Sample records for georgia rift basin

  1. sRecovery Act: Geologic Characterization of the South Georgia Rift Basin for Source Proximal CO2 Storage

    SciTech Connect (OSTI)

    Waddell, Michael

    2014-09-30T23:59:59.000Z

    This study focuses on evaluating the feasibility and suitability of using the Jurassic/Triassic (J/TR) sediments of the South Georgia Rift basin (SGR) for CO2 storage in southern South Carolina and southern Georgia The SGR basin in South Carolina (SC), prior to this project, was one of the least understood rift basin along the east coast of the U.S. In the SC part of the basin there was only one well (Norris Lightsey #1) the penetrated into J/TR. Because of the scarcity of data, a scaled approach used to evaluate the feasibility of storing CO2 in the SGR basin. In the SGR basin, 240 km (~149 mi) of 2-D seismic and 2.6 km2 3-D (1 mi2) seismic data was collected, process, and interpreted in SC. In southern Georgia 81.3 km (~50.5 mi) consisting of two 2-D seismic lines were acquired, process, and interpreted. Seismic analysis revealed that the SGR basin in SC has had a very complex structural history resulting the J/TR section being highly faulted. The seismic data is southern Georgia suggest SGR basin has not gone through a complex structural history as the study area in SC. The project drilled one characterization borehole (Rizer # 1) in SC. The Rizer #1 was drilled but due to geologic problems, the project team was only able to drill to 1890 meters (6200 feet) instead of the proposed final depth 2744 meters (9002 feet). The drilling goals outlined in the original scope of work were not met. The project was only able to obtain 18 meters (59 feet) of conventional core and 106 rotary sidewall cores. All the conventional core and sidewall cores were in sandstone. We were unable to core any potential igneous caprock. Petrographic analysis of the conventional core and sidewall cores determined that the average porosity of the sedimentary material was 3.4% and the average permeability was 0.065 millidarcy. Compaction and diagenetic studies of the samples determined there would not be any porosity or permeability at depth in SC. In Georgia there appears to be porosity in the J/TR section based on neutron log porosity values. The only zones in Rizer #1 that appear to be porous were fractured diabase units where saline formation water was flowing into the borehole. Two geocellular models were created for the SC and GA study area. Flow simulation modeling was performed on the SC data set. The injection simulation used the newly acquired basin data as well as the Petrel 3-D geologic model that included geologic structure. Due to the new basin findings as a result of the newly acquired data, during phase two of the modeling the diabase unit was used as reservoir and the sandstone units were used as caprock. Conclusion are: 1) the SGR basin is composed of numerous sub-basins, 2) this study only looked at portions of two sub-basins, 3) in SC, 30 million tonnes of CO2 can be injected into the diabase units if the fracture network is continuous through the units, 4) due to the severity of the faulting there is no way of assuring the injected CO2 will not migrate upward into the overlying Coastal Plain aquifers, 5) in Georgia there appears to porous zones in the J/TR sandstones, 6) as in SC there is faulting in the sub-basin and the seismic suggest the faulting extends upward into the Coastal Plain making that area not suitable for CO2 sequestration, 7) the complex faulting observed at both study areas appear to be associated with transfer fault zones (Heffner 2013), if sub-basins in the Georgia portion of the SGR basin can be located that are far away from the transfer fault zones there is a strong possibility of sequestering CO2 in these areas, and 9) the SGR basin covers area in three states and this project only studied two small areas so there is enormous potential for CO2 sequestration in other portions the basin and further research needs to be done to find these areas.

  2. RECONNAISSANCE ASSESSMENT OF CO2 SEQUESTRATION POTENTIAL IN THE TRIASSIC AGE RIFT BASIN TREND OF SOUTH CAROLINA, GEORGIA, AND NORTHERN FLORIDA

    SciTech Connect (OSTI)

    Blount, G.; Millings, M.

    2011-08-01T23:59:59.000Z

    A reconnaissance assessment of the carbon dioxide (CO{sub 2}) sequestration potential within the Triassic age rift trend sediments of South Carolina, Georgia and the northern Florida Rift trend was performed for the Office of Fossil Energy, National Energy Technology Laboratory (NETL). This rift trend also extends into eastern Alabama, and has been termed the South Georgia Rift by previous authors, but is termed the South Carolina, Georgia, northern Florida, and eastern Alabama Rift (SGFAR) trend in this report to better describe the extent of the trend. The objectives of the study were to: (1) integrate all pertinent geologic information (literature reviews, drilling logs, seismic data, etc.) to create an understanding of the structural aspects of the basin trend (basin trend location and configuration, and the thickness of the sedimentary rock fill), (2) estimate the rough CO{sub 2} storage capacity (using conservative inputs), and (3) assess the general viability of the basins as sites of large-scale CO{sub 2} sequestration (determine if additional studies are appropriate). The CO{sub 2} estimates for the trend include South Carolina, Georgia, and northern Florida only. The study determined that the basins within the SGFAR trend have sufficient sedimentary fill to have a large potential storage capacity for CO{sub 2}. The deeper basins appear to have sedimentary fill of over 15,000 feet. Much of this fill is likely to be alluvial and fluvial sedimentary rock with higher porosity and permeability. This report estimates an order of magnitude potential capacity of approximately 137 billion metric tons for supercritical CO{sub 2}. The pore space within the basins represent hundreds of years of potential storage for supercritical CO{sub 2} and CO{sub 2} stored in aqueous form. There are many sources of CO{sub 2} within the region that could use the trend for geologic storage. Thirty one coal fired power plants are located within 100 miles of the deepest portions of these basins. There are also several cement and ammonia plants near the basins. Sixteen coal fired power plants are present on or adjacent to the basins which could support a low pipeline transportation cost. The current geological information is not sufficient to quantify specific storage reservoirs, seals, or traps. There is insufficient hydrogeologic information to quantify the saline nature of the water present within all of the basins. Water data in the Dunbarton Basin of the Savannah River Site indicates dissolved solids concentrations of greater than 10,000 parts per million (not potential drinking water). Additional reservoir characterization is needed to take advantage of the SGFAR trend for anthropogenic CO{sub 2} storage. The authors of this report believe it would be appropriate to study the reservoir potential in the deeper basins that are in close proximity to the current larger coal fired power plants (Albany-Arabi, Camilla-Ocilla, Alamo-Ehrhardt, and Jedburg basin).

  3. Evaluation of Geothermal Potential of Rio Grande Rift and Basin...

    Open Energy Info (EERE)

    and Range Province, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Evaluation of Geothermal Potential of Rio Grande Rift and Basin and Range...

  4. The Influence of Mantle Petrology on Basin Subsidence During Rifting Nina S.C. Simon & Yuri Y. Podladchikov

    E-Print Network [OSTI]

    Simon, Nina

    The Influence of Mantle Petrology on Basin Subsidence During Rifting Nina S.C. Simon & Yuri Y petrology on basin subsidence during rifting. EOS Transactions of the American Geophysical Union, 86

  5. Mesozoic rift basins in western desert of Egypt, their southern extension and impact on future exploration

    SciTech Connect (OSTI)

    Taha, M.A. (Conoco, Cairo (Egypt))

    1988-08-01T23:59:59.000Z

    Rift basins are a primary target of exploration in east, central, and west Africa. These intracratonic rift basins range in age from the Triassic to the Neogene and are filled with lagoonal-lacustrine sand-shale sequences. Several rift basins may be present in the Western Desert of Egypt. In the northeastern African platform, the Mesozoic Tethyan strand lines were previously interpreted to have limited southern extension onto the continent. This concept, based upon a relatively limited amount of subsurface data, has directed and focused the exploration for oil and gas to the northernmost 120 km of the Western Desert of Egypt. Recent well and geophysical data indicate a southerly extension of mesozoic rift basins several hundred kilometers inland from the Mediterranean Sea. Shushan/Faghur and Abu Gharadig/Bahrein basins may represent subparallel Mesozoic basins, trending northeast-southwest. Marine Oxfordian-Kimmeridgian sediments were recently reported from wells drilled approximately 500 km south of the present-day Mediterranean shoreline. The link of these basins with the Sirte basin to the southwest in Libya is not well understood. Exploration is needed to evaluate the hydrocarbon potential of such basins.

  6. Sediment infill within rift basins: Facies distribution and effects of deformation: Examples from the Kenya and Tanganyika Rifts, East Africa

    SciTech Connect (OSTI)

    Tiercelin, J.J.; Lezzar, K.E. (Universite de Bretagne Occidentale, Brest (France)); Richert, J.P. (Elf Aquitaine, Pau (France))

    1994-07-01T23:59:59.000Z

    Oil is known from lacustrine basins of the east African rift. The geology of such basins is complex and different depending on location in the eastern and western branches. The western branch has little volcanism, leading to long-lived basins, such as Lake Tanganyika, whereas a large quantity of volcanics results in the eastern branch characterized by ephemeral basins, as the Baringo-Bogoria basin in Kenya. The Baringo-Bogoria basin is a north-south half graben formed in the middle Pleistocene and presently occupied by the hypersaline Lake Bogoria and the freshwater Lake Baringo. Lake Bogoria is fed by hot springs and ephemeral streams controlled by grid faults bounding the basin to the west. The sedimentary fill is formed by cycles of organic oozes having a good petroleum potential and evaporites. On the other hand, and as a consequence of the grid faults, Lake Baringo is fed by permanent streams bringing into the basin large quantities of terrigenous sediments. Lake Tanganyika is a meromictic lake 1470 m deep and 700 km long, of middle Miocene age. It is subdivided into seven asymmetric half grabens separated by transverse ridges. The sedimentary fill is thick and formed by organic oozes having a very good petroleum potential. In contrast to Bogoria, the lateral distribution of organic matter is characterized by considerable heterogeneity due to the existence of structural blocks or to redepositional processes.

  7. Crustal rifting and subsidence of Sirte basin, Libya: a mature hydrocarbon Province

    SciTech Connect (OSTI)

    Gumati, Y.; Schamel, S.; Nairn, A.E.M.

    1985-02-01T23:59:59.000Z

    The complex rifting and subsidence history of the Sirte basin serves as an instructive case study of the tectonic evolution of an intercratonic extensional basin. The Sirte basin formed by collapse of the Sirte arch in the mid-Cretaceous. Marine sediments accumulated following initial crustal arching and rifting as the basin was flooded from the north. Upper Cretaceous strata lie unconformably on igneous and metamorphic rocks of the Precambrian basement complex, Cambrian-Ordovician Gargaf Group, or the pre-Cretaceous continental Nubian Sandstone. The most rapid subsidence and accumulation of basinal strata occurred in the early Cenozoic; however, the basin has been relatively stable since the Oligocene. The basin is floored by a northwest-southeast-trending mosaic of narrow horsts and grabens, an important structural characteristic that distinguishes it from the adjacent intracratonic Kufra, Murzuk, and Ghadames basins. The details of basin subsidence, sediment accumulation rates, and facies variations have been reconstructed for the northern Sirte basin from a suite of approximately 100 well logs and numerous seismic lines. Subsidence-rate maps for short time intervals from the mid-Cretaceous through the Eocene show a continual shifting of the loci of maximum and minimum subsidence. The nonsteady character of basin subsidence may reflect a periodicity of movement on the major basement-rooted growth faults bounding the underlying horsts and grabens.

  8. Rift Basin Architecture & Evolution http://www.ldeo.columbia.edu/~polsen/nbcp/breakup... 1 of 13 7/19/06 3:05 PM

    E-Print Network [OSTI]

    Rift Basin Architecture & Evolution http://www.ldeo.columbia.edu/~polsen/nbcp/breakup... 1 of 13 7: Pangea Breakup 3.3.1. Rift Basin Architecture and Evolution Roy W. Schlische & Martha Oliver Withjack a record of the early stages of (super)continental breakup. (2) The architecture of these basins

  9. Hydrocarbon accumulation on rifted Continental Margin - examples of oil migration pathways, west African salt basins

    SciTech Connect (OSTI)

    Blackwelder, B.W.

    1989-03-01T23:59:59.000Z

    Examination of the oil fields in the Gabon, Lower Congo, and Cuanza basins allows modeling of oil migration and a more accurate ranking of prospects using geologic risk factors. Oil accumulations in these basins are in strata deposited during Cretaceous rift and drift phases, thus providing a diversity of geologic settings to examine. Oil accumulations in rift deposits are located on large faulted anticlines or in truncated units atop horst features. Many of these oil fields were sourced from adjacent organic shales along short direct migration paths. In Areas where source rock is more remote to fields or to prospective structures, faulting and continuity of reservoir rock are important to the migration of hydrocarbons. Because Aptian salts separate rift-related deposits from those of the drift stage, salt evacuation and faulting of the salt residuum are necessary for oil migration from the pre-salt sequences into the post-salt section. Oil migration within post-salt strata is complicated by the presence of salt walls and faulted carbonate platforms. Hydrocarbon shows in wells drilled throughout this area provide critical data for evaluating hydrocarbon migration pathways. Such evaluation in combination with modeling and mapping of the organic-rich units, maturation, reservoir facies, structural configurations, and seals in existing fields allows assessment of different plays. Based on this information, new play types and prospective structures can be ranked with respect to geologic risk.

  10. PROPOSAL TITLE Evolution of Rift and Rifted Margin Sedimentary Basins: Numerical Investigation of Tectonics, Sedimentation, and Salt-

    E-Print Network [OSTI]

    Beaumont, Christopher

    of Tectonics, Sedimentation, and Salt- Related Structures of the Atlantic Canada Margin and Elsewhere will focus on: crustal deformation during rifting and rift reactivation; salt tectonics induced by thin of salt and the development of finite amplitude salt structures. 3) The role of differential sedimentary

  11. Prioritizing Areas of the Conasauga River Sub-basin in Georgia and Tennessee for Preservation and Restoration

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    controversial (Simon et al., 2007). Here we define restoration to mean direct modification of stream channels. Because both land preservation and stream restoration are expensive tools, there is a general public and Restoration SETH J. WENGER1,*, MEGAN M. HAGLER2, AND BYRON J. FREEMAN3 1University of Georgia River Basin

  12. active rift taupo: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deepest basin in the Baikal rift system ten Brink, Uri S. 24 Assessing the extent of carbonate deposition in early rift settings Environmental Sciences and Ecology Websites...

  13. Inversion tectonics during continental rifting: The Turkana Cenozoic rifted zone, northern Kenya

    E-Print Network [OSTI]

    Brest, Université de

    Inversion tectonics during continental rifting: The Turkana Cenozoic rifted zone, northern Kenya B of inverted deformation within Miocene-Recent basins of the Turkana rift (northern Kenya) in the eastern: The Turkana Cenozoic rifted zone, northern Kenya, Tectonics, 24, TC2002, doi:10.1029/2004TC001637. 1

  14. CLIMATIC CYCLES AS SEDIMENTARY CONTROLS OF RIFT-BASIN LACUSTRINE DEPOSITS IN THE

    E-Print Network [OSTI]

    Olsen, Paul E.

    southern New York across New Jersey and into southeastern Pennsylvania (Fig. 1). The Newark Basin is one and rounded breccias, reflecting deflated, salt-encrusted mudflats. 2. Cycles similar to the previous mudflats. 3. Cycles with mudcracked thin beds grading to brecciated mudstone, then vesicular fabric

  15. Timing and Tectonic implications of basin inversion in the Nam Con Son Basin and adjacent areas, southern South China Sea

    E-Print Network [OSTI]

    Olson, Christopher Charles

    2001-01-01T23:59:59.000Z

    The Nam Con Son (NCS) Basin, located offshore of SE Vietnam, is one of several Tertiary rift basins that formed during initial Eocene(?)-Oligocene rifting. Following cessation of rifting at the end of Oligocene time, these basins were subjected...

  16. International Cooperation on Environmental Issues in the Puget Sound/Georgia Basin: What Environmental Issues Could Threaten Regional Security?

    SciTech Connect (OSTI)

    Lesperance, Ann M.; Judd, Kathleen S.; Peterson, Nancy S.

    2004-01-07T23:59:59.000Z

    Security is a growing concern worldwide, and homeland security has captured the attention of the United States over the past year and a half. In addition, awareness of the concept of environmental security—the notion that environmental degradation may have security implications—has been growing over the past decade. Internationally, environmental issues have direct links to security, as evidenced by the Middle East water disputes. While environmental security has not historically been a topic of major concern within the national boundaries of the United States or Canada, the environmental and development challenges that we’re facing in the Puget Sound/Georgia Basin (PS/GB), coupled with this growing concern for security, prompted a query to consider whether environmental or natural resource problems could pose a serious threat to regional cooperation or stability in the PS/GB and, hence, deserve more attention from regional decision-makers. This discussion is expected to provide a useful focus for future collaboration and integration in the PS/GB.

  17. Structural style of the Turkana Rift, Kenya

    SciTech Connect (OSTI)

    Dunkelman, T.J.; Karson, J.A.; Rosendahl, B.R.

    1988-03-01T23:59:59.000Z

    Multifold seismic reflection and geologic mapping in part of the eastern branch of the East African Rift system of northern Kenya reveal a major rift structure containing at least 3 km of Neogene sediment fill beneath Lake Turkana. This includes a series of half-graben basins, with centrally located quaternary volcanic centers, which are linked end-to-end by structural accommodation zones. Whereas the geometry of rifting is similar to that of the nonvolcanic western branch of the East African Rift system, the Turkana half-grabens are much smaller and may reflect extension of a thinner lithosphere or development of more closely spaced fracture patterns during rift evolution, or both.

  18. 6Seismic stratigraphy and subsidence history of the United Arab Emirates (UAE) rifted margin

    E-Print Network [OSTI]

    Watts, A. B. "Tony"

    6Seismic stratigraphy and subsidence history of the United Arab Emirates (UAE) rifted margin). The United Arab Emirates (UAE) is underlain by a deep sedimentary basin which comprises a lower rifted

  19. Stratigraphy and rifting history of the Mesozoic-Cenozoic Anza rift, Kenya

    SciTech Connect (OSTI)

    Winn, R.D. Jr.; Steinmetz, J.C. (Marathon Oil Co., Littleton, CO (United States)); Kerekgyarto, W.L. (Marathon Oil Co., Houston, TX (United States))

    1993-11-01T23:59:59.000Z

    Lithological and compositional relationships, thicknesses, and palynological data from drilling cuttings from five wells in the Anza rift, Kenya, indicate active rifting during the Late Cretaceous and Eocene-Oligocene. The earlier rifting possibly started in the Santonian-Coniacian, primarily occurred in the Campanian, and probably extended into the Maastrichtian. Anza rift sedimentation was in lacustrine, lacustrine-deltaic, fluvial, and flood-basin environments. Inferred synrift intervals in wells are shalier, thicker, more compositionally immature, and more poorly sorted than Lower Cretaceous ( )-lower Upper Cretaceous and upper Oligocene( )-Miocene interrift deposits. Synrift sandstone is mostly feldspathic or arkosic wacke. Sandstone deposited in the Anza basin during nonrift periods is mostly quartz arenite, and is coarser and has a high proportion of probable fluvial deposits relative to other facies. Volcanic debris is absent in sedimentary strata older than Pliocene-Holocene, although small Cretaceous intrusions are present in the basin. Cretaceous sandstone is cemented in places by laumontite, possibly recording Campanian extension. Early Cretaceous history of the Anza basin is poorly known because of the limited strata sampled; Jurassic units were not reached. Cretaceous rifting in the Anza basin was synchronous with rifting in Sudan and with the breakup and separation of South America and Africa; these events likely were related. Eocene-Oligocene extension in the Anza basin reflects different stresses. The transition from active rifting to passive subsidence in the Anza basin at the end of the Neogene, in turn, records a reconfigured response of east African plates to stresses and is correlated with formation of the East Africa rift.

  20. Changes in Seasonal and Extreme Hydrologic Conditions of the Georgia Basin/Puget Sound in an Ensemble Regional Climate Simulation for the Mid-Century

    SciTech Connect (OSTI)

    Leung, Lai R.; Qian, Yun

    2003-12-15T23:59:59.000Z

    This study examines an ensemble of climate change projections simulated by a global climate model (GCM) and downscaled with a region climate model (RCM) to 40 km spatial resolution for the western North America. One control and three ensemble future climate simulations were produced by the GCM following a business as usual scenario for greenhouse gases and aerosols emissions from 1995 to 2100. The RCM was used to downscale the GCM control simulation (1995-2015) and each ensemble future GCM climate (2040-2060) simulation. Analyses of the regional climate simulations for the Georgia Basin/Puget Sound showed a warming of 1.5-2oC and statistically insignificant changes in precipitation by the mid-century. Climate change has large impacts on snowpack (about 50% reduction) but relatively smaller impacts on the total runoff for the basin as a whole. However, climate change can strongly affect small watersheds such as those located in the transient snow zone, causing a higher likelihood of winter flooding as a higher percentage of precipitation falls in the form of rain rather than snow, and reduced streamflow in early summer. In addition, there are large changes in the monthly total runoff above the upper 1% threshold (or flood volume) from October through May, and the December flood volume of the future climate is 60% above the maximum monthly flood volume of the control climate. Uncertainty of the climate change projections, as characterized by the spread among the ensemble future climate simulations, is relatively small for the basin mean snowpack and runoff, but increases in smaller watersheds, especially in the transient snow zone, and associated with extreme events. This emphasizes the importance of characterizing uncertainty through ensemble simulations.

  1. Structure of continental rifts: Role of older features and magmatism

    SciTech Connect (OSTI)

    Keller, G.R. (Univ. of Texas, El Paso, TX (United States))

    1996-01-01T23:59:59.000Z

    Recent geological and geophysical studies in several continental rifts have begun to shed light on the details of the processes which govern the structural evolution of these important exploration targets. In Kenya and Tanzania, the classic East African rift has been the object of several investigations which reveal that its location follows the boundary (suture ) between the Tanzanian craton (Archean) and Mozambiquan belt (Proterozoic), The Baikal rift also follows a similar boundary, and the Mid-continent rift of North America appears to do the same. Rifts themselves often act as zones of weakness which are reactivated by younger tectonic regimes. The classic North American example of this effect is the Eocambrian Southern Oklahoma aulacogen which was deformed to create the Anadarko basin and Wichita uplift in the late Paleozoic. The Central basin platform has a similar history although the original rift formed at [approximately]1,100Ma. Integration of geophysical data with petrologic and geochemical data from several rift zones has also provided a new picture of the nature and extent of magmatic modification of the crust. An interesting contradiction is that Phanerozoic rifts, except the Afar region, show little evidence for major magmatic modification of the crust whereas, at least in North America, many Precambrian rifts are associated with very large mafic bodies in the crust. The Kenya rift displays evidence for modification of the lower crust in a two-phase magmatic history, but upper crustal magmatic features are limited to local intrusions associated with volcanoes. In this rift, complex basement structure plays a much more important role than previously realized, and the geophysical signatures of basement structure and magmatism are easy to confuse. If this is also the case in other rifts, additional rift basins remain to be discovered.

  2. Structure of continental rifts: Role of older features and magmatism

    SciTech Connect (OSTI)

    Keller, G.R. [Univ. of Texas, El Paso, TX (United States)

    1996-12-31T23:59:59.000Z

    Recent geological and geophysical studies in several continental rifts have begun to shed light on the details of the processes which govern the structural evolution of these important exploration targets. In Kenya and Tanzania, the classic East African rift has been the object of several investigations which reveal that its location follows the boundary (suture ?) between the Tanzanian craton (Archean) and Mozambiquan belt (Proterozoic), The Baikal rift also follows a similar boundary, and the Mid-continent rift of North America appears to do the same. Rifts themselves often act as zones of weakness which are reactivated by younger tectonic regimes. The classic North American example of this effect is the Eocambrian Southern Oklahoma aulacogen which was deformed to create the Anadarko basin and Wichita uplift in the late Paleozoic. The Central basin platform has a similar history although the original rift formed at {approximately}1,100Ma. Integration of geophysical data with petrologic and geochemical data from several rift zones has also provided a new picture of the nature and extent of magmatic modification of the crust. An interesting contradiction is that Phanerozoic rifts, except the Afar region, show little evidence for major magmatic modification of the crust whereas, at least in North America, many Precambrian rifts are associated with very large mafic bodies in the crust. The Kenya rift displays evidence for modification of the lower crust in a two-phase magmatic history, but upper crustal magmatic features are limited to local intrusions associated with volcanoes. In this rift, complex basement structure plays a much more important role than previously realized, and the geophysical signatures of basement structure and magmatism are easy to confuse. If this is also the case in other rifts, additional rift basins remain to be discovered.

  3. Thermal and mechanical development of the East African Rift System

    E-Print Network [OSTI]

    Ebinger, Cynthia Joan

    1988-01-01T23:59:59.000Z

    The deep basins, uplifted flanks, and volcanoes of the Western and Kenya rift systems have developed along the western and eastern margins of the 1300 km-wide East African plateau. Structural patterns deduced from field, ...

  4. Regional seismic reflection line, southern Illinois Basin, provides new data on Cambrian rift geometry, Hicks Dome genesis, and the Fluorspar Area Fault Complex

    SciTech Connect (OSTI)

    Potter, C.J.; Goldhaber, M.B.; Taylor, C.D. (U.S. Geological Survey, Denver, CO (United States)); Heigold, P.C. (Illinois State Geological Survey, Champaign, IL (United States))

    1992-01-01T23:59:59.000Z

    Detailed studies of the subsurface structure of the Cambrian Reelfoot rift (RFR) in the Midwestern US provide important insights into continental rifting processes and into the structural fabric of a zone of modern intracratonic seismicity (New Madrid zone). High-quality oil industry seismic reflection data show that in the area of transition between the RFR and the Rough Creek Graben (RCG) the geometry of the Cambrian rift system is that of a half-graben that thickens to the southeast. This contrasts with the northward-thickening half-graben observed to the east in the RCG and with the more symmetric graben to the south in the RFR. An 82.8-km segment of a northwest-southeast seismic reflection profile in southeastern Illinois and western Kentucky shows that near Hicks Dome, Illinois, Middle and Lower Cambrian syn-rift sedimentary rocks occupy about 0.35 s (two-way travel time) on the seismic reflection section (corresponding to a thickness of about 970 m). This stratigraphic interval occupies about 0.45 s (1,250 m) near the Ohio river and is thickest against the Tabb Fault System (TFS) in Kentucky, where it occupies 0.7 s (1,940 m). The seismic data show that in this part of the Cambrian rift the master fault was part of the TFS and that normal displacement on the TFS continued through middle Paleozoic time. The seismic data also provide new information on the late Paleozoic development of Hicks-Dome and the surrounding Fluorspar Area Fault Complex (FAFC) in southeastern Illinois and western Kentucky. A series of grabens and horsts in the FAFC document a late Paleozoic reactivation of the RFR. Comparison of the reflection data with surface mineralization patterns shows that in most cases mineralized graben-bounding faults clearly cut basement or are splays from faults that cut basement.

  5. Forestry Policies (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia's Forests are managed by the Georgia Forestry Commission. In 2009 the Commission completed a statewide assessment of biomass resources:

  6. Georgia Hazardous Site Response Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Site Response Act is Georgia’s version of Superfund. The Act provides for graduated fees on the disposal of hazardous waste, a trust fund to enable the EPD to clean up or plan...

  7. Georgia Radiation Control Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Radiation Control Act is designed to prevent any associated harmful effects upon the environment or the health and safety of the public through the institution and maintenance of a...

  8. Georgia Geriatric Education Center

    E-Print Network [OSTI]

    Arnold, Jonathan

    Georgia Geriatric Education Center © Photography courtesy of the U.S. Administration on Aging. Georgia Geriatric Education Center Latestresourcesandtrainingforbestpracticesingerontologyandgeriatrics. The Georgia Geriatric Education Center (GGEC) is a statewide effort designed to help you access the latest

  9. Agricultural Zoning as a Farmland Protection Tool in Georgia

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    Agricultural Zoning as a Farmland Protection Tool in Georgia Prepared by: Emily Franzen, Staff Attorney UGA River Basin Center 706-583-0282 emilyf@uga.edu Table of Contents Introduction to Agricultural Exclusive Agricultural Zoning

  10. Georgia Water Quality Control Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Water Quality Control Act (WQCA) is a set of environmental regulations and permitting requirements that comply with the federal Clean Water Act. The Georgia Water Quality Control Act...

  11. Georgia Erosion and Sedimentation Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Erosion and Sedimentation Act (GESA) is designed to protect vegetated buffers. GESA establishes a minimum undisturbed, vegetated buffer of 25 feet for all streams in Georgia (measured...

  12. The Midcontinent rift system in Kansas

    SciTech Connect (OSTI)

    Berendsen, P. (Univ. of Kansas, Lawrence, KS (United States). Kansas Geological Survey)

    1993-03-01T23:59:59.000Z

    A sequence of rift-related mafic volcanic rocks, volcanoclastic-, and clastic sedimentary rocks are recognized in cuttings and cores from about seventy wells in Kansas. The age (1,097.5 Ma) for gabbro in the Poersch [number sign]1 well in northern Kansas, as well as the general petrographic characteristics of the sedimentary rocks throughout the area favors a correlation with established Keweenawan stratigraphy in the Lake Superior region. Rift-related northeast-trending faults and older northwest-trending faults divide the area up into a number of orthogonal fault blocks or basins. Depending upon the tectonic history of the individual basin all or part of the Keweenawan section may be preserved. It is believed that large amounts of Keweenawan clastic sedimentary rock were eroded from the nemaha uplift east of the central graben of the rift and transported in an easterly direction. Prior to deposition of Paleozoic rocks the area was peneplaned. Correlation of various stratigraphic units over any distance is complicated by tectonic activity occurring at several times during the Precambrian and Paleozoic. Stratabound or stratiform deposits can occur both in the Precambrian as well as the overlying Paleozoic rocks. The possibility of massive sulfides to occur in the mafic intrusive rocks must not be excluded. In the core from the Poersch [number sign]1 well sulfides are recognized in gabbroic sills or dikes. Dark, fissile shale, similar to the Nonesuch Shale in the [number sign]1--4 Finn well averages 0.75% organic carbon. Thermal maturation within the rift probably ranges from within the oil window to over maturity.

  13. Georgia Underground Storage Tank Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks (“USTs”) of “regulated substances” other than...

  14. Georgia Tech Dangerous Gas

    E-Print Network [OSTI]

    Sherrill, David

    1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

  15. Basement rift control on oil production in eastern Kansas

    SciTech Connect (OSTI)

    Gustavson, J.B.

    1983-08-01T23:59:59.000Z

    Improved understanding of the central North American rift system (CNARS) offers a new interpretation of the basement structure in certain parts of the Mid-Continent. In eastern Kansas, basement structure can be shown to control oil production from some producing fields. Structural control includes rotated blocks along faults created by horst and graben tectonics typically associated with rift zones. A distinctive gravity signature, the Mid-Continent geophysical anomaly (MGA) is related directly to the CNARS and provides good data for interpretation of the basement structure. Some oil fields can be correlated directly with gravity-interpreted basement structure. Aeromagnetic and Landsat information, combined with the gravity data, further define exploration targets along the general trend of basement features. Migration of thermally matured hydrocarbons into pre-Pennsylvanian, rift generated traps in the ancestral north Kansas basin is postulated. The Nemaha ridge subsequently divided that basin into two smaller basins, the present Salina and Forest City basins. Several exploration targets could exist in this area, with the Arbuckle, Simpson, and Viola units being primary targets. The source of hydrocarbons also may lie in the deep but distant Anadorko basin. An additional totally untested hydrocarbons potential exists in the deep Precambrian/Cambrian sedimentary subbasins created along the flanks of the CNARS. Recent data points to sedimentary columns with depths of approximately 15,000 ft (4500 m) which might be hosts to gas reserves similar to the Rome trough potential of the Appalachian region.

  16. Evolution of oceanic margins : rifting in the Gulf of California and sediment diapirism and mantle hydration during subduction

    E-Print Network [OSTI]

    Miller, Nathaniel Clark

    2013-01-01T23:59:59.000Z

    This thesis investigates three processes that control the evolution of oceanic margins. Chapter 2 presents seismic images of a ~2-km-thick evaporite body in Guaymas Basin, central Gulf of California. In rifts, evaporites ...

  17. Georgia Air Quality Control Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Air Quality Control Act (AQCA) is a set of environmental regulations, permitting requirements, and air quality standards that control the amount of pollutants emitted and who emits them...

  18. Georgia Surface Mining Act of 1968 (Georgia)

    Broader source: Energy.gov [DOE]

    This law regulates all surface mining in Georgia, including the coastal zone. It includes provisions to “advance the protection of fish and wildlife and the protection and restoration of land,...

  19. Georgia Safe Dams Act of 1978 (Georgia)

    Broader source: Energy.gov [DOE]

    The purpose of the Georgia Safe Dams Act is to provide regulation, inspection and permitting of dams to the State. The Director of the Environmental Protection Division (EPD) is responsible for...

  20. Shore Protection Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Shore Protection Act is the primary legal authority for protection and management of Georgia's shoreline features including sand dunes, beaches, sandbars, and shoals, collectively known as the...

  1. South Atlantic sag basins: new petroleum system components

    SciTech Connect (OSTI)

    Henry, S.G. [GeoLearn, Houston, TX (United States)] Mohriak, W.U. [Petroleo Brasileiro, S.A., Exploration and Production, Rio de Janeiro (Brazil); Mello, M.R. [Petroleo Brasieiro, S.A., Research Center, Rio de Janeiro (Brazil)

    1996-08-01T23:59:59.000Z

    Newly discovered pre-salt source rocks, reservoirs and seals need to be included as components to the petroleum systems of both sides of the South Atlantic. These new components lie between the pre-salt rift strata and the Aptian salt layers, forming large, post-rift, thermal subsidence sag basins. These are differentiated from the older rift basins by the lack of syn-rift faulting and a reflector geometry that is parallel to the base salt regional unconformity rather than to the Precambrian basement. These basins are observed in deep water regions overlying areas where both the mantle and the crust have been involved in the extension. This mantle involvement creates post-rift subsiding depocenters in which deposition is continuous while proximal rift-phase troughs with little or no mantle involvement are bypassed and failed to accumulate potential source rocks during anoxic times. These features have been recognized in both West African Kwanza Basin and in the East Brasil Rift systems. The pre-salt source rocks that are in the West African sag basins were deposited in lacustrine brackish to saline water environment and are geochemically distinct from the older, syn-rift fresh to brackish water lakes, as well as from younger, post-salt marine anoxic environments of the drift phase. Geochemical analyses of the source rocks and their oils have shown a developing source rock system evolving from isolated deep rift lakes to shallow saline lakes, and culminating with the infill of the sag basin by large saline lakes to a marginally marine restricted gulf. Sag basin source rocks may be important in the South Atlantic petroleum system by charging deep-water prospects where syn-rift source rocks are overmature and the post-salt sequences are immature.

  2. Rifts in Spreading Wax Layers

    E-Print Network [OSTI]

    Rolf Ragnarsson; J. Lewis Ford; Christian D. Santangelo; Eberhard Bodenschatz

    1995-10-19T23:59:59.000Z

    We report experimental results on the rift formation between two freezing wax plates. The plates were pulled apart with constant velocity, while floating on the melt, in a way akin to the tectonic plates of the earth's crust. At slow spreading rates, a rift, initially perpendicular to the spreading direction, was found to be stable, while above a critical spreading rate a "spiky" rift with fracture zones almost parallel to the spreading direction developed. At yet higher spreading rates a second transition from the spiky rift to a zig-zag pattern occurred. In this regime the rift can be characterized by a single angle which was found to be dependent on the spreading rate. We show that the oblique spreading angles agree with a simple geometrical model. The coarsening of the zig-zag pattern over time and the three-dimensional structure of the solidified crust are also discussed.

  3. The midcontinent rift system

    E-Print Network [OSTI]

    Van Schmus, W. R.; Hinze, W. J.

    1985-01-01T23:59:59.000Z

    FAULT EDGE OF ARCHEAt~ PAL~OZOIC MINN a2 o 200 W|S KAN MO oHIO Fiaure 3 Generalized geologic map showing major features of the prerift Precambrian basement and principal geologic units associated with the midcontinent rift system. Random "=" represent... 9. N 183 --9 B. Freda Sandstone ? N 180 1 C. Nonesuch Shale 1023 N 177 10 D. Middle Keweenawan 1110 N 183 29 E. Middle Keweenawan 1110 R 203 42 F. Logan Sills 1150 R 220 49 G. Lower Keweenawan ? N 200 10 H. Sudbury Dikes 1225 N 189 -3 I. Sibley Group...

  4. Sequence of rifting in Afar, MandaHararo rift, Ethiopia, 20052009: Timespace evolution and interactions

    E-Print Network [OSTI]

    Nicolas, Chamot-Rooke

    Sequence of rifting in Afar, MandaHararo rift, Ethiopia, 2005­2009: Timespace evolution intrusions in the Manda Hararo rift, Afar (Ethiopia), from September 2005 to June 2009, studied using Chabalier, and G. C. P. King (2010), Sequence of rifting in Afar, MandaHararo rift, Ethiopia, 2005

  5. GEOCHEMICAL AND MINERALOGICAL EVIDENCE FOR THE PROVENANCE OF MIXED VOLCANOGENIC/TERRIGENOUS HEMIPELAGIC SEDIMENTS IN THE PLIOCENE– PLEISTOCENE WOODLARK BACKARC RIFT BASIN, SOUTHWEST PACIFIC: OCEAN DRILLING PROGRAM LEG 180 

    E-Print Network [OSTI]

    Robertson, Alastair H F; Sharp, Timothy R

    2002-01-01T23:59:59.000Z

    Middle Miocene to Holocene fine-grained argillaceous sediments (clays, claystones/muds, and mudstones), which volumetrically dominated the sediment recovery in the Woodlark Basin during Leg 180, were chemically analyzed ...

  6. Georgia Underground Gas Storage Act of 1972 (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Underground Gas Storage Act, which permits the building of reserves for withdrawal in periods of peak demand, was created to promote the economic development of the State of Georgia and...

  7. Albany, OR * Anchorage, AK * Morgantown...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geologic Characterization of the South Georgia Rift Basin for Source Proximal CO 2 Storage Background Carbon capture, utilization and storage (CCUS) technologies offer the...

  8. University of Georgia 2020 Strategic Plan

    E-Print Network [OSTI]

    Arnold, Jonathan

    ......................................................................34 Appendix E. University of Georgia Funding Source Trend Summary..........................................35University of Georgia 2020 Strategic Plan Building on Excellence October 30, 2012 #12;Building...............................................................................................................................................1 The Mission of the University of Georgia

  9. Georgia Oil and Gas Deep Drilling act of 1975 (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia's Oil and Gas and Deep Drilling Act regulates oil and gas drilling activities to provide protection of underground freshwater supplies and certain "environmentally sensitive" areas. The...

  10. Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Comprehensive Solid Waste Management Act (SWMA) of 1990 was implemented in order to improve solid waste management procedures, permitting processes and management throughout the state. ...

  11. Georgia Hazardous Waste Management Act

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

  12. Mesozoic tectonic inversion in the Neuquen Basin of west-central Argentina 

    E-Print Network [OSTI]

    Grimaldi Castro, Gabriel Orlando

    2007-04-25T23:59:59.000Z

    Mesozoic tectonic inversion in the Neuquen Basin of west-central Argentina produced two main fault systems: (1) deep faults that affected basement and syn-rift strata where preexisting faults were selectively reactivated ...

  13. Mesozoic tectonic inversion in the Neuquen Basin of west-central Argentina

    E-Print Network [OSTI]

    Grimaldi Castro, Gabriel Orlando

    2007-04-25T23:59:59.000Z

    Mesozoic tectonic inversion in the Neuquen Basin of west-central Argentina produced two main fault systems: (1) deep faults that affected basement and syn-rift strata where preexisting faults were selectively reactivated during inversion based...

  14. Petrography Analysis At Kilauea East Rift Geothermal Area (Quane...

    Open Energy Info (EERE)

    Petrography Analysis At Kilauea East Rift Geothermal Area (Quane, Et Al., 2003) Exploration Activity Details Location Kilauea East Rift Geothermal Area Exploration Technique...

  15. 2014 Race to Zero Student Design Competition: Georgia Institute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Georgia Institute of Technology Profile 2014 Race to Zero Student Design Competition: Georgia Institute of Technology Profile 2014 Race to Zero Student Design Competition: Georgia...

  16. Georgia Biofuel Directory A directory of Georgia industries that use biofuels.

    E-Print Network [OSTI]

    Georgia Biofuel Directory · A directory of Georgia industries that use biofuels. · Completed in May _________________________________________________________________ 3 Biofuels_____________________________________________________________________ 4 Biofuel Use in Georgia that Burn Self-Generated Biofuels as of May 2003__ 4 Chart 1.0 Biofuel Use from Contacted

  17. Georgia Cities Foundation- Green Communities Revolving Loan Fund (Georgia)

    Broader source: Energy.gov [DOE]

    The Green Communities Fund is a revolving loan fund providing low-interest loans to businesses located within the city limits of any city in Georgia. Loans are available for existing as well as new...

  18. Georgia Interfaith Power and Light- Energy Improvement Grants (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia Interfaith Power and Light (GIPL) offers grants of up to $10,000 to congregations or faith-based communities, including faith-based schools. Grant funds may be used for energy conservation...

  19. Evolutionary sequences and hydrocarbon potential of Kenya sedimentary basins

    SciTech Connect (OSTI)

    Cregg, A.K. (Western Atlas International, Inc., Carrollton, TX (United States))

    1991-03-01T23:59:59.000Z

    Kenya basins have evolved primarily through extension related to episodic continental rifting. In eastern Kenya, thick accumulations of sediments formed within grabens during the prerift phase (Precambrian to Carboniferous) of the Gondwana breakup. Synrift sedimentation (Late Carboniferous to Middle Jurassic) occurred within a north-south rift system, which included the Mandera basin, South Anza basin, and Lamu embayment. During the Early Jurassic, a marine transgression invaded the margins of the eastern Kenya rift basins, resulting in the deposition of platform carbonates and shales. A Callovian-aged salt basin formed in the offshore regions of the Lamu embayment. Intermittent tectonic activity and eustatic sea-level changes controlled sedimentation, which produced marine shales, carbonates or evaporites, and fluvio-deltaic to lacustrine sandstones. From the Early Cretaceous to recent, continental sediments were deposited within the North Anza and Turkana basins. These fluvial-lacustrine sediments are similar to the Lower Cretaceous sequences that have produced oil in the Mesozoic Sudanese Abu Gabra rift. Although exploration activities began in the early 1950s, significant occurrences of potential reservoir, source, and seal lithologies as well as trapping configurations remain in many areas. Favorable structures and sequences of reservoir sandstones and carbonates overlain by potentially sealing lacustrine or marine shales, evaporites, or volcanics have been noted. Potential source beds are believed to be present within shales of the lacustrine or marine depositional environments.

  20. Georgia Power- Solar Buyback Program

    Broader source: Energy.gov [DOE]

    Georgia Power, the state's largest utility, has established a green power program, that allows the company to purchase limited solar generation at a premium price based on other customers volunta...

  1. Georgia Power- Advanced Solar Initiative

    Broader source: Energy.gov [DOE]

    Note: According to Georgia Power's website, the Advanced Solar Initiative's final program guidelines are due to be published on June 25th and the bidding period for is expected to open on July 10,...

  2. Gravity modeling of the Song Hong basin: an insight into its crustal structure and implication for the formation of the basin

    E-Print Network [OSTI]

    Nguyen, Vu Giang

    1996-01-01T23:59:59.000Z

    3-D gravity inversion and rift stretching models are used in the Song Hong basin to determine the general configuration of the upper mantle and the mechanism for its formation in the region. The basin approximately 200 km wide by 600 km in length...

  3. Georgia Water Resources Institute Annual Technical Report

    E-Print Network [OSTI]

    dissemination, and works collaboratively with various local, state, and federal agencies. These include #35334). (5) Tidal Streams: A Renewable Energy Source for Georgia , Kevin Haas, Georgia Institute, environmental organizations, lake associations, California Energy Commission, California Department of Water

  4. Georgia Green Loans Save and Sustain Program

    Broader source: Energy.gov [DOE]

    Georgia Green Loans, a non-profit microlending agency, offers funding to "green" businesses using funding from a Georgia Environmental Finance Authority (GEFA) grant. The GEFA grant is based on...

  5. Sandy Springs, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton SeaBasinSandusky, Ohio: EnergySprings, Georgia:

  6. Transient rift opening in response to multiple dike injections in the Manda Hararo rift (Afar, Ethiopia)

    E-Print Network [OSTI]

    Socquet, Anne

    , Ethiopia) imaged by timedependent elastic inversion of interferometric synthetic aperture radar data R intrusions in the Manda Hararo­Dabbahu rift (Afar, Ethiopia) from 2005 to 2009 show that transient in response to multiple dike injections in the Manda Hararo rift (Afar, Ethiopia) imaged by timedependent

  7. Geothermal Resources of Rifts- a Comparison of the Rio Grande...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Resources of Rifts- a Comparison of the Rio Grande Rift and the Salton Trough Abstract The Rio...

  8. Sedimentation and tectonics in the southern Bida Basin, Nigeria: depositional response to varying tectonic context

    SciTech Connect (OSTI)

    Braide, S.P. (Federal Univ. of Technology, Minna (Nigeria))

    1990-05-01T23:59:59.000Z

    The Upper Cretaceous Bida basin of central Nigeria is sandwiched between the Precambrian schist belts of the Northern Nigerian massif and the West African craton. Of interest is the southern part of the basin, which developed in continental settings, because the facies architecture of the sedimentary fill suggests a close relation between sedimentation dynamics and basin margin tectonics. This relationship is significant to an understanding of the basin's origin, which has been controversial. A simple sag and rift origin has been suggested, and consequently dominated the negative thinking on the hydrocarbon prospects of the basin which were considered poor. This detailed study of the facies indicates rapid basin-wide changes from various alluvial fan facies through flood-basin and deltaic facies to lacustrine facies. Paleogeographic reconstruction suggests lacustrine environments were widespread and elongate. Lacustrine environments occurred at the basin's axis and close to the margins. This suggests the depocenter must have migrated during the basin's depositional history and subsided rapidly to accommodate the 3.5-km-thick sedimentary fill. Although distinguishing pull-apart basins from rift basins, based solely on sedimentologic grounds, may be difficult, the temporal migration of the depocenter, as well as the basin architecture of upward coarsening cyclicity, show a strong tectonic and structural overprint that suggests a tectonic framework for the Southern Bida basin similar in origin to a pull-apart basin.

  9. Georgia Southern University Information Technology

    E-Print Network [OSTI]

    Hutcheon, James M.

    Georgia Southern University Information Technology Organization Chart 2013-2014 FINAL: September 18, 2013 R\\Work\\Common:\\OrgCharts\\Rev2014\\ Information Technology \\CIO Produced: Strategic Research of the groups of units reporting there. President Vice President for Information Technology and Chief

  10. Georgia Tech Vehicle Acquisition and

    E-Print Network [OSTI]

    1 2012 Georgia Tech 10/10/2012 Vehicle Acquisition and Disposition Manual #12;2 Vehicle Procedures Regardless of value, all vehicles should be included in this process. Acquisition of a Vehicle 1. Contact Fleet Coordinator to guide the departments in the purchasing process for all vehicles. 2. Fill out

  11. Crustal structure of central Lake Baikal: Insights into intracontinental rifting

    E-Print Network [OSTI]

    ten Brink, Uri S.; Taylor, Michael Halford

    2002-07-16T23:59:59.000Z

    in an ancient fold-and-thrust belt. The extent and location of upper mantle extension are not revealed by our data, and it may be offset from the rift. We believe that the Baikal rift structure is similar in many respects to the Mesozoic Atlantic rift system...

  12. Stressors to Imperiled Fishes in the Etowah Basin Mechanisms, Sources and Management under the Etowah HCP

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    Geological Survey Patuxent Wildlife Research Center, Athens, GA 30602 Abstract The Etowah River basin, 2006 Edited February 1, 2007 1. University of Georgia River Basin Center, Athens, GA 30602 2. US and its Aquatic Fauna The Etowah River is a major headwater tributary of the Coosa River system

  13. Updated 11/1/2012 GEORGIA INSTITUTE OF TECHNOLOGY

    E-Print Network [OSTI]

    Li, Mo

    Updated 11/1/2012 GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF FINANCIAL SERVICES ADMINSTRATION Cash/Investment Management Debt Management Georgia Tech Facilities, Inc. Georgia Advanced Technology Ventures, Inc. Project Accounting Cost Accounting Rate Studies Negotiations Salary, Planning

  14. GEORGIA INSTITUTE OF TECHNOLOGY ENVIRONMENTAL HEALTH AND SAFETY POLICY

    E-Print Network [OSTI]

    Das, Suman

    GEORGIA INSTITUTE OF TECHNOLOGY ENVIRONMENTAL HEALTH AND SAFETY POLICY Ratified by the Institute Council on Environmental Health and Safety August 2008 POLICY Georgia Institute of Technology (Georgia environmental health and safety laws and regulations; and Demonstrating leadership in pollution prevention

  15. Renewable and Non-Renewable Resources Tariff RNR-7 (Georgia)

    Broader source: Energy.gov [DOE]

    The Renewable and Non-Renewable Resource tariff is authorized by the Georgia Public Service Commission (PSC), which requires that the investor owned utility, Georgia Power Company, purchase...

  16. Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia...

    Office of Environmental Management (EM)

    Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking October...

  17. GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy

    Energy Savers [EERE]

    ACT SNAPSHOT Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  18. Qualifying RPS State Export Markets (Georgia)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Georgia as eligible sources towards their RPS targets or goals. For specific...

  19. Petroleum Pipeline Eminent Domain Permit Procedures (Georgia)

    Broader source: Energy.gov [DOE]

    The Petroleum Pipeline Eminent Domain Permit Procedures serve to protect Georgia's natural and environmental resources by requiring permits be issued by the Director of the Environmental Protection...

  20. Wood Fired Steam Plants in Georgia 

    E-Print Network [OSTI]

    Bulpitt, W. S.

    1983-01-01T23:59:59.000Z

    . Shortly after that time, Georgia Tech and the Georgia Forestry Commission embarked on a number of projects directed toward providing the use of wood as an industrial energy source. This paper will present an overview of these programs with an emphasis...

  1. Georgia Water Resources Institute Annual Technical Report

    E-Print Network [OSTI]

    ) INFORM: Integrated Forecast and Reservoir Management System for Northern California, Aris Georgakakos PI Water Resources Institute GWRI mission is to help improve water resources management in Georgia, the US planning and management framework for Georgia. The GWRI planning tools are used to (i) determine flow

  2. Compound and Elemental Analysis At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    Rift Zone known as Puna Ridge. The samples were analyzed by electron microscope and infrared spectroscopy. Volatile studies of previous dredged samples from the Puna Ridge have...

  3. Modeling-Computer Simulations At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Kilauea East Rift Geothermal Area (Rudman & Epp, 1983) Exploration...

  4. Electromagnetic Soundings At Kilauea East Rift Geothermal Area...

    Open Energy Info (EERE)

    of this study was to obtain a more complete model of the geologic structure and hydrology of Kilauea's east rift zone Notes Electromagnetic transient soundings were conducted...

  5. Reflection Survey At Kilauea East Rift Geothermal Area (Leslie...

    Open Energy Info (EERE)

    C. Leslie, Gregory F. Moore, Julia K. Morgan (2004) Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Additional References...

  6. Ground Gravity Survey At Kilauea East Rift Geothermal Area (Leslie...

    Open Energy Info (EERE)

    C. Leslie, Gregory F. Moore, Julia K. Morgan (2004) Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Additional References...

  7. Refraction Survey At Kilauea East Rift Geothermal Area (Leslie...

    Open Energy Info (EERE)

    C. Leslie, Gregory F. Moore, Julia K. Morgan (2004) Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Additional References...

  8. Ground Magnetics At Kilauea East Rift Geothermal Area (Leslie...

    Open Energy Info (EERE)

    C. Leslie, Gregory F. Moore, Julia K. Morgan (2004) Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Additional References...

  9. Direct-Current Resistivity Survey At Kilauea Southwest Rift And...

    Open Energy Info (EERE)

    Southwest Rift And South Flank Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Kilauea...

  10. Direct-Current Resistivity At Kilauea Southwest Rift And South...

    Open Energy Info (EERE)

    Southwest Rift And South Flank Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Kilauea...

  11. Time-Domain Electromagnetics At Kilauea Southwest Rift And South...

    Open Energy Info (EERE)

    Southwest Rift And South Flank Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Kilauea...

  12. Direct-Current Resistivity Survey At Mauna Loa Northeast Rift...

    Open Energy Info (EERE)

    Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Mauna Loa...

  13. Groundwater Sampling At Kilauea East Rift Geothermal Area (Cox...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Groundwater Sampling At Kilauea East Rift Geothermal Area (Cox & Thomas, 1979) Exploration...

  14. Isotopic Analysis- Fluid At Kilauea East Rift Geothermal Area...

    Open Energy Info (EERE)

    purpose of this study was to identify probable recharge areas and length of time for groundwater discharge from the Kilauea rift zones. Interpretations were based on isotropic...

  15. Direct-Current Resistivity Survey At Mauna Loa Southwest Rift...

    Open Energy Info (EERE)

    soundings and a self-potential traverse across the rift zone. The absence of groundwater wells and time and funding constraints precluded any geochemical field surveys....

  16. Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank Area (Wyss, Et Al., 2001)...

  17. Moho topography beneath the Corinth Rift area (Greece) from inversion of gravity data

    E-Print Network [OSTI]

    Demouchy, Sylvie

    Moho topography beneath the Corinth Rift area (Greece) from inversion of gravity data C. Tiberi,1 to Miocene lithospheric instabilities. Key words: boudinage, continental rifts, gravity inversion, Greece

  18. Volcanic rifting at Martian grabens Daniel Me`ge,1

    E-Print Network [OSTI]

    Mege, Daniel

    Volcanic rifting at Martian grabens Daniel Me`ge,1 Anthony C. Cook,2,3 Erwan Garel,4 Yves: Solar System Objects: Mars; 8121 Tectonophysics: Dynamics, convection currents and mantle plumes; 8010: Me`ge, D., A. C. Cook, E. Garel, Y. Lagabrielle, and M.-H. Cormier, Volcanic rifting at Martian

  19. Central Georgia EMC- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    In June 2008, Central Georgia Electric Membership Corporation (CGEMC) began offering a rebate of $450 per kilowatt (kW) to residential members who install photovoltaic (PV) systems that are...

  20. Alternative Fuels Data Center: Georgia Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Georgia, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  1. Thermo-mechanical modelling of Black Sea Basin (de)formation S. Cloetingh*, G. Spadini1

    E-Print Network [OSTI]

    Beekman, Fred

    Thermo-mechanical modelling of Black Sea Basin (de)formation S. Cloetingh*, G. Spadini1 , J.D. Van; received in revised form 7 January 2002; accepted 19 July 2002 Abstract We present the results of a thermo by rifting and subsequent sediment loading. Thermo-mechanical modelling of integrated lithospheric strength

  2. Large-scale flow of geofluids at the Dead Sea Rift H. Gvirtzmana,*, E. Stanislavskyb

    E-Print Network [OSTI]

    Gvirtzman, Haim

    that has caused large-scale migration of brine and hydrocarbons at the Dead Sea Rift. Numerical simulations flow directions. The first is a density-driven migration of brine through deep aquifers from the rift reserved. Keywords: Groundwater; Brine; Hydrocarbons; Rift; Dead Sea; Modeling 1. The Dead Sea Rift

  3. Tectonic setting and origin of the Black Warrior basin

    SciTech Connect (OSTI)

    Thomas, W.A.; Whiting, B.M. (Univ. of Kentucky, Lexington, KY (United States). Dept. of Geological Sciences)

    1994-03-01T23:59:59.000Z

    The Black Warrior basin has a triangular outline that is framed by the Ouachita thrust belt on the southwest, the Appalachian thrust belt on the southeast, and the North American craton on the north. The stratigraphy of the Black Warrior basin includes two distinct parts: a Cambrian-Mississippian passive-margin carbonate-shelf succession, and a Mississippian-Pennsylvanian clastic succession, the lower (Mississippian) part of which grades northeastward into a carbonate-shelf facies. The provenance and dispersal system of the Mississippian-Pennsylvanian clastic deposits have been interpreted in four different ways, each of which has significantly different implications for origin of the basin: (1) Ouachita orogenic source and northeastward prograding; (2) Alabama Appalachian orogenic source and northwestward prograding; (3) Georgia-tennessee Appalachian orogenic source and westward prograding; and (4) cratonic source and southward prograding. Subsidence history determined from calculations of decompacted thickness indicates that (1) the Black Warrior basin is an orogenic foreland basin related primarily to the Ouachita thrust load on the southwest; (2) later emplacement of the Alabama Appalachian thrust belt modified the southeastern side of the Ouachita-related Black Warrior foreland basin; and (3) a separate foreland basin, representing the southern end of the Appalachian foreland basin, formed in response to the Georgia-Tennessee Appalachian thrust load. The previously used criteria do not necessarily support a unique interpretation, but synthesizing these data with subsidence history leads to the conclusion that the Black Warrior basin is a tectonically driven, orogenic foreland basin dominated by Ouachita thrusting and modified by Appalachian thrusting.

  4. The University of Georgia Center for Agribusiness and Economic Development

    E-Print Network [OSTI]

    Scott, Robert A.

    and Environmental Sciences An Evaluation of Direct and Indirect Economic Losses Incurred by Georgia FruitThe University of Georgia Center for Agribusiness and Economic Development College of Agricultural ............................................................................................................................................................ 3 Economic Consequences

  5. Sensible Solar Fueling Energy Revolution in Georgia | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Sensible Solar Fueling Energy Revolution in Georgia Sensible Solar Fueling Energy Revolution in Georgia May 14, 2010 - 3:35pm Addthis Joshua DeLung During his recent commencement...

  6. atlanta georgia usa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    values SECURING AMERICA'S FUTURE 12;0 1Georgia Tech Research Institute Annual Report Bennett, Gisele 9 School of Biology Atlanta, Georgia 30332-0230 USA Biology and Medicine...

  7. Pore water chemistry of an alkaline rift valley lake: Lake Turkana, Kenya

    SciTech Connect (OSTI)

    Cerling, T.E.; Johnson, T.C.; Halfman, J.D.; Lister, G.

    1985-01-01T23:59:59.000Z

    Lake Turkana is the largest closed basin lake in the African rift system. It has evolved through the past 5000 years to become a moderately alkaline lake. Previous mass balance argument suggest that sulfate is removed from the lake by sulfate reduction in the sediments, and that the lake is accumulating in chloride, sodium, and alkalinity. Studies of pore water from 12 meter cores collected in November 1984 show that sulfate is reduced in the sediment column with a net production of alkalinity. Some sodium is lost from the lake and diffuses into the sediment to maintain charge balance. At several meters depth, organic matter is destroyed by methanogenic bacteria, as shown by the high delta /sup 13/C values for dissolved inorganic carbon. Magnesium and calcium molar ratios change with depth; chloride, sodium, and alkalinity also change with depth.

  8. Georgia Tech / Honeywell 4GCNVKOG%QQRGTCVKXG$GJCXKQTHQT

    E-Print Network [OSTI]

    Georgia Tech / Honeywell 4GCNVKOG%QQRGTCVKXG$GJCXKQTHQT 6CEVKECN/QDKNG4QDQV6GCOU and #12;Georgia Tech / Honeywell 6GEJPQNQI[6JTWUV#TGCU 3 Fault-tolerant reactive group behaviors 3 Communication analysis and management #12;Georgia Tech / Honeywell /KUUKQP.CD Problem Statement ­ Constructing robot

  9. Comparison of Georgia and US Per Capita Fruit, Vegetable, Livestock, and Poultry Consumption, 2011 Estimated 2011 Georgia

    E-Print Network [OSTI]

    Scott, Robert A.

    Comparison of Georgia and US Per Capita Fruit, Vegetable, Livestock, and Poultry Consumption, 2011 Capita) Data System 4 Value= Per capita consumption (column 3) multiplied by Georgia Population (9 Estimated 2011 Georgia Population (9,687,653)1 2011 Farm Gate Production (lbs)2 2010 Per Capita US

  10. Static Temperature Survey At Kilauea East Rift Geothermal Area...

    Open Energy Info (EERE)

    variations were recorded in well HGP-A and the data was later used to create computer simulations of the heat flow patterns in the East Rift Zone References Albert J....

  11. Electrical Resistivity At Kilauea East Rift Geothermal Area ...

    Open Energy Info (EERE)

    of this study was to obtain a more complete model of the geologic structure and hydrology of Kilauea's east rift zone Notes An electrical resistivity survey was conducted in...

  12. Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,JumpValleyTopicsGeorgia/WindGeorgia:

  13. Structural evolution and petroleum productivity of the Baltic basin

    SciTech Connect (OSTI)

    Ulmishek, G.F. (Geological Survey, Denver, CO (United States))

    1991-08-01T23:59:59.000Z

    The Baltic basin is an oval depression located in the western part of the Russian craton; it occupies the eastern Baltic Sea and adjacent onshore areas. The basin contains more than 5,000 m of sedimentary rocks ranging from latest Proterozoic to Tertiary in age. These rocks consist of four tectonostratigraphic sequences deposited during major tectonic episodes of basin evolution. Principal unconformities separate the sequences. The basin is underlain by a rift probably filled with Upper Proterozoic rocks. Vendian and Lower Cambrian rocks (Baikalian sequence) form two northeast-trending depressions. The principal stage of the basin development was during deposition of a thick Middle Cambrian-Lower Devonian (Caledonian) sequence. This stage was terminated by the most intense deformations in the basin history. The Middle Devonian-Carboniferous (Hercynian) and Permian-Tertiary (Kimmerian-Alpine) tectonic and depositional cycles only slightly modified the basin geometry and left intact the main structural framework of underlying rocks. The petroleum productivity of the basin is related to the Caledonian tectonostratigraphic sequence that contains both source rocks and reservoirs. However, maturation of source rocks, migration of oil, and formation of fields took place mostly during deposition of the Hercynian sequence.

  14. Georgia Power- Residential Solar and Heat Pump Water Heater Rebate (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia Power customers may be eligible for rebates up to $250 each toward the installation costs of a 50 gallon or greater solar water heater or heat pump water heater. The solar water heater or...

  15. Georgia Southern University Business and Finance

    E-Print Network [OSTI]

    Hutcheon, James M.

    Georgia Southern University Business and Finance Organization Chart 2013-2014 FINAL: September 18, 2013 R:\\Work\\Common\\Org Charts\\Rev2014\\ Business & Finance Produced: Strategic Research & Analysis/KBM President Vice President for Business and Finance Associate Vice President for Finance Associate Vice

  16. Georgia Tech Profiling Overconsolidation Ratio in

    E-Print Network [OSTI]

    Mayne, Paul W.

    Properties: M = 6 sin'/(3-sin') ' = effective stress friction angle Cc = compression index Cs = swelling index . 1 ­ Cs/Cc IR = G/su = Undrained Rigidity Index G = shear modulus su = undrained shear strength vovot I qM OCR #12;Georgia Tech Determine Undrained Rigidity Index = shear stress= shear stress ss

  17. IEEE Energy2030 Atlanta, Georgia, USA

    E-Print Network [OSTI]

    Ratnasamy, Sylvia

    an innovative electric power architecture, rooted in lessons learned from the Internet and microgrids, whichIEEE Energy2030 Atlanta, Georgia, USA 17-18 November 2008 An Architecture for Local Energy-disruptive incremental adoption. Such a system, which we term a "LoCal" grid, is controlled by intelligent power switches

  18. The University of Georgia Senior Vice President

    E-Print Network [OSTI]

    Arnold, Jonathan

    directly to the Senior Vice President. In Summer 2011--in response to the recent development to the University of Georgia). These factors included, among others: decreasing state support; increased demands historic campus; and hiring, retention, compression and morale issues compounded by the inability

  19. The University of Georgia Teaching Academy

    E-Print Network [OSTI]

    Arnold, Jonathan

    The University of Georgia Teaching Academy Mission Statement The mission of the Academy is to promote and celebrate excellence in teaching and to foster learning through inquiry. Goals The Academy Engineering David S. Williams, Honors Program Teaching Academy Induction Dinner and Ceremony Membership Class

  20. Georgia Water Resources Institute Annual Technical Report

    E-Print Network [OSTI]

    , and lake associations. At the national level, GWRI has collaborative efforts with the California Energy with support from the U.S. Agency for International Development, World Bank, Food and Agriculture Organization Prices in Georgia" USGS 104B/GWRI Project, Susanna Ferriera # 2011GA275B #1266663 (3) Impact of Upstream

  1. Georgia Water Resources Institute Annual Technical Report

    E-Print Network [OSTI]

    and Wildlife Service. GWRI also has a significant international involvement in Europe, Africa, China, and South-based Hydrologic Forecasts, Aris Georgakakos PI, Georgia Institute of Technology, sponsored by NOAA OGP Climate graduate education, applied research, and technology transfer in the areas of water, energy

  2. Georgia Water Resources Institute Annual Technical Report

    E-Print Network [OSTI]

    associations. At the national level, GWRI collaborative efforts with the California Energy Commission program in Europe, Africa, China, Middle East, and South America with support from the U.S. Agency of Georgia, sponsored by USGS under grant #1266663 (Fund R7113). (5) Operational Multi-scale Forecast

  3. Exploration concepts for syntectonic sediments of Triassic and Jurassic Age along northern and eastern rim of Gulf of Mexico basin

    SciTech Connect (OSTI)

    Rodgers, D.A.; Wilkerson, R.P.; Putnam, M.W.

    1985-02-01T23:59:59.000Z

    Current tectonic models for the formation of the Gulf of Mexico generally include continental rifting starting in the Triassic and continuing through the Jurassic. A comparison between the sedimentology and structural geology of known continental rifts (such as the Gulf of Suez, Egypt) and the Triassic and Jurassic of the Gulf of Mexico suggests the following. (1) The interior salt basins of Texas, Louisiana, Mississippi, and Alabama probably were deposited within a failed continental rift. (2) Positive features such as the Angelina-Caldwell flexure, Wiggins arch, and Middle ground arch probably represent the southern edge of the failed rift. (3) Positive features such as the Sabine uplift and Monroe arch are probably isolated horst blocks within the failed rift. Pre-evaporite sediments account for much of the production in the Gulf of Suez, and these rock sequences are well exposed there on shore. Depositional and structural histories for these rocks are similar in both the Gulf of Mexico and Gulf of Suez, and a careful comparison suggests new play concepts for the Gulf of Mexico. The post-evaporite sequences of the Gulf of Suez are also similar to the Norphlet and Smackover Formations of the Gulf of Mexico, although Smackover equivalents are currently being deposited in the Gulf of Suez. Comparisons between the two rift systems indicate that a clearer understanding of the structural setting of the Gulf of Mexico at the time of deposition of the Norphlet and Smackover should lead to better exploration plays for these syntectonic formations.

  4. Seth Marder Title: Regent's Professor, Georgia Power Chair in Energy Efficiency

    E-Print Network [OSTI]

    Garmestani, Hamid

    Seth Marder Title: Regent's Professor, Georgia Power Chair in Energy Efficiency University's Professor, the Georgia Power Chair of Energy Efficiency, and Professor of Chemistry and Materials Science

  5. Georgia Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act State Memo Georgia has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  6. Central Georgia EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Georgia Electric Member Corporation (CGEMC) offers rebates for residential customers to increase the energy efficiency of existing homes or to build new energy efficient homes.  This year,...

  7. GEORGIA TECH ENERGY AND SUSTAINABILITY SERVICES (GTESS) ANSI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GEORGIA TECH ENERGY AND SUSTAINABILITY SERVICES (GTESS) ANSI-Accredited Standards Developer Clarification of Intent: SEP energy management standards Administrator: Holly Grell-Lawe...

  8. atlanta georgia metropolitan: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of 2004. Five notable plumes of SO2, apparently from coal-fired power plants, were Weber, Rodney 12 ACI Spring Convention Atlanta Georgia Engineering Websites Summary:...

  9. Intermittent upwelling of asthenosphere beneath the Gregory Rift, Kenya

    SciTech Connect (OSTI)

    Tatsumi, Yoshiyuki (Univ. of Tasmania (Australia) Kyoto Univ. (Japan)); Kimura, Nobukazu (Kyoto Univ. (Japan)); Itaya, Tetsumaru (Okayama Univ. of Science (Japan)); Koyaguchi, Takehiro (Kumamoto Univ. (Japan)); Suwa, Kanenori (Nagoya Univ. (Japan))

    1991-06-01T23:59:59.000Z

    K-Ar dates and chemical compositions of basalts in the Gregory Rift, Kenya, demonstrate marked secular variation of lava chemistry. Two magmatic cycles characterized by incompatible element relative depletion are recognized; both occurring immediately after the peak of basaltic volcanism and coeval with both trachyte/phonolite volcanism and domal uplift of the region. These cycles may be attributed to increasing degree of partial melting of mantle source material in association with thinning of the lithosphere by thermal erosion through contact with hot upwelling asthenospheric mantle. Cyclic variation in asthenosphere upwelling may be considered an important controlling process in the evolution of the Gregory Rift.

  10. EA-1963: Elba Liquefaction Project, Savannah, Georgia

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EA to analyze the potential environmental impacts of a proposal to add natural gas liquefaction and export capabilities at the existing Elba Liquefied Natural Gas Terminal near Savannah, Georgia. Additional information is available at FERC’s eLibrary website, elibrary.ferc.gov/idmws/docket_search.asp; search for docket number PF13-3.

  11. The Congo deep-sea fan: how far and for how long? A basin-wide view of the interaction between a giant submarine fan

    E-Print Network [OSTI]

    Demouchy, Sylvie

    basement at about 8 s (TWT). The seismic interpretation was carried out using Sismage Research TM software of thousands of km of 2D seismic-reflection profiles from the ZaiAngo project across the Congo-Angola passive to a re-interpretation of the post-rift history of sediment supply in the basin and a reconsideration

  12. Remote Sensing for Biodiversity Conservation of the Albertine Rift

    E-Print Network [OSTI]

    Wang, Y.Q. "Yeqiao"

    183 10 Remote Sensing for Biodiversity Conservation of the Albertine Rift in Eastern Africa Samuel 2003). The rapidly developing field of remote sensing has been invaluable to biodiversity conservation distribution depend (Debinski et al. 1999). The field of remote sens- ing complements traditional field

  13. The Gerontology Institute at Georgia State University invites applications for

    E-Print Network [OSTI]

    Arnold, Jonathan

    to external funding. Georgia State University is the Southeast's leading urban research institution. More thanThe Gerontology Institute at Georgia State University invites applications for a tenure. This position is affiliated with the University's Partnership in Urban Health Research (http

  14. URBAN/INDUSTRIAL LAND PRIVATIZATION The Republic of Georgia

    E-Print Network [OSTI]

    Onsrud, Harlan J.

    reviewed overall market reform prospects in the Republic of Georgia. The findings indicate that Georgia's market reform lags behind several other New Independent State (NIS) countries. This is largely due' support for market reform initiatives. With the ethnic conflict under control, the USAID assessment team

  15. Energy Incentive Programs, Georgia | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFact SheetColoradoGeorgia Energy

  16. Gordon, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation, searchGoodyear, Arizona:Georgia:

  17. Ailey, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) |Agawam,Ahmeek, Michigan:County,Ailey, Georgia:

  18. Categorical Exclusion Determinations: Georgia | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary3 Categorical ExclusionCalifornia|Georgia Categorical

  19. Abbeville, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation, search40Georgia: Energy Resources

  20. Panthersville, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisades Park,Panthersville, Georgia: Energy

  1. Dunwoody, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey:JumpOregon: EnergyDunnDunwoody, Georgia:

  2. Milton, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|Mililani Town,Millinocket,Milo, Maine: EnergyGeorgia:

  3. Tucker, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas, Texas Zip:HillsTucker, Georgia: Energy

  4. Americus, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan Blanch GreenAmerenSamoa: EnergyAWSAmericus, Georgia:

  5. GEORGIA GENERAL ASSEMBLY 4/2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell isOklahoma City,GENERAL TERMS &GEORGIA

  6. Rochelle, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio: EnergyTennessee:Rochelle, Georgia: Energy

  7. Roswell, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County, Michigan: EnergyRosendaleRossie,Roswell, Georgia:

  8. Onshore and offshore basins of northeast Libya: Their origin and hydrocarbon potential

    SciTech Connect (OSTI)

    Shegewi, O.M.

    1992-01-01T23:59:59.000Z

    A comprehensive data base of more than 3000 km of seismic lines, gravity and magnetic data, more than 30 subsurface well logs, and surface geology data were utilized to examine and interpret the sedimentary and tectonic history of the onshore and offshore parts of Northeast Libya and their hydrocarbon potential. The Dernah-Tobruk and Benghazi offshore basins form the northern parts of the study area. The Cyrenaica Stable Platform represents the southern parts. The Sirual Trough stretches E-W and opens into the Antelat Trough in the west. Between these elements is the uplifted areas of the Al Jabal Al Akhdar. Six principal tectonic phases were responsible for the formation and development of these structural elements: the pre-Mesozoic phase, the Triassic-Jurassic rifting phase, the Neocomian and the Aptian-Albian renewed rifting phases, the Late Cretaceous-Paleocene uplifting phase; and the Eocene-Middle Oligocene rifting phase. Oceanic crust of probable Aptian-Albian age is evident on the seismic lines north of the master fault marking the southern boundary of the rift separating the north African plate and Apulia. The western boundary of the Dernah High displayed clearly NE-SW strike-slip movement of these trajectories. Oceanic crust is also present west of the Dernah High. Positive gravity and magnetic anomalies traverse parallel to the boundary of this oceanic plate Mesogea. The prerequisites for commercial hydrocarbon production are present in abundance. Reservoirs ranging in age from Paleozoic clastics in the Cyrenaica Stable Platform to Mesozoic and Tertiary carbonates throughout the rest of the region. Several deep sites for the generation of hydrocarbons were also present, including the rifted northern parts of the Dernah-Tobruk basin, the Antelat Trough and the Cyrenaica Passive Margin. The Cretaceous and Tertiary section in the study area contain several potential seal rocks. Several potential trap types are also present.

  9. Pre-Mississippian hydrocarbon potential of Illinois basin

    SciTech Connect (OSTI)

    Davis, H.G.

    1987-05-01T23:59:59.000Z

    The Illinois basin is primarily a Paleozoic epeirogenic basin located in the east-central US. Taken at its broadest possible definition, this basin contains a maximum of 20,000 ft of sedimentary rocks. These represent every Phanerozoic system except the Triassic and Jurassic. Seven important tectonic episodes are recognized. These begin with the establishment of Eocambrian basement rift faults, followed by six rejuvenation events of varying magnitude. More than 3.5 billion bbl of oil have been produced from the Illinois basin, mainly from Pennsylvanian and Mississippian rocks. These rocks represent only 20% of the total basin sedimentary volume. Source rock maturation studies suggest that none of this oil is indigenous to the Pennsylvanian or Mississippian, but all has migrated upward from at least three pre-Mississippian sources. If basin sedimentary volume is taken to be roughly proportional to hydrocarbon reserves, there may be as much as 12 billion BOE remaining to be found in the largely untested pre-Mississippian of the Illinois basin. A thermal history model and Lopatin analysis suggest that oil generation began in Ordovician time and continued through the Jurassic in the deepest part of the basin. At the present stage of exploration, the Hunton Megagroup (Silurian-Devonian) is recommended as the primary pre-Mississippian drilling target. However, understanding the interplay of the pre-Middle Devonian unconformity with contemporaneous paleotopographic-paleobathymetric expression of prospective features is critical to successful Hunton porosity prediction. This interplay is demonstrated at Centralia and Sandoval fields, Clinton and Marion counties, Illinois.

  10. Regional stratigraphy, depositional environments, and tectonic framework of Mississippian clastic rocks between Tuscumbia and Bangor Limestones in Black Warrior basin of Alabama and Mississippi

    SciTech Connect (OSTI)

    Higginbotham, D.R.

    1986-09-01T23:59:59.000Z

    Detailed correlations in the subsurface and outcrop of northern Alabama document that Mississippian clastic rocks between the Tuscumbia and Bangor Limestones are thickest along a band across the northern and eastern parts of the Black Warrior basin. The interval thins markedly southeastward across a northeast-trending line in Monroe County, Mississippi, and Lamar County, Alabama, from more than 350 ft to less than 150 ft. The thickness distribution suggests synsedimentary differential subsidence of crustal blocks. The northeast-trending block boundary in the Black Warrior basin nearly parallels an interpreted northeast-trending late Precambrian rift segment farther southeast. The northwest-striking boundary closely parallels an interpreted northwest-trending transform fault farther southwest. The block boundaries are interpreted as basement faults that originated during late Precambrian rifting. Subsequently, the older faults were reactivated by convergenced during the Mississippian, simultaneously with the initial dispersal of clastic sediment into the Black Warrior foreland basin.

  11. Basin analysis in the Illinois basin

    SciTech Connect (OSTI)

    Leighton, M.W. (Illinois State Geological Survey, Champaign (USA)); Haney, D. (Kentucky Geological Survey, Lexington (USA)); Hester, N. (Indiana Geological Survey, Bloomington (USA))

    1990-05-01T23:59:59.000Z

    In April 1989, the Illinois State Geological Survey and the Indiana and Kentucky Geological surveys formed the Illinois Basin Consortium (IBC) for the purpose of advancing the geologic understanding of the Illinois basin and of developing basin-wide studies for the assessment and wise development of the Illinois basin energy, mineral, and water resources. Cooperative efforts include work on the AAPG Interior Cratonic Sag Basin volume, Springfield coal study, Paducah CUSMAP study in cooperation with the US Geological Survey, Illinois Basin Cross Section Project, Geologic Society of America Coal Division field trip and workshop on Lower Pennsylvanian geology, workshops in basin analysis, and the Tri-State Committee on correlations in the Pennsylvanian System of the Illinois Basin. A network of 16 regional surface to basement cross sections portraying the structural and stratigraphic framework of the total sedimentary section of the entire basin is in preparation. Based on more than 140 of the deepest wells with wireline logs, the sections will show formation boundaries and gross lithofacies of the entire stratigraphic column. A set of basin-wide maps shows structure, thickness, and coal quality of the economically important Springfield coal seam. These maps were generated from recently joined computerized databases of the three member surveys of IBC. A unified stratigraphic nomenclature of the Pennsylvanian System is being developed, including seven new members and seven new formation names. The goal is to simplify, standardize, and gradually improve the stratigraphic terminology to be used in the Illinois basin.

  12. Magmatism in the Bransfield Basin: Rifting of the South Shetland Arc?

    E-Print Network [OSTI]

    Kurapov, Alexander

    composition/chemistry; 3640 Mineralogy and Petrology: Igneous petrology; 3655 Mineralogy and Petrology: Major element composition; 3670 Mineralogy and Petrology: Minor and trace element composition; KEYWORDS

  13. Evaluation of Geothermal Potential of Rio Grande Rift and Basin and Range

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazelPennsylvania: Energy Resources(RECP) inEuricoOpen Energy

  14. Georgia: Data Center and Historic Municipal Building Go Green...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Building Go Green Georgia: Data Center and Historic Municipal Building Go Green August 21, 2013 - 9:45am Addthis Data centers can consume 100 to 200 times more...

  15. EECBG Success Story: Georgia County Turning Industrial and Farm...

    Broader source: Energy.gov (indexed) [DOE]

    Georgia, a town that's poised to see big savings thanks to their investment in biodiesel. | Photo by Ken Cook EECBG Success Story: Atlanta Suburb Greases the Path to Savings...

  16. Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...

    Broader source: Energy.gov (indexed) [DOE]

    D.C. - U.S. Secretary of Energy Secretary Steven Chu will visit the Vogtle nuclear power plant in Waynesboro, Georgia, and Oak Ridge National Laboratory on Wednesday,...

  17. Jackson EMC- Residential Energy Efficiency Rebate Program (Georgia)

    Broader source: Energy.gov [DOE]

    Jackson Electric Membership Corporation (EMC) is an electric cooperative that serves 194,000 customers in 10 counties in northeast Georgia. To encourage its residential customers to adopt energy...

  18. U.S. Hydropower Resource Assessment - Georgia

    SciTech Connect (OSTI)

    A. M. Conner; B. N. Rinehart; J. E. Francfort

    1998-10-01T23:59:59.000Z

    The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Georgia.

  19. Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan...

    Open Energy Info (EERE)

    Sares (2010) Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleDataAcqui...

  20. Sustaining School Reform: Lessons from Georgia Education Policy and Evaluation Center, College of Education, University of Georgia

    E-Print Network [OSTI]

    Scott, Robert A.

    Sustaining School Reform: Lessons from Georgia Education Policy and Evaluation Center, College addressing lessons learned from two years of evaluation of Comprehensive School Reform (CSR) grant recipients implementing reform initiatives, in general. Background The Comprehensive School Reform (CSR) Program began

  1. September 2005 Manda Hararo-Dabbahu rifting event, Afar (Ethiopia): Constraints provided by geodetic data

    E-Print Network [OSTI]

    Nicolas, Chamot-Rooke

    September 2005 Manda Hararo-Dabbahu rifting event, Afar (Ethiopia): Constraints provided of complementary geodetic data for the 2005 rifting event of Afar (Ethiopia). Interferometric synthetic aperture, Afar (Ethiopia): Constraints provided by geodetic data, J. Geophys. Res., 114, B08404, doi:10

  2. Modeling suggests that oblique extension facilitates rifting and continental break-up

    E-Print Network [OSTI]

    Kaus, Boris

    Modeling suggests that oblique extension facilitates rifting and continental break-up Sascha Brune; accepted 5 June 2012; published 2 August 2012. [1] In many cases the initial stage of continental break-up was and is associated with oblique rifting. That includes break-up in the Southern and Equatorial Atlantic, separation

  3. Georgia Water Resources Institute Annual Technical Report

    E-Print Network [OSTI]

    and Reservoir Management System for Northern California; sponsored by NOAA, the California Energy Commission necessary to support integrated river basin management. #12;At the state level, the project sponsored and management; b) Educate scientists, engineers, and water professionals in state-of-the-science methods

  4. Evidence for cenozoic rifting in Thailand from gravity modeling

    E-Print Network [OSTI]

    Ohnstad, Tiffany A.

    1990-01-01T23:59:59.000Z

    at the teriiunation of a large NiVW-SSE trending strike-slip fault related to the extrusion of a. portion of Indochina away froni India, as it collided with Eurasia. . Rifting did not continue alotlg the trencl of the strike-slip fault zone; instead... gravity anomalies from the gndderl geoid heights, a two-diuieusional forur of Lap)&ace's equation in cartesian coordinates was?sed: d~g, , 'i3s =- g?(r3, , 'i)z(?~, 'oz) ? 8/c)y(clh/ dy)) wher'e 2 7 is the gravit'y anoulalv to bc dp'terminpcl, Ji? ls...

  5. Mauna Loa Northeast Rift Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose Bend <Stevens JumpMassachusetts/WindMauna Loa Northeast Rift

  6. Water Basins Civil Engineering

    E-Print Network [OSTI]

    Provancher, William

    Water Basins Civil Engineering Objective · Connect the study of water, water cycle, and ecosystems with engineering · Discuss how human impacts can effect our water basins, and how engineers lessen these impacts: · The basic concepts of water basins are why they are important · To use a topographic map · To delineate

  7. State of Georgia CERTIFICATE OF EXEMPTION OF LOCAL HOTEL/MOTEL EXCISE TAX

    E-Print Network [OSTI]

    Teskey, Robert O.

    AND MOTEL OPERATORS: Effective April 2, 1987, Act Number 621 amending Official Code of Georgia Annotated for exemption of the local hotel/motel excise tax under Official Code of Georgia Annotated Chapter 48-13 (as Section 48-13-51 provides that Georgia state or local government officials or employees traveling

  8. EFFECT OF CLIMATE CHANGE ON WATERSHED RUNOFF FLOW - UPPER COOSA RIVER BASIN UPSTREAM FROM PLANT HAMMOND

    SciTech Connect (OSTI)

    Chen, K.

    2011-10-24T23:59:59.000Z

    The ability of water managers to maintain adequate supplies in the coming decades depends on future weather conditions, as climate change has the potential to reduce stream flows from their current values due to potentially less precipitation and higher temperatures, and possibly rendering them unable to meet demand. The upper Coosa River basin, located in northwest Georgia, plays an important role in supplying water for industry and domestic use in northern Georgia, and has been involved in water disputes in recent times. The seven-day ten-year low flow (7Q10 flow) is the lowest average flow for seven consecutive days that has an average recurrence interval of 10 years. The 7Q10 flow is statistically derived from the observed historical flow data, and represents the low flow (drought) condition for a basin. The upper Coosa River basin also supplies cooling water for the 935MW coal-fired Hammond plant, which draws about 65% of the 7Q10 flow of the upper Coosa River to dissipate waste heat. The water is drawn through once and returned to the river directly from the generator (i.e., no cooling tower is used). Record low flows in 2007 led to use of portable cooling towers to meet temperature limits. Disruption of the Plant Hammond operation may trigger closure of area industrial facilities (e.g. paper mill). The population in Georgia is expected to double from 9 million to 18 million residents in the next 25 years, mostly in the metropolitan Atlanta area. Therefore, there will be an even greater demand for potable water and for waste assimilation. Climate change in the form of persistent droughts (causing low flows) and high ambient temperatures create regulatory compliance challenges for Plant Hammond operating with a once-through cooling system. Therefore, the Upper Coosa River basin was selected to study the effect of potential future weather change on the watershed runoff flow.

  9. Jefferson County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJane Capital PartnersGeorgia: EnergyGeorgia: Energy

  10. Oil and gas basins in the former Soviet Union

    SciTech Connect (OSTI)

    Clayton, J. (Geological Survey, Denver, CO (United States))

    1993-09-01T23:59:59.000Z

    The Pripyat basin is a Late Devonian rift characterized by a typical fault-block structure. Two synrift salt formations separate the Devonian stratigraphic succession into the subsalt, intersalt, and postsalt sections. Oil is produced from carbonate reservoirs of the subsalt and intersalt sections. Traps are controlled by crests of tilted fault blocks. We analyzed 276 shale and carbonate-rock samples and 21 oils to determine oil-source bed relationships in the basin. Maturities of the oils are from very immature, heavy (9[degrees] API), to very mature, light (42[degrees] API). All fields are in a narrow band on the north side of the basin, and only shows of immature, heavy oil have been obtained from the rest of the basin. Three genetic oil types are identified. Oil type A has high pristane/phytane ratios (>1.0), high amounts of C[sub 29] 18[alpha] (H) trisnorneohopane, and [delta]13C of hydrocarbons in the range of -31 to -27%. Oil types B and C contain very high amounts of gammacerane, which suggests that the oils were derived from carbonate-evaporite source facies. Type B oils are isotopically similar to type A, whereas type C oils are isotopically light (about -33%). Organic carbon content is as much as 5%, and kerogen types range from I to IV. Our data indicate that rocks within the intersalt carbonate formation are the source of the type B oils of low maturity. Thermally mature rocks that might be the source for the mature oils have not been found. Such rocks may occur in depressions adjacent to tilted fault blocks. Higher levels of thermal maturity on the north part of the basin in the vicinity of the most mature oils may be related to higher heat flow during and soon after rifting or to a suspected recently formed magmatic body in the crust below the northern zone. Present-day high temperatures in parts of the northern zone may support the latter alternative.

  11. Hydrocarbon potential of the Lamu basin of south-east Kenya

    SciTech Connect (OSTI)

    Nyagah, K.; Cloeter, J.J.; Maende, A. (National Oil Corp. of Kenya, Nairobi (Kenya))

    1996-01-01T23:59:59.000Z

    The Lamu basin occupies the coastal onshore and offshore areas of south-east Kenya. This fault bounded basin formed as a result of the Paleozoic-early Mesozoic phase of rifting that developed at the onset of Gondwana dismemberment. The resultant graben was filled by Karroo (Permian-Early Jurassic) continental siliciclastic sediments. Carbonate deposits associated with the Tethyan sea invasion, dominate the Middle to Late Jurassic basin fill. Cessation of the relative motion between Madagascar and Africa in the Early Cretaceous, heralded passive margin development and deltaic sediment progradation until the Paleogene. Shallow seas transgressed the basin in the Miocene when another carbonate regime prevailed. The basin depositional history is characterized by pulses of transgressive and regressive cycles, bounded by tectonically enhanced unconformities dividing the total sedimentary succession into discrete megasequences. Source rock strata occur within Megasequence III (Paleogene) depositional cycle and were lowered into the oil window in Miocene time, when the coastal parts of the basin experienced the greatest amount of subsidence. The tectono-eustatic pulses of the Tertiary brought about source and reservoir strata into a spatial relationship in which hydrocarbons could be entrapped. A basement high on the continental shelf has potential for Karroo sandstone and Jurassic limestone reservoirs. Halokinesis of Middle Jurassic salt in Miocene time provides additional prospects in the offshore area. Paleogene deltaic sands occur in rotated listric fault blacks. A Miocene reef Play coincides with an Eocene source rock kitchen.

  12. Hydrocarbon potential of the Lamu basin of south-east Kenya

    SciTech Connect (OSTI)

    Nyagah, K.; Cloeter, J.J.; Maende, A. [National Oil Corp. of Kenya, Nairobi (Kenya)

    1996-12-31T23:59:59.000Z

    The Lamu basin occupies the coastal onshore and offshore areas of south-east Kenya. This fault bounded basin formed as a result of the Paleozoic-early Mesozoic phase of rifting that developed at the onset of Gondwana dismemberment. The resultant graben was filled by Karroo (Permian-Early Jurassic) continental siliciclastic sediments. Carbonate deposits associated with the Tethyan sea invasion, dominate the Middle to Late Jurassic basin fill. Cessation of the relative motion between Madagascar and Africa in the Early Cretaceous, heralded passive margin development and deltaic sediment progradation until the Paleogene. Shallow seas transgressed the basin in the Miocene when another carbonate regime prevailed. The basin depositional history is characterized by pulses of transgressive and regressive cycles, bounded by tectonically enhanced unconformities dividing the total sedimentary succession into discrete megasequences. Source rock strata occur within Megasequence III (Paleogene) depositional cycle and were lowered into the oil window in Miocene time, when the coastal parts of the basin experienced the greatest amount of subsidence. The tectono-eustatic pulses of the Tertiary brought about source and reservoir strata into a spatial relationship in which hydrocarbons could be entrapped. A basement high on the continental shelf has potential for Karroo sandstone and Jurassic limestone reservoirs. Halokinesis of Middle Jurassic salt in Miocene time provides additional prospects in the offshore area. Paleogene deltaic sands occur in rotated listric fault blacks. A Miocene reef Play coincides with an Eocene source rock kitchen.

  13. Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii...

    Open Energy Info (EERE)

    Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Seismic And Gravity Data Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Structure...

  14. POLICY REGARDING SERVICE ANIMAL ACCESS TO UNIVERSITY OF GEORGIA FACILITIES,

    E-Print Network [OSTI]

    Arnold, Jonathan

    POLICY REGARDING SERVICE ANIMAL ACCESS TO UNIVERSITY OF GEORGIA FACILITIES, PROGRAMS, SERVICES AND ACTIVITIES This policy ("Policy") is to implement federal and state laws regarding access for service animals, for purposes of this Policy, "Service Animals" are collectively defined to include those that are defined

  15. Shipping and Receiving Dangerous Goods at Georgia Tech

    E-Print Network [OSTI]

    Shipping and Receiving Dangerous Goods at Georgia Tech Contacts: Biological Shipments: Shane://industry.gatech.edu/researchers/forms) GENERAL: The transportation of dangerous goods is regulated by a number of national and international of Dangerous Goods (Flash). PROCESS: 1) All shipments must have a Document Id number as well as a People

  16. Ambient habitat noise and vibration at the Georgia Aquarium

    E-Print Network [OSTI]

    Johnson, Michael T.

    Ambient habitat noise and vibration at the Georgia Aquarium P. M. Scheifele Department significant levels of background noise due to pumps and motors. This noise, together with pool architecture to quantify the ambient noise levels in the water from machine vibration and from in-air performance speaker

  17. Pulp and Paper Corrosion Symposium Georgia Tech Renewable Bioproducts Institute

    E-Print Network [OSTI]

    Das, Suman

    1 Pulp and Paper Corrosion Symposium Georgia Tech Renewable Bioproducts Institute November 2014 Digester Corrosion Margaret Gorog Federal Way, WA 2 · Chips plus a mixture of white and black liquor · The pulp is then blown from the bottom of the vessel into a blow tank · Corrosion occurs during filling

  18. School of Earth and Atmospheric Sciences Georgia Institute of Technology

    E-Print Network [OSTI]

    Weber, Rodney

    School of Earth and Atmospheric Sciences Georgia Institute of Technology Strategic Plan March 1 opportunities. Vision The vision of the School of Earth and Atmospheric Sciences is: To lead in innovative research and educate the future leaders in earth and atmospheric sciences for the 21st century, within

  19. GEORGIA TECH RESEARCH CORPORATION SPECIALIZED TESTING SERVICES AGREEMENT

    E-Print Network [OSTI]

    GEORGIA TECH RESEARCH CORPORATION SPECIALIZED TESTING SERVICES AGREEMENT Project No Members"). Section 2. Payment; Fixed Price Amount. 2.1 COMPANY agrees to pay GTRC $______ ("Fixed Price%) of the Fixed Price Amount to GTRC upon signing this Agreement. The advance payment will be applied against

  20. River Basin Commissions (Indiana)

    Broader source: Energy.gov [DOE]

    This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

  1. 2003 Georgia Basin/Puget Sound Research Conference Challenge and Directions Statement: Securing a Sustainable Region

    SciTech Connect (OSTI)

    Karlsen, Erik; Gaydos, Joseph K.; Dowty, Peter; Fraser, David; Lesperance, Ann M.; Kay, Bruce; Rylko, M.; Ronald, Peter

    2003-05-06T23:59:59.000Z

    The 2003 GB-PS Research Conference has demonstrated that although much has been done to stem toxic pollution and to contain urban growth, as well as to protect and restore ecosystems in this outstanding region, many environmental health and ecosystem function issues remain and emerging ones are being recognized. More needs to be done to minimize the ongoing degradation and loss and to protect, recover, and restore the natural qualities of this regional ecosystem if we are to secure its sustainable future. This "directions statement" was prepared by several of the members of the technical steering committee from both the US and Canada.

  2. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    SciTech Connect (OSTI)

    Ernest A. Mancini; Donald A. Goddard

    2005-04-15T23:59:59.000Z

    The principal research effort for the first six months of Year 2 of the project has been petroleum system characterization. Understanding the burial and thermal maturation histories of the strata in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas is important in petroleum system characterization. The underburden and overburden rocks in these basins and subbasins are a product of their rift-related geohistory. Petroleum source rock analysis and thermal maturation and hydrocarbon expulsion modeling indicate that an effective regional petroleum source rock in the onshore interior salt basins, the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin, was the Upper Jurassic Smackover lime mudstone. The Upper Cretaceous Tuscaloosa shale was an effective local petroleum source rock in the Mississippi Interior Salt Basin and a possible local source bed in the North Louisiana Salt Basin. Hydrocarbon generation and expulsion was initiated in the Early Cretaceous and continued into the Tertiary in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin. Hydrocarbon generation and expulsion was initiated in the Late Cretaceous and continued into the Tertiary in the Manila Subbasin and Conecuh Subbasin. Reservoir rocks include Jurassic, Cretaceous and Tertiary siliciclastic and carbonate strata. Seal rocks include Jurassic, Cretaceous and Tertiary anhydrite and shale beds. Petroleum traps include structural and combination traps.

  3. K Basin safety analysis

    SciTech Connect (OSTI)

    Porten, D.R.; Crowe, R.D.

    1994-12-16T23:59:59.000Z

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  4. Computer modeling and simulation of Black Warrior Basin formation: Annual report for the 1987--1988 SOMED (School of Mines and Energy Development) project year

    SciTech Connect (OSTI)

    Visscher, P.B.

    1988-01-01T23:59:59.000Z

    Computer simulations have been performed, aimed at achieving a better understanding of the geological and physical processes involved in the formation of sedimentary basins in general and the Black Warrior basin of Alabama and Mississippi in particular. Microscopic-level computer modeling of sandstone porosity reduction has been done, elucidating the detailed small-scale dynamics which lead to the geological phenomenon of pressure solution. A new technique has been developed for 1D burial and thermal modeling of sedimentary basins based on stratigraphic data from test wells. It is significantly faster than previous methods, and can be used in interactive menu-oriented program requiring relatively little learning time or prior computer experience. This allows a geologist to rapidly determine the results of various different hypotheses about basin formation, providing insight which may help determine which is correct. A program has also been written to simulate tectonic-plate collisions and rifting processes using viscoelastic hydrodynamics.

  5. CX-007112: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Geologic Characterization of the South Georgia Rift Basin - 3-Dimension Seismic SurveyCX(s) Applied: A9, A11, B3.1Date: 10/05/2011Location(s): Colleton County, South CarolinaOffice(s): Fossil Energy

  6. Analysis of ancient-river systems by 3D seismic time-slice technique: A case study in northeast Malay Basin, offshore Terengganu, Malaysia

    SciTech Connect (OSTI)

    Sulaiman, Noorzamzarina; Hamzah, Umar; Samsudin, Abdul Rahim [Geology Programme, School of Environmental and Natural Resource Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-03T23:59:59.000Z

    Fluvial sandstones constitute one of the major clastic petroleum reservoir types in many sedimentary basins around the world. This study is based on the analysis of high-resolution, shallow (seabed to 500 m depth) 3D seismic data which generated three-dimensional (3D) time slices that provide exceptional imaging of the geometry, dimension and temporal and spatial distribution of fluvial channels. The study area is in the northeast of Malay Basin about 280 km to the east of Terengganu offshore. The Malay Basin comprises a thick (> 8 km), rift to post-rift Oligo-Miocene to Pliocene basin-fill. The youngest (Miocene to Pliocene), post-rift succession is dominated by a thick (1–5 km), cyclic succession of coastal plain and coastal deposits, which accumulated in a humid-tropical climatic setting. This study focuses on the Pleistocene to Recent (500 m thick) succession, which comprises a range of seismic facies analysis of the two-dimensional (2D) seismic sections, mainly reflecting changes in fluvial channel style and river architecture. The succession has been divided into four seismic units (Unit S1-S4), bounded by basin-wide strata surfaces. Two types of boundaries have been identified: 1) a boundary that is defined by a regionally-extensive erosion surface at the base of a prominent incised valley (S3 and S4); 2) a sequence boundary that is defined by more weakly-incised, straight and low-sinuosity channels which is interpreted as low-stand alluvial bypass channel systems (S1 and S2). Each unit displays a predictable vertical change of the channel pattern and scale, with wide low-sinuosity channels at the base passing gradationally upwards into narrow high-sinuosity channels at the top. The wide variation in channel style and size is interpreted to be controlled mainly by the sea-level fluctuations on the widely flat Sunda land Platform.

  7. The Herschel first look at protostars in the Aquila Rift

    E-Print Network [OSTI]

    Bontemps, S; Konyves, V; Men'shchikov, A; Schneider, N; Maury, A; Peretto, N; Arzoumanian, D; Attard, M; Motte, F; Minier, V; Didelon, P; Saraceno, P; Abergel, A; Baluteau, J -P; Bernard, J -Ph; Cambresy, L; Cox, P; Di Francesco, J; Di Giorgo, A M; Griffin, M; Hargrave, P; Huang, M; Kirk, J; Li, J; Martin, P; Merin, B; Molinari, S; Olofsson, G; Pezzuto, S; Prusti, T; Roussel, H; Russeil, D; Sauvage, M; Sibthorpe, B; Spinoglio, L; Testi, L; Vavrek, R; Ward-Thompson, D; White, G; Wilson, C; Woodcraft, A; Zavagno, A

    2010-01-01T23:59:59.000Z

    As part of the science demonstration phase of the Herschel mission of the Gould Belt Key Program, the Aquila Rift molecular complex has been observed. The complete ~ 3.3deg x 3.3deg imaging with SPIRE 250/350/500 micron and PACS 70/160 micron allows a deep investigation of embedded protostellar phases, probing of the dust emission from warm inner regions at 70 and 160 micron to the bulk of the cold envelopes between 250 and 500 micron. We used a systematic detection technique operating simultaneously on all Herschel bands to build a sample of protostars. Spectral energy distributions are derived to measure luminosities and envelope masses, and to place the protostars in an M_env - L_bol evolutionary diagram. The spatial distribution of protostars indicates three star-forming sites in Aquila, with W40/Sh2-64 HII region by far the richest. Most of the detected protostars are newly discovered. For a reduced area around the Serpens South cluster, we could compare the Herschel census of protostars with Spitzer res...

  8. University of Georgia College of Agricultural and Environmental Sciences Alumni Association 2012 Nomination Form

    E-Print Network [OSTI]

    Arnold, Jonathan

    University of Georgia College of Agricultural and Environmental Sciences Alumni Association 2012 in the College of Agricultural and Environmental Sciences Activity Center. To be displayed in an attractive

  9. adults georgia 2006-2007: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology, automatically supersede the contents of this manual. A GTA is a temporary Bennett, Gisele 3 Georgia Tech : Catalog 2006 2007 : Home 2006 -2007 General Catalog...

  10. Coweta-Fayette EMC- Residential Solar Water Heater Rebate Program (Georgia)

    Broader source: Energy.gov [DOE]

    Coweta-Fayette Electric Membership Corporation (EMC) provides electric and natural gas service to 58,000 customers in Georgia's Coweta, Fayette, Meriwether, Heard, Troop and Fulton counties.

  11. The inverted Lamar sub-basin, Lake Maracaibo, Venezuela: Tectonic evolution and hydrocarbon habitat

    SciTech Connect (OSTI)

    Arminio, J.F. [Maraven S.A., Caracas (Venezuela); Growcott, A.M. [Intera Information Technologies, Henley-Upon-Thames, Oxfordshire, (United Kingdom)

    1996-08-01T23:59:59.000Z

    In the central part of the Maracaibo basin, integration of recently acquired 3-D seismic and existing geological data has led to the definition of the Lamar sub-basin as an array of partially inverted half grabens which formed during Late Cretaceous and Early to Middle Eocene times as a result of transtensional episodes along older rift structures. This integration exercise has also led to the addition of new reserves in a mature oil province. Six major tectonic phases can be distinguished: (a.) Extension of the existing Paleozoic substrate during Jurassic rifting; (b.) Passive margin tectonic quiescence from Middle to Late Cretaceous; (c.) Paleocene uplift and erosion; (d.) Eocene transtension along reactivated Jurassic lineaments; (e.) Late Eocene to Mid Miocene inversion; (f.) Late Miocene to Recent post inversion and regional tilt. Distinctive tectonically induced unconformities within the Eocene sedimentary fill imply tectonic overprint rather than eustatic controls. The Eocene extensional structures were inverted in a selective manner depending upon their orientation relative to the dominant compressional vector. This in turn resulted in significant hydrocarbon re-migration and a rather complex fluid distribution throughout the area.

  12. EcoCAR Challenge Georgia Institute of Technology

    E-Print Network [OSTI]

    Houston, Paul L.

    =rss&utm_source=feedburner&utm_medium=feed&utm_ca mpaign=Feed%3A+fastcompany%2Fheadlines+%28Fast+Company+H eadlines%29 October (10) BNET http://www.bnet.com/blog/electric-cars-formula-racing/ Green Beat http://venturebeat.com/2010/10/07/bad-news-for-electric-cars-people- dont-understand- them1 EcoCAR Challenge Georgia Institute of Technology Outreach Report - Appendix Date: 11/09/2010 #12

  13. Resource Assessment of the In-Place and Potentially Recoverable Deep Natural Gas Resource of the Onshore Interior Salt Basins, North Central and Northeastern Gulf of Mexico

    SciTech Connect (OSTI)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

    2005-10-28T23:59:59.000Z

    The principal research effort for Year 2 of the project has been petroleum system characterization and modeling. Understanding the burial, thermal maturation, and hydrocarbon expulsion histories of the strata in the onshore interior salt basins of the North Central and Northeastern Gulf of Mexico areas is important in hydrocarbon resource assessment. The underburden and overburden rocks in these basins and subbasins are a product of their rift-related geohistory. Petroleum source rock analysis and initial thermal maturation and hydrocarbon expulsion modeling indicated that an effective regional petroleum source rock in the onshore interior salt basins and subbasins, the North Louisiana Salt Basin, Mississippi Interior Salt Basin, Manila Subbasin and Conecuh Subbasin, was Upper Jurassic Smackover lime mudstone. The initial modeling also indicated that hydrocarbon generation and expulsion were initiated in the Early Cretaceous and continued into the Tertiary in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin and that hydrocarbon generation and expulsion were initiated in the Late Cretaceous and continued into the Tertiary in the Manila Subbasin and Conecuh Subbasin. Refined thermal maturation and hydrocarbon expulsion modeling and additional petroleum source rock analysis have confirmed that the major source rock in the onshore interior salt basins and subbasins is Upper Jurassic Smackover lime mudstone. Hydrocarbon generation and expulsion were initiated in the Early to Late Cretaceous and continued into the Tertiary.

  14. Case Study: Georgia-Pacific Reduces Outside Fuel Costs and Increases Process Efficiency with Insulation Upgrade Program

    E-Print Network [OSTI]

    Jackson, D.

    A Georgia-Pacific plywood plant located in Madison, Georgia recently decided to insulate their steam lines for energy conservation, improved process efficiency and personnel protection. The goal of the project was to eliminate dependency...

  15. Assistant Professor of Gerontology The Gerontology Institute at Georgia State University invites applications for a tenure-track assistant

    E-Print Network [OSTI]

    Arnold, Jonathan

    lead to external funding. Georgia State University is the Southeast's leading urban researchAssistant Professor of Gerontology The Gerontology Institute at Georgia State University invites faculty representing numerous disciplines across the University. Further information about the Gerontology

  16. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23T23:59:59.000Z

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  17. K Basins Hazard Analysis

    SciTech Connect (OSTI)

    WEBB, R.H.

    1999-12-29T23:59:59.000Z

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  18. Archway Education Professional The University of Georgia is seeking a qualified candidate to serve as the Archway Education Professional in

    E-Print Network [OSTI]

    Arnold, Jonathan

    Archway Education Professional The University of Georgia is seeking a qualified candidate to serve as the Archway Education Professional in Dalton-Whitfield County, Georgia. The Archway Partnership was initiated with the University of Georgia. The Archway Education Professional is a UGA Public Service (Public Service Assistant

  19. EcoCAR by Georgia Tech efficiency through design and innovation

    E-Print Network [OSTI]

    Houston, Paul L.

    engineering competition sponsored by the Department of Energy and General Motors EcoCAR by Georgia Tech engineering competition sponsored by the Department of Energy and General Motors #12;GT EcoCAR GOALS: Increase by the Department of Energy and General Motors EcoCAR by Georgia Tech efficiency through design and innovation

  20. POLICY STATEMENT University of Georgia Research Foundation, Inc. Policy on Equity Acquisition in Licensing

    E-Print Network [OSTI]

    Arnold, Jonathan

    POLICY STATEMENT University of Georgia Research Foundation, Inc. Policy on Equity Acquisition the interests of the company over their responsibilities to UGARF and the University of Georgia. This Policy with this Policy. II. Policy In the course of intellectual property licensing, UGARF, through the work of TCO, may

  1. University of Georgia / University of Liverpool Seed Grant / Pump-Priming Grant Program

    E-Print Network [OSTI]

    Arnold, Jonathan

    University of Georgia / University of Liverpool Seed Grant / Pump-Priming Grant Program Program Description As part of the University of Georgia (UGA) / University of Liverpool Partnership, we are providing for ongoing sponsored funding to continue the collaborations. Eligibility Criteria To be eligible

  2. Efficiency of Surveying, Baiting, and Trapping Wild Pigs at Fort Benning, Georgia Brian Lee Williams

    E-Print Network [OSTI]

    Ditchkoff, Steve

    Efficiency of Surveying, Baiting, and Trapping Wild Pigs at Fort Benning, Georgia by Brian Lee surveys, trapping efficiency, Fort Benning Copyright 2010 by Brian Lee Williams Approved by Stephen S This study, conducted at Fort Benning, Georgia, sought to develop more efficient ways of surveying

  3. INTRODUCTION TO SMART GRID Weichao Wang (UNCC), Yi Pan (Georgia State),

    E-Print Network [OSTI]

    Wang, Weichao

    INTRODUCTION TO SMART GRID Weichao Wang (UNCC), Yi Pan (Georgia State), Wenzhan Song (Georgia State) and Le Xie (Texas A&M) NSF SFS Project Team on "Integrated Learning Environment for Smart Grid Security" #12; Objective of National Power Grid Modernization Architecture of Smart Grid What is Smart Grid

  4. Evolution of Extensional Basins and Basin and Range Topography...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Evolution of Extensional Basins and Basin and Range Topography West of Death Valley California...

  5. Geology, exploration status of Uruguay's sedimentary basins

    SciTech Connect (OSTI)

    Goso, C.; Santa Ana, H. de (Administracion Nacional de Combustibles, Alcohol y Portland (Uruguay))

    1994-02-07T23:59:59.000Z

    This article attempts to present the geological characteristics and tectonic and sedimentary evolution of Uruguayan basins and the extent to which they have been explored. Uruguay is on the Atlantic coast of South America. The country covers about 318,000 sq km, including offshore and onshore territories corresponding to more than 65% of the various sedimentary basins. Four basins underlie the country: the Norte basin, the Santa Lucia basin, the offshore Punta del Este basin, and the offshore-onshore Pelotas-Merin basin. The Norte basin is a Paleozoic basin while the others are Mesozoic basins. Each basin has been explored to a different extent, as this paper explains.

  6. Lee County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana: EnergyLands inLechee,Georgia: Energy

  7. Liberty County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:NewJumpLiberia: Energy ResourcesGeorgia:

  8. Macon County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECO AugerMaanGeorgia: Energy Resources Jump

  9. Madison County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECOFlorida: Energy Resources Jump to:Georgia:

  10. Georgia/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,JumpValleyTopicsGeorgia/Wind

  11. Burke County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,Burke County, Georgia: Energy Resources Jump to:

  12. Calhoun County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass16 2013 Next »Georgia: Energy Resources

  13. Lighting Up Georgia Convenience Stores | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy and Emissions Estimates |Park ServiceUp Georgia

  14. Carroll County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermitsGreenCarrizo Energy Solar Farm Solar PowerGeorgia:

  15. City of Covington, Georgia (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity of Aplington,City ofCityCity of Covington, Georgia

  16. Georgia: Data Center and Historic Municipal Building Go Green | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAM DOEof Energy Georgia: Data Center and

  17. Jeff Davis County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJane Capital PartnersGeorgia: Energy Resources Jump to:

  18. Harris County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformation Handbook forHansungHarneyHarrah,County, Georgia:

  19. Heard County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEIHas BeenLegalHeard County, Georgia: Energy

  20. Worth County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy ResourcesWoodsCenters JumpGeorgia: Energy Resources

  1. Pine Lake, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal ProjectLake, Georgia: Energy

  2. Pine Mountain, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal ProjectLake, Georgia:

  3. Georgia: Data Center and Historic Municipal Building Go Green | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartmentCounsel Law Studentof Energy Georgia: Data Center

  4. Central Georgia El Member Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China DatangCentral El tricaCentral Georgia El Member

  5. City of Barnesville, Georgia (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |City of Ames,Barnesville, Georgia (Utility

  6. City of East Point, Georgia (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity of Dayton,City of East Point, Georgia

  7. Georgia Department of Natural Resources (GDNR) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A SUK Place:Georgia Department of Natural

  8. Greene County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrder Jump to:Greenburgh, New York:Georgia: Energy

  9. Gwinnett County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open EnergyGuntersville Electric BoardGwinnett County, Georgia:

  10. Stephens County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt.Steep Gradient Flume Jump to:HIFStep-by-StepGeorgia:

  11. Stone Mountain, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt.SteepStimulation PredictionJumpMissouri:Georgia:

  12. Echols County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport, Maine:Eau ClaireEchols County, Georgia:

  13. Effingham County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh University aka WaveKansas:New York:Georgia:

  14. Oconee County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,andOasysOchiltree County, Texas:Georgia:

  15. Marion County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana,MariesWave)Georgia: Energy

  16. Miller County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|Mililani Town, Hawaii:MilleGeorgia: Energy Resources

  17. Mitchell County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: Energy ResourcesMitchell County, Georgia: Energy

  18. Crisp County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings LlcCrenshawCrete,Crisp County, Georgia:

  19. Decatur County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNewDeaf Smith County, Texas:DearbornGeorgia:

  20. Thomas County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyo Jump to:Thermosolar JumpGeorgia: Energy

  1. Georgia Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearch »Funding OpportunityGalleryGenomeGeorgia

  2. Middle Georgia El Member Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers Inc Jump to:Jump to:Middle Georgia El

  3. Atkinson County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,AsotinAstonInformation Georgia

  4. Workplace Charging Challenge Partner: Georgia Institute of Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnershipsAngieTerriDepartmentDepartment of Energy Georgia

  5. City of Monroe, Georgia (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity of Holyoke,Monroe, Georgia (Utility

  6. Morgan County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County,Monticello,Oklahoma:In EnergyGeorgia: Energy

  7. Mountain Park, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr Geothermal Project JumpPark, Georgia:

  8. Bacon County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: JumpBPLColorado:Georgia: Energy

  9. Baker County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to:Bahamas:Georgia: Energy Resources

  10. Baldwin County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 JumpBalch Springs, Texas:Alabama:Georgia:

  11. Barrow County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,Barrow County, Georgia: Energy Resources Jump

  12. Bartow County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,Barrow County,Kansas:Bartow County, Georgia:

  13. Bleckley County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |Bleckley County, Georgia: Energy Resources Jump to:

  14. Quitman County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: Energy Resources Jump to: navigation, search

  15. Randolph County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name:Rancia 2 Geothermal PowerGeorgia: Energy

  16. Rockdale County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy JumpRockdale County, Georgia:

  17. Floyd County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs Valley Area (DOE GTP)TheFloyd County, Georgia:

  18. Franklin County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga,FrancisAlabama: EnergyGeorgia: Energy

  19. Georgia's 10th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | OpenInformation Georgia's 10th congressional

  20. Georgia's 11st congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | OpenInformation Georgia's 10th

  1. Georgia's 11th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | OpenInformation Georgia's 10thInformation

  2. Georgia's 12th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | OpenInformation Georgia's

  3. Georgia's 13th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | OpenInformation Georgia'sInformation

  4. Twiggs County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships Jump to:Twiggs County, Georgia: Energy

  5. Clarke County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNew York: EnergyWashington: Energy Resources3Georgia:

  6. Clinch County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:TrustClinch County, Georgia:

  7. Coffee County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York: EnergyCoeur d Alene Fiber Fuels Inc akaGeorgia:

  8. 3D Graph Visualization with the Oculus Rift Virtual Graph Reality

    E-Print Network [OSTI]

    Wismath, Stephen

    reality environment such as a CAVE, or · printed as a physical model with a 3D printer. Early studies3D Graph Visualization with the Oculus Rift Virtual Graph Reality Farshad Barahimi, Stephen Wismath regarding three- dimensional (3D) representations of graphs. However, the actual usefulness of such 3D

  9. Assessment of U.S. Agriculture Sector and Human Vulnerability to a Rift Valley Fever Outbreak

    E-Print Network [OSTI]

    Hughes, Randi Catherine

    2011-08-08T23:59:59.000Z

    on the assessment of the U.S. agricultural sector and human vulnerability to a Rift Valley Fever (RVF) outbreak and the value of a select set of alternative disease control strategies. RVF is a vector-borne, zoonotic disease that affects both livestock and humans...

  10. Diabase dikes of the Midcontinent Rift in Minnesota: a record of Keweenawan magmatism and tectonic development

    SciTech Connect (OSTI)

    Green, J.C.; Chandler, V.C.

    1985-01-01T23:59:59.000Z

    Swarms of both reversed-polarity (R, older) and normal-polarity (N, younger) basaltic dikes help to define the evolution of the Minnesota portion of the Midcontinent Rift of North America. Each swarm, representing fissure-feeders for a package of overlying plateau lavas now eroded away, shows the direction of least principal stress at that time and place in the complex evolution of this abortive but nearly-successful rift. Paleomagnetic pole determinations for Carlton county (CC) and Grand Portage (GP) R dikes are coincident along the Logan Loop of the Proterozoic track, showing essential contemporaneity, though their trends are different (N.30/sup 0/E vs. N. 70-90/sup 0/E.) and they are 250 km apart. These poles match that of the R lavas of the North Shore Volcanic Group (NSVG) and imply a younger age than the R Logan sills and dikes. The geochemistry of the dikes (71 analyses) also correlates well with NSVG flows, ranging from olivine tholeiites to transitional basalts and basaltic andesites and is similar to tholeiites of Columbia River, Parana, and Tertiary No. Atlantic provinces. Though each swarm shows a range of compositions, some are dominantly more evolved, whereas others contain more primitive dikes with higher Al, Mg/Fe, Cr and Ni and lower Fe, Ti, P and LIL's. An early major episode of rifting during the R polarity interval was followed by at least one major N episode in Minnesota before the final one along the present Lake Superior syncline axis. Rifting directions and mantle sources were different for each episode as shown by cross-trending dike sets, indicating complex rift development.

  11. Organic geochemical constraints on tectonic evolution of the North American Midcontinent rift

    SciTech Connect (OSTI)

    Hieshima, G.B. (Exxon Production Research Co., Houston, TX (United States)); Pratt, L.M. (Indiana Univ., Bloomington, IN (United States). Dept. of Geological Sciences)

    1992-01-01T23:59:59.000Z

    The approximately 1.1 Ga Nonesuch Formation, northern Wisconsin and Michigan, represents marine sedimentation in a failed continental rift that is part of the North American Midcontinent rift system. Indicators of thermal maturity based on solvent-extractable (bitumen) and insoluble (kerogen) organic matter suggest marginal to moderate levels of maturity with respect to zones of petroleum generation and preservation. Values of sterane 20S/(20S + 20R) ratio, hopane 22S/(22S + 22R) ratio, methylphenanthrene index, and temperature of maximum pyrolytic yield from Rock-Eval (Tmax) indicate maximum burial temperatures of around 80 C. Geologic constraints indicate maximum burial conditions for the Nonesuch of around 4 km for approximately 50 million years. Overlying sandstones buried the Nonesuch quickly. Assuming a surface temperature of around 20 C yields a geothermal gradient of 15 C/km, significantly lower than predicted based on heat flow in modern rifts. Unless burial histories are grossly inaccurate, geothermal gradients were depressed as a result of thermal insulation by non-radiogenic basalts and/or hydrologic circulation in underlying coarse-grained strata generated an anomalously low geothermal gradient. Hydrothermal circulation was a significant component of mineralization in the structurally complex White Pine deposit, lending credence to the hypothesis that hydrologic circulation caused regionally depressed geothermal gradients. In addition, regional heat flow may have been low as a result of the insulating effect of a thick accumulation of rift basalts represented by the Portage Lake Volcanics. Organic geochemical indicators of thermal alteration provide a framework for interpreting tectonic development of the North American Midcontinent rift system.

  12. Air Quality and Road Emission Results for Fort Stewart, Georgia

    SciTech Connect (OSTI)

    Kirkham, Randy R.; Driver, Crystal J.; Chamness, Mickie A.; Barfuss, Brad C.

    2004-02-02T23:59:59.000Z

    The Directorate of Public Works Environmental & Natural Resources Division (Fort Stewart /Hunter Army Airfield) contracted with the Pacific Northwest National Laboratory (PNNL) to monitor particulate matter (PM) concentrations on Fort Stewart, Georgia. The purpose of this investigation was to establish a PM sampling network using monitoring equipment typically used in U.S. Environmental Protection Agency (EPA) ''saturation sampling'', to determine air quality on the installation. In this initial study, the emphasis was on training-generated PM, not receptor PM loading. The majority of PM samples were 24-hr filter-based samples with sampling frequency ranging from every other day, to once every six days synchronized with the EPA 6th day national sampling schedule. Eight measurement sites were established and used to determine spatial variability in PM concentrations and evaluate whether fluctuations in PM appear to result from training activities and forest management practices on the installation. Data collected to date indicate the average installation PM2.5 concentration is lower than that of nearby urban Savannah, Georgia. At three sites near the installation perimeter, analyses to segregate PM concentrations by direction of air flow across the installation boundary indicate that air (below 80 ft) leaving the installation contains less PM2.5 than that entering the installation. This is reinforced by the observation that air near the ground is cleaner on average than the air at the top of the canopy.

  13. Cenozoic basin development in Hispaniola

    SciTech Connect (OSTI)

    Mann, P.; Burke, K.

    1984-04-01T23:59:59.000Z

    Four distinct generations of Cenozoic basins have developed in Hispaniola (Haiti and Dominican Republic) as a result of collisional or strike-slip interactions between the North America and Caribbean plates. First generation basins formed when the north-facing Hispaniola arc collided with the Bahama platform in the middle Eocene; because of large post-Eocene vertical movements, these basins are preserved locally in widely separated areas but contain several kilometers of arc and ophiolite-derived clastic marine sediments, probably deposited in thrust-loaded, flexure-type basins. Second generation basins, of which only one is exposed at the surface, formed during west-northwesterly strike-slip displacement of southern Cuba and northern Hispaniola relative to central Hispaniola during the middle to late Oligocene; deposition occurred along a 5-km (3-mi) wide fault-angle depression and consisted of about 2 km (1 mi) of submarine fan deposits. Third generation basins developed during post-Oligocene convergent strike-slip displacement across a restraining bend formed in central Hispaniola; the southern 2 basins are fairly symmetrical, thrust-bounded ramp valleys, and the third is an asymmetrical fault-angle basin. Fourth generation basins are pull-aparts formed during post-Miocene divergent strike-slip motion along a fault zone across southern Hispaniola. As in other Caribbean areas, good source rocks are present in all generations of basins, but suitable reservoir rocks are scarce. Proven reservoirs are late Neogene shallow marine and fluvial sandstones in third generation basins.

  14. Late-Pliocene timing of Corinth (Greece) rift-margin fault migration M.R. Leeder a,

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Late-Pliocene timing of Corinth (Greece) rift-margin fault migration M.R. Leeder a, , G.H. Mack b Greece with respect to central Greece (v

  15. Capacity and Energy Payments to Small Power Producers and Cogenerators Under PURPA Docket (Georgia)

    Broader source: Energy.gov [DOE]

    Docket No. 4822 was enacted by the Georgia Public Service Commission in accordance with The Public Utility Regulatory Policies Act of 1978 (PURPA) that was enacted to promote conservation and to...

  16. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Georgia

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Georgia.

  17. UMass INFORMSProfessor Anna Nagurney Dr. Garrow is an Associate Professor at the Georgia Institute of

    E-Print Network [OSTI]

    Nagurney, Anna

    at the Georgia Institute of Technology. She earned her Ph.D. at Northwestern University, with an emphasis. The study considers extensions of this methodology to Generalized Extreme Value (GEV) discrete choice models Management Models with Censored Data" " #12;

  18. Sales Tax Exemption for Energy-Efficient Products (Sales Tax Holiday) (Georgia))

    Broader source: Energy.gov [DOE]

    Georgia allows an annual state and local sales tax exemption on Energy Star products of $1,500 or less per product, purchased for non-commercial home or personal use.The 100% exemption from the...

  19. EA-1255: Project Partnership Transportation of Foreign-Owned Enriched Uranium from the Republic of Georgia

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to transport 5.26 kilograms of enriched uranium-23 5 in the form of nuclear fuel, from the Republic of Georgia to the United Kingdom.

  20. Why Should I Study Engineering? Georgia Southern offers three engineering disciplines Civil, Electrical and Mechanical.

    E-Print Network [OSTI]

    Hutcheon, James M.

    , Electrical and Mechanical. Engineers plan, design, develop, test and analyze infrastructure components (CivilWhy Should I Study Engineering? Georgia Southern offers three engineering disciplines ­ Civil), electronic systems (Electrical), and systems with moving parts (Mechanical) that affect and improve people

  1. GEORGIA INSTITUTE OF TECHNOLOGY COLLEGE OF ENGINEERING 1 College of Engineering

    E-Print Network [OSTI]

    Li, Mo

    Electrical and Computer Engineering Industrial and Systems Engineering Materials Science and Engineering and Biomolecular Engineering Civil and Environmental Engineering Electrical and Computer Engineering IndustrialGEORGIA INSTITUTE OF TECHNOLOGY · COLLEGE OF ENGINEERING 1 College of Engineering Aerospace

  2. Energy Conservation Recommendations, Implementation Costs, and Projected Paybacks for Georgia's Targeted Schools and Hospitals Conservation Program

    E-Print Network [OSTI]

    Brown, M. L.; Moore, D. M.

    1988-01-01T23:59:59.000Z

    During the past year the Georgia Tech Research Institute performed technical assistance studies on over 100 school and hospital buildings under a program funded by the Governor's Office of Energy Resources. This program is known as the Targeted...

  3. Georgia Institute of Technology School of Chemistry and Biochemistry Johnson Graduate Student Travel Funds

    E-Print Network [OSTI]

    Sherrill, David

    Georgia Institute of Technology School of Chemistry and Biochemistry Johnson Graduate Student Travel funds may be used to meet any remaining costs not covered by the research advisor, GSF award___________________________________________________ Dates of Conference_____________________________________________________ Total estimated costs

  4. GEORGIA INSTITUTE OF TECHNOLOGY FABRICATED PROPERTY REPORT Revised 07-2014

    E-Print Network [OSTI]

    Li, Mo

    GEORGIA INSTITUTE OF TECHNOLOGY FABRICATED PROPERTY REPORT Revised 07-2014 TO: Property Control: ____________________________________________ Phone: _______________ COST OF PROPERTY Materials or Component Parts $ _______________ External Labor Costs $ _______________ Transportation $ _______________ Other Costs (explain on back

  5. Georgia Institute of Technology School of Chemistry and Biochemistry Johnson Graduate Student Travel Funds

    E-Print Network [OSTI]

    Sherrill, David

    Georgia Institute of Technology School of Chemistry and Biochemistry Johnson Graduate Student Travel funds may be used to meet any remaining costs not covered by the research advisor, SGA award_____________________________________________________ Total estimated costs for attending conference Transportation $_______________ Other Travel

  6. Synthesis of a jojoba bean disaccharide Alexander Kornienko, Georgia Marnera, Marc d'Alarcao *

    E-Print Network [OSTI]

    d'Alarcao, Marc

    Note Synthesis of a jojoba bean disaccharide Alexander Kornienko, Georgia Marnera, Marc d 1998 Abstract A synthesis of the disaccharide recently isolated from jojoba beans, 2-O Science Ltd. All rights reserved Keywords: chiro-Inositol; Jojoba beans; Glycosylation; Synthesis

  7. Wind Powering America: A New Wind Economy for South Carolina and Georgia Final Report

    SciTech Connect (OSTI)

    SC Energy Office: Southern Alliance for Clean Energy

    2013-02-12T23:59:59.000Z

    This report describes all activities undertaken by the Southern Alliance for Clean Energy (SACE) in cooperation with the states of Georgia and South Carolina to develop a public outreach program, including shared analytical and reference tools and other technical assistance.

  8. State of Georgia quarterly AIP Implementation Report: October--December 1995

    SciTech Connect (OSTI)

    NONE

    1996-01-19T23:59:59.000Z

    The objective of this report is to ensure the citizens of Georgia that health, safety and the environment are being protected through existing DOE programs at the Savannah River Site (SRS), through a vigorous program of independent monitoring and oversight by Georgia officials. SRS emergency plans will be annually reviewed and updated. Environmental monitoring will be conducted of surface water and related media, ground water, air, crops, milk, drinking water, soils and vegetation.

  9. Location of oil fields in Forest City basin as related to Precambrian tectonics

    SciTech Connect (OSTI)

    Carlson, M.P. (Univ. of Nebraska, Lincoln (USA))

    1989-09-01T23:59:59.000Z

    Accumulation of petroleum in the Forest City basin is strongly influenced by the tectonic framework established during the Precambrian. A series of Late Proterozoic orogenies created a fracture pattern in the northern Mid-Continent, which was emphasized by the late Keweenawan, Mid-Continent Rift System (MRS). Reactivated basement structures have created both a structural and depositional imprint on younger rocks. The Southeast Nebraska arch is defined by Middle Ordovician (Simpson) overlap of Arbuckle equivalents. Continuing differential movement along segments of the MRS within the North Kansas basin influenced the regional facies distribution of both the Late Ordovician (Viola) and the Late Devonian (Hunton). Middle Pennsylvanian compression from the Ouachita orogeny produced the Nemaha uplift and reactivated transform faulting on the MRS. Extensions of these southeast-trending fractures created offsets on the Nemaha uplift/Humboldt fault system and enhanced structures that host oil production. Fields that lie upon these wrench-fault trends within the Forest City basin have produced from the Simpson (St. Peter), Viola, and Hunton formations. The Precambrian structures and rock types produce strong geophysical signatures in contrast to the subdued anomalies of the Paleozoic sediments. Analyses of magnetic and gravity data provide an interpretation of the basement rocks and, by extrapolation, an additional exploration tool for locating Paleozoic trends related to reactivation of Precambrian tectonics.

  10. Petroleum geology of the Zhu-1 depression, Pearl River Mouth Basin, People's Republic of China

    SciTech Connect (OSTI)

    Aguilera, C.L.; Huizinga, B.J.; Lomando, A.J. (Chevron Overseas Petroleum Inc., San Ramon, CA (USA))

    1990-05-01T23:59:59.000Z

    The Pearl River Mouth basin, located in the South China Sea between Hainan Island and Taiwan has been the focus of an intense exploration effort during the l980s. In 1979 the international oil industry, acquired over 60,000 km of seismic, gravity, and magnetic data covering an area of approximately 240,000 km{sup 2}. Three major subbasins, Zhu-1, Zhu-2, and Zhu-3 were defined. Chevron in partnership with Texaco and AGIP (ACT group), concentrated their effort on the Zhu-1 depression which was interpreted to contain as much as 7,800 m of sedimentary section. This subbasin, bounded by the Wansha and Donsha massifs to the north and south, is the most inboard of the three depressions, thereby possibly prolonging anoxic lacustrine conditions prior to the Neogene marine incursion. Additionally, the Zhu- 1 depression should have directly received Miocene sediment potentially supplying the subbasin with high-quality reservoirs. Within the Zhu-1 depression, the ACT group focused in on Block 16/08, which covered the deepest part of the Zhu-1 depression. The block was awarded to the consortium in January 1983. Structuring within the block ranges from Paleogene tensional block faulting created during the early formation of the overall Pearl River Mouth basin to draping over basement highs and carbonate buildups during the Neogene. The Pearl River Mouth basin exhibits classic rift basin geometry with early nonmarine continental fluvial/lacustrine deposition (Zhuhai Formation) during the Oligocene and capped by a lower Miocene marine incursion (Zhu Jiang Formation). Integrated interpretations, exploration drilling, and constant refinement of the geological model led to the discovery of two oil fields, Huizhou/21-1 and Huizhou/26-1, both of which are currently under development and will represent the first commercial oil production from the entire Pearl River Mouth basin.

  11. Georgia Institute of Technology chilled water system evaluation and master plan

    SciTech Connect (OSTI)

    NONE

    1996-05-15T23:59:59.000Z

    As the host of the Olympic Village for the 1996 Atlanta Olympics, Georgia Tech has experienced a surge in construction activities over the last three years. Over 1.3 million square feet of new buildings have been constructed on the Georgia Tech campus. This growth has placed a strain on the Georgia Tech community and challenged the facilities support staff charged with planning and organizing utility services. In concert with Olympic construction, utility planners have worked to ensure long term benefits for Georgia Tech facilities while meeting the short term requirements of the Olympic Games. The concentration of building construction in the northwest quadrant of the campus allowed planners to construct a satellite chilled water plant to serve the needs of this area and provide the opportunity to integrate this section of the campus with the main campus chilled water system. This assessment and master plan, funded in part by the US Department of Energy, has evaluated the chilled water infrastructure at Georgia Tech, identified ongoing problems and made recommendations for long term chilled water infrastructure development and efficiency improvements. The Georgia Tech office of Facilities and RDA Engineering, Inc. have worked together to assemble relevant information and prepare the recommendations contained in this document.

  12. JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. B9, PAGES 21,727-21,744,SEPTEMBER 10, 2000 Dynamics of intracontinental extensionin the north Baikal rift

    E-Print Network [OSTI]

    Déverchère, Jacques

    .Amongthefactorsthatcontributetotheinitiationand evolution of intracontinental rift zones, far-field stressin the lithosphere(horizontal traction), heat supply by mantle plumes or asthenosphericupwellings (basal traction), inherited zones of weaknessin

  13. Rappahannock River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rappahannock River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the...

  14. Susquehanna River Basin Compact (Maryland)

    Broader source: Energy.gov [DOE]

    This legislation enables the state's entrance into the Susquehanna River Basin Compact, which provides for the conservation, development, and administration of the water resources of the...

  15. Case Study: Georgia-Pacific Reduces Outside Fuel Costs and Increases Process Efficiency with Insulation Upgrade Program 

    E-Print Network [OSTI]

    Jackson, D.

    1997-01-01T23:59:59.000Z

    on purchased fuel. Georgia-Pacific realized immediate and significant results and reduced fuel cost by about one third over a one year period....

  16. Advanced Chemistry Basins Model

    SciTech Connect (OSTI)

    Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

    2003-02-13T23:59:59.000Z

    The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

  17. RESERVES IN WESTERN BASINS PART IV: WIND RIVER BASIN

    SciTech Connect (OSTI)

    Robert Caldwell

    1998-04-01T23:59:59.000Z

    Vast quantities of natural gas are entrapped within various tight formations in the Rocky Mountain area. This report seeks to quantify what proportion of that resource can be considered recoverable under today's technological and economic conditions and discusses factors controlling recovery. The ultimate goal of this project is to encourage development of tight gas reserves by industry through reducing the technical and economic risks of locating, drilling and completing commercial tight gas wells. This report is the fourth in a series and focuses on the Wind River Basin located in west central Wyoming. The first three reports presented analyses of the tight gas reserves and resources in the Greater Green River Basin (Scotia, 1993), Piceance Basin (Scotia, 1995) and the Uinta Basin (Scotia, 1995). Since each report is a stand-alone document, duplication of language will exist where common aspects are discussed. This study, and the previous three, describe basin-centered gas deposits (Masters, 1979) which contain vast quantities of natural gas entrapped in low permeability (tight), overpressured sandstones occupying a central basin location. Such deposits are generally continuous and are not conventionally trapped by a structural or stratigraphic seal. Rather, the tight character of the reservoirs prevents rapid migration of the gas, and where rates of gas generation exceed rates of escape, an overpressured basin-centered gas deposit results (Spencer, 1987). Since the temperature is a primary controlling factor for the onset and rate of gas generation, these deposits exist in the deeper, central parts of a basin where temperatures generally exceed 200 F and drill depths exceed 8,000 feet. The abbreviation OPT (overpressured tight) is used when referring to sandstone reservoirs that comprise the basin-centered gas deposit. Because the gas resources trapped in this setting are so large, they represent an important source of future gas supply, prompting studies to understand and quantify the resource itself and to develop technologies that will permit commercial exploitation. This study is a contribution to that process.

  18. Coordinator of Operations The University of Georgia is seeking a qualified candidate to serve as the Coordinator of Operations with the

    E-Print Network [OSTI]

    Arnold, Jonathan

    with the University of Georgia. The Archway Partnership has received funding from the Board of Regents to continueCoordinator of Operations The University of Georgia is seeking a qualified candidate to serve to bring the University of Georgia's expertise to communities and to facilitate community interaction

  19. PUTTING KNOWLEDGE TO WORK The University of Georgia and Ft. Valley State College, the U.S. Department of Agriculture and counties of the state cooperating.

    E-Print Network [OSTI]

    Navara, Kristen

    to Georgia soils. Soil test phosphorous level by itself is not adequate to determine environmental risk by applying less manure, adding buffers or applying other management procedures. Sources of Risk and Transport and Environmental Sciences / Athens, Georgia 30602-4356 MAY 2004 COMMERCIAL EGG TIP... GEORGIA'S PHOSPHOROUS INDEX

  20. PUTTING KNOWLEDGE TO WORK The University of Georgia and Ft. Valley State College, the U.S. Department of Agriculture and counties of the state cooperating.

    E-Print Network [OSTI]

    Navara, Kristen

    to Georgia soils. Soil test phosphorous level by itself is not adequate to determine environmental risk by applying less litter, adding buffers or applying other management procedures. Sources of Risk and Transport and Environmental Sciences / Athens, Georgia 30602-4356 MAY 2004 BROILER TIP... GEORGIA'S PHOSPHOROUS INDEX

  1. Response to comments on an article entitled A geochemical survey of spring water from the main Ethiopian rift valley, southern Ethiopia

    E-Print Network [OSTI]

    McKenzie, Jeffrey M.

    Ethiopian rift valley, southern Ethiopia: implications for well-head protection by McKenzie et al water from the main Ethiopian rift valley, southern Ethiopia: implications for well-head protection" (Mc in southern Ethiopia may be used to address issues related to well-head protection. Kebede and Travi criticize

  2. PhD Graduate Opportunity: Ecology of Juvenile Desert Tortoises Agency/Organization: University of Georgia's Savannah River Ecology Lab

    E-Print Network [OSTI]

    Georgia, University of

    of Georgia's Savannah River Ecology Lab Location: UGA (Athens, Georgia) / Mojave National Preserve research at Mojave National Preserve, California. Preference will be given to those applicants who qualify about Dr. Tuberville's lab, including people and publications, can be found at: http

  3. Georgia Southern University Office of Career Services Eagle Career Net/NACElink Privacy and Use of Data Policy

    E-Print Network [OSTI]

    Hutcheon, James M.

    Georgia Southern University Office of Career Services Eagle Career Net/NACElink Privacy and Use of Data Policy Georgia Southern University Office of Career Services Eagle Career Net/NACElink Privacy and the NACElink Network to provide student with Eagle Career Net. Eagle Career Net is our online system

  4. Observations of short-circuiting flow paths within a free-surface wetland in Augusta, Georgia, U.S.A.

    E-Print Network [OSTI]

    Licciardi, Joseph M.

    constructed treatment wetland in Augusta, Georgia were used to quantify the size, distribution, velocity). In treatment wetlands, such heterogeneity nearly always results in reduced contaminant removal (WoObservations of short-circuiting flow paths within a free-surface wetland in Augusta, Georgia, U

  5. Energy conserving site design case study: Shenandoah, Georgia. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The case study examines the means by which energy conservation can be achieved at an aggregate community level by using proper planning and analytical techniques for a new town, Shenandoah, Georgia, located twenty-five miles southwest of Atlanta's Hartsfield International Airport. A potentially implementable energy conservation community plan is achieved by a study team examining the land use options, siting characteristics of each building type, alternate infrastructure plans, possible decentralized energy options, and central utility schemes to determine how community energy conservation can be achieved by use of pre-construction planning. The concept for the development of mixed land uses as a passively sited, energy conserving community is based on a plan (Level 1 Plan) that uses the natural site characteristics, maximizes on passive energy siting requirement, and allows flexibility for the changing needs of the developers. The Level 2 Plan is identical with Level 1 plan plus a series of decentraized systems that have been added to the residential units: the single-family detached, the apartments, and the townhouses. Level 3 Plan is similar to the Level 1 Plan except that higher density dwellings have been moved to areas adjacent to central site. The total energy savings for each plan relative to the conventional plan are indicated. (MCW)

  6. K-Basins design guidelines

    SciTech Connect (OSTI)

    Roe, N.R.; Mills, W.C.

    1995-06-01T23:59:59.000Z

    The purpose of the design guidelines is to enable SNF and K Basin personnel to complete fuel and sludge removal, and basin water mitigation by providing engineering guidance for equipment design for the fuel basin, facility modifications (upgrades), remote tools, and new processes. It is not intended to be a purchase order reference for vendors. The document identifies materials, methods, and components that work at K Basins; it also Provides design input and a technical review process to facilitate project interfaces with operations in K Basins. This document is intended to compliment other engineering documentation used at K Basins and throughout the Spent Nuclear Fuel Project. Significant provisions, which are incorporated, include portions of the following: General Design Criteria (DOE 1989), Standard Engineering Practices (WHC-CM-6-1), Engineering Practices Guidelines (WHC 1994b), Hanford Plant Standards (DOE-RL 1989), Safety Analysis Manual (WHC-CM-4-46), and Radiological Design Guide (WHC 1994f). Documents (requirements) essential to the engineering design projects at K Basins are referenced in the guidelines.

  7. Operational Performance of Sedimentation Basins

    E-Print Network [OSTI]

    Bleything, Matthew D.

    2012-12-14T23:59:59.000Z

    and sludge pumps and clog pipes. (Lee, 2007) Composition of grit varies widely, with moisture content ranging from 13 to 63 percent, and volatile content ranging from 1 to 56 percent. The specific gravity of clean grit particles may be as high as 2... for unobstructed flow of the inlet water into the basin when the basin was almost full to capacity with sediment. The outlet of the sediment basin is an oil/water separator. This is for oil leaks and spills from the plant island. The design called...

  8. Opaline cherts associated with sublacustrine hydrothermal springs at Lake Bogoria, Kenya Rift valley

    SciTech Connect (OSTI)

    Renaut, R.W.; Owen, R.B.

    1988-08-01T23:59:59.000Z

    An unusual group of cherts found at saline, alkaline Lake Bogoria in the Kenya Rift differs from the Magadi-type cherts commonly associated with saline, alkaline lakes. The cherts are opaline, rich in diatoms, and formed from a siliceous, probably gelatinous, precursor that precipitated around submerged alkaline hot springs during a Holocene phase of high lake level. Silica precipitation resulted from rapid drop in the temperature of the spring waters and, possibly, pH. Lithification began before subaerial exposure. Ancient analogous cherts are likely to be localized deposits along fault lines.

  9. Petrologic study of a Miocene gabbro emplaced during initial rifting in the Red Sea

    E-Print Network [OSTI]

    Johnston, Beatrice Bryant

    1978-01-01T23:59:59.000Z

    AS SIRAT PLATEAU NUB IAN PLATE 16' aJABAL AT TI RF YEMEN ET H I OP I A N AFAR GULF OF ADEN , oe I 00 0 I QO k ~+ J ~4 SOMALI AN PLATE Coleman and others (1978) have investigated a portion of' this rift zone east of' Jizan, the Tihama... that may relate to these magmatic processes. Although the geologic setting for this gabbro is different from that of obducted ophio- lites, does it compare chemically to those gabbros in ophiolites? Is it possibly closer in chemistry and geology...

  10. An Integrated Geophysical Study Of The Northern Kenya Rift | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan BlanchAmiteIn The Artesian-City Area,Rift

  11. Rivanna River Basin Commission (Virginia)

    Broader source: Energy.gov [DOE]

    The Rivanna River Basin Commission is an independent local entity tasked with providing guidance for the stewardship and enhancement of the water quality and natural resources of the Rivanna River...

  12. Design and performance of the Georgia Tech Aquatic Center photovoltaic system. Final report

    SciTech Connect (OSTI)

    Rohatgi, A.; Begovic, M.; Long, R.; Ropp, M.; Pregelj, A.

    1996-12-31T23:59:59.000Z

    A building-integrated DC PV array has been constructed on the Georgia Tech campus. The array is mounted on the roof of the Georgia Tech Aquatic Center (GTAC), site of the aquatic events during the 1996 Paralympic and Olympic Games in Atlanta. At the time of its construction, it was the world`s largest roof-mounted photovoltaic array, comprised of 2,856 modules and rates at 342 kW. This section describes the electrical and physical layout of the PV system, and the associated data acquisition system (DAS) which monitors the performance of the system and collects measurements of several important meteorological parameters.

  13. Fe-CYCLE BACTERIA FROM INDUSTRIAL CLAYS MINED IN GEORGIA, USA EVGENYA S. SHELOBOLINA

    E-Print Network [OSTI]

    Lovley, Derek

    Fe-CYCLE BACTERIA FROM INDUSTRIAL CLAYS MINED IN GEORGIA, USA EVGENYA S. SHELOBOLINA 1, *,{, SAM M are major discoloring impurities in mined commercial white kaolin clay. In order to evaluate the potential influence of Fe-cycle bacteria on Fe cycling during post- depositional clay-weathering alteration, Fe

  14. Georgia O'Keeffe: Horse's Skull with Pink Rose, 1931 Comparative Anatomy of Vertebrates

    E-Print Network [OSTI]

    Carrington, Emily

    Georgia O'Keeffe: Horse's Skull with Pink Rose, 1931 Syllabus Comparative Anatomy of Vertebrates Biology 453 Tentative: Autumn Quarter 2014 Course Web Page: http://courses'll want to cover your eyes with safety glasses or wear glasses on dissection lab days. Goals My course

  15. Georgia O'Keeffe: Horse's Skull with Pink Rose, 1931 Comparative Anatomy of Vertebrates

    E-Print Network [OSTI]

    Carrington, Emily

    Georgia O'Keeffe: Horse's Skull with Pink Rose, 1931 Syllabus Comparative Anatomy of Vertebrates Biology 453 Winter Quarter 2014 Course Web Page: http://courses.washington.edu/chordate/hmpg-biol453.html glasses on dissection lab days. Goals My course goals begin with learning the vocabulary of anatomy; you

  16. Adopted Version 1 Georgia Tech's "BuzzPort" Portal Usage Policy

    E-Print Network [OSTI]

    Li, Mo

    Adopted Version 1 Georgia Tech's "BuzzPort" Portal Usage Policy v. 7.1 1.0 PURPOSE This Policy are highly valued and sensitive Institute resources. This Policy establishes an acceptable usage framework.0 SCOPE This Policy applies to all authorized BuzzPort usage from any location at all times

  17. Georgia Institute of Technology Ventilation System Testing Effective Date 04/01/02

    E-Print Network [OSTI]

    Georgia Institute of Technology Ventilation System Testing Effective Date 04/01/02 Revised 05 for measuring ventilation system performance. 2. Sash Positions a. Vertical rising sashes will be surveyed traverse measurements will be performed per the procedures described in Industrial Ventilation. b. Static

  18. Georgia researchers uncover new ways to meet America's alternative energy needs. By Kathy Brister

    E-Print Network [OSTI]

    Nair, Sankar

    -up companies. State economic developers attracted more than $3 billion in commercial green-energy projects over-edge" biofuel projects. Here's a look at some of the bioenergy innovations under way in Georgia, Tapping Timber bioenergy company Range Fuels plans to crank up what's being billed as the United States' first commercial

  19. This article was downloaded by: [University of Georgia] On: 04 February 2014, At: 13:21

    E-Print Network [OSTI]

    Georgia, University of

    b a Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808, USA b Savannah River. Fletcherb and Andrew M. Grosseb,y a Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808, USA; b Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29808, USA (Received 30

  20. Color Removal from Pulp Mill Effluent Using Coal Ash Produced from Georgia Coal Combustion Power Plants

    E-Print Network [OSTI]

    Hutcheon, James M.

    permits. To improve the aesthetic qualities of the effluent, coal ash (from local power plants_mill_discharge.jpg 2. Coal Power Plant http://www.csmonitor.com/var/ezflow_site/storage/images/media/images/2008Color Removal from Pulp Mill Effluent Using Coal Ash Produced from Georgia Coal Combustion Power

  1. Board of Regents University System of Georgia Architecture and Engineering Design Standards

    E-Print Network [OSTI]

    Board of Regents University System of Georgia Architecture and Engineering Design Standards your pointer on the section title and pick/select. #12;010000 - ARCHITECTURAL 7 010001- General Requirements 7 013515 LEED and Sustainable Design 42 013516 Sustainable Design Reporting 47 015713- Temporary

  2. An Experimental Study of Microfabricated Nickel Spark Plug Georgia Institute of technology

    E-Print Network [OSTI]

    electrodeposition through polymer molds. The nickel spark plugs are tested at 20 Hz using spark energies of 5 mAn Experimental Study of Microfabricated Nickel Spark Plug Georgia Institute of technology Atlanta presents experimental. results of the erosion and wear characteristics of micromachined nickel spark plugs

  3. Space Physics in Greece: Experience and Future Prospects Ioannis A. Daglis, Anastasios Anastasiadis and Georgia Tsiropoula

    E-Print Network [OSTI]

    Anastasiadis, Anastasios

    Space Physics in Greece: Experience and Future Prospects Ioannis A. Daglis, Anastasios Anastasiadis and Georgia Tsiropoula National Observatory of Athens, Institute of Ionospheric and Space Research, Penteli Engineering, Xanthi, Greece Abstract. Space Physics was born with the launch of the first artifi­ cial

  4. Habitat for Humanity: La Grange, Georgia, 2003 Jimmy Carter Work Project

    SciTech Connect (OSTI)

    Not Available

    2005-06-01T23:59:59.000Z

    The Troup-Chambers Habitat for Humanity built a Habitat house to ENERGY STAR standards in LaGrange, Georgia, in 2003. The project was so successfully that all Troup-Chambers houses will now be built to ENERGY STAR standards.

  5. Fuel storage basin seismic analysis

    SciTech Connect (OSTI)

    Kanjilal, S.K.; Winkel, B.V.

    1991-08-01T23:59:59.000Z

    The 105-KE and 105-KW Fuel Storage Basins were constructed more than 35 years ago as repositories for irradiated fuel from the K East and K West Reactors. Currently, the basins contain irradiated fuel from the N Reactor. To continue to use the basins as desired, seismic adequacy in accordance with current US Department of Energy facility requirements must be demonstrated. The 105-KE and 105-KW Basins are reinforced concrete, belowground reservoirs with a 16-ft water depth. The entire water retention boundary, which currently includes a portion of the adjacent reactor buildings, must be qualified for the Hanford Site design basis earthquake. The reactor building interface joints are sealed against leakage with rubber water stops. Demonstration of the seismic adequacy of these interface joints was initially identified as a key issue in the seismic qualification effort. The issue of water leakage through seismicly induced cracks was also investigated. This issue, coupled with the relatively complex geometry of the basins, dictated a need for three-dimensional modeling. A three-dimensional soil/structure interaction model was developed with the SASSI computer code. The development of three-dimensional models of the interfacing structures using the ANSYS code was also found to be necessary. 8 refs., 7 figs., 1 tab.

  6. Delaware River Basin Commission (Multiple States)

    Broader source: Energy.gov [DOE]

    The Delaware River Basin Commission (DRBC) is a federal-interstate compact government agency that was formed by concurrent legislation enacted in 1961 by the United States and the four basin states...

  7. Basin width control of faulting in the Naryn Basin, south central Kyrgyzstan

    E-Print Network [OSTI]

    Bookhagen, Bodo

    Basin width control of faulting in the Naryn Basin, south central Kyrgyzstan Joseph K. Goode,1 the controls on this intramontane basin deformation, we study the Naryn Basin of south central Kyrgyzstan central Kyrgyzstan, Tectonics, 30, TC6009, doi:10.1029/2011TC002910. 1. Introduction [2] Deformation

  8. Isotopic evidence for neogene hominid paleoenvironments in the Kenya Rift Valley

    SciTech Connect (OSTI)

    Kingston, J.D.; Hill, A. (Yale Univ., New Haven, CT (United States)); Marino, B.D. (Harvard Univ., Cambridge, MA (United States))

    1994-05-13T23:59:59.000Z

    Bipedality, the definitive characteristic of the earliest hominids, has been regarded as an adaptive response to a transition from forested to more-open habitats in East Africa sometime between 12 million and 5 million years ago. Analyses of the stable carbon isotopic composition ([delta][sup 13]C) of paleosol carbonate and organic matter from the Tugen Hills succession in Kenya indicate that a heterogeneous environment with a mix of C3 and C4 plants has persisted for the last 15.5 million years. Open grasslands at no time dominated this portion of the rift valley. The observed [delta][sup 13]C values offer no evidence for a shift from more-closed C3 environments to C4 grasslands habitats. If hominids evolved in East Africa during the Late Miocene, they did so in an ecologically diverse setting.

  9. The Climate of the South Platte Basin

    E-Print Network [OSTI]

    The Climate of the South Platte Basin Colorado Climate Center http://climate.atmos.colostate.edu #12;Key Features of the Climate of the South Platte Basin #12;Temperature Cold winters Hot summers #12;Precipitation Monthly Average Precipitation for Selected Sites in the South Platte Basin 0.00 0

  10. Geological Modeling of Dahomey and Liberian Basins

    E-Print Network [OSTI]

    Gbadamosi, Hakeem B.

    2010-01-16T23:59:59.000Z

    The objective of this thesis is to study two Basins of the Gulf of Guinea (GoG), namely the Dahomey and the Liberian Basins. These Basins are located in the northern part of the GoG, where oil and gas exploration has significantly increased...

  11. Supplementary information on K-Basin sludges

    SciTech Connect (OSTI)

    MAKENAS, B.J.

    1999-03-15T23:59:59.000Z

    Three previous documents in this series have been published covering the analysis of: K East Basin Floor and Pit Sludge, K East Basin Canister Sludge, and K West Basin Canister Sludge. Since their publication, additional data have been acquired and analyses performed. It is the purpose of this volume to summarize the additional insights gained in the interim time period.

  12. The origin of hydrothermal and other gases in the Kenya Rift Valley

    SciTech Connect (OSTI)

    Darling, W.G. [British Geological Survey, Wallingford (United Kingdom)] [British Geological Survey, Wallingford (United Kingdom); Griesshaber, E. [Max-Planck Institut fuer Chemie, Mainz (Germany)] [Max-Planck Institut fuer Chemie, Mainz (Germany); Andrews, J.N. [Univ. of Reading (United Kingdom)] [and others] [Univ. of Reading (United Kingdom); and others

    1995-06-01T23:59:59.000Z

    The Kenya Rift Valley (KRV) is part of a major continental rift system from which much outgassing is presently occurring. Previous research on gases in the KRV has tended to concentrate on their geothermal implications; the present paper is an attempt to broaden the interpretation by consideration of new data including helium and carbon isotope analyses from a wide cross-section of sites. In order to do this, gases have been divided into categories dependent on origin. N{sub 2} and noble gases are for the most part atmospherically derived, although their relative concentrations may be altered from ASW ratios by various physical processes. Reduced carbon (CH{sub 4} and homologues) appears to be exclusively derived from the shallow crust, with thermogenic {delta}{sup 13}C values averaging -25{per_thousand} PDB for CH{sub 4}. H{sub 2} is likely also to be crustally formed. CO{sub 2}, generally a dominant constituent, has a narrow {delta}{sup 13}C range averaging -3.7{per_thousand} PDB, and is likely to be derived with little modification from the upper mantle. Consideration of the ratio C/{sup 3}He supports this view in most cases. Sulphur probably also originates there. Ratios of {sup 3}He/{sup 4}He reach a MORB-like maximum of 8.0 R/R{sub A} and provide the best indication of an upper mantle source of gases beneath the KRV. A correlation between {sup 3}He/{sup 4}He and the hydrocarbon parameter log (C{sub 1}/{Sigma}C{sub 2-4}) appears to be primarily temperature related. The highest {sup 3}He/{sup 4}He ratios in spring waters are associated with basalts, perhaps because of the leaching of basalt glasses. There may be a structural control on {sup 3}He/{sup 4}He ratios in the KRV as a whole.

  13. c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering.

    E-Print Network [OSTI]

    Leach Jr.,W. Marshall

    c° Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School. If the MOSFET is in the pinch-off region, the following equations for ID hold: ID = K (VGS - VT H)2 (5) 2 #12

  14. Georgia Southern University Career Services Williams Center (912) 478-5197 www.georgiasouthern.edu/career/ Explore. Experience. Excel.

    E-Print Network [OSTI]

    Hutcheon, James M.

    · Enterprise Resource Planning Sys. (SAP) · Accounting Information Systems · Business Application Development Developers · Project Analysts · Technical Consultant · Systems Programmer · Internet Developers · Application System Managers · Project Managers What Can I Do With A Major In . . . INFORMATION SYSTEMS #12;Georgia

  15. Summary of Needs and Opportunities from the 2011 Residential Energy Efficiency Stakeholders Meeting: Atlanta, Georgia -- March 16-18, 2011

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    This summary report outlines needs and issues for increasing energy efficiency of new and existing U.S homes, as identified at the U.S Department of Energy Building America program Spring 2011 stakeholder meeting in Atlanta, Georgia.

  16. Thermochronometric analysis of the North Lunggar Rift: Implications for the timing of extension initiation and structural style of deformation in southern Tibet

    E-Print Network [OSTI]

    Sundell, Kurt E.

    2011-01-01T23:59:59.000Z

    Hager for use of the HeMP software. v TABLE OF CONTENTS PAGE TITLE PAGE i ABSTRACT iii ACKNOWLEDGMENTS v TABLE OF CONTENTS vi LIST OF FIGURES AND TABLES x CHAPTER 1: Introduction 14... for Himalayan-Tibetan deformation 120 FIGURE 4. End member models for the development of the North Lunggar Rift 122 x FIGURE 5. Location and age of samples analyzed from the North Lunggar Rift 124 FIGURE 6. Age-elevation relationship (AER...

  17. Genetic classification of petroleum basins

    SciTech Connect (OSTI)

    Demaison, G.; Huizinga, B.J.

    1989-03-01T23:59:59.000Z

    Rather than relying on a descriptive geologic approach, this genetic classification is based on the universal laws that control processes of petroleum formation, migration, and entrapment. Petroleum basins or systems are defined as dynamic petroleum-generating and concentrating physico-chemical systems functioning on a geologic space and time scale. A petroleum system results from the combination of a generative subsystem (or hydrocarbon kitchen), essentially controlled by chemical processes, and a migration-entrapment subsystem, controlled by physical processes. The generative subsystem provides a certain supply of petroleum to the basin during a given geologic time span. The migration-entrapment subsystem receives petroleum and distributes it in a manner that can lead either to dispersion and loss or to concentration of the regional charge into economic accumulations. The authors classification scheme for petroleum basins rests on a simple working nomenclature consisting of the following qualifiers: (1) charge factor: undercharged, normally charged, or supercharged, (2) migration drainage factor: vertically drained or laterally drained, and (3) entrapment factor: low impedance or high impedance. Examples chosen from an extensive roster of documented petroleum basins are reviewed to explain the proposed classification.

  18. Mississippian facies relationships, eastern Anadarko basin, Oklahoma

    SciTech Connect (OSTI)

    Peace, H.W. (Oryx Energy, Inc., Midland, TX (United States)); Forgotson, J.M. (Univ. of Oklahoma, Norman (United States))

    1991-08-01T23:59:59.000Z

    Mississippian strata in the eastern Anadarko basin record a gradual deepening of the basin. Late and post-Mississippian tectonism (Wichita and Arbuckle orogenies) fragmented the single large basin into the series of paired basins and uplifts recognized in the southern half of Oklahoma today. Lower Mississippian isopach and facies trends (Sycamore and Caney Formations) indicate that basinal strike in the study area (southeastern Anadarko basin) was predominantly east-west. Depositional environment interpretations made for Lower Mississippian strata suggest that the basin was partially sediment starved and exhibited a low shelf-to-basin gradient. Upper Mississippian isopach and facies trends suggest that basinal strike within the study area shifted from dominantly east-west to dominantly northwest-southeast due to Late Mississippian and Early Pennsylvanian uplift along the Nemaha ridge. Within the study area, the Chester Formation, composed of gray to dove-gray shales with interbedded limestones deposited on a carbonate shelf, thins depositionally into the basin and is thinnest at its facies boundary with the Springer Group and the upper portion of the Caney Formation. As basin subsidence rates accelerated, the southern edge of the Chester carbonate shelf was progressively drowned, causing a backstepping of the Chester Formation calcareous shale and carbonate facies. Springer Group sands and black shales transgressed northward over the drowned Chester Formation shelf.

  19. Structure of the southern Keweenawan rift from COCORP surveys across the Midcontinent Geophysical Anomaly in northeastern Kansas

    E-Print Network [OSTI]

    Serpa, L.; Setzer, T.; Farmer, H.; Brown, L.; Oliver, J.; Kaufman, S.; Sharp, J.; Steeples, Don W.

    1984-06-01T23:59:59.000Z

    survey also provided information on other aspects of the cratonic basement, such as the struc- ture of the Nemaha ridge and the distribu- tion of major horizons within the deep crust. These subjects are mentioned here but are discussed more... they may provide additional information on the nature of crustal rocks [L. Serpa, manu- Serpa et al.: Structure of Southern Keweenawan Rift 371 KANSAS LI -80 west Nemaha Uplift Big Springs vp no 2000 4 3 0  1000  2 o  ; --'r...

  20. Computers and nautical archaeology: characterization of the C.S.S. Georgia wreck site

    E-Print Network [OSTI]

    Baker, James Graham

    1982-01-01T23:59:59.000Z

    , Texas A&N University's Cultural Resource Laboratory contracted with the Corps of Engineers to perform this characterization. Conditions at the Wreck Site The environment of the wreck is determined by the Savannah river. The sediment load is so heavy..., Savannah District, to investigate, characterize, and make recommendations regarding the wreck site of a Civil War period Confederate ironclad vessel, the C. S. S. GEORGIA. The survey proved to be difficult, since visibility in the Savannah River around...

  1. THE ADVANCED CHEMISTRY BASINS PROJECT

    SciTech Connect (OSTI)

    William Goddard; Peter Meulbroek; Yongchun Tang; Lawrence Cathles III

    2004-04-05T23:59:59.000Z

    In the next decades, oil exploration by majors and independents will increasingly be in remote, inaccessible areas, or in areas where there has been extensive shallow exploration but deeper exploration potential may remain; areas where the collection of data is expensive, difficult, or even impossible, and where the most efficient use of existing data can drive the economics of the target. The ability to read hydrocarbon chemistry in terms of subsurface migration processes by relating it to the evolution of the basin and fluid migration is perhaps the single technological capability that could most improve our ability to explore effectively because it would allow us to use a vast store of existing or easily collected chemical data to determine the major migration pathways in a basin and to determine if there is deep exploration potential. To this end a the DOE funded a joint effort between California Institute of Technology, Cornell University, and GeoGroup Inc. to assemble a representative set of maturity and maturation kinetic models and develop an advanced basin model able to predict the chemistry of hydrocarbons in a basin from this input data. The four year project is now completed and has produced set of public domain maturity indicator and maturation kinetic data set, an oil chemistry and flash calculation tool operable under Excel, and a user friendly, graphically intuitive basin model that uses this data and flash tool, operates on a PC, and simulates hydrocarbon generation and migration and the chemical changes that can occur during migration (such as phase separation and gas washing). The DOE Advanced Chemistry Basin Model includes a number of new methods that represent advances over current technology. The model is built around the concept of handling arbitrarily detailed chemical composition of fluids in a robust finite-element 2-D grid. There are three themes on which the model focuses: chemical kinetic and equilibrium reaction parameters, chemical phase equilibrium, and physical flow through porous media. The chemical kinetic scheme includes thermal indicators including vitrinite, sterane ratios, hopane ratios, and diamonoids; and a user-modifiable reaction network for primary and secondary maturation. Also provided is a database of type-specific kerogen maturation schemes. The phase equilibrium scheme includes modules for primary and secondary migration, multi-phase equilibrium (flash) calculations, and viscosity predictions.

  2. Silurian of Illinois basin - a carbonate ramp

    SciTech Connect (OSTI)

    Coburn, G.W.

    1986-05-01T23:59:59.000Z

    The Silurian of the Illinois basin has classically been defined as a shelf-basin sequence. According to the shelf-basin model, the Illinois basin is a deep-water basin in the extreme southern part (southern Illinois-Tennessee), with a slope in the south (Illinois-Indiana) and a shelf extending from central Illinois and Indiana northeast to the Michigan basin. Reef buildups are in a continuous trend along the shelf break. However, the author proposes that the silurian of the Illinois basin represents a carbonate ramp. The down-ramp position is located in southern Illinois and grades into deeper water environments south of Illinois. In this environment, reef buildups would form in the late Alexandrian of early St. Clair, and would begin in the down-ramp position. Therefore, using the new model, reef buildups are expected throughout the basin, rather than being confined to an imaginary shelf break. This model would facilitate exploration in southern Illinois, Indiana, and western Kentucky for reefal hydrocarbon deposits. A ramp model is indicated for the Illinois basin because: (1) the basin lacks a shelf-slope break; (2) the facies sequence is compatible with a ramp environment and incompatible with a shelf-slope environment; (3) discontinuous reef trends are typical of a ramp environment; and (4) facies changes and slope are gradual, extending over hundreds of miles as expected in a ramp environment. Modern carbonate models border on ocean basins. However, the Illinois basin is a cratonic basin, which may have affected the depositional environments. How much that environment differed from present-day models is unknown.

  3. CLEAR LAKE BASIN 2000 PROJECT

    SciTech Connect (OSTI)

    LAKE COUNTY SANITATION DISTRICT

    2003-03-31T23:59:59.000Z

    The following is a final report for the Clear Lake Basin 2000 project. All of the major project construction work was complete and this phase generally included final details and testing. Most of the work was electrical. Erosion control activities were underway to prepare for the rainy season. System testing including pump stations, electrical and computer control systems was conducted. Most of the project focus from November onward was completing punch list items.

  4. Reserves in western basins: Part 1, Greater Green River basin

    SciTech Connect (OSTI)

    Not Available

    1993-10-01T23:59:59.000Z

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  5. Pre-Natural Resources (Two-year) Transfer Program Georgia Southern University, in cooperation with the Warnell School of Forestry and

    E-Print Network [OSTI]

    Hutcheon, James M.

    with the Warnell School of Forestry and Natural Resources, University of Georgia, offers a joint program of study, soil and water resources, environmental assessment, or forestry. Students selecting pre of Georgia, Warnell School of Forestry and Natural Resources must complete an application which is separate

  6. SUPPORTED BY THE UGA OFFICE OF THE VICE PRESIDENT FOR INSTRUCTION OVPI.UGA.EDU The University of Georgia hosts the

    E-Print Network [OSTI]

    Arnold, Jonathan

    , the Assessment Institute and Advising Research Seminar. She co-authored two articles in Academic advising: New NACADA Georgia Drive-in Conference The University of Georgia Academic Advising Coordinating Council #12 to undergraduate education, student success and retention, academic advising, curriculum and policy development

  7. WHOLE-ROCK 87Sr/86Sr COMPOSITION AND APPARENT STRONTIUM ISOTOPIC AGE OF LIMESTONES FROM SITE 1118, WOODLARK RIFT BASIN, SOUTHWEST PACIFIC (OCEAN DRILLING PROGRAM LEG 180) 

    E-Print Network [OSTI]

    Allan, Tony; Robertson, Alastair H F; Sharp, Timothy R; Trotter, Julie

    2001-01-01T23:59:59.000Z

    Limestone from Unit VI (857.1–859.15 meters below seafloor) collected at Site 1118 contains a planktonic foraminiferal fauna indicating a latest Miocene to early Pliocene age. Globorotalia tumida is recorded in Sample ...

  8. CRAD, Emergency Management - Office of River Protection K Basin...

    Energy Savers [EERE]

    CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A...

  9. area sichuan basin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    area has been extensively unknown authors 59 outside the Pachitea River Basin, Peru CiteSeer Summary: At a superficial look, the Pachitea river basin gives the impression...

  10. area tarim basin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    area has been extensively unknown authors 65 outside the Pachitea River Basin, Peru CiteSeer Summary: At a superficial look, the Pachitea river basin gives the impression...

  11. area groundwater basin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    concerning aspects of petroleum geochemistry in the basin, especially in determining source rock(s) in the western part of this basin. It has been speculated that Ngimbang...

  12. Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi, Et Al., 2008) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration...

  13. Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Teleseismic-Seismic Monitoring At Nw Basin & Range Region (Biasi, Et Al., 2009) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration...

  14. urricane activity in the Atlantic basin increased

    E-Print Network [OSTI]

    with levels in the 1970s and 1980s. For example, the accumulated cyclone energy (ACE) index in the Atlantic of disturbances. Bottom: annual number (Aug­Oct) of North Atlantic basin hurricanes (1980­2005). See figures 2, is a crucial question for the future outlook of hurricane activity in the basin. It is difficult to distinguish

  15. The State of the Columbia River Basin

    E-Print Network [OSTI]

    the Council to serve as a comprehensive planning agency for energy policy and fish and wildlife policy in the Columbia River Basin and to inform the public about energy and fish and wildlife issues and involve Energy, Fish, Wildlife: The State of the Columbia River Basin, 2013

  16. 6, 839877, 2006 Mexico City basin

    E-Print Network [OSTI]

    Boyer, Edmond

    emitters of air pollutants leading to negative health effects and environmental degradation. The rate altitude basin with air pollutant concentrations above the health limits most days of the year. A mesoscale-dimensional wind patterns in25 the basin and found that the sea-breeze transports the polluted air mass up the moun

  17. Oil migration pattern in the Sirte Basin

    SciTech Connect (OSTI)

    Roohi, M.; Aburawi, R.M. [Waha Oil Co., Tripoli (Libyan Arab Jamahiriya)

    1995-08-01T23:59:59.000Z

    Sirte Basin is an asymmetrical cratonic basin, situated in the north-central part of Libya. It covers an area of over 350,000km{sup 2} and is one of the most prolific oil-producing basins in the world. Sirte Basin is divided into large NW-SE trending sub-parallel platforms and troughs bounded by deep seated syndepositional normal faults. A very unique combination of thick sediments with rich source rocks in the troughs vs. thinner sediments with prolific reservoir rocks on the platforms accounts for the productivity of the basin. Analysis of oil migration pattern in the Sirte Basin will certainly help to discover the remaining reserves, and this can only be achieved if the important parameter of structural configuration of the basin at the time of oil migration is known. The present paper is an attempt to analyse the time of oil migration, to define the structural picture of the 4 Basin during the time of migration and to delineate the most probable connecting routes between the hydrocarbon kitchens and the oil fields.

  18. Sedimentary basins of the late Mesozoic extensional

    E-Print Network [OSTI]

    Johnson, Cari

    17 Sedimentary basins of the late Mesozoic extensional domain of China and Mongolia S.A. Graham,* T Mongolia was extended during the Late Jurassic and Early Cretaceous. As noted by various authors (Li et al in southern Mongolia (Lamb and Badarch, 1997), a crushed late Paleozoic flysch basin along the China­Mongolia

  19. Geology of Alabama's Black Warrior Basin

    SciTech Connect (OSTI)

    Mancini, E.A.; Bearden, B.L.; Holmes, J.W.; Shepard, B.K.

    1983-01-17T23:59:59.000Z

    The Black Warrior basin of northwestern Alabama continues to be an exciting area for oil and gas exploration. Several potential pay zones and a variety of petroleum traps in the basin resulted in a large number of successful test wells, helping to make the basin one of the more attractive areas for continued exploration in the US. The Upper Mississippian sandstone reservoirs in the Black Warrior basin are the primary exploration targets, with the Carter and Lewis sandstones being the most prolific producers. These sanstones exhibit considerable lateral and vertical variability and no apparent regional trends for porosity and permeability development. Determining the depositional environments of the Carter and Lewis sandstones should enhance petroleum exploration in the basin by helping to identify reservoir geometry, areal extent, and quality. To date, the Carter sandstones has produced more than 700,000 bbl of oil and 100 billion CR of gas; the Lewis sandstone, over 5000 bbl of oil and 12 billion CF of gas.

  20. Origin of platy calcite crystals in hot-spring deposits in the Kenya Rift Valley

    SciTech Connect (OSTI)

    Jones, B. [Univ. of Alberta, Edmonton, Alberta (Canada). Dept. of Earth and Atmospheric Sciences; Renault, R.W. [Univ. of Saskatchewan, Saskatoon, Saskatchewan (Canada). Dept. of Geological Sciences

    1998-09-01T23:59:59.000Z

    Platy calcite crystals, which have their c axis parallel to their shortest length axis, are common components of travertine deposits found around some hot springs in the Kenya Rift Valley. They are composite crystals formed of numerous paper-thin subcrystals. Individual plates allowed to grow without obstruction develop a hexagonal motif. The Kenyan crystals typically form in hot (>75 C) waters that have a low Ca content (<10 mg/l), a high CO{sub 2} content, and a high rate of CO{sub 2} degassing. At Chemurkeu, aggregates of numerous small platy crystals collectively form lattice crystals that superficially resemble ray crystals. The walls of the lattice crystals are formed of large platy crystals that have their long and intermediate length axes aligned parallel to the plane of the long axis of the lattice crystal. Internally, the lattice crystals are formed of small platy calcite crystals arranged in a boxlike pattern that creates the appearance of a lattice when viewed in thin section. Lattice crystals are highly porous, with each pore being enclosed by platy crystals. At Lorusio, travertines are mainly formed of pseudodentrites that are constructed by numerous small platy crystals attached to a main stem which is a large platy crystal that commonly curves along its long axis. The pseudodentrites are the main construction blocks in ledges and lilypads that form in the vent pool and spring outflow channels, where the water is too hot for microbes other than hyperthermophiles. The platy calcite crystals in the Kenyan travertines are morphologically similar to platy calcite crystals that form as scale in pipes in the geothermal fields of New Zealand and hydrothermal angel wing calcite from the La Fe mine in Mexico. Comparison of the Kenyan and New Zealand crystals indicates that platy calcite crystals form from waters with a low Ca{sup 2+} content and a high CO{sub 3}/Ca ratio due to rapid rates of CO{sub 2} degassing.

  1. Atkinson County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,AsotinAstonInformation Georgia ASHRAE

  2. VENTURA BASIN LOS ANGELES BASIN CENTRAL COASTAL BASIN W Y T

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14TotalTheE. Great Basin Oil and Gas Fields 2004VENTURA

  3. The key to minimizing minesite versus utility laboratory analyses on Powder River Basin coals

    SciTech Connect (OSTI)

    Rexin, M.G.

    1995-08-01T23:59:59.000Z

    Powder River Basin (PRB) coals are continuing to expand their areas of use into regions previously reserved for higher ranked coals. PRB coals are subbituminous by rank. Inherent moisture values of 25 to 30 percent are the norm. PRB coals, being lower rank in nature, also tend to oxidize very easily. These factors combined produce a coal which can cause analysis problems for laboratories unaccustomed to PRB coals. In fact, even laboratories that deal with this type of coal on a daily basis can experience analytical difficulties. Special care needs to be taken by both minesite laboratory and the utility laboratory to ensure accurate analyses. Cooperation between both parties is the key to reproducible analyses. Only by working together can parties fully analyze the situation and develop analytical methods acceptable to both. This paper will describe the methods employed by the Caballo Rojo Mine (CRM) and the Georgia Power Company (GPC) to resolve laboratory analysis differences found during shipments by CRM to GPC beginning in 1994. The following topics are discussed: initial comparative results, analytical investigations, the cooperative process, recent comparative results, and conclusions.

  4. Mid-Continent basin: a reappraisal

    SciTech Connect (OSTI)

    Berg, J.R.

    1983-08-01T23:59:59.000Z

    One of the largest unevaluated basins in the Mid-Continent is the Salina basin in Kansas and its extension into eastern Nebraska. The purpose of this study is to update all older data, reconstruct new maps, and reappraise the potential for further exploration. The last comprehensive publications on the area were in 1948 and 1956. The Salina basin includes 12,700 mi/sup 2/ (33,000 km/sup 2/) in north-central Kansas, and approximately 7000 mi/sup 2/ (18,000 km/sup 2/) in east-central Nebraska. The basin is delineated by the zero isopach of Mississippian rocks bordering the basin. The Central Kansas uplift borders the basin on the southwest and Nemaha ridge on the east; the southern limit is an ill-defined saddle in the vicinity of T17S. Boundaries of the Nebraska basin are less well defined, but the axis of the basin trends directly north from the Kansas border along the boundary of Ts10 and 11W, to 41/sup 0/N lat., and then bifurcates to the northwest toward the Siouxiana arch and northeast for an unknown distance. Conventional structure maps have been constructed on several horizons, and a series of cross sections depicts anomalous structures. Recent gravity, magnetic, and seismic reflection profiling also provide information on basement tectonics which may influence structures in the younger sediments. Basement depth ranges from 600 ft (180 m) on the northeast Nemaha ridge boundary of the basin, to a depth of 4750 ft (1450 m) or -3000 ft (-915 m) below sea-level datum in Jewell County; therefore, there may be an approximate total of 10,000 mi/sup 3/ (42,000 km/sup 3/ of sediments for future exploration.

  5. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2003-09-30T23:59:59.000Z

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  6. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2005-09-30T23:59:59.000Z

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  7. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-09-30T23:59:59.000Z

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  8. The Future Computing Environments (FCE) Group at Georgia Tech is a collection of faculty and students that

    E-Print Network [OSTI]

    Abowd, Gregory D.

    , are discussed in [2]. THE GROUP: HISTORY AND EXPERTISE There are now seven full-time College of ComputingABSTRACT The Future Computing Environments (FCE) Group at Georgia Tech is a collection of faculty) Group mission is to invent and better understand what constitutes an effective, everyday partnership

  9. c Copywright 2008. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering.

    E-Print Network [OSTI]

    Leach Jr.,W. Marshall

    c° Copywright 2008. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School mode or the saturation region when vDS vGS - VTO, where VTO is the threshold or pinch-off voltage parameter which accounts for the change in with drain-source voltage. Because iG ' 0 in the pinch

  10. Georgia Southern University Career Services Williams Center (912) 478-5197 www.georgiasouthern.edu/career/ Explore. Experience. Excel.

    E-Print Network [OSTI]

    Hutcheon, James M.

    · Consulting Engineering Firms · Utility Companies · Private Laboratories · Industrial Firms · Manufacturing.thegeorgiaengineer.com/ · American Council of Engineering Companies www.acec.org · Georgia Chamber of Commerce www://www.aeecenter.org/ · American Solar Energy Society http://www.ases.org/ · American Nuclear Society http://www.new.ans.org/ GSU

  11. Materials in Extreme Dynamic Environments Georgia Tech has a unique combination of experimental facilities and modeling and

    E-Print Network [OSTI]

    Li, Mo

    response of materials at various critical length and time scales emphasizes both highMaterials in Extreme Dynamic Environments Georgia Tech has a unique combination of experimental facilities and modeling and simulation capabilities to explore the behavior of materials subjected to high

  12. Digital Media Tenure Track Position Georgia Tech's School of Literature, Media, and Communication (LMC), which provides diverse

    E-Print Network [OSTI]

    Li, Mo

    Digital Media Tenure Track Position Georgia Tech's School of Literature, Media, and Communication Digital Media tenure track position at the rank of Assistant Professor, beginning in the fall of 2013. We's Computational Media and Digital Media programs. A Ph.D. in an appropriate field is required (e.g. digital media

  13. Death of a carbonate basin: The Niagara-Salina transition in the Michigan basin

    SciTech Connect (OSTI)

    Leibold, A.W.; Howell, P.D. (Univ. of Michigan, Ann Arbor (United States))

    1991-03-01T23:59:59.000Z

    The A-O Carbonate in the Michigan basin comprises a sequence of laminated calcite/anhydrite layers intercalated with bedded halite at the transition between normal marine Niagaran carbonates and lower Salina Group evaporites. The carbonate/anhydrite interbeds represent freshing events during initial evaporative concentration of the Michigan basin. Recent drilling in the Michigan basin delineates two distinct regions of A-O Carbonate development: a 5 to 10 m thick sequence of six 'laminites' found throughout most of the western and northern basin and a 10 to 25 m thick sequence in the southeastern basin containing both thicker 'laminates' and thicker salt interbeds. Additionally, potash deposits of the overlying A-1 evaporite unit are restricted to the northern and western basin regions. The distribution of evaporite facies in these two regions is adequately explained by a source of basin recharge in the southeast-perhaps the 'Clinton Inlet' of earlier workers. This situation suggest either that: (1) the source of basin recharge is alternately supplying preconcentrated brine and more normal marine water, or (2) that the basin received at least two distinct sources of water during A-O deposition.

  14. GSA Bulletin; November 2000; v. 112; no. 11; p. 16941702; 8 figures; 1 table. Transient groundwater-lake interactions in a continental rift

    E-Print Network [OSTI]

    Lyakhovsky, Vladimir

    - truded brine has been flushed backward to- ward the lake. Numerical simulations solv- ing the coupled- ent aquifer permeabilities on both sides of the rift, brine percolated into aquifers on the western. It is suggested that the perco- lating brine on the western side reacted with limestone at depth to form

  15. Assessment of undiscovered carboniferous coal-bed gas resources of the Appalachian Basin and Black Warrior Basin Provinces, 2002

    SciTech Connect (OSTI)

    Milici, R.C.; Hatch, J.R.

    2004-09-15T23:59:59.000Z

    Coalbed methane (CBM) occurs in coal beds of Mississippian and Pennsylvanian (Carboniferous) age in the Appalachian basin, which extends almost continuously from New York to Alabama. In general, the basin includes three structural subbasins: the Dunkard basin in Pennsylvania, Ohio, and northern West Virginia; the Pocahontas basin in southern West Virginia, eastern Kentucky, and southwestern Virginia; and the Black Warrior basin in Alabama and Mississippi. For assessment purposes, the Appalachian basin was divided into two assessment provinces: the Appalachian Basin Province from New York to Alabama, and the Black Warrior Basin Province in Alabama and Mississippi. By far, most of the coalbed methane produced in the entire Appalachian basin has come from the Black Warrior Basin Province. 8 refs., 1 fig., 1 tab.

  16. Results of a baseflow tritium survey of surface water in Georgia across from the Savannah River Site

    SciTech Connect (OSTI)

    Nichols, R.L.

    1993-03-03T23:59:59.000Z

    In October 1991 the Georgia Department of Natural Resources (GDNR) issued a press release notifying the public that tritium had been measured in elevated levels (1,200 - 1,500 pCi/1) in water samples collected from drinking water wells in Georgia across from the Savannah River Site in Aiken Co. South Carolina. None of the elevated results were above the Primary Drinking Water Standard for tritium of 20,000 pCi/l. The GDNR initiated 2 surveys to determine the source and extent of elevated tritium: (1) baseflow survey of surface water quality, and (2) well evaluation program. Results from the 2 surveys indicate that the tritium measured in groundwater wells in Georgia is not the result of a groundwater flow from South Carolina under the Savannah River and into Georgia. Atmospheric transport and consequent rainout and infiltration has resulted in an increase of tritium in the water-table aquifer in the vicinity. Water samples collected from drinking water wells believed to have been installed in the aquifer beneath the water-table aquifer were actually from the shallower water-table aquifer. Water samples collected from the wells contain the amount of tritium expected for the water-table aquifer in the sample area. The measured tritium levels in the well samples and baseflow samples do not exceed Primary Drinking Water Standards. Tritium levels in the water-table in Georgia will decline as the atmospheric releases from SRS decline, tritium undergoes natural decay, and infiltration water with less tritium flushes through the subsurface.

  17. Progress Update: H4 Basin Concrete Pour

    ScienceCinema (OSTI)

    None

    2012-06-14T23:59:59.000Z

    The Recovery Act funded project in the H area basin. A concrete ditch built longer than half a mile to prevent contaminated water from expanding and to reduce the footprint on the environment.

  18. September 2012 BASIN RESEARCH AND ENERGY GEOLOGY

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    September 2012 BASIN RESEARCH AND ENERGY GEOLOGY STATE UNIVERSITY OF NEW YORK at BINGHAMTON research programs in geochemistry, sedimentary geology, or Earth surface processes with the potential the position, visit the Geological Sciences and Environmental Studies website (www.geology

  19. River Basins Advisory Commissions (South Carolina)

    Broader source: Energy.gov [DOE]

    The Catawba/Wateree and Yadkin/Pee Dee River Basins Advisory Commissions are permanent public bodies jointly established by North and South Carolina. The commissions are responsible for assessing...

  20. Flathead Basin Commission Act of 1983 (Montana)

    Broader source: Energy.gov [DOE]

    This Act establishes the Flathead Basin Commission, the purpose of which is to protect the Flathead Lake aquatic environment, its waters, and surrounding lands and natural resources. The Commission...

  1. Petroleum potential of the Libyan sedimentary basins

    SciTech Connect (OSTI)

    Hammuda, O.S.; Sbeta, A.M.

    1988-08-01T23:59:59.000Z

    Contrary to prevailing opinion, all Libyan sedimentary basins and the Al-Jabal Al-Akhdar platform contain prolific petroleum accumulations with very high prospectivity. A systematic review of the types of traps and pays in this central part of the southern Mediterranean province reveals great variability in reservoir and source rock characteristics. The reservoir rocks are of almost all geologic ages. The thick source rock sequences also vary in nature and organic content. The organic-rich facies have accumulated in intracratonic and passive margin basins or in marginal seas. Most of the oil discovered thus far in these basins is found in large structural traps. Future discoveries of stratigraphic traps or small structural traps will require intensified efforts and detailed studies using up-to-date multidisciplinary techniques in sedimentary tectonics, biostratigraphic facies analysis, and geochemical prospecting in order to develop a better understanding of these basins, thus improving their prospectivity.

  2. K-Basins S/RIDS

    SciTech Connect (OSTI)

    Watson, D.J.

    1997-08-01T23:59:59.000Z

    The Standards/Requirements Identification Document (S/RID) is a list of the Environmental, Safety, and Health (ES{ampersand}H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility.

  3. The Uinta Basin Case Robert J. Bayer

    E-Print Network [OSTI]

    Utah, University of

    Overburden Tailings Oil Shale Mining Open Pit Underground Ex situ extraction Ex situ thermal conversion EIS for Oil Sands and Oil Shale Ongoing concerns with Basin-wide air quality Wildlife and wildlife

  4. K-Basins S/RIDS

    SciTech Connect (OSTI)

    Watson, D.J.

    1995-09-22T23:59:59.000Z

    The Standards/Requirements Identification Document(S/RID) is a list of the Environmental, Safety, and Health (ES&H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility

  5. Late devonian carbon isotope stratigraphy and sea level fluctuations, Canning Basin, Western Australia

    E-Print Network [OSTI]

    Stephens, N P; Sumner, Dawn Y.

    2003-01-01T23:59:59.000Z

    reef, Canning Basin, Western Australia. Palaeontology 43,the Canning Basin, Western Australia. In: Loucks, R.G. ,Canning Basin, Western Australia. Ph.D Thesis, University of

  6. PUTTING KNOWLEDGE TO WORK The University of Georgia and Ft. Valley State College, the U.S. Department of Agriculture and counties of the state cooperating.

    E-Print Network [OSTI]

    Navara, Kristen

    work force.. The University of Georgia Cooperative Extension Service College of Agricultural BY REDUCING HEAT LOSSES The winter months pose numerous problems and stresses on poultry growers. Rising fuel costs coupled with increased fuel consumption particularly can pose economic hardships

  7. Subsidence history of the Alabama promontory in response to Late Paleozoic Appalachian-Ouachita thrusting

    SciTech Connect (OSTI)

    Whitting, B.M.; Thomas, W.A. (Univ. of Kentucky, Lexington, KY (United States). Dept. of Geological Sciences)

    1994-03-01T23:59:59.000Z

    The Alabama promontory of North American continental crust was framed during late Precambrian-Cambrian rifting by the northeast-striking Blue Ridge rift and the northwest-striking alabama-Oklahoma transform fault. A passive margin persisted along the western side of the promontory from Cambrian to Mississippian time, but the eastern side was affected by the Taconic and Acadian orogenies. Prior to initiation of Ouachita and Appalachian (Alleghanian) thrusting, the outline of the rifted margin of continental crust on the Alabama promontory remained intact; and the late paleozoic thrust belt conformed to the shape of the promontory, defining northwest-striking Ouachita thrust faults along the southwest side of the promontory, north-striking Appalachian (Georgia-Tennessee) thrust faults on the east, and northeast-striking Appalachian (Alabama) thrust faults across the corner of the promontory. Subsidence profiles perpendicular to each of the strike domains of the thrust belt have been constructed by calculating total subsidence from decompacted thickness of the synorogenic sedimentary deposits. The profile perpendicular to the Ouachita thrust belt shows increasing subsidence rates through time and toward the thrust front, indicating the classic signature of an orogenic foreland basin. The profile perpendicular to the Georgia-Tennessee Appalachian thrust belt similarly shows increasing subsidence rates through time and toward the orogenic hinterland. These quantitative results support the conclusion that Black Warrior basin subsidence is tectonically rather than sedimentologically driven, and the timing of subsidence events reported here has implications for regional tectonic models.

  8. Carboniferous clastic-wedge stratigraphy, sedimentology, and foreland basin evolution: Black Warrior basin, Alabama and Mississippi

    SciTech Connect (OSTI)

    Hines, R.A.

    1986-05-01T23:59:59.000Z

    Carboniferous clastic-wedge stratigraphy and sedimentology in the Black Warrior basin of Alabama and Mississippi indicate deposition in an evolving foreland basin flanking the Appalachian-Ouachita fold-thrust belt. The strata reflect specific responses to foreland basin subsidence, orogenic activity, sediment supply, and dispersal systems. Definition of the regional stratigraphy of the clastic wedge provides for interpretation of the foreland basin subsidence history by enabling quantitative reconstruction of regional compaction and subsidence profiles. Comparison of the interpreted subsidence history with model profiles of foreland basin subsidence (predicted from loading and flexure of continental lithosphere) allows evaluation of mechanical models in terms of observed clastic-wedge sedimentology and stratigraphy. Mechanical modeling of foreland basin subsidence predicts formation of a flexural bulge that migrates cratonward ahead of the subsiding foreland basin during loading. In the Black Warrior basin, local stratigraphic thins, pinch-outs, and areas of marine-reworked sediments suggest migration of the flexural bulge. Comparison of flexural bulge migration with thermal maturation history allows evaluation of timing of stratigraphic trapping mechanisms with respect to onset of hydrocarbon generation.

  9. Effects of the Georgia flood of `94 on Lake Blackshear Dam

    SciTech Connect (OSTI)

    Findlay, R.C.; Northrop, J.H. [Northrop, Devine & Tarbell, Inc., Portland, ME (United States); Crisp, R.L. Jr. [and others

    1995-12-31T23:59:59.000Z

    Tropical Storm Alberto produced record rainfall in central Georgia in early July, 1994. The area drains into Lake Blackshear, formed in the Flint River by Lake Blackshear Dam. The level of the lake rose 3.5 m (11.5 ft) above normal and caused the worst flooding of the area in recorded history. The north embankment of the dam was overtopped, causing a 215 m (700 ft) breach. Prior to the breach, a few concentrated boils were observed in the tailwater downstream of the non-breached portion of the dam. This portion remained intact through the flood, but the presence of the boils raised questions regarding its integrity. The effects of the flood on the north embankment are discussed, as well as the geotechnical investigation conducted to assess subsurface conditions at the breach and intact portions and the plan for remediation.

  10. Structural and stratigraphic evolution of Shira Mountains, central Ucayali Basin, Peru? 

    E-Print Network [OSTI]

    Sanchez Alvarez, Jaime Orlando

    2008-10-10T23:59:59.000Z

    The Ucayali Basin is a Peruvian sub-Andean basin that initially formed during the extensive tectonics of the Early Paleozoic. Originally, the Ucayali Basin was part of a larger basin that extended east of the current ...

  11. Modified Streamflows 1990 Level of Irrigation : Missouri, Colorado, Peace and Slave River Basin, 1928-1989.

    SciTech Connect (OSTI)

    A.G. Crook Company; United States. Bonneville Power Administration

    1993-07-01T23:59:59.000Z

    This report presents data for monthly mean streamflows adjusted for storage change, evaporation, and irrigation, for the years 1928-1990, for the Colorado River Basin, the Missouri River Basin, the Peace River Basin, and the Slave River Basin.

  12. Geochemical Prospecting of Hydrocarbons in Frontier Basins of India* By

    E-Print Network [OSTI]

    B. Kumar; D. J. Patil; G. Kalpana; C. Vishnu Vardhan

    India has 26 sedimentary basins with a basinal area of approximately 1.8x 10 6 km 2 (excluding deep waters), out of which seven are producing basins and two have proven potential. Exploration efforts in other basins, called “frontier basins ” are in progress. These basins are characterized by varied geology, age, tectonics, and depositional environments. Hydrocarbon shows in many of these basins are known, and in few basins oil and gas have flowed in commercial /non-commercial quantities. Within the framework of India Hydrocarbon Vision – 2025 and New Exploration Licensing Policy, there is a continuous increase in area under active exploration. The asset management concept with multi-disciplinary teams has created a demand for synergic application of risk-reduction technologies, including surface geochemical surveys. National Geophysical Research Institute (NGRI), Hyderabad, India has initiated/planned surface geochemical surveys composed of gas chromatographic and carbon isotopic analyses in few of the frontier basins of India. The adsorbed soil gas data in one of the basins (Saurashtra basin, Gujarat) has shown varied concentrations of CH4 to C4H10. The C1 concentration varies between 3 to 766 ppb and ??C2+, 1 to 543 ppb. This basin has thin soil cover and the Mesozoic sediments (probable source rocks) are overlain by thick cover of Deccan Traps. The scope and perspective of geochemical surveys in frontier basins of India are presented here.

  13. SAVANNAH HARBOR EXPANSION PROJECT CHATHAM COUNTY, GEORGIA AND JASPER COUNTY, SOUTH CAROLINA

    E-Print Network [OSTI]

    US Army Corps of Engineers

    at their maximum capacity or design draft. The "light loading" of vessels increases costs to the shipper, which are eventually passed onto the consumer. Less efficient vessels also generally result in higher shipping costs Plan includes dredging 31 miles of the existing navigation channel and one existing turning basin

  14. Hydrocarbon geochemistry of the strait of Georgia: Modification of a Fraser River dominated regime by ocean dumping

    SciTech Connect (OSTI)

    Yunker, M.B.; Macdonald, R.W.; Paton, D. [Inst. of Ocean Sciences, Sidney, British Columbia (Canada)] [and others

    1996-12-31T23:59:59.000Z

    Despite the presence of Canada`s third largest city and of the largest river reaching the west coast of Canada, the study of the environmental and geochemical aspects of hydrocarbon distributions in the lower Fraser River and adjacent Strait of Georgia has not progressed beyond the cataloguing of environmental concentrations. Hence hydrocarbon distributions in the lower Fraser River are only poorly understood and very little is known about either the role that the Fraser River plays in defining the hydrocarbon geochemistry of the Strait of Georgia or how hydrocarbon distributions in the strait are being modified by shipping or dredging activities associated with the port of Vancouver. This report describes the results of analysis from sediments and particulate samples.

  15. Georgia Waste Control Law (Georgia)

    Broader source: Energy.gov [DOE]

    The Waste Control Law makes it unlawful to dump waste in any lakes, streams or surfaces waters of the State or on any private property without consent of the property owner. Waste is very broadly...

  16. Tectonic Evolution of the Contaya Arch Ucyali Basin, Peru 

    E-Print Network [OSTI]

    Navarro Zelasco, Luis

    2011-08-08T23:59:59.000Z

    The Contaya arch is an elongated topographic high that divides the Huallaga, Maranon and Ucayali basins in the Peruvian Amazonian plain. Its position well into the foreland basin and well inland from the main Andean thrust ...

  17. active single basin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    subsidence histories of the Aquitaine Basin (Fig.8c) record a minor ac- celeration in subsidence. The shortening of the Australian plate adjacent to the basin is small (from 2...

  18. annapolis basin area: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    geology of the Bengal Basin in relation to the regional tectonic framework and basin-fill history Geosciences Websites Summary: ; and this was followed by an increase in the...

  19. annecy basin eastern: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    subsidence histories of the Aquitaine Basin (Fig.8c) record a minor ac- celeration in subsidence. The shortening of the Australian plate adjacent to the basin is small (from 2...

  20. CRAD, Engineering - Office of River Protection K Basin Sludge...

    Broader source: Energy.gov (indexed) [DOE]

    Office of River Protection K Basin Sludge Waste System CRAD, Engineering - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to DOE G 226.1-2...

  1. Tectonic Evolution of the Contaya Arch Ucyali Basin, Peru

    E-Print Network [OSTI]

    Navarro Zelasco, Luis

    2011-08-08T23:59:59.000Z

    The Contaya arch is an elongated topographic high that divides the Huallaga, Maranon and Ucayali basins in the Peruvian Amazonian plain. Its position well into the foreland basin and well inland from the main Andean thrust belt has proven...

  2. Improved Basin Analog System to Characterize Unconventional Gas Resource

    E-Print Network [OSTI]

    Wu, Wenyan 1983-

    2012-10-02T23:59:59.000Z

    , the BASIN software is combined with PRISE in the UGRA system to estimate unconventional resource potential in frontier basins. The PRISE software contains information about the resources (conventional gas, conventional oil, shale gas, coalbed methane...

  3. Landesque capital as an alternative to food storage in Melanesia: irrigated taro terraces in New Georgia, Solomon Islands

    E-Print Network [OSTI]

    Bayliss-Smith, Tim; Hviding, Edvard

    2014-11-07T23:59:59.000Z

    from streams (Bayliss-Smith and Hviding 2012, 2014). By controlling the flow of water through pondfields high yields of taro can be achieved, enabling a large energy surplus to be accumulated in the form of a growing crop (Spriggs 1982, 1990; Kirch... , we chart its prehistoric rise and post-colonial fall, and we outline the factors that constrained its long-term expansion. Key words: landesque capital, New Georgia, Solomon Islands, taro, terraces, irrigation 2 Ways to achieve food...

  4. K West basin isolation barrier leak rate test

    SciTech Connect (OSTI)

    Whitehurst, R.; McCracken, K.; Papenfuss, J.N.

    1994-10-31T23:59:59.000Z

    This document establishes the procedure for performing the acceptance test on the two isolation barriers being installed in K West basin. This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals.

  5. Evolution of extensional basins and basin and range topography west of Death Valley, California

    E-Print Network [OSTI]

    Hodges, K. V.; McKenna, L. W.; Stock, J.; Knapp, J.; Page, L.; Sternlof, K.; Silverberg, D.; Wust, G.; Walker, J. Douglas

    1989-06-01T23:59:59.000Z

    TECTONICS, VOL. 8, NO. 3, PAGES 453-467, JUNE 1989 EVOLUTION OF EXTENSIONAL BASINS AND BASIN AND RANGE TOPOGRAPHY WEST OF DEATH VALLEY, CALIFORNIA K.V. Hodges, L.W. McKenna, J. Stock , J. Knapp, L. Page, K. Sternlof, D. Silverberg, G. Wrist 2... of the extensional riders in this area indicates that the sole fault dips less than 15øNW beneath the Nova Formation [Hodges et al., 1989]. Detailed mapping of the structurally lowest portions of the Nova Basin south of Panamint Butte (Figure 2; K.V. Hodges...

  6. Constraints on Neoproterozoic paleogeography and Paleozoic orogenesis from paleomagnetic records of the Bitter Springs Formation, Amadeus Basin, central Australia

    E-Print Network [OSTI]

    Swanson-Hysell, N. L; Maloof, A. C; Kirschvink, J. L; Evans, D. A. D; Halverson, G. P; Hurtgen, M. T

    2012-01-01T23:59:59.000Z

    Rift: Paleomagnetism of the Portage Lake Volcanics (northern36.7 182.3 Group (upper) Portage Lake Volcanics L-PL Lake

  7. Constraints on Neoproterozoic paleogeography and Paleozoic orogenesis from paleomagnetic records of the Bitter Springs Formation, Amadeus Basin, central Australia

    E-Print Network [OSTI]

    Swanson-Hysell, N. L; Maloof, A. C; Kirschvink, J. L; Evans, D. A. D; Halverson, G. P; Hurtgen, M. T

    2012-01-01T23:59:59.000Z

    Chamley, H. , 1989, Clay Sedimentology: Berlin, Springer-north-west Australia: Sedimentology, v. 54, n. 4, p. 871–mid-continent rift, sedimentology and organic geochemical

  8. Simplified vibratory characterization of alluvial basins

    E-Print Network [OSTI]

    Semblat, Jean-François; Duval, Anne-Marie

    2011-01-01T23:59:59.000Z

    For the analysis of seismic wave amplification, modal methods are interesting tools to study the modal properties of geological structures. Modal approaches mainly lead to information on such parameters as fundamental frequencies and eigenmodes of alluvial basins. For a specific alluvial deposit in Nice (France), a simplified modal approach involving the Rayleigh method is considered. This approach assumes a set of admissible shape functions for the eigenmodes and allows a fast estimation of the fundamental frequency of the basin. The agreement between modal numerical results and experimental ones is satisfactory. The simplified modal method then appears as an efficient mean for the global vibratory characterization of geological structures towards resonance.

  9. Atlas of major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Aminian, K.; Avary, K.L.; Baranoski, M.T.; Flaherty, K.; Humphreys, M.; Smosna, R.A.

    1995-06-01T23:59:59.000Z

    This regional study of gas reservoirs in the Appalachian basin has four main objectives: to organize all of the -as reservoirs in the Appalachian basin into unique plays based on common age, lithology, trap type and other geologic similarities; to write, illustrate and publish an atlas of major gas plays; to prepare and submit a digital data base of geologic, engineering and reservoir parameters for each gas field; and technology transfer to the oil and gas industry during the preparation of the atlas and data base.

  10. NE Pacific Basin --Tagging Data Kate Myers, Ph.D.

    E-Print Network [OSTI]

    Ocean B: NE Pacific Basin --Tagging Data Kate Myers, Ph.D. Principal Investigator, High Seas Salmon ocean tagging research on Columbia River salmon and steelhead migrating in the NE Pacific Basin R. Basin in 1995-2004. Fisheries and Oceans Canada, Pacific Biological Station, Nanaimo, B

  11. ASSESSMENT OF LIVESTOCK WINTERING AREAS IN BRIDGE CREEK BASIN, 1996

    E-Print Network [OSTI]

    #12;ASSESSMENT OF LIVESTOCK WINTERING AREAS IN BRIDGE CREEK BASIN, 1996 DOE FRAP 1996-03 Prepared-96.............................................. 22 LIST OF FIGURES Figure 1. Bridge Creek basin livestock wintering area back assessment, 1996 quality in the Bridge Creek basin are assessed. These sites had been inspected in the winter and spring

  12. Modeling thermal convection in supradetachment basins: example from western Norway

    E-Print Network [OSTI]

    Andersen, Torgeir Bjørge

    Modeling thermal convection in supradetachment basins: example from western Norway A. SOUCHE*, M. DABROWSKI AND T. B. ANDERSEN Physics of Geological Processes (PGP), University of Oslo, Oslo, Norway basins of western Norway are examples of supradetachment basins that formed in the hanging wall

  13. Exploring Geophyte Use in the Northern Great Basin

    E-Print Network [OSTI]

    Provancher, William

    Wild Onion & Balsamroot Gambel Oak Pinyon Pine Salina Wild Rye Sunflower Seed Great Basin Rye IndianExploring Geophyte Use in the Northern Great Basin: nutrient content, handling costs, effects of human settlement, subsistence, and sociopolitical change in Basin/Plateau #12;Problems Geophytes

  14. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini; Donald A. Goddard

    2005-08-01T23:59:59.000Z

    The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule.

  15. Density anomalies in the crust and upper mantle below the Tonga-Kermadec trench and below the Rio Grande Rift: implied magnitude and orientation of maximum shear stress

    E-Print Network [OSTI]

    Mecham, Brent Bradshaw

    1986-01-01T23:59:59.000Z

    kilometers. A third model assumes partial isostatic compensation of the bathymetry, but adds a superimposed lithospheric slab sub- ducting into the trench, and suggests an oceanic crust thickness of 8 kilometers. A complete Bouguer gravity anomaly over... are presented, which successfully account for the observed gravity anomaly across the rift. The first model assumes a heat source, below a 35 kilometer thick continental crust, which promotes regular lateral changes in density due to the horizontal geothermal...

  16. Density anomalies in the crust and upper mantle below the Tonga-Kermadec trench and below the Rio Grande Rift: implied magnitude and orientation of maximum shear stress 

    E-Print Network [OSTI]

    Mecham, Brent Bradshaw

    1986-01-01T23:59:59.000Z

    DENSITY ANOMALIES IN THE CRUST AND UPPER MANTLE BELOW THE TONGA ? KERMADEC TRENCH AND BELOW THE RIO GRANDE RIFT: IMPLIED MAGNITUDE AND ORIENTATION OF MAXIMUM SHEAR STRESS A Thesis by BRENT BRADSHAW MECHAM Submitted to the Graduate College... of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1986 Major Subject: Geophysics DENSITY ANOMALIES IN THE CRUST AND UPPER MANTLE BELOW THE TONGA ? KERMADEC TRENCH AND BELOW THE RIO GRANDE...

  17. Archaeology in the Kilauea East Rift Zone: Part 1, Land-use model and research design, Kapoho, Kamaili and Kilauea Geothermal Subzones, Puna District, Hawaii Island

    SciTech Connect (OSTI)

    Burtchard, G.C.; Moblo, P. [International Archaeological Research Inst., Inc., Honolulu, HI (United States)

    1994-07-01T23:59:59.000Z

    The Puna Geothermal Resource Subzones (GRS) project area encompasses approximately 22,000 acres centered on the Kilauea East Rift Zone in Puna District, Hawaii Island. The area is divided into three subzones proposed for geothermal power development -- Kilauea Middle East Rift, Kamaili and Kapoho GRS. Throughout the time of human occupation, eruptive episodes along the rift have maintained a dynamic landscape. Periodic volcanic events, for example, have changed the coastline configuration, altered patterns of agriculturally suitable sediments, and created an assortment of periodically active, periodically quiescent, volcanic hazards. Because of the active character of the rift zone, then, the area`s occupants have always been obliged to organize their use of the landscape to accommodate a dynamic mosaic of lava flow types and ages. While the specific configuration of settlements and agricultural areas necessarily changed in response to volcanic events, it is possible to anticipate general patterns in the manner in which populations used the landscape through time. This research design offers a model that predicts the spatial results of long-term land-use patterns and relates them to the character of the archaeological record of that use. In essence, the environmental/land-use model developed here predicts that highest population levels, and hence the greatest abundance and complexity of identifiable prehistoric remains, tended to cluster near the coast at places that maximized access to productive fisheries and agricultural soils. With the possible exception of a few inland settlements, the density of archaeological remains expected to decrease with distance from the coastline. The pattern is generally supported in the regions existing ethnohistoric and archaeological record.

  18. Basin analog approach answers characterization challenges of unconventional gas potential in frontier basins

    E-Print Network [OSTI]

    Singh, Kalwant

    2007-04-25T23:59:59.000Z

    To continue increasing the energy supply to meet global demand in the coming decades, the energy industry needs creative thinking that leads to the development of new energy sources. Unconventional gas resources, especially those in frontier basins...

  19. 3D architecture of a complex transcurrent rift system: The example of the Bay of BiscayWestern Pyrenees

    E-Print Network [OSTI]

    Demouchy, Sylvie

    inversion Seismic interpretation Bay of Biscay Western Pyrenees The Parentis and Arzacq­Mauléon basins observations and the interpretation of seismic data. We compare these results with those obtained from two, based on seismic data and gravimetric inversion methods, a decrease in extension from west to east

  20. Basin Approach to Address Bacterial Impairments in Basins 15, 16, and 17

    E-Print Network [OSTI]

    Gregory, L.; Brown, M.; Hein, K.; Skow, K.; Engling, A.; Wagner, K.; Berthold, A.

    2014-01-01T23:59:59.000Z

    ), the population throughout the Matagorda Bay watershed are generally rural with dispersed cities. In Basin 15 the two major cities are El Campo and Palacios with a total basin population of 58,682. This produces a population density of approximately 61... between 2010 and 2050 with the exception of Lavaca and Fayette counties. The cities of Palacios, El Campo, Flatonia, Schulenburg, Shiner, Hallettsville, Yoakum, Edna, Victoria, and Port Lavaca, all located within the Matagorda Bay watershed...

  1. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01T23:59:59.000Z

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  2. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01T23:59:59.000Z

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  3. Summary status of K Basins sludge characterization

    SciTech Connect (OSTI)

    Baker, R.B.

    1995-01-20T23:59:59.000Z

    A number of activities are underway as part of the Spent Nuclear Fuels Project (SNFP) related to the processing and disposing of sludge in the 105-K Basins (K Basins). Efforts to rigorously define data requirements for these activities are being made using the Data Quality Objectives (DQO) process. Summaries of current sludge characterization data are required to both help support this DQO process and to allow continued progress with on-going engineering activities (e.g., evaluations of disposal alternatives). This document provides the status of K Basins sludge characterization data currently available to the Nuclear Fuel Evaluations group. This group is tasked by the SNFP to help develop and maintain the characterization baseline for the K Basins. The specific objectives of this document are to: (1) provide a current summary (and set of references) of sludge characterization data for use by SNFP initiatives, to avoid unnecessary duplication of effort and to support on-going initiatives; (2) submit these data to an open forum for review and comment, and identify additional sources of significant data that may be available; (3) provide a summary of current data to use as part of the basis to develop requirements for additional sludge characterization data through the DQO process; (4) provide an overview of the intended activities that will be used to develop and maintain the sludge characterization baseline.

  4. Introduction THE PALEOPROTEROZOIC Thelon basin, Northwest Territo-

    E-Print Network [OSTI]

    Hiatt, Eric E.

    Geological Evolution and Exploration Geochemistry of the Boomerang Lake Unconformity-type Uranium Prospect a prospective target for uranium exploration. The potential of the western Thelon basin at Boomerang Lake, remains underexplored for uncon- formity-related uranium deposits despite geological similari- ties

  5. Pyrococcus Furiosus Genome Supplementary Data from the Adams Laboratory at the University of Georgia

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Adams, Michael W.W.; Weinberg, Michael V.; Schut, Gerrit J.; Brehm, Scott; Datta, Susmitta; Zhou, J.

    The research in the Adams Laboratory focuses on the physiology of hyperthermophilic organisms with an emphasis on metal-containing enzymes in the hyperthermophilic marine archaeon Pyrococcus furiosus. Three of the many articles from this University of Georgia lab have supplementary materials that are available on the Adams Lab website. All three sets of data are Open Reading Frames (ORFs) used for DNA microarray experiments and the changes in signal intensities. The full citations for the three articles are: 1) Weinberg, M. V., Schut, G. J., Brehm, S., Datta, S. and Adams, M. W. W. (2005) Cold shock of a hyperthermophilic archaeon: Pyrococcus furiosus exhibits multiple responses to a suboptimal growth temperature with a key role for membrane-bound glycoproteins. J Bacteriol. 187, 336-348; 2) Schut, G. J., Brehm, S. D., Datta, S. and Adams, M. W. W. (2003) "Whole genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides" J. Bacteriol. 185, 3935-3947; Schut, G. J., Zhou, J. and Adams, M. W. W. (2001) "DNA microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus evidence for a new type of sulfur-reducing enzyme" J. Bacteriol. 183, 7027-7036. Note that these articles are copyrighted by the Journal of Bacteriology.

  6. Community Energy Systems and the Law of Public Utilities. Volume Twelve. Georgia

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L

    1981-01-01T23:59:59.000Z

    A detailed description of the laws and programs of the State of Georgia governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  7. A geological and geophysical study of the Sergipe-Alagoas Basin 

    E-Print Network [OSTI]

    Melton, Bradley Douglas

    2008-10-10T23:59:59.000Z

    Extensional stresses caused Africa and South America to break up about 130 Million Years. When Africa rifted away from South America, a large onshore triple junction began at about 13° S and propagated northward. This ...

  8. Single-crystal sup 40 Ar/ sup 39 Ar dating of the Olorgesailie Formation, southern Kenya rift

    SciTech Connect (OSTI)

    Deino, A. (Geochronology Center of the Inst. of Human Origins, Berkeley, CA (United States)); Potts, R. (Smithsonian Institution, Washington, DC (United States))

    1990-06-10T23:59:59.000Z

    Single-crystal laser fusion {sup 40}Ar/{sup 39}Ar analyses and several conventional bulk fusion {sup 40}K- {sup 40}Ar dates have been used to determine the age of volcaniclastic strata within the Olorgesailie Formation and of associated volcanic and sedimentary units of the southern Kenya rift. In the principal exposures along the southern edge of the Legemunge Plain, the formation spans the interval from approximately 500 to 1,000 ka. Deposition continued to the east along the Ol Keju Nyiro river where a tuff near the top of the formation has been dated at 215 ka. In these exposures, the formation is unconformably overlain by sediments dated at 49 ka. A possible source for the Olorgesailie tephra, the Ol Doinyo Nyokie volcanic complex, contains as ash flow dated at {approximately} 1 Ma, extending the known age range of this complex to encompass that of virtually the entire Olorgesailie Formation in the Legemunge Plain. These geologic examples illustrate the importance of the single-crystal {sup 40}Ar/{sup 39}Ar dating technique whereby contaminant, altered, or otherwise aberrant grains can be identified and eliminated from the determination of eruptive ages for reworked or altered pyroclastic deposits. The authors have presented a computer-modeling procedure based on an inverse-isochron analysis that promotes a more objective approach to trimming {sup 40}Ar/{sup 39}Ar isotope data sets of this type.

  9. Dose reduction improvements in storage basins of spent nuclear fuel

    SciTech Connect (OSTI)

    Huang, Fan-Hsiung F.

    1997-08-13T23:59:59.000Z

    Spent nuclear fuel in storage basins at the Hanford Site has corroded and contaminated basin water, which has leaked into the soil; the fuel also had deposited a layer of radioactive sludge on basin floors. The SNF is to be removed from the basins to protect the nearby Columbia River. Because the radiation level is high, measures have been taken to reduce the background dose rate to as low as reasonably achievable (ALARA) to prevent radiation doses from becoming the limiting factor for removal of the SW in the basins to long-term dry storage. All activities of the SNF Project require application of ALARA principles for the workers. On the basis of these principles dose reduction improvements have been made by first identifying radiological sources. Principal radiological sources in the basin are basin walls, basin water, recirculation piping and equipment. Dose reduction activities focus on cleaning and coating basin walls to permit raising the water level, hydrolasing piping, and placing lead plates. In addition, the transfer bay floor will be refinished to make decontamination easier and reduce worker exposures in the radiation field. The background dose rates in the basin will be estimated before each task commences and after it is completed; these dose reduction data will provide the basis for cost benefit analysis.

  10. Ecology, 89(10), 2008, pp. 29532959 2008 by the Ecological Society of America

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    ,3 AND MARY C. FREEMAN 2 1 University of Georgia River Basin Center, 110 Riverbend Road, Athens, Georgia 30602 USA 2 U.S. Geological Survey, Patuxent Wildlife Research Center, Athens, Georgia 30602 USA Abstract

  11. Engineering Study for a Full Scale Demonstration of Steam Reforming Black Liquor Gasification at Georgia-Pacific's Mill in Big Island, Virginia

    SciTech Connect (OSTI)

    Robert De Carrera; Mike Ohl

    2002-03-19T23:59:59.000Z

    Georgia-Pacific Corporation performed an engineering study to determine the feasibility of installing a full-scale demonstration project of steam reforming black liquor chemical recovery at Georgia-Pacific's mill in Big Island, Virginia. The technology considered was the Pulse Enhanced Steam Reforming technology that was developed and patented by Manufacturing and Technology Conversion, International (MTCI) and is currently licensed to StoneChem, Inc., for use in North America. Pilot studies of steam reforming have been carried out on a 25-ton per day reformer at Inland Container's Ontario, California mill and on a 50-ton per day unit at Weyerhaeuser's New Bern, North Carolina mill.

  12. Subsidence in the Michigan basin produced ~5 km of sedimentation over a period of more

    E-Print Network [OSTI]

    ABSTRACT Subsidence in the Michigan basin produced ~5 km of sedimentation over a period of more a plate tectonic framework for the his- tory of the Michigan basin. INTRODUCTION The Michigan basin of the Michigan basin has led to numerous proposals for basin subsidence mechanisms, including thermal contraction

  13. Geothermal fluid genesis in the Great Basin

    SciTech Connect (OSTI)

    Flynn, T.; Buchanan, P.K.

    1990-01-01T23:59:59.000Z

    Early theories concerning geothermal recharge in the Great Basin implied recharge was by recent precipitation. Physical, chemical, and isotopic differences between thermal and non-thermal fluids and global paleoclimatic indicators suggest that recharge occurred during the late Pleistocene. Polar region isotopic studies demonstrate that a depletion in stable light-isotopes of precipitation existed during the late Pleistocene due to the colder, wetter climate. Isotopic analysis of calcite veins and packrat midden megafossils confirm the depletion event occurred in the Great Basin. Isotopic analysis of non-thermal springs is utilized as a proxy for local recent precipitation. Contoured plots of deuterium concentrations from non-thermal and thermal water show a regional, systematic variation. Subtracting contoured plots of non-thermal water from plots of thermal water reveals that thermal waters on a regional scale are generally isotopically more depleted. Isolated areas where thermal water is more enriched than non-thermal water correspond to locations of pluvial Lakes Lahontan and Bonneville, suggesting isotopically enriched lake water contributed to fluid recharge. These anomalous waters also contain high concentrations of sodium chloride, boron, and other dissolved species suggestive of evaporative enrichment. Carbon-age date and isotopic data from Great Basin thermal waters correlate with the polar paleoclimate studies. Recharge occurred along range bounding faults. 151 refs., 62 figs., 15 tabs.

  14. Hydrocarbon habitat of the west Netherlands basin

    SciTech Connect (OSTI)

    De Jager, J. (Nederlandse Aardolie Maatschappij, Assen (Netherlands)); Doyle, M. (Petroleum Development Oman, Muscat (Oman)); Grantham, P. (KSEPL/Shell Research, Rijswijk (Netherlands)); Mabillard, J. (Shell Nigeria, Port Harcourt (Nigeria))

    1993-09-01T23:59:59.000Z

    The complex West Netherlands Basin contains oil and gas in Triassic and Upper Jurassic to Cretaceous clastic reservoir sequences. The understanding has always been that the Carboniferous coal measures have generated only gas and the Jurassic marine Posidonia Shale only oil. However, detailed geochemical analyses show that both source rocks have generated oil and gas. Geochemical fingerprinting established a correlation of the hydrocarbons with the main source rocks. The occurrence of these different hydrocarbons is consistent with migration routes. Map-based charge modeling shows that the main phase of hydrocarbon generation occurred prior to the Late Cretaceous inversion of the West Netherlands Basin. However, along the southwest flank of the basin and in lows between the inversion highs, significant charge continued during the Tertiary. Biodegradation of oils in Jurassic and Cretaceous reservoirs occurred during the earliest Tertiary, but only in reservoirs that were at that time at temperatures of less then 70 to 80[degrees]C, where bacteria could survive. This study shows that also in a mature hydrocarbon province an integrated hydrocarbon habitat study with modern analyses and state-of-the-art technology can lead to a much improved understanding of the distribution of oil and gas in the subsurface. The results of this study will allow a better risk assessment for remaining prospects, and an improved prediction of the type of trapped hydrocarbons in terms of gas, oil, and biodegraded oil.

  15. Exploration trends of the Sirte Basin

    SciTech Connect (OSTI)

    Aburawi, R.M. [Waha Oil Co., Tripoli (Libyan Arab Jamahiriya)

    1995-08-01T23:59:59.000Z

    A wave of intense exploration activity in the Sirte Basin began after the discovery of oil in 1958, and an enormous quantity of hydrocarbon was found in less than ten years. The oil discovery rate has been gradually declining since its peak in the 1960`s, and it is now becoming increasingly difficult and more expensive to find a new reserve. This paper is an attempt to discuss briefly the past exploration cycle, to indicate the present position and to predict the future trend of our activities in the Sirte Basin. The past exploration activities in the Sirte Basin were concentrated along the particular geological trends where the possibilities of finding more reserves are now drastically reduced. Therefore, for the future healthy exploration activities, new ideas are needed to bring about some new favourable areas under further investigation. A new cycle of exploration success will emerge if our exploratory efforts are purposely directed towards the stratigraphic, stratrigraphic/structural traps and subtle type traps, along the migrational pathways and deep plays in the potential oil generative areas.

  16. Onset of basin development in the Black Warrior Basin: Evidence from echinoderm biostratigraphy

    SciTech Connect (OSTI)

    Waters, J.A. (West Georgia Coll., Carrollton, GA (United States). Dept. of Geology); Maples, C.G. (Kansas Geological Survey, Lawrence, KS (United States))

    1992-01-01T23:59:59.000Z

    Many echinoderm taxa have limited temporal ranges and are potentially significant regional index fossils. Echinoderm endemism and size have limited the utility of echinoderms in biostratigraphy, but in particular situations, echinoderm biostratigraphy has provided the key to timing of geological events. One example is the timing of the onset of basin development in the Black Warrior Basin (BWB), a major Carboniferous foreland basin in Alabama and Mississippi. Physical stratigraphy indicates that basinal development in the BWB began some time during or after deposition of the Tuscumbia Limestone (TL). The TL was deposited on a broad carbonate platform on the southern passive margin of North America. In the BWB, the TL is overlain by the Pride Mountain Formation (PMF), which is a mixed siliciclastic/carbonate unit that prograded into the basin from the west. Northeast of the BWB, on the Warrior platform, the TL is Monteagle Limestone and the PMF have been difficult owing to the lack of biostratigraphic acuity in rocks of this age, which has resulted in mistaken time stratigraphic relationships between the units. The authors have collected echinoderms in the basal limestones in the PMF, which indicates a Gasperian age for all but the lowest 30 cm of the PMF. The Genevievian apparently was a time of nondeposition in the BWB because this lowermost 30 cm of PMF is temporally equivalent to tens of meters of carbonates rocks in the Monteagle Limestone on the Warrior platform. Therefore, the onset of foreland basin development in the BWB can be constrained to early during the Genevievian Stage.

  17. K basins interim remedial action health and safety plan

    SciTech Connect (OSTI)

    DAY, P.T.

    1999-09-14T23:59:59.000Z

    The K Basins Interim Remedial Action Health and Safety Plan addresses the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as they apply to the CERCLA work that will take place at the K East and K West Basins. The provisions of this plan become effective on the date the US Environmental Protection Agency issues the Record of Decision for the K Basins Interim Remedial Action, currently planned in late August 1999.

  18. Water Clarity Simulant for K East Basin Filtration Testing

    SciTech Connect (OSTI)

    Schmidt, Andrew J.

    2006-01-20T23:59:59.000Z

    This document provides a simulant formulation intended to mimic the behavior of the suspended solids in the K East (KE) Basin fuel storage pool. The simulant will be used to evaluate alternative filtration apparatus to improve Basin water clarity and to possibly replace the existing sandfilter. The simulant was formulated based on the simulant objectives, the key identified parameters important to filtration, the composition and character of the KE Basin suspended sludge particles, and consideration of properties of surrogate materials.

  19. NATURAL GAS RESOURCES IN DEEP SEDIMENTARY BASINS

    SciTech Connect (OSTI)

    Thaddeus S. Dyman; Troy Cook; Robert A. Crovelli; Allison A. Henry; Timothy C. Hester; Ronald C. Johnson; Michael D. Lewan; Vito F. Nuccio; James W. Schmoker; Dennis B. Riggin; Christopher J. Schenk

    2002-02-05T23:59:59.000Z

    From a geological perspective, deep natural gas resources are generally defined as resources occurring in reservoirs at or below 15,000 feet, whereas ultra-deep gas occurs below 25,000 feet. From an operational point of view, ''deep'' is often thought of in a relative sense based on the geologic and engineering knowledge of gas (and oil) resources in a particular area. Deep gas can be found in either conventionally-trapped or unconventional basin-center accumulations that are essentially large single fields having spatial dimensions often exceeding those of conventional fields. Exploration for deep conventional and unconventional basin-center natural gas resources deserves special attention because these resources are widespread and occur in diverse geologic environments. In 1995, the U.S. Geological Survey estimated that 939 TCF of technically recoverable natural gas remained to be discovered or was part of reserve appreciation from known fields in the onshore areas and State waters of the United. Of this USGS resource, nearly 114 trillion cubic feet (Tcf) of technically-recoverable gas remains to be discovered from deep sedimentary basins. Worldwide estimates of deep gas are also high. The U.S. Geological Survey World Petroleum Assessment 2000 Project recently estimated a world mean undiscovered conventional gas resource outside the U.S. of 844 Tcf below 4.5 km (about 15,000 feet). Less is known about the origins of deep gas than about the origins of gas at shallower depths because fewer wells have been drilled into the deeper portions of many basins. Some of the many factors contributing to the origin of deep gas include the thermal stability of methane, the role of water and non-hydrocarbon gases in natural gas generation, porosity loss with increasing thermal maturity, the kinetics of deep gas generation, thermal cracking of oil to gas, and source rock potential based on thermal maturity and kerogen type. Recent experimental simulations using laboratory pyrolysis methods have provided much information on the origins of deep gas. Technologic problems are one of the greatest challenges to deep drilling. Problems associated with overcoming hostile drilling environments (e.g. high temperatures and pressures, and acid gases such as CO{sub 2} and H{sub 2}S) for successful well completion, present the greatest obstacles to drilling, evaluating, and developing deep gas fields. Even though the overall success ratio for deep wells is about 50 percent, a lack of geological and geophysical information such as reservoir quality, trap development, and gas composition continues to be a major barrier to deep gas exploration. Results of recent finding-cost studies by depth interval for the onshore U.S. indicate that, on average, deep wells cost nearly 10 times more to drill than shallow wells, but well costs and gas recoveries vary widely among different gas plays in different basins. Based on an analysis of natural gas assessments, many topical areas hold significant promise for future exploration and development. One such area involves re-evaluating and assessing hypothetical unconventional basin-center gas plays. Poorly-understood basin-center gas plays could contain significant deep undiscovered technically-recoverable gas resources.

  20. INTEGRATED BASIN ANALYSIS OF THE MARCELLUS FORMATION IN THE

    E-Print Network [OSTI]

    Slingerland, Rudy

    . of the Appalachian Basin requires accurate knowledge of their sedimentological, geochemical, and geomechanical performance is to first quantitatively relate gas content and geomechanical and petrophysical rock

  1. Modeling-Computer Simulations At Nw Basin & Range Region (Biasi...

    Open Energy Info (EERE)

    Location Northwest Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful regional reconnaissance DOE-funding...

  2. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Biasi, Et Al., 2009) Exploration...

  3. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Northern Basin and Range Geothermal Region Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown References J. W. Pritchett...

  4. Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Nw Basin & Range Region (Pritchett, 2004) Exploration Activity Details...

  5. atlantic basin etude: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rifian Corridor Utrecht, Universiteit 7 Prediction of Seasonal Atlantic Basin Accumulated Cyclone Energy from 1 July PHILIP J. KLOTZBACH Geosciences Websites Summary: Prediction of...

  6. analogs permian basin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Reservoir-analog Modeling of Upper Miocene Shallow-water and Deep-water Carbonate Deposits: Agua Amarga Basin, Southeast Spain. Open Access Theses and Dissertations...

  7. athabasca basin western: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Von P. 9 Modeling thermal convection in supradetachment basins: example from western Norway Geosciences Websites Summary: . DABROWSKI AND T. B. ANDERSEN Physics of Geological...

  8. appalachian basin exploration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Mobile Pb-isotopes in Proterozoic sedimentary basins as guides for exploration of uranium deposits Geosciences Websites Summary: Mobile Pb-isotopes in Proterozoic sedimentary...

  9. athabasca basin canada: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (more) Stewart, Paul C. 2015-01-01 2 The Dispersion of Radon Above Deeply Buried Uranium Ore: Millennium Deposit, Athabasca Basin, SK , K Hattori1 Geosciences Websites...

  10. alluvial basin numerical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boyer, Edmond 487 Mobile Pb-isotopes in Proterozoic sedimentary basins as guides for exploration of uranium deposits Geosciences Websites Summary: Mobile Pb-isotopes in Proterozoic...

  11. artesian basins: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Topic Index 181 Mobile Pb-isotopes in Proterozoic sedimentary basins as guides for exploration of uranium deposits Geosciences Websites Summary: Mobile Pb-isotopes in Proterozoic...

  12. anoxic basin mariager: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boyer, Edmond 215 Mobile Pb-isotopes in Proterozoic sedimentary basins as guides for exploration of uranium deposits Geosciences Websites Summary: Mobile Pb-isotopes in Proterozoic...

  13. Data Acquisition-Manipulation At Northern Basin & Range Region...

    Open Energy Info (EERE)

    References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

  14. Data Acquisition-Manipulation At Nw Basin & Range Region (Blackwell...

    Open Energy Info (EERE)

    References D. D. Blackwell, K. W. Wisian, M. C. Richards, Mark Leidig, Richard Smith, Jason McKenna (2003) Geothermal Resource Analysis And Structure Of Basin And Range...

  15. Great Basin College Direct Use Geothermal Demonstration Project

    SciTech Connect (OSTI)

    Rice, John

    2014-10-21T23:59:59.000Z

    This is the final technical report for the Great Basin College Direct Use Geothermal Demonstration Project, outlining the technical aspects of the User Group System.

  16. atacama basin northern: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tucker 2007-02-02 44 BIOSTRATIGRAPHY, EASTERN ROCK SPRINGS UPLIFT, GREATER GREEN RIVER BASIN Environmental Sciences and Ecology Websites Summary: of selected Tertiary coal beds...

  17. Independent Oversight Review, Hanford K Basin and Cold Vacuum...

    Broader source: Energy.gov (indexed) [DOE]

    August 2012 Review of Hanford K Basin and Cold Vacuum Drying Facility Found Fuel Multi-Canister Overpack Operations This report provides the results of an independent oversight...

  18. appalachian basin gas: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the Danis A. Wiloso; Eddy A. Subroto; Eddy Hermanto 2009-01-01 102 Depositional environment and reservoir morphology of Canyon sandstones, Central Midland Basin, Texas Texas...

  19. Lithium In Tufas Of The Great Basin- Exploration Implications...

    Open Energy Info (EERE)

    Tufas Of The Great Basin- Exploration Implications For Geothermal Energy And Lithium Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper:...

  20. Numerical Modeling of Transient Basin and Range Extensional Geothermal...

    Open Energy Info (EERE)

    behavior of basin and range extensionalgeothermal systems, and particularly, the evolution ofthe system temperature with time. Each modelconsists of two mountain ranges (1 km...

  1. Data Acquisition-Manipulation At Nw Basin & Range Region (Coolbaugh...

    Open Energy Info (EERE)

    David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Additional References Retrieved from...

  2. Geographic Information System At Northern Basin & Range Region...

    Open Energy Info (EERE)

    David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Additional References Retrieved from...

  3. Geographic Information System At Nw Basin & Range Region (Nash...

    Open Energy Info (EERE)

    Of A Tectonic Geomorphology Study For Geothermal Exploration In The Great Basin, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleGeographic...

  4. Data Acquisition-Manipulation At Northern Basin & Range Region...

    Open Energy Info (EERE)

    David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Additional References Retrieved from...

  5. Geographic Information System At Nw Basin & Range Region (Coolbaugh...

    Open Energy Info (EERE)

    David Blackwell, Gary Oppliger (2005) A Map Of Geothermal Potential For The Great Basin, Usa- Recognition Of Multiple Geothermal Environments Additional References Retrieved from...

  6. Geographic Information System At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Of A Tectonic Geomorphology Study For Geothermal Exploration In The Great Basin, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleGeographic...

  7. COAL QUALITY AND GEOCHEMISTRY, POWDER RIVER BASIN, WYOMING AND MONTANA

    E-Print Network [OSTI]

    in the Powder River Basin in Wyoming and Montana (fig. PQ-1) is considered to be "clean coal." For the location

  8. Geographic Information System At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The Great Basin From Regional...

  9. Geographic Information System At Nw Basin & Range Region (Blewitt...

    Open Energy Info (EERE)

    Blewittl, Mark F. Coolbaugh, Don Sawatzky, William Holt, James Davis, Richard A. Bennett (2003) Targeting Of Potential Geothermal Resources In The Great Basin From Regional...

  10. M-Area basin closure, Savannah River Site

    SciTech Connect (OSTI)

    McMullin, S.R.; Horvath, J.G.

    1991-12-31T23:59:59.000Z

    M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway.

  11. M-Area basin closure, Savannah River Site

    SciTech Connect (OSTI)

    McMullin, S.R.; Horvath, J.G.

    1991-01-01T23:59:59.000Z

    M-Area, on the Savannah River Site, processes raw materials and manufactures fuel and target rods for reactor use. Effluent from these processes were discharged into the M-Area settling basin and Lost Lake, a natural wetland. The closure of this basin began in 1988 and included the removal and stabilization of basin fluids, excavation of all contaminated soils from affected areas and Lost Lake, and placement of all materials in the bottom of the emptied basin. These materials were covered with a RCRA style cap, employing redundant barriers of kaolin clay and geosynthetic material. Restoration of excavated uplands and wetlands is currently underway.

  12. Cold test data for equipment acceptance into 105-KE Basin

    SciTech Connect (OSTI)

    Packer, M.J.

    1994-11-09T23:59:59.000Z

    This document provides acceptance testing of equipment to be installed in the 105-KE Basin for pumping sludge to support the discharge chute barrier doors installation.

  13. Teleseismic-Seismic Monitoring At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Location Northern Basin and Range Geothermal Region Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful regional reconnaissance DOE-funding...

  14. Teleseismic-Seismic Monitoring At Northern Basin & Range Region...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Northern Basin & Range Region (Biasi, Et Al., 2009) Exploration...

  15. ALUMINUM DISTRIBUTIONSIN THE EURASIAN BASIN OF THE ARCTIC OCEAN

    E-Print Network [OSTI]

    Luther, Douglas S.

    ALUMINUM DISTRIBUTIONSIN THE EURASIAN BASIN OF THE ARCTIC OCEAN A THESISSUBMITTEDTO THE GRADUATE Section(1994)cruiseswere analyzed for their aluminum (Al) content; these two data setswere then combined

  16. Variable Crustal Thickness In The Western Great Basin- A Compilation...

    Open Energy Info (EERE)

    Crustal Thickness In The Western Great Basin- A Compilation Of Old And New Refraction Data Abstract Utilizing commercial mine blasts and local earthquakes, as well as a dense...

  17. Rb-Sr and Sm-Nd isotopic study of the Glen Mountains layered complex: initiation of rifting within the southern Oklahoma aulacogen

    SciTech Connect (OSTI)

    Lambert, D.D.; Unruh, D.M.; Gilbert, M.C.

    1988-01-01T23:59:59.000Z

    Rb-Sr and Sm-Nd isotopic data for rocks and minerals of the Glen Mountains layered complex (GMLC), a midcontinent mafic layered intrusion in the Wichita Mountains of southwestern Oklahoma, constrain the time of initiation of rifting within the southern Oklahoma aulacogen and provide information on the chemistry of the early Paleozoic mantle. Four whole-rock samples define a Rb-Sr isochron corresponding to a maximum crystallization age of 577 +/- 165 Ma and an initial Sr isotopic composition of 0.70359 +/- 2. A three-point Sm-Nd mineral-whole-rock (internal) isochron for an anorthositic gabbro provides a crystallization age of 528 +/- 29 Ma. These data suggest that the GMLC was emplaced into the southern Oklahoma aulacogen during the initial phase of rifting along the southern margin of the North American craton in the early Paleozoic. This Sm-Nd internal isochron age is within analytical uncertainty of U-Pb zircon ages for granites and rhyolites from the Wichita Mountains; therefore, mafic and felsic magmatism may have been contemporaneous within the rift during the early stages of development. Hybrid rocks and composite dikes in the Wichita Mountains provide field evidence for contemporaneous mafic and felsic magmas. Initial Sr and Nd isotopic data suggest that magmas parental to the GMLC were derived from a depleted mantle source. However, Nd isotopic data for the GMLC plot distinctly below data for the depleted mantle source cited by DePaolo and thus suggest that the parental magmas of the GMLC were either contaminated by Proterozoic crust of the southern midcontinent or were derived from a heterogenous mantle source region that had variable initial Nd isotopic compositions.

  18. GEOCHEMICAL MODELING OF F AREA SEEPAGE BASIN COMPOSITION AND VARIABILITY

    SciTech Connect (OSTI)

    Millings, M.; Denham, M.; Looney, B.

    2012-05-08T23:59:59.000Z

    From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors affecting basin chemistry and variability included: (1) the nature or chemistry of the waste streams, (2) the open system of the basins, and (3) duration of discharge of the waste stream types. Mixing models of the archetype waste streams indicated that the overall basin system would likely remain acidic much of the time. Only an extended periods of predominantly alkaline waste discharge (e.g., >70% alkaline waste) would dramatically alter the average pH of wastewater entering the basins. Short term and long term variability were evaluated by performing multiple stepwise modeling runs to calculate the oscillation of bulk chemistry in the basins in response to short term variations in waste stream chemistry. Short term (1/2 month and 1 month) oscillations in the waste stream types only affected the chemistry in Basin 1; little variation was observed in Basin 2 and 3. As the largest basin, Basin 3 is considered the primary source to the groundwater. Modeling showed that the fluctuation in chemistry of the waste streams is not directly representative of the source term to the groundwater (i.e. Basin 3). The sequence of receiving basins and the large volume of water in Basin 3 'smooth' or nullify the short term variability in waste stream composition. As part of this study, a technically-based 'charge-balanced' nominal source term chemistry was developed for Basin 3 for a narrow range of pH (2.7 to 3.4). An example is also provided of how these data could be used to quantify uncertainty over the long term variations in waste stream chemistry and hence, Basin 3 chemistry.

  19. Development and characterization of a Rift Valley fever virus cell-cell fusion assay using alphavirus replicon vectors

    SciTech Connect (OSTI)

    Filone, Claire Marie [Department of Microbiology, University of Pennsylvania, 301 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States); Heise, Mark [Departments of Genetics and Microbiology and Immunology, The Carolina Vaccine Institute, University of North Carolina, Chapel Hill, NC 27599 (United States); Doms, Robert W. [Department of Microbiology, University of Pennsylvania, 301 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States)]. E-mail: doms@mail.med.upenn.edu; Bertolotti-Ciarlet, Andrea [Department of Microbiology, University of Pennsylvania, 301 Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104 (United States)]. E-mail: aciarlet@mail.med.upenn.edu

    2006-12-20T23:59:59.000Z

    Rift Valley fever virus (RVFV), a member of the Phlebovirus genus in the Bunyaviridae family, is transmitted by mosquitoes and infects both humans and domestic animals, particularly cattle and sheep. Since primary RVFV strains must be handled in BSL-3+ or BSL-4 facilities, a RVFV cell-cell fusion assay will facilitate the investigation of RVFV glycoprotein function under BSL-2 conditions. As for other members of the Bunyaviridae family, RVFV glycoproteins are targeted to the Golgi, where the virus buds, and are not efficiently delivered to the cell surface. However, overexpression of RVFV glycoproteins using an alphavirus replicon vector resulted in the expression of the glycoproteins on the surface of multiple cell types. Brief treatment of RVFV glycoprotein expressing cells with mildly acidic media (pH 6.2 and below) resulted in rapid and efficient syncytia formation, which we quantified by {beta}-galactosidase {alpha}-complementation. Fusion was observed with several cell types, suggesting that the receptor(s) for RVFV is widely expressed or that this acid-dependent virus does not require a specific receptor to mediate cell-cell fusion. Fusion occurred over a broad temperature range, as expected for a virus with both mosquito and mammalian hosts. In contrast to cell fusion mediated by the VSV-G glycoprotein, RVFV glycoprotein-dependent cell fusion could be prevented by treating target cells with trypsin, indicating that one or more proteins (or protein-associated carbohydrate) on the host cell surface are needed to support membrane fusion. The cell-cell fusion assay reported here will make it possible to study the membrane fusion activity of RVFV glycoproteins in a high-throughput format and to screen small molecule inhibitors for the ability to block virus-specific membrane fusion.

  20. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    1998-04-08T23:59:59.000Z

    The objective is to provide a comprehensive geologic analysis of the Mississippi Interior Salt Basin.

  1. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    1998-07-07T23:59:59.000Z

    The objective is to provide a comprehensive geologic analysis of the Mississippi Interior Salt Basin.

  2. Basin Analysis of the Mississippi Interior Salt Basin and Petroleum System Modeling of the Jurassic Smackover Formation, Eastern Gulf Coastal Plain

    SciTech Connect (OSTI)

    Ernest A. Mancini

    1997-12-22T23:59:59.000Z

    The objective is to provide a comprehensive geologic analysis of the Mississippi Interior Salt Basin.

  3. Western gas sands project. Quarterly basin activities report, April 1-June 30, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This report is a summary of drilling and testing operations in the four primary study areas of the WESP for this period. Greater Green River Basin, Northern Great Plains Province, Piceance Basin, and Uinta Basin. (DLC)

  4. Western Gas Sands Project. Quarterly basin activities report, January 1-March 31, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    This report is a summary of drilling and testing activities in the four primary study areas of the WGSP: Greater Green River Basin, Northern Great Plains Province, Uinta Basin, and Piceance Basin. (DLC)

  5. Preliminary assessment report for Army Aviation Support Facility No. 3, Installation 13307, Hunter Army Airfield, Savannah, Georgia. Installation Restoration Program

    SciTech Connect (OSTI)

    Kolpa, R.; Smith, K.

    1993-07-01T23:59:59.000Z

    This report presents the results of the preliminary assessment (PA) conducted by Argonne National Laboratory at the Georgia Army National Guard property located on Hunter Army Airfield (HAA) near Savannah, Georgia, known as Army Aviation Support Facility (AASF) No. 3. Preliminary assessments of federal facilities are being conducted to compile the information necessary for completing preremedial activities and to provide a basis for establishing corrective actions in response to releases of hazardous substances. The principal objective of the PA is to characterize the site accurately and determine the need for further action by examining site activities, types and quantities of hazardous substances utilized, the nature and amounts of wastes generated or stored at the facility, and potential pathways by which contamination could affect public health and the environment. This PA satisfies, for the AASF No. 3 property, requirements of the Department of Defense Installation Restoration Program (IRP). The scope of this assessment is limited to the facilities and past activities contained within the area now occupied by AASF No. 3. However, this assessment report is intended to be read in conjunction with a previous IRP assessment of HAA completed in 1992 (USATHAMA 1992) and to provide comprehensive information on AASF No. 3 for incorporation with information contained in that previous assessment for the entirety of HAA.

  6. Basin Analysis and Petroleum System Characterization and Modeling, Interior Salt Basins, Central and Eastern Gulf of Mexico

    SciTech Connect (OSTI)

    Ernest A. Mancini; Paul Aharon; Donald A. Goddard; Roger Barnaby

    2006-02-28T23:59:59.000Z

    The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule. The principal objectives of the project are to develop through basin analysis and modeling the concept that petroleum systems acting in a basin can be identified through basin modeling and to demonstrate that the information and analysis resulting from characterizing and modeling of these petroleum systems in the North Louisiana Salt Basin and the Mississippi Interior Salt Basin can be used in providing a more reliable and advanced approach for targeting stratigraphic traps and specific reservoir facies within a geologic system and in providing a refined assessment of undiscovered and underdeveloped reservoirs and associated oil and gas resources.

  7. NOTICE OF FACULTY VACANCY IN ART EDUCATION The Lamar Dodd School of Art at The University of Georgia invites applications for the

    E-Print Network [OSTI]

    Arnold, Jonathan

    NOTICE OF FACULTY VACANCY IN ART EDUCATION The Lamar Dodd School of Art at The University Education Search Committee Lamar Dodd School of Art The University of Georgia 270 River Rd. Athens, Ga in regard to both outdoor and urban activities (www.exploregeorgia.org). The Lamar Dodd School of Art

  8. Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society, 1994. Atlanta, Georgia, August 13-16, 876-881.

    E-Print Network [OSTI]

    Thórisson, Kristinn Rúnar

    , Georgia, August 13-16, 876-881. Simulated Perceptual Grouping: An Application to Human-Computer are explained. Keywords: Perceptual grouping, gestalt perception, multi-modal, simulation, human-computer. This paper describes a general computational model of perceptual grouping and discusses its use in human-computer

  9. PUTTING KNOWLEDGE TO WORK The University of Georgia and Ft. Valley State College, the U.S. Department of Agriculture and counties of the state cooperating.

    E-Print Network [OSTI]

    Navara, Kristen

    effects of NH3 volatization, good litter management practices are key to a successful operation. Applying.S. Department of Agriculture and counties of the state cooperating. The Cooperative Extension service officers work force.. The University of Georgia Cooperative Extension Service College of Agricultural

  10. PUTTING KNOWLEDGE TO WORK The University of Georgia and Ft. Valley State College, the U.S. Department of Agriculture and counties of the state cooperating.

    E-Print Network [OSTI]

    Navara, Kristen

    the pre-HACCP and principles of HACCP steps. Good Manufacturing Practices (GMPs) and Sanitation Standard.S. Department of Agriculture and counties of the state cooperating. The Cooperative Extension service officers work force.. The University of Georgia Cooperative Extension Service College of Agricultural

  11. Griffin Campus * 1109 Experiment Street * Griffin, Georgia 30223-1797 Telephone (770) 228-7272 * Fax (770) 228-7271 * jen316@uga.edu

    E-Print Network [OSTI]

    Arnold, Jonathan

    The University of Georgia College of Agricultural & Environmental Sciences Department of Crop & Soil Sciences is required in agronomy, crop science, or related field. A current knowledge of crop production practices, research equipment, and field plot technique is required. Candidate should have good verbal and written

  12. Guidelines: Advance of Funds on Foreign Subcontracts Modified 12/10/10 In general, it is the University of Georgia's policy to deny advance payments to

    E-Print Network [OSTI]

    Arnold, Jonathan

    for the University. However, in exceptional circumstances, it may be necessary to advance funds to subcontractors to ensure that all unspent funds are returned to the University of Georgia's Contracts and Grants DivisionGuidelines: Advance of Funds on Foreign Subcontracts Modified 12/10/10 Background In general

  13. PUTTING KNOWLEDGE TO WORK The University of Georgia and Ft. Valley State College, the U.S. Department of Agriculture and counties of the state cooperating.

    E-Print Network [OSTI]

    Navara, Kristen

    and Environmental Sciences / Athens, Georgia 30602-4356 NOVEMBER 2006 COMMERCIAL EGG TIP . . . BIOFUELS AND POULTRY PRODUCTION The generation of biofuels using current technology (ethanol from the fermentation of corn gain. As the production of biofuels has become established public policy, it is not surprising

  14. 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM'99) . Atlanta, Georgia . Sept. 1922, 1999 MULTISENSOR INDUSTRIAL INSPECTION AND GRADING USING ELSA

    E-Print Network [OSTI]

    Naish, Michael D.

    Elizabeth A. Croft Computer Integrated Manufacturing Laboratory Industrial Automation Laboratory Dept for the design and implementation of mul­ tisensor systems for industrial automation; it is particu­ larly suited, Georgia . Sept. 19­22, 1999 MULTISENSOR INDUSTRIAL INSPECTION AND GRADING USING ELSA Michael D. Naish

  15. Acknowledgement of Alcohol and Illegal Drug Policy We have read and understand the "Georgia Institute of Technology Student Policy on Alcohol and Illegal

    E-Print Network [OSTI]

    Sherrill, David

    Acknowledgement of Alcohol and Illegal Drug Policy We have read and understand the "Georgia Institute of Technology Student Policy on Alcohol and Illegal Drugs" and shall enforce these provisions with the leaders of the organization, especially: a. Student Policy on Alcohol and Illegal Drugs b. Student

  16. PUTTING KNOWLEDGE TO WORK The University of Georgia and Ft. Valley State College, the U.S. Department of Agriculture and counties of the state cooperating.

    E-Print Network [OSTI]

    Navara, Kristen

    work force.. The University of Georgia Cooperative Extension Service College of Agricultural floor with a couple of rows of concrete blocks forming the base of the wall will help prevent rodents brings in oxygen while excess moisture, ammonia, heat and CO2 are removed as the air exits the house

  17. PUTTING KNOWLEDGE TO WORK The University of Georgia and Ft. Valley State College, the U.S. Department of Agriculture and counties of the state cooperating.

    E-Print Network [OSTI]

    Navara, Kristen

    work force.. The University of Georgia Cooperative Extension Service College of Agricultural birds include depressed appetite, incoordination, leg weakness, dark skin lesions coupled with edema) Disinfectants and heat: When outbreaks occur, bacteria load can be reduced between flocks by removing old litter

  18. PUTTING KNOWLEDGE TO WORK The University of Georgia and Ft. Valley State College, the U.S. Department of Agriculture and counties of the state cooperating.

    E-Print Network [OSTI]

    Navara, Kristen

    work force.. The University of Georgia Cooperative Extension Service College of Agricultural begins long before the birds enter the facility. Proper management of chickens in the field, coupled of food at night and not as much during the heat of the day, which throws off their feed withdrawal

  19. PUTTING KNOWLEDGE TO WORK The University of Georgia and Ft. Valley State College, the U.S. Department of Agriculture and counties of the state cooperating.

    E-Print Network [OSTI]

    Navara, Kristen

    in soils and risk of water contamination is complex. For nutrient management planning, a simple calculation Characteristics, Site Transport Characteristics, and Best Management Practices. Site Source Characteristics and Environmental Sciences / Athens, Georgia 30602-4356 JULY 2000 COMMERCIAL EGG TIP... THE PHOSPHOROUS INDEX

  20. PUTTING KNOWLEDGE TO WORK The University of Georgia and Ft. Valley State College, the U.S. Department of Agriculture and counties of the state cooperating.

    E-Print Network [OSTI]

    Navara, Kristen

    selected based on importance of legal risk, potential cost, or environmental damage. In order to meet and Environmental Sciences / Athens, Georgia 30602-4356 JULY 2002 BROILER TIP . . . AGRICULTURAL ENVIRONMENTAL MANAGEMENT SYSTEMS In this age of expanding environmental scrutiny, management strategies that have