Argonne National Laboratory; Veselka, Thomas D. [Argonne National Laboratory] [Argonne National Laboratory; Mahalik, Matthew R. [Argonne National Laboratory] [Argonne National Laboratory; Hayse, John W. [Argonne National Laboratory] [Argonne National Laboratory; Saha, Samrat [Argonne National Laboratory] [Argonne National Laboratory; Wigmosta, Mark S. [PNNL] [PNNL; Voisin, Nathalie [PNNL] [PNNL; Rakowski, Cynthia [PNNL] [PNNL; Coleman, Andre [PNNL] [PNNL; Lowry, Thomas S. [SNL] [SNL

2014-05-19T23:59:59.000Z

392

Validation of Geothermal Tracer Methods in Highly Constrained Field Experiments  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Project Summary. This project will test smartdiffusive tracers for measuring heat exchange.

393

Geothermal system saving money at fire station | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal system saving money at fire station Geothermal system saving money at fire station April 9, 2010 - 3:45pm Addthis Joshua DeLung What will the project do? A geothermal...

394

Electric Ground Support Equipment Advanced Battery Technology Demonstration Project at the Ontario Airport  

SciTech Connect (OSTI)

The intent of the electric Ground Support Equipment (eGSE) demonstration is to evaluate the day-to-day vehicle performance of electric baggage tractors using two advanced battery technologies to demonstrate possible replacements for the flooded lead-acid (FLA) batteries utilized throughout the industry. These advanced battery technologies have the potential to resolve barriers to the widespread adoption of eGSE deployment. Validation testing had not previously been performed within fleet operations to determine if the performance of current advanced batteries is sufficient to withstand the duty cycle of electric baggage tractors. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. This report summarizes the work performed and data accumulated during this demonstration in an effort to validate the capabilities of advanced battery technologies. The demonstration project also grew the relationship with Southwest Airlines (SWA), our demonstration partner at Ontario International Airport (ONT), located in Ontario, California. The results of this study have encouraged a proposal for a future demonstration project with SWA.

Tyler Gray; Jeremy Diez; Jeffrey Wishart; James Francfort

2013-07-01T23:59:59.000Z

395

Geothermal progress monitor: Report No. 17  

SciTech Connect (OSTI)

DOE is particularly concerned with reducing the costs of geothermal power generation, especially with the abundant moderate to low-temperature resources in the US. This concern is reflected in DOE`s support of a number of energy conversion projects. Projects which focus on the costs and performance of binary cycle technology include a commercial demonstration of supersaturated turbine expansions, which earlier studies have indicated could increase the power produced per pound of fluid. Other binary cycle projects include evaluations of the performance of various working fluid mixtures and the development and testing of advanced heat rejection systems which are desperately needed in water-short geothermal areas. DOE is also investigating the applicability of flash steam technology to low-temperature resources, as an economic alternative to binary cycle systems. A low-cost, low-pressure steam turbine, selected for a grant, will be constructed to utilize fluid discharged from a flash steam plant in Nevada. Another project addresses the efficiency of high-temperature flash plants with a demonstration of the performance of the Biphase turbine which may increase the power output of such installations with no increase in fluid flow. Perhaps the most noteworthy feature of this issue of the GPM, the 17th since its inception in 1980, is the high degree of industry participation in federally-sponsored geothermal research and development. This report describes geothermal development activities.

NONE

1995-12-01T23:59:59.000Z

396

West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2010  

SciTech Connect (OSTI)

The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2010. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2010. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE's effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations and directives, evaluation of data collected in 2010 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

CH2MHILL • B& W West Valley, LLC

2011-09-28T23:59:59.000Z

397

Environmental monitoring for the DOE coolside and LIMB demonstration extension projects  

SciTech Connect (OSTI)

The purpose of this document is to present environmental monitoring data collected during the US Department of Energy Limestone Injection Multistage Burner (DOE LIMB) Demonstration Project Extension at the Ohio Edison Edgewater Generating Station in Lorain, Ohio. The DOE project is an extension of the US Environmental Protection Agency's (EPA's) original LIMB Demonstration. The program is operated nuclear DOE's Clean Coal Technology Program of emerging clean coal technologies'' under the categories of in boiler control of oxides of sulfur and nitrogen'' as well as post-combustion clean-up.'' The objective of the LIMB program is to demonstrate the sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emission reduction capabilities of the LIMB system. The LIMB system is a retrofit technology to be used for existing coal-fired boilers equipped with electrostatic precipitators (ESPs).

White, T.; Contos, L.; Adams, L. (Radian Corp., Research Triangle Park, NC (United States))

1992-03-01T23:59:59.000Z

398

West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2012  

SciTech Connect (OSTI)

The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2012. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2012. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2012 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

Rendall, John D. [CH2M HILL • B& W West Valley, LLC (CHBWV); Steiner, Alison F. [URS Professional Solutions (URSPS); Klenk, David P. [CH2M HILL • B& W West Valley, LLC (CHBWV)

2013-09-19T23:59:59.000Z

399

West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2011  

SciTech Connect (OSTI)

The West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2011. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2011. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2011 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

CH2M HILL • B& W West Valley, LLC

2012-09-27T23:59:59.000Z

400

West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2013  

SciTech Connect (OSTI)

West Valley Demonstration Project (WVDP) Annual Site Environmental Report (ASER) for Calendar Year 2013. The report, prepared for the U.S. Department of Energy West Valley Demonstration Project office (DOE-WVDP), summarizes the environmental protection program at the WVDP for calendar year (CY) 2013. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of public health and safety and the environment. The report is a key component of DOE’s effort to keep the public informed of environmental conditions at the WVDP. The quality assurance protocols applied to the environmental monitoring program ensure the validity and accuracy of the monitoring data. In addition to demonstrating compliance with environmental laws, regulations, and directives, evaluation of data collected in 2013 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

Rendall, John D. [CH2MHILL • B& W West Valley, LLC (CHBWV); Steiner, Alison F. [CH2MHILL • B& W West Valley, LLC (CHBWV); Pendl, Michael P. [CH2MHILL • B& W West Valley, LLC (CHBWV)

2014-09-16T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Department Human Resources Bulletin, #027, FY06, dated August 1,2006 DOC Demonstration Project Operating Procedures  

E-Print Network [OSTI]

Project Operating Procedures Purpose This issuance provides NOAA managers with pay setting flexibilitywhen Demonstration Project OperatingProcedures. . . . , . . Background On August 1,2006, the Department issued Human setting pay for Presidential Management Fellows (PMF) who are covered by the DOC Demonstration Project

402

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

E-Print Network [OSTI]

We describe the ongoing development of joint geophysical imaging methodologies for geothermal site characterization and demonstrate their potential in two regions: Krafla volcano and associated geothermal fields in ...

Zhang, Haijiang

2012-01-01T23:59:59.000Z

403

Geothermal direct heat applications program summary  

SciTech Connect (OSTI)

The use of geothermal energy for direct heat purposes by the private sector within the US has been quite limited to date. However, there is a large potential market for thermal energy in such areas as industrial processing, agribusiness, and space/water heating of commercial and residential buildings. Technical and economic information is needed to assist in identifying prospective direct heat users and to match their energy needs to specific geothermal reservoirs. Technological uncertainties and associated economic risks can influence the user's perception of profitability to the point of limiting private investment in geothermal direct applications. To stimulate development in the direct heat area, the Department of Energy, Division of Geothermal Energy, issued two Program Opportunity Notices (PON's). These solicitations are part of DOE's national geothermal energy program plan, which has as its goal the near-term commercialization by the private sector of hydrothermal resources. Encouragement is being given to the private sector by DOE cost-sharing a portion of the front-end financial risk in a limited number of demonstration projects. The twenty-two projects summarized herein are direct results of the PON solicitations.

None

1980-04-01T23:59:59.000Z

404

Supplement analysis 2 of environmental impacts resulting from modifications in the West Valley Demonstration Project  

SciTech Connect (OSTI)

The West Valley Demonstration Project, located in western New York, has approximately 600,000 gallons of liquid high-level radioactive waste (HLW) in storage in underground tanks. While corrosion analysis has revealed that only limited tank degradation has taken place, the failure of these tanks could release HLW to the environment. Congress requires DOE to demonstrate the technology for removal and solidification of HLW. DOE issued the Final Environmental Impact Statement (FEIS) in 1982. The purpose of this second supplement analysis is to re-assess the 1982 Final Environmental Impact Statement's continued adequacy. This report provides the necessary and appropriate data for DOE to determine whether the environmental impacts presented by the ongoing refinements in the design, process, and operations of the Project are considered sufficiently bounded within the envelope of impacts presented in the FEIS and supporting documentation.

NONE

1998-06-23T23:59:59.000Z

405

Phase 2 Reese River Geothermal Project Slim Well 56-4 Drilling And Testing  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru: Energy Resources Jump to:|| Open Energy

406

West Valley demonstration project: alternative processes for solidifying the high-level wastes  

SciTech Connect (OSTI)

In 1980, the US Department of Energy (DOE) established the West Valley Solidification Project as the result of legislation passed by the US Congress. The purpose of this project was to carry out a high level nuclear waste management demonstration project at the Western New York Nuclear Service Center in West Valley, New York. The DOE authorized the Pacific Northwest Laboratory (PNL), which is operated by Battelle Memorial Institute, to assess alternative processes for treatment and solidification of the WNYNSC high-level wastes. The Process Alternatives Study is the suject of this report. Two pretreatment approaches and several waste form processes were selected for evaluation in this study. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

Holton, L.K.; Larson, D.E.; Partain, W.L.; Treat, R.L.

1981-10-01T23:59:59.000Z

407

EA-1970: Fishermen’s Energy LLC Offshore Wind Demonstration Project, offshore Atlantic City, New Jersey  

Broader source: Energy.gov [DOE]

Draft EA: Public Comment Period Ends 04/03/15DOE is proposing to provide funding to Fishermen’s Atlantic City Windfarm, LLC to construct and operate up to six wind turbine generators, for an offshore wind demonstration project, approximately 2.8 nautical miles off the coast of Atlantic City, NJ. The proposed action includes a cable crossing from the turbines to an on-shore existing substation.

408

Public Interest Energy Research (PIER) Program FINAL PROJECT REPORT  

E-Print Network [OSTI]

The California Energy Commission's Geothermal Resources Development Account Geothermal Planning Projects support of geothermal resource elements, or geothermal components of energy elements, for inclusion in the localPublic Interest Energy Research (PIER) Program FINAL PROJECT REPORT STRUCTURING A DIRECT

409

Geothermal Technologies Office | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

more Energy Department Announces 18 Million for Innovative Projects to Advance Geothermal Energy Energy Department Announces 18 Million for Innovative Projects to Advance...

410

Pleasant Bayou geopressured/geothermal testing project, Brazoria County, Texas. Final report  

SciTech Connect (OSTI)

Phase II-B production testing of the Pleasant Bayou No. 2 well began September 22, 1982. The test plan was designed to evaluate the capabilities of the geopressured-geothermal reservoir during an extended flow period. Tests were conducted to determine reservoir areal extent; aquifer fluid properties; fluid property change with production; information on reservoir production drive mechanism; long-term scale and corrosion control methods; and disposal well operations. Operatinal aspects of geopressured-geothermal production were also evaluated. The test was discontinued prematurely in May 1983 because of a production tubing failure. Most of the production tubing was recovered from the well and cause of the failure was determined. Plans for recompletion of the well were prepared. However, the well was not recompleted because of funding constraints and/or program rescheduling. In March 1984, the Department of Energy, Nevada Operations Office (DOE/NV) directed that the site be placed in a standby-secured condition. In August 1984, the site was secured. Routine site maintenance and security was provided during the secured period.

Ortego, P.K.

1985-07-01T23:59:59.000Z

411

Advanced Coal Conversion Process Demonstration Project. Quarterly technical progress report, January 1, 1994--March 31, 1994  

SciTech Connect (OSTI)

This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1994, through March 31, 1994. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

NONE

1996-02-01T23:59:59.000Z

412

Advanced Coal Conversion Process Demonstration Project. Technical progress report, January 1, 1993--December 31, 1993  

SciTech Connect (OSTI)

This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1993, through December 31, 1993. This project demonstrates an advanced, thermal, coal drying process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low- rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal processing, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. Rosebud SynCoal Partnership`s ACCP Demonstration Facility entered Phase III, Demonstration Operation, in April 1992 and operated in an extended startup mode through August 10, 1993, when the facility became commercial. Rosebud SynCoal Partnership instituted an aggressive program to overcome startup obstacles and now focuses on supplying product coal to customers. Significant accomplishments in the history of the SynCoal{reg_sign} process development are shown in Appendix A.

NONE

1995-02-01T23:59:59.000Z

413

Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

Schroeder, Jenna N.

414

Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies  

SciTech Connect (OSTI)

According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

Schroeder, Jenna N.

2014-12-16T23:59:59.000Z

415

Geothermal Energy Development annual report 1979  

SciTech Connect (OSTI)

This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

Not Available

1980-08-01T23:59:59.000Z

416

Advanced Coal Conversion Process Demonstration Project. Final technical progress report, January 1, 1995--December 31, 1995  

SciTech Connect (OSTI)

This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from January 1, 1995 through December 31, 1995. This project demonstrates an advanced, thermal, coal upgrading process, coupled with physical cleaning techniques, that is designed to upgrade high-moisture, low-rank coals to a high-quality, low-sulfur fuel, registered as the SynCoal Process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After thermal upgrading, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal Process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,5000 to 9,000 British thermal units per pound (Btu/lb), by producing a stable, upgraded, coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. During this reporting period, the primary focus for the ACCP Demonstration Project team was to expand SynCoal market awareness and acceptability for both the products and the technology. The ACCP Project team continued to focus on improving the operation, developing commercial markets, and improving the SynCoal products as well as the product`s acceptance.

NONE

1997-05-01T23:59:59.000Z

417

RM12-2703 Advanced Rooftop Unit Control Retrofit Kit Field Demonstration: Hawaii and Guam Energy Improvement Technology Demonstration Project  

SciTech Connect (OSTI)

As part of its overall strategy to meet its energy goals, the Naval Facilities Engineering Command (NAVFAC) partnered with U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) to rapidly demonstrate and deploy cost-effective renewable energy and energy efficiency technologies. This was one of several demonstrations of new and underutilized commercial energy efficiency technologies. The consistent year-round demand for air conditioning and dehumidification in Hawaii provides an advantageous demonstration location for advanced rooftop control (ARC) retrofit kits to packaged rooftop units (RTUs). This report summarizes the field demonstration of ARCs installed on nine RTUs serving a 70,000-ft2 exchange store (large retail) and two RTUs, each serving small office buildings located on Joint Base Pearl Harbor-Hickam (JBPHH).

Doebber, I.; Dean, J.; Dominick, J.; Holland, G.

2014-03-01T23:59:59.000Z

418

The Mobile Test and Demonstration Unit, A Cooperative Project Between EPRI, Utilities and Industry to Demonstrate New Water Treatment Technologies  

E-Print Network [OSTI]

and has demonstrated that membrane processes like MF, UF, NF and RO can successfully be applied to remove BOD and TSS from process streams, often recovering valuable solids, reducing sewer charges and meeting environmental regulations....

Strasser, J.; Mannapperuma, J.

419

[Advanced Coal Conversion Process Demonstration Project]. Technical progress report: April 1, 1992--June 30, 1992  

SciTech Connect (OSTI)

This report describes the technical progress made on the Advanced Coal Conversion Process (ACCP) Demonstration Project from April 1, 1992, through June 30, 1992. This project demonstrates an advanced thermal coal drying process coupled with physical cleaning techniques designed to upgrade high-moisture, low-rank coals into a high-quality, low-sulfur fuel, registered as the SynCoal{reg_sign} process. The coal is processed through three stages (two heating stages followed by an inert cooling stage) of vibrating fluidized bed reactors that remove chemically bound water, carboxyl groups, and volatile sulfur compounds. After drying, the coal is put through a deep-bed stratifier cleaning process to separate the pyrite-rich ash from the coal. The SynCoal{reg_sign} process enhances low-rank, western coals, usually with a moisture content of 25 to 55 percent, sulfur content of 0.5 to 1.5 percent, and heating value of 5,500 to 9,000 British thermal units per pound (Btu/Ib), by producing a stable, upgraded coal product with a moisture content as low as 1 percent, sulfur content as low as 0.3 percent, and heating value up to 12,000 Btu/lb. The 45-ton-per-hour unit is located adjacent to a unit train loadout facility at Western Energy Company`s Rosebud coal mine near Colstrip, Montana. The demonstration plant is sized at about one-tenth the projected throughput of a multiple processing train commercial facility. The demonstration drying and cooling equipment is currently near commercial size.

Not Available

1993-10-01T23:59:59.000Z

420

Geothermal Energy Association Recognizes the National Geothermal...  

Energy Savers [EERE]

Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Large-scale biomass plantings in Minnesota: Scale-up and demonstration projects in perspective  

SciTech Connect (OSTI)

Scale-up projects are an important step toward demonstration and commercialization of woody biomass because simply planting extensive acreage of hybrid poplar will not develop markets. Project objectives are to document the cost to plant and establish, and effort needed to monitor and maintain woody biomass on agricultural land. Conversion technologies and alternative end-uses are examined in a larger framework in order to afford researchers and industrial partners information necessary to develop supply and demand on a local or regional scale. Likely to be determined are risk factors of crop failure and differences between establishment of research plots and agricultural scale field work. Production economics are only one consideration in understanding demonstration and scale-up. Others are environmental, marketing, industrial, and agricultural in nature. Markets for energy crops are only beginning to develop. Although information collected as a result of planting up to 5000 acres of hybrid poplar in central Minnesota will not necessarily be transferable to other areas of the country, a national perspective will come from development of regional markets for woody and herbaceous crops. Several feedstocks, with alternative markets in different regions will eventually comprise the entire picture of biofuels feedstock market development. Current projects offer opportunities to learn about the complexity and requirements that will move biomass from research and development to actual market development. These markets may include energy and other end-uses such as fiber.

Kroll, T. [Minnesota Univ., St. Paul, MN (United States). Forestry Div.; Downing, M. [Oak Ridge National Lab., TN (United States)

1995-09-01T23:59:59.000Z

422

California Food Processing Industry Wastewater Demonstration Project: Phase I Final Report  

SciTech Connect (OSTI)

Wastewater treatment is an energy-intensive process and electricity demand is especially high during the utilities summer peak electricity demand periods. This makes wastewater treatment facilities prime candidates for demand response programs. However, wastewater treatment is often peripheral to food processing operations and its demand response opportunities have often been overlooked. Phase I of this wastewater demonstration project monitored wastewater energy and environmental data at Bell-Carter Foods, Inc., California's largest olive processing plant. For this monitoring activity the project team used Green Energy Management System (GEMS) automated enterprise energy management (EEM) technologies. This report presents results from data collected by GEMS from September 15, 2008 through November 30, 2008, during the olive harvest season. This project established and tested a methodology for (1) gathering baseline energy and environmental data at an industrial food-processing plant and (2) using the data to analyze energy efficiency, demand response, daily peak load management, and environmental management opportunities at the plant. The Phase I goals were to demonstrate the measurement and interrelationship of electricity demand, electricity usage, and water quality metrics and to estimate the associated CO{sub 2} emissions.

Lewis, Glen; Atkinson, Barbara; Rhyne, Ivin

2009-09-09T23:59:59.000Z

423

Methodological Approaches for Estimating the Benefits and Costs of Smart Grid Demonstration Projects  

SciTech Connect (OSTI)

This report presents a comprehensive framework for estimating the benefits and costs of Smart Grid projects and a step-by-step approach for making these estimates. The framework identifies the basic categories of benefits, the beneficiaries of these benefits, and the Smart Grid functionalities that lead to different benefits and proposes ways to estimate these benefits, including their monetization. The report covers cost-effectiveness evaluation, uncertainty, and issues in estimating baseline conditions against which a project would be compared. The report also suggests metrics suitable for describing principal characteristics of a modern Smart Grid to which a project can contribute. This first section of the report presents background information on the motivation for the report and its purpose. Section 2 introduces the methodological framework, focusing on the definition of benefits and a sequential, logical process for estimating them. Beginning with the Smart Grid technologies and functions of a project, it maps these functions to the benefits they produce. Section 3 provides a hypothetical example to illustrate the approach. Section 4 describes each of the 10 steps in the approach. Section 5 covers issues related to estimating benefits of the Smart Grid. Section 6 summarizes the next steps. The methods developed in this study will help improve future estimates - both retrospective and prospective - of the benefits of Smart Grid investments. These benefits, including those to consumers, society in general, and utilities, can then be weighed against the investments. Such methods would be useful in total resource cost tests and in societal versions of such tests. As such, the report will be of interest not only to electric utilities, but also to a broad constituency of stakeholders. Significant aspects of the methodology were used by the U.S. Department of Energy (DOE) to develop its methods for estimating the benefits and costs of its renewable and distributed systems integration demonstration projects as well as its Smart Grid Investment Grant projects and demonstration projects funded under the American Recovery and Reinvestment Act (ARRA). The goal of this report, which was cofunded by the Electric Power Research Institute (EPRI) and DOE, is to present a comprehensive set of methods for estimating the benefits and costs of Smart Grid projects. By publishing this report, EPRI seeks to contribute to the development of methods that will establish the benefits associated with investments in Smart Grid technologies. EPRI does not endorse the contents of this report or make any representations as to the accuracy and appropriateness of its contents. The purpose of this report is to present a methodological framework that will provide a standardized approach for estimating the benefits and costs of Smart Grid demonstration projects. The framework also has broader application to larger projects, such as those funded under the ARRA. Moreover, with additional development, it will provide the means for extrapolating the results of pilots and trials to at-scale investments in Smart Grid technologies. The framework was developed by a panel whose members provided a broad range of expertise.

Lee, Russell [ORNL

2010-01-01T23:59:59.000Z

424

Analysis of the obstacles to financing geothermal hydrothermal commercialization projects and the government programs designed to remove them  

SciTech Connect (OSTI)

The risks associated with geothermal hydrothermal commercialization are broken down into five categories: resource risk; technological risk; regulatory risk; investment parity risks; and institutional risk aversion. The impact of each risk upon geothermal financing is assessed. The federal government's programs to provide financial incentives for geothermal development are presented as follows: tax incentives; indirect financial incentives programs; direct grant/cost-sharing programs; and attempts at reducing regulatory risk through the enactment of legal and institutional reforms. (MHR)

Not Available

1981-03-20T23:59:59.000Z

425

Telephone Flat Geothermal Development Project Environmental Impact Statement Environmental Impact Report. Final  

SciTech Connect (OSTI)

This Final Environmental Impact Statement and Environmental Impact Report (Final EIS/EIR) has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). The Proposed Action includes the construction, operation, and decommissioning of a 48 megawatt (gross) geothermal power plant with ancillary facilities (10-12 production well pads and 3-5 injection well pads, production and injection pipelines), access roads, and a 230-kilovolt (kV) transmission line in the Modoc National Forest in Siskiyou County, California. Alternative locations for the power plant site within a reasonable distance of the middle of the wellfield were determined to be technically feasible. Three power plant site alternatives are evaluated in the Final EIS/EIR.

None

1999-02-01T23:59:59.000Z

426

Geothermal Injection Monitoring Project. Phase I status report, April 1981-April 1982  

SciTech Connect (OSTI)

The feasibility of using remote geophysical techniques to monitor the movement of injected brine has been evaluated. It was established that no single approach is likely to be identified that can be used to accurately monitor the precise location of the injected fluid. Several approaches have been considered in parallel because they add new dimensions to the existing monitoring capabilities, and are likely to cover a range of applications at a variety of geothermal sites. These include: microseismicity - a seismic net is used to record small magnitude events associated with injection; streaming potential - self potential anomalies produced by a moving fluid identify fluid flow direction; cross borehole geotomography - two-dimensional image of flow pathways is constructed using electromagnetic waves; and well pressure response to solid earth tide - changes in pore pressures are used to discriminate fracture/pore porosity and estimate fracture orientations.

Younker, L.; Hanson, J.; Didwall, E.; Kasameyer, P.; Smith, A.; Hearst, J.; Daily, W.; Crow, N.; Younker, J.; Murray, W.

1982-08-13T23:59:59.000Z

427

Technical support to the Solvent Refined Coal (SRC) demonstration projects: assessment of current research and development  

SciTech Connect (OSTI)

A program to demonstrate Solvent Refined Coal (SRC) technology has been initiated by the US Department of Energy (DOE) in partnership with two industrial groups. Project management responsibility has been assigned to the Oak Ridge Operations Office (ORO) of DOE. ORO requested that the Oak Ridge National Laboratory assess current research and development (R and D) activities and develop recommendations for those activities that might contribute to successful completion of the SRC demonstration plant projects. The objectives of this final report are to discuss in detail the problem areas in SRC; to discuss the current and planned R and D investigations relevant to the problems identified; and to suggest appropriate R and D activities in support of designs for the SRC demonstration plants. Four types of R and D activities are suggested: continuation of present and planned activities; coordination of activities and results, present and proposed; extension/redirection of activities not involving major equipment purchase or modifications; and new activities. Important examples of the first type of activity include continuation of fired heater, slurry rheology, and slurry mixing studies at Ft. Lewis. Among the second type of activity, coordination of data acquisition and interpretation is recommended in the areas of heat transfer, vapor/liquid equilibria, and physical properties. Principal examples of recommendations for extension/redirection include screening studies at laboratory scale on the use of carbonaceous precoat (e.g., anthracite) infiltration, and 15- to 30-day continuous tests of the Texaco gasifier at the Texaco Montebello facility (using SRC residues).

Edwards, M.S.; Rodgers, B.R.; Brown, C.H.; Carlson, P.K.; Gambill, W.R.; Gilliam, T.M.; Holmes, J.M.; Krishnan, R.P.; Parsly, L.F.

1980-12-01T23:59:59.000Z

428

Demonstration of coal reburning for cyclone boiler NO{sub x} control. Final project report  

SciTech Connect (OSTI)

As part of the US Department of Energy`s (DOE`s) Innovative Clean Coal Technology Program, under Round 2, a project for Full Scale Demonstration of Coal Reburning for Cyclone Boiler Nitrogen Oxide (NO{sub x},) Control was selected. DOE sponsored The Babcock & Wilcox (B&W) Company, with Wisconsin Power & Light (WP&L) as the host utility, to demonstrate coal reburning technology at WP&L`s 110 MW{sub c}, cyclone-fired Unit No.2 at the Nelson Dewey Generating Station in Cassville, Wisconsin. The coal reburning demonstration was justified based on two prior studies. An Electric Power Research Institute (EPRI) and B&W sponsored engineering feasibility study indicated that the majority of cyclone-equipped boilers could successfully apply reburning technology to reduce NO{sub x}, emissions by 50 to 70%. An EPRI/Gas Research Institute (GRI)/B&W pilot-scale evaluation substantiated this conclusion through pilot-scale testing in B&W`s 6 million Btu/hr Small Boiler Simulator. Three different reburning fuels, natural gas, No. 6 oil, and pulverized coal were tested. This work showed that coal as a reburning fuel performs nearly as well as gas/oil without deleterious effects of combustion efficiency. Coal was selected for a full scale demonstration since it is available to all cyclone units and represents the highest level of technical difficulty-in demonstrating the technology.

Not Available

1994-02-01T23:59:59.000Z

429

Task 27 -- Alaskan low-rank coal-water fuel demonstration project  

SciTech Connect (OSTI)

Development of coal-water-fuel (CWF) technology has to-date been predicated on the use of high-rank bituminous coal only, and until now the high inherent moisture content of low-rank coal has precluded its use for CWF production. The unique feature of the Alaskan project is the integration of hot-water-drying (HWD) into CWF technology as a beneficiation process. Hot-water-drying is an EERC developed technology unavailable to the competition that allows the range of CWF feedstock to be extended to low-rank coals. The primary objective of the Alaskan Project, is to promote interest in the CWF marketplace by demonstrating the commercial viability of low-rank coal-water-fuel (LRCWF). While commercialization plans cannot be finalized until the implementation and results of the Alaskan LRCWF Project are known and evaluated, this report has been prepared to specifically address issues concerning business objectives for the project, and outline a market development plan for meeting those objectives.

NONE

1995-10-01T23:59:59.000Z

430

Renewable Energy Demonstration Project by the National Renewable Energy Laboratory and the General Services Administration  

SciTech Connect (OSTI)

The Energy Policy Act of 1992 (EPACT) requires the General Services Administration (GSA) to implement a solar energy program to demonstrate and evaluate the performance of available technologies expected to have widespread commercial application. The GSA decided to carry out the project at the Denver Federal Center because of its proximity to the National Renewable Energy Laboratory (NREL). The location was thought to be of mutual benefit to NREL and the GSA: it provides NREL an opportunity to deploy technology and it provides the GSA an opportunity to gain a hands-on learning experience with renewables. The GSA plans to document their experience and use it as a case study in part of a larger training effort on renewable energy. This paper describes the technology selection process and provides an update on the status of the project.

Carlisle, N; Hoo, E; Westby, R [National Renewable Energy Lab., Golden, CO (United States); Hancock, E [Ed Hancock and Associates, Boulder, CO (United States); Lu, J [General Services Administration, Washington, DC (United States)

1994-11-01T23:59:59.000Z

431

FY results for the Los Alamos large scale demonstration and deployment project  

SciTech Connect (OSTI)

The Los Alamos Large Scale Demonstration and Deployment Project (LSDDP) in support of the US Department of Energy (DOE) Deactivation and Decommissioning Focus Area (DDFA) is identifying and demonstrating technologies to reduce the cost and risk of management of transuranic element contaminated large metal objects, i.e. gloveboxes. DOE must dispose of hundreds of gloveboxes from Rocky Flats, Los Alamos and other DOE sites. Current practices for removal, decontamination and size reduction of large metal objects translates to a DOE system-wide cost in excess of $800 million, without disposal costs. In FY99 and FY00 the Los Alamos LSDDP performed several demonstrations on cost/risk savings technologies. Commercial air pallets were demonstrated for movement and positioning of the oversized crates in neutron counting equipment. The air pallets are able to cost effectively address the complete waste management inventory, whereas the baseline wheeled carts could address only 25% of the inventory with higher manpower costs. A gamma interrogation radiography technology was demonstrated to support characterization of the crates. The technology was developed for radiography of trucks for identification of contraband. The radiographs were extremely useful in guiding the selection and method for opening very large crated metal objects. The cost of the radiography was small and the operating benefit is high. Another demonstration compared a Blade Cutting Plunger and reciprocating saw for removal of glovebox legs and appurtenances. The cost comparison showed that the Blade Cutting Plunger costs were comparable, and a significant safety advantage was reported. A second radiography demonstration was conducted evaluation of a technology based on WIPP-type x-ray characterization of large boxes. This technology provides considerable detail of the contents of the crates. The technology identified details as small as the fasteners in the crates, an unpunctured aerosol can, and a vessel containing liquids. The cost of this technology is higher than the gamma interrogation technique, but the detail provided is much greater.

Stallings, E.; McFee, J. [and others

2000-11-01T23:59:59.000Z

432

Interagency Geothermal Coordinating Council fifth annual report. Final draft  

SciTech Connect (OSTI)

Geothermal energy is the natural heat of the earth, and can be tapped as a clean, safe, economical alternative source of energy. Much of the geothermal energy resource is recoverable with current or near-current technology and could make a significant contribution both to increasing domestic energy supplies and to reducing the US dependence on imported oil. Geothermal energy can be used for electric power production, residential and commercial space heating and cooling, industrial process heat, and agricultural process applications. This report describes the progress for fiscal year 1980 (FY80) of the Federal Geothermal Program. It also summarizes the goals, strategy, and plans which form the basis for the FY81 and FY82 program activities and reflects the recent change in national policy affecting Federal research, development and demonstration programs. The Interagency Geothermal Coordinating Council (IGCC) believes that substantial progress can and will be made in the development of geothermal energy. The IGCC goals are: (1) reduce the institutional barriers so that geothermal projects can be on-line in one-half the current time; (2) make moderate temperature resources an economically competitive source of electricity; (3) remove the backlog of noncompetitive lease applications; (4) competitive lease all KGRA lands; and (5) cut the cost of hydrothermal technology by 25%.

Abel, Fred H.

1981-07-07T23:59:59.000Z

433

The Role of Occupant Behavior in Achieving Net Zero Energy: A Demonstration Project at Fort Carson  

SciTech Connect (OSTI)

This study, sponsored by the U.S. General Services Administration’s Office of Federal High-Performance Green Buildings, aimed to understand the potential for institutional and behavioral change to enhance the performance of buildings, through a demonstration project with the Department of Defense in five green buildings on the Fort Carson, Colorado, Army base. To approach this study, the research team identified specific occupant behaviors that had the potential to save energy in each building, defined strategies that might effectively support behavior change, and implemented a coordinated set of actions during a three-month intervention.

Judd, Kathleen S.; Sanquist, Thomas F.; Zalesny, Mary D.; Fernandez, Nicholas

2013-09-30T23:59:59.000Z

434

Direct utilization of geothermal energy in western South Dakota agribusiness. Final report  

SciTech Connect (OSTI)

This project involved the direct utilization of geothermal energy for (1) space heating of farm and ranch buildings, (2) drying grain, and (3) providing warm stock water during the winter. The site for this demonstration project was the Diamond Ring Ranch north of Midland, South Dakota. Geothermal water flowing from an existing well into the Madison Aquifer was used to heat four homes, a shop, a hospital barn for cattle, and air for a barn and grain dryer. This site is centrally located in the western region of South Dakota where geothermal water is available from the Madison Aquifer. The first year of the project involved the design of the heating systems and its construction while the following years were for operation, testing, demonstrating, and monitoring the system. Required modifications and improvements were made during this period. Operating modifications and improvements were made during this period. Operating experience showed that such application of geothermal resources is feasible and can result in substantial fuel savings. Economic analyses under a variety of assumptions generally gave payback periods of less than ten years. Numerous technical recommendations are made. The most significant being the necessity of passive protection from freezing of remote geothermal systems subject to winter shut downs caused by power or equipment failure. The primary institutional recommendation is to incorporate a use for the geothermal water such as irrigation or stock watering into agribusiness-related geothermal development.

Howard, S.M.

1983-09-01T23:59:59.000Z

435

West Valley Demonstration Project Annual Site Environmental Report Calendar Year 2008  

SciTech Connect (OSTI)

Annual Site Environmental Report for the West Valley Demonstration Project (WVDP) for Calendar Year 2008. The report summarizes the calendar year (CY) 2008 environmental monitoring program data at the WVDP so as to describe the performance of the WVDP’s environmental management system (EMS), confirm compliance with standards and regulations, and highlight important programs. Monitoring and surveillance of the facilities used by the DOE are conducted to verify protection of the environment, continual improvement, prevention and/or minimization of pollution, public outreach, and stakeholder involvement. In addition to demonstrating compliance with environmental regulations and directives, evaluation of data collected in 2008 continued to indicate that WVDP activities pose no threat to public health or safety, or to the environment.

West Valley Environmental Services LLC (WVES) and URS - Washington Division

2009-09-24T23:59:59.000Z

436

Introduction to the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project  

SciTech Connect (OSTI)

Early in 2003, the U.S. Department of Energy (DOE) initiated the ''Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project'' solicitation. The purpose of this project is to examine the impact and performance of fuel cell vehicles and the requisite hydrogen infrastructure in real-world applications. The integrated nature of the project enables DOE to work with industry to test, demonstrate, and validate optimal system solutions. Information learned from the vehicles and infrastructure will be fed back into DOE's R&D program to guide and refocus future research as needed, making this project truly a ''learning demonstration''.

Wipke, K.; Welch, C.; Gronich, S.; Garbak, J.; Hooker, D.

2006-05-01T23:59:59.000Z

437

WEST VALLEY DEMONSTRATION PROJECT ANNUAL SITE ENVIRONMENTAL REPORT CALENDAR YEAR 2002  

SciTech Connect (OSTI)

This annual environmental monitoring report for the West Valley Demonstration Project (WVDP or Project) is published to inform those with interest about environmental conditions at the WVDP. In accordance with U.S. Department of Energy (DOE) Order 231.1, Environment, Safety, and Health Reporting, the report summarizes calendar year (CY) 2002 environmental monitoring data so as to describe the performance of the WVDP's environmental management system, confirm compliance with standards and regulations, and highlight important programs. In 2002, the West Valley Demonstration Project, the site of a DOE environmental cleanup activity operated by West Valley Nuclear Services Co. (WVNSCO), was in the final stages of stabilizing high-level radioactive waste (HLW) that remained at the site after commercial nuclear fuel reprocessing had been discontinued in the early 1970s. The Project is located in western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). The WVDP is being conducted in cooperation with the New York State Energy Research and Development Authority (NYSERDA). Ongoing work activities at the WVDP during 2002 included: (1) completing HLW solidification and melter shutdown; (2) shipping low-level radioactive waste off-site for disposal; (3) constructing a facility where large high-activity components can be safely packaged for disposal; (4) packaging and removing spent materials from the vitrification facility; (5) preparing environmental impact statements for future activities; (6) removing as much of the waste left behind in waste tanks 8D-1 and 8D-2 as was reasonably possible; (7) removing storage racks, canisters, and debris from the fuel receiving and storage pool, decontaminating pool walls, and beginning shipment of debris for disposal; (8) ongoing decontamination in the general purpose cell and the process mechanical cell (also referred to as the head end cells); (9) planning for cleanup of waste in the plutonium purification cell (south) and extraction cell number 2 in the main plant; (10) ongoing characterization of facilities such as the waste tank farm and process cells; (11) monitoring the environment and managing contaminated areas within the Project facility premises; and (12) flushing and rinsing HLW solidification facilities.

NONE

2003-09-12T23:59:59.000Z

438

Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project  

SciTech Connect (OSTI)

The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer lab evaluation; cold-start test-cell evaluations; overall feasibility, economics, and efficiency of SFP fuel production; and an economic analysis. Two unexpected issues that arose during the project were further studied and resolved: variations in NOx emissions were accounted for and fuel-injection nozzle fouling issues were traced to the non-combustible (ash) content of the engine oil, not the F-T fuel. The F-T fuel domestically produced and evaluated in this effort appears to be a good replacement candidate for petroleum-based transportation fuels. However, in order for domestic F-T fuels to become a viable cost-comparable alternative to petroleum fuels, the F-T fuels will need to be produced from abundant U.S. domestic resources such as coal and biomass, rather than stranded natural gas.

Stephen P. Bergin

2006-06-30T23:59:59.000Z

439

Analysis of Low-Temperature Utilization of Geothermal Resources...  

Open Energy Info (EERE)

Analysis Project Type Topic 2 Geothermal Analysis Project Description In this proposal West Virginia University (WVU) outline a project which will perform an in-depth analysis...

440

Low-Temperature Geothermal Resources, Geothermal Technologies Program (GTP) (Fact Sheet)  

SciTech Connect (OSTI)

This document highlights the applications of low-temperature geothermal resources and the potential for future uses as well as current Geothermal Technologies Program-funded projects related to low-temperature resources.

Not Available

2010-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Front-end planning and evaluation for West Valley Demonstration Project completion  

SciTech Connect (OSTI)

In December 1988, the U.S. Department of Energy and the New York State Energy Research and Development Authority announced their intent to prepare a joint environmental impact statement (EIS) to evaluate alternatives for West Valley Demonstration Project (WVDP) completion and closure and/or long-term maintenance of the Western New York Nuclear Service Center (WNYNSC) in West Valley, New York. Planning was initiated for the eventual closure of the site, even though vitrification of the high-level waste (HLW) stored at the site was, at that time, a number of years in the future. West Valley Nuclear Services Company (WVNSC), the WVDP management and operations contractor, and their architect/engineer, Raytheon Nuclear Incorporated, were authorized to develop characterization studies and engineering evaluations of closure alternatives for the various facilities of the WNYNSC. This paper presents a summary of the status of that effort, including the resolution of unique problems.

Gramling, J.; Sharma, V. [West Valley Nuclear Services Company, West Valley, NY (United States); Marschke, S. [Raytheon Nuclear, Inc., New York, NY (United States)

1995-12-31T23:59:59.000Z

442

Operating experience during high-level waste vitrification at the West Valley Demonstration Project  

SciTech Connect (OSTI)

This report provides a summary of operational experiences, component and system performance, and lessons learned associated with the operation of the Vitrification Facility (VF) at the West Valley Demonstration Project (WVDP). The VF was designed to convert stored high-level radioactive waste (HLW) into a stable waste form (borosilicate glass) suitable for disposal in a federal repository. Following successful completion on nonradioactive test, HLW processing began in July 1995. Completion of Phase 1 of HLW processing was reached on 10 June 1998 and represented the processing of 9.32 million curies of cesium-137 (Cs-137) and strontium-90 (Sr-90) to fill 211 canisters with over 436,000 kilograms of glass. With approximately 85% of the total estimated curie content removed from underground waste storage tanks during Phase 1, subsequent operations will focus on removal of tank heel wastes.

Valenti, P.J.; Elliott, D.I.

1999-01-01T23:59:59.000Z

443

Solar heating and cooling demonstration project at the Florida Solar Energy Center  

SciTech Connect (OSTI)

The retrofitted solar heating and cooling system installed at the Florida Solar Energy Center is described. Information is provided on the system's test, operation, controls, hardware and installation, including detailed drawings. The Center's office building, approximately 5000 square feet of space, with solar air conditioning and heating as a demonstration of the technical feasibility is located just north of Port Canaveral, Florida. The system was designed to supply approximately 70% of the annual cooling and 100% of the heating load. The project provides unique high-temperature, non-imaging, non-tracking, evacuated-tube collectors. The design of the system was kept simple and employs five hydronic loops. They are energy collection, chilled water production, space cooling, space heating and energy rejection.

Hankins, J.D.

1980-02-01T23:59:59.000Z

444

EA-1921: Silver Peak Area Geothermal Exploration Project Environmental Assessment, Esmeralda County, Nevada  

Broader source: Energy.gov [DOE]

The Bureau of Land Management (BLM)(lead agency) and DOE are jointly preparing this EA, which evaluates the potential environmental impacts of a project proposed by Rockwood Lithium Inc (Rockwood), formerly doing business as Chemetall Foote Corporation.

445

ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT  

SciTech Connect (OSTI)

The Syntroleum plant is mechanically complete and currently undergoing start-up. The fuel production and demonstration plan is near completion. The study on the impact of small footprint plant (SFP) fuel on engine performance is about half-completed. Cold start testing has been completed. Preparations have been completed for testing the fuel in diesel electric generators in Alaska. Preparations are in progress for testing the fuel in bus fleets at Denali National Park and the Washington Metropolitan Transit Authority. The experiments and analyses conducted during this project show that Fischer-Tropsch (FT) gas-to-liquid diesel fuel can easily be used in a diesel engine with little to no modifications. Additionally, based on the results and discussion presented, further improvements in performance and emissions can be realized by configuring the engine to take advantage of FT diesel fuel's properties. The FT fuel also shows excellent cold start properties and enabled the engine tested to start at more the ten degrees than traditional fuels would allow. This plant produced through this project will produce large amounts of FT fuel. This will allow the fuel to be tested extensively, in current, prototype, and advanced diesel engines. The fuel may also contribute to the nation's energy security. The military has expressed interest in testing the fuel in aircraft and ground vehicles.

Steve Bergin

2003-10-17T23:59:59.000Z

446

Solid Waste Energy Conversion Project, Reedy Creek Utilities Demonstration Plant: Environmental assessment  

SciTech Connect (OSTI)

The Solid Waste Energy Conversion (SWEC) facility proposed would produce high-temperature hot water from urban refuse and would also provide a demonstration pilot-plant for the proposed Transuranic Waste Treatment Facility (TWTF) in Idaho. The SWEC project would involve the construction of an incinerator facility capable of incinerating an average of 91 metric tons per day of municipal solid waste and generating high-temperature hot water using the off-gas heat. The facility is based on the Andco-Torrax slagging pyrolysis incineration process. The proposed action is described, as well as the existing environment at the site and identified potential environmental impacts. Coordination with federal, state, regional, or local plans and programs was examined, and no conflicts were identified. Programmatic alternatives to the proposed project were identified and their advantages, disadvantages, and environmental impacts were examined. It is found that the proposed action poses no significant environmental impacts, other than the short term effects of construction activities. (LEW)

Not Available

1980-06-01T23:59:59.000Z

447

West Valley Demonstration Project site environmental report for calendar year 1996  

SciTech Connect (OSTI)

The West Valley Demonstration Project (WVDP), the site of a US Department of Energy environmental cleanup activity operated by West Valley Nuclear Services Co., Inc., (WVNS), is in the process of solidifying liquid high-level radioactive waste remaining at the site after commercial nuclear fuel reprocessing was discontinued. The Project is located in Western New York State, about 30 miles south of Buffalo, within the New York State-owned Western New York Nuclear Service Center (WNYNSC). This report represents a single, comprehensive source of off-site and on-site environmental monitoring data collected during 1996 by environmental monitoring personnel. The environmental monitoring program and results are discussed in the body of this report. The monitoring data are presented in the appendices. Appendix A is a summary of the site environmental monitoring schedule. Appendix B lists the environmental permits and regulations pertaining to the WVDP. Appendices C through F contain summaries of data obtained during 1996 and are intended for those interested in more detail than is provided in the main body of the report.

NONE

1997-06-01T23:59:59.000Z

448

Stanford Geothermal Program Interdisciplinary Research in  

E-Print Network [OSTI]

Stanford Geothermal Program Interdisciplinary Research in Engineering and Earth Sciences STANFORD Geothermal Program under Department of Energy Contract No. DE-AT03-80SF11459 and by the Department and by the Geothermal & Hydrology Technologies Division of the U.S. Dept. of Energy, project No.: DE-AT03-80SF11459. -iv

Stanford University

449

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCXS  

E-Print Network [OSTI]

STIMULATION AND RESERVOIR ENGINEERING OF GEOTHERMAL RESOURCXS Henry J. Ramey, Jr., and A. Louis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Stanford Geothermal Project Reports . . . . . . . . . . . . . . 69 Papers Presented a t the Second United Nations Symposium on t h e Development and Use of Geothermal Resources, May 19-29, 1975, San

Stanford University

450

Novel Multi-dimensional Tracers for Geothermal Inter-wall Diagnostics  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. The objective of this project is to develop a matrix of the smart geothermal tracer and its interpretation tools.

451

Glück Auf: A communication strategy for ‘striking’ social acceptance of geothermal energy in the Netherlands :.  

E-Print Network [OSTI]

??Geothermal energy is increasingly being explored as an attractive renewable energy source. In recent years several geothermal energy projects have been developed in the Netherlands… (more)

Pagen, M.J.

2010-01-01T23:59:59.000Z

452

Imperial County geothermal development annual meeting: summary  

SciTech Connect (OSTI)

All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

Not Available

1983-01-01T23:59:59.000Z

453

Fermilab Project X nuclear energy application: Accelerator, spallation target and transmutation technology demonstration  

SciTech Connect (OSTI)

The recent paper 'Accelerator and Target Technology for Accelerator Driven Transmutation and Energy Production' and report 'Accelerators for America's Future' have endorsed the idea that the next generation particle accelerators would enable technological breakthrough needed for nuclear energy applications, including transmutation of waste. In the Fall of 2009 Fermilab sponsored a workshop on Application of High Intensity Proton Accelerators to explore in detail the use of the Superconducting Radio Frequency (SRF) accelerator technology for Nuclear Energy Applications. High intensity Continuous Wave (CW) beam from the Superconducting Radio Frequency (SRF) Linac (Project-X) at beam energy between 1-2 GeV will provide an unprecedented experimental and demonstration facility in the United States for much needed nuclear energy Research and Development. We propose to carry out an experimental program to demonstrate the reliability of the accelerator technology, Lead-Bismuth spallation target technology and a transmutation experiment of spent nuclear fuel. We also suggest that this facility could be used for other Nuclear Energy applications.

Gohar, Yousry; /Argonne; Johnson, David; Johnson, Todd; Mishra, Shekhar; /Fermilab

2011-04-01T23:59:59.000Z

454

Energy Returned On Investment of Engineered Geothermal Systems  

Broader source: Energy.gov [DOE]

Project objective: Determine the Energy Returned on Investment (EROI) for electric power production of Engineered Geothermal Systems (EGS).

455

Decision on the Northern California Power Agency's application for certification for Geothermal Project No. 2  

SciTech Connect (OSTI)

Findings on compliance with statutory site certification requirements, a discussion of the Joint Environmental Study and its significance in terms of the California Environmental Quality and National Environmental Policy Acts, a brief recapitulation of the procedural steps which occured, and a summary of the evidentiary bases for this Decision are included. Topical discussions on the various human and natural environmental areas impacted by the project, as well as the technical, engineering, and other areas of concern affected by the project are presented. These topical discussions summarize the basis for the Commission's ultimate Findings and Conclusions pertaining to each broad category.

Not Available

1980-02-01T23:59:59.000Z

456

Pioneering Heat Pump Project  

Broader source: Energy.gov [DOE]

Project objectives: To install and monitor an innovative WaterFurnace geothermal system that is technologically advanced and evolving; To generate hot water heating from a heat pump that uses non-ozone depleting refrigerant CO2. To demonstrate the energy efficiency of this system ground source heat pump system.

457

State Regulatory Oversight of Geothermal  

E-Print Network [OSTI]

State Regulatory Oversight of Geothermal Heat Pump Installations: 2012 Kevin McCray Executive of this project was to update previous research accomplished by the Geothermal Heat Pump Consortium (GHPC of ground-source heat pump (GSHP) systems. The work was to provide insight into existing and anticipated

458

EIS-0282: McIntosh Unit 4 TCFB Demonstration Project, Clean Coal Technology Program, Lakeland, Florida (also see EIS-0304)  

Broader source: Energy.gov [DOE]

The proposed project, selected under DOE’s Clean Coal Technology Program, would demonstrate both Pressurized Circulating Fluidized Bed (PCFB) and Topped PCFB technologies. The proposed project would involve the construction and operation of a nominal 238 MWe (megawatts of electric power) combined-cycle power plant designed to burn a range of low- to high-sulfur coals.

459

Baker-Barry Tunnel Lighting: Evaluation of a Potential GATEWAY Demonstrations Project  

SciTech Connect (OSTI)

The U.S. Department of Energy is evaluating the Baker-Barry Tunnel as a potential GATEWAY Demonstrations project for deployment of solid-state lighting (SSL) technology. The National Park Service views this project as a possible proving ground and template for implementation of light-emitting diode (LED) luminaires in other tunnels, thereby expanding the estimated 40% energy savings from 132 MWh/yr to a much larger figure nationally. Most of the energy savings in this application is attributable to the instant-restrike capability of LED products and to their high tolerance for frequent on/off switching, used here to separately control either end of the tunnel during daytime hours. Some LED luminaires rival or outperform their high-intensity discharge (HID) counterparts in terms of efficacy, but options are limited, and smaller lumen packages preclude true one-for-one equivalence. However, LED products continue to improve in efficacy and affordability at a rate unmatched by other light source technologies; the estimated simple payback period of eight years (excluding installation costs and maintenance savings) can be expected to improve with time. The proposed revisions to the existing high-pressure sodium (HPS) lighting system would require slightly increased controls complexity and significantly increased luminaire types and quantities. In exchange, substantial annual savings (from reduced maintenance and energy use) would be complemented by improved quantity and quality of illumination. Although advanced lighting controls could offer additional savings, it is unclear whether such a system would prove cost-effective; this topic may be explored in future work.

Tuenge, Jason R.

2011-06-28T23:59:59.000Z

460

Geothermal development of the Madison group aquifer: a case study  

SciTech Connect (OSTI)

A geothermal well has been drilled at the St. Mary's Hospital in Pierre, South Dakota. The well is 2176 feet deep and artesian flows 375 gpm at 106/sup 0/F. The well is producing fluids from the Mississippian Madison Group, a sequence of carbonate rocks deposited over several western states. The project was funded to demonstrate the goethermal potential of this widespread aquifer. This case study describes the development of the project through geology, drilling, stimulation, and testing.

Martinez, J.A.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

GEOTHERMAL ENERGY DEVELOPMENT FROM THE SALTON TROUGH TO THE HIGH CASCADES  

E-Print Network [OSTI]

785-805 Table 1 MT. HOOD GEOTHERMAL PROJECT Y A. GEOLOGY ai n Transactions o f the Geothermal Resource Council AnnualCAPTIONS Figure 1 of the LBL Geothermal Energy A simp1 i f i

Goldstein, N.E.

2011-01-01T23:59:59.000Z

462

GEOTHERMAL ENERGY DEVELOPMENT FROM THE SALTON TROUGH TO THE HIGH CASCADES  

E-Print Network [OSTI]

785-805 Table 1 MT. Y HOOD GEOTHERMAL PROJECT A. a GEOLOGYi n Transactions o f the Geothermal Resource Council AnnualCAPTIONS Figure 1 of the LBL Geothermal Energy A simp1 i f i

Goldstein, N.E.

2011-01-01T23:59:59.000Z

463

Comprehensive Evaluation of the Geothermal Resource Potential within the Pyramid Lake Paiute Reservation  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: to characterize the geothermal reservoir using novel technologies and integrating this information into a 3D geologic and reservoir model numerical model to determine the efficacy of future geothermal production.

464

Clean Coal Technology Demonstration Program: Project fact sheets 2000, status as of June 30, 2000  

SciTech Connect (OSTI)

The Clean Coal Technology Demonstration Program (CCT Program), a model of government and industry cooperation, responds to the Department of Energy's (DOE) mission to foster a secure and reliable energy system that is environmentally and economically sustainable. The CCT Program represents an investment of over $5.2 billion in advanced coal-based technology, with industry and state governments providing an unprecedented 66 percent of the funding. With 26 of the 38 active projects having completed operations, the CCT Program has yielded clean coal technologies (CCTs) that are capable of meeting existing and emerging environmental regulations and competing in a deregulated electric power marketplace. The CCT Program is providing a portfolio of technologies that will assure that U.S. recoverable coal reserves of 274 billion tons can continue to supply the nation's energy needs economically and in an environmentally sound manner. As the nation embarks on a new millennium, many of the clean coal technologies have realized commercial application. Industry stands ready to respond to the energy and environmental demands of the 21st century, both domestically and internationally, For existing power plants, there are cost-effective environmental control devices to control sulfur dioxide (S02), nitrogen oxides (NO,), and particulate matter (PM). Also ready is a new generation of technologies that can produce electricity and other commodities, such as steam and synthetic gas, and provide efficiencies and environmental performance responsive to global climate change concerns. The CCT Program took a pollution prevention approach as well, demonstrating technologies that remove pollutants or their precursors from coal-based fuels before combustion. Finally, new technologies were introduced into the major coal-based industries, such as steel production, to enhance environmental performance. Thanks in part to the CCT Program, coal--abundant, secure, and economical--can continue in its role as a key component in the U.S. and world energy markets. The CCT Program also has global importance in providing clean, efficient coal-based technology to a burgeoning energy market in developing countries largely dependent on coal. Based on 1997 data, world energy consumption is expected to increase 60 percent by 2020, with almost half of the energy increment occurring in developing Asia (including China and India). By 2020, energy consumption in developing Asia is projected to surpass consumption in North America. The energy form contributing most to the growth is electricity, as developing Asia establishes its energy infrastructure. Coal, the predominant indigenous fuel, in that region will be the fuel of choice in electricity production. The CCTs offer a means to mitigate potential environmental problems associated with unprecedented energy growth, and to enhance the U.S. economy through foreign equipment sales and engineering services.

NONE

2000-09-01T23:59:59.000Z

465

Idaho Geothermal Commercialization Program. Idaho geothermal handbook  

SciTech Connect (OSTI)

The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

Hammer, G.D.; Esposito, L.; Montgomery, M.

1980-03-01T23:59:59.000Z

466

Silica Extraction at the Mammoth Lakes Geothermal Site  

SciTech Connect (OSTI)

The purpose of this project is to develop a cost-effective method to extract marketable silica (SiO{sub 2}) from fluids at the Mammoth Lakes, California geothermal power plant. Marketable silica provides an additional revenue source for the geothermal power industry and therefore lowers the costs of geothermal power production. The use of this type of ''solution mining'' to extract resources from geothermal fluids eliminates the need for acquiring these resources through energy intensive and environmentally damaging mining technologies. We have demonstrated that both precipitated and colloidal silica can be produced from the geothermal fluids at Mammoth Lakes by first concentrating the silica to over 600 ppm using reverse osmosis (RO). The RO permeate can be used in evaporative cooling at the plant; the RO concentrate is used for silica and potentially other (Li, Cs, Rb) resource extraction. Preliminary results suggest that silica recovery at Mammoth Lakes could reduce the cost of geothermal electricity production by 1.0 cents/kWh.

Bourcier, W; Ralph, W; Johnson, M; Bruton, C; Gutierrez, P

2006-06-07T23:59:59.000Z

467

Property:Geothermal/NumberOfArraProjectTypeTopic2 | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:PlugNumberOfArraProjectTypeTopic2 Jump to: navigation, search

468

Property:Geothermal/ProjectTypeTopic2Count | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:PlugNumberOfArraProjectTypeTopic2 Jump to: navigation,

469

Detachment Faulting & Geothermal Resources - Pearl Hot Spring...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Faulting & Geothermal Resources - Pearl Hot Spring, NV Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA Crump Geyser: High Precision...

470

Alaska: a guide to geothermal energy development  

SciTech Connect (OSTI)

Alaska's geothermal potential, exploration, drilling, utilization, and legal and institutional setting are covered. Economic factors of direct use projects are discussed. (MHR)

Basescu, N.; Bloomquist, R.G.; Higbee, C.; Justus, D.; Simpson, S.

1980-06-01T23:59:59.000Z

471

Oregon: a guide to geothermal energy development  

SciTech Connect (OSTI)

Oregon's geothermal potential, exploration, drilling, utilization, legal and institutional setting are covered. Economic factors of direct use projects are discussed. (MHR)

Justus, D.; Basescu, N.; Bloomquist, R.G.; Higbee, C.; Simpson, S.

1980-06-01T23:59:59.000Z

472

Detachment Faulting and Geothermal Resources - An Innovative...  

Open Energy Info (EERE)

Resources - An Innovative Integrated Geological and Geophysical Investigation in Fish Lake Valley, Nevada Geothermal Project Jump to: navigation, search Last modified on...

473

Washington: a guide to geothermal energy development  

SciTech Connect (OSTI)

Washington's geothermal potential is discussed. The following topics are covered: exploration, drilling, utilization, legal and institutional setting, and economic factors of direct use projects. (MHR)

Bloomquist, R.G.; Basescu, N.; Higbee, C.; Justus, D.; Simpson, S.

1980-06-01T23:59:59.000Z

474

Geothermal Energy  

SciTech Connect (OSTI)

Geothermal Energy Technology (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production.

Steele, B.C.; Harman, G.; Pitsenbarger, J. [eds.] [eds.

1996-02-01T23:59:59.000Z

475

Benchmarking the Remote-Handled Waste Facility at the West Valley Demonstration Project  

SciTech Connect (OSTI)

ABSTRACT Facility decontamination activities at the West Valley Demonstration Project (WVDP), the site of a former commercial nuclear spent fuel reprocessing facility near Buffalo, New York, have resulted in the removal of radioactive waste. Due to high dose and/or high contamination levels of this waste, it needs to be handled remotely for processing and repackaging into transport/disposal-ready containers. An initial conceptual design for a Remote-Handled Waste Facility (RHWF), completed in June 1998, was estimated to cost $55 million and take 11 years to process the waste. Benchmarking the RHWF with other facilities around the world, completed in November 1998, identified unique facility design features and innovative waste pro-cessing methods. Incorporation of the benchmarking effort has led to a smaller yet fully functional, $31 million facility. To distinguish it from the June 1998 version, the revised design is called the Rescoped Remote-Handled Waste Facility (RRHWF) in this topical report. The conceptual design for the RRHWF was completed in June 1999. A design-build contract was approved by the Department of Energy in September 1999.

O. P. Mendiratta; D. K. Ploetz

2000-02-29T23:59:59.000Z

476

High-Level Waste Tank Cleaning and Field Characterization at the West Valley Demonstration Project  

SciTech Connect (OSTI)

The West Valley Demonstration Project (WVDP) is nearing completion of radioactive high-level waste (HLW) retrieval from its storage tanks and subsequent vitrification of the HLW into borosilicate glass. Currently, 99.5% of the sludge radioactivity has been recovered from the storage tanks and vitrified. Waste recovery of cesium-137 (Cs-137) adsorbed on a zeolite media during waste pretreatment has resulted in 97% of this radioactivity being vitrified. Approximately 84% of the original 1.1 x 1018 becquerels (30 million curies) of radioactivity was efficiently vitrified from July 1996 to June 1998 during Phase I processing. The recovery of the last 16% of the waste has been challenging due to a number of factors, primarily the complex internal structural support system within the main 2.8 million liter (750,000 gallon) HLW tank designated 8D-2. Recovery of this last waste has become exponentially more challenging as less and less HLW is available to mobilize and transfer to the Vitrification Facility. This paper describes the progressively more complex techniques being utilized to remove the final small percentage of radioactivity from the HLW tanks, and the multiple characterization technologies deployed to determine the quantity of Cs-137, strontium-90 (Sr-90), and alpha-transuranic (alpha-TRU) radioactivity remaining in the tanks.

Drake, J. L.; McMahon, C. L.; Meess, D. C.

2002-02-26T23:59:59.000Z

477

Final West Valley Demonstration Project Waste Management Environmental Impact Statement, Cattaraugus County, West Valley, New York  

SciTech Connect (OSTI)

The purpose of the ''Final West Valley Demonstration Project Waste Management Environmental Impact Statement'' is to provide information on the environmental impacts of the Department of Energy's proposed action to ship radioactive wastes that are either currently in storage, or that will be generated from operations over the next 10 years, to offsite disposal locations, and to continue its ongoing onsite waste management activities. Decommissioning or long-term stewardship decisions will be reached based on a separate EIS that is being prepared for that decisionmaking. This EIS evaluates the environmental consequences that may result from actions to implement the proposed action, including the impacts to the onsite workers and the offsite public from waste transportation and onsite waste management. The EIS analyzes a no action alternative, under which most wastes would continue to be stored onsite over the next 10 years. It also analyzes an alternative under which certain wastes would be shipped to interim offsite storage locations prior to disposal. The Department's preferred alternative is to ship wastes to offsite disposal locations.

N /A

2004-01-16T23:59:59.000Z

478

U.S. and Australian Advanced Geothermal Projects Face Setbacks | Department  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of EnergyofProject is on Track |Weatherized BySolarBodmanU.S. Virginof Energy

479

Entering a New Stage of Learning from the U.S. Fuel Cell Electric Vehicle Demonstration Project: Preprint  

SciTech Connect (OSTI)

The National Fuel Cell Electric Vehicle Learning Demonstration is a U.S. Department of Energy (DOE) project that started in 2004. The purpose of this project is to conduct an integrated field validation that simultaneously examines the performance of fuel cell vehicles and the supporting hydrogen infrastructure. The DOE's National Renewable Energy Laboratory (NREL) has now analyzed data from over five years of the seven-year project. During this time, over 144 fuel cell electric vehicles have been deployed, and 23 project refueling stations were placed in use.

Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.; Garbak, J.

2010-10-01T23:59:59.000Z

480

Direct utilization of geothermal energy for Pagosa Springs, Colorado. Final report, June 1979-June 1984  

SciTech Connect (OSTI)

The Pagosa Springs Geothermal District Heating System was conceptualized, designed, and constructed between 1979 to 1984 under the US Department of Energy Program Opportunity Notice (PON) program to demonstrate the feasibility for utilizing moderate temperature geothermal resources for direct-use applications. The Pagosa Springs system successfully provides space heating to public buildings, school facilities, residences, and commercial establishments at costs significantly lower than costs of available conventional fuels. The Pagosa Springs project encompassed a full range of technical, institutional, and economic activities. Geothermal reservoir evaluations and testing were performed, and two productive approx.140/sup 0/F geothermal supply wells were successfully drilled and completed. Transmission and distribution system design, construction, startup, and operation were achieved with minimum difficulty. The geothermal system operation during the first two heating seasons has been fully reliable and well respected in the community. The project has proven that low to moderate-temperature waters can effectively meet required heating loads, even for harsh winter-mountain environments. The principal difficulty encountered has been institutional in nature and centers on the obtaining of the geothermal production well permits and the adjudicated water rights necessary to supply the geothermal hot water fluids for the full operating life of the system. 28 figs., 15 tabs.

Goering, S.W.; Garing, K.L.; Coury, G.

1984-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "geothermal demonstration project" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

A GEOLOGICAL AND GEOPHYSICAL STUDY OF THE BACA GEOTHERMAL FIELD, VALLES CALDERA, NEW MEXICO  

E-Print Network [OSTI]

and Public Service Company of New Mexico, 1978e Geothermal demonstration plant--Technical and management

Wilt, M.

2011-01-01T23:59:59.000Z

482

Impact of urban heat island on cooling and environment: A demonstration project  

SciTech Connect (OSTI)

Landscaping has been shown in simulation and field studies to reduce building cooling loads by affecting microclimatic factors such as solar radiation, wind speed and air temperature. A demonstration project was undertaken to determine the magnitude of landscape induced changes in microclimate on building cooling loads and water use on four typical residences in Phoenix, Arizona. The energy use and microclimate of three unlandscaped (bare soil, rock mulch) and one landscaped (turf) home were monitored during summer 1990. In the fall, turf was placed around one of the unlandscaped houses, and shade trees planted on the west and south sides of another. Measurements continued during the summer of 1991. Total house air conditioning and selected appliance electrical data were collected, as well as inside and outside air temperatures. Detailed microclimate measurements were obtained for one to two week periods during both summers. Maximum reductions of hourly outside air temperatures of 1 to 1.5{degrees}C, and of daily average air temperatures of up to 1{degrees}C, resulted from the addition of turf landscaping. Addition of small trees to the south and west sides of another treatment did not have a noticeable effect on air temperature. Cooling load reductions of 10% to 17% were observed between years when well-watered turf landscaping was added to a house previously surrounded by bare soil. Addition of small trees to another bare landscape did not produce a detectable change in cooling load. The results of the study are used as input to a standard building energy use simulation model to predict landscape effects on cooling load and water usage for three typical houses, and to develop guidelines for use of energy efficient residential landscapes in Phoenix, Arizona.

Not Available

1993-04-01T23:59:59.000Z

483

Phase 1 Characterization sampling and analysis plan West Valley demonstration project.  

SciTech Connect (OSTI)

The Phase 1 Characterization Sampling and Analysis Plan (CSAP) provides details about environmental data collection that will be taking place to support Phase 1 decommissioning activities described in the Phase 1 Decommissioning Plan for the West Valley Demonstration Project, Revision 2 (Phase I DP; DOE 2009). The four primary purposes of CSAP data collection are: (1) pre-design data collection, (2) remedial support, (3) post-remediation status documentation, and (4) Phase 2 decision-making support. Data collection to support these four main objectives is organized into two distinct data collection efforts. The first is data collection that will take place prior to the initiation of significant Phase 1 decommissioning activities (e.g., the Waste Management Area [WMA] 1 and WMA 2 excavations). The second is data collection that will occur during and immediately after environmental remediation in support of remediation activities. Both data collection efforts have a set of well-defined objectives that encompass the data needs of the four main CSAP data collection purposes detailed in the CSAP. The main body of the CSAP describes the overall data collection strategies that will be used to satisfy data collection objectives. The details of pre-remediation data collection are organized by WMA. The CSAP contains an appendix for each WMA that describes the details of WMA-specific pre-remediation data collection activities. The CSAP is intended to expand upon the data collection requirements identified in the Phase 1 Decommissioning Plan. The CSAP is intended to tightly integrate with the Phase 1 Final Status Survey Plan (FSSP). Data collection described by the CSAP is consistent with the FSSP where appropriate and to the extent possible.

Johnson, R. L. (Environmental Science Division)

2011-06-30T23:59:59.000Z

484

Test plan for in situ bioremediation demonstration of the Savannah River Integrated Demonstration Project DOE/OTD TTP No.: SR 0566-01. Revision 3  

SciTech Connect (OSTI)

This project is designed to demonstrate in situ bioremediation of groundwater and sediment contaminated with chlorinated solvents. Indigenous microorganisms will be simulated to degrade trichloroethylene (TCE), tetrachloroethylene (PCE) and their daughter products in situ by addition of nutrients to the contaminated zone. in situ biodegradation is a highly attractive technology for remediation because contaminants are destroyed, not simply moved to another location or immobilized, thus decreasing costs, risks, and time, while increasing efficiency and public and regulatory acceptability. Bioremediation has been found to be among the least costly technologies in applications where it will work.

Hazen, T.C.

1991-09-18T23:59:59.000Z

485

Decision analysis for geothermal energy  

E-Print Network [OSTI]

One of the key impediments to the development of enhanced geothermal systems is a deficiency in the tools available to project planners and developers. Weak tool sets make it difficult to accurately estimate the cost and ...

Yost, Keith A

2012-01-01T23:59:59.000Z

486

Geothermal Energy Summary  

SciTech Connect (OSTI)

Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75°C water from shallow wells. Power production is assisted by the availability of gravity fed, 7°C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non-traditional geothermal development is increasing. A comprehensive new MIT-led study of the potential for geothermal energy within the United States predicts that mining the huge amounts of stored thermal energy in the Earth’s crust not associated with hydrothermal systems, could supply a substantial portion of U.S. electricity with minimal environmental impact (Tester, et al., 2006, available at http://geothermal.inl.gov). There is also renewed interest in geothermal production from other non-traditional sources such as the overpressured zones in the Gulf Coast and warm water co-produced with oil and gas. Ormat Technologies, Inc., a major geothermal company, recently acquired geothermal leases in the offshore overpressured zone of Texas. Ormat and the Rocky Mountain Oilfield Testing Center recently announced plans to jointly produce geothermal power from co-produced water from the Teapot Dome oilfield (Casper Star-Tribune, March 2, 2007). RMOTC estimates that 300 KWe capacity is available from the 40,000 BWPD of 88°C water associated with oil production from the Tensleep Sandstone (Milliken, 2007). The U. S. Department of Energy is seeking industry partners to develop electrical generation at other operating oil and gas fields (for more information see: https://e-center.doe.gov/iips/faopor.nsf/UNID/50D3734745055A73852572CA006665B1?OpenDocument). Several web sites offer periodically updated information related to the geothermal industry and th

J. L. Renner

2007-08-01T23:59:59.000Z

487

E-Print Network 3.0 - assistance demonstration project Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

managing and completing a project exploring an issue in African ... Source: Messersmith, Phillip B.- Department of Materials Science and Engineering, Northwestern University...

488

The Geothermal Technologies Office Invests $18 Million for Innovative...  

Broader source: Energy.gov (indexed) [DOE]

of Energy today announced up to 18 million for 32 projects that will advance geothermal energy development in the United States. The selected projects target research and...