National Library of Energy BETA

Sample records for geothermal binary cycle

  1. A Flashing Binary Combined Cycle For Geothermal Power Generation...

    Open Energy Info (EERE)

    Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Flashing Binary Combined Cycle...

  2. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  3. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objective: Find optimized working fluid/advanced cycle combination for EGS applications.

  4. High-potential Working Fluids for Next Generation Binary Cycle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants DOE ...

  5. Analyses of mixed-hydrocarbon binary thermodynamic cycles for moderate-temperature geothermal resources

    SciTech Connect (OSTI)

    Demuth, O.J.

    1981-02-01

    A number of binary geothermal cycles utilizing mixed hydrocarbon working fluids were analyzed with the overall objective of finding a working fluid which can produce low-cost electrical energy using a moderately-low temperature geothermal resource. Both boiling and supercritical shell-and-tube cycles were considered. The performance of a dual-boiling isobutane cycle supplied by a 280/sup 0/F hydrothermal resource (corresponding to the 5 MW pilot plant at the Raft River site in Idaho) was selected as a reference. To investigate the effect of resource temperature on the choice of working fluid, several analyses were conducted for a 360/sup 0/F hydrothermal resource, which is representative of the Heber resource in California. The hydrocarbon working fluids analyzed included methane, ethane, propane, isobutane, isopentane, hexane, heptane, and mixtures of those pure hydrocarbons. For comparison, two fluorocarbon refrigerants were also analyzed. These fluorocarbons, R-115 and R-22, were suggested as resulting in high values of net plant geofluid effectiveness (watt-hr/lbm geofluid) at the two resource temperatures chosen for the study. Preliminary estimates of relative heat exchanger size (product of overall heat transfer coefficient times heater surface area) were made for a number of the better performing cycles.

  6. Interim Report: Air-Cooled Condensers for Next Generation Geothermal Power Plants Improved Binary Cycle Performance

    SciTech Connect (OSTI)

    Daniel S. Wendt; Greg L. Mines

    2010-09-01

    As geothermal resources that are more expensive to develop are utilized for power generation, there will be increased incentive to use more efficient power plants. This is expected to be the case with Enhanced Geothermal System (EGS) resources. These resources will likely require wells drilled to depths greater than encountered with hydrothermal resources, and will have the added costs for stimulation to create the subsurface reservoir. It is postulated that plants generating power from these resources will likely utilize the binary cycle technology where heat is rejected sensibly to the ambient. The consumptive use of a portion of the produced geothermal fluid for evaporative heat rejection in the conventional flash-steam conversion cycle is likely to preclude its use with EGS resources. This will be especially true in those areas where there is a high demand for finite supplies of water. Though they have no consumptive use of water, using air-cooling systems for heat rejection has disadvantages. These systems have higher capital costs, reduced power output (heat is rejected at the higher dry-bulb temperature), increased parasitics (fan power), and greater variability in power generation on both a diurnal and annual basis (larger variation in the dry-bulb temperature). This is an interim report for the task ‘Air-Cooled Condensers in Next- Generation Conversion Systems’. The work performed was specifically aimed at a plant that uses commercially available binary cycle technologies with an EGS resource. Concepts were evaluated that have the potential to increase performance, lower cost, or mitigate the adverse effects of off-design operation. The impact on both cost and performance were determined for the concepts considered, and the scenarios identified where a particular concept is best suited. Most, but not all, of the concepts evaluated are associated with the rejection of heat. This report specifically addresses three of the concepts evaluated: the use of

  7. Binary Cycle Power Plant | Open Energy Information

    Open Energy Info (EERE)

    binary-cycle power plants in the future will be binary-cycle plants1 Enel's Salts Wells Geothermal Plant in Nevada: This plant is a binary system that is rated at 13 MW...

  8. Scale Resistant Heat Exchanger for Low Temperature Geothermal Binary Cycle Power Plant

    SciTech Connect (OSTI)

    Hays, Lance G.

    2014-11-18

    Phase 1 of the investigation of improvements to low temperature geothermal power systems was completed. The improvements considered were reduction of scaling in heat exchangers and a hermetic turbine generator (eliminating seals, seal system, gearbox, and lube oil system). A scaling test system with several experiments was designed and operated at Coso geothermal resource with brine having a high scaling potential. Several methods were investigated at the brine temperature of 235 ºF. One method, circulation of abradable balls through the brine passages, was found to substantially reduce scale deposits. The test heat exchanger was operated with brine outlet temperatures as low as 125 ºF, which enables increased heat input available to power conversion systems. For advanced low temperature cycles, such as the Variable Phase Cycle (VPC) or Kalina Cycle, the lower brine temperature will result in a 20-30% increase in power production from low temperature resources. A preliminary design of an abradable ball system (ABS) was done for the heat exchanger of the 1 megawatt VPC system at Coso resource. The ABS will be installed and demonstrated in Phase 2 of this project, increasing the power production above that possible with the present 175 ºF brine outlet limit. A hermetic turbine generator (TGH) was designed and manufacturing drawings produced. This unit will use the working fluid (R134a) to lubricate the bearings and cool the generator. The 200 kW turbine directly drives the generator, eliminating a gearbox and lube oil system. Elimination of external seals eliminates the potential of leakage of the refrigerant or hydrocarbon working fluids, resulting in environmental improvement. A similar design has been demonstrated by Energent in an ORC waste heat recovery system. The existing VPC power plant at Coso was modified to enable the “piggyback” demonstration of the TGH. The existing heat exchanger, pumps, and condenser will be operated to provide the required

  9. High-potential Working Fluids for Next Generation Binary Cycle Geothermal Power Plants

    SciTech Connect (OSTI)

    Zia, Jalal; Sevincer, Edip; Chen, Huijuan; Hardy, Ajilli; Wickersham, Paul; Kalra, Chiranjeev; Laursen, Anna Lis; Vandeputte, Thomas

    2013-06-29

    A thermo-economic model has been built and validated for prediction of project economics of Enhanced Geothermal Projects. The thermo-economic model calculates and iteratively optimizes the LCOE (levelized cost of electricity) for a prospective EGS (Enhanced Geothermal) site. It takes into account the local subsurface temperature gradient, the cost of drilling and reservoir creation, stimulation and power plant configuration. It calculates and optimizes the power plant configuration vs. well depth. Thus outputs from the model include optimal well depth and power plant configuration for the lowest LCOE. The main focus of this final report was to experimentally validate the thermodynamic properties that formed the basis of the thermo-economic model built in Phase 2, and thus build confidence that the predictions of the model could be used reliably for process downselection and preliminary design at a given set of geothermal (and/or waste heat) boundary conditions. The fluid and cycle downselected was based on a new proprietary fluid from a vendor in a supercritical ORC cycle at a resource condition of 200�C inlet temperature. The team devised and executed a series of experiments to prove the suitability of the new fluid in realistic ORC cycle conditions. Furthermore, the team performed a preliminary design study for a MW-scale turbo expander that would be used for a supercritical ORC cycle with this new fluid. The following summarizes the main findings in the investigative campaign that was undertaken: 1. Chemical compatibility of the new fluid with common seal/gasket/Oring materials was found to be problematic. Neoprene, Viton, and silicone materials were found to be incompatible, suffering chemical decomposition, swelling and/or compression set issues. Of the materials tested, only TEFLON was found to be compatible under actual ORC temperature and pressure conditions. 2. Thermal stability of the new fluid at 200�C and 40 bar was found to be acceptable after 399

  10. Beowawe Binary Bottoming Cycle

    Broader source: Energy.gov [DOE]

    Project objectives: Demonstrate the technical and economic feasibility of electricity generation from the nonconventional geothermal resources of 205°F by extracting waste heat from the brine to power a binary power plant.

  11. Tailored Working Fluids for Enhanced Binary Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tailored Working Fluids for Enhanced Binary Geothermal Power Plants Tailored Working Fluids for Enhanced Binary Geothermal Power Plants DOE Geothermal Program Peer Review 2010 - ...

  12. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  13. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOEs Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  14. Geothermal Life Cycle Calculator

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-11

    This calculator is a handy tool for interested parties to estimate two key life cycle metrics, fossil energy consumption (Etot) and greenhouse gas emission (ghgtot) ratios, for geothermal electric power production. It is based solely on data developed by Argonne National Laboratory for DOE’s Geothermal Technologies office. The calculator permits the user to explore the impact of a range of key geothermal power production parameters, including plant capacity, lifetime, capacity factor, geothermal technology, well numbers and depths, field exploration, and others on the two metrics just mentioned. Estimates of variations in the results are also available to the user.

  15. A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal Power presentation at the April 2013 peer review meeting held in Denver, Colorado. hybrid_therm_cycle_peer2013.pdf (571.03 KB) More Documents & Publications Working Fluids and Their Effect on Geothermal Turbines Tailored Working Fluids for Enhanced Binary

  16. Geothermal power plant R and D: an analysis of cost-performance tradeoffs and the Heber Binary-Cycle Demonstration Project

    SciTech Connect (OSTI)

    Cassel, T.A.V.; Amundsen, C.B.; Blair, P.D.

    1983-06-30

    A study of advancements in power plant designs for use at geothermal resources in the low to moderate (300 to 400F) temperature range is reported. In 3 case studies, the benefits of R and D to achieve these advancements are evaluated in terms of expected increases in installed geothermal generating capacity over the next 2 decades. A parametric sensitivity study is discussed which analyzes differential power development for combinations of power plant efficiency and capitol cost. Affordable tradeoffs between plant performance and capital costs are illustrated. The independent review and analysis of the expected costs of construction, operation and maintenance of the Heber Binary Cycle Geothermal Power Demonstration Plant are described. Included in this assessment is an analysis of each of the major cost components of the project, including (1) construction cost, (2) well field development costs, (3) fluid purchase costs, and (4) well field and power plant operation and maintenance costs. The total cost of power generated from the Heber Plant (in terms of mills per kWh) is then compared to the cost of power from alternative fossil-fueled base load units. Also evaluated are the provisions of both: (a) the Cooperative Agreement between the federal government and San Diego Gas and Electric (SDG and E); and (b) the Geothermal Heat Sales Contract with Union Oil Company.

  17. Supercritical binary geothermal cycle experiments with mixed-hydrocarbon working fluids and a vertical, in-tube, counterflow condenser

    SciTech Connect (OSTI)

    Demuth, O.J.; Bliem, C.J.; Mines, G.L.; Swank, W.D.

    1985-12-01

    The objective is improved utilization of moderate temperature geothermal resources. Current testing involves supercritical vaporization and counterflow in-tube condensing in an organic Rankine cycle. This report presents a description of the test facility and results from a part of the program in which the condenser was oriented in a vertical attitude. Results of the experiments for the supercritical heaters and the countercurrent, vertical, in-tube condenser are given for both pure and mixed-hydrocarbon working fluids. The heater and condenser behavior predicted by the Heat Transfer Research, Inc. computer codes used for correlation of the data was in excellent agreement with experimental results. A special series of tests, conducted with propane and up to approximately 40% isopentane concentration, indicated that a close approach to ''integral'' condensation was occurring in the vertically-oriented condenser.

  18. Dixie Valley Bottoming Binary Cycle

    Broader source: Energy.gov [DOE]

    Project objective: Prove the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from low-temperature brine at the Dixie Valley Geothermal Power Plant.

  19. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems

    Office of Energy Efficiency and Renewable Energy (EERE)

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies.

  20. Life-cycle Analysis of Geothermal Technologies; 2010 Geothermal Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Program Peer Review Report | Department of Energy cycle Analysis of Geothermal Technologies; 2010 Geothermal Technology Program Peer Review Report Life-cycle Analysis of Geothermal Technologies; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_005_wang.pdf (192.84 KB) More Documents & Publications Detecting Fractures Using Technology at High Temperatures and Depths - Geothermal Ultrasonic Fracture Imager (GUFI); 2010

  1. Beowawe Binary Bottoming Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ScientificTechnical Approach Brine Injection Pipeline 6 | US DOE Geothermal Program ... level - Makeup water requirements - Permit Impacts - Space requirements * Phase 1 ...

  2. Map of Geothermal Facilities/Data | Open Energy Information

    Open Energy Info (EERE)

    TW 1 1988 Don A. Cambell Geothermal Power Plant Binary Ormat Ormat Ormat 2013 Dora-1 Geothermal Energy Power Plant Binary Cycle Power Plant, ORC Menderes Geothermal Menderes...

  3. Installed Geothermal Capacity/Data | Open Energy Information

    Open Energy Info (EERE)

    TW 1 1988 Don A. Cambell Geothermal Power Plant Binary Ormat Ormat Ormat 2013 Dora-1 Geothermal Energy Power Plant Binary Cycle Power Plant, ORC Menderes Geothermal Menderes...

  4. Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Systems | Department of Energy Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies.

  5. Tailored Working Fluids for Enhanced Binary Geothermal Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tailored Working Fluids for Enhanced Binary Geothermal Power Plants Tailored Working Fluids for Enhanced Binary Geothermal Power Plants DOE Geothermal Program Peer Review 2010 - Presentation. Project Objective: To improve the utilization of available energy in geothermal resources and increase the energy conversion efficiency of systems employed by a) tailoring the subcritical and/or supercritical glide of enhanced working fluids to best match thermal resources, and b)

  6. A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon hybridthermcyclepeer2013.pdf More Documents & Publications Working Fluids and Their Effect on Geothermal Turbines Tailored Working Fluids for Enhanced Binary Geothermal ...

  7. Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal...

    Open Energy Info (EERE)

    Terra-Gen Power and TAS Celebrate Innovative Binary Geothermal Technology Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Terra-Gen Power and TAS...

  8. Dixie Valley Bottoming Binary Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ScientificTechnical Approach Brine Injection Pipeline 6 | US DOE Geothermal Program ... level - Makeup water requirements - Permit Impacts - Space requirements * Phase 1 ...

  9. Direct contact, binary fluid geothermal boiler

    DOE Patents [OSTI]

    Rapier, Pascal M.

    1982-01-01

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carry-over through the turbine causes corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  10. Direct contact, binary fluid geothermal boiler

    DOE Patents [OSTI]

    Rapier, P.M.

    1979-12-27

    Energy is extracted from geothermal brines by direct contact with a working fluid such as isobutane which is immiscible with the brine in a geothermal boiler. The geothermal boiler provides a distributor arrangement which efficiently contacts geothermal brine with the isobutane in order to prevent the entrainment of geothermal brine in the isobutane vapor which is directed to a turbine. Accordingly the problem of brine carryover through the turbine causing corrosion and scaling thereof is eliminated. Additionally the heat exchanger includes straightening vanes for preventing startup and other temporary fluctuations in the transitional zone of the boiler from causing brine carryover into the turbine. Also a screen is provided in the heat exchanger to coalesce the working fluid and to assist in defining the location of the transitional zone where the geothermal brine and the isobutane are initially mixed.

  11. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A ...

  12. NREL: Energy Analysis - Geothermal Results - Life Cycle Assessment Review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Results - Life Cycle Assessment Review For more information, visit: Special Report on Renewable Energy Sources and Climate Change Mitigation: Geothermal Energy OpenEI: Data, Visualization, and Bibliographies Chart that shows life cycle greenhouse gas emissions for geothermal technologies. For help reading this chart, please contact the webmaster. Estimates of life cycle greenhouse gas emissions from geothermal power generation Credit: Goldstein, B., G. Hiriart, R. Bertani, C. Bromley,

  13. Development Wells At Long Valley Caldera Geothermal Area (Holt...

    Open Energy Info (EERE)

    the world's first air-cooled binary cycle geothermal power plant.4 References Ben Holt, Richard G. Campbell (1984) Mammoth Geothermal Project Environmental Science Associates...

  14. Dora-3 Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Binary Cycle Power Plant, ORC Owner Menderes Geothermal Developer Menderes Geothermal Energy Purchaser TEDAS Number of Units 2 Commercial Online Date 2013 Power Plant Data Type...

  15. Geothermal probabilistic cost study

    SciTech Connect (OSTI)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  16. Binary Cycle Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area Gulf of California Rift Zone Las Pailas Instituto Costarricence de Electricidad 2011 Rincon De La Vieja Geothermal Resource Area Rincon De La Vieja Lightning Dock...

  17. Life-Cycle Analysis Results of Geothermal Systems in Comparison...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne ...

  18. Life-Cycle Analysis of Geothermal Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycle Analysis of Geothermal Technologies Life-Cycle Analysis of Geothermal Technologies The results and tools from this project will help GTP and stakeholders determine and communicate GT energy and GHG benefits and water impacts. The life-cycle analysis (LCA) approach is taken to address these effects. analysis_wang_lifecycle_analysis.pdf (878.83 KB) More Documents & Publications AAPG Low-Temperature Webinar GREET Development and Applications for Life-Cycle Analysis of Vehicle/Fuel Systems

  19. Life-cycle analysis results of geothermal systems in comparison to other power systems.

    SciTech Connect (OSTI)

    Sullivan, J. L.; Clark, C. E.; Han, J.; Wang, M.; Energy Systems

    2010-10-11

    A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's expanded Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies. As a basis of comparison, a similar analysis has been conducted for other power-generating systems, including coal, natural gas combined cycle, nuclear, hydroelectric, wind, photovoltaic, and biomass by expanding the GREET model to include power plant construction for these latter systems with literature data. In this way, the GREET model has been expanded to include plant construction, as well as the usual fuel production and consumption stages of power plant life cycles. For the plant construction phase, on a per-megawatt (MW) output basis, conventional power plants in general are found to require less steel and concrete than renewable power systems. With the exception of the concrete requirements for gravity dam hydroelectric, enhanced geothermal and hydrothermal binary used more of these materials per MW than other renewable power-generation systems. Energy and greenhouse gas (GHG) ratios for the infrastructure and other life-cycle stages have also been developed in this study per kilowatt-hour (kWh) of electricity output by taking into account both plant capacity and plant lifetime. Generally, energy burdens per energy output associated with plant infrastructure are higher for renewable systems than conventional ones. GHG emissions per kWh of electricity output for plant construction follow a similar trend. Although some of the renewable systems have GHG emissions during plant operation, they are much smaller than those emitted by fossil fuel thermoelectric systems. Binary geothermal systems have virtually insignificant GHG emissions compared to fossil systems. Taking into account plant construction and operation, the GREET

  20. Department of Energy Finalizes $96.8 Million Recovery Act Loan for Geothermal Plant

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Neal Hot Springs project will use a first-of-its-kind improved technology, called supercritical binary geothermal cycle.

  1. A Revolutionary Hybrid Thermodynamic Cycle for Bianary Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... inputoutput volumetric flow ratio due to evaporation of a pure fluid. ... effectiveness for optimal performance of the Harris power cycle by selection of a binary working fluid. ...

  2. Beowawe Bottoming Binary Project Geothermal Project | Open Energy...

    Open Energy Info (EERE)

    1 Recovery Act: Geothermal Technologies Program Project Type Topic 2 Geothermal Energy Production from Low Temperature Resources, Coproduced Fluids from Oil and Gas Wells, and...

  3. Dixie Valley Binary Cycle Production Data 2013 YTD

    SciTech Connect (OSTI)

    Lee, Vitaly

    2013-10-18

    Proving the technical and economic feasibility of utilizing the available unused heat to generate additional electric power from a binary power plant from the low-temperature brine at the Dixie Valley Geothermal Power Plant. Monthly data for Jan 2013-September 2013

  4. Binary Cycle Power Plant | Open Energy Information

    Open Energy Info (EERE)

    8.4e-6 TW 1986 Steamboat Springs Geothermal Area Walker-Lane Transition Zone Steamboat IA Geothermal Facility Ormat 2.95 MW2,950 kW 2,950,000 W 2,950,000,000 mW 0.00295 GW...

  5. Ngawha Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Region Plant Information Facility Type Binary Cycle Power Plant Owner Top Energy Number of Units 3 1 Commercial Online Date 1998 Power Plant Data Type of Plant...

  6. Heber Geothermal Binary Demonstration Project. Quarterly technical progress report, September 15, 1980-March 31, 1981

    SciTech Connect (OSTI)

    Hanenburg, W.H.; Lacy, R.G.; Van De Mark, G.D.

    1981-06-01

    Work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of September 15, 1980, through March 31, 1981 is documented. Topics covered in this quarterly report include progress made in the areas of Wells and Fluids Production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

  7. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 15 GEOTHERMAL ENERGY AIR-COOLED CONDENSERS; POWER PLANT COOLING; BINARY-CYCLE; FINNED-TUBE; HEAT TRANSFER; NEVADA; ...

  8. Tailored Working Fluids for Enhanced Binary Geothermal Power Plants

    SciTech Connect (OSTI)

    Mahmoud, Ahmad

    2013-01-29

    United Technologies Research Center (UTRC), in collaboration with the Georgia Institute of Technology and the National Institute of Standards and Technology will evaluate and develop fundamental and component level models, conduct experiments and generate data to support the use of mixed or enhanced working fluids for geothermal power generation applications.

  9. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  10. Geothermal Water Use: Life Cycle Water Consumption, Water Resource Assessment, and Water Policy Framework

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2014-06-10

    This report examines life cycle water consumption for various geothermal technologies to better understand factors that affect water consumption across the life cycle (e.g., power plant cooling, belowground fluid losses) and to assess the potential water challenges that future geothermal power generation projects may face. Previous reports in this series quantified the life cycle freshwater requirements of geothermal power-generating systems, explored operational and environmental concerns related to the geochemical composition of geothermal fluids, and assessed future water demand by geothermal power plants according to growth projections for the industry. This report seeks to extend those analyses by including EGS flash, both as part of the life cycle analysis and water resource assessment. A regional water resource assessment based upon the life cycle results is also presented. Finally, the legal framework of water with respect to geothermal resources in the states with active geothermal development is also analyzed.

  11. Geothermal Electricity Production Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Production Basics Geothermal power plants use steam produced from reservoirs of hot water found a few miles or more below the Earth's surface to produce electricity. The steam rotates a turbine that activates a generator, which produces electricity. There are three types of geothermal power plants: dry steam, flash steam, and binary cycle. Photo of a geothermal power plant. This geothermal power plant generates electricity for the Imperial Valley in California. Dry Steam Dry steam

  12. Effects of vaporizer and evaporative condenser pinch points on geofluid effectiveness and cost of electricity for geothermal binary power plants

    SciTech Connect (OSTI)

    Demuth, O.J.

    1984-01-01

    A brief study was conducted in support of the DOE/DGHT Heat Cycle Research Program to investigate the influences of minimum approach temperature differences occurring in supercritical-heater/vaporizer and evaporative-condenser heat rejection systems on geothermal-electric binary power plant performance and cost of electricity. For the systems investigated optimum pinch points for minimizing cost of electricity were estimated to range from 5 to 7/sup 0/F (3 to 4/sup 0/C) for the heater vaporizer. The minimum approach of condensing temperature to wet-bulb temperature for evaporative condensers was estimated to be about 15/sup 0/F (8/sup 0/C) in order to achieve the highest plant net geofluid effectiveness, and approximately 30/sup 0/F (17/sup 0/C) to attain the minimum cost of electricity.

  13. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    SciTech Connect (OSTI)

    Clark, Corrie E.; Harto, Christopher B.; Schroeder, Jenna N.; Martino, Louis E.; Horner, Robert M.

    2013-11-05

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2

  14. Geothermal

    Office of Scientific and Technical Information (OSTI)

    Geothermal Geothermal Legacy Collection Search the Geothermal Legacy Collection Search For Terms: Find + Advanced Search Advanced Search All Fields: Title: Full Text: ...

  15. Multi-scale evaporator architectures for geothermal binary power plants

    SciTech Connect (OSTI)

    Sabau, Adrian S; Nejad, Ali; Klett, James William; Bejan, Adrian

    2016-01-01

    In this paper, novel geometries of heat exchanger architectures are proposed for evaporators that are used in Organic Rankine Cycles. A multi-scale heat exchanger concept was developed by employing successive plenums at several length-scale levels. Flow passages contain features at both macro-scale and micro-scale, which are designed from Constructal Theory principles. Aside from pumping power and overall thermal resistance, several factors were considered in order to fully assess the performance of the new heat exchangers, such as weight of metal structures, surface area per unit volume, and total footprint. Component simulations based on laminar flow correlations for supercritical R134a were used to obtain performance indicators.

  16. Evaluation of Hybrid Air-Cooled Flash/Binary Power Cycle

    SciTech Connect (OSTI)

    Greg Mines

    2005-10-01

    Geothermal binary power plants reject a significant portion of the heat removed from the geothermal fluid. Because of the relatively low temperature of the heat source (geothermal fluid), the performance of these plants is quite sensitive to the sink temperature to which heat is rejected. This is particularly true of air-cooled binary plants. Recent efforts by the geothermal industry have examined the potential to evaporatively cool the air entering the air-cooled condensers during the hotter portions of a summer day. While the work has shown the benefit of this concept, air-cooled binary plants are typically located in regions that lack an adequate supply of clean water for use in this evaporative cooling. In the work presented, this water issue is addressed by pre-flashing the geothermal fluid to produce a clean condensate that can be utilized during the hotter portions of the year to evaporatively cool the air. This study examines both the impact of this pre-flash on the performance of the binary plant, and the increase in power output due to the ability to incorporate an evaporative component to the heat rejection process.

  17. Heber geothermal binary demonstration project quarterly technical progress report, October 1, 1981--December 31, 1981

    SciTech Connect (OSTI)

    Lacy, R.G.; Allen, R.F.; Alsup, R.A.; Liparidis, G.S.; Van De Mark, G.D.

    1983-08-01

    The purpose of this quarterly technical progress report is to document work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of October 1, 1981, through December 31, 1981. The work was performed by San Diego Gas and Electric Company under the support and cooperation of the U.S. Department of Energy, the Electric Power Research Institute, the Imperial Irrigation District, the California Department of Water Resources, and the Southern California Edison Company. Topics covered in this quarterly report include progress made in the areas of Wells and Fluid Production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

  18. Heber geothermal binary demonstration project quarterly technical progress report, January 1, 1982--March 31, 1982

    SciTech Connect (OSTI)

    Lacy, R.G.; Allen, R.F.; Alsup, R.A.; Liparidis, G.S.; Van De Mark, G.D.

    1983-08-01

    The purpose of this quarterly technical progress report is to document work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of January 1, 1982, through March 31, 1982. The work was performed by San Diego Gas and Electric Company under the support and cooperation of the U.S. Department of Energy, the Electric Power Research Institute, the Imperial Irrigation District, the California Department of Water Resources, and the Southern California Edison Company. Topics covered in this quarterly report include progress made in the areas of Wells and Fluid Production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

  19. Heber geothermal binary demonstration project quarterly technical progress report, April 1, 1982--June 30, 1982

    SciTech Connect (OSTI)

    Lacy, R.G.; Allen, R.F.; Alsup, R.A.; Liparidis, G.S.; Van De Mark, G.D.

    1983-08-01

    The purpose of this quarterly technical progress report is to document work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of April 1, 1982-June 30, 1982. The work was performed by San Diego Gas and Electric Company under the support and cooperation of the U.S. Department of Energy, the Electric Power Research Institute, the Imperial Irrigation District, the California Department of Water Resources, and the Southern California Edison Company. Topics covered in this quarterly report include progress made in the areas of Wells and Fluid Production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

  20. Heber geothermal binary demonstration project quarterly technical progress report, July 1, 1982--September 30, 1982

    SciTech Connect (OSTI)

    Lacy, R.G.; Allen, R.F.; Dixon, J.R.; Hsiao, W.P.; Liparidis, G.S.; Lombard, G.L.; Nelson, T.T.; Van De Mark, G.D.

    1983-03-01

    The purpose of this quarterly technical progress report is to document work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of July 1, 1982--September 30, 1982. The work was performed by San Diego Gas and Electric Company under the support and cooperation of the U.S. Department of Energy, the Electric Power Research Institute, the Imperial Irrigation District, the California Department of Water Resources, and the Southern California Edison Company. Topics covered in this quarterly report include progress made in the areas of Wells and Fluid Production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

  1. Heber geothermal binary demonstration project quarterly technical progress report, October 1, 1982--December 31, 1982

    SciTech Connect (OSTI)

    Lacy, R.G.; Allen, R.F.; Dixon, J.R.; Hsiao, W.P.; Liparidis, G.S.; Lombard, G.L.; Nelson, T.T.; Van De Mark, G.D.

    1983-05-01

    The purpose of this quarterly technical progress report is to document work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of October 1, 1982--December 31, 1982. The work was performed by San Diego Gas and Electric Company under the support and cooperation of the U.S. Department of Energy, the Electric Power Research Institute, the Imperial Irrigation District, the California Department of Water Resources, and the Southern California Edison Company. Topics covered in this quarterly report include progress made in the areas of Wells and Fluid Production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

  2. Heber geothermal binary demonstration project quarterly technical progress report, July 1, 1981--September 30, 1981

    SciTech Connect (OSTI)

    Lacy, R.G.; Allen, R.F.; Alsup, R.A.; Liparidis, G.S.; Van De Mark, G.D.

    1983-08-01

    The purpose of this quarterly technical progress report is to document work completed on the nominal 65 Megawatt (Mwe gross) Heber Geothermal Binary Demonstration Project, located at Heber, California, during the period of July 1, 1981, through September 30, 1981. The work was performed by San Diego Gas and Electric Company under the support and cooperation of the US Department of Energy, the Electric Power Research Institute, the Imperial Irrigation District, the California Department of Water Resources, and the Southern California Edison Company. Topics covered in this quarterly report include progress made in the areas of Wells and Fluid production and Injection Systems, Power Plant Design and Construction, Power Plant Demonstration, and Data Acquisition and Dissemination.

  3. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Geothermal Geothermal Tara Camacho-Lopez 2016-03-16T19:31:15+00:00 geothermal_leamstest Sandia's work in drilling technology is aimed at reducing the cost and risk associated with drilling in harsh, subterranean environments. The historical focus of the drilling research has been directed at significantly expanding the nation's utilization of geothermal energy. This focus in geothermal related drilling research is the search for practical solutions

  4. Investigations of supercritical CO2 Rankine cycles for geothermal power plants

    SciTech Connect (OSTI)

    Sabau, Adrian S; Yin, Hebi; Qualls, A L; McFarlane, Joanna

    2011-01-01

    Supercritical CO2 Rankine cycles are investigated for geothermal power plants. The system of equations that describe the thermodynamic cycle is solved using a Newton-Rhapson method. This approach allows a high computational efficiency of the model when thermophysical properties of the working fluid depend strongly on the temperature and pressure. Numerical simulation results are presented for different cycle configurations in order to assess the influences of heat source temperature, waste heat rejection temperatures and internal heat exchanger design on cycle efficiency. The results show that thermodynamic cycle efficiencies above 10% can be attained with the supercritical brayton cycle while lower efficiencies can be attained with the transcritical CO2 Rankine cycle.

  5. Advanced Low Temperature Geothermal Power Cycles (The ENTIV Organic Project) Final Report

    SciTech Connect (OSTI)

    Mugerwa, Michael

    2015-11-18

    Feasibility study of advanced low temperature thermal power cycles for the Entiv Organic Project. Study evaluates amonia-water mixed working fluid energy conversion processes developed and licensed under Kalex in comparison with Kalina cycles. Both cycles are developed using low temperature thermal resource from the Lower Klamath Lake Geothermal Area. An economic feasibility evaluation was conducted for a pilot plant which was deemed unfeasible by the Project Sponsor (Entiv).

  6. Use of stress cycling to remove downhole scale from geothermal wells using coiled tubing

    SciTech Connect (OSTI)

    Portman, L.

    1997-12-31

    This paper describes the first application of a relatively new oil field technology to the geothermal industry. The technology is referred to as stress cycling and provides a method of removing hard deposits, such as silica or calcium scales, from tubulars using only jetting action. This new technology lends itself to coiled tubing operations and results in a very fast and efficient clean out operation. The paper describes the theory of stress cycling and lists the operational procedure used on the first job attempted on a geothermal well. The results of the operation are included.

  7. Ormesa I Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Hide Map Geothermal Resource Area East Mesa Geothermal Area Geothermal Region Gulf of California Rift Zone Plant Information Facility Type Binary Owner Ormat Number of...

  8. Altheim geothermal Plant for electricity production by Organic Rankine Cycle turbogenerator

    SciTech Connect (OSTI)

    Pernecker, Gerhard; Ruhland, Johannes

    1996-01-24

    The paper describes the plan of the town Altheim in Upper Austria to produce electricity by an Organic Rankine Cycle-turbogenerator in the field of utilization of low temperatured thermal water. The aim of the project is to improve the technical and economic situation of the geothermal plant.

  9. Investigations of supercritical CO2 Rankine cycles for geothermal...

    Office of Scientific and Technical Information (OSTI)

    brayton cycle while lower efficiencies can be attained with the transcritical CO2 Rankine cycle. Authors: Sabau, Adrian S 1 ; Yin, Hebi 1 ; Qualls, A L 1 ; McFarlane,...

  10. Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). Permalink Gallery Australian Renewable-Energy Official Visits Sandia Concentrating Solar Power, EC, Energy, Geothermal, News, News & Events, Photovoltaic, Renewable Energy, Solar, Water Power, Wind Energy Australian Renewable-Energy Official Visits Sandia Louise Vickery, General Manager, Renewable Futures at the Australian Renewable Energy Agency (ARENA). At the end of June,

  11. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  12. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  13. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  14. Working Fluids and Their Effect on Geothermal Turbines

    Broader source: Energy.gov [DOE]

    DOE Geothermal Program Peer Review 2010 - Presentation. Project objective: Identify new working fluids for binary geothermal plants.

  15. Life-cycle analysis results for geothermal systems in comparison to other power systems: Part II.

    SciTech Connect (OSTI)

    Sullivan, J.L.; Clark, C.E.; Yuan, L.; Han, J.; Wang, M.

    2012-02-08

    A study has been conducted on the material demand and life-cycle energy and emissions performance of power-generating technologies in addition to those reported in Part I of this series. The additional technologies included concentrated solar power, integrated gasification combined cycle, and a fossil/renewable (termed hybrid) geothermal technology, more specifically, co-produced gas and electric power plants from geo-pressured gas and electric (GPGE) sites. For the latter, two cases were considered: gas and electricity export and electricity-only export. Also modeled were cement, steel and diesel fuel requirements for drilling geothermal wells as a function of well depth. The impact of the construction activities in the building of plants was also estimated. The results of this study are consistent with previously reported trends found in Part I of this series. Among all the technologies considered, fossil combustion-based power plants have the lowest material demand for their construction and composition. On the other hand, conventional fossil-based power technologies have the highest greenhouse gas (GHG) emissions, followed by the hybrid and then two of the renewable power systems, namely hydrothermal flash power and biomass-based combustion power. GHG emissions from U.S. geothermal flash plants were also discussed, estimates provided, and data needs identified. Of the GPGE scenarios modeled, the all-electric scenario had the highest GHG emissions. Similar trends were found for other combustion emissions.

  16. Life-Cycle Cost Analysis Highlights Hydrogen's Potential for Electrical Energy Storage (Revised) (Fact Sheet), Hydrogen and Fuel Cell Technical Highlights (HFCTH)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power Systems | Department of Energy Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems Life-Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems A life-cycle energy and greenhouse gas emissions analysis has been conducted with Argonne National Laboratory's GREET model for geothermal power-generating technologies, including enhanced geothermal, hydrothermal flash, and hydrothermal binary technologies.

  17. Next Generation Geothermal Power Plants

    SciTech Connect (OSTI)

    Brugman, John; Hattar, Mai; Nichols, Kenneth; Esaki, Yuri

    1995-09-01

    A number of current and prospective power plant concepts were investigated to evaluate their potential to serve as the basis of the next generation geothermal power plant (NGGPP). The NGGPP has been envisaged as a power plant that would be more cost competitive (than current geothermal power plants) with fossil fuel power plants, would efficiently use resources and mitigate the risk of reservoir under-performance, and minimize or eliminate emission of pollutants and consumption of surface and ground water. Power plant concepts were analyzed using resource characteristics at ten different geothermal sites located in the western United States. Concepts were developed into viable power plant processes, capital costs were estimated and levelized busbar costs determined. Thus, the study results should be considered as useful indicators of the commercial viability of the various power plants concepts that were investigated. Broadly, the different power plant concepts that were analyzed in this study fall into the following categories: commercial binary and flash plants, advanced binary plants, advanced flash plants, flash/binary hybrid plants, and fossil/geothed hybrid plants. Commercial binary plants were evaluated using commercial isobutane as a working fluid; both air-cooling and water-cooling were considered. Advanced binary concepts included cycles using synchronous turbine-generators, cycles with metastable expansion, and cycles utilizing mixtures as working fluids. Dual flash steam plants were used as the model for the commercial flash cycle. The following advanced flash concepts were examined: dual flash with rotary separator turbine, dual flash with steam reheater, dual flash with hot water turbine, and subatmospheric flash. Both dual flash and binary cycles were combined with other cycles to develop a number of hybrid cycles: dual flash binary bottoming cycle, dual flash backpressure turbine binary cycle, dual flash gas turbine cycle, and binary gas turbine

  18. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2014-03-14

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  19. Alternative Geothermal Power Production Scenarios

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    The information given in this file pertains to Argonne LCAs of the plant cycle stage for a set of ten new geothermal scenario pairs, each comprised of a reference and improved case. These analyses were conducted to compare environmental performances among the scenarios and cases. The types of plants evaluated are hydrothermal binary and flash and Enhanced Geothermal Systems (EGS) binary and flash plants. Each scenario pair was developed by the LCOE group using GETEM as a way to identify plant operational and resource combinations that could reduce geothermal power plant LCOE values. Based on the specified plant and well field characteristics (plant type, capacity, capacity factor and lifetime, and well numbers and depths) for each case of each pair, Argonne generated a corresponding set of material to power ratios (MPRs) and greenhouse gas and fossil energy ratios.

  20. geothermal infographic 7.14.2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Geothermal Fluid Loop Working Fluid Loop Binary Power Plant Steam is collected from the geothermal reservoir. Steam drives a turbine, the turbine powers a generator, the generator ...

  1. Test Plan for Heat Cycle Research Program, Phase I Supercritical Cycle

    Office of Scientific and Technical Information (OSTI)

    Tests (Technical Report) | SciTech Connect Test Plan for Heat Cycle Research Program, Phase I Supercritical Cycle Tests Citation Details In-Document Search Title: Test Plan for Heat Cycle Research Program, Phase I Supercritical Cycle Tests The 60 kW Heat Cycle Research Facility (HCRF) provides a means of examining different concepts and components associated with the generation of electrical power from a geothermal resource using a binary power cycle. In this power cycle the heat or energy

  2. Heber Geothermal Binary Demonstration Project. Final design availability assessment. Revision 1

    SciTech Connect (OSTI)

    Mulvihill, R.J.; Reny, D.A.; Geumlek, J.M.; Purohit, G.P.

    1983-02-01

    An availability assessment of the principal systems of the Heber Geothermal Power Plant has been carried out based on the final issue of the process descriptions, process flow diagrams, and the approved for design P and IDs prepared by Fluor Power Services, Inc. (FPS). The principal systems are those which contribute most to plant unavailability. The plant equivalent availability, considering forced and deferred corrective maintenance outages, was computed using a 91 state Markov model to represent the 29 principal system failure configurations and their significant combinations. The failure configurations and associated failure and repair rates were defined from system/subsystem availability assessments that were conducted using the availability assessments based on the EPRI GO methodology and availability block diagram models. The availability and unavailability ranking of the systems and major equipment is presented.

  3. Geopressure geothermal energy conversion: the supercritical propane cycle for power generation

    SciTech Connect (OSTI)

    Goldsberry, F.L.; Bebout, D.G.; Bachman, A.L.

    1981-01-01

    The development of the geopressure geothermal unconventional gas resource has been the object of a drilling and reservoir testing program. One aspect of the assessment has been to look at the geothermal component of the energy base as a source of power generation. The basic production unit for the resource has been estimated to be a well capable of producing fluid at a rate of 15,000 to 40,000 BPD at temperatures of 240 to 360/sup 0/F (.0276 to .0736 M/sup 3//sec at 338 to 455/sup 0/K). The spacing of these wells will be approximately 2 to 4 km for effective reservoir drainage. This limits the generation capacity, per well from 700 to 3000 kW per site. It is assumed that interconnecting pipelines to carry brine from each well to a central location and then return it to salt water disposal wells will be impractical. Single well power plants with electrical gathering systems are considered to be the probable mode of development. The thermodynamic envelope within which the plant must operate is defined by the linear cooling curve of the brine and the ambient air temperature. The low resource temperature calls for a Rankine cycle. A supercritical propane cycle was selected. The only component of the thermal power system subject to uncertainty is the brine/propane heater. At the present time a scale/corrosion pilot plant is being operated on a number of geopressure test wells to determine inexpensive scale and corrosion inhibitors that may be used to reduce fouling of the exchanger tubes.

  4. East Mesa Magmamax Power Process Geothermal Generating Plant, A Preliminary

    Office of Scientific and Technical Information (OSTI)

    Analysis (Conference) | SciTech Connect East Mesa Magmamax Power Process Geothermal Generating Plant, A Preliminary Analysis Citation Details In-Document Search Title: East Mesa Magmamax Power Process Geothermal Generating Plant, A Preliminary Analysis During recent months, Magma Power Company has been involved in the shakedown and startup of their 10 MW binary cycle power plant at East Mesa in the Imperial Valley of Southern California. This pilot plant has been designed specifically as an

  5. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  6. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2013-08-31

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges.

  7. Geothermal progress monitor: Report No. 17

    SciTech Connect (OSTI)

    1995-12-01

    DOE is particularly concerned with reducing the costs of geothermal power generation, especially with the abundant moderate to low-temperature resources in the US. This concern is reflected in DOE`s support of a number of energy conversion projects. Projects which focus on the costs and performance of binary cycle technology include a commercial demonstration of supersaturated turbine expansions, which earlier studies have indicated could increase the power produced per pound of fluid. Other binary cycle projects include evaluations of the performance of various working fluid mixtures and the development and testing of advanced heat rejection systems which are desperately needed in water-short geothermal areas. DOE is also investigating the applicability of flash steam technology to low-temperature resources, as an economic alternative to binary cycle systems. A low-cost, low-pressure steam turbine, selected for a grant, will be constructed to utilize fluid discharged from a flash steam plant in Nevada. Another project addresses the efficiency of high-temperature flash plants with a demonstration of the performance of the Biphase turbine which may increase the power output of such installations with no increase in fluid flow. Perhaps the most noteworthy feature of this issue of the GPM, the 17th since its inception in 1980, is the high degree of industry participation in federally-sponsored geothermal research and development. This report describes geothermal development activities.

  8. Transposed critical temperature Rankine thermodynamic cycle

    SciTech Connect (OSTI)

    Pope, W.L.; Doyle, P.A.

    1980-04-01

    The transposed critical temperature (TPCT) is shown to be an extremely important thermodynamic property in the selection of the working fluid and turbine states for optimized geothermal power plants operating on a closed organic (binary) Rankine cycle. When the optimum working fluid composition and process states are determined for given source and sink conditions (7 parameter optimization), turbine inlet states are found to be consistently adjacent to the low pressure side of the working fluids' TPCT line on pressure-enthalpy coordinates. Although the TPCT concepts herein may find numerous future applications in high temperature, advanced cycles for fossil or nuclear fired steam power plants and in supercritical organic Rankine heat recovery bottoming cycles for Diesel engines, this discussion is limited to moderate temperature (150 to 250/sup 0/C) closed simple organic Rankine cycle geothermal power plants. Conceptual design calculations pertinent to the first geothermal binary cycle Demonstration Plant are included.

  9. Variable pressure supercritical Rankine cycle for integrated natural gas and power production from the geopressured geothermal resource

    SciTech Connect (OSTI)

    Goldsberry, F.L.

    1982-03-01

    A small-scale power plant cycle that utilizes both a variable pressure vaporizer (heater) and a floating pressure (and temperature) air-cooled condenser is described. Further, it defends this choice on the basis of classical thermodynamics and minimum capital cost by supporting these conclusions with actual comparative examples. The application suggested is for the geopressured geothermal resource. The arguments cited in this application apply to any process (petrochemical, nuclear, etc.) involving waste heat recovery.

  10. Thermophysical properties of working fluids for binary geothermal cycles. Final report

    SciTech Connect (OSTI)

    Diller, D.E.; Gallagher, J.S.; Kamgar-Parsi, B.; Morrison, G.; Levelt Sengers, J.M.H.; Sengers, J.V.; Van Poolen, L.J.; Waxman, M.

    1984-07-01

    The following are presented: thermodynamic properties of isobutane and isobutane-isopentane mixtures; a scaled fundamental equation for mixtures of isobutane and isopentane near gas-liquid critical line; and viscosities of hydrocarbons and their mixtures. (MHR)

  11. Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2011-10-01

    Effect of Mixed Working Fluid Composition on Binary Cycle Condenser Heat Transfer Coefficients Dan Wendt, Greg Mines Idaho National Laboratory The use of mixed working fluids in binary power plants can provide significant increases in plant performance, provided the heat exchangers are designed to take advantage of these fluids non-isothermal phase changes. In the 1980's testing was conducted at DOE's Heat Cycle Research Facility (HCRF) where mixtures of different compositions were vaporized at supercritical pressures and then condensed. This testing had focused on using the data collected to verify that Heat Transfer Research Incorporated (HTRI) codes were suitable for the design of heat exchangers that could be used with mixtures. The HCRF data includes mixture compositions varying from 0% to 40% isopentane and condenser tube orientations of 15{sup o}, 60{sup o}, and 90{sup o} from horizontal. Testing was performed over a range of working fluid and cooling fluid conditions. Though the condenser used in this testing was water cooled, the working fluid condensation occurred on the tube-side of the heat exchanger. This tube-side condensation is analogous to that in an air-cooled condenser. Tube-side condensing heat transfer coefficient information gleaned from the HCRF testing is used in this study to assess the suitability of air-cooled condenser designs for use with mixtures. Results of an air-cooled binary plant process model performed with Aspen Plus indicate that that the optimal mixture composition (producing the maximum net power for the scenario considered) is within the range of compositions for which data exist. The HCRF data is used to assess the impact of composition, tube orientation, and process parameters on the condensing heat transfer coefficients. The sensitivity of the condensing coefficients to these factors is evaluated and the suitability of air-cooled condenser designs with mixtures is assessed. This paper summarizes the evaluation of the HCRF

  12. Federal Geothermal Research Program Update Fiscal Year 2000

    SciTech Connect (OSTI)

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  13. Suzaku monitoring of hard X-ray emission from ? Carinae over a single binary orbital cycle

    SciTech Connect (OSTI)

    Hamaguchi, Kenji; Corcoran, Michael F.; Yuasa, Takayuki; Ishida, Manabu; Pittard, Julian M.; Russell, Christopher M. P.

    2014-11-10

    The Suzaku X-ray observatory monitored the supermassive binary system ? Carinae 10 times during the whole 5.5 yr orbital cycle between 2005 and 2011. This series of observations presents the first long-term monitoring of this enigmatic system in the extremely hard X-ray band between 15 and 40 keV. During most of the orbit, the 15-25 keV emission varied similarly to the 2-10 keV emission, indicating an origin in the hard energy tail of the kT ? 4 keV wind-wind collision (WWC) plasma. However, the 15-25 keV emission declined only by a factor of three around periastron when the 2-10 keV emission dropped by two orders of magnitude due probably to an eclipse of the WWC plasma. The observed minimum in the 15-25 keV emission occurred after the 2-10 keV flux had already recovered by a factor of ?3. This may mean that the WWC activity was strong, but hidden behind the thick primary stellar wind during the eclipse. The 25-40 keV flux was rather constant through the orbital cycle, at the level measured with INTEGRAL in 2004. This result may suggest a connection of this flux component to the ?-ray source detected in this field. The helium-like Fe K? line complex at ?6.7 keV became strongly distorted toward periastron as seen in the previous cycle. The 5-9 keV spectra can be reproduced well with a two-component spectral model, which includes plasma in collision equilibrium and a plasma in non-equilibrium ionization (NEI) with ? ? 10{sup 11} cm{sup 3} s{sup 1}. The NEI plasma increases in importance toward periastron.

  14. Federal Geothermal Research Program Update Fiscal Year 1998

    SciTech Connect (OSTI)

    Keller, J.G.

    1999-05-01

    This report reviews the specific objectives, status, and accomplishments of DOE's Geothermal Research Program for Fiscal Year 1998. The Exploration Technology research area focuses on developing instruments and techniques to discover hidden hydrothermal systems and to expose the deep portions of known systems. The Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal and hot dry rock reservoirs. The Drilling Technology projects focus on developing improved, economic drilling and completion technology for geothermal wells. The Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Direct use research covers the direct use of geothermal energy sources for applications in other than electrical production.

  15. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    SciTech Connect (OSTI)

    Craig Turchi; Guangdong Zhu; Michael Wagner; Tom Williams; Dan Wendt

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant using the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.

  16. Mak-Ban Binary 1 GEPP | Open Energy Information

    Open Energy Info (EERE)

    Home Mak-Ban Binary 1 GEPP General Information Name Mak-Ban Binary 1 GEPP Facility Power Plant Sector Geothermal energy Location Information Coordinates 14.087741209723,...

  17. Microsoft Word - 338M_Geothermal_Project_Descriptions

    Energy Savers [EERE]

    ...Analysis United Technologies Research Center ... plants in an enhanced turbine geothermal binary system. ... zones and building types. Florida International University ...

  18. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final

    Office of Scientific and Technical Information (OSTI)

    Report (Technical Report) | SciTech Connect Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report Citation Details In-Document Search Title: Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant

  19. Hybrid Cooling for Geothermal Power Plants: Final ARRA Project Report

    SciTech Connect (OSTI)

    Bharathan, D.

    2013-06-01

    Many binary-cycle geothermal plants use air as the heat rejection medium. Usually this is accomplished by using an air-cooled condenser (ACC) system to condense the vapor of the working fluid in the cycle. Many air-cooled plants suffer a loss of production capacity of up to 50% during times of high ambient temperatures. Use of limited amounts of water to supplement the performance of ACCs is investigated. Deluge cooling is found to be one of the least-cost options. Limiting the use of water in such an application to less than one thousand operating hours per year can boost plant output during critical high-demand periods while minimizing water use in binary-cycle geothermal power plants.

  20. Geothermal Data Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This includes data from GTO-funded projects associated with any portion of the geothermal project life-cycle (exploration, development, operation), as well as data produced by ...

  1. SMU Geothermal Conference 2011 - Geothermal Technologies Program...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation ...

  2. Kenya geothermal private power project: A prefeasibility study

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Twenty-eight geothermal areas in Kenya were evaluated and prioritized for development. The prioritization was based on the potential size, resource temperature, level of exploration risk, location, and exploration/development costs for each geothermal area. Suswa, Eburru and Arus are found to offer the best short-term prospects for successful private power development. It was found that cost per kill developed are significantly lower for the larger (50MW) than for smaller-sized (10 or 20 NW) projects. In addition to plant size, the cost per kill developed is seen to be a function of resource temperature, generation mode (binary or flash cycle) and transmission distance.

  3. Semiannual progress report for the Idaho Geothermal Program, April 1 to September 30, 1980

    SciTech Connect (OSTI)

    Ihrig, R.R.

    1981-03-01

    The completion of the 5-MW Pilot Power Plant at the Raft River Geothermal Test Site, modification of the similar, binary cycle Prototype Power Plant, and the water treatment program that studies environmentally safe ways to inhibit corrosion and scaling in geothermal power plants and investigates corrosion resistant materials are summarized. Studies of binary geothermal cycles using mixed hydrocarbon working fluids are described as part of the continuing search for ways to produce low-cost electricity from moderate-temperature geothermal fluids. Progress is reported on studies of direct contact heat exchanger concepts, heat rejection systems, and primary heat exchangers with augmentation. As part of the now-ended series of aquaculture experiments, an unsuccessful attempt to incubate common carp embryos in geothermal waters is reported. An experiment in revegetating disturbed land at Raft River is mentioned and progress on DOE's new User Coupled Confirmation Drilling Program is described. An estimate is presented of the amount of hydrothermal energy that could be produced by the year 2000, with and without Federal assistance, for electric generation and direct applications such as industrial process heat. Progress is reported on the Marketing Assistance Program, through which technical information and assistance is provided potential users and developers of geothermal resources. Also reported is progress in DOE's Program Opportunity Notice (PON) Program demonstration projects and Program Research and Development Announcement (PRDA) Program study projects.

  4. Stanford Geothermal Workshop - Geothermal Technologies Office...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Geothermal Technologies Office Stanford Geothermal Workshop - Geothermal Technologies Office Presentation by Geothermal Technologies Director Doug Hollett at the Stanford ...

  5. The 125 MW Upper Mahiao geothermal power plant

    SciTech Connect (OSTI)

    Forte, N.

    1996-12-31

    The 125 MW Upper Mahiao power plant, the first geothermal power project to be financed under a Build-Own-Operate-and-Transfer (BOOT) arrangement in the Philippines, expected to complete its start-up testing in August of this year. This plant uses Ormat`s environmentally benign technology and is both the largest geothermal steam/binary combined cycle plant as well as the largest geothermal power plant utilizing air cooled condensers. The Ormat designed and constructed plant was developed under a fast track program, with some two years from the April 1994 contract signing through design, engineering, construction and startup. The plant is owned and operated by a subsidiary of CalEnergy Co., Inc. and supplies power to PNOC-Energy Development Corporation for the National Power Corporation (Napocor) national power grid in the Philippines.

  6. Water Use in the Development and Operation of Geothermal Power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operation of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants This report summarizes what is currently known about the life cycle water ...

  7. Enel Green Power- Innovative Geothermal Power for Nevada | Open...

    Open Energy Info (EERE)

    Geothermal Power for Nevada Abstract Two binary geothermal power plants inaugurated today with a total capacity of 65 MW: They will generate enough energy to meet the needs of...

  8. Iceland Geothermal Conference 2013 - Geothermal Policies and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal ...

  9. Soda Lake II Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    and Range Geothermal Region Plant Information Facility Type Binary Owner Constellation Energy, Harbert Power Number of Units 6.0 Commercial Online Date 1990 Power Plant Data...

  10. Don A. Cambell Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Region Plant Information Facility Type Binary Owner Ormat Developer Ormat Energy Purchaser Ormat Commercial Online Date 2013 Power Plant Data Type of Plant Number...

  11. Systems Engineering; 2010 Geothermal Technology Program Peer Review Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Engineering; 2010 Geothermal Technology Program Peer Review Report Systems Engineering; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_004_lowry.pdf (192.71 KB) More Documents & Publications Geothermal Electricity Technology Evaluation Model (GETEM) Development; 2010 Geothermal Technology Program Peer Review Report Life-cycle Analysis of Geothermal Technologies; 2010 Geothermal Technology Program Peer

  12. Proceedings of a Topical Meeting On Small Scale Geothermal Power Plants and Geothermal Power Plant Projects

    SciTech Connect (OSTI)

    1986-02-12

    These proceedings describe the workshop of the Topical Meeting on Small Scale Geothermal Power Plants and Geothermal Power Plant Projects. The projects covered include binary power plants, rotary separator, screw expander power plants, modular wellhead power plants, inflow turbines, and the EPRI hybrid power system. Active projects versus geothermal power projects were described. In addition, a simple approach to estimating effects of fluid deliverability on geothermal power cost is described starting on page 119. (DJE-2005)

  13. Geothermal Energy Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy Projects Geothermal Energy ...

  14. Environmental overview for the development of geothermal resources in the State of New Mexico. Final report

    SciTech Connect (OSTI)

    Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

    1980-06-01

    A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies planned or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.

  15. Imperial County geothermal development annual meeting: summary

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

  16. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005)...

  17. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, New Zealand (Ranalli & Rybach, 2005)...

  18. Geothermal Literature Review At International Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration...

  19. Geothermal Energy (5 Activities) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    rock to water? How does energy transferred between fluids in a binary geothermal power plant work? How does salinity affect the boiling point of water? How do the emissions...

  20. Geothermal Energy Association Recognizes the National Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Association Recognizes the National Geothermal Data System Geothermal Energy Association Recognizes the National Geothermal Data System July 29, 2014 - 8:20am...

  1. Recovery Act:Rural Cooperative Geothermal development Electric &

    Office of Scientific and Technical Information (OSTI)

    Agriculture (Technical Report) | SciTech Connect Technical Report: Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture Citation Details In-Document Search Title: Recovery Act:Rural Cooperative Geothermal development Electric & Agriculture Surprise Valley Electric, a small rural electric cooperative serving northeast California and southern Oregon, developed a 3mw binary geothermal electric generating plant on a cooperative member's ranch. The geothermal

  2. Geothermal Energy Summary

    SciTech Connect (OSTI)

    J. L. Renner

    2007-08-01

    Following is complete draft.Geothermal Summary for AAPG Explorer J. L. Renner, Idaho National Laboratory Geothermal energy is used to produce electricity in 24 countries. The United States has the largest capacity (2,544 MWe) followed by Philippines (1,931 MWe), Mexico (953 MWe), Indonesia (797 MWe), and Italy (791 MWe) (Bertani, 2005). When Chevron Corporation purchased Unocal Corporation they became the leading producer of geothermal energy worldwide with projects in Indonesia and the Philippines. The U. S. geothermal industry is booming thanks to increasing energy prices, renewable portfolio standards, and a production tax credit. California (2,244 MWe) is the leading producer, followed by Nevada (243 MWe), Utah (26 MWe) and Hawaii (30 MWe) and Alaska (0.4 MWe) (Bertani, 2005). Alaska joined the producing states with two 0.4 KWe power plants placed on line at Chena Hot Springs during 2006. The plant uses 30 liters per second of 75C water from shallow wells. Power production is assisted by the availability of gravity fed, 7C cooling water (http://www.yourownpower.com/) A 13 MWe binary power plant is expected to begin production in the fall of 2007 at Raft River in southeastern Idaho. Idaho also is a leader in direct use of geothermal energy with the state capital building and several other state and Boise City buildings as well as commercial and residential space heated using fluids from several, interconnected geothermal systems. The Energy Policy Act of 2005 modified leasing provisions and royalty rates for both geothermal electrical production and direct use. Pursuant to the legislation the Bureau of Land management and Minerals Management Service published final regulations for continued geothermal leasing, operations and royalty collection in the Federal Register (Vol. 72, No. 84 Wednesday May 2, 2007, BLM p. 24358-24446, MMS p. 24448-24469). Existing U. S. plants focus on high-grade geothermal systems located in the west. However, interest in non

  3. Energy 101: Geothermal Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy Energy 101: Geothermal Energy

  4. Geothermal Tomorrow

    Office of Energy Efficiency and Renewable Energy (EERE)

    This magazine-format report discusses recent strategies and activities of the DOE Geothermal Technologies Program, as well as an update of technologies and economics of the U.S. geothermal industry.

  5. Water Use in the Development and Operations of Geothermal Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies. geothermal_water_use_draft.pdf

  6. Dixie Valley Bottoming Binary Unit

    SciTech Connect (OSTI)

    McDonald, Dale

    2014-12-21

    This binary plant is the first air cooled, high-output refrigeration based waste heat recovery cycle in the industry. Its working fluid is environmentally friendly and as such, the permits that would be required with a hydrocarbon based cycle are not necessary. The unit is largely modularized, meaning that the unit’s individual skids were assembled in another location and were shipped via truck to the plant site. The Air Cooled Condensers (ACC), equipment piping, and Balance of Plant (BOP) piping were constructed at site. This project further demonstrates the technical feasibility of using low temperature brine for geothermal power utilization. The development of the unit led to the realization of low temperature, high output, and environmentally friendly heat recovery systems through domestic research and engineering. The project generates additional renewable energy, resulting in cleaner air and reduced carbon dioxide emissions. Royalty and tax payments to governmental agencies will increase, resulting in reduced financial pressure on local entities. The major components of the unit were sourced from American companies, resulting in increased economic activity throughout the country.

  7. Geothermal guidebook

    SciTech Connect (OSTI)

    Not Available

    1981-06-01

    The guidebook contains an overview, a description of the geothermal resource, statutes and regulations, and legislative policy concerns. (MHR)

  8. development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL...

    Office of Scientific and Technical Information (OSTI)

    field Leyte, Philippines. Report on exploration and development Not Available 15 GEOTHERMAL ENERGY; TONGONAN GEOTHERMAL FIELD; GEOTHERMAL EXPLORATION; GEOTHERMAL POWER...

  9. Idaho Geothermal Commercialization Program. Idaho geothermal handbook

    SciTech Connect (OSTI)

    Hammer, G.D.; Esposito, L.; Montgomery, M.

    1980-03-01

    The following topics are covered: geothermal resources in Idaho, market assessment, community needs assessment, geothermal leasing procedures for private lands, Idaho state geothermal leasing procedures - state lands, federal geothermal leasing procedures - federal lands, environmental and regulatory processes, local government regulations, geothermal exploration, geothermal drilling, government funding, private funding, state and federal government assistance programs, and geothermal legislation. (MHR)

  10. DOE and Partners Demonstrate Mobile Geothermal Power System at 2009 Geothermal Energy Expo

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO), along with Pratt & Whitney Power Systems, and Chena Power LLC demonstrated the PureCycle® mobile geothermal power generation unit at the 2009 Geothermal Energy Expo in Reno, Nevada.

  11. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Energy (Redirected from Geothermal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data...

  12. Stanford Geothermal Workshop- Geothermal Technologies Office

    Broader source: Energy.gov [DOE]

    Presentation by Geothermal Technologies Director Doug Hollett at the Stanford Geothermal Workshop on February 11-13, 2013.

  13. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Energy (Redirected from Geothermal Power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Energy RSF GeothermalPowerStation.jpg Geothermal energy...

  14. Water use in the development and operation of geothermal power plants.

    SciTech Connect (OSTI)

    Clark, C. E.; Harto, C. B.; Sullivan, J. L.; Wang, M. Q.

    2010-09-17

    Geothermal energy is increasingly recognized for its potential to reduce carbon emissions and U.S. dependence on foreign oil. Energy and environmental analyses are critical to developing a robust set of geothermal energy technologies. This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies. The results of the life cycle analysis are summarized in a companion report, Life Cycle Analysis Results of Geothermal Systems in Comparison to Other Power Systems. This report is divided into six chapters. Chapter 1 gives the background of the project and its purpose, which is to inform power plant design and operations. Chapter 2 summarizes the geothermal electricity generation technologies evaluated in this study, which include conventional hydrothermal flash and binary systems, as well as enhanced geothermal systems (EGS) that rely on engineering a productive reservoir where heat exists but water availability or permeability may be limited. Chapter 3 describes the methods and approach to this work and identifies the four power plant scenarios evaluated: a 20-MW EGS plant, a 50-MW EGS plant, a 10-MW binary plant, and a 50-MW flash plant. The two EGS scenarios include hydraulic stimulation activities within the construction stage of the life cycle and assume binary power generation during operations. The EGS and binary scenarios are assumed to be air-cooled power plants, whereas the flash plant is assumed to rely on evaporative cooling. The well field and power plant design for the scenario were based on simulations using DOE's Geothermal Economic Technology Evaluation Model (GETEM). Chapter 4 presents the water requirements for the power plant life cycle for the scenarios evaluated. Geology, reservoir

  15. Investigation of deep permeable strata in the permian basin for future geothermal energy reserves

    SciTech Connect (OSTI)

    Erdlac, Richard J., Jr.; Swift, Douglas B.

    1999-09-23

    This project will investigate a previously unidentified geothermal energy resource, opening broad new frontiers to geothermal development. Data collected by industry during oil and gas development demonstrate deep permeable strata with temperatures {ge} 150 C, within the optimum window for binary power plant operation. The project will delineate Deep Permeable Strata Geothermal Energy (DPSGE) assets in the Permian Basin of western Texas and southeastern New Mexico. Presently, geothermal electrical power generation is limited to proximity to shallow, high-temperature igneous heat sources. This geographically restricts geothermal development. Delineation of a new, less geographically constrained geothermal energy source will stimulate geothermal development, increasing available clean, renewable world energy reserves. This proposal will stimulate geothermal reservoir exploration by identifying untapped and unrealized reservoirs of geothermal energy. DPSGE is present in many regions of the United States not presently considered as geothermally prospective. Development of this new energy source will promote geothermal use throughout the nation.

  16. KEPLER CYCLE 1 OBSERVATIONS OF LOW-MASS STARS: NEW ECLIPSING BINARIES, SINGLE STAR ROTATION RATES, AND THE NATURE AND FREQUENCY OF STARSPOTS

    SciTech Connect (OSTI)

    Harrison, T. E.; Coughlin, J. L.; Ule, N. M.; Lopez-Morales, M. E-mail: jlcough@nmsu.edu E-mail: mlopez@ieec.uab.es

    2012-01-15

    We have analyzed Kepler light curves for 849 stars with T{sub eff} {<=} 5200 K from our Cycle 1 Guest Observer program. We identify six new eclipsing binaries, one of which has an orbital period of 29.91 days and two of which are probably W UMa variables. In addition, we identify a candidate 'warm Jupiter' exoplanet. We further examine a subset of 670 sources for variability. Of these objects, 265 stars clearly show periodic variability that we assign to rotation of the low-mass star. At the photometric precision level provided by Kepler, 251 of our objects showed no evidence for variability. We were unable to determine periods for 154 variable objects. We find that 79% of stars with T{sub eff} {<=} 5200 K are variable. The rotation periods we derive for the periodic variables span the range 0.31 days {<=} P{sub rot} {<=} 126.5 days. A considerable number of stars with rotation periods similar to the solar value show activity levels that are 100 times higher than the Sun. This is consistent with results for solar-like field stars. As has been found in previous studies, stars with shorter rotation periods generally exhibit larger modulations. This trend flattens beyond P{sub rot} = 25 days, demonstrating that even long-period binaries may still have components with high levels of activity and investigating whether the masses and radii of the stellar components in these systems are consistent with stellar models could remain problematic. Surprisingly, our modeling of the light curves suggests that the active regions on these cool stars are either preferentially located near the rotational poles, or that there are two spot groups located at lower latitudes, but in opposing hemispheres.

  17. Geothermal Basics

    Broader source: Energy.gov [DOE]

    Geothermal energy is thermal energy generated and stored in the Earth. Geothermal energy can manifest on the surface of the Earth, or near the surface of the Earth, where humankind may harness it to serve our energy needs. Geothermal resources are reservoirs of hot water that exist at varying temperatures and depths below the Earth's surface. Wells can be drilled into these underground reservoirs to tap steam and very hot water that can be brought to the surface for a variety of uses.

  18. Geothermal hydrothermal

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The geothermal hydrothermal section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  19. Geothermal Publications

    Broader source: Energy.gov [DOE]

    Here you'll find the Department of Energy's most recent publications about enhanced geothermal systems (EGS) technologies and research and development activities.

  20. Exploratory Well At Long Valley Caldera Geothermal Area (Sorey...

    Open Energy Info (EERE)

    Fish Hatchery Springs in preparation for the siting of a second binary geothermal power plant, which included the CW-2 and the MPLP CW-3 (a.k.a. Chance 3) wells along the...

  1. EERE Success Story-Geothermal Technology Breakthrough in Alaska...

    Broader source: Energy.gov (indexed) [DOE]

    A binary process mixes geothermal brine with a working fluid that has a lower boiling point than water. This fluid is compressed into steam to turn a turbine and generate ...

  2. Soda Lake I Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Basin and Range Geothermal Region Plant Information Facility Type Binary Owner Magma Energy (US) Corp Number of Units 4.0 Commercial Online Date 1987 Power Plant Data Type of...

  3. Binary module test. Final report

    SciTech Connect (OSTI)

    Schilling, J.R.; Colley, T.C.; Pundyk, J.

    1980-12-01

    The objective of this project was to design and test a binary loop module representative of and scaleable to commercial size units. The design was based on state-of-the-art heat exchanger technology, and the purpose of the tests was to confirm performance of a supercritical boiling cycle using isobutane and a mixture of isobutane and isopentane as the secondary working fluid. The module was designed as one percent of a 50 MW unit. It was installed at Magma Power's East Mesa geothermal field and tested over a period of approximately 4 months. Most of the test runs were with isobutane but some data were collected for hydrocarbon mixtures. The results of the field tests are reported. In general these results indicate reasonably good heat balances and agreement with overall heat transfer coefficients calculated by current stream analysis methods and available fluid property data; however, measured pressure drops across the heat exchangers were 20 percent higher than estimated. System operation was stable under all conditions tested.

  4. Geothermal Energy

    SciTech Connect (OSTI)

    Steele, B.C.; Pichiarella, L.S.; Kane, L.S.; Henline, D.M.

    1995-01-01

    Geothermal Energy (GET) announces on a bimonthly basis the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. This publication contains the abstracts of DOE reports, journal articles, conference papers, patents, theses, and monographs added to the Energy Science and Technology Database during the past two months.

  5. SMU Geothermal Conference 2011 - Geothermal Technologies Program |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SMU Geothermal Conference 2011 - Geothermal Technologies Program SMU Geothermal Conference 2011 - Geothermal Technologies Program DOE Geothermal Technologies Program presentation at the SMU Geothermal Conference in June 2011. gtp_smu_conference_reinhardt_2011.pdf (1.4 MB) More Documents & Publications Low Temperature/Coproduced/Geopressured Subprogram Overview AAPG Low-Temperature Webinar Geothermal Technologies Program Peer Review Program June 6 - 10, 2011

  6. About / FAQ | Geothermal

    Office of Scientific and Technical Information (OSTI)

    About About Geothermal The Geothermal Technologies Legacy Collection is available to the geothermal community and interested members of the public who may use this site and its ...

  7. Site Map | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Basic Search Advanced Search Geothermal FAQ About Geothermal Site Map Geothermal Feedback Website PoliciesImportant Links

  8. Geothermal Energy News

    Broader source: Energy.gov (indexed) [DOE]

    geothermal900546 Geothermal Energy News en EERE Announces Up to 4 Million for Critical Materials Recovery from Geothermal Fluids http:energy.goveerearticles...

  9. Water Use in the Development and Operation of Geothermal Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Operation of Geothermal Power Plants Water Use in the Development and Operation of Geothermal Power Plants This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

  10. Water Use in the Development and Operations of Geothermal Power Plants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Water Use in the Development and Operations of Geothermal Power Plants Water Use in the Development and Operations of Geothermal Power Plants This report summarizes what is currently known about the life cycle water requirements of geothermal electric power-generating systems and the water quality of geothermal waters. It is part of a larger effort to compare the life cycle impacts of large-scale geothermal electricity generation with other power generation technologies.

  11. Deniz Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Plant Information Facility Type Binary Cycle Power Plant, ORC Owner MAREN Developer MAREN Energy Purchaser TEDAS Number of Units 1 Commercial Online Date 2012 Power Plant Data Type...

  12. Zunil Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Volcanic Arc Chain Plant Information Facility Type Binary Cycle Power Plant Owner Ormat Energy Purchaser Instituto Nacional de Electrificacion Number of Units 7 Commercial Online...

  13. Pamukoren Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Facility Type Binary Cycle Power Plant, ORC Owner CELIKLER Developer MTA-CELIKLER Energy Purchaser TEDAS Number of Units 1 Commercial Online Date 2013 Power Plant Data Type...

  14. Pailas Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Information Facility Type Binary Cycle Power Plant Owner Instituto Costarricense de Electricidad Number of Units 1 1 Commercial Online Date 2011 Power Plant Data Type of Plant...

  15. DOE and Partners Demonstrate Mobile Geothermal Power System at...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and gas sites to reduce costs for geothermal exploration, drilling, and infrastructure. ... Learn more about the PureCycle technology and about GTO's other projects. Addthis Related ...

  16. NREL: Geothermal Technologies - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal News Below are news stories involving geothermal research. May 16, 2016 NREL Helping the Bureau of Land Management Dive Further into Hot Water Geothermal program boosted by greater access to data. March 10, 2016 NREL's Geothermal Experts Present at the 41st Annual Stanford Geothermal Workshop NREL geothermal experts attend the 41st Annual Stanford Geothermal Workshop--one of the world's longest-running technical meetings on the topic of geothermal energy. March 2, 2016 U.S. Bureau of

  17. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association hosts its annual National Geothermal Summit in Reno, Nevada, June 3-4, 2015.

  18. Geothermal Literature Review At Long Valley Caldera Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (Goldstein & Flexser, 1984)...

  19. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Witcher, 2008) Exploration Activity...

  20. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Spiegel, 1957) Exploration Activity...

  1. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity...

  2. Geothermal Literature Review At Coso Geothermal Area (1985) ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Coso Geothermal Area (1985) Exploration Activity Details Location Coso...

  3. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Farhar, 2002) Exploration Activity Details...

  4. Geothermal Literature Review At Geysers Geothermal Area (1984...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Geysers Geothermal Area (1984) Exploration Activity Details Location...

  5. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Fleischman, 2006) Exploration Activity...

  6. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Exploration Activity Details...

  7. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Summers, 1976) Exploration Activity...

  8. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Clemons, Et Al., 1988) Exploration...

  9. Geothermal Literature Review At Salton Trough Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salton Trough Geothermal Area (1984) Exploration Activity Details Location...

  10. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Lienau, 1990) Exploration Activity Details...

  11. Geothermal Literature Review At Medicine Lake Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location...

  12. Geothermal Literature Review At Coso Geothermal Area (1984) ...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Coso Geothermal Area (1984) Exploration Activity Details Location Coso...

  13. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Schochet, Et Al., 2001) Exploration...

  14. Geothermal Literature Review At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Roosevelt Hot Springs Geothermal Area (Petersen, 1975) Exploration...

  15. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Callender, 1981) Exploration Activity...

  16. Tongonan 1 Binary GEPP | Open Energy Information

    Open Energy Info (EERE)

    Philippine Island Arc Plant Information Facility Type Binary Cycle Power Plant Owner Energy Development Corporation Number of Units 3 1 Commercial Online Date 1997 Power...

  17. Geothermal Data Systems

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO) has designed and tested a comprehensive, federated information system that will make geothermal data widely available. This new National Geothermal Data System (NGDS) will provide access to all types of geothermal data to enable geothermal analysis and widespread public use, thereby reducing the risk of geothermal energy development.

  18. Geothermal/Solar Hybrid Designs: Use of Geothermal Energy for...

    Office of Scientific and Technical Information (OSTI)

    GeothermalSolar Hybrid Designs: Use of Geothermal Energy for CSP Feedwater Heating Citation Details In-Document Search Title: GeothermalSolar Hybrid Designs: Use of Geothermal ...

  19. National Geothermal Data System - DOE Geothermal Data Repository...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - DOE Geothermal Data Repository Presentation National Geothermal Data System - DOE Geothermal Data Repository Presentation Overview of the National Geothermal Data System (NGDS) ...

  20. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Energy Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data Resources Financing Permitting &...

  1. Burgett Geothermal Greenhouses Greenhouse Low Temperature Geothermal...

    Open Energy Info (EERE)

    Burgett Geothermal Greenhouses Sector Geothermal energy Type Greenhouse Location Cotton City, New Mexico Coordinates Show Map Loading map... "minzoom":false,"mappingservice"...

  2. Geothermal Technologies | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Technologies Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating...

  3. CE Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Jump to: navigation, search Name: CE Geothermal Place: California Sector: Geothermal energy Product: CE Geothermal previously owned the assets of Western States...

  4. Geothermal Energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Energy (Redirected from Geothermal power) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Overview Technologies Resources Market Data Geothermal Topics Data...

  5. Geothermal Energy Basics | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Information Resources » Geothermal Basics Geothermal Basics Geothermal heat is most prevalent in the western United States, where the heat resource can sometimes be spotted from the earth's surface. Geothermal heat is most prevalent in the western United States, where the heat resource can sometimes be spotted from the earth's surface. Geothermal energy-geo (earth) + thermal (heat)-is heat energy from the earth. What is a geothermal resource? Geothermal resources are reservoirs of hot water

  6. Session: Geopressured-Geothermal

    SciTech Connect (OSTI)

    Jelacic, Allan J.; Eaton, Ben A.; Shook, G. Michael; Birkinshaw, Kelly; Negus-de Wys, Jane

    1992-01-01

    This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Overview of Geopressured-Geothermal'' by Allan J. Jelacic; ''Geothermal Well Operations and Automation in a Competitive Market'' by Ben A. Eaton; ''Reservoir Modeling and Prediction at Pleasant Bayou Geopressured-Geothermal Reservoir'' by G. Michael Shook; ''Survey of California Geopressured-Geothermal'' by Kelly Birkinshaw; and ''Technology Transfer, Reaching the Market for Geopressured-Geothermal Resources'' by Jane Negus-de Wys.

  7. Geothermal Technologies Program Overview Presentation at Stanford...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Overview Presentation at Stanford Geothermal Workshop Geothermal Technologies Program Overview Presentation at Stanford Geothermal Workshop General overview of Geothermal ...

  8. Geothermal Technologies Office - Webmaster | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Webmaster Geothermal Technologies Office - Webmaster

  9. Okeanskaya Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Okeanskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Okeanskaya Geothermal Power Plant General Information Name Okeanskaya Geothermal...

  10. CanGEA Fifth Annual Geothermal Conference Presentation - Mapping & Database

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Workshop | Department of Energy CanGEA Fifth Annual Geothermal Conference Presentation - Mapping & Database Workshop CanGEA Fifth Annual Geothermal Conference Presentation - Mapping & Database Workshop Mapping and database workshop presentation presented at the Canadian Geothermal Energy Association Fifth Annual Geothermal Conference on March 21, 2013 by Arlene Anderson, Physical Scientist Lead for Geothermal Data Provision, Resource Mapping and Energy and Water Life Cycle Analysis

  11. Enhanced Geothermal Systems Demonstration Projects

    SciTech Connect (OSTI)

    Geothermal Technologies Office

    2013-08-06

    Several Enhanced Geothermal Systems (EGS) demonstration projects are highlighted on this Geothermal Technologies Office Web page.

  12. Geothermal tomorrow 2008

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  13. National Geothermal Summit

    Broader source: Energy.gov [DOE]

    The Geothermal Energy Association (GEA) will be holding it’s fifth annual National Geothermal Summit on June 3-4 at the Grand Sierra Resort and Casino in Reno, NV. The National Geothermal Summit is...

  14. Geothermal FAQs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basics » Geothermal FAQs Geothermal FAQs Read our frequently asked questions and their answers to learn more about the use of geothermal energy. What are the benefits of using geothermal energy? Why is geothermal energy a renewable resource? Where is geothermal energy available? What are the environmental impacts of using geothermal energy? What is the visual impact of geothermal technologies? Is it possible to deplete geothermal reservoirs? How much does geothermal energy cost per

  15. Steamboat Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Facility Steamboat Hills Geothermal Facility Steamboat I Geothermal Facility Steamboat IA Geothermal Facility Steamboat II Geothermal Facility Steamboat III Geothermal Facility...

  16. Nagqu Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Name Nagqu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Geothermal Region Plant Information...

  17. Geothermal Resources Council's ...

    Office of Scientific and Technical Information (OSTI)

    Enhanced Geothermal Systems (EGS) applications recommend lifting 300C geothermal water ... Therefore artificial lift techniques must be employed to return the high temperature water ...

  18. Director, Geothermal Technologies Office

    Broader source: Energy.gov [DOE]

    The mission of the Geothermal Technologies Office (GTO) is to accelerate the development and deployment of clean, domestic geothermal resources that will promote a stronger, more productive economy...

  19. Geothermal Technologies Office March

    Broader source: Energy.gov (indexed) [DOE]

    ... supplying new applications for geothermal power, some geothermal brines are turning up relatively high concentrations of rare earth elements (REEs) and other valu- able materials. ...

  20. Geothermal Data Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About DOE's Geothermal Data Repository The GDR is the submission point for all data collected from researchers funded by the U.S. Department of Energy's Geothermal Technologies...

  1. Geothermal | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Geothermal energy plant at The Geysers near Santa Rosa in Northern California, the world's largest electricity-generating geothermal development. | Photo courtesy of the National...

  2. Imperial Valley Geothermal Area

    Broader source: Energy.gov [DOE]

    The Imperial Valley Geothermal project consists of 10 generating plants in the Salton Sea Known Geothermal Resource Area in Southern California's Imperial Valley. The combined capacity at Imperial...

  3. 2014 Brayton Cycle Workshop and Industry Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brayton Cycle Workshop and Industry Day - Sandia Energy Energy Search Icon ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal ...

  4. Kalex Advanced Low Temp Geothemal Power Cycle

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RelevanceImpact of Research (2) * Innovation: - Advanced Cycle designs offer ... in risk capital requirements leading to lower cost geothermal projects * GTO Goal: - ...

  5. Nuova Sasso Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Nuova Sasso Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  6. Preliminary assessment of the Velocity Pump Reaction Turbine as a geothermal total-flow expander

    SciTech Connect (OSTI)

    Demuth, O.J.

    1985-01-01

    A preliminary evaluation was made of the Velocity Pump Reaction Turbine (VPRT) as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360/sup 0/F geothermal resource, 60/sup 0/F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120/sup 0/F condensing temperature, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.47 to 0.77, with plant geofluid effectivenss values ranging as high as 9.5 Watt hr/lbm geofluid. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam systems and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant. 13 refs., 5 figs.

  7. Preliminary assessment of the velocity pump reaction turbine as a geothermal total-flow expander

    SciTech Connect (OSTI)

    Demuth, O.J.

    1984-06-01

    A preliminary evaluation was made of the Velocity Pump Reaction Turbine (VPRT) as a total flow expander in a geothermal-electric conversion cycle. Values of geofluid effectiveness of VPRT systems were estimated for conditions consisting of: a 360/sup 0/ geothermal resource, 60/sup 0/F wet-bulb ambient temperature, zero and 0.003 mass concentrations of dissolved noncondensible gas in the geofluid, 100 and 120/sup 0/F condensing temperatures, and engine efficiencies ranging from 0.4 to 1.0. Achievable engine efficiencies were estimated to range from 0.47 to 0.77, with plant geofluid effectiveness values ranging as high as 9.5 Watt hr/lbm geofluid for the 360/sup 0/F resource temperature. This value is competitive with magnitudes of geofluid effectiveness projected for advanced binary plants, and is on the order of 40% higher than estimates for dual-flash steam and other total flow systems reviewed. Because of its potentially high performance and relative simplicity, the VPRT system appears to warrant further investigation toward its use in a well-head geothermal plant.

  8. Geothermal Today: 2005 Geothermal Technologies Program Highlights

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    This DOE/EERE Geothermal Technologies Program publication highlights accomplishments and activities of the program during the last two years.

  9. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Smith, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978)...

  10. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Elston, Et Al., 1983) Exploration Activity...

  11. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Dahal, Et Al., 2012) Exploration Activity...

  12. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Stone, Et Al., 1977) Exploration Activity...

  13. Geothermal Literature Review At Fenton Hill HDR Geothermal Area...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Fenton Hill HDR Geothermal Area (Goff & Decker, 1983) Exploration Activity...

  14. Geothermal br Resource br Area Geothermal br Resource br Area...

    Open Energy Info (EERE)

    Aluto Langano Geothermal Area Aluto Langano Geothermal Area East African Rift System Ethiopian Rift Valley Major Normal Fault Basalt MW K Amatitlan Geothermal Area Amatitlan...

  15. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Lightning Dock Geothermal Area (Witcher, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning...

  16. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Witcher, 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Witcher, 2002)...

  17. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Parker & Icerman, 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Parker &...

  18. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Sammel, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Sammel, 1978)...

  19. Geothermal Literature Review At Lightning Dock Geothermal Area...

    Open Energy Info (EERE)

    Rafferty, 1997) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Rafferty, 1997)...

  20. Geothermal Literature Review At Coso Geothermal Area (1987) ...

    Open Energy Info (EERE)

    7) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Coso Geothermal Area (1987) Exploration Activity Details...

  1. National Geothermal Data System (NGDS) Geothermal Data Domain...

    Open Energy Info (EERE)

    Geothermal Data System (NGDS) Geothermal Data Domain: Assessment of Geothermal Community Data Needs Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  2. Renewable Energy Technologies - Geothermal Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Geothermal Energy Geothermal Energy Bruce Green, 303-275-3621, bruce_green@nrel.gov Geothermal Energy is Heat Geothermal Energy is Heat from the Earth. from the Earth. How Geothermal Energy is Used: *Electricity Generation *Direct Thermal Use *Geothermal Heat Pumps, also called Geoexchange Units or Ground-Coupled Heat Pumps. Courtesy of Geothermal Education Association Tectonic Plate Boundaries Tectonic Plate Boundaries Hottest Known Geothermal Hottest Known Geothermal Regions

  3. Geothermal Tomorrow 2008

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Brochure describing the recent activities and future research direction of the DOE Geothermal Program.

  4. Geothermal Prospects in Colorado

    Broader source: Energy.gov [DOE]

    Geothermal Prospects in Colorado presentation at the April 2013 peer review meeting held in Denver, Colorado.

  5. Geothermal Technologies Newsletter

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE) Geothermal Technologies Newsletter features the latest information about its geothermal research and development efforts. The Geothermal Resources Council (GRC)— a tax-exempt, non-profit, geothermal educational association — publishes quarterly as an insert in its GRC Bulletin.

  6. Alaska geothermal bibliography

    SciTech Connect (OSTI)

    Liss, S.A.; Motyka, R.J.; Nye, C.J.

    1987-05-01

    The Alaska geothermal bibliography lists all publications, through 1986, that discuss any facet of geothermal energy in Alaska. In addition, selected publications about geology, geophysics, hydrology, volcanology, etc., which discuss areas where geothermal resources are located are included, though the geothermal resource itself may not be mentioned. The bibliography contains 748 entries.

  7. Geothermal Technologies Program - Washington

    SciTech Connect (OSTI)

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Washington State.

  8. Video Resources on Geothermal Technologies

    Broader source: Energy.gov [DOE]

    Geothermal video offerings at the Department of Energy include simple interactive illustrations of geothermal power technologies and interviews on initiatives in the Geothermal Technologies Office.

  9. Geothermal Heat Pump Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Type of Activity 2008 2009 Geothermal Heat Pump or System Design 17 17 Prototype Geothermal Heat Pump Development 12 13 Prototype Systems Geothermal Development 5 7 Wholesale ...

  10. OHm Geothermal | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: OHm Geothermal Place: Fernley, Nevada Zip: 89408 Sector: Geothermal energy Product: A Nevada-based geothermal energy development company....

  11. Geothermal Generation | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Generation This article is a stub. You can help OpenEI by expanding it. Global Geothermal Energy Generation Global Geothermal Electricity Generation in 2007 (in millions...

  12. Geothermal Technologies | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Technologies Geothermal energy can be utilized for electricity or heating in more than one way....

  13. Geothermal energy | Open Energy Information

    Open Energy Info (EERE)

    Geothermal energy Jump to: navigation, search Dictionary.png Geothermal energy: Geothermal energy is heat extracted from the Earth ( Geo (Earth) + thermal (heat) ) Other...

  14. NREL: Geothermal Technologies - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities The NREL geothermal team leverages its capabilities in several different areas to enhance the visibility of geothermal technologies. These areas include low-temperature resources; enhanced geothermal systems; strategic planning, analysis, and modeling; and project assessment. Low-Temperature Geothermal Resources NREL works to develop and deploy innovative new technologies that will help the geothermal community achieve widespread adoption of under-utilized low-temperature resources

  15. NREL: Geothermal Technologies - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects The NREL geothermal team is involved in various projects to help accelerate the development and deployment of clean, renewable geothermal technologies, including low-temperature resources; enhanced geothermal systems; strategic planning, analysis, and modeling; and project assessment. Low-Temperature Geothermal Resources NREL supports the U.S. Department of Energy's (DOE) Geothermal Technologies Office (GTO) through various collaborations that evaluate the levelized cost of electricity

  16. Geothermal Technologies Office April

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annual Report Geothermal Technologies Office April 2016 1 2015 Annual Report | Geothermal Technologies Office Director's Message Geothermal Technologies Office FY 2016 Budget at a Glance Enhanced Geothermal Systems Hydrothermal Program Low-Temperature and Coproduced Resources Systems Analysis Events and Highlights People Acronyms Resources Table of Contents 2 2 3 7 13 17 19 23 26 28 2015 Achievements Geothermal Technologies Office Steam, West Flank of Coso, NV The 2015 Annual Report of the

  17. NREL: Geothermal Technologies - NREL's Geothermal Experts Present at the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    41st Annual Stanford Geothermal Workshop NREL's Geothermal Experts Present at the 41st Annual Stanford Geothermal Workshop March 10, 2016 Six members of our geothermal community, accompanied by Bud Johnston, NREL's new geothermal laboratory program manager, attended the 41st Annual Stanford Geothermal Workshop--one of the world's longest-running technical meetings on the topic of geothermal energy. The Stanford Geothermal Workshop brings together engineers, scientists, and managers involved

  18. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    U.S. | Department of Energy Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference 2013 - Geothermal Policies and Impacts in the U.S. Iceland Geothermal Conference presentation on March 7, 2013 by Chief Engineer Jay Nathwani of the U.S. Department of Energys Geothermal Technologies Office. iceland_geothermal_conf2013_nathwani.pdf (2.48 MB) More Documents & Publications Geothermal Technologies Program Overview Presentation at

  19. North Brawley Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Zone Plant Information Facility Type Binary Cycle Power Plant Owner Ormat Developer Ormat Energy Purchaser Southern California Edison Number of Units 5 Commercial Online Date 2010...

  20. Energy geothermal; San Emidio Geothermal Area; 3D Model geothermal...

    Office of Scientific and Technical Information (OSTI)

    description: Trainor-Guitton, Hoversten,Nordquist, Intani, Value of information analysis using geothermal field data: accounting for multiple interpretations & determining...

  1. Birdsville Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Artesian Basin Plant Information Facility Type Binary Cycle Power Plant, ORC Owner Ergon Energy Number of Units 1 Commercial Online Date 1992 Power Plant Data Type of Plant Number...

  2. Unearthing Geothermal's Potential | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    resources are not hot enough to be harnessed through traditional processes such as dry steam or flash steam power plants. These low temperature fluids can be used in binary-cycle...

  3. Mahanagdong A-Binary GEPP | Open Energy Information

    Open Energy Info (EERE)

    Philippine Island Arc Plant Information Facility Type Binary Cycle Power Plant Owner Energy Development Corporation Number of Units 2 1 Commercial Online Date 1997 Power...

  4. Mahanagdong B-Binary GEPP | Open Energy Information

    Open Energy Info (EERE)

    Philippine Island Arc Plant Information Facility Type Binary Cycle Power Plant Owner Energy Development Corporation Number of Units 2 1 Commercial Online Date 1997 Power...

  5. Guidebook to Geothermal Finance

    SciTech Connect (OSTI)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  6. Baltazor Springs Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Baltazor Springs Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Baltazor Springs Geothermal Project Project Location...

  7. Silver State Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    State Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Silver State Geothermal Project Project Location Information Coordinates...

  8. Panther Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Panther Canyon Geothermal Project Project Location Information...

  9. Kelsey North Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    North Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Kelsey North Geothermal Project Project Location Information...

  10. Devil's Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Canyon Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Devil's Canyon Geothermal Project Project Location Information...

  11. Dead Horse Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Horse Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Dead Horse Geothermal Project Project Location Information...

  12. Delcer Butte Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Butte Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Delcer Butte Geothermal Project Project Location Information...

  13. Drum Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Mountain Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Drum Mountain Geothermal Project Project Location Information...

  14. Puna Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Puna Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Project Project Location Information Coordinates...

  15. Puna Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Puna Geothermal Venture) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Puna Geothermal Project Project Location Information Coordinates...

  16. Reese River Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    River Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Reese River Geothermal Project Project Location Information...

  17. Pauzhetskaya Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Pauzhetskaya Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Pauzhetskaya Geothermal Power Plant General Information Name Pauzhetskaya...

  18. Rancia Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Rancia Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  19. Sesta Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Sesta Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  20. Farinello Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Farinello Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area Larderello...

  1. Pianacce Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Pianacce Geothermal Power Station Sector Geothermal energy Location Information Location Tuscany, Italy Geothermal Resource Area...

  2. Ulumbu Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Information Name Ulumbu Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Address Kupang Location Indonesia Coordinates...

  3. Orita 3 Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    3 Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Orita 3 Geothermal Project Project Location Information Coordinates...

  4. Heber II Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Heber II Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Heber II Geothermal Facility General Information Name Heber II Geothermal Facility...

  5. Steamboat IA Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    IA Geothermal Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Steamboat IA Geothermal Facility General Information Name Steamboat IA Geothermal Facility...

  6. Transition Zone Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Unknown Planned Capacity 1 Geothermal Areas within the Transition Zone Geothermal Region Energy Generation Facilities within the Transition Zone Geothermal Region Geothermal Power...

  7. Lightning Dock Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Review At Lightning Dock Geothermal Area (Rafferty, 1997) Geothermal Literature Review Fossil Fuel-fired Peak Heating for Geothermal Greenhouses Geothermal Literature Review At...

  8. Eburru Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Eburru Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Eburru Geothermal Power Plant General Information Name Eburru Geothermal Power Plant...

  9. Ndunga Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Ndunga Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Ndunga Geothermal Power Plant General Information Name Ndunga Geothermal Power Plant...

  10. Irem Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Irem Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Irem Geothermal Power Plant General Information Name Irem Geothermal Power Plant Facility...

  11. Tuzla Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Tuzla Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Tuzla Geothermal Power Plant General Information Name Tuzla Geothermal Power Plant...

  12. Sibayak Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Sibayak Geothermal Power Plant Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Sibayak Geothermal Power Plant General Information Name Sibayak Geothermal Power Plant...

  13. Lahendong Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  14. Mindanao Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  15. Mount Amiata Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  16. Amatitlan Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  17. Mori Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  18. Fukushima Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  19. Rotokawa Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  20. Pauzhetskaya Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  1. Miyagi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  2. Kagoshima Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  3. San Jacinto Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. Benjamin Matek. Geo-energy Internet. Geothermal...

  4. Tiwi / Albay Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  5. Ogiri Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  6. North Negros Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. Benjamin Matek. Geo-energy Internet. Geothermal...

  7. Ngawha Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  8. Bouillante Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  9. Leyte Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  10. Svartsengi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  11. South Negros Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. List of existing Geothermal Resource Areas. Print PDF...

  12. Property:GeothermalArea | Open Energy Information

    Open Energy Info (EERE)

    Area + Babadere Geothermal Project + Tuzla Geothermal Area + Bacman 1 GEPP + Bac-Man Laguna Geothermal Area + Bacman 2 GEPP + Bac-Man Laguna Geothermal Area + Bacman...

  13. Takigami Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Hide Map Geothermal Resource Area Oita Geothermal Area Geothermal Region Ryuku Arc Plant Information Facility Type Single Flash Owner Idemitsu Oita Geothermal CoKyushu...

  14. Category:Geothermal Regions | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Regions Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geothermal Regions page? For detailed information on Geothermal...

  15. Blind Geothermal System | Open Energy Information

    Open Energy Info (EERE)

    Blind Geothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Blind Geothermal System Dictionary.png Blind Geothermal System: An area with a...

  16. Cove Fort Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cove Fort Geothermal Area (Redirected from Cove Fort Geothermal Area - Vapor) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cove Fort Geothermal Area Contents 1 Area...

  17. Alaska Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Springs Geothermal Area Sitka Hot Spring Geothermal Area South Geothermal Area Tolovana Geothermal Area ... further results Energy Generation Facilities within the Alaska...

  18. Italy Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Region Larderello Geothermal Area Mount Amiata Geothermal Area Travale-Radicondoli Geothermal Area Energy Generation Facilities within the Italy Geothermal Region Bagnore 3...

  19. Hawaii Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Area Mokapu Penninsula Geothermal Area Molokai Geothermal Area Olowalu-Ukumehame Canyon Geothermal Area Energy Generation Facilities within the Hawaii Geothermal Region Puna...

  20. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    SciTech Connect (OSTI)

    Wendt, Daniel; Mines, Greg; Turchi, Craig; Zhu, Guangdong

    2015-11-01

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods of high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources

  1. Beowawe Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    bottoming-cycle plant was added, producing an additional 1.5 MW using the 205F "waste" water from the existing double-flash geothermal plant. This latter project was funded by a...

  2. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  3. GEOTHERM Data Set

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DeAngelo, Jacob

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey.

  4. Stanford Geothermal Workshop

    Broader source: Energy.gov [DOE]

    Now in its 40th year, the Stanford Geothermal Workshop is one of the world's longest running technical meetings on geothermal energy. The conference brings together engineers, scientists and...

  5. Geothermal Technologies Newsletter Archives

    Broader source: Energy.gov [DOE]

    Here you'll find past issues of the U.S. Department of Energy's (DOE) Geothermal Technologies program newsletter, which features information about its geothermal research and development efforts....

  6. Geothermal Data Repository

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy the GDR logo, a blue wave opposed over an orange flame Geothermal Data Repository The Geothermal Data Repository (GDR) is the submission point for all...

  7. National Geothermal Student Competition; 2010 Geothermal Technology Program

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Peer Review Report | Department of Energy Competition; 2010 Geothermal Technology Program Peer Review Report National Geothermal Student Competition; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_002_visser.pdf (242 KB) More Documents & Publications Geothermal Power Generation Plant; 2010 Geothermal Technology Program Peer Review Report Concept Testing and Development at the Raft River Geothermal Field, Idaho Feasibility

  8. Geothermal Industry Partnership Opportunities

    Broader source: Energy.gov [DOE]

    Here you'll find links to information about partnership opportunities and programs for the geothermal industry.

  9. NREL: Geothermal Technologies - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications NREL's geothermal team develops publications, including technical reports and conference papers, about geothermal resource assessments, market and policy analysis, and geothermal research and development (R&D) activities. In addition to the selected documents available below, you can find resources on the U.S. Department of Energy (DOE) Geothermal Technologies Office website or search the NREL Publications Database. Learn more about how research at NREL is accelerating

  10. South Dakota geothermal handbook

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  11. Geothermal Government Programs

    Office of Energy Efficiency and Renewable Energy (EERE)

    Here you'll find links to federal, state, and local government programs promoting geothermal energy development.

  12. Geothermal Photo Gallery

    Broader source: Energy.gov [DOE]

    The Geothermal Technologies Office invests in 150 projects nationwide, leveraging more than $500 million in combined investments.

  13. Geothermal Maps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Maps Geothermal Maps The Geothermal Technologies Office (GTO) carries out R&D and demonstration efforts to deploy 12 GWe of clean geothermal energy by 2020 and expand geothermal into new U.S. regions. Locating and developing resources is an important part of that mission. GTO works with national laboratories to develop maps and data that identify renewable, geothermal resources, possible locations for implementation of various geothermal technologies, and actual and potential geothermal

  14. NREL: Energy Analysis - Life Cycle Assessment Harmonization Results...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The published life cycle greenhouse gas (GHG) estimates for hydropower, ocean, geothermal, biopower, solar (crystalline silicon photovoltaic, thin film photovoltaic, and ...

  15. Life Cycle Water Consumption and Water Resource Assessment for...

    Office of Scientific and Technical Information (OSTI)

    Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects Citation Details ...

  16. Analysis of Energy, Environmental and Life Cycle Cost Reduction...

    Open Energy Info (EERE)

    Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project Jump to: navigation, search Last modified on...

  17. National Geothermal Data System (NGDS) Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE)

    Overview of the National Geothermal Data System (NGDS), a platform for sharing geothermal technical data.

  18. Geothermal Produced Fluids: Characteristics, Treatment Technologies, and Management Options

    SciTech Connect (OSTI)

    Finster, Molly; Clark, Corrie; Schroeder, Jenna; Martino, Louis

    2015-10-01

    Geothermal power plants use geothermal fluids as a resource and create waste residuals as part of the power generation process. Both the geofluid resource and the waste stream are considered produced fluids. The chemical and physical nature of produced fluids can have a major impact on the geothermal power industry and can influence the feasibility of geothermal power development, exploration approaches, power plant design, operating practices, and the reuse or disposal of residuals. In general, produced fluids include anything that comes out of a geothermal field and that subsequently must be managed on the surface. These fluids vary greatly depending on the geothermal reservoir being harnessed, power plant design, and the life cycle stage in which the fluid exists, but generally include water and fluids used to drill geothermal wells, fluids used to stimulate wells in enhanced geothermal systems, and makeup and/or cooling water used during operation of a geothermal power plant. Additional geothermal-related produced fluids include many substances that are similar to waste streams from the oil and gas industry, such as scale, flash tank solids, precipitated solids from brine treatment, hydrogen sulfide, and cooling-tower-related waste. This review paper aims to provide baseline knowledge on specific technologies and technology areas associated with geothermal power production. Specifically, this research focused on the management techniques related to fluids produced and used during the operational stage of a geothermal power plant; the vast majority of which are employed in the generation of electricity. The general characteristics of produced fluids are discussed. Constituents of interest that tend to drive the selection of treatment technologies are described, including total dissolved solids, noncondensable gases, scale and corrosion, silicon dioxide, metal sulfides, calcium carbonate, corrosion, metals, and naturally occurring radioactive material. Management

  19. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    SciTech Connect (OSTI)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  20. Nevada Geothermal Area | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nevada Geothermal Area Nevada Geothermal Area The extensive Steamboat Springs geothermal area contains three geothermal power-generating plants. The plants provide approximately 30% of the total Nevada geothermal power output. Photo of Nevada power plant

  1. Reference book on geothermal direct use

    SciTech Connect (OSTI)

    Lienau, P.J.; Lund, J.W.; Rafferty, K.; Culver, G.

    1994-08-01

    This report presents the direct uses of geothermal energy in the United States. Topics discussed include: low-temperature geothermal energy resources; energy reserves; geothermal heat pumps; geothermal energy for residential buildings; and geothermal energy for industrial usage.

  2. track 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review track 4: enhanced geothermal systems (EGS) | geothermal 2015 peer review The Energy Department pursues research in transformative science and engineering that the private sector is not financially or technically equipped to undertake. At the 2015 Peer Review, awardees in the Geothermal Technologies Office portfolio presented fifty three technical project presentations on enhanced geothermal systems

  3. GEA International Geothermal Energy Showcase

    Broader source: Energy.gov [DOE]

    What are the building blocks for successful geothermal projects? Find out March 17, 2016 at the Geothermal Energy Association's 2016 U.S. and International Geothermal Energy Showcase at the Ronald...

  4. Geothermal Outreach and Project Financing

    SciTech Connect (OSTI)

    Elizabeth Battocletti

    2006-04-06

    The ?Geothermal Outreach and Project Financing? project substantially added to the understanding of geothermal resources, technology, and small business development by both the general public as well as those in the geothermal community.

  5. National Geothermal Data System - DOE Geothermal Data Repository...

    Broader source: Energy.gov (indexed) [DOE]

    National Geothermal Data System (NGDS) and DOE's node on the NGDS. ngdsgdrgeneralpresentation.pdf More Documents & Publications How to Utilize the National Geothermal Data...

  6. Water information bulletin No. 30 geothermal investigations in Idaho

    SciTech Connect (OSTI)

    Mitchell, J.C.; Johnson, L.L.; Anderson, J.E.; Spencer, S.G.; Sullivan, J.F.

    1980-06-01

    There are 899 thermal water occurrences known in Idaho, including 258 springs and 641 wells having temperatures ranging from 20 to 93/sup 0/C. Fifty-one cities or towns in Idaho containing 30% of the state's population are within 5 km of known geothermal springs or wells. These include several of Idaho's major cities such as Lewiston, Caldwell, Nampa, Boise, Twin Falls, Pocatello, and Idaho Falls. Fourteen sites appear to have subsurface temperatures of 140/sup 0/C or higher according to the several chemical geothermometers applied to thermal water discharges. These include Weiser, Big Creek, White Licks, Vulcan, Roystone, Bonneville, Crane Creek, Cove Creek, Indian Creek, and Deer Creek hot springs, and Raft River, Preston, and Magic Reservoir areas. These sites could be industrial sites, but several are in remote areas away from major transportation and, therefore, would probably be best utilized for electrical power generation using the binary cycle or Magma Max process. Present uses range from space heating to power generation. Six areas are known where commercial greenhouse operations are conducted for growing cut and potted flowers and vegetables. Space heating is substantial in only two places (Boise and Ketchum) although numerous individuals scattered throughout the state make use of thermal water for space heating and private swimming facilities. There are 22 operating resorts using thermal water and two commercial warm-water fish-rearing operations.

  7. Northern Basin and Range Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Hot Springs Geothermal Area Raft River Geothermal Area Railroad Valley Geothermal Area Red River Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Sharkey Hot...

  8. Valle Secolo Geothermal Power Station | Open Energy Information

    Open Energy Info (EERE)

    Station General Information Name Valle Secolo Geothermal Power Station Sector Geothermal energy Location Information Geothermal Resource Area Larderello Geothermal Area Geothermal...

  9. Bouillante 2 Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Plant General Information Name Bouillante 2 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  10. Bouillante 1 Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Plant General Information Name Bouillante 1 Geothermal Power Plant Sector Geothermal energy Location Information Geothermal Resource Area Bouillante Geothermal Area Geothermal...

  11. Geothermal Technologies Program: Enhanced Geothermal Systems

    SciTech Connect (OSTI)

    Not Available

    2004-08-01

    This general publication describes enhanced geothermal systems (EGS) and the principles of operation. It also describes the DOE program R&D efforts in this area, and summarizes several projects using EGS technology.

  12. Federal Interagency Geothermal Activities 2011

    Broader source: Energy.gov [DOE]

    This document is the federal interagency geothermal activities document for 2011, which includes incoporation of public comments from the Draft National Geothermal Action Plan.

  13. Geothermal Technologies - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Marketing Summaries (11) Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial ... Drilling costs amount to over half of the total cost of geothermal energy ...

  14. Newberry Geothermal | Open Energy Information

    Open Energy Info (EERE)

    named Northwest Geothermal Company) started to develop a 120MW geothermal project on its leases in 2006. As of 62012, Davenport Newberry is still in the exploration phase...

  15. Geothermal Heat Pump Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    8 Geothermal heat pump shipments by origin, 2008 and 2009 (rated capacity in tons) Origin ... Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey

  16. Geothermal Heat Pump Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    0 Geothermal heat pump domestic shipments by customer type, 2008 and 2009 (rated capacity ... Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey

  17. Geothermal Heat Pump Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    1 Geothermal heat pump domestic shipments by sector and model type, 2009 (rated capacity ... Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey

  18. Geothermal Heat Pump Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Geothermal heat pump shipments by model type, 2000 - 2009 (number of units) ARI-320 ... Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey."

  19. Geothermal Heat Pump Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    defined as geothermal heat pump unit with all the necessary functional components, except for installation materials. These include geothermal heat pump, air handler, heat ...

  20. Geothermal Heat Pump Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    Rated capacity of geothermal heat pump shipments by model type, 2000 - 2009 (tons) ARI-320 ... Administration (EIA), Form EIA-902, "Annual Geothermal Heat Pump Manufacturers Survey."

  1. Geothermal Energy | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ... to produce and disseminate both the exploration gap analysis and Enhanced Geothermal ... 1 megawatt) power generation geothermal projects; sources of useful information including ...

  2. CREST Geothermal | Open Energy Information

    Open Energy Info (EERE)

    CREST Geothermal Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CREST Geothermal AgencyCompany Organization: Sustainable Energy Advantage Partner: NREL Sector: Energy...

  3. Grace Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Name: Grace Geothermal Address: 514 Water Street Place: Chardon, Ohio Zip: 44024 Sector: Geothermal energy Product: Energy provider: energy transmission and distribution;...

  4. geothermal | OpenEI Community

    Open Energy Info (EERE)

    the US DOE Geothermal Technologies Office (GTO) 2013 Peer Review. The purpose of the peer review is to offer geothermal stakeholders an opportunity to learn about the projects...

  5. Geothermal Basics | Department of Energy

    Energy Savers [EERE]

    Geothermal energy-geo (earth) + thermal (heat)-is heat ... including electricity generation, direct use, and heating ... Baseload-Geothermal power plants produce electricity ...

  6. The Geothermal Technologies Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Office (GTO) funded and launched the NGDS and the DOE Geothermal Data Repository node to facilitate a seamless delivery of geotherm- al data for a variety of applications. NGDS is an interoperable networked system of distributed data repositories, accessed through federated catalog nodes and built upon an open architecture using open source software practices. The system provides access to geo- thermal data from providers across the U.S., including all 50 state geological

  7. Geothermal Drilling Organization

    SciTech Connect (OSTI)

    Sattler, A.R.

    1999-07-07

    The Geothermal Drilling Organization (GDO), founded in 1982 as a joint Department of Energy (DOE)-Industry organization, develops and funds near-term technology development projects for reducing geothermal drilling costs. Sandia National Laboratories administers DOE funds to assist industry critical cost-shared projects and provides development support for each project. GDO assistance to industry is vital in developing products and procedures to lower drilling costs, in part, because the geothermal industry is small and represents a limited market.

  8. Geothermal Energy (5 Activities)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Energy (Five Activities) Grades: 5-8 Topic: Geothermal Authors: Laura J. W. Butterfield, Ph.D., Brandon A. Gillette, and Richard Shin Owner: National Renewable Energy Laboratory This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy. Geothermal Energy Laura J. W. Butterfield, Ph.D. Brandon A. Gillette Richard Shin Middle School For the Teacher Deep inside the Earth, at depths near 150 kilometers, the temperature

  9. Geothermal Technologies Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Jay Nathwani Acting Program Manager Geothermal Technologies Program Office of Energy Efficiency and Renewable Energy The Geothermal Technologies Program Overview May 18 2010 Energy Efficiency & Renewable Energy eere.energy.gov Geothermal Technologies Program (GTP) Program Topic Areas *Low Temperature, Geopressured and Coproduced Resources *Innovative Exploration Technologies National Goals *Economy Putting people to work in the near- term, and in the future *Security Developing and expanding

  10. Modeling of geothermal systems

    SciTech Connect (OSTI)

    Bodvarsson, G.S.; Pruess, K.; Lippmann, M.J.

    1985-03-01

    During the last decade the use of numerical modeling for geothermal resource evaluation has grown significantly, and new modeling approaches have been developed. In this paper we present a summary of the present status in numerical modeling of geothermal systems, emphasizing recent developments. Different modeling approaches are described and their applicability discussed. The various modeling tasks, including natural-state, exploitation, injection, multi-component and subsidence modeling, are illustrated with geothermal field examples. 99 refs., 14 figs.

  11. Geothermal Today - 2001

    SciTech Connect (OSTI)

    2001-08-01

    U.S. Department of Energy Geothermal Energy Program Highlights Partnering with Industry A New Power Source for Nevada Drilling Research Finding Geothermal Resources Small-Scale Geothermal Power Plants The Heat Beneath Your Feet R&D 100 Award Program in Review Milestones January 2000 The U.S. Department of Energy GeoPowering the West initiative was launched. February 2000 Grants totaling $4.8 million were awarded in six western states, primarily for development of reservoir exploration, character

  12. Geothermal Today - 1999

    SciTech Connect (OSTI)

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  13. Geothermal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Geothermal See how we can generate clean, renewable energy from hot water sources deep beneath the Earth's surface. Geothermal energy is heat derived below the earth's surface which can be harnessed to generate clean, renewable energy. This vital, clean energy resource supplies renewable power around the clock and emits little or no greenhouse gases -- all while requiring a small environmental footprint to develop. The Energy Department is committed to responsibly developing,

  14. National Geothermal Student Competition

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Energy Department's National Geothermal Student Competition (GSC) seeks students interested in building and showcasing scientific research, communication and leadership skills to convey the...

  15. Other Geothermal Energy Publications

    Broader source: Energy.gov [DOE]

    Here you'll find links to other organization's publications — including technical reports, newsletters, brochures, and more — about geothermal energy.

  16. Geothermal Case Study Challenge

    Broader source: Energy.gov [DOE]

    The Energy Department's Geothermal Technologies Office hosts an annual student competition in exploration research to engage students pursuing STEM careers and, ultimately, to aid in the next...

  17. Frequently Asked Questions | Geothermal

    Office of Scientific and Technical Information (OSTI)

    published journal citations and patents for geothermal products and technologies. Many of the reports, considered ... There are also various citation export options available on ...

  18. Overview of geothermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The geothermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  19. Geothermal | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The U.S. Geological Survey estimates that, in the United States alone, 30 gigawatts of ... The Geothermal Technologies Office (GTO) supports research and development in innovative ...

  20. National Laboratory Geothermal Publications

    Broader source: Energy.gov [DOE]

    You can find publications, including technical papers and reports, about geothermal technologies, research, and development at the following U.S. Department of Energy national laboratories.

  1. Sandia Energy Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wable-energy-official-visits-sandiafeed 0 Sandia's Frontier Observatory for Research In Geothermal Energy (FORGE) Phase 1 Proposals Were Both Successful http:energy.sandia.gov...

  2. Geothermal Prospects in Colorado

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    * Advanced AirWater Hybrid Cooling * Geothermal Coproduction Field Power Validation * Systems Engineering and ... Cumulative Capacity (MW e ) Deep EGS Undiscovered ...

  3. Geothermal Outreach Publications

    Broader source: Energy.gov [DOE]

    Here you'll find the U.S. Department of Energy's (DOE) most recent outreach publications about geothermal technologies, research, and development.

  4. Life Cycle Water Consumption and Water Resource Assessment for

    Office of Scientific and Technical Information (OSTI)

    Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects (Technical Report) | SciTech Connect Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects Citation Details In-Document Search Title: Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS

  5. New Working Fluids Cut a Wider Swath of Geothermal Reserves | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Working Fluids Cut a Wider Swath of Geothermal Reserves New Working Fluids Cut a Wider Swath of Geothermal Reserves December 17, 2013 - 12:00am Addthis Scientists at the Energy Department's Pacific Northwest National Laboratory (PNNL) have made a commercially viable discovery: how to capture substantially more heat from low-temperature resources. In a market where binary working fluids are costly and traditionally inefficient, this advance harnesses a much larger sector of near-term

  6. Development of a Plan to Implement Enhanced Geothermal Systems (EGS) in the Animas Valley, New Mexico - Final Report - 07/26/2000 - 02/01/2001

    SciTech Connect (OSTI)

    Schochet, Daniel N.; Cunniff, Roy A.

    2001-02-01

    The concept of producing energy from hot dry rock (HDR), originally proposed in 1971 at the Los Alamos National Laboratory, contemplated the generation of electric power by injecting water into artificially created fractures in subsurface rock formations with high heat flow. Recognizing the inherent difficulties associated with HDR, the concept of Enhanced Geothermal Systems was proposed. This embraces the idea that the amount of permeability and fluid in geothermal resources varies across a spectrum, with HDR at one end, and conventional hydrothermal systems at the other. This report provides a concept for development of a ''Combined Technologies Project'' with construction and operation of a 6 MW (net) binary-cycle geothermal power plant that uses both the intermediate-depth hydrothermal system at 1,200 to 3,300 feet and a deeper EGS capable system at 3,000 to 4,000 feet. Two production/injection well pairs will be drilled, one couplet for the hydrothermal system, and one for the E GS system. High-pressure injection may be required to drive fluid through the EGS reservoir from the injection to the production well.

  7. Montana geothermal handbook

    SciTech Connect (OSTI)

    Perlmutter, S.; Birkby, J.

    1980-10-01

    The permits required for various geothermal projects and the approximate time needed to obtain them are listed. A brief discussion of relevant statutes and regulations is included. Some of the state and federal grant and loan programs available to a prospective geothermal developer are described. The names and addresses of relevant state and federal agencies are given. Legal citations are listed. (MHR)

  8. Geothermal Financing Workbook

    SciTech Connect (OSTI)

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  9. NREL: Geothermal Technologies - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Staff Engineers, analysts, researchers, and others who support NREL's geothermal technologies projects come from disciplines and organizations across the laboratory depending on each project's requirements. Here you'll find contact information for NREL's geothermal technologies team. Management Henry (Bud) Johnston Laboratory Program Manager, Geothermal Technologies Stacee Foster Project Administrator Colorado Collaboration for Subsurface Research in Geothermal Energy (SURGE) Bud

  10. Geothermal energy: a brief assessment

    SciTech Connect (OSTI)

    Lunis, B.C.; Blackett, R.; Foley, D.

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  11. National Geothermal Data System - DOE Geothermal Data Repository

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presentation | Department of Energy - DOE Geothermal Data Repository Presentation National Geothermal Data System - DOE Geothermal Data Repository Presentation Overview of the National Geothermal Data System (NGDS) and DOE's node on the NGDS. ngds_gdr_general_presentation.pdf (2.17 MB) More Documents & Publications How to Utilize the National Geothermal Data System (NGDS) and Create Your Own Federated Data Network with "Node-In-A-Box" Guidelines for Provision and Interchange of

  12. Geothermal Power Generation Plant; 2010 Geothermal Technology Program Peer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review Report | Department of Energy Power Generation Plant; 2010 Geothermal Technology Program Peer Review Report Geothermal Power Generation Plant; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies Program Peer Review adse_003_lund.pdf (189.07 KB) More Documents & Publications Feasibility of EGS Development at Bradys Hot Springs, Nevada Concept Testing and Development at the Raft River Geothermal Field, Idaho Detecting Fractures Using Technology

  13. Geothermal Heat Flow and Existing Geothermal Plants | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Geothermal Plants Geothermal Heat Flow and Existing Plants With plants in development. Click on the numbers to see the sites. CLOSE About the Points About the Data What is Heat Flow? Heat Flow (mW/m^2) 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 150 250 View All Maps Addthis

  14. Desert Peak Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Desert Peak Geothermal Area (Redirected from Desert Peak Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Desert Peak Geothermal Area Contents 1 Area Overview 2...

  15. Java - Dieng Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Java - Dieng Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Java - Dieng Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  16. Java - Kamojang Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Java - Kamojang Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Java - Kamojang Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  17. Darajat Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    n":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Geothermal Resource Area Java - Darajat Geothermal Area Geothermal Region Sunda Volcanic Arc Plant Information Owner...

  18. Cibuni Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Hide Map Geothermal Resource Area Pengalengan Geothermal Area Geothermal Region West Java Plant Information Owner PLN Commercial Online Date 2014 Power Plant Data Type of Plant...

  19. Java - Darajat Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Java - Darajat Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Java - Darajat Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  20. Oregon/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Phase III - Permitting and Initial Development Neal Hot Springs Geothermal Area Snake River Plain Neal Hot Springs II Geothermal Project U.S. Geothermal Vale, Oregon Phase I -...

  1. Great Basin Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Great Basin Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Great Basin Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  2. Big Geysers Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Facility General Information Name Big Geysers Geothermal Facility Facility Big Geysers Sector Geothermal energy Location Information Location Clear Lake, California...

  3. Navy Geothermal Program | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Program Jump to: navigation, search Logo: Navy Geothermal Program Office Name: Navy Geothermal Program Office Address: 429 East Bowen Road Place: China Lake, CA Zip:...

  4. Orita 2 Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Orita 2 Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Orita 2 Geothermal Project Project Location Information Coordinates...

  5. Thermo 2 Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Thermo 2 Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Thermo 2 Geothermal Project Project Location Information Coordinates...

  6. FHP Manufacturing Company Geothermal | Open Energy Information

    Open Energy Info (EERE)

    FHP Manufacturing Company Geothermal Jump to: navigation, search Name: FHP Manufacturing Company: Geothermal Place: Florida Sector: Geothermal energy Product: FHP Manufacturing...

  7. Newdale Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area Geothermal Region Geothermal Project Profile Developer Standard Steam Trust Project Type Hydrothermal GEA Development Phase Phase I - Resource Procurement and...

  8. Mary's River Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area Geothermal Region Geothermal Project Profile Developer Standard Steam Trust Project Type Hydrothermal GEA Development Phase Phase I - Resource Procurement and...

  9. Wild Rose Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Wild Rose Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Wild Rose Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory...

  10. GETEM -Geothermal Electricity Technology Evaluation Model | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GETEM -Geothermal Electricity Technology Evaluation Model GETEM -Geothermal Electricity Technology Evaluation Model A guide to providing input to GETEM, the Geothermal Electricity ...

  11. Butte Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Butte Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Butte Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  12. Granite Creek Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "address":"","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Red House, CA County Humboldt County, CA Geothermal Area Geothermal Region Geothermal...

  13. Chocolate Mountains Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Chocolate Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chocolate Mountains Geothermal Area Contents 1 Area Overview 2 History and...

  14. Coyote Canyon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Resource Area Geothermal Region Geothermal Project Profile Developer Terra-Gen Project Type Hydrothermal GEA Development Phase Phase IV - Resource Production and...

  15. Alpine Geothermal Drilling | Open Energy Information

    Open Energy Info (EERE)

    search Logo: Alpine Geothermal Drilling Name: Alpine Geothermal Drilling Address: PO Box 141 Place: Kittredge, Colorado Zip: 80457 Region: Rockies Area Sector: Geothermal...

  16. Newberry Caldera Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Energy 1 July 1992 USFS BLM GeothermalExploration GeothermalWell Field GeothermalPower Plant Exploration Drilling Exploratory Boreholes Production Wells Thermal Gradient Holes...

  17. National Geothermal Resource Assessment and Classification |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Geothermal Resource Assessment and Classification track 2: hydrothermal | geothermal 2015 peer review National Geothermal Data System Architecture Design, Testing and ...

  18. Austria Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Austria Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  19. Australia Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Australia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  20. Outside a Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Outside a Geothermal Region Details Areas (1) Power Plants (1) Projects (0) Techniques (0) This is a category for geothermal areas added that do...

  1. New Zealand Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home New Zealand Geothermal Region Details Areas (2) Power Plants (2) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  2. Russia Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Russia Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  3. Iceland Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Iceland Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References Geothermal Region Data Area USGS Resource...

  4. Unalaska Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Unalaska, HI County Aleutians West, HI Geothermal Area Geothermal Region Geothermal Project Profile...

  5. Nevada/Geothermal | Open Energy Information

    Open Energy Info (EERE)

    Confirmation Silver Peak Geothermal Area Walker-Lane Transition Zone Geothermal Region Smith Creek Geothermal Project Ormat Phase I - Resource Procurement and Identification Smith...

  6. Fairbanks Geothermal Energy Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fairbanks Geothermal Energy Project Fairbanks Geothermal Energy Project Fairbanks Geothermal Energy Project presentation at the April 2013 peer review meeting held in Denver, ...

  7. Marana Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Marana Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Marana Aquaculture Low Temperature Geothermal Facility Facility Marana Sector Geothermal...

  8. Jackpot Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Jackpot Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Jackpot Aquaculture Low Temperature Geothermal Facility Facility Jackpot Sector Geothermal...

  9. Safford Aquaculture Low Temperature Geothermal Facility | Open...

    Open Energy Info (EERE)

    Safford Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Safford Aquaculture Low Temperature Geothermal Facility Facility Safford Sector Geothermal...

  10. Sou Hills Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Sou Hills Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Sou Hills Geothermal Project Project Location Information Coordinates...

  11. Template:GeothermalProject | Open Energy Information

    Open Energy Info (EERE)

    navigation, search This is the 'GeothermalProject' template. To define a new Geothermal Development Project, please use the Geothermal Development Project Form. Parameters Place...

  12. Mt. Baker Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Mt. Baker Geothermal Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Mt. Baker Geothermal Project Project Location Information Coordinates...

  13. Medicine Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Page Technique Activity Start Date Activity End Date Reference Material Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Geothermal Literature Review 1984...

  14. Geothermal Technology Basics | Department of Energy

    Office of Environmental Management (EM)

    Photo of steam pouring out of a geothermal plant. Geothermal technologies use the clean, sustainable heat from the Earth. Geothermal resources include the heat retained in shallow ...

  15. Nesjavellir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. Reducing Silica Deposition Potential in Waste Waters...

  16. Turkey Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Turkey Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References...

  17. Kemaliye Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Manisa, Turkey County Alasehir Geothermal Area Alasehir Geothermal Area Geothermal Region Aegean-West...

  18. Momotombo Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. Tom Harding-Newman, James Morrow, Subir Sanyal,...

  19. Zunil Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    World Geothermal Power Generation 2001-2005. Proceedings of World Geothermal Congress; Turkey: World Geothermal Congress. 3.0 3.1 Francisco Asturias. 2003. Reservoir assessment...

  20. Alasehir Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Manisa, Turkey County Alasehir Geothermal Area Alasehir Geothermal Area Geothermal Region Aegean-West...

  1. Cascades Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Cascades Geothermal Region (Redirected from Cascades) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cascades Geothermal Region Details Areas (2) Power Plants (0)...

  2. White Mountain Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Location County Geothermal Area Geothermal Region Geothermal Project Profile Developer Eureka Green Systems Project Type Hydrothermal GEA Development Phase Phase II - Resource...

  3. China Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home China Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References...

  4. Grace Geothermal Inc | Open Energy Information

    Open Energy Info (EERE)

    Ohio Zip: 44077 Sector: Geothermal energy Product: Grace Geothermal installs geothermal pumps in Ohio. Coordinates: 41.724205, -81.245244 Show Map Loading map......

  5. Sound Geothermal Corporation | Open Energy Information

    Open Energy Info (EERE)

    energy Product: Sound Geothermal coporation helps provide information into geothermal pumps. References: Sound Geothermal Corporation1 This article is a stub. You can help...

  6. Phoenix Geothermal Services | Open Energy Information

    Open Energy Info (EERE)

    Phoenix Geothermal Services Jump to: navigation, search Name: Phoenix Geothermal Services Place: Auburn, New York Sector: Geothermal energy Product: Designer, developer, and...

  7. Alum Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Alum Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Alum Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  8. Aurora Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Aurora Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Aurora Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  9. Berln Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Berln Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Berln Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  10. Germany Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Germany Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Germany Geothermal Region Details Areas (1) Power Plants (0) Projects (0) Techniques (0)...

  11. Stillwater Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Stillwater Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Stillwater Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  12. Thailand Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Thailand Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Thailand Geothermal Region Details Areas (1) Power Plants (1) Projects (0) Techniques (0)...

  13. Krafla Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Krafla Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Krafla Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  14. Salt Wells Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Salt...

  15. Rye Patch Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Rye Patch Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Rye Patch Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory...

  16. Amedee Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Amedee Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Amedee Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  17. Geothermal/Leasing | Open Energy Information

    Open Energy Info (EERE)

    GeothermalLeasing < Geothermal(Redirected from Leasing) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant...

  18. Blue Mountain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (Redirected from Blue Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Blue Mountain Geothermal Area Contents 1 Area...

  19. Indonesia Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Indonesia Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Indonesia Geothermal Region Details Areas (5) Power Plants (4) Projects (0) Techniques (0)...

  20. Miravalles Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Miravalles Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Miravalles Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  1. Stillwater Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Stillwater Geothermal Area (Redirected from Stillwater Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Stillwater Geothermal Area Contents 1 Area Overview 2...

  2. Chena Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Chena Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Chena Area...

  3. Oita Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Oita Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Oita Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  4. Geothermal/Grid Connection | Open Energy Information

    Open Energy Info (EERE)

    GeothermalGrid Connection < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power Plant Grid Connection...

  5. Cove Fort Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Cove Fort Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Cove Fort Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory...

  6. Geothermal/Environment | Open Energy Information

    Open Energy Info (EERE)

    GeothermalEnvironment < Geothermal(Redirected from Environment) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Planning Leasing Exploration Well Field Power...

  7. Salton Sea Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Salton Sea Geothermal Area (Redirected from Salton Sea Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salton Sea Geothermal Area Contents 1 Area Overview 2...

  8. Philippines Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Philippines Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Philippines Geothermal Region Details Areas (1) Power Plants (0) Projects (0) Techniques...

  9. Geysers Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Geysers Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geysers Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and...

  10. Larderello Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Larderello Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Larderello Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  11. Heber Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Heber Geothermal Area (Redirected from Heber Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Heber Geothermal Area Contents 1 Area Overview 2 History and...

  12. SWTDI Geothermal Aquaculture Facility Greenhouse Low Temperature...

    Open Energy Info (EERE)

    Geothermal Facility Facility SWTDI Geothermal Aquaculture Facility Sector Geothermal energy Type Greenhouse Location Las Cruces, New Mexico Coordinates 32.3123157,...

  13. SWTDI Geothermal Aquaculture Facility Aquaculture Low Temperature...

    Open Energy Info (EERE)

    Geothermal Facility Facility SWTDI Geothermal Aquaculture Facility Sector Geothermal energy Type Aquaculture Location Las Cruces, New Mexico Coordinates 32.3123157,...

  14. Geothermal Reconnaissance From Quantitative Analysis Of Thermal...

    Open Energy Info (EERE)

    Geothermal Exploration Activities Activities (1) Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Areas (1) Raft River Geothermal Area Regions (0)...

  15. Raft River Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Raft River Geothermal Facility General Information Name Raft River Geothermal Facility Facility Raft River...

  16. Geothermal Literature Review | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Literature Review (Smith, 1983) Unspecified A History Of Hot Dry Rock Geothermal Energy Systems Geothermal Literature Review (Wisian, Et Al., 2001) Unspecified...

  17. Tuscarora Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Information Name Tuscarora Geothermal Facility Facility Geothermal Power Plant Sector Geothermal energy Location Information Coordinates 38.8871315, -77.0030762 Loading...

  18. Category:Geothermal Projects | Open Energy Information

    Open Energy Info (EERE)

    Each year different agencies report the upcoming geothermal developing projects. The Geothermal Energy Association (GEA) publishes their findings in their annual US Geothermal...

  19. NREL: Learning - Student Resources on Geothermal Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Energy The following resources can provide you with more information on geothermal energy. Geothermal Technologies Program U.S. Department of Energy's Office of Energy...

  20. Salavatli Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Form" above to add content History and Infrastructure Operating Power Plants: 3 Dora-1 Geothermal Energy Power Plant Dora-2 Geothermal Power Plant Dora-3 Geothermal Power Plant...

  1. Dixie Valley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Dixie Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Dixie Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1...

  2. Lihir Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Lihir Geothermal Power Plant General Information Name Lihir Geothermal Power Plant Sector Geothermal energy Location Information Location Lihir Island, Papua New Guinea Coordinates...

  3. Ngatamariki Geothermal Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Name Ngatamariki Geothermal Power Plant Facility Geothermal Power Plant Sector Geothermal energy Location Information Address Mighty River Power Ngahere House 283...

  4. Blundell 2 Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Name Blundell 2 Geothermal Facility Facility Blundell 2 Geothermal Facility Sector Geothermal energy Location Information Address Roosevelt Hot Springs Road Location...

  5. Patua Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Patua Geothermal Facility Facility Geothermal Power Plant Sector Geothermal energy Location Information Coordinates 39.5128511, -119.8066361 Loading...

  6. Fireball Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Nixon, NV County Churchill County, NV Geothermal Area Fireball Ridge Geothermal Area Geothermal Region...

  7. Dixie Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    n":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Nevada County Churchill County, NV Geothermal Area Dixie Valley Geothermal Area Geothermal Region Central...

  8. Upsal Hogback Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location County Churchill County, NV Geothermal Area Geothermal Region Geothermal Project Profile Developer...

  9. Desert Queen Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ,"group":"","inlineLabel":"","visitedicon":"" Hide Map Location Fernley, NV County Churchill County, NV Geothermal Area Desert Queen Geothermal Area Geothermal Region Northwest...

  10. Fallon Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Fallon, NV County Churchill County, NV Geothermal Area Fallon Geothermal Area Geothermal Region Northwest Basin...

  11. Patua Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ,"group":"","inlineLabel":"","visitedicon":"" Hide Map Location Fernley, NV County Churchill and Lyon Counties, NV Geothermal Area Patua Geothermal Area Geothermal Region...

  12. Lee Allen Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    ","group":"","inlineLabel":"","visitedicon":"" Hide Map Location Fallon, NV County Churchill County, NV Geothermal Area Geothermal Region Geothermal Project Profile Developer...

  13. Tungsten Mtn Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location County Churchill County, UT Geothermal Area Tungsten Mountain Geothermal Area Geothermal Region...

  14. North Valley Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","inlineLabel":"","visitedicon":"" Hide Map Location Nixon, CA County Washoe and Churchill, CA Geothermal Area Geothermal Region Geothermal Project Profile Developer Nevada...

  15. Dixie Meadows Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    "","icon":"","group":"","inlineLabel":"","visitedicon":"" Hide Map Location County Churchill County, NV Geothermal Area Dixie Meadows Geothermal Area Geothermal Region Central...

  16. Mexico Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Mexico Geothermal Region Details Areas (0) Power Plants (0) Projects (0) Techniques (0) References...

  17. National Geothermal Data System (NGDS) Initiative | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Data System (NGDS) Initiative National Geothermal Data System (NGDS) Initiative Geothermal energy in the subsurface is better understood through data visualization, as ...

  18. Systems Engineering; 2010 Geothermal Technology Program Peer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering; 2010 Geothermal Technology Program Peer Review Report Systems Engineering; 2010 Geothermal Technology Program Peer Review Report DOE 2010 Geothermal Technologies ...

  19. Briefing Book, Interagency Geothermal Coordinating Council (IGCC) Meeting of April 28, 1988

    SciTech Connect (OSTI)

    1988-04-28

    The IGCC of the U.S. government was created under the intent of Public Law 93-410 (1974) to serve as a forum for the discussion of Federal plans, activities, and policies that are related to or impact on geothermal energy. Eight Federal Departments were represented on the IGCC at the time of this meeting. The main presentations in this report were on: Department of Energy Geothermal R&D Program, the Ormat binary power plant at East Mesa, CA, Potential for direct use of geothermal at Defense bases in U.S. and overseas, Department of Defense Geothermal Program at China Lake, and Status of the U.S. Geothermal Industry. The IGCC briefing books and minutes provide a historical snapshot of what development and impact issues were important at various time. (DJE 2005)

  20. Geothermal Resources Council Annual Meeting

    Broader source: Energy.gov [DOE]

    Reno, Nevada The 2015 Geothermal Resources Council (GRC) Annual Meeting and the Geothermal Energy Association (GEA) Geothermal Energy Expo will be held in Reno, Nevada, on September 20–23. As the world’s largest annual geothermal conference and expo, this year’s event will bring together leaders in the geothermal industry; showcase the latest in geothermal research, exploration, development, and utilization; and feature workshops on important industry topics and field trips to nearby geothermal sites. Register today to reserve your spot.

  1. Geothermal Maps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Geothermal Maps Geothermal Maps Map of the United States, with color bands indicating favorability of deep EGS and dots indicating identified hydrothermal sites. The Geothermal Technologies Office (GTO) carries out R&D and demonstration efforts to deploy 12 GWe of clean geothermal energy by 2020 and expand geothermal into new U.S. regions. Locating and developing resources is an important part of that mission. GTO works with national laboratories to develop maps and

  2. Water Efficient Energy Production for Geothermal Resources

    SciTech Connect (OSTI)

    GTO

    2015-06-01

    Water consumption in geothermal energy development occurs at several stages along the life cycle of the plant, during construction of the wells, piping, and plant; during hydroshearing and testing of the reservoir (for EGS); and during operation of the plant. These stages are highlighted in the illustration above. For more information about actual water use during these stages, please see the back of this sheet..

  3. Geothermal Play Fairway Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Analysis Geothermal Play Fairway Analysis pfw-webinar.pptx (1.75 MB) More Documents & Publications Geothermal Play Fairway Analysis LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM 02/11/2014 LOW TEMPERATURE GEOTHERMAL MINERAL RECOVERY PROGRAM

  4. Geothermal Heat Pumps | Department of Energy

    Energy Savers [EERE]

    Heat Pump Systems Geothermal Heat Pumps Geothermal Heat Pumps Watch how geothermal heat ... As with any heat pump, geothermal and water-source heat pumps are able to heat, cool, and, ...

  5. Category:Geothermal Technologies | Open Energy Information

    Open Energy Info (EERE)

    out of 7 total. C Co-Produced Geothermal Systems E Enhanced Geothermal Systems (EGS) G Geothermal Direct Use G cont. GeothermalExploration Ground Source Heat Pumps H...

  6. Stillwater Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    General Information Name Stillwater Geothermal Facility Facility Stillwater Sector Geothermal energy Location Information Location Fallon, Nevada Coordinates 39.4727622,...

  7. Stanford Geothermal Workshop 2012 Annual Meeting

    Broader source: Energy.gov [DOE]

    Presentation slides for the Stanford Geothermal Workshop Annual Meeting presentation by Doug Hollett, Geothermal Technologies Program Manager

  8. Fish Producers Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Fish Producers Aquaculture Low Temperature Geothermal Facility Facility Fish Producers...

  9. Oceanridge Fisheries Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Oceanridge Fisheries Sector Geothermal energy Type Aquaculture Location Mecca, California Coordinates 33.571692,...

  10. Arrowhead Fisheries Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Arrowhead Fisheries Sector Geothermal energy Type Aquaculture Location Susanville, California Coordinates...

  11. Dashun Fisheries Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Dashun Fisheries Sector Geothermal energy Type Aquaculture Location Mecca, California Coordinates 33.571692,...

  12. Pacific Aquafarms Aquaculture Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Aquaculture Low Temperature Geothermal Facility Facility Pacific Aquafarms Sector Geothermal energy Type Aquaculture Location Niland, California Coordinates 33.2400366,...

  13. Tsuji Nurseries Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Nurseries Greenhouse Low Temperature Geothermal Facility Facility Tsuji Nurseries Sector Geothermal energy Type Greenhouse Location Susanville, California Coordinates...

  14. Jackson Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Jackson Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Jackson...

  15. Salt Wells Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Salt Wells Geothermal Project Project Location Information Coordinates 39.580833333333,...

  16. Updating the Classification of Geothermal Resources

    Broader source: Energy.gov [DOE]

    USGS is working with DOE, the geothermal industry, and academic partners to develop a new geothermal resource classification system.

  17. Smith Creek Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Smith Creek Geothermal Project Project Location Information Coordinates 39.311388888889,...

  18. Water Sampling At International Geothermal Area, Philippines...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At International Geothermal Area, Philippines (Wood, 2002) Exploration...

  19. Aqua Farms International Aquaculture Low Temperature Geothermal...

    Open Energy Info (EERE)

    Farms International Aquaculture Low Temperature Geothermal Facility Jump to: navigation, search Name Aqua Farms International Aquaculture Low Temperature Geothermal Facility...

  20. Flint Greenhouses Greenhouse Low Temperature Geothermal Facility...

    Open Energy Info (EERE)

    Greenhouses Greenhouse Low Temperature Geothermal Facility Jump to: navigation, search Name Flint Greenhouses Greenhouse Low Temperature Geothermal Facility Facility Flint...