Sample records for geoscience laboratory cxs

  1. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey CampbelllongApplyingGeorge T.Geoscience Laboratory

  2. Sandia National Laboratories: Research: Research Foundations: Geoscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclearHomeland and NuclearReportMaterialsScienceGeoscience

  3. Data Assimilation in Geosciences

    E-Print Network [OSTI]

    Data Assimilation in Geosciences: A highly multidisciplinary enterprise Adrian Sandu Computational Science Laboratory Department of Computer Science Virginia Tech #12;Data assimilation fuses information kinetics Aerosols Model Transport Meteorology Emissions Observations Data Assimilation Targeted Observ

  4. Summaries of physical research in the geosciences

    SciTech Connect (OSTI)

    Not Available

    1990-10-01T23:59:59.000Z

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, industry, universities, and other governmental agencies. The summaries in this document, prepared by the investigators, briefly describe the scope of the individual programs. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  5. Summaries of FY 1993 geosciences research

    SciTech Connect (OSTI)

    Not Available

    1993-12-01T23:59:59.000Z

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the DOE`s many missions. The Geosciences Research Program is supported by the Office of Energy Research. The participants in this program include DOE laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the DOE and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar-atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  6. Sandia National Laboratories: Workshops

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geoscience, Climate and Consequence Effect at Sandia National Laboratories presented on "Hydraulic Fracturing: Role of Government-Sponsored R&D." Marianne's presentation was part...

  7. Sandia National Laboratories: Careers: Geoscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home DistributionTransportationVice-PresidentEvents Sorry, there are no

  8. analytical laboratories method: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    observations Geosciences Websites Summary: Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA Christa D. Peters Environmental...

  9. Geosciences projects FY 1985 listing

    SciTech Connect (OSTI)

    Not Available

    1986-05-01T23:59:59.000Z

    This report, which updates the previous working group publication issued in February 1982, contains independent sections: (A) Summary Outline of DOE Geoscience and Related Studies, and (B) Crosscut of DOE Geoscience and Geoscience Related Studies. The FY 1985 funding levels for geoscience and related activities in each of the 11 programs within DOE are presented. The 11 programs fall under six DOE organizations: Energy Research Conservation and Renewable Energy; Fossil Energy; Defense Programs; Environmental, Safety, and Health; and Civilian radioactive Waste. From time to time, there is particular need for special interprogrammatic coordination within certain topical areas. section B of the report is intended to fill this need for a topical categorization of the Department's geoscience and related activities. These topical areas in Solid Earth Geosciences, Atmospheric Geosciences, Ocean Geosciences, Space and Solar/Terrestrial Geosciences, and Hydrological Geosciences are presented in this report.

  10. Summaries of FY 91 geosciences research

    SciTech Connect (OSTI)

    Not Available

    1991-11-01T23:59:59.000Z

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. Theses activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs. 2 tabs.

  11. Summaries of FY 92 geosciences research

    SciTech Connect (OSTI)

    Not Available

    1992-12-01T23:59:59.000Z

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences that are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, academic institutions, and other governmental agencies. These activities are formalized by a contract or grant between the Department of Energy and the organization performing the work, providing funds for salaries, equipment, research materials, and overhead. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions and their subdivisions including Earth dynamics, properties of Earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  12. The College of Geosciences

    E-Print Network [OSTI]

    traditional education offerings and innovative research-based learning, learning communities, international · Environmental chemistry and fishery safety · Resource geosciences and methane hydrates · Service center for environmental observations and advanced chemical analysis Geochemical & Environmental Research Group #12;The

  13. MSc Integrated Petroleum Geoscience Programme Handbook

    E-Print Network [OSTI]

    Levi, Ran

    MSc Integrated Petroleum Geoscience Programme Handbook 2013-14 edition #12;Page 2 Contents Preface 3 1.MSc Integrated Petroleum Geoscience ­ FAQ 4 1.1 Why should I do this programme? 4 1.2 What Integrated Petroleum Geoscience: 57F610B1 PgDip Integrated Petroleum Geoscience: 61F610VX PgCert Integrated

  14. applications laboratory colorado: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory 13 O:CSUEHorticultureNative Plant Masters20132013 NPM Application.doc432013 Colorado State University Extension 2009 Geosciences Websites...

  15. Geoscience/Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMFormsGasReleaseSpeechesHall ATours,DioxideGeoscience/Environment

  16. Sandia Energy - Geoscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInAppliedEnergy StorageGeochemistryGeoscience

  17. Geoscience/Environment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey CampbelllongApplyingGeorge T.Geoscience

  18. Sandia National Laboratories: Research: Research Foundations: Geoscience:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters: WeaponCybernetics:MaterialsProject: Center

  19. Sandia National Laboratories: Research: Research Foundations: Geoscience:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters: WeaponCybernetics:MaterialsProject:

  20. Sandia National Laboratories: Research: Research Foundations: Geoscience:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol HomeFacebook Twitter YouTubeCenters:

  1. Geoscience Equipment Inventory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFundingGeneGenomeGeoffreyGeorge A.Fall Job

  2. Geoscience Prep Lab Slideshow | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFundingGeneGenomeGeoffreyGeorge A.Fall

  3. Electron probe microanalysis in geoscience: a tutorial

    SciTech Connect (OSTI)

    Gooley, R.

    1981-01-01T23:59:59.000Z

    A tutorial on the history, theory and use of electron probe microanalysis in the geosciences is presented. (ACR)

  4. Journal of China University of Geosciences, Vol. 19, No. 5, p. 549566, October 2008 ISSN 1002-0705 Printed in China

    E-Print Network [OSTI]

    Jiang, Ganqing

    Journal of China University of Geosciences, Vol. 19, No. 5, p. 549­566, October 2008 ISSN 1002-0705 Printed in China Microbial Mats in the Mesoproterozoic Carbonates of the North China Platform Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing 100083

  5. Geoscience research for energy security

    SciTech Connect (OSTI)

    Not Available

    1987-02-01T23:59:59.000Z

    This report focuses on the nation's geoscience needs and recommends DOE activities to mitigate major problems that effect energy security. The report recommends new or redirected DOE geoscience research initiatives for oil and gas, coal, nuclear resources, structures and processes in the earth's crust, geothermal resources, oil shale, and waste disposal. In light of the current and near-term national energy requirements, federal budget constraints, and the diminished R and D efforts from the domestic energy industry, the Board recommends that DOE: assign highest geoscience research emphasis to shorter-term, energy priorities of the nation; particularly advanced oil and gas exploration and production technologies; establish in DOE an Office of Geoscience Research to develop and administer a strategic plan for geoscience research activities; establish oil and gas research centers within each of the six major oil and gas provinces of the United States to conduct and coordinate interdisciplinary problem-oriented research; increase oil and gas research funding by an initial annual increment of $50 million, primarily to support the regional research centers.

  6. PREVIOUS GEOSCIENCES INTERNSHIP EXPERIENCES CITY PLANNING

    E-Print Network [OSTI]

    Kurapov, Alexander

    PREVIOUS GEOSCIENCES INTERNSHIP EXPERIENCES CITY PLANNING TRANSPORTATION PLANNING LAND USE (HIGHER EDUCATION) LAND USE PLANNING INTERNSHIPS CH2M-HILL PLANNING AND ENGINEERING CITY OF ANAHEIM

  7. Proceedings of the geosciences workshop

    SciTech Connect (OSTI)

    none,

    1991-01-01T23:59:59.000Z

    The manuscripts in these proceedings represent current understanding of geologic issues associated with the Weldon Spring Site Remedial Action Project (WSSRAP). The Weldon Spring site is in St. Charles County, Missouri. The proceedings are the record of the information presented during the WSSRAP Geosciences Workshop conducted on February 21, 1991. The objective of the workshop and proceedings is to provide the public and scientific community with technical information that will facilitate a common understanding of the geology of the Weldon Spring site, of the studies that have been and will be conducted, and of the issues associated with current and planned activities at the site. This coverage of geologic topics is part of the US Department of Energy overall program to keep the public fully informed of the status of the project and to address public concerns as we clean up the site and work toward the eventual release of the property for use by this and future generations. Papers in these proceedings detail the geology and hydrology of the site. The mission of the WSSRAP derives from the US Department of Energy's Surplus Facilities Management Program. The WSSRAP will eliminate potential hazards to the public and the environment and make surplus real property available for other uses to the extent possible. This will be accomplished by conducting remedial actions which will place the quarry, the raffinate pits, the chemical plant, and the vicinity properties in a radiologically and chemically safe condition. The individual papers have been catalogued separately.

  8. Summaries of physical research in the geosciences

    SciTech Connect (OSTI)

    Not Available

    1987-09-01T23:59:59.000Z

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas that are germane to the Department of Energy's many missions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geoscience Research Program includes research in geology, petrology, geophysics, geochemistry, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's technological needs.

  9. Summaries of physical research in the geosciences

    SciTech Connect (OSTI)

    Not Available

    1983-09-01T23:59:59.000Z

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries in the document describe the scope of the individual programs and detail the research performed during 1982 to 1983. The Geoscience Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's technological needs.

  10. Summaries of physical research in the geosciences

    SciTech Connect (OSTI)

    Not Available

    1986-09-01T23:59:59.000Z

    The summaries in this document describe the scope of the individual programs and detail the research performed during 1984-1985. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas.

  11. Geosciences 466/566 Digital Image Processing

    E-Print Network [OSTI]

    Wright, Dawn Jeannine

    Geosciences 466/566 Digital Image Processing Winter 2007 Instructor Dr. Anne Nolin Wilkinson 120 This course focuses on the digital image processing of satellite image data. Topics include: data types, image://my.oregonstate.edu Textbook Jensen, J. R., Digital Image Processing: A Remote Sensing Perspective, 3rd Edition, Prentice Hall

  12. Mathematical Geosciences ISSN 1874-8961

    E-Print Network [OSTI]

    Elsner, James B.

    for Mathematical Geosciences. This e-offprint is for personal use only and shall not be self-archived in electronic of touchdown points that can be used as a component to a tornado catastrophe model. Keywords Tornado · Spatial point process model · Spatial density · Report bias 1 Introduction Reliable and stable estimates

  13. Careers Doctor of Philosophy in Geoscience

    E-Print Network [OSTI]

    Walker, Lawrence R.

    for those pursuing an education in geology or a geoscience related field as demand pay for Geoscientists of $82,500 with the highest median wages in the oil and gas industry (median $125,350). Forbes recently ranked Geology #7 in its "15

  14. Careers -Master of Science in Geoscience

    E-Print Network [OSTI]

    Walker, Lawrence R.

    pursuing an education in geology or a geoscience related field as demand pay for Geoscientists of $82,500 with the highest median wages in the oil and gas industry (median $125,350). Forbes recently ranked Geology #7 in its "15

  15. Careers in Geology Department of Geosciences

    E-Print Network [OSTI]

    Logan, David

    Army Corps of Engineers, state geological surveys Industry Oil companies, environmental firms, miningCareers in Geology Department of Geosciences #12;Geology is the scientific study of planet Earth on the following pages. UNL students examine tidal flats on a recent trip to the Bahamas. #12; Economic geology

  16. Application of neutron computed tomography in the geosciences

    E-Print Network [OSTI]

    Wilding, M.; Shields, K.; Lesher, C. E.

    2005-01-01T23:59:59.000Z

    of neutron computed tomography in the geosciences Martinthat applies neutron computed tomography (CT) to geologicalthe use of neutron computed tomography (CT) in the analy-

  17. Project EARTH-12-SHELL4: Shell Geoscience Laboratory

    E-Print Network [OSTI]

    Henderson, Gideon

    stages of burial of fine-grained sediments. They are enigmatic structures and their genesis is currently of the possible predictive results of this study might be the ability to assess the likelihood of good reservoirs that pore fluid pressure changes may have a similar effect in their direct impact on effective stress

  18. Summaries of FY 1994 geosciences research

    SciTech Connect (OSTI)

    Not Available

    1994-12-01T23:59:59.000Z

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward the long-term fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy byproducts of man. The Program is divided into five broad categories: Geophysics and earth dynamics; Geochemistry; Energy resource recognition, evaluation, and utilization; Hydrogeology and exogeochemistry; and Solar-terrestrial interactions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs in these main areas and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas.

  19. Summaries of FY 1996 geosciences research

    SciTech Connect (OSTI)

    NONE

    1996-12-01T23:59:59.000Z

    The Geosciences Research Program is directed by the Department of Energy`s (DOE`s) Office of Energy Research (OER) through its Office of Basic Energy Sciences (OBES). Activities in the Geosciences Research Program are directed toward building the long-term fundamental knowledge base necessary to provide for energy technologies of the future. Future energy technologies and their individual roles in satisfying the nations energy needs cannot be easily predicted. It is clear, however, that these future energy technologies will involve consumption of energy and mineral resources and generation of technological wastes. The earth is a source for energy and mineral resources and is also the host for wastes generated by technological enterprise. Viable energy technologies for the future must contribute to a national energy enterprise that is efficient, economical, and environmentally sound. The Geosciences Research Program emphasizes research leading to fundamental knowledge of the processes that transport, modify, concentrate, and emplace (1) the energy and mineral resources of the earth and (2) the energy by-products of man.

  20. Copyright Uncertainty in the Geoscience Community: Part I, What's Free for the Taking? 

    E-Print Network [OSTI]

    Clement, Gail

    2012-01-01T23:59:59.000Z

    Pre-print submitted for publication: Clement, Gail, 2012. ?Copyright Uncertainty in the Geoscience community: Part I, What?s Free for the taking?? Proceedings - Geoscience Information Society 42 , forthcoming... and Scholarly Communication, Texas A&M University Libraries, Mailstop 5000, College Station, TX 77843 gclement@tamu.edu Introduction: Why does copyright uncertainty exist in the geoscience information community? Geoscience information is highly...

  1. GEOSCIENCE INFORMATION: KEYS TO DISCOVERY - Proceedings of the 41st Meeting of the Geoscience Information Society

    E-Print Network [OSTI]

    GeoScience Information Society

    2006-01-01T23:59:59.000Z

    INFORMATION SOCIE1Y ISBN: 978-0-934485-68-5 ISSN: 0072-1409 For information about copies of this proceedings volume or earlier issues, contact: Publications Manager Geoscience Information Society C/0 American Geological Institute 4220 King Street... WHERE ARE GEOLOGIC FIELD TRIP GUIDEBOOKS WHEN YOU NEED THEM? Lura E. Joseph .............................................................................................................................................................. 23 INSTITUTIONAL...

  2. New Geoscience Curriculum Environmental Geoscience track Directed Electives: take one from each category

    E-Print Network [OSTI]

    Sheridan, Jennifer

    GEOSCI 430 Sedimentology and Stratigraphy 3 GEOSCI 204 Geologic Evolution of the Earth 4 GEOSCI 627 Sedimentology and Stratigraphy 3 Geobiology GEOSCI 455 Structural Geology 4 GEOSCI 304 Geobiology 3 Geoscience as a Public Problem 3 Required: GEOSCI 411 Energy Resources 3 GEOSCI 431 Sedimentology and Stratigraphy Lab 1

  3. Summaries of FY 1995 geosciences research

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geosciences Research Program includes research in geophysics, geochemistry, resource evaluation, solar-terrestrial interactions, and their subdivisions including earth dynamics, properties of earth materials, rock mechanics, underground imaging, rock-fluid interactions, continental scientific drilling, geochemical transport, solar/atmospheric physics, and modeling, with emphasis on the interdisciplinary areas. All such research is related either direct or indirect to the Department of Energy`s long-range technological needs.

  4. GEOSCIENCE INFORMATION: Investing in the Future; Proceedings of the 47th Meeting of the GeoScience Information Society

    E-Print Network [OSTI]

    GeoScience Information Society

    2012-01-01T23:59:59.000Z

    ………………………………………… 4 1. INVESTING IN THE FUTURE OF GEOSCIENCE RESEARCH SERVICES. R. Huffine …………………………………………………………………………………. 5 2. FINDING FRACK FACTS: THE LITERATURE OF HYDRAULIC FRACTURING. J. Foote ………………………………………………………………………………… 11 3. THE OREGON SPATIAL...) 1 Gonzales, L.M. and C.M. Keane. Who Will Fill the Geoscience Workforce Supply Gap? Environ. Sci. Technol., 2010, 44 (2), pp 550–555. DOI: 10.1021/es902234g 2 Lenzini, R.T. Graying of the Library Profession. Searcher, 2002, 10 (7), p. 88 3...

  5. GEOSCIENCE INFORMATION: Investing in the Future; Proceedings of the 47th Meeting of the GeoScience Information Society 

    E-Print Network [OSTI]

    GeoScience Information Society

    2012-01-01T23:59:59.000Z

    ………………………………………… 4 1. INVESTING IN THE FUTURE OF GEOSCIENCE RESEARCH SERVICES. R. Huffine …………………………………………………………………………………. 5 2. FINDING FRACK FACTS: THE LITERATURE OF HYDRAULIC FRACTURING. J. Foote ………………………………………………………………………………… 11 3. THE OREGON SPATIAL...) 1 Gonzales, L.M. and C.M. Keane. Who Will Fill the Geoscience Workforce Supply Gap? Environ. Sci. Technol., 2010, 44 (2), pp 550–555. DOI: 10.1021/es902234g 2 Lenzini, R.T. Graying of the Library Profession. Searcher, 2002, 10 (7), p. 88 3...

  6. Navigating the Geoscience Information Landscape: Pathways to Success - Proceedings of the 44th Meeting of the Geoscience Information Society

    E-Print Network [OSTI]

    GeoScience Information Society

    2009-01-01T23:59:59.000Z

    Proceedings of the 44th Meeting of the Geoscience Information Society October 18-21, 2009 Portland, Oregon USA Navigating the Geoscience Information Landscape: Pathways to Success Edited by Jody Bales Foote... Annual Meeting of the Geological Society of America held in Portland, Oregon October 18-21, 2009. The papers are arranged in the order in which they were presented. Where the entire paper was not available due to publishing conflicts, the abstract...

  7. Laboratory directed research and development. FY 1995 progress report

    SciTech Connect (OSTI)

    Vigil, J.; Prono, J. [comps.

    1996-03-01T23:59:59.000Z

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  8. National Geoscience Data Repository System -- Phase III: Implementation and Operation of the Repository

    SciTech Connect (OSTI)

    Keane, Christopher M.

    2002-05-28T23:59:59.000Z

    The National Geoscience Data Repository System, Phase III was an operational project focused on coordinating and facilitating transfers of at-risk geoscience data from the private sector to the public domain.

  9. Optimization of Geoscience Laser Altimeter System waveform metrics to support vegetation measurements

    E-Print Network [OSTI]

    Lefsky, Michael

    Optimization of Geoscience Laser Altimeter System waveform metrics to support vegetation GLAS Optimization Remote sensing Vegetation structure The Geoscience Laser Altimeter System (GLAS) has optimized a noise coefficient which could be constant or vary according to observation period or noise

  10. Geothermal programs at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Kasameyer, P.W.; Younker, L.W.

    1987-07-10T23:59:59.000Z

    Lawrence Livermore National Laboratory has a number of geothermal programs supported through two offices in the Department of Energy: the Office of Renewable Technologies, Geothermal Technologies Division, and the Office of Basic Energy Sciences, Division of Engineering, Mathematics and Geosciences. Within these programs, we are carrying out research in injection monitoring, optical instrumentation for geothermal wells, seismic imaging methods, geophysical and drilling investigations of young volcanic systems in California, and fundamental studies of the rock and mineral properties.

  11. As geoscience educators, we focus on helping students understand technical content and learn to think like

    E-Print Network [OSTI]

    ABSTRACT As geoscience educators, we focus on helping students understand technical content grading student writing and still yield more learning benefits from incorporating writing. This approach with a geoscience course suggest gains in student learning. INTRODUCTION As faculty members in geoscience education

  12. TWO TENURE-TRACK INSTRUCTORS IN GEOSCIENCE AT THE UNIVERSITY OF CALGARY

    E-Print Network [OSTI]

    Habib, Ayman

    ://www.geoscience.ucalgary.ca/courses for reference to courses) are welcome to apply. Known as Canada's energy capital, Calgary is a bustling city engagement and student learning in any area of geoscience. The successful applicants will have an advanced in energy and environmental geoscience. Applications must include a cover letter indicating your

  13. Matter-wave laser Interferometric Gravitation Antenna (MIGA): New perspectives for fundamental physics and geosciences

    E-Print Network [OSTI]

    R. Geiger; L. Amand; A. Bertoldi; B. Canuel; W. Chaibi; C. Danquigny; I. Dutta; B. Fang; S. Gaffet; J. Gillot; D. Holleville; A. Landragin; M. Merzougui; I. Riou; D. Savoie; P. Bouyer

    2015-05-26T23:59:59.000Z

    The MIGA project aims at demonstrating precision measurements of gravity with cold atom sensors in a large scale instrument and at studying the associated powerful applications in geosciences and fundamental physics. The firt stage of the project (2013-2018) will consist in building a 300-meter long optical cavity to interrogate atom interferometers and will be based at the low noise underground laboratory LSBB based in Rustrel, France. The second stage of the project (2018-2023) will be dedicated to science runs and data analyses in order to probe the spatio-temporal structure of the local gravity field of the LSBB region, which represents a generic site of hydrological interest. MIGA will also assess future potential applications of atom interferometry to gravitational wave detection in the frequency band 0.1-10 Hz hardly covered by future long baseline optical interferometers. This paper presents the main objectives of the project, the status of the construction of the instrument and the motivation for the applications of MIGA in geosciences. Important results on new atom interferometry techniques developed at SYRTE in the context of MIGA and paving the way to precision gravity measurements are also reported.

  14. A Workflows Roadmap for the Geosciences NSF EarthCube Workflows Community Group

    E-Print Network [OSTI]

    Gil, Yolanda

    A Workflows Roadmap for the Geosciences NSF EarthCube Workflows Community Group September 15, 2012 to addressing those challenges. The group was asked to produce a roadmap for workflows in geosciences. Three to create a roadmap in their area. NSF guidance for the roadmap was to structure it in the following ten

  15. 1999 LDRD Laboratory Directed Research and Development

    SciTech Connect (OSTI)

    Rita Spencer; Kyle Wheeler

    2000-06-01T23:59:59.000Z

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  16. Matter-wave laser Interferometric Gravitation Antenna (MIGA): New perspectives for fundamental physics and geosciences

    E-Print Network [OSTI]

    Geiger, R; Bertoldi, A; Canuel, B; Chaibi, W; Danquigny, C; Dutta, I; Fang, B; Gaffet, S; Gillot, J; Holleville, D; Landragin, A; Merzougui, M; Riou, I; Savoie, D; Bouyer, P

    2015-01-01T23:59:59.000Z

    The MIGA project aims at demonstrating precision measurements of gravity with cold atom sensors in a large scale instrument and at studying the associated powerful applications in geosciences and fundamental physics. The firt stage of the project (2013-2018) will consist in building a 300-meter long optical cavity to interrogate atom interferometers and will be based at the low noise underground laboratory LSBB based in Rustrel, France. The second stage of the project (2018-2023) will be dedicated to science runs and data analyses in order to probe the spatio-temporal structure of the local gravity field of the LSBB region, which represents a generic site of hydrological interest. MIGA will also assess future potential applications of atom interferometry to gravitational wave detection in the frequency band 0.1-10 Hz hardly covered by future long baseline optical interferometers. This paper presents the main objectives of the project, the status of the construction of the instrument and the motivation for the...

  17. Computational Geosciences Improved Semi-Analytical Simulation of Geological Carbon Sequestration

    E-Print Network [OSTI]

    Bau, Domenico A.

    Computational Geosciences Improved Semi-Analytical Simulation of Geological Carbon Sequestration of Geological Carbon Sequestration Article Type: Manuscript Keywords: Semi-Analytical Modeling; Iterative Methods; Geological Carbon Sequestration; Injection Site Assessment Corresponding Author: Brent Cody

  18. Petrophysics -The Integration of Reservoir Geosciences Date: 8th -11th September 2014

    E-Print Network [OSTI]

    Levi, Ran

    & Integrated Petrophyiscs and Uncertainty Management Date: 2nd - 7th February 2015 Reservoir SurveillancePetrophysics - The Integration of Reservoir Geosciences Date: 8th - 11th September 2014 Integrating Petrophysics and Seismic Data for Reservoir Characterisation GL55518 Reservoir Surveillance

  19. Collaboration for the Dissemination of Geologic Information Among Colleagues - Proceedings of the 40th Meeting of the Geoscience Information Society

    E-Print Network [OSTI]

    GeoScience Information Society

    2005-01-01T23:59:59.000Z

    Geoscience Information Society Proceedings · Volume 36 2005 Proceedings of the 40th Meeting of the Geoscience Information Society October 15-20, 2005 Salt Lake City, Utah Collaboration for the Dissemination of Geologic Information Among... of America (GSA) annual meeting in Salt Lake, Utah, October 2005. In addition to the oral and poster sessions, GSIS held forums on electronic resources, preservation, collection development and professional issues, plus a workshop titled “Geoscience...

  20. Considerations For a Dedicated Geoneutrino Detector For Geosciences

    E-Print Network [OSTI]

    Ila, P; Jagam, P; Lykken, G I

    2009-01-01T23:59:59.000Z

    A combination of several sources including: radiogenic heating, processes of mantle and core formation and differentiation, delayed radiogenic heating, earthquakes, and tidal friction account for the surface heat flux in the Earth. Radiogenic heating is of much interest in various fields of geosciences. Inferences from recent experiments with reactor antineutrinos and solar neutrinos showed that the age of geoneutrinos is at hand for constraining radiogenic heat. Because of the deep penetrating properties of the neutrinos this type of radiation in the decay of the heat producing elements (HPE) is ideally suited for the investigation of the deep interiors of the Earth compared to conventional radiometric methods for HPE employing alpha-, beta- and gamma rays. This presentation will address the considerations for a dedicated geoneutrino detector to be set up for investigating the interior regions all the way to the center of the Earth.

  1. Geoscience Perspectives in Carbon Sequestration - Educational Training and Research Through Classroom, Field, and Laboratory Investigations

    SciTech Connect (OSTI)

    Wronkiewicz, David; Paul, Varum; Abousif, Alsedik; Ryback, Kyle

    2013-09-30T23:59:59.000Z

    The most effective mechanism to limit CO{sub 2} release from underground Geologic Carbon Sequestration (GCS) sites over multi-century time scales will be to convert the CO{sub 2} into solid carbonate minerals. This report describes the results from four independent research investigations on carbonate mineralization: 1) Colloidal calcite particles forming in Maramec Spring, Missouri, provide a natural analog to evaluate reactions that may occur in a leaking GCS site. The calcite crystals form as a result of physiochemical changes that occur as the spring water rises from a depth of more than 190'?. The resultant pressure decrease induces a loss of CO{sub 2} from the water, rise in pH, lowering of the solubility of Ca{sup 2+} and CO{sub 3}{sup 2-}, and calcite precipitation. Equilibrium modelling of the spring water resulted in a calculated undersaturated state with respect to calcite. The discontinuity between the observed occurrence of calcite and the model result predicting undersaturated conditions can be explained if bicarbonate ions (HCO{sub 3}{sup -}) are directly involved in precipitation process rather than just carbonate ions (CO{sub 3}{sup 2-}). 2) Sedimentary rocks in the Oronto Group of the Midcontinent Rift (MCR) system contain an abundance of labile Ca-, Mg-, and Fe-silicate minerals that will neutralize carbonic acid and provide alkaline earth ions for carbonate mineralization. One of the challenges in using MCR rocks for GCS results from their low porosity and permeability. Oronto Group samples were reacted with both CO{sub 2}-saturated deionized water at 90°C, and a mildly acidic leachant solution in flow-through core-flooding reactor vessels at room temperature. Resulting leachate solutions often exceeded the saturation limit for calcite. Carbonate crystals were also detected in as little as six days of reaction with Oronto Group rocks at 90oC, as well as experiments with forsterite-olivine and augite, both being common minerals this sequence. The Oronto Group samples have poor reservoir rock characteristics, none ever exceeded a permeability value of 2.0 mD even after extensive dissolution of calcite cement during the experiments. The overlying Bayfield Group – Jacobsville Formation sandstones averaged 13.4 ± 4.3% porosity and a single sample tested by core-flooding revealed a permeability of ~340 mD. The high porosity-permeability characteristics of these sandstones will allow them to be used for GCS as a continuous aquifer unit with the overlying Mt. Simon Formation. 3) Anaerobic sulfate reducing bacteria (SRB) can enhance the conversion rate of CO{sub 2} into solid minerals and thereby improve long-term storage. SRB accelerated carbonate mineralization reactions between pCO{sub 2} values of 0.0059 and 14.7 psi. Hydrogen, lactate and formate served as suitable electron donors for SRB metabolism. The use of a {sup 13}CO{sub 2} spiked gas source also produced carbonate minerals with ~53% of the carbon being derived from the gas phase. The sulfate reducing activity of the microbial community was limited, however, at 20 psi pCO{sub 2} and carbonate mineralization did not occur. Inhibition of bacterial metabolism may have resulted from the acidic conditions or CO{sub 2} toxicity. 4) Microbialite communities forming in the high turbidity and hypersaline water of Storrs’ Lake, San Salvador Island, The Bahamas, were investigated for their distribution, mineralogy and microbial diversity. Molecular analysis of the organic mats on the microbialites indicate only a trace amount of cyanobacteria, while anaerobic and photosynthetic non-sulfur bacteria of the phyla Chloroflexi and purple sulfur bacteria of class Gammaproteobacteria were abundant.

  2. Argonne's Laboratory computing center - 2007 annual report.

    SciTech Connect (OSTI)

    Bair, R.; Pieper, G. W.

    2008-05-28T23:59:59.000Z

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (1012 floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2007, there were over 60 active projects representing a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has framed a 'path forward' for additional computing resources.

  3. Advances in Geosciences, 2, 255257, 2005 SRef-ID: 1680-7359/adgeo/2005-2-255

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The wind and wave atlas of the Mediterranean Sea ­ the calibration phase L. Cavaleri Institutte of Marine by the Italian, French and Greek Navies, an extensive atlas of the wind and wave conditions in the MediterraneanAdvances in Geosciences, 2, 255­257, 2005 SRef-ID: 1680-7359/adgeo/2005-2-255 European Geosciences

  4. Advances in Geosciences, 7, 327331, 2006 SRef-ID: 1680-7359/adgeo/2006-7-327

    E-Print Network [OSTI]

    Romero, Romu

    Advances in Geosciences, 7, 327­331, 2006 SRef-ID: 1680-7359/adgeo/2006-7-327 European Geosciences Cyclogenesis in the lee of the Atlas Mountains: a factor separation numerical study K. Horvath1, L. Fita2, R of Atlas Mountains is in- vestigated by a series of numerical experiments using the MM5 forecast model

  5. Motor Pool Guidelines for Geosciences A completed Motor Pool Request form must be submitted to Denise for

    E-Print Network [OSTI]

    Holliday, Vance T.

    Motor Pool Guidelines for Geosciences · A completed Motor Pool Request form must be submitted on the Geosciences website under the forms link. http://www.geo.arizona.edu/pdf/motor_pool_request.pdf · If the trip be submitted with the Motor Pool Request. · A list of passengers and drivers is for all motor pool travel (this

  6. Laboratory-directed research and development: FY 1996 progress report

    SciTech Connect (OSTI)

    Vigil, J.; Prono, J. [comps.

    1997-05-01T23:59:59.000Z

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  7. Laboratory Directed Research and Development FY 1998 Progress Report

    SciTech Connect (OSTI)

    John Vigil; Kyle Wheeler

    1999-04-01T23:59:59.000Z

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  8. Laboratory directed research and development: FY 1997 progress report

    SciTech Connect (OSTI)

    Vigil, J.; Prono, J. [comps.

    1998-05-01T23:59:59.000Z

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  9. Sandia National Laboratories: Geomechanics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    including studies of coupled effects Extrapolation of laboratory measurements to field conditions In situ stress measurements and evaluation of in situ boundary conditions...

  10. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, TO APPEAR. 1 A Hybrid Conditional Random Field for

    E-Print Network [OSTI]

    Murphy, Kevin Patrick

    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, TO APPEAR. 1 A Hybrid Conditional Random Field of buildings, vegetations, cars, and natural terrain features over large regions. However, in many applications generative) probabilistic model, we call it a hybrid Conditional Random Field. We show that a MAP estimate

  11. Computational Geosciences 0 (2000) ?--? 1 Risk Management for Petroleum Reservoir Production

    E-Print Network [OSTI]

    New York at Stoney Brook, State University of

    2000-01-01T23:59:59.000Z

    Computational Geosciences 0 (2000) ?--? 1 Risk Management for Petroleum Reservoir Production solution error. We explore the extent to which the coarse grid oil production rate is sufficient to predict future oil production rates. We find that very early oil production data is sufficient to reduce

  12. A global forest canopy height map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience

    E-Print Network [OSTI]

    Lefsky, Michael

    - radiometer and the Geoscience Laser Altimeter System, Geophys. Res. Lett., 37, L15401, doi:10.1029/2010GL, is sensitive throughout the range of biomass [Lefsky et al., 2005a, 2005b]. Each lidar waveform is a high spatial resolution record of the energy returned when a shortduration pulse of light is returned from

  13. GeoDaze 2008 The University of Arizona Department of Geosciences

    E-Print Network [OSTI]

    Holliday, Vance T.

    contributions. Organizations Applied Geoscience LLC Arizona Geological Society BP Chevron ConocoPhillips Errol C. Melton Megan Anderson Miles Shaw Nancy Naeser Patrick Gisler Paul Martin Peter Kresan Richard Pfirman Terrence Gerlach Vance Haynes William, Jr. Jenny i #12;GeoDaze 2008 Committee Co-Chairs Treasurer Field

  14. In Proceedings of the 76th American Meteorological Societv Meetings, January 1996. COVIS GEOSCIENCES WEB SERVER

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    GEOSCIENCES WEB SERVER: AN INTERNET-BASED RESOURCE FOR THE K-12 COMMUNITY Mohan Ramamurthy, Robert Wilhelmson of fostering learning communities. A vast majority of the Web servers can be categorized as information servers notable weakness of the so-calledfirst generation Web servers is that they are by and large providers

  15. Development of Exploration Methods for Engineered Geothermal System through Integrated Geoscience Interpretation

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project will deploy, test and calibrate Non-invasive EGS Exploration Methodology integrating geoscience data to predict temperature and rock type at a scale of 5km x 5km at depths of 1-5km.

  16. Bachelor of Science, Geosciences, Geophysics Emphasis, 2014-2015 Name ID# Date

    E-Print Network [OSTI]

    Barrash, Warren

    Bachelor of Science, Geosciences, Geophysics Emphasis, 2014-2015 Name ID# Date General Degree General Chemistry II with Lab 4 GEOPH 201 Seeing the Unseen: an Introduction to Geophysics 4 GEOG 360 Physics I & II with Calculus & Labs Physics Option II: PHYS 111-112 General Physics 8-10 Geophysics

  17. University of Calgary, Department of Geoscience Sessional Instructor Position in Petroleum Engineering Geology

    E-Print Network [OSTI]

    Garousi, Vahid

    in Petroleum Engineering Geology The Department of Geoscience at the University of Calgary is seeking a Sessional Instructor to fill 1/3 of course as lecturer for Geology 377 (Petroleum Engineering Geology to engineering students as part of the course GLGY 377 (Petroleum Engineering Geology). The topics covered

  18. The 8th World Chinese Geosciences Conference (2nd Circular) 26 October 2014

    E-Print Network [OSTI]

    Wu, Yih-Min

    of ophiolites: discoveries of ultra-high pressure minerals (4) Supercontinent cycle and global geodynamics (5) Plate tectonics and ore formation, and mineral resource exploration (6) Geological evolution of Tibet Geosciences, National Taiwan Ocean University; Department of Natural Resources and Environmental Studies

  19. Basic Research Needs for Geosciences: Facilitating 21st Century Energy Systems

    SciTech Connect (OSTI)

    DePaolo, D. J.; Orr, F. M.; Benson, S. M.; Celia, M.; Felmy, A.; Nagy, K. L.; Fogg, G. E.; Snieder, R.; Davis, J.; Pruess, K.; Friedmann, J.; Peters, M.; Woodward, N. B.; Dobson, P.; Talamini, K.; Saarni, M.

    2007-06-01T23:59:59.000Z

    To identify research areas in geosciences, such as behavior of multiphase fluid-solid systems on a variety of scales, chemical migration processes in geologic media, characterization of geologic systems, and modeling and simulation of geologic systems, needed for improved energy systems.

  20. Swiss Geoscience Meeting, Lugano 2008 Dynamic Monitoring of Load Tests by Kinematic

    E-Print Network [OSTI]

    6th Swiss Geoscience Meeting, Lugano 2008 Dynamic Monitoring of Load Tests by Kinematic Terrestrial. Besides the sinking of the crane into the test fields, the size of the bow wave, which occurs on the first to be permanently monitored during the test drives. For the dynamic monitoring of the occurring bow wave, three

  1. Computers & Geosciences 32 (2006) 749766 A simple algorithm for the mapping of TIN data onto a

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Computers & Geosciences 32 (2006) 749­766 A simple algorithm for the mapping of TIN data onto 2005 Abstract Triangulated irregular networks (TIN) in landscape evolution models have the advantage of TIN landscape nodes onto a static grid, facilitating the creation of a fixed stratigraphic record

  2. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 1 Assessment of Temperature and Humidity Changes

    E-Print Network [OSTI]

    Christopher, Sundar A.

    IEEEProof IEEEProof IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 1 Assessment of Temperature multiple satellite7 remote sensing data sets and meteorological information, we assess8 the distribution observed at some15 locations. Between the surface and 2-km level, temperature data16 show a cooling of 10

  3. Petrophysics -The Integration of Reservoir Geosciences Date: 22nd -25th September 2014

    E-Print Network [OSTI]

    Levi, Ran

    & Integrated Petrophyiscs and Uncertainty Management Date: 2nd - 7th March 2015 Reservoir SurveillancePetrophysics - The Integration of Reservoir Geosciences Date: 22nd - 25th September 2014 Analysis GL5517 Integrating Petrophysics and Seismic Data for Reservoir Characterisation GL55518 Reservoir

  4. Petrophysics -The Integration of Reservoir Geosciences Date: 20th -23rd October 2014

    E-Print Network [OSTI]

    Levi, Ran

    & Integrated Petrophyiscs and Uncertainty Management Date: 21st - 26th March 2015 Reservoir SurveillancePetrophysics - The Integration of Reservoir Geosciences Date: 20th - 23rd October 2014 and Core Analysis GL5517 Integrating Petrophysics and Seismic Data for Reservoir Characterisation GL55518

  5. Careers Bachelor if Sciences in The future is bright for those pursuing an education in geology or a geoscience

    E-Print Network [OSTI]

    Walker, Lawrence R.

    Careers ­ Bachelor if Sciences in Geology The future is bright for those pursuing an education in geology or a geoscience related field as demand and gas industry (median $125,350). Forbes recently ranked Geology #7 in its "15

  6. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    SciTech Connect (OSTI)

    Los Alamos National Laboratory

    2001-05-01T23:59:59.000Z

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  7. SULI at Ames Laboratory

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    A video snapshot of the Science Undergraduate Laboratory Internship (SULI) program at Ames Laboratory.

  8. AppliedEarth Faculty of Civil Engineering and Geosciences

    E-Print Network [OSTI]

    Langendoen, Koen

    Geophysics and Petrophysics Charting geological structures and oil and gas reserves using seismic and laboratory courses 9 Self-study 19 · Reservoir Geology Applying knowledge of geology in determining where oil programme that combines knowledge of geology with plenty of mathematics, physics and chemistry? A programme

  9. Fourth SIAM conference on mathematical and computational issues in the geosciences: Final program and abstracts

    SciTech Connect (OSTI)

    NONE

    1997-12-31T23:59:59.000Z

    The conference focused on computational and modeling issues in the geosciences. Of the geosciences, problems associated with phenomena occurring in the earth`s subsurface were best represented. Topics in this area included petroleum recovery, ground water contamination and remediation, seismic imaging, parameter estimation, upscaling, geostatistical heterogeneity, reservoir and aquifer characterization, optimal well placement and pumping strategies, and geochemistry. Additional sessions were devoted to the atmosphere, surface water and oceans. The central mathematical themes included computational algorithms and numerical analysis, parallel computing, mathematical analysis of partial differential equations, statistical and stochastic methods, optimization, inversion, homogenization and renormalization. The problem areas discussed at this conference are of considerable national importance, with the increasing importance of environmental issues, global change, remediation of waste sites, declining domestic energy sources and an increasing reliance on producing the most out of established oil reservoirs.

  10. A geoscience strategy for cultural resource management tested in an alluvial setting

    E-Print Network [OSTI]

    Albertson, Paul Edwin

    1994-01-01T23:59:59.000Z

    by the following steps to fulfill the objective of developing a geoscience strategy for CRM. 1. The definition, legal basis and phases of CRM will be reviewed. 2. The site investigation and characterization literature for engineering and environmental projects... historic properties. The objectives of Phase I are to: characterize the range of historic properties in the region; determine the association of properties in historic context; and collect information pertaining to site significance. The research design...

  11. National Geoscience Data Repository System, Phase II. Final report, January 30, 1995--January 28, 1997

    SciTech Connect (OSTI)

    NONE

    1998-04-01T23:59:59.000Z

    The American Geological Institute (AGI) has completed Phase II of a project to establish a National Geoscience Data Repository System (NGDRS). The project`s primary objectives are to preserve geoscience data in jeopardy of being destroyed and to make that data available to those who have a need to use it in future investigations. These data are available for donation to the public as a result of the downsizing that has occurred in the major petroleum and mining companies in the United States for the past decade. In recent years, these companies have consolidated domestic operations, sold many of their domestic properties and relinquished many of their leases. The scientific data associated with those properties are no longer considered to be useful assets and are consequently in danger of being lost forever. The national repository project will make many of these data available to the geoscience community for the first time. To address this opportunity, AGI sought support from the Department of Energy (DOE) in 1994 to initiate the NGDRS Phase I feasibility study to determine the types and quantity of data that companies would be willing to donate. The petroleum and mining companies surveyed indicated that they were willing to donate approximately five million well logs, one hundred million miles of seismic reflection data, millions of linear feet of core and cuttings, and a variety of other types of scientific data. Based on the positive results of the Phase I study, AGI undertook Phase II of the program in 1995. Funded jointly by DOE and industry, Phase II encompasses the establishment of standards for indexing and cataloging of geoscience data and determination of the costs of transferring data from the private sector to public-sector data repositories. Pilot projects evaluated the feasibility of the project for transfer of different data types and creation of a Web-based metadata supercatalog and browser.

  12. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity in reservoir models. Annual report, September 29, 1994--September 30, 1995

    SciTech Connect (OSTI)

    Martin, F.D.; Buckley, J.S.; Weiss, W.W.; Ouenes, A.

    1996-04-01T23:59:59.000Z

    The purpose of this project is to conduct a variety of laboratory and field tests and utilize all the geological, geophysical, and engineering information to develop a mathematical model of the reservoir by the use of global optimization methods. This interdisciplinary effort will integrate advanced geoscience and reservoir engineering concepts to quantify interwell reservoir heterogeneity and the dynamics of fluid-rock and fluid-fluid interactions. The reservoir characterization includes geological methods (outcrop and reservoir rock studies), geophysical methods (interwell acoustic techniques), and other reservoir/hydrologic methodologies including analyses of pressure transient data, core studies, and tracer tests. The field testing is being conducted at the Sulimar Queen Unit with related laboratory testing at the PRRC on samples from the Sulimar site and Queen sandstone outcrops. The aim is to (1) characterize and quantify lithologic heterogeneity, (2) mathematically quantify changes in the heterogeneity at various scales, (3) integrate the wide variety of data into a model that is jointly constrained by the interdisciplinary interpretive effort, and (4) help optimize petroleum recovery efficiencies.

  13. Laboratory Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetter Report:40PM toLED Lighting5-15TradeLaboratories

  14. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory Directors A

  15. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory I |

  16. Argonne's Laboratory computing resource center : 2006 annual report.

    SciTech Connect (OSTI)

    Bair, R. B.; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Drugan, C. D.; Pieper, G. P.

    2007-05-31T23:59:59.000Z

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (10{sup 12} floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2006, there were 76 active projects on Jazz involving over 380 scientists and engineers. These projects represent a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has framed a 'path forward' for additional computing resources.

  17. Laboratory Waste | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors LaboratoryPlanning

  18. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Facilities On November 10, 2010, in Photovoltaic System Evaluation Laboratory Distributed Energy Technologies Laboratory Microsystems and Engineering Sciences Applications...

  19. Sandia National Laboratories: Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (PSEL) National Supervisory Control and Data Acquisition (SCADA) Test Bed Center for Integrated Nanotechnologies (CINT) Distributed Energy Technologies Laboratory...

  20. Environmental | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Environmental Management Program at the Ames Laboratory includes Waste Management, Pollution Prevention, Recycling, Cultural Resources, and the Laboratory's Environmental...

  1. Copyright Uncertainty in the Geoscience Community: Part I, What's Free for the Taking?

    E-Print Network [OSTI]

    Clement, Gail

    2012-01-01T23:59:59.000Z

    Access, Website, Online, URL: http://www.taxpayeraccess.org/action/action_frpaa/FRPAA2012.shtml; last accessed June 22, 2012). xi Hirtle?s chart is regularly updated on the website of the Copyright Information Center at Cornell University, Online, URL... in the geosciences include the geographic coordinates for Old Faithful (44?27?24?N 110?49?54?W); the volume leaked in the Exxon Valdes oil spill (10.8 million gallons, or 257 barrelsvii; and the radiocarbon date for our hominid ancestor Lucy (3.18 million years...

  2. Interactive visualization for geoscience education: Java-based instructional tools for introductory geology

    E-Print Network [OSTI]

    Nevorotina, Anna

    2001-01-01T23:59:59.000Z

    E 47 vii LIST OF FIGURES FIGURE Page 1 Snell's law 15 2 The Geomovie applet window 19 3 The "Theory" window of the Geomovie applet 20 4 Applet / Servlet / Database communication 22 5 Plotting option " A l l values for the selected site" 29 6... management, log analysis, geological interpretation, mapping, and three-dimensional visualization1; Kingdom This thesis follows the style of Computers & Geoscience. 2 Suite (The Kingdom Company, U K ) for 2-D and 3-D Seismic Interpretation; and many...

  3. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  4. Sandia National Laboratories: Nuclear Energy Systems Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing Phenomenological...

  5. Ames Laboratory Ames, Iowa Argonne National Laboratory Argonne...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Los Alamos, New Mexico National Energy Technology Laboratory Morgantown, West Virginia Pittsburgh, Pennsylvania Albany, Oregon National Renewable Energy Laboratory...

  6. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. X, NO. X, NOVEMBER 200X 1 Digital Topography Models for Martian Surfaces

    E-Print Network [OSTI]

    Stepinski, Tomasz F.

    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. X, NO. X, NOVEMBER 200X 1 Digital Topography Models for Martian Surfaces Tomasz Stepinski and Ricardo Vilalta Abstract-- We introduce a concept of the digital topography model, an extension to the familiar notion of the digital elevation model. The new

  7. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. X, NO. X, NOVEMBER 200X 1 Digital Topography Models for Martian Surfaces

    E-Print Network [OSTI]

    Vilalta, Ricardo

    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. X, NO. X, NOVEMBER 200X 1 Digital Topography Models for Martian Surfaces Tomasz Stepinski and Ricardo Vilalta Abstract-- We propose to use and geologic mapping of the planet. We construct a digital topography model (DTM), a multi-layer grid

  8. Ecosystem Informatics Strategic Initiative Final Report 2009 Julia Jones, Geosciences; Tom Dietterich, Computer Science; Enrique Thomann, Mathematics; Ed

    E-Print Network [OSTI]

    Escher, Christine

    Ecosystem Informatics Strategic Initiative Final Report 2009 Julia Jones, Geosciences; Tom over the last five years. The Ecosystem Informatics program at Oregon State University has established a presence here at the University and on a global scale. The OSU Ecosystem Informatics IGERT Program (with

  9. 2392 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 10, OCTOBER 2003 Soil Moisture Mapping Using ESTAR Under

    E-Print Network [OSTI]

    2392 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 10, OCTOBER 2003 Soil of the entire region. Index Terms--Microwave, remote sensing, soil moisture. I. INTRODUCTION THE FUNDAMENTAL regional heat fluxes [15], and to validate distributed land surface models in order to study the scaling

  10. 42 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 1, NO. 2, APRIL 2004 A Connectionist Approach to SODAR

    E-Print Network [OSTI]

    Mitra, Sushmita

    42 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 1, NO. 2, APRIL 2004 A Connectionist Approach of successfully identifying the different SODAR patterns. Index Terms--Acoustic remote sensing, classification of heat, energy, and momentum from the ground level to higher levels and vice-versa. It plays an active

  11. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 3, MAY 1999 1671 Cryosphere Applications of NSCAT Data

    E-Print Network [OSTI]

    Long, David G.

    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 3, MAY 1999 1671 Cryosphere covering Greenland and Antarctica add to the polar heat sink effect by their additional influence upon. Hence, monitoring of polar ice is of particular interest to the remote sensing and climate change

  12. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 4, APRIL 2014 2149 Mitigation of Sea Ice Contamination

    E-Print Network [OSTI]

    Long, David G.

    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 4, APRIL 2014 2149 Mitigation such as the Oceansat-2 scatterometer. Index Terms--QuikCSAT, remote sensing, scatterometry, sea ice, wind, wind, atmospheric heat flow, ocean currents, and possibly sea ice formation. Satellite scat- terometry enables daily

  13. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 5, MAY 2010 2283 Large-Scale Building Reconstruction Through

    E-Print Network [OSTI]

    Paragios, Nikos

    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 48, NO. 5, MAY 2010 2283 Large- troduced toward automatic 3-D building reconstruction from remote-sensing data. We consider a subset, wireless telecommunications, disaster management, noise, and heat and exhaust-spreading simulations. All

  14. 500 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 3, NO. 4, OCTOBER 2006 ELF Radar System Proposed for Localized

    E-Print Network [OSTI]

    Simpson, Jamesina J.

    500 IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 3, NO. 4, OCTOBER 2006 ELF Radar System frequency (ELF), finite difference time domain (FDTD), ionospheric disturbances, radar, remote sensing. I to be of sufficiently low power to have negligible heating or any other effects upon the ionospheric anomaly.) Employing

  15. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. Y, MONTH 2000 100 Azimuth Variation in Microwave Scatterometer and

    E-Print Network [OSTI]

    Long, David G.

    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. XX, NO. Y, MONTH 2000 100 Azimuth/Imager (SSM/I) [13] have broad application in atmospheric remote sensing over the ocean and provide essential. Radiative cooling of surface air masses over the in- terior ice sheet causes negative buoyancy and the air

  16. 1936 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 4, JULY 2000 Electromagnetic Inversion in Monostatic Ground

    E-Print Network [OSTI]

    Spagnolini, Umberto

    (GPR) is a remote sensing system used to measure short-pulse electromagnetic (EM) reflections due1936 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 4, JULY 2000 Electromagnetic and Umberto Spagnolini, Member, IEEE Abstract--A comprehensive analysis of electromagnetic (EM) inversion

  17. Supplement to the technical assessment of geoscience-related research for geothermal energy technology. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-09-01T23:59:59.000Z

    Detailed information (e.g., project title, sponsoring organization, research area, objective status, etc.) is presented for 338 geoscience/geothermal related projects. A summary of the projects conducted by sponsoring organization is presented and an easy reference to obtain detailed information on the number and type of efforts being sponsored is presented. The projects are summarized by research area (e.g., volcanology, fluid inclusions, etc.) and an additional project cross-reference mechanism is also provided. Subsequent to the collection of the project information, a geosciences classification system was developed to categorize each project by research area (e.g., isotope geochemistry, heat flow studies) and by type of research conducted (e.g., theoretical research, modeling/simulation). A series of matrices is included that summarize, on a project-by-project basis, the research area addressed and the type of R and D conducted. In addition, a summary of the total number of projects by research area and R and D type is given.

  18. Sandia National Laboratories: IRED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  19. Sandia National Laboratories: Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Director of Sandia's Geoscience, Climate, and Consequence Effects Center, spoke on "Hydraulic Fracturing: The Role of Government-Sponsored R&D" as part of a session on "The...

  20. National Renewable Energy Laboratory

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Innovation for Our Energy Future ponsorship Format Reversed Color:White rtical Format Reversed-A ertical Format Reversed-B National Renewable Energy Laboratory National Renewable Energy Laboratory Innovation for Our Energy Future National Renewable Energy Laboratory

  1. Sandia National Laboratories: Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  2. Argonne National Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Slip sliding away Graphene and diamonds prove a slippery combination Read More ACT-SO winners Argonne mentors students for the next generation of...

  3. Materials Design Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design Laboratory, scheduled for completion in FY 2020, is designed to meet U.S. Green Building Council Leadership in Energy and Environmental Design (LEED) Gold...

  4. Sandia National Laboratories: Earth Science: Facilities and Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ManagementEarth ScienceEarth Science: Facilities and Equipment Earth Science: Facilities and Equipment Geoscience Facilities and Equipment High-pressure thermalmechanical...

  5. Argonne's Laboratory Computing Resource Center : 2005 annual report.

    SciTech Connect (OSTI)

    Bair, R. B.; Coghlan, S. C; Kaushik, D. K.; Riley, K. R.; Valdes, J. V.; Pieper, G. P.

    2007-06-30T23:59:59.000Z

    Argonne National Laboratory founded the Laboratory Computing Resource Center in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. The first goal of the LCRC was to deploy a mid-range supercomputing facility to support the unmet computational needs of the Laboratory. To this end, in September 2002, the Laboratory purchased a 350-node computing cluster from Linux NetworX. This cluster, named 'Jazz', achieved over a teraflop of computing power (10{sup 12} floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the fifty fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2005, there were 62 active projects on Jazz involving over 320 scientists and engineers. These projects represent a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to improve the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to develop comprehensive scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has begun developing a 'path forward' plan for additional computing resources.

  6. Research collaboration opportunities at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Budwine, C.M.

    1996-09-01T23:59:59.000Z

    The Lawrence Livermore National Laboratory (LLNL) is a major research facility within the Department of Energy (DOE) complex. LLNL`s traditional mission is in Defense Programs, including a significant effort in non-proliferation and arms control. In terms of disciplinary areas, over 50% of our present research efforts are in the fields of large-scale computing, high energy-density physics, energy and environmental sciences, engineering, materials research, manufacturing, and biotechnology. The present decade presents new challenges to LLNL. Many factors have influenced us in modifying our research approach. The main driver is the realization that many scientific problems in our mission areas can best be solved by collaborative teams of experts. At LLNL we excel in physical sciences, but we need the expertise of many others, beyond our established areas of expertise. For example, to find an acceptable solution to reduce earthquake damage requires contributions from engineering, soil mechanics, hydrology, materials sciences, Geosciences, computer modeling, economics, law, and political science. In the pursuit of our mission goals, we are soliciting increased research collaborations with university faculty and students. The scientific and national security challenges facing us and our nation today are unprecedented. Pooling talents from universities, other research organizations, and the national laboratories will be an important approach to finding viable solutions.

  7. Pacific Northwest National Laboratory

    E-Print Network [OSTI]

    Pacific Northwest National Laboratory Operated by Battelle for the U.S. Department of Energy Northwest National Laboratory (PNNL) operated by Battelle Memorial Institute. Battelle has a unique contract

  8. Argonne National Laboratory's Nondestructive

    E-Print Network [OSTI]

    Kemner, Ken

    Argonne National Laboratory's Nondestructive Evaluation Technologies NDE #12;Over45yearsexperienceinNondestructiveEvaluation... Argonne National Laboratory's world-renowned researchers have a proven the safe operationof advanced nuclear reactors. Argonne's World-Class Nondestructive Evaluation

  9. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists...

  10. Integration of advanced geoscience and engineering techniques to quantify interwell heterogeneity. Quarterly technical report, January 1--March 31, 1994

    SciTech Connect (OSTI)

    Martin, F.D.; Buckley, J.S.; Weiss, W.W.; Ouenes, A.

    1994-12-31T23:59:59.000Z

    The objective of this project is to integrate advanced geoscience and reservoir engineering concepts, with the goal of quantifying the dynamics of fluid-rock and fluid-fluid interactions as they relate to reservoir architecture and lithologic characterization. This interdisciplinary effort will integrate geological and geophysical data with engineering and petrophysical results through reservoir simulation. Technical progress is summarized for the following: geological studies; hydrologic and tracer research; and geophysical research.

  11. Naval Civil Engineering Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Naval Civil Engineering Laboratory Personnel from the Power Systems Department have participated in numerous distribution equipment research, development, demonstration, testing,...

  12. Employment at National Laboratories

    SciTech Connect (OSTI)

    E. S. Peterson; C. A. Allen

    2007-04-01T23:59:59.000Z

    Scientists enter the National Laboratory System for many different reasons. For some, faculty positions are scarce, so they take staff-scientist position at national laboratories (i.e. Pacific Northwest, Idaho, Los Alamos, and Brookhaven). Many plan to work at the National Laboratory for 5 to 7 years and then seek an academic post. For many (these authors included), before they know it it’s 15 or 20 years later and they never seriously considered leaving the laboratory system.

  13. Sandia National Laboratories: Photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Computational Modeling & Simulation, Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  14. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  15. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In this issue's cover story, "Rethinking the Unthinkable," Houston T. Hawkins, a retired Air Force colonel and a Laboratory senior fellow, points out that since Vladimir Putin...

  16. Sandia National Laboratories: AMI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  17. Sandia National Laboratories: Photovoltaics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2013 Inverter Reliability Workshop On May 31, 2013, in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project...

  18. Sandia National Laboratories: photovoltaic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    photovoltaic Microsystems Enabled Photovoltaics (MEPV) On April 14, 2011, in About MEPV Flexible MEPV MEPV Publications MEPV Awards Researchers at Sandia National Laboratories are...

  19. News | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  20. Sandia National Laboratories: SPI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference, the Department of Energy (DOE), the Electric Power Research Instisute (EPRI), Sandia National Laboratories, ... Last Updated: September 10, 2012 Go To Top ...

  1. nfang | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Research Projects: Chemical Analysis of Nanodomains Education: Ph.D., the University of British Columbia, Canada, 2006 B.S. from Xiamen University, China, 1998...

  2. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories on a new concentrated solar power (CSP) installation with thermal energy storage. The CSP storage project combines Areva's modular Compact Linear Fresnel...

  3. Sandia National Laboratories: publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories, August 2010. 2009 Adrian R. Chavez, Position Paper: Protecting Process Control Systems against Lifecycle Attacks Using Trust Anchors Sandia National ... Page 1...

  4. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the first results of joint work by scientists from Lawrence Berkeley, Pacific Northwest, Savannah River, and Los Alamos national laboratories at the Savannah River Site to model...

  5. Sandia National Laboratories: Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Center for SCADA Security Assets On August 25, 2011, in Sandia established its SCADA Security Development Laboratory in 1998. Its purpose was to analyze vulnerabilities in...

  6. Sandia National Laboratories: solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  7. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  8. Sandia National Laboratories: Geothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Sandia Wins DOE Geothermal Technologies Office Funding Award On December 15, 2014, in Advanced Materials Laboratory, Capabilities, Energy, Facilities, Geothermal,...

  9. Sandia National Laboratories: PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Sandia Corporation | Questions & Comments | Privacy & Security U.S. Department of Energy National Nuclear Security Administration Sandia National Laboratories is a...

  10. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23, 2013-Nearly 400 Los Alamos National Laboratory employees on 47 teams received Pollution Prevention awards for protecting the environment and saving taxpayers more than 8...

  11. Sandia National Laboratories: HRSAM

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the National Renewable Energy Laboratory (NREL) announce the publication of two new Hydrogen Fueling Infrastructure Research and Station Technology (H2FIRST) reports on...

  12. Sandia National Laboratories: Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Center (PV RTC), Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis A research team that included...

  13. Sandia National Laboratories: NASA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories (partnering with Northrup Grumman Aerospace Systems and the University of Michigan) has developed a solar electric propulsion concept capable of a wide...

  14. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some of the nation's most powerful and sophisticated facilities for energy research Argonne National Laboratory is home to some of the nation's most powerful and sophisticated...

  15. ARGONNE NATIONAL LABORATORY May

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARGONNE NATIONAL LABORATORY May 9, 1994 Light Source Note: LS234 Comparison of the APS and UGIMAG Helmholtz Coil Systems David W. Carnegie Accelerator Systems Division Advanced...

  16. Licensing | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (TDC) Division negotiates and manages license agreements on behalf of UChicago Argonne, LLC, which operates Argonne National Laboratory for the U.S. Department of Energy....

  17. Procurement | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Procurement More than 150 attend second joint Argonne-Fermilab small business fairSeptember 2, 2014 On Thursday, Aug. 28, Illinois' two national laboratories - Argonne and Fermi...

  18. Exercise Design Laboratory

    Broader source: Energy.gov [DOE]

    The Emergency Operations Training Academy (EOTA), NA 40.2, Readiness and Training, Albuquerque, NM is pleased to announce the EXR231, Exercise Design Laboratory course

  19. Sandia National Laboratories: Partnership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Armstrong using deep level optical spectroscopy to investigate defects in the m-plane GaN. Jim is a professor ... Vermont and Sandia National Laboratories Announce Energy...

  20. National uses and needs for separated stable isotopes in physics, chemistry, and geoscience research

    SciTech Connect (OSTI)

    Zisman, M.S.

    1982-01-01T23:59:59.000Z

    Present uses of separated stable isotopes in the fields of physics, chemistry, and the geosciences have been surveyed to identify current supply problems and to determine future needs. Demand for separated isotopes remains strong, with 220 different nuclides having been used in the past three years. The largest needs, in terms of both quantity and variety of isotopes, are found in nuclear physics research. Current problems include a lack of availability of many nuclides, unsatisfactory enrichment of rare species, and prohibitively high costs for certain important isotopes. It is expected that demands for separated isotopes will remain roughly at present levels, although there will be a shift toward more requests for highly enriched rare isotopes. Significantly greater use will be made of neutron-rich nuclides below A = 100 for producing exotic ion beams at various accelerators. Use of transition metal nuclei for nuclear magnetic resonance spectroscopy will expand. In addition, calibration standards will be required for the newer techniques of radiological dating, such as the Sm/Nd and Lu/Hf methods, but in relatively small quantities. Most members of the research community would be willing to pay considerably more than they do now to maintain adequate supplies of stable isotopes.

  1. 1MIT Lincoln Laboratory MIT Lincoln Laboratory

    E-Print Network [OSTI]

    Clancy, Ted

    · About the Laboratory ­ Overview ­ Research Areas ­ Demographics · The MQP program ­ Logistics Primary Field Sites White Sands Missile Range Socorro, New Mexico Reagan Test Site Kwajalein, Marshall ­ Demographics · The MQP program ­ Logistics ­ Admission ­ Summer & Full-time Employment · Past Projects #12;9MIT

  2. Laboratory Director PRINCETON PLASMA PHYSICS LABORATORY

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory

    .C. Zarnstorff Deputy Director for Operations A.B. Cohen Laboratory Management Council Research Council Associate Diagnostics D.W. Johnson Electrical Systems C. Neumeyer Lab Astrophysics M. Yamada, H. Ji Projects: MRX, MRI Science Education A. Post-Zwicker Quality Assurance J.A. Malsbury Tech. Transfer Patents & Publications L

  3. Commercial Fisheries Biological Laboratory

    E-Print Network [OSTI]

    , and tidal estuaries with bottom types ranging from soft mud to hard sand and rock. The Laboratory has grown research laboratories, an experimental shell- fish hatchery, administrative offices, a combined library freezer, and quick freezer. The library is limited to publications that have a direct bearing on current

  4. LABORATORY I: GEOMETRIC OPTICS

    E-Print Network [OSTI]

    Minnesota, University of

    Lab I - 1 LABORATORY I: GEOMETRIC OPTICS In this lab, you will solve several problems related to the formation of optical images. Most of us have a great deal of experience with the formation of optical images this laboratory, you should be able to: · Describe features of real optical systems in terms of ray diagrams

  5. Technical Report Computer Laboratory

    E-Print Network [OSTI]

    Haddadi, Hamed

    the opportunity to consider a physical attack, with very little to lose. We thus set out to analyse the deviceTechnical Report Number 592 Computer Laboratory UCAM-CL-TR-592 ISSN 1476-2986 Unwrapping J. Murdoch Technical reports published by the University of Cambridge Computer Laboratory are freely

  6. Reservoir Characterization Research Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir Characterization Research Laboratory for Carbonate Studies Executive Summary for 2014 Outcrop and Subsurface Characterization of Carbonate Reservoirs for Improved Recovery of Remaining/Al 0.00 0.02 0.04 Eagle Ford Fm #12;#12; Reservoir Characterization Research Laboratory Research Plans

  7. Carbon Characterization Laboratory Report

    SciTech Connect (OSTI)

    David Swank; William Windes; D.C. Haggard; David Rohrbaugh; Karen Moore

    2009-03-01T23:59:59.000Z

    The newly completed Idaho National Laboratory (INL) Carbon Characterization Laboratory (CCL) is located in Lab-C20 of the Idaho National Laboratory Research Center. This laboratory was established under the Next Generation Nuclear Plant (NGNP) Project to support graphite research and development activities. The CCL is designed to characterize and test carbon-based materials such as graphite, carbon-carbon composites, and silicon-carbide composite materials. The laboratory is fully prepared to measure material properties for nonirradiated carbon-based materials. Plans to establish the laboratory as a radiological facility within the next year are definitive. This laboratory will be modified to accommodate irradiated materials, after which it can be used to perform material property measurements on both irradiated and nonirradiated carbon-based material. Instruments, fixtures, and methods are in place for preirradiation measurements of bulk density, thermal diffusivity, coefficient of thermal expansion, elastic modulus, Young’s modulus, Shear modulus, Poisson ratio, and electrical resistivity. The measurement protocol consists of functional validation, calibration, and automated data acquisition.

  8. Sonication standard laboratory module

    DOE Patents [OSTI]

    Beugelsdijk, Tony (Los Alamos, NM); Hollen, Robert M. (Los Alamos, NM); Erkkila, Tracy H. (Los Alamos, NM); Bronisz, Lawrence E. (Los Alamos, NM); Roybal, Jeffrey E. (Santa Fe, NM); Clark, Michael Leon (Menan, ID)

    1999-01-01T23:59:59.000Z

    A standard laboratory module for automatically producing a solution of cominants from a soil sample. A sonication tip agitates a solution containing the soil sample in a beaker while a stepper motor rotates the sample. An aspirator tube, connected to a vacuum, draws the upper layer of solution from the beaker through a filter and into another beaker. This beaker can thereafter be removed for analysis of the solution. The standard laboratory module encloses an embedded controller providing process control, status feedback information and maintenance procedures for the equipment and operations within the standard laboratory module.

  9. Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory

    E-Print Network [OSTI]

    Texas at Austin, University of

    Reservoir CharacterizationReservoir Characterization Research LaboratoryResearch Laboratory at Austin Austin, Texas 78713Austin, Texas 78713--89248924 #12;Reservoir Characterization Research Laboratory for Carbonate Studies Research Plans for 2012 Outcrop and Subsurface Characterization of Carbonate

  10. Development of a Tender-Energy Microprobe for Geosciences at NSLS and NSLS-II

    SciTech Connect (OSTI)

    Northrup, Paul A.

    2014-08-30T23:59:59.000Z

    We propose to develop a tender-energy (1-8 keV operational range, optimized for 1-5 keV) X-ray microprobe, to bring the functionality and scientific benefits of hard (>5 keV) X-ray microprobes to a largely untapped domain of lighter, geologically-important elements. This proposal seeks to extend and enhance user-facility capabilities particularly optimized for research in Geosciences. This will be accomplished through development and implementation of unique new synchrotron instrumentation for high-performance microspectroscopy and imaging in the distinctive tender energy range. This new user facility at Beamline X15B at the National Synchrotron Light Source (NSLS) will benefit the specific Earth Science research programs described in this proposal, and will be available for use by the broader community through the merit-based General User program and through the User Cooperative that operates X15B. Its development will provide immediate benefit to regional and national Earth Science research conducted at the NSLS. It will achieve even higher performance at the Tender Energy Spectroscopy (TES) Beamline at NSLS-II, a new state-of-the-art synchrotron under construction and scheduled to begin operation in 2014. Project Objectives: Our goals are threefold: 1. Develop superlative capabilities to extend hard X-ray microprobe functionality and ease of use to the tender energy range. 2. Bring high-performance XAS (including full EXAFS) to the micron scale, over the range of 1-8 keV. 3. Deliver high flux and element sensitivity for geoscience applications. Our user facility will be designed and optimized for tender-energy microbeam applications and techniques for Earth Science research, including XRF imaging and high-quality extended XAS. Its key attributes will be an energy range of 1 to 8 keV, user-tunable spot size ranging from 40x14 to 3x2 ?m, high flux up to 2x1011 photons/s, beam positional stability and energy calibration stability optimized for high-quality and extended XAS and both XRF and XAS imaging, a helium sample environment for vacuum-incompatible samples, and on-the-fly scanning. At NSLS-II, these capabilities will be further enhanced and performance will improve in spot size, to the range from 19x23 to <1x1 ?m, and flux, up to 1012 ph/s. Thus the proposed microprobe will deliver much of the versatility and ease of use of hard Xray KB microprobes (sample accommodation, minimal sample preparation requirements, wet or in-situ measurements, etc.), plus capabilities for high quality and rapid EXAFS at microbeam spatial resolution. Specific new capabilities proposed here are: 1. Tender-energy XRF imaging of Na to Co, utilizing their K fluorescence lines, Cu to Ho by their L lines, and the Pr to Pu M lines. 2. Microbeam and singleparticle XANES and EXAFS over the energy range for Mg to Co K edges, Ge to Ho L3 edges, and Tb to Pu M5 edges. 3. XAS speciation imaging in several “step-” and “on-the-fly-” scanning modes. 4. Usertunable spatial resolution from microbeam to mm scales. Concentrating on development of the core microfocusing capabilities at X15B will result in a very high and immediate impact on Earth Science microprobe research at NSLS. This proposal will enable collection of publishable tender-energy microbeam data within about 6 months, and strongly complement and enhance existing NSLS microprobe programs. Establishment of this user facility at NSLS X15B will ensure its transfer to the NSLS-II TES beamline and its earliest possible availability for Geoscience research. This is essential for continuity of user science programs across the transition from NSLS to NSLS-II, to ensure their productivity early in the start-up of NSLS-II. Ultimately, the proposed facility will provide unique new microspectroscopic capabilities that currently do not exist elsewhere.

  11. Sandia National Laboratories: EFRC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    region where sunlight is most concentrated and to which ... Overview On November 11, 2010, in Sandia National Laboratories is home to one of the 46 multi-million dollar Energy...

  12. Sandia National Laboratories: Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Wind Energy ALBUQUERQUE, N.M. - Sandia National Laboratories and Kirtland Air Force Base may soon share a wind farm that will provide as much as one-third of the...

  13. Brookhaven National Laboratory

    Broader source: Energy.gov [DOE]

    Site OverviewThe Brookhaven National Laboratory (BNL) was established in 1947 by the Atomic Energy Commission (AEC) (predecessor to U.S. Department of Energy [DOE]). Formerly Camp Upton, a U.S....

  14. Sandia National Laboratories: Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2012, in Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory (BATLab) Abuse Testing B-Roll BatLab 894 B-Roll Cell...

  15. Biosafety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Biosafety Biosafety Links Biosafety Contacts Biosafety Office Argonne National Laboratory 9700 S. Cass Ave. Bldg. 202, Room B333 Argonne, IL 60439 USA 630-252-5191 Committee...

  16. Safety | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Argonne National Laboratory and the U.S. Department of Energy (DOE) are very concerned about the well-being of all employees. Students at the undergraduate and graduate...

  17. Idaho National Laboratory

    ScienceCinema (OSTI)

    McCarthy, Kathy

    2013-05-28T23:59:59.000Z

    INL is the leading laboratory for nuclear R&D. Nuclear engineer Dr. Kathy McCarthy talks aobut the work there and the long-term benefits it will provide.

  18. Argonne National Laboratory

    Broader source: Energy.gov [DOE]

    HISTORYThe Argonne National Laboratory (ANL) site is approximately 27 miles southwest of downtown Chicago in DuPage County, Illinois.  The 1,500 acre ANL site is completely surrounded by the 2,240...

  19. Summary Report of visit to TAMU College of Geosciences 6-8 February 2008 to review the Environmental undergraduate degree programs

    E-Print Network [OSTI]

    the Environmental undergraduate degree programs Bruce C. Coull Dean Emeritus, School of the Environment, University. Administrative Structure Currently, the Environmental programs at TAMU Geosciences depend mostly on two sources of altruism: a) the faculty who teach/advise/worry about the programs and, b) the Department Chairs who allow

  20. Computer & Geosciences, Special Issue "Geoscientific Visualization", 1, 2000 (in press) Visualization in an Early Stage of the Problem Solving Process in GIS

    E-Print Network [OSTI]

    Egenhofer, Max J.

    Computer & Geosciences, Special Issue "Geoscientific Visualization", 1, 2000 (in press) -1 monika.sester@ifp.uni-stuttgart.de Abstract Methods of user-computer interaction have remained largely for more complex task. To improve the interaction between user and computer we propose a concept

  1. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 3, MAY 1999 1597 First Results of the POLDER "Earth Radiation

    E-Print Network [OSTI]

    Boyer, Edmond

    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 3, MAY 1999 1597 First Results-- The POLDER instrument is devoted to global observations of the solar radiation reflected by the earth Terms--Clouds, polarization, remote sensing. I. INTRODUCTION HUMAN activities are increasing

  2. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 7, JULY 2014 4281 A Decade of QuikSCAT Scatterometer

    E-Print Network [OSTI]

    Long, David G.

    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 52, NO. 7, JULY 2014 4281 A Decade of Quik remote sensing, sea ice, SeaWinds. I. INTRODUCTION WIND scatterometers are satellite-borne radars of sea ice impedes heat transfer between the relatively warm ocean and cool at- mosphere. In addition

  3. 3708 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 11, NOVEMBER 2009 Retrieval of Atmospheric Water Vapor Density With

    E-Print Network [OSTI]

    Reising, Steven C.

    3708 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 47, NO. 11, NOVEMBER 2009 Retrieval, remote sensing, water vapor. Manuscript received November 1, 2008; revised May 2, 2009 and August 8, 2009 the latent heat of vaporization is a principal mechanism for the transport of energy from the equatorial

  4. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 8, AUGUST 2003 1821 Large-Scale Inverse Ku-Band Backscatter

    E-Print Network [OSTI]

    Long, David G.

    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 41, NO. 8, AUGUST 2003 1821 Large influences heat exchange, fresh water exchange, and the absorption of solar radiation and is be- lieved to be a sensitive indicator of long-term climate trends [1], [2]. Consequently, the remote sensing community has

  5. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 4, JULY 2000 1843 An Iterative Approach to Multisensor Sea Ice

    E-Print Network [OSTI]

    Long, David G.

    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 38, NO. 4, JULY 2000 1843 An Iterative play a critical role in the global climate, the remote sensing community has had a keen interest in the variability of polar sea ice characteris- tics. Sea ice influences heat transfer between the warmer ocean

  6. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 8, AUGUST 2005 1763 Effects of AirSea Interaction Parameters on Ocean

    E-Print Network [OSTI]

    Reising, Steven C.

    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 43, NO. 8, AUGUST 2005 1763 Effects of Air retrievals.Such coordinated observations were performed during the Fluxes, Air­Sea Inter- action, and Remote velocity, heat fluxes, and significant wave height. The measured dependence of ocean surface emissivity

  7. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory Directors

  8. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-30T23:59:59.000Z

    To establish Department of Energy (DOE) requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation

  9. Los Alamos National Laboratory Institutes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research interests are important to the Laboratory. Sponsoring, partnering with, and funding university professors and students in areas that are important to meet Laboratory...

  10. Materials Characterization Laboratory (Fact Sheet), NREL (National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Characterization Laboratory may include: * PEMFC industry * Certification laboratories * Universities * Other National laboratories Contact Us If you are interested in...

  11. Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, 1996 Annual Report

    SciTech Connect (OSTI)

    Ryerson, F. J., Institute of Geophysics and Planetary Physics

    1998-03-23T23:59:59.000Z

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research Center, headed by Charles Alcock, provides a home for theoretical and observational astrophysics and serves as an interface with the Physics and Space Technology Department's Laboratory for Experimental Astrophysics and with other astrophysics efforts at LLNL. The IGPP branch at LLNL (as well as the branch at Los Alamos) also facilitates scientific collaborations between researchers at the UC campuses and those at the national laboratories in areas related to earth science, planetary science, and astrophysics. It does this by sponsoring the University Collaborative Research Program (UCRP), which provides funds to UC campus scientists for joint research projects with LLNL. The goals of the UCRP are to enrich research opportunities for UC campus scientists by making available to them some of LLNL's unique facilities and expertise, and to broaden the scientific program at LLNL through collaborative or interdisciplinary work with UC campus researchers. UCRP funds (provided jointly by the Regents of the University of California and by the Director of LLNL) are awarded annually on the basis of brief proposals, which are reviewed by a committee of scientists from UC campuses, LLNL programs, and external universities and research organizations. Typical annual funding for a collaborative research project ranges from $5,000 to $25,000. Funds are used for a variety of purposes, including salary support for visiting graduate students, postdoctoral fellows, and faculty; released-time salaries for LLNL scientists; and costs for experimental facilities. Although the permanent LLNL staff assigned to IGPP is relatively small (presently about five full-time equivalents), IGPP's research centers have become vital research organizations. This growth has been possible because of IGPP support for a substantial group of resident postdoctoral fellows; because of the 20 or more UCRP projects funded each year; and because IGPP hosts a variety of visitors, guests, and faculty members (from both UC and other institutions) on sabbatical leave. To focus attention on areas of topical interest i

  12. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-01-01T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, cold,'' process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility's metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  13. Advanced Hydride Laboratory

    SciTech Connect (OSTI)

    Motyka, T.

    1989-12-31T23:59:59.000Z

    Metal hydrides have been used at the Savannah River Tritium Facilities since 1984. However, the most extensive application of metal hydride technology at the Savannah River Site is being planned for the Replacement Tritium Facility, a $140 million facility schedules for completion in 1990 and startup in 1991. In the new facility, metal hydride technology will be used to store, separate, isotopically purify, pump, and compress hydrogen isotopes. In support of the Replacement Tritium Facility, a $3.2 million, ``cold,`` process demonstration facility, the Advanced Hydride Laboratory began operation in November of 1987. The purpose of the Advanced Hydride Laboratory is to demonstrate the Replacement Tritium Facility`s metal hydride technology by integrating the various unit operations into an overall process. This paper will describe the Advanced Hydride Laboratory, its role and its impact on the application of metal hydride technology to tritium handling.

  14. Digital Technology Group Computer Laboratory

    E-Print Network [OSTI]

    Cambridge, University of

    Digital Technology Group 1/20 Computer Laboratory Digital Technology Group Computer Laboratory William R Carson Building on the presentation by Francisco Monteiro Matlab #12;Digital Technology Group 2/20 Computer Laboratory Digital Technology Group Computer Laboratory The product: MATLAB® - The Language

  15. National Voluntary Laboratory Accreditation Program

    E-Print Network [OSTI]

    procedure lists all the items Handbook 150 requires be covered in a management review. The records do and Management Reviews #12;National Voluntary Laboratory Accreditation Program Pre-assessment... · A laboratory;National Voluntary Laboratory Accreditation Program Pre-assessment... · A laboratory's management review

  16. Laboratory, Valles Caldera sponsor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 LaboratoryLaboratory,

  17. LABORATORY III POTENTIAL ENERGY

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY III POTENTIAL ENERGY Lab III - 1 In previous problems, you have been introduced to the concepts of kinetic energy, which is associated with the motion of an object, and internal energy, which is associated with the internal structure of a system. In this section, you work with another form of energy

  18. Pacific Northwest National Laboratory

    E-Print Network [OSTI]

    Science. Technology. Innovation. PNNL-SA-34741 Pacific Northwest National Laboratory (PNNL) is addressing cognition and learning to the development of student- centered, scenario-based training. PNNL's Pachelbel (PNNL) has developed a cognitive-based, student-centered approach to training that is being applied

  19. Technical Report Computer Laboratory

    E-Print Network [OSTI]

    Haddadi, Hamed

    for criminal activity. One general attack route to breach the security is to carry out physical attack afterTechnical Report Number 829 Computer Laboratory UCAM-CL-TR-829 ISSN 1476-2986 Microelectronic report is based on a dissertation submitted January 2009 by the author for the degree of Doctor

  20. Radiochemical Radiochemical Processing Laboratory

    E-Print Network [OSTI]

    in development, scale- up and deployment of first-of-a-kind processes to solve environmental problems in the fundamental chemistry of 4 RPL: RadiochemicalProcessingLaboratory Researchers design, build and operate small-scale-liquid suspensions. Developing Radiochemical Processes at All Scales Among the key features of the RPL are extensive

  1. Energy Systems Laboratory Groundbreaking

    ScienceCinema (OSTI)

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

    2013-05-28T23:59:59.000Z

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  2. National Laboratory Contacts

    Broader source: Energy.gov [DOE]

    Several of the U.S. Department of Energy (DOE) national laboratories host multidisciplinary transportation research centers. A wide-range of cutting-edge transportation research occurs at these facilities, funded by both DOE and cooperative research and development agreements (CRADAs) with industry

  3. LABORATORY IV OSCILLATIONS

    E-Print Network [OSTI]

    Minnesota, University of

    some of these laboratory problems before your lecturer addresses this material. It is very important, a stopwatch, a balance, a set of weights, and a computer with a video analysis application written in Lab with basic physics principles, show how you get an equation that gives the solution to the problem for each

  4. Nevis Laboratories Columbia University

    E-Print Network [OSTI]

    Detector 27 4 Data Selection 40 5 Majorana Neutrino Search Results 75 6 General Neutrino Search Results 79#12; Nevis Laboratories Columbia University Physics Department Irvington­on­Hudson, New York Search for an O(100 GeV ) Mass Right­Handed Electron Neutrino at the HERA Electron­Proton Collider Using the ZEUS

  5. ECOLOGY LABORATORY BIOLOGY 341

    E-Print Network [OSTI]

    Vonessen, Nikolaus

    Page 1 ECOLOGY LABORATORY BIOLOGY 341 Fall Semester 2008 Bighorn Sheep Rams at Bison Range National ecological data; and 3) oral and written communication skills. Thus, these ecology labs, and statistical analyses appropriate for ecological data. A major goal of this class will be for you to gain

  6. Laboratory for Atmospheric and

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    . Along with this growth came a new building on campus and a new name: the Laboratory for Atmospheric of the Sun to the outermost fringes of the solar system. With LASP's continuing operations role in the planet traditional and stable approach based on federal agency funding of research grant

  7. FUTURE LOGISTICS LIVING LABORATORY

    E-Print Network [OSTI]

    Heiser, Gernot

    FUTURE LOGISTICS LIVING LABORATORY Delivering Innovation The Future Logistics Living Lab that will provide logistics solutions for the future. The Living Lab is a demonstration, exhibition and work space by a group of logistics companies, research organisations, universities, and IT providers that includes NICTA

  8. Radiochemical Radiochemical Processing Laboratory

    E-Print Network [OSTI]

    -cycle applications. These proficiencies include extensive experience with U.S. Department of Energy tank waste.S. Department of Energy Hanford Site in south-central Washington State, the Radiochemical Processing Laboratory) thermogravimetric and calorimetric analysis microscopy (visible light, SEM, TEM, AFM) gas and thermal ionization

  9. CX-000815: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    0815: Categorical Exclusion Determination CX-000815: Categorical Exclusion Determination Hydrogen Technology Laboratory 140 - Chromatography, Wet Laboratory CX(s) Applied: B3.6...

  10. nature geoscience | VOL 2 | APRIL 2009 | www.nature.com/naturegeoscience 1 Beyond water on Mars

    E-Print Network [OSTI]

    Grotzinger, John P.

    sulphates, phyllosilicates and opaline silica in some places4­7 ; the recognition of many local topographic-the-water' strategy. With the forthcoming rover Mars Science Laboratory, due to launch in 2011, this strategy organism metabolism possible, and a source of energy to fuel that organism metabolism -- in other words

  11. Remote Sensing Laboratory - RSL

    ScienceCinema (OSTI)

    None

    2015-01-09T23:59:59.000Z

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  12. Remote Sensing Laboratory - RSL

    SciTech Connect (OSTI)

    None

    2014-11-06T23:59:59.000Z

    One of the primary resources supporting homeland security is the Remote Sensing Laboratory, or RSL. The Laboratory creates advanced technologies for emergency response operations, radiological incident response, and other remote sensing activities. RSL emergency response teams are on call 24-hours a day, and maintain the capability to deploy domestically and internationally in response to threats involving the loss, theft, or release of nuclear or radioactive material. Such incidents might include Nuclear Power Plant accidents, terrorist incidents involving nuclear or radiological materials, NASA launches, and transportation accidents involving nuclear materials. Working with the US Department of Homeland Security, RSL personnel equip, maintain, and conduct training on the mobile detection deployment unit, to provide nuclear radiological security at major national events such as the super bowl, the Indianapolis 500, New Year's Eve celebrations, presidential inaugurations, international meetings and conferences, just about any event where large numbers of people will gather.

  13. Princeton Plasma Physics Laboratory:

    SciTech Connect (OSTI)

    Phillips, C.A. (ed.)

    1986-01-01T23:59:59.000Z

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  14. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  15. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory Sandia National Laboratory Stone and Webster The Boeing Company on FIRE and fusion science accessible and up to date. A steady stream of about 150 visitors per week log

  16. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08T23:59:59.000Z

    To establish the Department's, including the NNSA's, requirements for laboratory-directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.2. Canceled by DOE O 413.2B.

  17. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19T23:59:59.000Z

    The Order establishes DOE requirements and responsibilities for laboratory directed research and development while providing laboratory directors with broad flexibility for program implementation. Cancels DOE O 413.2A. Admin Chg 1, 1-31-11.

  18. Laboratory compaction of cohesionless sands

    E-Print Network [OSTI]

    Delphia, John Girard

    1998-01-01T23:59:59.000Z

    on the maximum dry unit weight during compaction. Three different laboratory compaction methods were used: 1) Standard Proctor', 2) Modified Proctor; and 3) Vibrating hammer. The effects of the grain size distribution, particle shape and laboratory compaction...

  19. Internship Opportunities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Undergraduate Laboratory Internship Community College Internships Cooperative Education Student Research Participation Program Lee Teng Fellowship Temporary Employment...

  20. CERTS Microgrid Laboratory Test Bed

    E-Print Network [OSTI]

    Lasseter, R. H.

    2010-01-01T23:59:59.000Z

    Roy, Nancy Jo Lewis, “CERTS Microgrid Laboratory Test Bed Report:Appendix K,” http://certs.lbl.gov/CERTS_P_

  1. Sandia National Laboratories: Systems Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems Analysis The PV Performance Modeling Collaborative (PVPMC)...

  2. Sandia National Laboratories: Phenomenological Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  3. Sandia National Laboratories: photovoltaic analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Computational Modeling & Simulation, Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  4. Created: July, 2014 Laboratory Safety Design Guide Section 3 Laboratory Ventilation

    E-Print Network [OSTI]

    Queitsch, Christine

    Created: July, 2014 Laboratory Safety Design Guide Section 3 ­ Laboratory Ventilation 3-1 Section 3 LABORATORY VENTILATION Contents A. Scope .................................................................................................................3-2 B. General Laboratory Ventilation

  5. Humidity requirements in WSCF Laboratories

    SciTech Connect (OSTI)

    Evans, R.A.

    1994-10-01T23:59:59.000Z

    The purpose of this paper is to develop and document a position on Relative Humidity (RH) requirements in the WSCF Laboratories. A current survey of equipment vendors for Organic, Inorganic and Radiochemical laboratories indicate that 25% - 80% relative humidity may meet the environmental requirements for safe operation and protection of all the laboratory equipment.

  6. Manufacturing Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Manufacturing Laboratory at the Energy Systems Integration Facility. The Manufacturing Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on developing methods and technologies that will assist manufacturers of hydrogen and fuel cell technologies, as well as other renewable energy technologies, to scale up their manufacturing capabilities to volumes that meet DOE and industry targets. Specifically, the manufacturing activity is currently focused on developing and validating quality control techniques to assist manufacturers of low temperature and high temperature fuel cells in the transition from low to high volume production methods for cells and stacks. Capabilities include initial proof-of-concept studies through prototype system development and in-line validation. Existing diagnostic capabilities address a wide range of materials, including polymer films, carbon and catalyst coatings, carbon fiber papers and wovens, and multi-layer assemblies of these materials, as well as ceramic-based materials in pre- or post-fired forms. Work leading to the development of non-contact, non-destructive techniques to measure critical dimensional and functional properties of fuel cell and other materials, and validation of those techniques on the continuous processing line. This work will be supported by materials provided by our partners. Looking forward, the equipment in the laboratory is set up to be modified and extended to provide processing capabilities such as coating, casting, and deposition of functional layers, as well as associated processes such as drying or curing. In addition, continuous processes are used for components of organic and thin film photovoltaics (PV) as well as battery technologies, so synergies with these important areas will be explored.

  7. Purdue Hydrogen Systems Laboratory

    SciTech Connect (OSTI)

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28T23:59:59.000Z

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts continued to explore existing catalytic methods involving nano catalysts for capture of CO2 from the fermentation process.

  8. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  9. gangh | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., Decembergangh Ames Laboratory Profile Gang Han

  10. garberc | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., Decembergangh Ames Laboratory Profile Gang

  11. jbobbitt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy Informationjbobbitt Ames Laboratory Profile

  12. jboschen | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy Informationjbobbitt Ames Laboratory

  13. kmbryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy9 Evaluation of thekmbryden Ames Laboratory

  14. nalms | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , (Energy97 UpperJointmoveLINQnalms Ames Laboratory

  15. rluyendi | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames Laboratory Profile Rudi

  16. rmalmq | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames Laboratory Profile

  17. rodgers | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames Laboratory

  18. rofox | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development ofrluyendi Ames LaboratoryComparisons

  19. seliger | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development1 Comparison ofseliger Ames Laboratory

  20. FY 2008 Laboratory Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment ofAppropriationBudgetLaboratory Table

  1. FY 2011 Laboratory Table

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011 Strategic Plan| Department of.pdf6-OPAMDepartment6 FY 2007 FY 2008State71Laboratory

  2. Laboratory Organization Chart

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors Laboratory

  3. Laboratory announces 2008 Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory Directors LaboratoryPlanningR&DLab

  4. Laboratory Shuttle Bus Routes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory IRear bike

  5. Laboratory disputes citizens' lawsuit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory IRearLab

  6. Sandia National Laboratories: Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 ResilientHistory ViewAgreements

  7. Sandia National Laboratories: Careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 ResilientHistory

  8. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100LifeAnnouncementsLocations

  9. Lawrence Livermore National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy, science,SpeedingWu,IntelligenceYou are hereNews item slideshowLaboratory

  10. amdavis | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12Zero Energyamdavis Ames Laboratory Profile

  11. andresg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhatY-12Zero Energyamdavis Amesandresg Ames Laboratory

  12. cbenetti | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :, ,. .,3cbenetti Ames Laboratory

  13. constant | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, , ., ..., ,+ . :,2013constant Ames Laboratory Profile

  14. Independent Oversight Review, Los Alamos National Laboratory...

    Energy Savers [EERE]

    National Laboratory - November 2013 Independent Oversight Review, Los Alamos National Laboratory - November 2013 November 2013 Review of the Los Alamos National Laboratory...

  15. National Laboratory Liaisons | Department of Energy

    Office of Environmental Management (EM)

    Laboratory Liaisons National Laboratory Liaisons The following U.S. Department of Energy national laboratory liaisons serve as primary contacts for the Federal Energy...

  16. Independent Oversight Review, Argonne National Laboratory - November...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory - November 2011 Independent Oversight Review, Argonne National Laboratory - November 2011 November 2011 Review of the Argonne National Laboratory...

  17. Creating the laboratory`s future; A strategy for Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    ``Creating The Laboratory`s Future`` describes Livermore`s roles and responsibilities as a Department of Energy (DOE) national laboratory and sets the foundation for decisions about the Laboratory`s programs and operations. It summarizes Livermore`s near-term strategy, which builds on recent Lab achievements and world events affecting their future. It also discusses their programmatic and operational emphases and highlights program areas that the authors believe can grow through application of Lab science and technology. Creating the Laboratory`s Future reflects their very strong focus on national security, important changes in the character of their national security work, major efforts are under way to overhaul their administrative and operational systems, and the continuing challenge of achieving national consensus on the role of the government in energy, environment, and the biosciences.

  18. Sandia National Laboratories: Sandia Battery Abuse Testing Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Battery Abuse Testing Laboratory Sandia Transportation-Energy Research Project Funded as a Part of DOE's "EV Everywhere" Funding Program On January 21, 2014, in...

  19. Sandia National Laboratories: Grand Challenge Laboratory-Directed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grand Challenge Laboratory-Directed Research and Development project Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments On March 3, 2015, in...

  20. Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Dogliani, Harold O [Los Alamos National Laboratory

    2011-01-19T23:59:59.000Z

    The purpose of the briefing is to describe general laboratory technical capabilities to be used for various groups such as military cadets or university faculty/students and post docs to recruit into a variety of Los Alamos programs. Discussed are: (1) development and application of high leverage science to enable effeictive, predictable and reliability outcomes; (2) deter, detect, characterize, reverse and prevent the proliferation of weapons of mass destruction and their use by adversaries and terrorists; (3) modeling and simulation to define complex processes, predict outcomes, and develop effective prevention, response, and remediation strategies; (4) energetic materials and hydrodynamic testing to develop materials for precise delivery of focused energy; (5) materials cience focused on fundamental understanding of materials behaviors, their quantum-molecular properties, and their dynamic responses, and (6) bio-science to rapidly detect and characterize pathogens, to develop vaccines and prophylactic remedies, and to develop attribution forensics.

  1. National Renewable Energy Laboratory's Energy Systems Integration...

    Energy Savers [EERE]

    National Renewable Energy Laboratory's Energy Systems Integration Facility Overview National Renewable Energy Laboratory's Energy Systems Integration Facility Overview This...

  2. Argonne National Laboratory Scientists Invent Breakthrough Technique...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Argonne National Laboratory Scientists Invent Breakthrough Technique in Nanotechnology Argonne National Laboratory Scientists Invent Breakthrough Technique in Nanotechnology March...

  3. Sandia National Laboratories: wind manufacturing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Wind Energy Manufacturing Laboratory-a joint effort of researchers from TPI Composites, a Scottsdale, Arizona-based company that operates a turbine blade factory in...

  4. Two Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    event in Albuquerque LOS ALAMOS, N.M., March 26, 2015-Los Alamos National Laboratory's Nuclear Material Control and Accountability Group and the Quality and Performance...

  5. Sandia National Laboratories: Sandia partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy Manufacturing Laboratory-a joint effort of researchers from TPI Composites, a Scottsdale,...

  6. GUIDELINES FOR SAFE LABORATORY PRACTICES

    E-Print Network [OSTI]

    Haller, Gary L.

    University's Chemical Hygiene Plan (CHP). The CHP was written to comply with the Occupational Safety in Laboratories (29 CFR 1910.1450)). The CHP is the most detailed

  7. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10, 2012, in Concentrating Solar Power, EC, National Solar Thermal Test Facility, Renewable Energy Dr. David Danielson visited Sandia National Laboratories and toured the National...

  8. Smart Grid | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  9. Sandia National Laboratories: System Impacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  10. Sandia National Laboratories: Inverter Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  11. Sandia National Laboratories: Component Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  12. Sandia National Laboratories: Carbon Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... Federal Laboratory...

  13. Paul Kearns | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Golden Field Office, Golden, Colorado, and manager of the National Renewable and Environmental Laboratory and Solar Energy Research Institute (SERI) Area Office. Closer to...

  14. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Solar, Solar Newsletter A team from Sandia National Laboratories' (SNL) National Solar Thermal Test Facility (NSTTF) recently won a first place Excellence Award in the...

  15. Sandia National Laboratories: Energy Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    States. I&C systems monitor the safe, reliable and secure generation and delivery of electricity and could have potential cyber vulnerabilities. At Sandia National Laboratories,...

  16. Sandia National Laboratories: solar power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  17. Thomas Wallner | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel...

  18. Aymeric Rousseau | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School in La Rochelle, France in 1997. After working for PSA Peugeot Citroen in the Hybrid Electric Vehicle research department, he joined Argonne National Laboratory in 1999...

  19. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Concentrating Solar Power, Customers & Partners, Energy, News, Partnership, Renewable Energy, Solar Areva Solar is collaborating with Sandia National Laboratories on a new...

  20. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interactive Tour Operated by Sandia National Laboratories for the U.S. Department of Energy (DOE), the National Solar Thermal Test Facility (NSTTF) is the only test facility...

  1. Sandia National Laboratories: Solar Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Force Research Laboratory Testing On August 17, 2012, in Concentrating Solar Power, Energy, Facilities, National Solar Thermal Test Facility, News, Renewable Energy, Solar...

  2. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot Sandia's Kenneth Armijo (in the...

  3. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014, in Computational Modeling & Simulation, Energy, News, News & Events, Partnership, Renewable Energy, Water Power Sandia and the National Renewable Energy Laboratory (NREL)...

  4. Sandia National Laboratories: Renewable Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sales On February 25, 2015, in Energy, News, News & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis A Lawrence Berkeley National Laboratory (LBNL)...

  5. Sandia National Laboratories: Solar Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Sandia Corporation | Questions & Comments | Privacy & Security U.S. Department of Energy National Nuclear Security Administration Sandia National Laboratories is a...

  6. Sandia National Laboratories: Semiconductor Revolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Laboratories and Chief Scientist of the Energy Frontier Research Center for Solid-State Lighting Science Date: March 31, 2010 Event: Lecture at Albuquerque Academy...

  7. Beyond Laboratories, Beyond Being Green

    Broader source: Energy.gov (indexed) [DOE]

    and Construction of High Performance, Low Energy Laboratories What is Labs21? * Genesis: Ann Arbor, Michigan ESPC * A joint EPADOE partnership program to improve the energy and...

  8. Sandia National Laboratories: thermal management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    management 2013 Inverter Reliability Workshop On May 31, 2013, in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability...

  9. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Testing Center (PV RTC), Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot, Systems Analysis A research team that included...

  10. Sandia National Laboratories: Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot Sandia's Kenneth Armijo (in the Photovoltaic &...

  11. News Room | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Room Argonne Associate Laboratory Director for Energy and Global Security Mark Peters, left, signs a memorandum of understanding with Nadya Bliss, director of the Global...

  12. Media Contacts | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Media Contacts Christopher J. Kramer Argonne National Laboratory Christopher J. Kramer is the manager of media relations and external affairs for Argonne. Contact him at...

  13. Internal Applicants | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory Argonne Login Service Please log in to continue Username * Enter your ANL domain account username. Password * Enter the password that accompanies your...

  14. Ray Bair | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    science, computational and laboratory research Large scale applications of high performance computing and communications News FLC awards researchers for transfer of engine...

  15. Sandia National Laboratories: Carbon Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SO2), nitrous oxides (NOx), mercury, and fine particulate matter. Carbon dioxide (CO2) is always a byproduct of combustion. ... Geomechanics Laboratory On April 7, 2011,...

  16. Sandia National Laboratories: advanced materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility, News, News & Events, Renewable Energy, Solar, Systems Engineering...

  17. Sandia National Laboratories: Solar Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEPV Publications MEPV Awards Researchers at Sandia National Laboratories are pioneering solar photovoltaic (PV) technologies that are cheaper to produce and easier to install...

  18. Sandia National Laboratories: News & Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot The state of the art in PV system monitoring is relatively...

  19. Sandia National Laboratories: materials technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Researchers Win CSP:ELEMENTS Funding Award On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National...

  20. Preventing Laboratory FiresPreventing Laboratory Fires AgendaAgenda

    E-Print Network [OSTI]

    Farritor, Shane

    June 2006fire June 2006 #12;Hamilton HallHamilton Hall September 1992September 1992 Explosion Rm. 619Behlen Explosion 2002Explosion 2002 Explosion in ventilationExplosion in ventilation hood, no fire orhood, no firePreventing Laboratory FiresPreventing Laboratory Fires #12;AgendaAgenda Flash over VideoFlash over

  1. COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES

    E-Print Network [OSTI]

    Krovi, Venkat

    5.A.6 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURE for REPORTING PHYSICAL PLANT AND ENVIRONMENTAL CONDITIONS ABNORMALITIES AT THE COMPARATIVE MEDICINE LABORATORY ANIMAL investigator to keep her/him informed of the progress or resolution of the problem. #12;

  2. User Manual Frick Chemistry Laboratory

    E-Print Network [OSTI]

    Torquato, Salvatore

    the atrium connects the laboratory wing with the administrative offices. This provides a light-filled space to make the new Frick Chemistry Laboratory (and the surrounding natural sciences neighborhood) one technologies that reduce energy demand and con- serve water. The design and construction teams have implemented

  3. Hybrid & Hydrogen Vehicle Research Laboratory

    E-Print Network [OSTI]

    Lee, Dongwon

    Hybrid & Hydrogen Vehicle Research Laboratory www.vss.psu.edu/hhvrl Joel R. Anstrom, Director 201 The Pennsylvania Transportation Institute Hybrid and Hydrogen Vehicle Research Laboratory will contribute to the advancement of hybrid and hydrogen vehicle technology to promote the emerging hydrogen economy by providing

  4. Laboratory Directed Research and Development

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2006-04-19T23:59:59.000Z

    The order establishes DOE requirements for laboratory directed research and development (LDRD) while providing the laboratory director broad flexibility for program implementation. Cancels DOE O 413.3A. Admin Chg 1, dated 1-31-11, cancels DOE O 413.3B. Certified 7-14-2011.

  5. National Voluntary Laboratory Accreditation Program

    E-Print Network [OSTI]

    National Voluntary Laboratory Accreditation Program NVLAP Assessor Training NIST Handbook 150 ISO/IEC ­ September 24, 2013 2 ISO/IEC 17025:2005 #12;National Voluntary Laboratory Accreditation Program General or electronic documentation of facts or events Sources: ISO /IEC Directives, Part 2, 2004 ISO/IEC 17000

  6. Statistical Laboratory & Department of Statistics

    E-Print Network [OSTI]

    by the American Statistical Association. Dean Isaacson and Mark Kaiser were instrumental in garnering a NationalStatistical Laboratory & Department of Statistics Annual Report July 1, 2002 to June 30, 2003 IOWA Chair of the Department of Statistics and Director of the Statistical Laboratory in November, 2002. Dean

  7. 1. INTRODUCTION Fluid flows are often so complicated that laboratory

    E-Print Network [OSTI]

    Nilsson, Johan

    with vertical stratification. For a single-hemisphere basin, self-sustained oscillations of the flow and period of the oscillations are partly determined by the energy avail- able for vertical mixing if v, University of Stockholm, Sweden. 4Department of Geosciences, University of Bremen, Germany. 5Climate

  8. CX-001373: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Analytical Development Tritium Support Laboratory for Mass Spectroscopy, Infrared Spectroscopy, and Raman CX(s) Applied: B3.6 Date: 03102010 Location(s): Aiken,...

  9. CX-012474: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Refractories/Ceramics Project CX(s) Applied: B3.6Date: 41870 Location(s): OregonOffices(s): National Energy Technology Laboratory

  10. CX-005156: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-005156: Categorical Exclusion Determination United States-China Advanced Coal Technologies Consortium - Lawrence Livermore National Laboratory CX(s)...

  11. CX-000658: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Determination CX-000658: Categorical Exclusion Determination Gilt Edge Mine Wind Resource Assessment; National Renewable Energy Laboratory Tracking Number 10-009 CX(s)...

  12. CX-003226: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Exclusion Determination CX-003226: Categorical Exclusion Determination Parris Island Wind Resource Assessment; National Renewable Energy Laboratory Tracking Number 10-032 CX(s)...

  13. CX-011798: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Analytical Physics - Thermal Analysis CX(s) Applied: B3.6 Date: 01/30/2014 Location(s): Oregon Offices(s): National Energy Technology Laboratory

  14. CX-012706: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Radiochemistry Laboratory (RCL) Supply Intake Filter Housing CX(s) Applied: B2.5Date: 41858 Location(s): IdahoOffices(s): Nuclear Energy

  15. CX-012433: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Computer Simulation and Prototype Construction and Testing CX(s) Applied: A9Date: 41878 Location(s): GeorgiaOffices(s): National Energy Technology Laboratory

  16. CX-012434: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Low Cost Titanium Casting Technology CX(s) Applied: B3.6Date: 41878 Location(s): OhioOffices(s): National Energy Technology Laboratory

  17. CX-011416: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11 Date: 12/19/2013 Location(s): Ohio Offices(s): National Energy Technology Laboratory

  18. CX-010778: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11 Date: 08/23/2013 Location(s): Oklahoma Offices(s): National Energy Technology Laboratory

  19. CX-012472: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Technology Integration Program CX(s) Applied: A9, A11, B3.11Date: 41873 Location(s): OhioOffices(s): National Energy Technology Laboratory

  20. CX-012038: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Deepwater Reverse-Circulation Primary Cementing CX(s) Applied: A9 Date: 04/17/2014 Location(s): Texas Offices(s): National Energy Technology Laboratory

  1. CX-006043: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Categorical Exclusion Determination CX-006043: Categorical Exclusion Determination CorrosionElectrochemistry Laboratory CX(s) Applied: B3.6 Date: 06082011 Location(s):...

  2. CX-012189: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Microbial Laboratory Analysis CX(s) Applied: B3.12 Date: 05/06/2014 Location(s): Illinois Offices(s): Argonne Site Office

  3. CX-010951: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Automotive Technology Analysis CX(s) Applied: A8 Date: 09/17/2013 Location(s): Virginia Offices(s): National Energy Technology Laboratory

  4. CX-008264: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Natural Gas Fueling Facility CX(s) Applied: A1 Date: 05/24/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  5. CX-008468: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Compressed Natural Gas Fueling Facility CX(s) Applied: A1 Date: 06/12/2012 Location(s): Missouri Offices(s): National Energy Technology Laboratory

  6. CX-012463: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Reliable SOFC Systems CX(s) Applied: A9, B3.6Date: 41877 Location(s): ConnecticutOffices(s): National Energy Technology Laboratory

  7. CX-012718: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Idaho State University Reactor Laboratory Modernization CX(s) Applied: B1.31Date: 41844 Location(s): IdahoOffices(s): Nuclear Energy

  8. CX-009272: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Building 94 Facade Restoration CX(s) Applied: B1.3 Date: 09/10/2012 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  9. CX-007695: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    National Laboratories - Improved Power System Operations Using Advanced Stochastic Optimization CX(s) Applied: A9 Date: 11182011 Location(s): New Mexico, Iowa, Massachusetts,...

  10. CX-004223: Categorical Exclusion Determination | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    Center for Integrated Nanotechnologies Gateway - Installation and Operation of Computer Workstation Cluster, Los Alamos National Laboratory CX(s) Applied: B1.3 Date: 0519...

  11. CX-011707: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Laser Nanoparticle Lab CX(s) Applied: B3.6 Date: 01/15/2014 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory

  12. CX-012519: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Amber Kinetics Flywheel Energy Storage Demonstration CX(s) Applied: B3.6Date: 41848 Location(s): CaliforniaOffices(s): National Energy Technology Laboratory

  13. CX-012512: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Amber Kinetics Flywheel Energy Storage Demonstration CX(s) Applied: B3.6Date: 41848 Location(s): CaliforniaOffices(s): National Energy Technology Laboratory

  14. CX-010797: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Serration Behavior of High Entropy Alloys CX(s) Applied: A9 Date: 08/14/2013 Location(s): Illinois Offices(s): National Energy Technology Laboratory

  15. Optical Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Optical Characterization Laboratory at the Energy Systems Integration Facility. The Optical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) conducts optical characterization of large solar concentration devices. Concentration solar power (CSP) mirror panels and concentrating solar systems are tested with an emphasis is on measurement of parabolic trough mirror panels. The Optical Characterization Laboratory provides state-of-the-art characterization and testing capabilities for assessing the optical surface quality and optical performance for various CSP technologies including parabolic troughs, linear Fresnel, dishes, and heliostats.

  16. Statistical Laboratory & Department of Statistics

    E-Print Network [OSTI]

    Statistical Laboratory & Department of Statistics Annual Report July 1, 2005 to December 31, 2006...............................................33 Statistical Computing Section ......................................34 CSSM and statistical methodology in the nutritional sciences. We were also very pleased to secure a permanent lecturer

  17. Laboratory and New Mexico Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USDA awards 1 million eor e. coli research by Los Alamos National Laboratory and New Mexico Consortium February 29, 2012 LOS ALAMOS, New Mexico, February 29, 2012-Researchers from...

  18. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    National Laboratory Stone and Webster The Boeing Company University of Illinois University of Wisconsin #12 accessible and up to date. A steady stream of about 150 visitors per week log on to the FIRE web site since

  19. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Laboratory Stone and Webster The Boeing Company University of Illinois University of Wisconsin #12;NSO to date. A steady stream of about 150 visitors per week log on to the FIRE web site since the site

  20. Laboratories to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Laboratory Stone and Webster The Boeing Company University of Illinois University of Wisconsin #12;NSO visitors per week logs on to the FIRE web site since the site was initiated in early July, 1999. #12

  1. Strategic Technology JET PROPULSION LABORATORY

    E-Print Network [OSTI]

    Waliser, Duane E.

    Strategic Technology Directions JET PROPULSION LABORATORY National Aeronautics and Space Administration 2 0 0 9 #12;© 2009 California Institute of Technology. Government sponsorship acknowledged. #12;Strategic Technology Directions 2009 offers a distillation of technologies, their links to space missions

  2. Welcome to the Ames Laboratory

    ScienceCinema (OSTI)

    King, Alex

    2013-03-01T23:59:59.000Z

    Alex King, director of The Ames Laboratory, discusses the state of the Lab for 2011, the goals of the Lab and the importance of the research taking place here.

  3. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Ohta, Shigemi

    NATIONAL LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) This document defines LASER OPERATIONS Operation Maintenance Service Specific Operation Fiber Optics LASER SYSTEM HAZARD the safety management program for the laser system listed below. All American National Standard Institute

  4. 3M Corporation Abbott Laboratories

    E-Print Network [OSTI]

    Napier, Terrence

    . Agilent Technologies, Inc. Air Products Foundation Alaska Airlines Albemarle Corporation Alcoa Foundation Energy Group, Inc. Corning Incorporated Foundation Crayola, LLC Deloitte Foundation Delta Air Lines3M Corporation Abbott Laboratories Adage Capital Management, LP Adams Electric Cooperative, Inc

  5. Laboratory Experiments and their Applicability 

    E-Print Network [OSTI]

    Steinhaus, Thomas; Jahn, Wolfram

    2007-11-14T23:59:59.000Z

    In conjunction with the Dalmarnock Fire Tests a series of laboratory tests have been conducted at the BRE Centre for Fire Safety Engineering at the University of Edinburgh (UoE) in support of the large scale tests. These ...

  6. Contact Us | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Address and phone Argonne National Laboratory 9700 S. Cass Avenue Lemont, IL 60439. Phone: 630252-2000 For members of the news media News releases online Argonne media...

  7. Welcome to the Ames Laboratory

    SciTech Connect (OSTI)

    King, Alex

    2012-01-01T23:59:59.000Z

    Alex King, director of The Ames Laboratory, discusses the state of the Lab for 2011, the goals of the Lab and the importance of the research taking place here.

  8. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15T23:59:59.000Z

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  9. PHYSICS 122 LABORATORY (Winter, 2014)

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    - 1 - PHYSICS 122 LABORATORY (Winter, 2014) COURSE GOALS 1. Learn how) 3. W. R. Leo, Techniques for Nuclear and Particle Physics Experiments, Springer Noise (Tyson ­ Mitchell) Continuous-Wave Nuclear Magnetic Resonance (Chiang

  10. PHYSICS 122 LABORATORY (Winter, 2015)

    E-Print Network [OSTI]

    Yoo, S. J. Ben

    - 1 - PHYSICS 122 LABORATORY (Winter, 2015) COURSE GOALS 1. Learn how for Nuclear and Particle Physics Experiments, Springer-Verlag, 2nd edition. (UCD Library call) Continuous-Wave Nuclear Magnetic Resonance (Chiang - Stenger) Pulsed Nuclear Magnetic

  11. with Oak Ridge National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an industry or university through other means-we are committed to outcomes that create win-win opportunities for the external organization as well as the laboratory. We welcome...

  12. This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1

    E-Print Network [OSTI]

    Small, Eric

    as presented, with the exception of pagination. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 1 Effects), radar, reflec- tometry, remote sensing, soil. I. INTRODUCTION NEAR-surface soil moisture has been heat fluxes [5]. Manuscript received December 1, 2011; revised May 13, 2012, August 27, 2012

  13. Yellowstone in Yukon: The Late Cretaceous Carmacks Group Stephen T. Johnston* Canada/Yukon Geoscience Office, Box 2703 (F-3), Whitehorse, Yukon Y1A 2C6, Canada

    E-Print Network [OSTI]

    Johnston, Stephen T.

    Yellowstone in Yukon: The Late Cretaceous Carmacks Group Stephen T. Johnston* Canada/Yukon Geoscience Office, Box 2703 (F-3), Whitehorse, Yukon Y1A 2C6, Canada P. Jane Wynne Geological Survey of Canada, 9860 West Saanich Road, P.O. Box 6000, Sidney, British Columbia V8L 4B2, Canada Don Francis Earth

  14. M. Toubin, C. Dumont, E. P. Verrechia, O. Lalligant, A. Diou, F. Truchetet, and M. A. Abidi, "A Multi-scale Analysis of shell growth increments using wavelet transform," Computers & Geosciences, Journal of the International Association for Mathematical Ge

    E-Print Network [OSTI]

    Abidi, Mongi A.

    been tried (Dolman, 1975) using a Fourier transform. This method, based on power spectra analysis Multi-scale Analysis of shell growth increments using wavelet transform," Computers & Geosciences of environments). The search for these two types of information inside accretionary shells of living or fossil

  15. Gallium Safety in the Laboratory

    SciTech Connect (OSTI)

    Cadwallader, L.C.

    2003-05-07T23:59:59.000Z

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002.

  16. Laborlandschaft : redesigning the industrial laboratory module

    E-Print Network [OSTI]

    Farley, Alexander H. (Alexander Hamilton)

    2014-01-01T23:59:59.000Z

    This thesis proposes to redesign the industrial pharmaceutical laboratory typology by rethinking the composition of the laboratory module; the smallest functional sub-unit of the laboratory type. The design for this thesis ...

  17. MITSUBISHI ELECTRIC RESEARCH LABORATORIES! Cambridge, Massachusetts!

    E-Print Network [OSTI]

    © MERL MITSUBISHI ELECTRIC RESEARCH LABORATORIES! Cambridge, Massachusetts! Petros Boufounos Fourier Methods in Array Processing 2/18/2013 ... #12;© MERL MITSUBISHI ELECTRIC RESEARCH LABORATORIES of basic models and methods #12;© MERL MITSUBISHI ELECTRIC RESEARCH LABORATORIES! (Linearized) Wave

  18. National Renewable Energy Laboratory Analysis Capabilities

    E-Print Network [OSTI]

    National Renewable Energy Laboratory Analysis Capabilities Overview The National Renewable Energy Laboratory (NREL) is the nation's primary laboratory for renewable energy and energy efficiency research and development (R&D). NREL

  19. Energy Storage Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

  20. Laboratory Ventilation SafetyLaboratory Ventilation Safety J. Scott WardJ. Scott Ward

    E-Print Network [OSTI]

    Farritor, Shane

    Laboratory Ventilation SafetyLaboratory Ventilation Safety J. Scott WardJ. Scott Ward #12;In 1925. Labconco CorporationLabconco Corporation #12;Laboratory VentilationLaboratory Ventilation #12;Laboratory Ventilation ProductsLaboratory Ventilation Products #12;History of Fume HoodsHistory of Fume Hoods Thomas

  1. Biomass Catalyst Characterization Laboratory (Fact Sheet), NREL...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization Laboratory Enabling fundamental understanding of thermochemical biomass conversion catalysis and performance NREL is a national laboratory of the U.S....

  2. Sandia National Laboratories: high PV penetration levels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  3. Sandia National Laboratories: European Distributed Energies Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  4. Sandia National Laboratories: renewable energy and distributed...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  5. Sandia National Laboratories: Fifth International Conference...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid, Solar Sandia National Laboratories, the Electric Power Research Institute (EPRI) and European Distributed Energies Research Laboratories (DERlab) have organized a...

  6. Savannah River National Laboratory (SRNL) Environmental Sciences...

    Office of Environmental Management (EM)

    Savannah River National Laboratory (SRNL) Environmental Sciences and Biotechnology Support of Waste Isolation Pilot Plant (WIPP) Savannah River National Laboratory (SRNL)...

  7. www.yorku.ca/research Ergonomics Laboratory

    E-Print Network [OSTI]

    www.yorku.ca/research Ergonomics Laboratory -- Biomechanics At York School of Kinesiology Salas The Ergonomics Laboratory creates healthier workplaces by reducing individuals' risk of developing

  8. Independent Activity Report, Lawrence Livermore National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory - March 2011 March 2011 Lawrence Livermore National Laboratory Chronic Beryllium Disease Prevention Program Effectiveness Review HIAR-LLNL-2011-03-25 This...

  9. Opportunities with Laboratories under the Chicago Office

    Broader source: Energy.gov (indexed) [DOE]

    with Laboratories under the Chicago Office 1 Princeton Plasma Physics Laboratory 1. Mechanical Engineering Services; Larry Dudek; 188,000 2. Phone system; William Bryan; 300,000...

  10. Independent Oversight Review, National Energy Technology Laboratory...

    Energy Savers [EERE]

    National Energy Technology Laboratory - May 2014 Independent Oversight Review, National Energy Technology Laboratory - May 2014 May 2014 Review of the Emergency Management Program...

  11. Enterprise Assessments Targeted Review, Idaho National Laboratory...

    Office of Environmental Management (EM)

    Laboratory Fire Protection Program as Implemented at the Irradiated Materials Characterization Laboratory The Office of Nuclear Safety and Environmental Assessments, within the...

  12. Vehicle-Grid Interoperability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle-Grid Interoperability Charging a test vehicle using the laboratory's solar-powered charging station. Charging a test vehicle using the laboratory's solar-powered charging...

  13. Independent Oversight Inspection, Sandia National Laboratories...

    Office of Environmental Management (EM)

    National Laboratories, Summary Report - February 2003 February 2003 Inspection of Environment, Safety, and Health and Emergency Management at the Sandia National Laboratories...

  14. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue

    E-Print Network [OSTI]

    Munson, Todd S.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 Optimizing the Quality S. Munson Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439

  15. Independent Oversight Review, Los Alamos National Laboratory...

    Broader source: Energy.gov (indexed) [DOE]

    Review, Los Alamos National Laboratory - September 2011 Independent Oversight Review, Los Alamos National Laboratory Chemistry and Metallurgy Research Facility - January 2012...

  16. Sandia National Laboratories: Combustion Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen Behavior On June 13, 2014, in Turbulent Combustion Laboratory The Turbulent Combustion Laboratory (TCL) provides a well-controlled, lab-scale environment for testing...

  17. 1106 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 44, NO. 5, MAY 2006 Early Validation Analyses of Atmospheric Profiles

    E-Print Network [OSTI]

    Analyses of Atmospheric Profiles From EOS MLS on the Aura Satellite Lucien Froidevaux, Nathaniel J. Livesey Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 USA (e-mail: lucien

  18. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 37, NO. 1, JANUARY 1999 21 A Hybrid Experimental/Theoretical

    E-Print Network [OSTI]

    Sarabandi, Kamal

    Laboratory, Department of Electrical Engineering and Computer Science, The University of Michigan, Ann Arbor of a snow layer over sea ice or on a forest floor. The ability to generate realistic predictions

  19. Federal laboratories for the 21st century

    SciTech Connect (OSTI)

    Gover, J. [Sandia National Labs., Albuquerque, NM (United States); Huray, P.G. [Univ. of South Carolina, Columbia, SC (United States)

    1998-04-01T23:59:59.000Z

    Federal laboratories have successfully filled many roles for the public; however, as the 21st Century nears it is time to rethink and reevaluate how Federal laboratories can better support the public and identify new roles for this class of publicly-owned institutions. The productivity of the Federal laboratory system can be increased by making use of public outcome metrics, by benchmarking laboratories, by deploying innovative new governance models, by partnerships of Federal laboratories with universities and companies, and by accelerating the transition of federal laboratories and the agencies that own them into learning organizations. The authors must learn how government-owned laboratories in other countries serve their public. Taiwan`s government laboratory, Industrial Technology Research Institute, has been particularly successful in promoting economic growth. It is time to stop operating Federal laboratories as monopoly institutions; therefore, competition between Federal laboratories must be promoted. Additionally, Federal laboratories capable of addressing emerging 21st century public problems must be identified and given the challenge of serving the public in innovative new ways. Increased investment in case studies of particular programs at Federal laboratories and research on the public utility of a system of Federal laboratories could lead to increased productivity of laboratories. Elimination of risk-averse Federal laboratory and agency bureaucracies would also have dramatic impact on the productivity of the Federal laboratory system. Appropriately used, the US Federal laboratory system offers the US an innovative advantage over other nations.

  20. Los Alamos National Laboratory A National Science Laboratory

    SciTech Connect (OSTI)

    Chadwick, Mark B. [Los Alamos National Laboratory

    2012-07-20T23:59:59.000Z

    Our mission as a DOE national security science laboratory is to develop and apply science, technology, and engineering solutions that: (1) Ensure the safety, security, and reliability of the US nuclear deterrent; (2) Protect against the nuclear threat; and (3) Solve Energy Security and other emerging national security challenges.

  1. The Suli Experience | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Suli Experience Students and mentors talk about the Science Undergraduate Laboratory Internship (SULI) program...

  2. Appendix C.1 THE LEAD LABORATORY

    E-Print Network [OSTI]

    Appendix C.1 THE LEAD LABORATORY By PATRICK J. PARSONS, Ph.D.1 J. JULIAN CHISOLM, JR., M.D.2 Role of the Laboratory Laboratories measure lead concentrations in either clinical samples between the clinical and environmental lead laboratories and the issues that they face. Often

  3. Biomass Surface Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This fact sheet provides information about Biomass Surface Characterization Laboratory capabilities and applications at NREL.

  4. Argonne National Laboratory 1985 publications

    SciTech Connect (OSTI)

    Kopta, J.A. (ED.); Hale, M.R. (comp.)

    1987-08-01T23:59:59.000Z

    This report is a bibliography of scientific and technical 1985 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1985. This compilation, prepared by the Technical Information Services Technical Publications Section (TPB), lists all nonrestricted 1985 publications submitted to TPS by Laboratory's Divisions. The report is divided into seven parts: Journal Articles - Listed by first author, ANL Reports - Listed by report number, ANL and non-ANL Unnumbered Reports - Listed by report number, Non-ANL Numbered Reports - Listed by report number, Books and Book Chapters - Listed by first author, Conference Papers - Listed by first author, Complete Author Index.

  5. Laboratory Waste Disposal HAZARDOUS GLASS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover

  6. LABORATORY IV CONSERVATION OF ENERGY

    E-Print Network [OSTI]

    Minnesota, University of

    Lab IV - 1 LABORATORY IV CONSERVATION OF ENERGY In this lab you will begin to use the principle of conservation of energy to determine the motion resulting from interactions that are difficult to analyze using force concepts alone. You will explore how conservation of energy is applied to real interactions. Keep

  7. CHEMISTRY 324W ORGANIC LABORATORY

    E-Print Network [OSTI]

    Wagner, Diane

    including crystallization, distillation, extraction, column chromatography. 4. You should be able to obtain description: A laboratory designed to illustrate modern techniques of isolation, purification, analysis analyses (primarily gc, column, HPLC, and tlc) 3. Standard work-up procedures 4. Purification techniques

  8. LABORATORY VI ELECTRICITY FROM MAGNETISM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored by electric currents. This lab will carry that investigation one step further, determining how changing magnetic fields can give rise to electric currents. This is the effect that allows the generation

  9. LABORATORY VI ELECTRICITY FROM MAGNETISM

    E-Print Network [OSTI]

    Minnesota, University of

    LABORATORY VI ELECTRICITY FROM MAGNETISM Lab VI - 1 In the previous problems you explored the magnetic field and its effect on moving charges. You also saw how electric currents could create magnetic can give rise to electric currents. This is the effect that allows the generation of electricity

  10. FISHERY RESEARCH BIOLOGICAL LABORATORY, GALVESTON

    E-Print Network [OSTI]

    stations conduct fish ry re - search in the Gulf of Mexico as part of the work of the Bureau's Gulf, St. Pet rsburg Beach, Fla. Biological Res earch Biological Laboratory, Beaufort, N. C hw Gulf of Mexico Abundance of postlarval and juv nil shrimp Pink shrimp life history . Brown

  11. COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES

    E-Print Network [OSTI]

    Krovi, Venkat

    4.A.7 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURES LUNAR PIXIMUS MACHINE 1.0 Purpose This procedure outlines precautions, maintenance and use of the Lunar PIXImus Machine housed in room 310 BEB. 2.0 Scope This procedure applies to all CMLAF and principal investigator staff. 3

  12. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Ohta, Shigemi

    NATIONAL LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) This document defines (CWlaser) NA Coupled into 100 micron optical fiber APPLICABLE LASER OPERATIONS Operation Maintenance the safety management program for the laser system(s) listed below. All American National Standard Institute

  13. COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES

    E-Print Network [OSTI]

    Krovi, Venkat

    3.E.1 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURES for ACCESS, and the correct way to leave the facility. 2.0 Scope: This procedure applies to all CMLAF staff, maintenance, ENTRY, AND EXIT PROCEDURES FOR THE ANIMAL BIOSAFETY SUITE ROOM 305 BEB 1.0 Purpose: The Biosafety suite

  14. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Ohta, Shigemi

    LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) This document defines the safety 35mW CW NA APPLICABLE LASER OPERATIONS Operation Maintenance Service Specific Operation (specify) #12 management program for the laser system(s) listed below. All American National Standard Institute (ANSI

  15. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Homes, Christopher C.

    LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) This document defines the safety elliptical 1.5mm*3.5 mm APPLICABLE LASER OPERATIONS Operation Maintenance Service Specific Operation (specify management program for the laser system(s) listed below. All American National Standard Institute (ANSI

  16. COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES

    E-Print Network [OSTI]

    Krovi, Venkat

    5.A.4 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURE for CRITICAL Plant and maintenance personnel as well as CMLAF personnel that will be notified. 3.0 Procedure ALARM RESPONSE PROCEDURE FOR CHILLED WATER PLANT 1.0 Purpose: This SOP outlines the procedure

  17. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Ohta, Shigemi

    NATIONAL LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) This document defines OPERATIONS Operation Maintenance Service Specific Operation (specify) #12;Number: PS-ESH-0083 Revision: 01 the safety management program for the laser system(s) listed below. All American National Standard Institute

  18. COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES

    E-Print Network [OSTI]

    Krovi, Venkat

    1.E.1 COMPARATIVE MEDICINE LABORATORY ANIMAL FACILITIES STANDARD OPERATING PROCEDURE for ENTRY RODENT FACILITY 1. I have read, understand, and will follow the Standard Operating Procedures listed: This procedure applies to all CMLAF, principal investigator and maintenance personnel 3.0 Procedure: 3

  19. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Ohta, Shigemi

    /2010) BROOKHAVEN NATIONAL LABORATORY LASER CONTROLLED AREA STANDARD OPERATING PROCEDURE (SOP) This document defines) Beam Diameter (mm) DPSS 532 3B 23 mW CW NA OPERATIONS Operation Maintenance the safety management program for the laser system(s) listed below. All American National Standard Institute

  20. The National Voluntary Laboratory Accreditation

    E-Print Network [OSTI]

    CFR Part 285) · Linked to NIST measurement research · Operates in accordance with ISO/IEC standards · ISO/IEC 17011 (for Accrediting Bodies) · ISO/IEC 17025 (for Laboratories) · Accreditation available competence. · Assessment is based on a Standard (ISO/IEC 17025) · Assessment of specific scope

  1. Brookhaven National Laboratory Number: Revision

    E-Print Network [OSTI]

    Ohta, Shigemi

    Brookhaven National Laboratory Number: Revision: PS-ESH-0057 01 Effective: Page 1 of 9 06 Chris Weilandics Signature on file Department ES&H Approval printed name Signature Date Lori Stiegler Signature on file #12;Number: PS-ESH-0057 Revision: 01 Effective: 06/08/12 Page 2 of 9 The only official

  2. Electrical Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Electrical Characterization Laboratory at the Energy Systems Integration Facility. Electrical Characterization Laboratory at NREL's Energy Systems Integration Facility (ESIF) focuses on the detailed electrical characterization of components and systems. This laboratory allows researchers to test the ability of equipment to withstand high voltage surges and high current faults, including equipment using standard and advanced fuels such as hydrogen. Equipment that interconnected to the electric power grid is required to meet specific surge withstand capabilities. This type of application tests the ability of electrical equipment to survive a lightning strike on the main grid. These are often specified in IEEE standards such as IEEE Std. 1547. In addition, this lab provides a space for testing new, unproven, or potentially hazardous equipment for robust safety assessment prior to use in other labs at ESIF. The Electric Characterization Laboratory is in a location where new, possibly sensitive or secret equipment can be evaluated behind closed doors.

  3. Laboratory Directed Research and Development Program FY 2007

    SciTech Connect (OSTI)

    Hansen, Todd C; editor, Todd C Hansen,

    2008-03-12T23:59:59.000Z

    Report on Ernest Orlando Lawrence Berkeley National Laboratory Laboratory Directed Research and Development Program FY 2007

  4. Lawrence Berkeley Laboratory Affirmative Action Program. Revised

    SciTech Connect (OSTI)

    NONE

    1995-06-01T23:59:59.000Z

    The Lawrence Berkeley Laboratory`s Affirmative Action Program (AAP) serves as a working document that describes current policies, practices, and results in the area of affirmative action. It represents the Laboratory`s framework for an affirmative approach to increasing the representation of people of color and women in segments of our work force where they have been underrepresented and taking action to increase the employment of persons with disabilities and special disabled and Vietnam era veterans. The AAP describes the hierarchy of responsibility for Laboratory affirmative action, the mechanisms that exist for full Laboratory participation in the AAP, the policies and procedures governing recruitment at all levels, the Laboratory`s plan for monitoring, reporting, and evaluating affirmative action progress, and a description of special affirmative action programs and plans the Laboratory has used and will use in its efforts to increase the representation and retention of groups historically underrepresented in our work force.

  5. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLab teamLaboratoireBuilders

  6. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLab

  7. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,s -LabgrantsLabperformance computer

  8. Argonne National Laboratory 1986 publications

    SciTech Connect (OSTI)

    Kopta, J.A.; Springer, C.J.

    1987-12-01T23:59:59.000Z

    This report is a bibliography of scientific and technical 1986 publications of Argonne National Laboratory. Some are ANL contributions to outside organizations' reports published in 1986. This compilation, prepared by the Technical Information Services Technical Publications Section (TPS), lists all nonrestricted 1986 publications submitted to TPS by the Laboratory's Divisions. Author indexes list ANL authors only. If a first author is not an ANL employee, an asterisk in the bibliographic citation indicates the first ANL author. The report is divided into seven parts: Journal Articles -- Listed by first author; ANL Reports -- Listed by report number; ANL and non-ANL Unnumbered Reports -- Listed by report number; Non-ANL Numbered Reports -- Listed by report number; Books and Book Chapters -- Listed by first author; Conference Papers -- Listed by first author; and Complete Author Index.

  9. Oak Ridge National Laboratory Review

    SciTech Connect (OSTI)

    Krause, C.; Pearce, J.; Zucker, A. (eds.)

    1992-01-01T23:59:59.000Z

    This report presents brief descriptions of the following programs at Oak Ridge National Laboratory: The effects of pollution and climate change on forests; automation to improve the safety and efficiency of rearming battle tanks; new technologies for DNA sequencing; ORNL probes the human genome; ORNL as a supercomputer research center; paving the way to superconcrete made with polystyrene; a new look at supercritical water used in waste treatment; and small mammals as environmental monitors.

  10. Purdue Solar Energy Utilization Laboratory

    SciTech Connect (OSTI)

    Agrawal, Rakesh [Purdue] [Purdue

    2014-01-21T23:59:59.000Z

    The objective of this project is to establish and set-up a laboratory that will facilitate research and development of new low-cost and high-efficiency solar energy utilization technologies at Purdue University. The outcome will help spur the creation of solar energy start-up companies and eventually a solar energy industry in Indiana that can help fulfill the growing national demand for solar energy.

  11. Oversight Board | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomass and BiofuelsOversight Board The Ames Laboratory Oversight

  12. Smart Power Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Smart Power Laboratory at the Energy Systems Integration Facility. Research at NREL's Smart Power Laboratory in the Energy Systems Integration Facility (ESIF) focuses on the development and integration of smart technologies including the integration of distributed and renewable energy resources through power electronics and smart energy management for building applications. The 5,300 sq. ft. laboratory is designed to be highly flexible and configurable, essential for a large variety of smart power applications that range from developing advanced inverters and power converters to testing residential and commercial scale meters and control technologies. Some application scenarios are: (1) Development of power converters for integration of distributed and renewable energy resources; (2) Development of advanced controls for smart power electronics; (3) Testing prototype and commercially available power converters for electrical interconnection and performance, advanced functionality, long duration reliability and safety; and (4) Hardware-in-loop development and testing of power electronics systems in smart distribution grid models.

  13. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  14. J ournal of China U niversity of Geosciences, V ol. 11, N o. 3, p. 264-270, S ep tem ber 2000 IS SN 1002-0705 P rinted in China

    E-Print Network [OSTI]

    Tong, Jinnan

    J ournal of China U niversity of Geosciences, V ol. 11, N o. 3, p. 264- 270, S ep tem ber 2000 IS SN 1002- 0705 P rinted in China 3 This study is supported by the N ationalN atural Science Foundation of China (No. 49632070). M anuscrip t received M ay 8, 2000. M anuscrip t accep ted M ay 16, 2000. M iddle

  15. Adam Carman Geoscience 206

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    were relatively cheap, and when the environment and global warming were non-issues. The facilities-Chapman ice rink, and Weston Field. These facilities were designed and built in times when electricity and oil is integral to the future of a greener campus, and by no means will be easily found. Total electricity usage

  16. Geosciences September 2012

    E-Print Network [OSTI]

    Utrecht, Universiteit

    bring a bottle of wine to the professor and ask him if I can participate B. I log on to OSIRIS & Planning (floor 3,4 & 6) · Innovation, Environmental & Energy Sciences (floor 10-11) Classrooms `Van Unnik-2301 Sust. Dev. Integrating Persp. · GEO4-2310 Themes in Global Change · GEO4-2502 Energy Conversion Tech. 1

  17. Comments on: Geoscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625govInstrumentstdmadapInactiveVisiting the TWPSuccessAlamosCharacterization2Climate,CobaltColdin679April

  18. Sandia Energy - Geosciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInAppliedEnergy

  19. Sandia Energy - Geoscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailure Mode

  20. Sandia Energy » Geoscience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This authorEnergy & ClimateStrategic

  1. Forces on laboratory model dredge cutterhead

    E-Print Network [OSTI]

    Young, Dustin Ray

    2010-07-14T23:59:59.000Z

    Dredge cutting forces produced by the movement of the cutterhead through the sediment have been measured with the laboratory dredge carriage located at the Haynes Coastal Engineering Laboratory. The sediment bed that was used for the dredging test...

  2. Laboratories are Needed to Explore, Explain VLBACHANDRA

    E-Print Network [OSTI]

    Princeton Plasma Physics Laboratory Sandia National Laboratory Stone and Webster The Boeing Company stream of about 150 visitors per week log on to the FIRE web site since the site was initiated in early

  3. Laboratories for the 21st Century

    Broader source: Energy.gov [DOE]

    Laboratories for the 21st Century (Labs21) is a voluntary partnership program dedicated to improving the environmental performance of U.S. laboratories. The program is a joint initiative between...

  4. Aerospace, Transportation and Advanced Systems Laboratory (ATAS)

    E-Print Network [OSTI]

    Bennett, Gisele

    . ELSYS employs an "end-to-end" approach to developing electronic warfare and other electronic systems.gtri.gatech.edu/labs CTISLATAS #12;electronic Systems Laboratory (eLSYS) Joe Brooks, Laboratory Director www

  5. Preliminary Notice of Violation, Argonne National Laboratory...

    Office of Environmental Management (EM)

    Argonne National Laboratory-West - EA-2001-01 Preliminary Notice of Violation, Argonne National Laboratory-West - EA-2001-01 February 28, 2001 Issued to the University of Chicago...

  6. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue

    E-Print Network [OSTI]

    Friedlander, Michael P.

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 A Filter Active and Computer Science Division, Argonne National Laboratory, {leyffer,tmunson}@mcs.anl.gov 1 #12;2 Michael

  7. ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue

    E-Print Network [OSTI]

    McCune, William

    ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, IL 60439 ANL/MCS­TM­243 (v4) Single Division Argonne National Laboratory Argonne, Illinois, 60439, U.S.A. http://www.mcs.anl.gov/�mccune June

  8. Seeking Laboratory Accreditation Under ISO 15189

    E-Print Network [OSTI]

    Rodriguez, Carlos

    Seeking Laboratory Accreditation Under ISO 15189 An ISO Revision for 2012 and Beyond Bio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 Improving Laboratory Quality with ISO 15189 Preparations and Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 Gap Analysis, Quality Policy, Quality Manager and Quality Manual ISO Documentation

  9. Forces on laboratory model dredge cutterhead 

    E-Print Network [OSTI]

    Young, Dustin Ray

    2010-07-14T23:59:59.000Z

    Dredge cutting forces produced by the movement of the cutterhead through the sediment have been measured with the laboratory dredge carriage located at the Haynes Coastal Engineering Laboratory. The sediment bed that was ...

  10. Laboratory Directed Research and Development | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLS ExperimentalFiveVentureFrontiersLaboratory

  11. Ames Laboratory Site Sustainability Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta FeAuthorization forAmes Laboratory Site

  12. Enterprise Assessments Targeted Review, Sandia National Laboratories...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratories - November 2014 More Documents & Publications Office of Environmental Management Work Planning and Control Oversight Integration of Safety Culture Attributes...

  13. Fuel Synthesis Catalysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This fact sheet provides information about Fuel Synthesis Catalysis Laboratory capabilities and applications at NREL's National Bioenergy Center.

  14. Biomass Catalyst Characterization Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This fact sheet provides information about Biomass Catalyst Characterization Laboratory (BCCL) capabilities and applications at NREL's National Bioenergy Center.

  15. Fuel Synthesis Catalysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-07-01T23:59:59.000Z

    This fact sheet provides information about Fuel Synthesis Catalysis Laboratory capabilities and applications at NREL's National Bioenergy Center.

  16. Bench-Scale Fermentation Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This fact sheet provides information about Bench-Scale Fermentation Laboratory capabilities and applications at NREL's National Bioenergy Center.

  17. Materials Engineering Research Facility | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Engineering Research Facility Argonne's new Materials Engineering Research Facility (MERF) supports the laboratory's Advanced Battery Materials Synthesis and...

  18. Sandia National Laboratories - Grid Integration Collaborations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Standards Organizations - Underwriters Laboratory - Institute of Electrical and Electronics Engineers - National Institute of Standards and Technology - North American...

  19. Sandia National Laboratories: Global Climate & Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    20, 2013, in Advanced Materials Laboratory, Energy Efficiency, Facilities, Global Climate & Energy, Materials Science, Modeling, Modeling & Analysis, Partnership, Research &...

  20. Sandia National Laboratories: Diffusion Bonding Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  1. Sandia National Laboratories: Heat Exchanger Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory (NESL) Transient Nuclear Fuels Testing Radiation Effects Sciences Solar Electric Propulsion Nuclear Energy Safety Technologies Experimental Testing...

  2. Sandia National Laboratories: Photovoltaic Systems Evaluation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modeling & Simulation, Energy, Facilities, News, News & Events, Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar...

  3. Algal Biofuels Research Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    This fact sheet provides information about Algal Biofuels Research Laboratory capabilities and applications at NREL's National Bioenergy Center.

  4. Measured Peak Equipment Loads in Laboratories

    SciTech Connect (OSTI)

    Mathew, Paul A.

    2007-09-12T23:59:59.000Z

    This technical bulletin documents measured peak equipment load data from 39 laboratory spaces in nine buildings across five institutions. The purpose of these measurements was to obtain data on the actual peak loads in laboratories, which can be used to rightsize the design of HVAC systems in new laboratories. While any given laboratory may have unique loads and other design considerations, these results may be used as a 'sanity check' for design assumptions.

  5. Sandia National Laboratories: Research: Facilities: Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science and Engineering Center Pulsed Power and Systems Validation Facility Radiation Detection Materials Characterization Laboratory Shock Thermodynamic Applied Research...

  6. Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories

    Office of Legacy Management (LM)

    Radiological Condition of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories Cheswick, Pennsylvania -. -, -- AGENCY: Office of Operational Safety, Department...

  7. Sandia National Laboratories: Computational Modeling & Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Facilities, News, News & Events, Partnership, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, Systems...

  8. Oak Ridge National Laboratory Science & Technology Highlights

    E-Print Network [OSTI]

    Pennycook, Steve

    & Technology Highlights Oak Ridge National Laboratory ORNL Works to Bring Zero-Energy Housing to the Masses

  9. Biomass Compositional Analysis Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    This fact sheet provides information about Biomass Compositional Analysis Laboratory (BCAL) capabilities and applications at NREL's National Bioenergy Center.

  10. DATA RECOVERY EFFORTS AT IDAHO NATIONAL LABORATORY, OAK RIDGE NATIONAL LABORATORY, AND SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect (OSTI)

    Richard Metcalf; Saleem Salaymeh; Michael Ehinger

    2010-07-01T23:59:59.000Z

    Abstract was already submitted. Could not find the previous number. Would be fine with attaching/update of old number. Abstract Below: Modern nuclear facilities will have significant process monitoring capability for their operators. These systems will also be used for domestic safeguards applications, which has led to research over new diversion-detection algorithms. Curiously missing from these efforts are verification and validation data sets. A tri-laboratory project to locate the existing data sets and recover their data has yielded three major potential sources of data. The first is recovery of the process monitoring data of the Idaho Chemical Processing Plant, which now has a distributable package for algorithm developers. The second data set is extensive sampling and process data from Savannah River National Laboratory’s F- and H-canyon sites. Finally, high fidelity data from the start-up tests at the Barnwell Reprocessing Facility is in recovery. This paper details the data sets and compares their relative attributes.

  11. Laboratory Ventilation Management Ralph Stuart, CHO

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Laboratory Ventilation Management Program Ralph Stuart, CHO Ellen Sweet, Laboratory Ventilation Specialist Cornell Department of Environmental Health and Safety 3/29/2013 #12;Laboratory Ventilation.1.2 Design and Construction Standards 10 7.1.3 Carbon Dioxide Ventilation Effectiveness Protocol 10 7.2 Job

  12. Naval Research Laboratory Stennis Space Center

    E-Print Network [OSTI]

    Naval Research Laboratory Stennis Space Center Mississippi 39529 www7320.nrlssc.navy.mil/ Ocean Ocean prediction technology The Naval Research Laboratory (NRL) is the US Navy corporate laboratory, dedicated to addressing Navy unique problems and enabling the Navy to operate efficiently and safely. Unique

  13. Small Business Manager Oak Ridge National Laboratory

    E-Print Network [OSTI]

    Keith Joy Small Business Manager Oak Ridge National Laboratory: Past, Present, and Future #12;2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Overview_0604 ORNL in 1943 The Clinton Pile the Manhattan Project 2 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Overview_0604 #12;3 OAK RIDGE

  14. Remote Laboratory Towards an integrated training system

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Remote Laboratory Towards an integrated training system Arnaud LELEVE, Hcene BENMOHAMED, Patrick.Meyer@ictt.ec-lyon.fr Abstract ­ Remote laboratories are essential to e-learning platforms in scientific and technical with the aim of giving means to instructors to build generic remote laboratory environments, homogeneously melt

  15. Argonne National Laboratory 9700 South Cass Avenue

    E-Print Network [OSTI]

    McCune, William

    Argonne National Laboratory 9700 South Cass Avenue Argonne, IL 60439 ANL/MCS-TM-265 Short;Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United thereof, Argonne National Laboratory, or The University of Chicago. ii #12;Contents Abstract 1 1

  16. Delivered by Ingenta to: Argonne National Laboratory

    E-Print Network [OSTI]

    Haskel, Daniel

    Delivered by Ingenta to: Argonne National Laboratory IP : 164.54.84.139 Wed, 02 Sep 2009 22, 35 56126 Pisa, Italy 4 Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, USA 5 Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA 6 Center

  17. Laboratory program helps small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your Home asLCLSLaboratory DirectorsRecoveryassessmentLaboratory

  18. Laboratory I | Nuclear Physics Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory I | Nuclear

  19. Laboratory and New Mexico Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 - -/e),,sand CERN 73-11 Laboratory IRear

  20. Sandia National Laboratories: About Sandia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100 Resilient Cities - SandiaAbout

  1. Sandia National Laboratories: Contact Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware100Life atCareers

  2. Remote Access | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/) ReleaseRemote Access Ames Laboratory

  3. Golden Laboratories and Offices | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC) GettingGit GitGlobalGolden Laboratories and

  4. Laboratories for the 21st Century Best Practices: Onsite Distributed Generation Systems For Laboratories

    Broader source: Energy.gov [DOE]

    Guide describes general information on implementing onsite distributed generation systems in laboratory environments.

  5. Laboratories for the 21st Century Case Studies: National Renewable...

    Office of Environmental Management (EM)

    Case Studies: National Renewable Energy Laboratory, Science and Technology Facility Laboratories for the 21st Century Case Studies: National Renewable Energy Laboratory, Science...

  6. Beyond Laboratories, Beyond Being Green | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beyond Laboratories, Beyond Being Green Beyond Laboratories, Beyond Being Green Presentation covers sustainable laboratories and the Labs21 program given at the Federal Utility...

  7. Laboratory Demonstration of a New American Low-Head Hydropower...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New American Low-Head Hydropower Turbine Laboratory Demonstration of a New...

  8. Energy efficient laboratory fume hood

    DOE Patents [OSTI]

    Feustel, Helmut E. (Albany, CA)

    2000-01-01T23:59:59.000Z

    The present invention provides a low energy consumption fume hood that provides an adequate level of safety while reducing the amount of air exhausted from the hood. A low-flow fume hood in accordance with the present invention works on the principal of providing an air supply, preferably with low turbulence intensity, in the face of the hood. The air flow supplied displaces the volume currently present in the hood's face without significant mixing between the two volumes and with minimum injection of air from either side of the flow. This air flow provides a protective layer of clean air between the contaminated low-flow fume hood work chamber and the laboratory room. Because this protective layer of air will be free of contaminants, even temporary mixing between the air in the face of the fume hood and room air, which may result from short term pressure fluctuations or turbulence in the laboratory, will keep contaminants contained within the hood. Protection of the face of the hood by an air flow with low turbulence intensity in accordance with a preferred embodiment of the present invention largely reduces the need to exhaust large amounts of air from the hood. It has been shown that exhaust air flow reductions of up to 75% are possible without a decrease in the hood's containment performance.

  9. External Authorities and Peers Laboratory Ventilation Management Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    External Authorities and Peers Laboratory Ventilation Management Program Guidance Document External Authorities and Peers This group encompasses external groups who do not manage laboratory ventilation systems to laboratory ventilation management. Roles Responsibilities Tracking Indicator Laboratory science peers

  10. Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology

    E-Print Network [OSTI]

    Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology Fujita LaboratoryTokyo Institute of Technology Tokyo Institute of Technology 231 #12;Fujita LaboratoryTokyo Instituteof Technology Tokyo Instituteof Technology 2 IT #12;Fujita LaboratoryTokyo Instituteof

  11. Galactic Neighborhood and Laboratory Astrophysics

    E-Print Network [OSTI]

    Wang, Q Daniel

    2011-01-01T23:59:59.000Z

    The galactic neighborhood, extending from the Milky Way to redshifts of about 0.1, is our unique local laboratory for detailed study of galaxies and their interplay with the environment. Such study provides a foundation of knowledge for interpreting observations of more distant galaxies and their environment. The Astro 2010 Science Frontier Galactic Neighborhood Panel identified four key scientific questions: 1) What are the flows of matter and energy in the circumgalactic medium? 2) What controls the mass-energy-chemical cycles within galaxies? 3) What is the fossil record of galaxy assembly from first stars to present? 4) What are the connections between dark and luminous matter? These questions, essential to the understanding of galaxies as interconnected complexes, can be addressed most effectively and/or uniquely in the galactic neighborhood. The panel also highlighted the discovery potential of time-domain astronomy and astrometry with powerful new techniques and facilities to greatly advance our unders...

  12. Idaho National Laboratory’s Greenhouse Gas FY08 Baseline

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2011-06-01T23:59:59.000Z

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at INL. Additionally, INL has a desire to see how its emissions compare with similar institutions, including other DOE national laboratories. Executive Order 13514 requires that federal agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL's FY08 GHG inventory was calculated according to methodologies identified in federal GHG guidance documents using operational control boundaries. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL's organizational boundaries but are a consequence of INL's activities). This inventory found that INL generated a total of 113,049 MT of CO2-equivalent emissions during FY08. The following conclusions were made from looking at the results of the individual contributors to INL's baseline GHG inventory: (1) Electricity (including the associated transmission and distribution losses) is the largest contributor to INL's GHG inventory, with over 50% of the CO2e emissions; (2) Other sources with high emissions were stationary combustion (facility fuels), waste disposal (including fugitive emissions from the onsite landfill and contracted disposal), mobile combustion (fleet fuels), employee commuting, and business air travel; and (3) Sources with low emissions were wastewater treatment (onsite and contracted), fugitive emissions from refrigerants, and business ground travel (in personal and rental vehicles). This report details the methods behind quantifying INL's GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to note that because this report differentiates between those portions of INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  13. Idaho National Laboratory’s Greenhouse Gas FY08 Baseline

    SciTech Connect (OSTI)

    Jennifer D. Morton

    2010-09-01T23:59:59.000Z

    A greenhouse gas (GHG) inventory is a systematic attempt to account for the production and release of certain gasses generated by an institution from various emission sources. The gasses of interest are those which have become identified by climate science as related to anthropogenic global climate change. This document presents an inventory of GHGs generated during fiscal year (FY) 2008 by Idaho National Laboratory (INL), a Department of Energy (DOE)-sponsored entity, located in southeastern Idaho. Concern about the environmental impact of GHGs has grown in recent years. This, together with a desire to decrease harmful environmental impacts, would be enough to encourage the calculation of a baseline estimate of total GHGs generated at the INL. Additionally, the INL has a desire to see how its emissions compare with similar institutions, including other DOE-sponsored national laboratories. Executive Order 13514 requires that federally-sponsored agencies and institutions document reductions in GHG emissions in the future, and such documentation will require knowledge of a baseline against which reductions can be measured. INL’s FY08 GHG inventory was calculated according to methodologies identified in Federal recommendations and an as-yet-unpublished Technical and Support Document (TSD) using operational control boundary. It measures emissions generated in three Scopes: (1) INL emissions produced directly by stationary or mobile combustion and by fugitive emissions, (2) the share of emissions generated by entities from which INL purchased electrical power, and (3) indirect or shared emissions generated by outsourced activities that benefit INL (occur outside INL’s organizational boundaries but are a consequence of INL’s activities). This inventory found that INL generated a total of 114,256 MT of CO2-equivalent emissions during fiscal year 2008 (FY08). The following conclusions were made from looking at the results of the individual contributors to INL’s baseline GHG inventory: • Electricity is the largest contributor to INL’s GHG inventory, with over 50% of the net anthropogenic CO2e emissions • Other sources with high emissions were stationary combustion, fugitive emissions from the onsite landfill, mobile combustion (fleet fuels) and the employee commute • Sources with low emissions were contracted waste disposal, wastewater treatment (onsite and contracted) and fugitive emissions from refrigerants. This report details the methods behind quantifying INL’s GHG inventory and discusses lessons learned on better practices by which information important to tracking GHGs can be tracked and recorded. It is important to stress that the methodology behind this inventory followed guidelines that have not yet been formally adopted. Thus, some modification of the conclusions may be necessary as additional guidance is received. Further, because this report differentiates between those portions of the INL that are managed and operated by the Battelle Energy Alliance (BEA) and those managed by other contractors, it includes only that large proportion of Laboratory activities overseen by BEA. It is assumed that other contractors will provide similar reporting for those activities they manage, where appropriate.

  14. CRAD, Maintenance - Los Alamos National Laboratory Waste Characterizat...

    Office of Environmental Management (EM)

    Maintenance - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Maintenance - Los Alamos National Laboratory Waste Characterization,...

  15. CRAD, Training - Los Alamos National Laboratory Waste Characterization...

    Office of Environmental Management (EM)

    Training - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Training - Los Alamos National Laboratory Waste Characterization,...

  16. CRAD, Engineering - Los Alamos National Laboratory Waste Characterizat...

    Broader source: Energy.gov (indexed) [DOE]

    Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Engineering - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging...

  17. CRAD, Safety Basis - Los Alamos National Laboratory Waste Characteriza...

    Office of Environmental Management (EM)

    Safety Basis - Los Alamos National Laboratory Waste Characterization, Reduction, and Repackaging Facility CRAD, Safety Basis - Los Alamos National Laboratory Waste...

  18. The Institute of Geophysics, Planetary Physics and Signatures (IGPPS) at Los Alamos National Laboratory (LANL) is one of the Los Alamos National Laboratory science

    E-Print Network [OSTI]

    The Institute of Geophysics, Planetary Physics and Signatures (IGPPS) at Los Alamos National: · Geophysics · Global Climate · Space Science · Astrophysics and Cosmology FY15 CALL FOR RESEARCH PROPOSALS and quality of life in our increasingly technological society. 3. Solid earth geoscience (geophysics

  19. Dynamic leakage from laboratory safety hoods

    E-Print Network [OSTI]

    Park, Ju-Myon

    2002-01-01T23:59:59.000Z

    Standard Institute) Z 9. 5 Clarification of ANSI/AIHA Z9. 5 Standard "Laboratory Ventilation ". 1999. Page 13, Section 5. 7 80 ? 120 (0. 41 ? 0. 61) NFPA (National Fire Protection Association) NFPA 45 Fire Protection for Laboratories Using... 1910. 1450. Safety and Health Administration) 60- 100 (0. 31 ? 0. 51) SEFA (Scientific Equipment & Furniture Association) Laboratory Fume Hoods Recommended Practices. SEFA 1. 2, 1996. Page 7 75 ? 125 (0. 3 8 ? 0. 64) 2. Turbulence J. O...

  20. Sandia National Laboratories: BASF latent curing epoxy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  1. Sandia National Laboratories: Advanced Manufacturing Initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manufacturing Initiative (AMI) is a multiple-year, 3-way collaboration among TPI Composites, Iowa State University, and Sandia National Laboratories. The goal of this...

  2. Sandia National Laboratories: organic field effect transistor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    organic field effect transistor ECIS and Compass Metals: Platinum Nanostructures for Enhanced Catalysis On March 29, 2013, in Advanced Materials Laboratory, Capabilities, Energy,...

  3. Sandia National Laboratories: energy storage materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    On June 4, 2014, in Advanced Materials Laboratory, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility, News, News & Events,...

  4. Sandia National Laboratories: Energy Storage Multimedia Gallery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    StorageEnergy Storage Multimedia Gallery Energy Storage Multimedia Gallery Images Videos Energy Storage Image Gallery Energy Storage B-Roll Videos Battery Abuse Testing Laboratory...

  5. National Renewable Energy Laboratory Report Identifies Research...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory (NREL) identifies research opportunities to improve the ways in which wholesale electricity markets are designed, with a focus on how the characteristics of...

  6. Sandia National Laboratories: fuel cell catalyst

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel cell catalyst ECIS and Compass Metals: Platinum Nanostructures for Enhanced Catalysis On March 29, 2013, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

  7. Sandia National Laboratories: hydrogen powered fuel cell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    powered fuel cell ECIS and Compass Metals: Platinum Nanostructures for Enhanced Catalysis On March 29, 2013, in Advanced Materials Laboratory, Capabilities, Energy, Energy...

  8. Sandia National Laboratories: Fuel Cell Technologies Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fuel Cell Technologies Office Federal Laboratory Consortium Regional Technology-Transfer Awards Salute Innovation, Commercialization at Sandia On September 23, 2014, in...

  9. Sandia National Laboratories: Research: Research Foundations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Austin Funding source U.S. Department of Energy, Office of Science Key facilities Geomechanics Laboratory, DOE Technology Deployment Center High-pressure, multiphase-flow...

  10. Sandia National Laboratories: Operations and Maintenance Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) The 2013 PV Operations and Maintenance Workshop, hosted by Sandia National...

  11. Sandia National Laboratories: Module-Scale Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  12. Sandia National Laboratories: Achieving High Pernetrations of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference, the Department of Energy (DOE), the Electric Power Research Instisute (EPRI), Sandia National Laboratories, ... Last Updated: September 10, 2012 Go To Top ...

  13. Sandia National Laboratories: Operations and Maintenance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Hosted by Sandia National Laboratories and the Electric Power Research Institute (EPRI) Inverter reliability drives project life cycle costs and plant performance. This...

  14. Sandia National Laboratories: automatically collect data from...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy, Facilities, News, News & Events, Photovoltaic, Photovoltaic Systems Evaluation Laboratory (PSEL), Renewable Energy, Solar, Solar Newsletter, SunShot The state of...

  15. Independent Activity Report, Pacific Northwest National Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2012 January 2012 Pacific Northwest National Laboratory Orientation Visit HIAR-PNNL-2012-01-11 This Independent Activity Report documents an operational awareness...

  16. Science Undergraduate Laboratory Internship Program | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SULI FACT SHEET Contact undergrad@anl.gov Science Undergraduate Laboratory Internship "My perspective on how the research environment was broadened. I am more aware of the...

  17. Sandia National Laboratories: Carbon Capture & Storage

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from improved climate models to performance models for underground waste storage to 3D printing and digital rock physics. Marianne Walck (Director ... Federal Laboratory...

  18. Lawrence Livermore National Laboratory Proposal to Participate...

    Broader source: Energy.gov (indexed) [DOE]

    EXAFS, ESR) to elucidate chemical structures We are the premier laboratory in carbon aerogels and have explored their use for hydrogen storage and gas separation Other materials...

  19. Sandia National Laboratories: PMTF Computer System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia National Laboratories The PMTF computer system can perform theoretical modeling and analysis, experimental control and data acquisition, and post-test data...

  20. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer Novel...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for "Outstanding Commercialization Success" from the Federal Laboratory Consortium for Technology Transfer. On October 4, 2012, the NETL team who developed this alloy received...