Powered by Deep Web Technologies
Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geologic Characterization of the South Georgia Rift Basin for Source Proximal CO2 Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Georgia Rift Basin for Source Proximal CO 2 Storage Michael G. Waddell and John M. Shafer Earth Sciences and Resources Institute University of South Carolina - Columbia Carbon Storage Program Infrastructure Annual Review Meeting Pittsburgh, PA November 15-17, 2011 Carbon Storage Program Infrastructure Annual Review Meeting - November 15-17, 2011 Research Team Carbon Storage Program Infrastructure Annual Review Meeting - November 15-17, 2011 John Shafer and Michael Waddell James Knapp and Camelia Knapp Lee Kurtzweil and Phil VanHollebeke C.W. "Bill" Clendenin Richard Berg James Rine Integrated Services Contract for Drilling/Coring/Logging - TBD Study Area Carbon Storage Program Infrastructure Annual Review Meeting - November 15-17, 2011

2

RECONNAISSANCE ASSESSMENT OF CO2 SEQUESTRATION POTENTIAL IN THE TRIASSIC AGE RIFT BASIN TREND OF SOUTH CAROLINA, GEORGIA, AND NORTHERN FLORIDA  

SciTech Connect

A reconnaissance assessment of the carbon dioxide (CO{sub 2}) sequestration potential within the Triassic age rift trend sediments of South Carolina, Georgia and the northern Florida Rift trend was performed for the Office of Fossil Energy, National Energy Technology Laboratory (NETL). This rift trend also extends into eastern Alabama, and has been termed the South Georgia Rift by previous authors, but is termed the South Carolina, Georgia, northern Florida, and eastern Alabama Rift (SGFAR) trend in this report to better describe the extent of the trend. The objectives of the study were to: (1) integrate all pertinent geologic information (literature reviews, drilling logs, seismic data, etc.) to create an understanding of the structural aspects of the basin trend (basin trend location and configuration, and the thickness of the sedimentary rock fill), (2) estimate the rough CO{sub 2} storage capacity (using conservative inputs), and (3) assess the general viability of the basins as sites of large-scale CO{sub 2} sequestration (determine if additional studies are appropriate). The CO{sub 2} estimates for the trend include South Carolina, Georgia, and northern Florida only. The study determined that the basins within the SGFAR trend have sufficient sedimentary fill to have a large potential storage capacity for CO{sub 2}. The deeper basins appear to have sedimentary fill of over 15,000 feet. Much of this fill is likely to be alluvial and fluvial sedimentary rock with higher porosity and permeability. This report estimates an order of magnitude potential capacity of approximately 137 billion metric tons for supercritical CO{sub 2}. The pore space within the basins represent hundreds of years of potential storage for supercritical CO{sub 2} and CO{sub 2} stored in aqueous form. There are many sources of CO{sub 2} within the region that could use the trend for geologic storage. Thirty one coal fired power plants are located within 100 miles of the deepest portions of these basins. There are also several cement and ammonia plants near the basins. Sixteen coal fired power plants are present on or adjacent to the basins which could support a low pipeline transportation cost. The current geological information is not sufficient to quantify specific storage reservoirs, seals, or traps. There is insufficient hydrogeologic information to quantify the saline nature of the water present within all of the basins. Water data in the Dunbarton Basin of the Savannah River Site indicates dissolved solids concentrations of greater than 10,000 parts per million (not potential drinking water). Additional reservoir characterization is needed to take advantage of the SGFAR trend for anthropogenic CO{sub 2} storage. The authors of this report believe it would be appropriate to study the reservoir potential in the deeper basins that are in close proximity to the current larger coal fired power plants (Albany-Arabi, Camilla-Ocilla, Alamo-Ehrhardt, and Jedburg basin).

Blount, G.; Millings, M.

2011-08-01T23:59:59.000Z

3

Hydrocarbons in rift basins: the role of stratigraphy  

Science Journals Connector (OSTI)

...versus shallow-water environments...A (1999) Hydrocarbons in rift basins...Facies and hydrocarbon potential The...availability of water. This can either...form seals for hydrocarbons. The shallow-water environ- ments...

1999-01-01T23:59:59.000Z

4

Hydrocarbons in rift basins: the role of stratigraphy  

Science Journals Connector (OSTI)

...succession that causes the shales to reach thermal maturity and generate hydrocarbons. Simple...T. J. 1988 Rift basins of interior Sudan--petroleum exploration and discovery...basins? Is that what we could call the thermal subsidence phase? J. J. Lambiase...

1999-01-01T23:59:59.000Z

5

The onshore northeast Brazilian rift basins: An early Neocomian aborted rift system  

SciTech Connect

Early Cretaceous rift basins of northeastern Brazil illustrate key three-dimensional geometries of intracontinental rift systems, controlled mainly by the basement structures. These basins were formed and then abandoned during the early extension associated with the north-south-propagating separation of South America and Africa. During the early Neocomian, extensional deformation jumped from the easternmost basins (group 1: Sergipe Alagoas and Gabon basins; group 2: Reconcavo, Tucano, and Jatoba basins) to the west, forming a series of northeast-trending intracratonic basins (group 3: Araripe, Rio do Peixe, Iguatu, Malhada Vermelha, Lima Campos, and Potiguar basins). The intracratonic basins of groups 2 and 3 consist of asymmetric half-grabens separated by basement highs, transfer faults, and/or accommodation zones. These basins are typically a few tens of kilometers wide and trend northeast-southwest, roughly perpendicular to the main extension direction during the early Neocomian. Preexisting upper crustal weakness zones, like the dominantly northeast-southwest-trending shear zones of the Brazilian orogeny, controlled the development of intracrustal listric normal faults. Internal transverse structures such as transfer faults (Reconcavo basin and onshore Potiguar basin) and accommodation zones (onshore Potiguar basin and Araripe basin) were also controlled by the local basement structural framework. Transverse megafaults and lithostructural associations controlled the three main rift trends. The megashear zones of Pernanbuco (Brazil)-Ngaundere (Africa) apparently behaved like a huge accommodation zone, balancing extensional deformation along the Reconcavo-Jatoba/Sergipe Alagoas-Gabon trends with simultaneous extension along the Araripe-Potiguar trend. The Sergipe Alagoas-Gabon trend and the Potiguar basin represent the site of continued evolution into a marginal open basin following early Neocomian deformation.

Matos, R. (Cornell Univ., Ithaca, NY (USA))

1990-05-01T23:59:59.000Z

6

Architecture of turbidite sandstone bodies in a rift-lake setting, Gabon Basin, offshore Gabon  

Science Journals Connector (OSTI)

The Lower Cretaceous Lucina Formation, part of the lacustrine syn-rift fill of the Gabon Basin, contains both channelized and non-channelized...c. 200 m.

R. D. A. Smith

1995-01-01T23:59:59.000Z

7

Gravity-driven structures and rift basin evolution: Rio Muni Basin, offshore equatorial West Africa  

SciTech Connect

Offshore Equatorial Guinea, west Africa, gravity-driven nappes, more than 1 km thick and 15 km from head to toe, provide key evidence in reconstructing the late synrift: evolution of this part of the South Atlantic margin basin system. Furthermore, Aptian-Cenomanian carbonate and clastic rocks in the nappes` allochthonous hanging walls are attracting interest as a new exploration play in west Africa. The nappes exhibit a range of geometries that suggest they share many of the same deformation processes as thin-skin thrust and linked extensional fault systems. Not only are these structures significant in their own right, representing a rare example of gravity tectonics in the virtual absence of major halokinesis, but their presence may record an other-wise undetectable process active during the transition from a rift basin to a passive continental margin. A review of Equatorial Guinea in its pre-Atlantic configuration, alongside neighboring basins in Brazil (the Sergipe-Alagoas basin) and Gabon, suggests that gravity gliding was sustained by a relatively steep, westward paleoslope promoted by east-ward offset of the locus of thermal uplift from the rift basin (i.e., a simple shear model of basin formation). In contrast to gravity-driven structures in most postrift settings, the Equatorial Guinea nappes developed at the close of the Aptian-Albian synrift episode in response to a growing bathymetric deep caused by rapid subsidence outpacing restricted sedimentation.

Turner, J.P. [Univ. of Birmingham (United Kingdom)

1995-08-01T23:59:59.000Z

8

The transition between the Sheba Ridge and Owen Basin: rifting of old oceanic lithosphere  

Science Journals Connector (OSTI)

......between the Sheba Ridge and Owen Basin: rifting of old oceanic lithosphere...Northwest Arabian Sea, in The Ocean Basins and Margins: the Indian Ocean...E to near 58"E in the 'bight' between two ridges projecting...continental margins of the Owen Basin and Gulf of Aden (Fig. 5......

Carol A. Stein; James R. Cochran

1985-04-01T23:59:59.000Z

9

AUSTRALIAN-ANTARCTIC RIFTING PESA Eastern Australasian Basins Symposium III Sydney, 1417 September, 2008 271  

E-Print Network (OSTI)

AUSTRALIAN-ANTARCTIC RIFTING PESA Eastern Australasian Basins Symposium III Sydney, 14­17 September Bight region to chron 20 farther to the west (Sayers et al. 2001; Colwell et al. 2006). Alternatively

Müller, Dietmar

10

Organic matter in the Paleogene west European rift: Bresse and Valence salt basins (France)  

SciTech Connect

The Bresse and Valence basins are two adjacent segments of the West European rift. They contain thick Paleogene halite sequences including intercalated and interfingering siliciclastic material and carbonate and sulfate deposits. Source rock samples in this study were mainly taken from the depocenters because of maximum sampling coverage. Organic matter (OM) is generally immature and occurs primarily within intercalated nonhalitic beds. The Bresse basin seems to contain more OM in (1) the Intermediate Salt Formation (Priabonian), composed of alternating laminated carbonate and halite beds; (2) the upper part of the Upper Salt Formation (clayey carbonate beds; Rupelian), affected by synsedimentary halite solution; and (3) the solution breccia which immediate overlies the salt sequence. In the Valence basin, the organic-rich layers are concentrated in the Subsalt Formation (carbonate beds; Priabonian), and the upper part of the Lower Salt Formation (laminates; Rupelian). In both basins, type III organic matter is associated with terrigenous facies. Type I is abundant in the Valence basin (laminites), and type II seems to be more abundant in the Bresse basin. The amount of OM varies considerably, and we suppose it is higher toward the basin margins. From studies made in evaporite basins in other region, which are also known to have significant amounts of organic matter, we find a similar range of organic composition. Such studies are of interest because of their petroleum potential and for understanding precise depositional environments and waste disposal problems (gas generation with local heat source).

Curial, A.; Dumas, D.; Moretto, R.

1988-08-01T23:59:59.000Z

11

Hydrocarbon accumulation on rifted Continental Margin - examples of oil migration pathways, west African salt basins  

SciTech Connect

Examination of the oil fields in the Gabon, Lower Congo, and Cuanza basins allows modeling of oil migration and a more accurate ranking of prospects using geologic risk factors. Oil accumulations in these basins are in strata deposited during Cretaceous rift and drift phases, thus providing a diversity of geologic settings to examine. Oil accumulations in rift deposits are located on large faulted anticlines or in truncated units atop horst features. Many of these oil fields were sourced from adjacent organic shales along short direct migration paths. In Areas where source rock is more remote to fields or to prospective structures, faulting and continuity of reservoir rock are important to the migration of hydrocarbons. Because Aptian salts separate rift-related deposits from those of the drift stage, salt evacuation and faulting of the salt residuum are necessary for oil migration from the pre-salt sequences into the post-salt section. Oil migration within post-salt strata is complicated by the presence of salt walls and faulted carbonate platforms. Hydrocarbon shows in wells drilled throughout this area provide critical data for evaluating hydrocarbon migration pathways. Such evaluation in combination with modeling and mapping of the organic-rich units, maturation, reservoir facies, structural configurations, and seals in existing fields allows assessment of different plays. Based on this information, new play types and prospective structures can be ranked with respect to geologic risk.

Blackwelder, B.W.

1989-03-01T23:59:59.000Z

12

Sedimentary dynamics and extensional structuring related to early Cretaceous rifting of Neocomian and Barremian deposits of the interior basin of Gabon  

Science Journals Connector (OSTI)

Recent field and subsurface data about the early Neocomian Ndombo series and the Neocomian to mid-Barremian Schistes series of the interior basin of Gabon further our understanding of the initial stages of early Cretaceous N4060E extensional rifting. The syn-rift series comprise fluviallacustrine claystonessandstones, rare conglomerates, and carbonates. The syn-rift fill begins with braided-stream feldspathic sandstones. These are overlain first by fluviallacustrine deposits and then by predominantly lacustrinepalustrine claystones, which are potential petroleum source rocks. The claystones are eroded in part and are capped by the pre-Aptian angular unconformity marking the end of Cretaceous rifting in the interior basin. This change in syn-rift facies and depositional environments reflects a rise in base level in response to accelerated subsidence after the initial stage of rifting. The syn-rift deposits form two fining-upward sequences several 1001000m thick.

M. Mbina Mounguengui; J. Lang; M. Guiraud

2008-01-01T23:59:59.000Z

13

Owens Valley A Major Rift between the Sierra Nevada Batholith and Basin and Range Province, U.S.A.  

Science Journals Connector (OSTI)

Quaternary volcanic features associated with the rift include: 1) Long Valley, a 17 by 32 km rhyolitic caldera...3...of Bishop Tuff, 2) Mono Craters rhyolitic ring structure north of Long Valley, 3) Big Pine basa...

Michael F. Sheridan

1978-01-01T23:59:59.000Z

14

Rift valley  

Science Journals Connector (OSTI)

Valleys of subsidence with long steep parallel walls, as originally defined...J. W. Gregory (1894). rift valleys are evidently the geomorphic equivalents of or...Rift Valley Structure..., Vol. V). Quennell be...

Rhodes W. Fairbridge

1968-01-01T23:59:59.000Z

15

Evaluation of geothermal potential of Rio Grande rift and Basin and Range province, New Mexico. Final technical report, January 1, 1977-May 31, 1978  

SciTech Connect

A study was made of the geological, geochemical and geophysical characteristics of potential geothermal areas in the Rio Grande rift and Basin and Range province of New Mexico. Both regional and site-specific information is presented. Data was collected by: (1) reconnaissance and detailed geologic mapping, emphasizing Neogene stratigraphy and structure; (2) petrologic studies of Neogene igneous rocks; (3) radiometric age-dating; (4) geochemical surveying, including regional and site-specific water chemistry, stable isotopic analyses of thermal waters, whole-rock and mineral isotopic studies, and whole-rock chemical analyses; and (5) detailed geophysical surveys, using electrical, gravity and magnetic techniques, with electrical resistivity playing a major role. Regional geochemical water studies were conducted for the whole state. Integrated site-specific studies included the Animas Valley, Las Cruces area (Radium Springs and Las Alturas Estates), Truth or Consequences region, the Albuquerque basin, the San Ysidro area, and the Abiquiu-Ojo Caliente region. The Animas Valley and Las Cruces areas have the most significant geothermal potential of the areas studied. The Truth or Consequences and Albuquerque areas need further study. The San Ysidro and Abiquiu-Ojo Caliente regions have less significant geothermal potential. 78 figs., 16 tabs.

Callender, J.F.

1985-04-01T23:59:59.000Z

16

Mid-continent rift system: a frontier hydrocarbon province  

SciTech Connect

The Mid-continent rift system can be traced by the Mid-continent geophysical anomaly (MGA) from the surface exposure of the Keweenawan Supergroup in the Lake Superior basin southwest in the subsurface through Wisconsin, Minnesota, Iowa, Nebraska, and Kansas. Outcrop and well penetrations of the late rift Keweenawan sedimentary rocks reveal sediments reflecting a characteristic early continental rift clastic sequence, including alluvial fans, deep organic-rich basins, and prograding fluvial plains. Sedimentary basins where these early rift sediments are preserved can be located by upward continuation of the aeromagnetic profiles across the rift trend and by gravity models. Studies of analog continental rifts and aulacogens show that these gravity models should incorporate (1) a deep mafic rift pillow body to create the narrow gravity high of the MGA, and (2) anomalously thick crust to account for the more regional gravity low. Preserved accumulations of rift clastics in central rift positions can then be modeled to explain the small scale notches which are found within the narrow gravity high. Indigenous oil in Keweenawan sediments in the outcrop area and coaly partings in the subsurface penetrations of the Keweenawan clastics support the analogy between these rift sediments and the exceptionally organic-rich sediments of the East African rift. COCORP data across the rift trend in Kansas show layered deep reflectors and large structures. There is demonstrable source, reservoir, and trap potential within the Keweenawan trend, making the Mid-Continent rift system a frontier hydrocarbon province.

Lee, C.K.; Kerr, S.D. Jr.

1984-04-01T23:59:59.000Z

17

Mid-Continent rift system: a frontier hydrocarbon province  

SciTech Connect

The Mid-Continent rift system can be traced by the Mid-Continent geophysical anomaly (MGA) from the surface exposure of the Keweenawan Supergroup in the Lake Superior basin southwest in the subsurface through Wisconsin, Minnesota, Iowa, Nebraska, and Kansas. Outcrop and well penetrations of the late rift Keweenawan sedimentary rocks reveal sediments reflecting a characteristic early continental rift clastic sequence, including alluvial fans, deep organic-rich basins, and prograding fluvial plains. Sedimentary basins where these early rift sediments are preserved can be located by upward continuation of the aeromagnetic profiles across the rift trend and by gravity models. Studies of analog continental rifts and aulacogens show that these gravity models should incorporate (1) a deep mafic rift pillow body to create the narrow gravity high of the MGA, and (2) anomalously thick crust to account for the more regional gravity low. Preserved accumulations of rift clastics in central rift positions can then be modeled to explain the small scale notches which are found within the narrow gravity high. Indigenous oil in Keweenawan sediments in the outcrop area and coaly partings in the subsurface penetrations of the Keweenawan clastics support the analogy between these rift sediments and the exceptionally organic-rich sediments of the East African rift. COCORP data across the rift trend in Kansas show layered deep reflectors and large structures. There is demonstrable source, reservoir, and trap potential within the Keweenawan trend, making the Mid-Continent rift system a frontier hydrocarbon province.

Lee, C.K.; Kerr, S.D. Jr.

1984-04-01T23:59:59.000Z

18

Stratigraphy and rifting history of the Mesozoic-Cenozoic Anza rift, Kenya  

SciTech Connect

Lithological and compositional relationships, thicknesses, and palynological data from drilling cuttings from five wells in the Anza rift, Kenya, indicate active rifting during the Late Cretaceous and Eocene-Oligocene. The earlier rifting possibly started in the Santonian-Coniacian, primarily occurred in the Campanian, and probably extended into the Maastrichtian. Anza rift sedimentation was in lacustrine, lacustrine-deltaic, fluvial, and flood-basin environments. Inferred synrift intervals in wells are shalier, thicker, more compositionally immature, and more poorly sorted than Lower Cretaceous ( )-lower Upper Cretaceous and upper Oligocene( )-Miocene interrift deposits. Synrift sandstone is mostly feldspathic or arkosic wacke. Sandstone deposited in the Anza basin during nonrift periods is mostly quartz arenite, and is coarser and has a high proportion of probable fluvial deposits relative to other facies. Volcanic debris is absent in sedimentary strata older than Pliocene-Holocene, although small Cretaceous intrusions are present in the basin. Cretaceous sandstone is cemented in places by laumontite, possibly recording Campanian extension. Early Cretaceous history of the Anza basin is poorly known because of the limited strata sampled; Jurassic units were not reached. Cretaceous rifting in the Anza basin was synchronous with rifting in Sudan and with the breakup and separation of South America and Africa; these events likely were related. Eocene-Oligocene extension in the Anza basin reflects different stresses. The transition from active rifting to passive subsidence in the Anza basin at the end of the Neogene, in turn, records a reconfigured response of east African plates to stresses and is correlated with formation of the East Africa rift.

Winn, R.D. Jr.; Steinmetz, J.C. (Marathon Oil Co., Littleton, CO (United States)); Kerekgyarto, W.L. (Marathon Oil Co., Houston, TX (United States))

1993-11-01T23:59:59.000Z

19

A marine geophysical study of the Wilkes Land rifted continental margin, Antarctica  

Science Journals Connector (OSTI)

......ARB, Adelie Rift Block; BB, Bight Basin; BC, Budd Coast; CWL, central...and post-rift sediments of the Bight Basin is interpreted at the base of the...and GA-199/09) across the Bight Basin (Fig. 1). The parameters utilized......

D. I. Close; A. B. Watts; H. M. J. Stagg

2009-05-01T23:59:59.000Z

20

Thermal and mechanical development of the East African Rift System  

E-Print Network (OSTI)

The deep basins, uplifted flanks, and volcanoes of the Western and Kenya rift systems have developed along the western and eastern margins of the 1300 km-wide East African plateau. Structural patterns deduced from field, ...

Ebinger, Cynthia Joan

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

E-Print Network 3.0 - active single basin Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

basins... ) existed during the Late Oligocene and Miocene when the rift basins of Thailand were active because active... into three main areas and tec- tonic provinces: 1)...

22

The balance between deposition and subsidence (tectonics) in a rift basin playa and its effect on the climatic record of an area: Evidence from Bristol Dry Lake, California  

SciTech Connect

Two continuous core intervals drilled in Bristol Dry Lake, a large (150 km{sup 2}) playa in the central Mojave Desert of California, penetrated over 500 m of sediment and did not reach basement. The repetitious nature of the alternating shallow brine pond halite and siliciclastic and the consistency of the carbonate isotopic data from the surface and core indicate a relatively stable brine composition for most of the history of Bristol Dry Lake. All sedimentary structures and primary halite fabrics in the core indicate shallow-water, brine-pond halite alternated with halite-saturated siliciclastic muds in the basin center. A delicate balance of subsidence and mechanical and chemical deposition of evaporite and siliciclastic minerals was necessary to maintain the largely ephemeral lake environment of deposition through over 550 m of basin fill. The alternating brine pond/saline lake setting in Bristol Dry Lake is not directly related to climatic influences, and the sediments do not record major climatic events demonstrated in other closed-basin lakes. The reason for this insensitivity to climatic events is explained by the interior location of the basin, the low relief of the mountains surrounding the catchment, the large surface area of the catchment, and the low average sedimentation rates. All of the above criteria are at least partially controlled by the tectonics of the area, which, in turn, affect the sedimentation rate and supply water to the basin. Therefore, it is important to consider the influence of the above factors in determining global versus local, or regional, climate curves for a particular basin.

Rosen, M.R. (CSIRO, Floreat Park (Australia))

1991-03-01T23:59:59.000Z

23

Georgia Erosion and Sedimentation Act (Georgia)  

Energy.gov (U.S. Department of Energy (DOE))

The Georgia Erosion and Sedimentation Act (GESA) is designed to protect vegetated buffers. GESA establishes a minimum undisturbed, vegetated buffer of 25 feet for all streams in Georgia (measured...

24

Rift Zone | Open Energy Information  

Open Energy Info (EERE)

Rift Zone Rift Zone Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Rift Zone Dictionary.png Rift Zone: A divergent plate boundary within a continent Other definitions:Wikipedia Reegle Tectonic Settings List of tectonic settings known to host modern geothermal systems: Extensional Tectonics Subduction Zone Rift Zone Hot Spot Non-Tectonic Strike-Slip The Rio Grande Rift exemplifies rift zone tectonics - increased volcanic activity and the formation of graben structures (reference: science-art.com) Rift valleys occur at divergent plate boundaries, resulting in large graben structures and increased volcanism. The East African Rift is an example of a continental rift zone with increased volcanism, while the Atlantic's spreading Mid-Ocean Ridge is host to an enormous amount of geothermal

25

Georgia Water Quality Control Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Water Quality Control Act (Georgia) Georgia Water Quality Control Act (Georgia) Georgia Water Quality Control Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Water Quality Control Act (WQCA) is a set of environmental regulations and permitting requirements that comply with the federal Clean Water Act. The Georgia Water Quality Control Act is enforced by the Georgia

26

Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan, Et Al.,  

Open Energy Info (EERE)

Morgan, Et Al., Morgan, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan, Et Al., 2010) Exploration Activity Details Location Rio Grande Rift Geothermal Region Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes San Luis Basin (south-central CO) regional study. References Paul Morgan, Peter Barkmann, Charles Kluth, Matthew Sares (2010) Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Rio_Grande_Rift_Region_(Morgan,_Et_Al.,_2010)&oldid=401472" Category: Exploration

27

Georgia Utility Facility Protection Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Utility Facility Protection Act (Georgia) Georgia Utility Facility Protection Act (Georgia) Georgia Utility Facility Protection Act (Georgia) < Back Eligibility Agricultural Commercial Construction General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Safety and Operational Guidelines Siting and Permitting Provider Utilities Protection Center of Georgia The Georgia Utility Facility Protection Act (GUFPA) was established to protect the underground utility infrastructure of Georgia. GUFPA mandates that, before starting any mechanized digging or excavation work, you must

28

Georgia Tech Dangerous Gas  

E-Print Network (OSTI)

1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

Sherrill, David

29

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

3. Estimated rail transportation rates for coal, basin to state, EIA data 3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $28.49 - W W - Northern Appalachian Basin Florida - $38.51 $39.67 - 3.0 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $20.35 $16.14 $16.64 -9.6 3.1 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $19.64 $19.60 $20.41 1.9 4.2 Northern Appalachian Basin Michigan $14.02 $16.13 $16.23 7.6 0.6 Northern Appalachian Basin New Hampshire $43.43 $40.18 $39.62 -4.5 -1.4

30

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

4. Estimated rail transportation rates for coal, basin to state, EIA data 4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware $26.24 - W W - Northern Appalachian Basin Florida - $35.10 $35.74 - 1.8 Northern Appalachian Basin Georgia - W - - - Northern Appalachian Basin Indiana $18.74 $14.70 $14.99 -10.6 1.9 Northern Appalachian Basin Kentucky - - W - - Northern Appalachian Basin Maryland $18.09 $17.86 $18.39 0.8 3.0 Northern Appalachian Basin Michigan $12.91 $14.70 $14.63 6.4 -0.5 Northern Appalachian Basin New Hampshire $40.00 $36.62 $35.70 -5.5 -2.5

31

GEORGIA SOUTHERN UNIVERSITY University System of Georgia  

E-Print Network (OSTI)

, Health and Human Sciences, the Allen E. Paulson College of Engineering and Information Technology the state of Georgia and the region through the benefits of higher education, offering both campus of Education / Curriculum, Foundations, and Reading Georgia Southern University invites nominations

Hutcheon, James M.

32

GEORGIA SOUTHERN UNIVERSITY University System of Georgia  

E-Print Network (OSTI)

: Business Administration, Education, Health and Human Sciences, Information Technology, Liberal Arts the State of Georgia and the region through the benefits of higher education, offering both campus institution of the University System of Georgia, invites nominations and applications for a tenure track

Hutcheon, James M.

33

Georgia Commercial Laboratory Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Commercial Laboratory Act (Georgia) Georgia Commercial Laboratory Act (Georgia) Georgia Commercial Laboratory Act (Georgia) < Back Eligibility Commercial Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Equipment Certification Provider Georgia Department of Natural Resources The Georgia Commercial Laboratory Act requires all commercial environmental laboratories submitting data to the Environmental Protection Division (EPD) for regulatory purposes to be approved or accredited by an EPD approved accrediting authority. Data submitted for regulatory purposes means any data which is to be submitted to the EPD, or required to be retained on

34

Selected bibliography of the Southern Appalachian basin area: Alabama-Georgia-Kentucky-North Carolina-South Carolina-Tennessee-Virginia-West Virginia  

SciTech Connect

This bibliography contains 2972 records related to the geology of the Southern Appalachian basin. Specific topics include, but are not limited to: coal, petroleum, oil shale, and natural gas deposits; mineralogy; lithology; petrology; stratigraphy; tectonics; drilling; geochemistry; geophysics; geologic structures; and uranium deposits. The subject index provides listings of records related to each state and the geologic ages covered by this area. Some of the items (24) are themselves bibliographies.

Lindh, L.; McLaughlin, J.E.

1985-01-01T23:59:59.000Z

35

Geological Modeling of Dahomey and Liberian Basins  

E-Print Network (OSTI)

eastern Ivory Coast, off Benin and western Nigeria, and off the Brazilian conjugates of these areas), while large areas were subjected to transform rifting (northern Sierra Leone, southern Liberia, Ghana and the Brazilian conjugates of these areas...). The future Demerara-Guinea marginal plateaus were also progressively subjected to this new rifting event. Stage 2: In Aptian times, the progress of rifting resulted in the creation of small divergent Basins (off northern Liberia, eastern Ivory Coast, Benin...

Gbadamosi, Hakeem B.

2010-01-16T23:59:59.000Z

36

From continental extension to seafloor spreading: crustal structure of the Goban Spur rifted margin, southwest of the UK  

Science Journals Connector (OSTI)

......central Great Australian Bight (Sayers 2001), oceanic...north by the Porcupine Basin and to the south by the...beneath the Porcupine Basin, southwest of Ireland...central Great Australian Bight, in Non-volcanic Rifting...the Porcupine Seabight Basin and adjacent continental......

Andrew D. Bullock; Timothy A. Minshull

2005-11-01T23:59:59.000Z

37

6Seismic stratigraphy and subsidence history of the United Arab Emirates (UAE) rifted margin  

E-Print Network (OSTI)

6Seismic stratigraphy and subsidence history of the United Arab Emirates (UAE) rifted margin and into the oil window in response of formation of a foreland basin (Ali and Watts 2009). Foreland basins develop by lithospheric flexure in front of migrating thrust and fold loads (e.g., Price 1971; Beaumont 1981

Watts, A. B. "Tony"

38

Georgia Hazardous Site Response Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Response Act (Georgia) Site Response Act (Georgia) Georgia Hazardous Site Response Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Public Benefits Fund Provider Georgia Department of Natural Resources The Georgia Hazardous Site Response Act is Georgia's version of

39

The midcontinent rift system  

E-Print Network (OSTI)

.annualreviews.org/aronline Annual Reviews www.annualreviews.org/aronline Annual Reviews MIDCONTINENT RIFT SYSTEM 347 www.annualreviews.org/aronline Annual Reviews 348 VAN SCHMUS & HINZE mid-Michigan geophysical anomaly, east-continent geophysical anoma...). Subsequently, deep seismic reflection profiling by the Consortium for Continental Reflection Profiling (COCORP) identified a structural trough containing layered formations beneath the Phanerozoic sedimentary rocks and coinciding with the mid-Michigan anomaly...

Van Schmus, W. R.; Hinze, W. J.

1985-01-01T23:59:59.000Z

40

The northeast Georgia hydroelectric plants.  

E-Print Network (OSTI)

??The Northeast Georgia hydroelectric plants are important cultural resources to the state of Georgia and the communities immediately adjacent. If the early technology of these (more)

Kelly, Nancy Elizabeth

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A geological and geophysical study of the Sergipe-Alagoas Basin  

E-Print Network (OSTI)

in northeastern Brazil (north of Salvador). The extensional stress that created this rift was caused by a change in the force acting on the plate during the Aptian. A series of offshore rifts also opened at this time, adjacent to the R-T-J rift................................................................................ 16 Offshore Basin Geology............................................................................. 17 Sergipe-Alagoas Geology........................................................................... 17 Lower Cretaceous Unconformity...

Melton, Bradley Douglas

2008-10-10T23:59:59.000Z

42

Georgia Underground Storage Tank Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Underground Storage Tank Act (Georgia) Underground Storage Tank Act (Georgia) Georgia Underground Storage Tank Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks

43

Georgia Safe Dams Act of 1978 (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safe Dams Act of 1978 (Georgia) Safe Dams Act of 1978 (Georgia) Georgia Safe Dams Act of 1978 (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Home Weatherization Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The purpose of the Georgia Safe Dams Act is to provide regulation,

44

Georgia Air Quality Control Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Air Quality Control Act (Georgia) Air Quality Control Act (Georgia) Georgia Air Quality Control Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Climate Policies Environmental Regulations Provider Georgia Department of Natural Resources The Georgia Air Quality Control Act (AQCA) is a set of environmental regulations, permitting requirements, and air quality standards that control the amount of pollutants emitted and who emits them. The AQCA

45

Georgia Groundwater Use Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Groundwater Use Act (Georgia) Groundwater Use Act (Georgia) Georgia Groundwater Use Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The purpose of the Georgia Groundwater Use Act is to establish procedures

46

SAVANNAH HARBOR EXPANSION PROJECT CHATHAM COUNTY, GEORGIA AND JASPER COUNTY, SOUTH CAROLINA  

E-Print Network (OSTI)

SAVANNAH HARBOR EXPANSION PROJECT CHATHAM COUNTY, GEORGIA AND JASPER COUNTY, SOUTH CAROLINA 22 (Kings Island Turning Basin at Stations 98+500 to 100+500) 5 feet deeper (to an authorized navigation #12

US Army Corps of Engineers

47

Georgia Underground Gas Storage Act of 1972 (Georgia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Underground Gas Storage Act of 1972 (Georgia) Georgia Underground Gas Storage Act of 1972 (Georgia) Georgia Underground Gas Storage Act of 1972 (Georgia) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Underground Gas Storage Act, which permits the building of reserves for withdrawal in periods of peak demand, was created to promote the economic development of the State of Georgia and provide for more economical distribution of gas to the domestic, commercial, and industrial consumers of the State. Any gas utility desiring to utilize or operate an

48

GEORGIA SOUTHERN UNIVERSITY University System of Georgia  

E-Print Network (OSTI)

, Health and Human Sciences, the Allen E. Paulson College of Engineering and Information Technology the State of Georgia and the region through the benefits of higher education, offering both campus nominations and applications for two Assistant Professor positions in the School of Nursing in the College

Hutcheon, James M.

49

Georgia Cities Foundation - Green Communities Revolving Loan Fund (Georgia)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Cities Foundation - Green Communities Revolving Loan Fund Georgia Cities Foundation - Green Communities Revolving Loan Fund (Georgia) Georgia Cities Foundation - Green Communities Revolving Loan Fund (Georgia) < Back Eligibility Commercial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Appliances & Electronics Construction Design & Remodeling Other Ventilation Heat Pumps Commercial Lighting Lighting Insulation Water Heating Solar Maximum Rebate $250,000 Program Info Funding Source Georgia Environmental Facilities Authority State Georgia Program Type State Loan Program Rebate Amount $10,000-$250,000 Provider Georgia Cities Foundation The Green Communities Fund is a revolving loan fund providing low-interest loans to businesses located within the city limits of any city in Georgia.

50

Georgia Radiation Control Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Radiation Control Act (Georgia) Georgia Radiation Control Act (Georgia) Georgia Radiation Control Act (Georgia) < Back Eligibility Commercial Construction Industrial Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Radiation Control Act is designed to prevent any associated harmful effects upon the environment or the health and safety of the public through the institution and maintenance of a regulatory program for radioactive material waste sources. The act provides that all facilities or sites for the concentration, storage or burial of radioactive waste must be constructed and operate pursuant to a permit issued by the Director of the Environmental Protection Division (EPD). The director may specify in the

51

Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia) Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia) Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Comprehensive Solid Waste Management Act (SWMA) of 1990 was implemented in order to improve solid waste management procedures,

52

Gulf of California Rift Zone Geothermal Region | Open Energy...  

Open Energy Info (EERE)

Gulf of California Rift Zone Geothermal Region (Redirected from Gulf of California Rift Zone) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Gulf of California Rift...

53

Georgia Waste Control Law (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Waste Control Law (Georgia) Waste Control Law (Georgia) Georgia Waste Control Law (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Provider Georgia Department of Natural Resources The Waste Control Law makes it unlawful to dump waste in any lakes, streams

54

South Atlantic sag basins: new petroleum system components  

SciTech Connect

Newly discovered pre-salt source rocks, reservoirs and seals need to be included as components to the petroleum systems of both sides of the South Atlantic. These new components lie between the pre-salt rift strata and the Aptian salt layers, forming large, post-rift, thermal subsidence sag basins. These are differentiated from the older rift basins by the lack of syn-rift faulting and a reflector geometry that is parallel to the base salt regional unconformity rather than to the Precambrian basement. These basins are observed in deep water regions overlying areas where both the mantle and the crust have been involved in the extension. This mantle involvement creates post-rift subsiding depocenters in which deposition is continuous while proximal rift-phase troughs with little or no mantle involvement are bypassed and failed to accumulate potential source rocks during anoxic times. These features have been recognized in both West African Kwanza Basin and in the East Brasil Rift systems. The pre-salt source rocks that are in the West African sag basins were deposited in lacustrine brackish to saline water environment and are geochemically distinct from the older, syn-rift fresh to brackish water lakes, as well as from younger, post-salt marine anoxic environments of the drift phase. Geochemical analyses of the source rocks and their oils have shown a developing source rock system evolving from isolated deep rift lakes to shallow saline lakes, and culminating with the infill of the sag basin by large saline lakes to a marginally marine restricted gulf. Sag basin source rocks may be important in the South Atlantic petroleum system by charging deep-water prospects where syn-rift source rocks are overmature and the post-salt sequences are immature.

Henry, S.G. [GeoLearn, Houston, TX (United States)] Mohriak, W.U. [Petroleo Brasileiro, S.A., Exploration and Production, Rio de Janeiro (Brazil); Mello, M.R. [Petroleo Brasieiro, S.A., Research Center, Rio de Janeiro (Brazil)

1996-08-01T23:59:59.000Z

55

Georgia Interfaith Power and Light - Energy Improvement Grants (Georgia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Interfaith Power and Light - Energy Improvement Grants Georgia Interfaith Power and Light - Energy Improvement Grants (Georgia) Georgia Interfaith Power and Light - Energy Improvement Grants (Georgia) < Back Eligibility Institutional Nonprofit Schools Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Other Windows, Doors, & Skylights Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Solar Program Info Funding Source The Kendeda Fund State Georgia Program Type Non-Profit Grant Program Provider Georgia Interfaith Power and Light Georgia Interfaith Power and Light (GIPL) offers grants of up to $10,000 to congregations or faith-based communities, including faith-based schools.

56

Georgia Surface Mining Act of 1968 (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Mining Act of 1968 (Georgia) Surface Mining Act of 1968 (Georgia) Georgia Surface Mining Act of 1968 (Georgia) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources This law regulates all surface mining in Georgia, including the coastal zone. It includes provisions to "advance the protection of fish and wildlife and the protection and restoration of land, water, and other resources affected by mining." It establishes authority with Georgia DNR's Environmental Protection Division to issue mining permits consistent with the purposes of the Act. Prior to commencing any surface mining operation a mining operator shall be required to obtain a permit to

57

Georgia.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Georgia Georgia www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

58

Georgia.indd  

NLE Websites -- All DOE Office Websites (Extended Search)

Georgia Georgia www.effi cientwindows.org March 2013 1. Meet the Energy Code and Look for the ENERGY STAR ® Windows must comply with your local energy code. Windows that are ENERGY STAR qualifi ed typically meet or exceed energy code requirements. To verify if specific window energy properties comply with the local code requirements, go to Step 2. 2. Look for Effi cient Properties on the NFRC Label The National Fenestration Rating Council (NFRC) label is needed for verifi cation of energy code compliance (www.nfrc. org). The NFRC label displays whole- window energy properties and appears on all fenestration products which are part of the ENERGY STAR program.

59

Geometry and scaling relations of a population of very small rift-related normal faults  

E-Print Network (OSTI)

normal faults within the Solite Quarry of the Dan River rift basin range in length from a few millimetres AND SCALING RELATIONS The small normal faults are present in quarries of the Virginia Solite Corporation outcrops and quarried boulders (Fig. 2). The fault traces are typically straight, although the fault tips

60

Timing and Tectonic implications of basin inversion in the Nam Con Son Basin and adjacent areas, southern South China Sea  

E-Print Network (OSTI)

and Malay basins. Contraction in the Western NCS, West Natuna, and Malay basins was accommodated through reactivation of major basin-bounding fault systems that resulted in asymmetric fault-bend folding of syn- and early post-rift strata. Inversion...

Olson, Christopher Charles

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Georgia Environmental Finance Authority - Residential Energy Efficiency  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Environmental Finance Authority - Residential Energy Georgia Environmental Finance Authority - Residential Energy Efficiency Loan Program (Georgia) Georgia Environmental Finance Authority - Residential Energy Efficiency Loan Program (Georgia) < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Design & Remodeling Windows, Doors, & Skylights Ventilation Construction Heating Heat Pumps Water Heating Program Info State Georgia Program Type State Loan Program Rebate Amount Oglethorpe Power Corporation: $5,500 Electric Cities of Georgia: up to $5,000 Municipal Gas Authority of Georgia: up to $5,000 Estes Heating and Air (Statewide): $10,000 The Georgia Environmental Finance Authority (GEFA) encourages Georgians to

62

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC.  

E-Print Network (OSTI)

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. Compliance Reports For the Year Ended June 30, 2011 #12;UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. Table of Contents Page Financial Statements of Georgia Research Foundation, Inc. Athens, Georgia Compliance We have audited the University of Georgia

Hall, Daniel

63

Origin of cratonic basins  

SciTech Connect

Tectonic subsidence curves show that the Illinois, Michigan, and Williston basins formed by initial fault-controlled mechanical subsidence during rifting and by subsequent thermal subsidence. Thermal subsidence began around 525 Ma in the Illinois Basin, 520-460 Ma in the Michigan Basin, and 530-500 Ma in the Williston Basin. In the Illinois Basin, a second subsidence episode (middle Mississippian through Early Permian) was caused by flexural foreland subsidence in response to the Alleghanian-Hercynian orogeny. Past workers have suggested mantle phase changes at the base of the crust, mechanical subsidence in response to isostatically uncompensated excess mass following igneous intrusions, intrusion of mantle plumes into the crust, or regional thermal metamorphic events as causes of basin initiation. Cratonic basins of North America, Europe, Africa, and South America share common ages of formation, histories of sediment accumulation, temporal volume changes of sediment fills, and common dates of interregional unconformities. Their common date of formation suggests initiation of cratonic basins in response to breakup of a late Precambrian supercontinent. This supercontinent acted as a heat lens that caused partial melting of the lower crust and upper mantle followed by emplacement of anorogenic granites during extensional tectonics in response to supercontinent breakup. Intrusion of anorogenic granites and other partially melted intrusive rocks weakened continental lithosphere, thus providing a zone of localized regional stretching and permitting formation of cratonic basins almost simultaneously over sites of intrusion of these anorogenic granites and other partially melted intrusive rocks.

de V. Klein, G.; Hsui, A.T.

1987-12-01T23:59:59.000Z

64

Georgia Oil and Gas Deep Drilling act of 1975 (Georgia)  

Energy.gov (U.S. Department of Energy (DOE))

Georgia's Oil and Gas and Deep Drilling Act regulates oil and gas drilling activities to provide protection of underground freshwater supplies and certain "environmentally sensitive" areas. The...

65

GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEORGIA RECOVERY ACT SNAPSHOT GEORGIA RECOVERY ACT SNAPSHOT GEORGIA RECOVERY ACT SNAPSHOT Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Georgia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Georgia's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Georgia to play an important role in the new energy economy of the future. GEORGIA RECOVERY ACT SNAPSHOT More Documents & Publications

66

GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEORGIA RECOVERY ACT SNAPSHOT GEORGIA RECOVERY ACT SNAPSHOT GEORGIA RECOVERY ACT SNAPSHOT Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Georgia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Georgia's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Georgia to play an important role in the new energy economy of the future. GEORGIA RECOVERY ACT SNAPSHOT More Documents & Publications

67

Georgia/Geothermal | Open Energy Information  

Open Energy Info (EERE)

Georgia/Geothermal Georgia/Geothermal < Georgia Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Georgia Geothermal General Regulatory Roadmap Geothermal Power Projects Under Development in Georgia No geothermal projects listed. Add a geothermal project. Operational Geothermal Power Plants in Georgia No geothermal power plants listed. Add a geothermal energy generation facility. Geothermal Areas in Georgia No areas listed. GRR-logo.png Geothermal Regulatory Roadmap for Georgia Overview Flowchart The flowcharts listed below were developed as part of the Geothermal Regulatory Roadmap project. The flowcharts cover the major requirements for developing geothermal energy, including, land access, exploration and drilling, plant construction and operation, transmission siting, water

68

Trans-Hudson orogen and Williston basin in Montana and North Dakota: New COCORP deep-profiling results  

E-Print Network (OSTI)

Trans-Hudson orogen and Williston basin in Montana and North Dakota: New COCORP deep) There is no evidence for a precursor rift basin beneath the axis of the Williston basin_ With the exception of small-scale structures (e.g., Nesson and Cedar Creek anticlines), the basement surface beneath the Williston basin

Jones, Alan G.

69

Microsoft Word - georgia.doc  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia Georgia NERC Region(s) ....................................................................................................... SERC Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 36,636 7 Electric Utilities ...................................................................................................... 26,639 3 Independent Power Producers & Combined Heat and Power ................................ 9,998 11 Net Generation (megawatthours) ........................................................................... 137,576,941 8

70

Microsoft Word - georgia.doc  

Gasoline and Diesel Fuel Update (EIA)

Georgia Georgia NERC Region(s) ....................................................................................................... SERC Primary Energy Source........................................................................................... Coal Net Summer Capacity (megawatts) ....................................................................... 36,636 7 Electric Utilities ...................................................................................................... 26,639 3 Independent Power Producers & Combined Heat and Power ................................ 9,998 11 Net Generation (megawatthours) ........................................................................... 137,576,941 8

71

Gulf of California Rift Zone Geothermal Region | Open Energy...  

Open Energy Info (EERE)

Gulf of California Rift Zone Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Gulf of California Rift Zone Geothermal Region Details Areas (0) Power...

72

Soil Gas Sampling At Kilauea East Rift Geothermal Area (Cox,...  

Open Energy Info (EERE)

Soil Gas Sampling At Kilauea East Rift Geothermal Area (Cox, 1980) Exploration Activity Details Location Kilauea East Rift Geothermal Area Exploration Technique Soil Gas Sampling...

73

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC.  

E-Print Network (OSTI)

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. Compliance Reports For the Year Ended June 30, 2010 #12;UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. Table of Contents Page Financial Statements Foundation, Inc. Athens, Georgia Compliance We have audited the University of Georgia Research Foundation

Hall, Daniel

74

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC.  

E-Print Network (OSTI)

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. Compliance Reports For the Year Ended June 30, 2009 #12;UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. Table of Contents Page Financial Statements of Directors University of Georgia Research Foundation, Inc. Athens, Georgia Compliance We have audited

Hall, Daniel

75

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC.  

E-Print Network (OSTI)

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. Financial Statements for the year ended June 30, 2010 #12;UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. Contents Page Report of Independent Auditors 2 of Georgia Research Foundation, Inc. Athens, Georgia We have audited the accompanying statement of net assets

Hall, Daniel

76

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC.  

E-Print Network (OSTI)

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. Financial Statements for the year ended June 30, 2011 #12;2 UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. Contents Page Report of Independent Auditors of Directors University of Georgia Research Foundation, Inc. Athens, Georgia We have audited the accompanying

Arnold, Jonathan

77

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC.  

E-Print Network (OSTI)

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. Compliance Reports For the Year Ended June 30, 2012 #12;UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. Table of Contents Page Financial Statements Circular A-133 To the Board of Directors University of Georgia Research Foundation, Inc. Athens, Georgia

Hall, Daniel

78

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC.  

E-Print Network (OSTI)

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. Financial Statements for the year ended June 30, 2012 #12;UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. Contents 2 Page Report of Independent Auditors of Directors University of Georgia Research Foundation, Inc. Athens, Georgia We have audited the accompanying

Arnold, Jonathan

79

Georgia/Incentives | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Georgia/Incentives < Georgia Jump to: navigation, search Contents 1 Financial Incentive Programs for Georgia 2 Rules, Regulations and Policies for Georgia Download All Financial Incentives and Policies for Georgia CSV (rows 1 - 130) Financial Incentive Programs for Georgia Download Financial Incentives for Georgia CSV (rows 1 - 77) Incentive Incentive Type Active Alternative Fuel Vehicle Credit - Corporate (Georgia) Corporate Tax Credit No Alternative Fuel Vehicle Credit - Personal (Georgia) Personal Tax Credit No Amicalola EMC - Energy Resource Conservation (ERC) Loan (Georgia) Utility Loan Program No

80

Alternative Fuels Data Center: Georgia Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Georgia Information to Georgia Information to someone by E-mail Share Alternative Fuels Data Center: Georgia Information on Facebook Tweet about Alternative Fuels Data Center: Georgia Information on Twitter Bookmark Alternative Fuels Data Center: Georgia Information on Google Bookmark Alternative Fuels Data Center: Georgia Information on Delicious Rank Alternative Fuels Data Center: Georgia Information on Digg Find More places to share Alternative Fuels Data Center: Georgia Information on AddThis.com... Georgia Information This state page compiles information related to alternative fuels and advanced vehicles in Georgia and includes new incentives and laws, alternative fueling station locations, truck stop electrification sites, fuel prices, and local points of contact. Select a new state Select a State Alabama Alaska Arizona Arkansas

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Rio Grande rift: problems and perspectives  

SciTech Connect

Topics and ideas addressed include: (1) the regional extent of the Rio Grande rift; (2) the structure of the crust and upper mantle; (3) whether the evidence for an axile dike in the lower crust is compelling; (4) the nature of faulting and extension in the crust; and (5) the structural and magmatic development of the rift. 88 references, 5 figures.

Baldridge, W.S.; Olsen, K.H.; Callender, J.F.

1984-01-01T23:59:59.000Z

82

2014 Race to Zero Student Design Competition: Georgia Institute...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Institute of Technology Profile 2014 Race to Zero Student Design Competition: Georgia Institute of Technology Profile 2014 Race to Zero Student Design Competition: Georgia...

83

Georgia Power Company (GPC), Oglethorpe Power Corporation (OPC...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Georgia Power Company (GPC), Oglethorpe Power Corporation (OPC), Municipal Electric Authority of Georgia (MEAG) Georgia Power Company (GPC), Oglethorpe Power Corporation (OPC),...

84

Mesozoic tectonic inversion in the Neuquen Basin of west-central Argentina  

E-Print Network (OSTI)

Mesozoic tectonic inversion in the Neuquen Basin of west-central Argentina produced two main fault systems: (1) deep faults that affected basement and syn-rift strata where preexisting faults were selectively reactivated during inversion based...

Grimaldi Castro, Gabriel Orlando

2007-04-25T23:59:59.000Z

85

Georgia Mountain | Open Energy Information  

Open Energy Info (EERE)

Georgia Mountain Georgia Mountain Jump to: navigation, search Name Georgia Mountain Facility Georgia Mountain Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner All Earth Renewables Developer All Earth Renewables Energy Purchaser Green Mountain Power Location Milton VT Coordinates 44.662351°, -73.067991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.662351,"lon":-73.067991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

86

Georgia | Building Energy Codes Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Georgia Georgia Last updated on 2013-07-18 Commercial Residential Code Change Current Code 2009 IECC with Amendments Amendments / Additional State Code Information GA Amendments Approved Compliance Tools Can use COMcheck Must choose ASHRAE 90.1-2007 as code option. State Specific Research Impacts of ASHRAE 90.1-2007 for Commercial Buildings in the State of Georgia (BECP Report, Sept. 2009) Approximate Energy Efficiency Equivalent to 2009 IECC Effective Date 01/01/2011 Adoption Date 11/03/2010 Code Enforcement Mandatory DOE Determination ASHRAE 90.1-2007: Yes ASHRAE 90.1-2010: No Georgia State Certification of Commercial and Residential Building Codes Extension Request Current Code 2009 IECC with Amendments Amendments / Additional State Code Information GA Amendments Approved Compliance Tools Can use REScheck

87

Recovery Act State Memos Georgia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Georgia For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION TABLE.............................................................................. 2 ENERGY EFFICIENCY ............................................................................................... 3 RENEWABLE ENERGY ............................................................................................. 5

88

Georgia politics, 1732-1775  

E-Print Network (OSTI)

1733 law forbade the "Visit, frequent haunt, Trade to Traffick or Barter" with the Indians of Georgia unless duly licensed by the Georgia covernment. Prescribed punishment for violators of the law was a one hundred pounds sterling fine. Goods... perfected his chinaware for sale. Everyone, including Stephens, wished him well in his new production, if for no other reason than it would be of benefit to the prosperity of the struggling colony. Writing to the Trustees, however, Stephens ex- pressed...

Dennis, Joseph Lloyd

1967-01-01T23:59:59.000Z

89

Shore Protection Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Shore Protection Act (Georgia) Shore Protection Act (Georgia) Shore Protection Act (Georgia) < Back Eligibility Commercial Construction Developer Industrial Investor-Owned Utility Transportation Utility Savings Category Water Buying & Making Electricity Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Shore Protection Act is the primary legal authority for protection and management of Georgia's shoreline features including sand dunes, beaches, sandbars, and shoals, collectively known as the sand-sharing system. The value of the sand-sharing system is recognized as vitally important in protecting the coastal marshes and uplands from Atlantic storm activity, as well as providing valuable recreational opportunities.

90

Geology of the Douala basin, offshore Cameroon, West Africa  

SciTech Connect

The Douala basin is predominantly an offshore basin extending from the Cameroon volcanic line in the north to the Corisco arch in the south near the Equatorial Guinea-Gabon border. The basin lies wholly within the territorial borders of Cameroon and Equatorial Guinea. The Douala basin is one of a series of divergent margin basins occurring along the southwest African coastline resulting from the rifting of Africa from South America. Continental rifting in the Doula basin was initiated at least by Aptian-Albian time and possibly as early as Jurassic. The rift stage persisted until Albian time when the onset of drifting occurred. The sedimentary section in the basin has a maximum thickness of 8-10 km, based on exploration drilling and gravity and magnetics modeling. The synrift section consists of Aptian-Albian sands and shales, deposited primarily as submarine fans, fan-deltas, and turbidite deposits. These are overlain by salt, thought to be equivalent to the Ezagna salt of Aptian age in the Gabon basin to the south. The synrift section is separated from the overlying postrift shale sequence of Late Cretaceous and Tertiary age by a major late Albian unconformity. The Douala basin has been explored for hydrocarbons intermittently over the last 25 years. Results show a distinct tendency for gas-proneness. The largest field recorded to date is the Sanaga Sud gas field, discovered in 1979, offshore, near the coastal city of Kribi.

Pauken, R.J.; Thompson, J.M.; Schumann, J.R. (Mobil New Exploration Ventures Co., Dallas, TX (United States)); Cooke, J.C. (Mobil Exploration and Production Services Inc., Dallas, TX (United States))

1991-03-01T23:59:59.000Z

91

Rifting of the Izu-Bonin arc in the Quaternary and Mid-Oligocene  

SciTech Connect

Eruption of middle Eocene-lower Oligocene boninites and island arc tholeiites created the 200 km wide Izu-Bonin arc massif following the initiation of subduction {approximately}50 Ma. Mid-Oligocene rifting formed a 40-70 km wide forearc basin between the Eocene outer-arc high and the Eo-Oligocene arc (now the frontal arc high), with maximum extension at the latitudes of the Bonin Ridge and Trough. The Oligocene forearc basin was rapidly (100-300 m/m.y.) filled with turbidite and debris flow deposits produced by concurrent volcanism and erosion of the surrounding highs. Contemporaneous stretching in the backarc region produced dominantly east-dipping, NNE-trending, normal faults and culminated in backarc spreading in the Shikoku basin (25-15 Ma), isolating the Palau-Kyushu remnant arc. The forearc and remnant arc sediments record a dearth of volcanogenic input between 23 and 17 Ma; evidence that an arc volcanic minimum accompanied backarc spreading. The middle Miocene to Recent volcanic front formed 0(S)-50(N) km west of the Oligocene arc and has loaded and flexed the forearc. Further west, chains of submarine volcanoes erupted along the extension of Shikoku basin fracture zones. Basaltic sills were emplaced in the forearc. Explosive volcanism from rhyolitic calderas has increased dramatically since the late Pliocene, especially in the last 0.2 Ma. Since {approximately}2 Ma the arc has been stretched again, producing rapidly subsiding (300-2,250 m/m.y.) graben, immediately west of the volcanic front, which are segmented along strike by oblique transfer zones. The Sumisu Rift is partially filled with (<1.5 Ma) volcaniclastic turbidites and hemipelagic sediments and is intruded by backarc basin basalts. About 1 km of syn-rift uplift of the arc margin footwall has produced an unconformity, beneath surficial pumice, that extends back to pumiceous sediments >2.35 Ma.

Taylor, B. (Univ. of Hawaii, Honolulu (USA))

1990-06-01T23:59:59.000Z

92

MARKETING GRADUATE ASSISTANT Georgia Southern University  

E-Print Network (OSTI)

MARKETING GRADUATE ASSISTANT Georgia Southern University Department of University Housing Job Analysis General Description: The Marketing Graduate Assistant is a University Housing staff member who is enrolled in a Georgia Southern University graduate program. The Marketing Graduate Assistant provides vital

Hutcheon, James M.

93

Comparative Precambrian stratigraphy and structure along the Mid-Continent rift  

SciTech Connect

The Mid-Continent rift is a geophysically identified tectonic structure that has been traced from Kansas northeastward into the Lake Superior district. A related arm has been identified by gravity as extending from eastern Lake Superior southeastward into the lower peninsula of Michigan. This rift is of Precambrian (Keweenawan) age and began developing approximately 1.1 b.y.B.P. For most of its extent, this continental-class rift system is buried below Phanerozoic strata. Outcrops are found only in east-central Minnesota, northwestern Wisconsin, and the upper peninsula of Michigan. The most accepted tectonic model of the Mid-Continent rift is that of a central horst partly covered by clastic rocks, bounded by high-angle faulting, and flanked by basins filled with clastic rocks. This model was developed in conjunction with field studies in the southwestern Lake Superior area, and generally has been adopted for Minnesota, Iowa, Nebraska, and Kansas. A comparable model has yet to be presented for the related arm extending into southern Michigan. 6 figures.

Dickas, A.B.

1986-03-01T23:59:59.000Z

94

Neogene stratigraphic relationships within the Nam Con Son Basin, offshore Vietnam resulting from tectonics, eustasy, and sediment flux  

E-Print Network (OSTI)

in the East Nam Con Son Basin. Age constraints were assigned to key stratigraphic horizons by correlating sequence boundaries with published sea level curves. Accommodation in the study area is controlled by shelf -edge compaction, rift-related thermal...

Wright, Christine M.

2009-05-15T23:59:59.000Z

95

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC.  

E-Print Network (OSTI)

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. COMPLIANCE REPORTS For the Year Ended June 30, 2013 #12;UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. TABLE OF CONTENTS Financial Statements Foundation, Inc. Athens, Georgia Report on Compliance for Each Major Federal Program We have audited

Arnold, Jonathan

96

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC.  

E-Print Network (OSTI)

UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. Financial Statements for the year ended June 30, 2009 #12;UNIVERSITY OF GEORGIA RESEARCH FOUNDATION, INC. Contents Page Report of Independent Auditors 2 Standards 45 #12;Report of Independent Auditors Board of Directors University of Georgia Research Foundation

Hall, Daniel

97

ORGANIZATION Panagiotis Manolios (GeorgiaTech, USA)  

E-Print Network (OSTI)

ORGANIZATION CHAIRS Panagiotis Manolios (GeorgiaTech, USA) Matthew Wilding (Rockwell Collins, USA) PUBLICATIONS Ruben Gamboa (U. Wyoming, USA) WEBMASTERS Sudarshan Srinivasan (Georgia Tech, USA) Daron Vroon (Georgia Tech, USA) PROGRAM COMMITTEE Ruben Gamboa (U. Wyoming, USA) David Greve (Rockwell Collins, USA

Manolios, Panagiotis "Pete"

98

Georgia Power | Open Energy Information  

Open Energy Info (EERE)

Power Power Jump to: navigation, search Name Georgia Power Place Atlanta, Georgia Zip 30308 Product An investor-owned utility that serves 2.25m customers in 155 counties of Georgia, USA. Coordinates 33.748315°, -84.391109° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.748315,"lon":-84.391109,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Evaluation of Geothermal Potential of Rio Grande Rift and Basin...  

Open Energy Info (EERE)

age-dating; 4) geochemical surveying, including regional and site-specific water chemistry , stable isotopic analyses of thermal waters , whole-rock and mineral isotopic...

100

Enterprise Zone Program (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia) Georgia) Enterprise Zone Program (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Enterprise Zone Personal Tax Incentives Property Tax Incentive Provider Georgia Department of Community Affairs The Enterprise Zone Program provides various tax incentives to businesses within designated underdeveloped zones in rural or urban areas. The State Enterprise Zone program intends to improve geographic areas within cities

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Protection of Tidewaters (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Protection of Tidewaters (Georgia) Protection of Tidewaters (Georgia) Protection of Tidewaters (Georgia) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Program Info State Georgia Program Type Environmental Regulations Siting and Permitting The Protection of Tidewaters Act establishes the State of Georgia as the owner of the beds of all tidewaters within the State, except where title by

102

Coastal Management Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management Act (Georgia) Management Act (Georgia) Coastal Management Act (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Water Buying & Making Electricity Wind Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Coastal Management Act provides enabling authority for the State to prepare and administer a coastal management program. The Act does not

103

Georgia-USAID Climate Activities | Open Energy Information  

Open Energy Info (EERE)

Georgia-USAID Climate Activities Georgia-USAID Climate Activities Jump to: navigation, search Name Georgia-USAID Climate Activities Agency/Company /Organization U.S. Agency for International Development Sector Energy Focus Area Energy Efficiency, Renewable Energy Topics Policies/deployment programs, Background analysis Website http://georgia.usaid.gov/about Country Georgia (country) Western Asia References USAID Georgia [1] "USAID's activities in Georgia have addressed the country's challenges in the energy sector primarily through policy reform, renewable energy, and alternative sources of energy. Increasing energy efficiency is a prerequisite for reducing emissions in Georgia, and USAID plans to continue its support with these initiatives." References ↑ "USAID Georgia"

104

Volcanism of the Kenya Rift Valley [and Discussion  

Science Journals Connector (OSTI)

...research-article Volcanism of the Kenya Rift Valley [and Discussion] B. C. King G. R...Robson R. B. McConnell The Kenya rift valley is a sector of the rift system of eastern...distances of 200 km or more both to the west and east and is broadly centred on the...

1972-01-01T23:59:59.000Z

105

REVIEW Open Access Towards a better understanding of Rift Valley  

E-Print Network (OSTI)

REVIEW Open Access Towards a better understanding of Rift Valley fever epidemiology in the south-west , Matthieu Roger1 and Betty Zumbo7 Abstract Rift Valley fever virus (Phlebovirus, Bunyaviridae be contaminated by close contact with infectious tissues or through mosquito infectious bites. Rift Valley fever

Paris-Sud XI, Université de

106

Lower-crustal rifting in the Rukwa Graben, East Africa  

Science Journals Connector (OSTI)

......785-803. Foster A.N...African rift system, Tectonics...integrated study of crustal...503-518. Wheeler W.H. , 1994. Structural studies of transform...African rift system, PhD thesis...503-518. Wheeler, W.H...Structural studies of transform...African rift system, PhD thesis......

Ming Zhao; Charles A. Langston; Andrew A. Nyblade; Thomas J. Owens

1997-05-01T23:59:59.000Z

107

Energy Incentive Programs, Georgia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Georgia Energy Incentive Programs, Georgia October 29, 2013 - 11:29am Addthis Updated December 2012 Georgia utilities collectively budgeted over $30 million for energy efficiency and load management programs in 2011. What public-purpose-funded energy efficiency programs are available in my state? Georgia has no public-purpose-funded energy efficiency programs. What utility energy efficiency programs are available to me? Through its earth¢ents program, Georgia Power, a subsidiary of the Southern Company, offers a variety of prescriptive rebates for energy-efficient equipment and building upgrades. Rebates are provided for lighting, HVAC, building envelope improvements, water heaters, heat pumps, and food service equipment. What load management/demand response options are available to me?

108

Clean Cities: Clean Cities-Georgia coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Cities-Georgia Coalition Clean Cities-Georgia Coalition The Clean Cities-Georgia coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Clean Cities-Georgia coalition Contact Information Don Francis 404-906-0656 don@cleancitiesatlanta.net Coalition Website Clean Cities Coordinator Don Francis Photo of Don Francis Although Don Francis became the coordinator for the Georgia Clean Cities coalition in April 2009, he is not new to the program. He attended the ceremony when Atlanta was designated as the first Clean Cities coalition in the nation at the Georgia Dome in 1993. Prior to being elected as the coalition's executive director, Francis served on the board of directors and as the treasurer from 2000 to 2005. He has 40 years of experience in

109

Categorical Exclusion Determinations: Georgia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Georgia Categorical Exclusion Determinations: Georgia Location Categorical Exclusion Determinations issued for actions in Georgia. DOCUMENTS AVAILABLE FOR DOWNLOAD August 9, 2014 CX-011109: Categorical Exclusion Determination Overcoming the Fundamental Bottlenecks to a New World-Record Silicon Solar Cell CX(s) Applied: B3.6 Date: 08/09/2013 Location(s): Georgia Offices(s): Golden Field Office September 25, 2013 CX-010922: Categorical Exclusion Determination Borehole Tool for the Comprehensive Characterization of Hydrate-Bearing Sediments CX(s) Applied: A1, A9, B3.6, Other: Bench Scale Laboratory Research Date: 09/25/2013 Location(s): Georgia Offices(s): National Energy Technology Laboratory September 16, 2013 CX-010977: Categorical Exclusion Determination Thermal-Hydrological-Chemical-Mechanical (THCM) Coupled Model for

110

Georgia Biofuel Directory A directory of Georgia industries that use biofuels.  

E-Print Network (OSTI)

Georgia Biofuel Directory · A directory of Georgia industries that use biofuels. · Completed in May _________________________________________________________________ 3 Biofuels_____________________________________________________________________ 4 Biofuel Use in Georgia that Burn Self-Generated Biofuels as of May 2003__ 4 Chart 1.0 Biofuel Use from Contacted

111

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...  

Energy Savers (EERE)

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear...

112

Georgia-World Bank Climate Projects | Open Energy Information  

Open Energy Info (EERE)

Topics Background analysis Website http:web.worldbank.orgexter Country Georgia (country) Western Asia References Georgia-World Bank1 World Bank Active Climate Projects in...

113

Articulated Swimming Creatures Georgia Institute of Technology  

E-Print Network (OSTI)

to swim straight and stay within a given energy budget. Our creatures can perform path following by firstArticulated Swimming Creatures Jie Tan Georgia Institute of Technology Yuting Gu Greg Turk Georgia to creating realistic swimming be- havior for a given articulated creature body. The two main com- ponents

Turk, Greg

114

Geology of interior cratonic sag basins  

SciTech Connect

Interior cratonic sag basins are thick accumulations of sediment, generally more or less oval in shape, located entirely in the interiors of continental masses. Some are single-cycle basins and others are characterized by repeated sag cycles or are complex polyhistory basins. Many appear to have developed over ancient rift systems. Interior cratonic sag basins are typified by a dominance of flexural over fault-controlled subsidence, and a low ratio of sediment volume to surface area of the basin. The Baltic, Carpentaria, Illinois, Michigan, Parana, Paris, and Williston basins are examples of interior cratonic sag basins. Tectonics played a dominant role in controlling the shapes and the geometries of the juxtaposed packets of sedimentary sequences. While the mechanics of tectonic control are not clear, evidence suggests that the movements are apparently related to convergence of lithospheric plates and collision and breakup of continents. Whatever the cause, tectonic movements controlled the freeboard of continents, altering base level and initiating new tectono-sedimentologic regimes. Sag basins situated in low latitudes during their development commonly were sites of thick carbonates (e.g., Illinois, Michigan, Williston, and Paris basins). In contrast, siliciclastic sedimentation characterized basins that formed in higher latitudes (e.g., Parana and Carpentaria basins). Highly productive sag basins are characterized by widespread, mature, organic-rich source rocks, large structures, and good seals. Nonproductive basins have one or more of the following characteristics: immature source rocks, leaky plumbing, freshwater flushing, and/or complex geology due to numerous intrusions that inhibit mapping of plays.

Leighton, M.W.; Eidel, J.J.; Kolata, D.R.; Oltz, D.F. (Illinois Geological Survey, Champaign (USA))

1990-05-01T23:59:59.000Z

115

Hualalai Northwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hualalai Northwest Rift Geothermal Area Hualalai Northwest Rift Geothermal Area (Redirected from Hualalai Northwest Rift Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hualalai Northwest Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

116

Direct-Current Resistivity Survey At Mauna Loa Northeast Rift...  

Open Energy Info (EERE)

Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Mauna Loa...

117

Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas...  

Open Energy Info (EERE)

1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration Activity...

118

Alternative Fuels Data Center: Georgia Points of Contact  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Georgia Points of Georgia Points of Contact to someone by E-mail Share Alternative Fuels Data Center: Georgia Points of Contact on Facebook Tweet about Alternative Fuels Data Center: Georgia Points of Contact on Twitter Bookmark Alternative Fuels Data Center: Georgia Points of Contact on Google Bookmark Alternative Fuels Data Center: Georgia Points of Contact on Delicious Rank Alternative Fuels Data Center: Georgia Points of Contact on Digg Find More places to share Alternative Fuels Data Center: Georgia Points of Contact on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Points of Contact The following people or agencies can help you find more information about Georgia's clean transportation laws, incentives, and funding opportunities.

119

Alternative Fuels Data Center: Georgia Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Georgia Laws and Georgia Laws and Incentives to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives Listed below are incentives, laws, and regulations related to alternative fuels and advanced vehicles for Georgia. Your Clean Cities coordinator at

120

Regional tectonics, differential subsidence, and sediment dispersal patterns: implications for sediment flux to the southern South China Sea and regional filling of sedimentary Basins during Pliocene to the Recent time  

E-Print Network (OSTI)

The Nam Con Son, Malay, and West Natuna basins, located offshore of SE Vietnam and Peninsular Malaysia, initially formed during Eocene(?)-Oligocene rifting, and underwent inversion during Miocene time. Following cessation of tectonic activity...

Murray, Mychal Roland

2012-06-07T23:59:59.000Z

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

A Geochemical Model of the Kilauea East Rift Zone | Open Energy...  

Open Energy Info (EERE)

exceeding the Curie point of basalt. The shallow ground-water hydrology and chemistry on the lower rift are strongly affected by natural thermal discharge from the rift...

122

Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Georgia: Energy Resources Georgia: Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.1574351,"lon":-82.907123,"alt":0,"address":"Georgia","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

123

Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa |  

Open Energy Info (EERE)

Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Details Activities (2) Areas (1) Regions (0) Abstract: The San Luis basin is the largest and deepest basin in the Neogene Rio Grande rift, and has many similarities to the basins of the US Basin and Range Province. It is asymmetric with a displacement of as much as 9 km on its eastern margin, and approximately 6.4 km of sedimentary rocks of late Oligocene or younger age in the deepest portion of the basin. Temperature measurements in shallow wells in the northern basin have an average geothermal gradient of 59.0 ± 11.8°C km-1 (± standard

124

Categorical Exclusion Determinations: Georgia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 3, 2012 May 3, 2012 CX-008190: Categorical Exclusion Determination Georgia City-Sandy Springs CX(s) Applied: A1, B1.32, B3.6, B5.1 Date: 05/03/2012 Location(s): Georgia Offices(s): Energy Efficiency and Renewable Energy April 25, 2012 CX-008306: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green Corridor Project CX(s) Applied: A1, B5.22 Date: 04/25/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory April 18, 2012 CX-008315: Categorical Exclusion Determination Installation of Retail Biofuel Infrastructure Supporting I-75 Green Corridor Project CX(s) Applied: A1, B5.22 Date: 04/18/2012 Location(s): Georgia Offices(s): National Energy Technology Laboratory February 17, 2012 CX-007812: Categorical Exclusion Determination

125

Categorical Exclusion Determinations: Georgia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

August 5, 2010 August 5, 2010 CX-003200: Categorical Exclusion Determination City of Lafayette Energy Efficiency Conservation Block Grant CX(s) Applied: B5.1 Date: 08/05/2010 Location(s): Lafayette, Georgia Office(s): Energy Efficiency and Renewable Energy, Golden Field Office August 4, 2010 CX-004939: Categorical Exclusion Determination Georgia Institute of Technology -Dynamic Control of Grid Assets Using Direct Alternate Current Converter Cells CX(s) Applied: B3.6, B5.1 Date: 08/04/2010 Location(s): Georgia Office(s): Advanced Research Projects Agency - Energy July 28, 2010 CX-003174: Categorical Exclusion Determination State Energy Program (SEP) State ENERGY STAR Appliance Rebate Program CX(s) Applied: A9, B5.1 Date: 07/28/2010 Location(s): Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy

126

Georgia Power Co | Open Energy Information  

Open Energy Info (EERE)

Georgia Power Co Georgia Power Co Jump to: navigation, search Name Georgia Power Co Place Georgia Utility Id 7140 Utility Location Yes Ownership I NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png BU-9 - Back Up Service DSM-R-4 - Demand Side Management Residential Residential Irrigation Off-Peak Service Commercial Off-Peak Service Rider - Schedule: OP-5 PLL-7 (Power and Light Large) Commercial

127

Aedes Mosquito Saliva Modulates Rift Valley Fever Virus Pathogenicity  

E-Print Network (OSTI)

's capacity to effectively transfer arboviruses such as the Cache Valley and West Nile viruses. The roleAedes Mosquito Saliva Modulates Rift Valley Fever Virus Pathogenicity Alain Le Coupanec1 , Divya contro^le, Centre IRD de Montpellier, Montpellier, France Abstract Background: Rift Valley fever (RVF

Boyer, Edmond

128

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical  

Open Energy Info (EERE)

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical Characteristics And The Effects Of Gas On Well Performance Details Activities (0) Areas (0) Regions (0) Abstract: This study, which focuses on the Aluto-Langano geothermal field, is part of the ongoing investigations of the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360°C, in the Lakes District region of the Ethiopian Rift Valley. The upflow zone for the system lies along a deep, young NNE trending fault and is characterized by

129

Evolution and hydrocarbon prospectivity of the Douala Basin, Cameroon  

SciTech Connect

The Douala Basin is a stable Atlantic-type, predominantly offshore basin and forms the northern terminal of a series of divergent passive margin basins located on the Southwest coast of Africa that resulted from the rifting of Africa from South America. An integration of new studies including detailed well, biostratigraphic, sedimentological, geochemical and seismic data has confirmed that the tectonostratigraphic evolution in the basin can be broadly divided into three developmental phases: the Syn-rift, Transitional and Drift phases. This basis has been explored intermittently for hydrocarbon for the past 40 years with two important gas fields discovered and no commercial oil found as yet. This early gas discovery and a corresponding lack of any significant oil discovery, led early operators to term this basin as essentially a gas province. However, recent geochemical analyses of various oil-seeps and oil samples from various localities in the basin, using state-of-the-art techniques have demonstrated that this basin is a potential oil prone basin. The results show that two models of oil sourcing are possible: a Lower Cretaceous lacustrine saline source, similar to the presalt basins of Gabon or a marine Upper Cretaceous to lower Tertiary source, similar to the neighbouring Rio del Rey/Niger Delta Complex. Additionally, seismic reflection data also demonstrate a variety of reservoir horizons, including submarine fans, channel-like features and buried paleohighs, all interbedded within regionally extensive, uniformity bounded mudstone units. Hence, it is now quite evident that within this basin, there exist a vast potential for a wide variety of stratigraphic, structural and combined traps. These features, which are considered to have significantly enhanced the prospectivity of this basin, will be discussed in this paper.

Batupe, M.; Tampu, S.; Aboma, R.S. [National Hydrocarbons Corporation, Yaounde (Cameroon)

1995-08-01T23:59:59.000Z

130

Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) Petroleum Pipeline Eminent Domain Permit Procedures (Georgia) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Petroleum Pipeline Eminent Domain Permit Procedures serve to protect Georgia's natural and environmental resources by requiring permits be issued by the Director of the Environmental Protection Division prior to any petroleum or petroleum product pipe company acquiring property or interests by eminent domain. Monitoring conditions will be issued with

131

E-Print Network 3.0 - atlanta georgia metropolitan Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: University; Atlanta, Georgia September 1996 - Assistant Professor of Political Science Emory University... ; Atlanta, Georgia September 1993 - August 1996 On...

132

Alternative Fuels Data Center: Georgia Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Other The list below contains summaries of all Georgia laws and incentives

133

Alternative Fuels Data Center: Georgia Laws and Incentives for EVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EVs to someone by E-mail EVs to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for EVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for EVs The list below contains summaries of all Georgia laws and incentives related to EVs.

134

Alternative Fuels Data Center: Georgia Laws and Incentives for Exemptions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Exemptions to someone by E-mail Exemptions to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Exemptions on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Exemptions on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Exemptions on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Exemptions on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Exemptions on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Exemptions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Exemptions The list below contains summaries of all Georgia laws and incentives

135

Alternative Fuels Data Center: Georgia Laws and Incentives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

to someone by E-mail to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives Listed below are the summaries of all current Georgia laws, incentives, regulations, funding opportunities, and other initiatives related to

136

Alternative Fuels Data Center: Georgia Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Other The list below contains summaries of all Georgia laws and incentives

137

Georgia Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Recovery Act State Memo Georgia Recovery Act State Memo Georgia Recovery Act State Memo Georgia has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Georgia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Georgia's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Georgia to play an important role in the new energy economy of the future. Georgia Recovery Act State Memo More Documents & Publications

138

Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ethanol to someone by E-mail Ethanol to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Ethanol on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Ethanol The list below contains summaries of all Georgia laws and incentives

139

Alternative Fuels Data Center: Georgia Laws and Incentives for Other  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Other to someone by E-mail Other to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Other on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Other on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Other on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Other on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Other on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Other on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Other The list below contains summaries of all Georgia laws and incentives

140

Georgia Recovery Act State Memo | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Recovery Act State Memo Georgia Recovery Act State Memo Georgia Recovery Act State Memo Georgia has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Georgia are supporting a broad range of clean energy projects, from energy efficiency and the smart grid to environmental cleanup and alternative fuels and vehicles. Through these investments, Georgia's businesses, universities, non-profits, and local governments are creating quality jobs today and positioning Georgia to play an important role in the new energy economy of the future. Georgia Recovery Act State Memo More Documents & Publications

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alternative Fuels Data Center: Georgia Laws and Incentives for Biodiesel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Biodiesel to someone by E-mail Biodiesel to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Biodiesel on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Biodiesel on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Biodiesel on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Biodiesel on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Biodiesel on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Biodiesel on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Biodiesel The list below contains summaries of all Georgia laws and incentives

142

Georgia O'Keeffe's Radiator Building: Icon of Glamorous Gotham  

E-Print Network (OSTI)

Georgia O'Keeffe's Radiator Icon of Glamorous Gothamthirties remains today an icon of Americans' ongoing worship

Duvert, Elizabeth

1984-01-01T23:59:59.000Z

143

GEORGIA INSTITUTE OF TECHNOLOGY ENVIRONMENTAL HEALTH AND SAFETY POLICY  

E-Print Network (OSTI)

and safety hazards, and encourage the reporting of hazards and safety-related incidents; work cooperativelyGEORGIA INSTITUTE OF TECHNOLOGY ENVIRONMENTAL HEALTH AND SAFETY POLICY Ratified by the Institute Council on Environmental Health and Safety August 2008 POLICY Georgia Institute of Technology (Georgia

Das, Suman

144

Georgia Tech / Honeywell 4GCNVKOG%QQRGTCVKXG$GJCXKQTHQT  

E-Print Network (OSTI)

Georgia Tech / Honeywell 4GCNVKOG%QQRGTCVKXG$GJCXKQTHQT 6CEVKECN/QDKNG4QDQV6GCOU and #12;Georgia Tech / Honeywell 6GEJPQNQI[6JTWUV#TGCU 3 Fault-tolerant reactive group behaviors 3 Communication analysis and management #12;Georgia Tech / Honeywell /KUUKQP.CD Problem Statement ­ Constructing robot

145

Categorical Exclusion Determinations: Georgia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 16, 2011 March 16, 2011 CX-005454: Categorical Exclusion Determination Construction of an Autogas Refueling Network CX(s) Applied: B5.1 Date: 03/16/2011 Location(s): Kennesaw, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 2, 2011 CX-005348: Categorical Exclusion Determination E85 (Ethanol) Retail Fueling Infrastructure Installation CX(s) Applied: B5.1 Date: 03/02/2011 Location(s): Duluth, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory February 23, 2011 CX-005290: Categorical Exclusion Determination Propane Corridor Development Program CX(s) Applied: B5.1 Date: 02/23/2011 Location(s): Carroll County, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy

146

Categorical Exclusion Determinations: Georgia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 17, 2010 June 17, 2010 CX-002739: Categorical Exclusion Determination Renewable Energy Laboratory Development for Biofuels Advanced Combustion CX(s) Applied: B2.2, B3.6, A9, B5.1 Date: 06/17/2010 Location(s): Statesboro, Georgia Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory June 2, 2010 CX-003132: Categorical Exclusion Determination Georgia Institute of Technology Research Corporation - Metal Organic Frameworks in Hollow Fiber Membranes for Carbon Dioxide Capture CX(s) Applied: B3.6 Date: 06/02/2010 Location(s): Georgia Office(s): Advanced Research Projects Agency - Energy May 28, 2010 CX-002514: Categorical Exclusion Determination State Energy Program - Clean Energy Property Rebate Program CX(s) Applied: A9, B5.1 Date: 05/28/2010

147

Georgia/Wind Resources | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Georgia/Wind Resources < Georgia Jump to: navigation, search Print PDF Print Full Version WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home OpenEI Home >> Wind >> Small Wind Guidebook >> Georgia Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support?

148

Development Overview of Geothermal Resources In Kilauea East Rift Zone |  

Open Energy Info (EERE)

Development Overview of Geothermal Resources In Kilauea East Rift Zone Development Overview of Geothermal Resources In Kilauea East Rift Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Development Overview of Geothermal Resources In Kilauea East Rift Zone Abstract This study reviews the geothermal resources associatedwith the Kilauea East Rift Zone (KERZ) of Hawaii islandby focusing on a holistic development strategy for additionalgeothermal production. A review of existing literature inthe fields of geology, drilling, power production and policychallenges, highlights critical issues for geothermalenterprises. A geological assessment of the hydrology,geochemistry, and structural features that characterize theregion is discussed. Available data are interpreted includinggeology, geochemistry, well depth and temperature.

149

Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes A reexamination of all groundwater sources in the Keaau area was undertaken in an effort to confirm the chemical and temperature anomalies that formed the primary basis on which the Keaau area was identified during the preliminary assessment survey. The data generated by this survey (Table 9) determined that all of the anomalous data present in the earlier data base were spurious and that the groundwater chemistry and temperatures in this

150

Mauna Loa Northeast Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mauna Loa Northeast Rift Geothermal Area Mauna Loa Northeast Rift Geothermal Area (Redirected from Mauna Loa Northeast Rift Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mauna Loa Northeast Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

151

Aeromagnetic Survey At Hualalai Northwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Aeromagnetic Survey At Hualalai Northwest Rift Area Aeromagnetic Survey At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes Aeromagnetic survey data for Hualalai (Godson et al., 1981) clearly indicate an elongate northwest to southeast trending zone of extremely low total magnetic field over the summit region of Hualalai that extends into the upper northwest rift zone. It is extremely unlikely that the summit region is underlain by intrusive material old enough (greater than 700,000 years of age) to have been emplaced during a period of reversed magnetic field; therefore, the only alternative explanation possible (presuming the data are accurate) is that this region is underlain by material with very

152

Remote Sensing for Biodiversity Conservation of the Albertine Rift  

E-Print Network (OSTI)

183 10 Remote Sensing for Biodiversity Conservation of the Albertine Rift in Eastern Africa Samuel of biodiversity conservation is understanding how environmental factors influence species abundance 2003). The rapidly developing field of remote sensing has been invaluable to biodiversity conservation

Wang, Y.Q. "Yeqiao"

153

Aluto-Langano Geothermal Field, Ethiopian Rift Valley- Physical...  

Open Energy Info (EERE)

the geothermal systems in the Ethiopian Rift Valley. Aluto-Langano is a water-dominated gas-rich geothermal field, with a maximum temperature close to 360C, in the Lakes...

154

Georgia (country): Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Georgia (country): Energy Resources Georgia (country): Energy Resources Jump to: navigation, search Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"390px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42,"lon":43.5,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

155

An Integrated Geophysical Study Of The Northern Kenya Rift | Open Energy  

Open Energy Info (EERE)

Kenya Rift Kenya Rift Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Integrated Geophysical Study Of The Northern Kenya Rift Details Activities (0) Areas (0) Regions (0) Abstract: The Kenyan part of the East African rift is among the most studied rift zones in the world. It is characterized by: (1) a classic rift valley, (2) sheer escarpments along the faulted borders of the rift valley, (3) voluminous volcanics that flowed from faults and fissures along the rift, and (4) axial and flank volcanoes where magma flow was most intense. In northern Kenya, the rift faults formed in an area where the lithosphere was weakened and stretched by Cretaceous-Paleogene extension, and in central and southern Kenya, it formed along old zones of weakness at the

156

Oil or Hazardous Spills Releases Law (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Oil or Hazardous Spills Releases Law (Georgia) Oil or Hazardous Spills Releases Law (Georgia) Oil or Hazardous Spills Releases Law (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Program Info State Georgia Program Type Environmental Regulations Safety and Operational Guidelines Provider Georgia Department of Natural Resources The Oil or Hazardous Spills Law requires notice to the Environmental

157

Georgia Power- Residential Solar and Heat Pump Water Heater Rebate (Georgia)  

Energy.gov (U.S. Department of Energy (DOE))

Georgia Power customers may be eligible for rebates up to $250 each toward the installation costs of a 50 gallon or greater solar water heater or heat pump water heater. The solar water heater or...

158

Alternative Fuels Data Center: Georgia Laws and Incentives for Propane  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Propane (LPG) to someone by E-mail Propane (LPG) to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Propane (LPG) on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Propane (LPG)

159

Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation Exercise Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation Exercise May 1, 2012 - 12:00pm Addthis A firefighter trained to respond to radiological events performs a radiological survey of the WIPP shipping package as part of a WIPP transportation exercise in Morgan County, Georgia. A firefighter trained to respond to radiological events performs a radiological survey of the WIPP shipping package as part of a WIPP transportation exercise in Morgan County, Georgia. The on-scene incident commander briefs a responder during an April 17 WIPP transportation exercise in Georgia. The on-scene incident commander briefs a responder during an April 17 WIPP transportation exercise in Georgia.

160

Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation Exercise Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation Exercise May 1, 2012 - 12:00pm Addthis A firefighter trained to respond to radiological events performs a radiological survey of the WIPP shipping package as part of a WIPP transportation exercise in Morgan County, Georgia. A firefighter trained to respond to radiological events performs a radiological survey of the WIPP shipping package as part of a WIPP transportation exercise in Morgan County, Georgia. The on-scene incident commander briefs a responder during an April 17 WIPP transportation exercise in Georgia. The on-scene incident commander briefs a responder during an April 17 WIPP transportation exercise in Georgia.

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Alternative Fuels Data Center: Georgia Laws and Incentives for Idle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Idle Reduction to someone by E-mail Idle Reduction to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Idle Reduction on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Idle Reduction on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Idle Reduction on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Idle Reduction on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Idle Reduction on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Idle Reduction on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Idle Reduction

162

Georgia Power - Small and Medium Scale Advanced Solar Initiative (GPASI)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Power - Small and Medium Scale Advanced Solar Initiative Georgia Power - Small and Medium Scale Advanced Solar Initiative (GPASI) (Georgia) Georgia Power - Small and Medium Scale Advanced Solar Initiative (GPASI) (Georgia) < Back Eligibility Agricultural Commercial General Public/Consumer Installer/Contractor Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Savings Category Solar Buying & Making Electricity Program Info Start Date 03/01/2013 State Georgia Program Type Other Incentive Provider GPASI Project Manager '''''Note: The application process for the small and medium scale solar programs began on March 1, 2013 and will continue through March 11, 2013. If completed applications exceed program capacity limit of 45 megawatts (MW), a lottery will be conducted, with Georgia Public Service Commission

163

Alternative Fuels Data Center: Georgia Laws and Incentives for Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tax Incentives to someone by E-mail Tax Incentives to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Tax Incentives on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Tax Incentives on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Tax Incentives on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Tax Incentives on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Tax Incentives on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Tax Incentives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Tax Incentives

164

OPECbulletin1011/13 GEORGIA TECH  

E-Print Network (OSTI)

are developing technologies for fuel clean- up, exhaust gas clean-up and carbon capture. Catalysis, which Institute of Technology (Georgia Tech) is one of the top research universities in the United States international expert on clean energy, in particular low-emissions combustion. The US Secretary of the Department

Das, Suman

165

Georgia Water Resources Institute Annual Technical Report  

E-Print Network (OSTI)

the sponsorship of the US EPA, GWRI performed technical analysis of a draft ACT compact. Assessment results were of Engineers, and Southeastern Power Administration) and the ACT-ACF Federal Commissioner. Assessment resultsGeorgia Water Resources Institute Annual Technical Report FY 2000 Introduction In Fiscal Year 2000

166

The University of Georgia Cooperative Extension Service  

E-Print Network (OSTI)

1 The University of Georgia Cooperative Extension Service College of Agricultural and Environmental of this new regulation, it will be necessary for almost everyone building poultry houses to comply is Needed for Compliance · Submission of a Notice of Intent (NOI) · An Erosion, Sedimentation and pollution

Navara, Kristen

167

The University of Georgia Cooperative Extension Service  

E-Print Network (OSTI)

The University of Georgia Cooperative Extension Service College of Agricultural and Environmental of this new regulation, it will be necessary for almost everyone building poultry houses to comply is Needed for Compliance · Submission of a Notice of Intent (NOI) · An Erosion, Sedimentation and pollution

Navara, Kristen

168

2013 GEORGIA PEST MANAGEMENT HANDBOOK Commercial Edition  

E-Print Network (OSTI)

pesticides in food or drink containers. Symptoms of pesticide poisoning: suspect pesticide poisoning. FIRST ` #12;2 PESTICIDE EMERGENCIES Dan Horton, Extension Entomologist POISON CONTROL CENTER (HUMAN OR ANIMAL) National Poison Control Hotline (Spanish speakers available) (800) 222-1222 SPILLS (Georgia Environmental

Arnold, Jonathan

169

Origin Basin Destination State STB EIA STB EIA Northern Appalachian Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Florida W $38.51 W $140.84 27.3% 134 W 100.0% Florida W $38.51 W $140.84 27.3% 134 W 100.0% Northern Appalachian Basin Georgia - W - W W W - W Northern Appalachian Basin Indiana W $16.14 W $63.35 25.5% 1,681 W 88.5% Northern Appalachian Basin Maryland $20.69 $19.60 -5.3% $74.23 26.4% 4,845 31.9% 97.7% Northern Appalachian Basin Michigan $13.74 $16.13 17.4% $99.82 16.2% 840 32.1% 100.0% Northern Appalachian Basin New Hampshire W $40.18 W $94.03 42.7% 699 W 100.0% Northern Appalachian Basin New Jersey W $32.44 W $89.13 36.4% 1,064 W 47.6% Northern Appalachian Basin New York $21.87 $18.86 -13.8% $59.40 31.7% 2,373 49.3% 91.9%

170

Hydrocarbon potential of basins along Australia's southern margin  

SciTech Connect

Seven discrete sedimentary basins are recognized along the southern margin of the Australian continent; namely, from east to west, the Gippsland, Bass, Sorell, Otway, Duntroon, Bight, and Bremer. All formed since the Late Jurassic in response to the separation of Australia and Antarctica, and to the opening of the Tasman Sea. Only the Gippsland basin, which has proved initial oil reserves exceeding 3.6 billion barrels, is a prolific oil province. The search for oil in the other basins has been virtually fruitless despite many similarities between these basins and the Gippsland in terms of stratigraphy and structural geology. Rift and drift components are discernible in the sedimentary successions of all basins but the precise tectonic controls on respective basin formation remain conjectural. The lack of drilling success in the Bremer, Bight, Duntroon, Otway, and Sorell basins has been attributed mainly to the paucity of mature, oil-prone source rocks. The common occurrence of stranded bitumens along the entire coastline, however, indicates oil generation. The Bass and Gippsland basins are both characterized by excellent oil-prone source rocks developed in Late Cretaceous to Early Tertiary sediments. Limited exploration success in the Bass basin is due to poorer reservoir development. The Gippsland basin is at a mature stage of exploration whereas the other basins are moderately to very sparsely explored. Consequently, there is a comparable potential for undiscovered hydrocarbons in all basins. Success in the under-explored basins will come only to those prepared to challenge the perception of low prospectivity. Many play types remain to be tested by the drill.

Willink, R.J. (SAGASCO Resources Limited, Adelaide (Australia))

1991-03-01T23:59:59.000Z

171

Aeromagnetic Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Rift Area (Thomas, 1986) Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes Aeromagnetic data (Godson et al., 1981) for the lower northeast rift of Mauna Loa tend to substantiate this conclusion as well. The lower extension of the rift zone does not exhibit any significant magnetic features that would correspond to a thermal source within the inferred trace of the rift zone. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=40242

172

Georgia's 9th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

Georgia. Georgia. US Recovery Act Smart Grid Projects in Georgia's 9th congressional district Tri State Electric Membership Corporation Smart Grid Project Registered Energy Companies in Georgia's 9th congressional district Conservation Resource Solutions ECO Solutions LLC Greenleaf Environmental Solutions Wilson and Dalton Utility Companies in Georgia's 9th congressional district Tri-State Electric Member Corp Retrieved from "http://en.openei.org/w/index.php?title=Georgia%27s_9th_congressional_district&oldid=185474" Categories: Places Stubs Congressional Districts What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

173

Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Producer to someone by E-mail Producer to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative Fuel Producer on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative Fuel Producer on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative Fuel Producer on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative Fuel Producer on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative Fuel Producer on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative Fuel Producer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

174

Integrated Resource Planning Act (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Integrated Resource Planning Act (Georgia) Integrated Resource Planning Act (Georgia) < Back Eligibility Commercial Construction Developer General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Industry Recruitment/Support Siting and Permitting Georgia's Integrated Resource Planning Act, which was passed in 1991 and is now Georgia Code § 46-3A, requires that any proposed new electric plant receive certification by the Georgia Public Service Commission (PSC) before construction begins. A utility is entitled to recover pre-approved costs

175

Lighting Up Georgia Convenience Stores | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Up Georgia Convenience Stores Lighting Up Georgia Convenience Stores Lighting Up Georgia Convenience Stores March 28, 2012 - 5:01pm Addthis One of several Georgia convenience stores that improved lighting while saving energy and money. | Courtesy of Outlaw Consulting, Inc. One of several Georgia convenience stores that improved lighting while saving energy and money. | Courtesy of Outlaw Consulting, Inc. Kristin Swineford Communication Specialist, Weatherization and Intergovernmental Programs "Programs such as this are a real benefit to the small business owners who operate the majority of convenience stores in the state, bringing them expertise and savings that would not normally be available to them." Jim Tudor, president of GACS Convenience stores across Georgia are saving energy thanks to energy

176

Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Purchaser to someone by E-mail Purchaser to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative Fuel Purchaser on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative Fuel Purchaser on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative Fuel Purchaser on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative Fuel Purchaser on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative Fuel Purchaser on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative Fuel Purchaser on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

177

Alternative Fuels Data Center: Georgia Laws and Incentives for Hydrogen  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hydrogen Fuel Cells to someone by E-mail Hydrogen Fuel Cells to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Hydrogen Fuel Cells on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Hydrogen Fuel Cells on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Hydrogen Fuel Cells on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Hydrogen Fuel Cells on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Hydrogen Fuel Cells on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Hydrogen Fuel Cells on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

178

Central Georgia EMC - Photovoltaic Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Central Georgia EMC - Photovoltaic Rebate Program Central Georgia EMC - Photovoltaic Rebate Program Central Georgia EMC - Photovoltaic Rebate Program < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate $4,500 Program Info State Georgia Program Type Utility Rebate Program Rebate Amount $450/kW installed capacity Provider Central Georgia Electric Membership Corporation In June 2008, Central Georgia Electric Membership Corporation (CGEMC) began offering a rebate of $450 per kilowatt (kW) to residential members who install photovoltaic (PV) systems that are interconnected and net-metered. To qualify, PV systems must have a warranty of five or more years and must be installed by a licensed contractor. In addition, PV systems are limited to 10 kW in capacity and must be installed in accordance with all

179

The Entrepreneur and Small Business Loan Guarantee Fund (Georgia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Entrepreneur and Small Business Loan Guarantee Fund (Georgia) Entrepreneur and Small Business Loan Guarantee Fund (Georgia) The Entrepreneur and Small Business Loan Guarantee Fund (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Maximum Rebate 250000.0 Program Info State Georgia Program Type Loan Program Rebate Amount $35,000-$250,000 Provider OneGeorgia Authority The Entrepreneur and Small Business Loan Guarantee Fund (ESB) were created by the OneGeorgia Authority to encourage the development or rural, locally

180

Alternative Fuels Data Center: Georgia Laws and Incentives for Aftermarket  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Aftermarket Conversions to someone by E-mail Aftermarket Conversions to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Aftermarket Conversions on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Aftermarket Conversions on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Aftermarket Conversions on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Aftermarket Conversions on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Aftermarket Conversions on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Aftermarket Conversions on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Production / Quality to someone by E-mail Fuel Production / Quality to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Production / Quality on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Production / Quality on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Production / Quality on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Production / Quality on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Production / Quality on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Production / Quality on AddThis.com... More in this section... Federal State Advanced Search

182

Alternative Fuels Data Center: Georgia Laws and Incentives for Acquisition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Acquisition / Fuel Use to someone by E-mail Acquisition / Fuel Use to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Acquisition / Fuel Use on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Acquisition / Fuel Use on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Acquisition / Fuel Use on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Acquisition / Fuel Use on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Acquisition / Fuel Use on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Acquisition / Fuel Use on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

183

Alternative Fuels Data Center: Georgia Laws and Incentives for Fueling /  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fueling / TSE Infrastructure Owner to someone by E-mail Fueling / TSE Infrastructure Owner to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Fueling / TSE Infrastructure Owner on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Fueling / TSE Infrastructure Owner on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fueling / TSE Infrastructure Owner on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fueling / TSE Infrastructure Owner on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Fueling / TSE Infrastructure Owner on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Fueling / TSE Infrastructure Owner on

184

Alternative Fuels Data Center: Georgia Laws and Incentives for Registration  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Registration / Licensing to someone by E-mail Registration / Licensing to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Registration / Licensing on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Registration / Licensing on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Registration / Licensing on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Registration / Licensing on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Registration / Licensing on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Registration / Licensing on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

185

Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dealer to someone by E-mail Dealer to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative Fuel Dealer on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative Fuel Dealer on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative Fuel Dealer on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative Fuel Dealer on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative Fuel Dealer on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Alternative Fuel Dealer on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

186

Alternative Fuels Data Center: Georgia Laws and Incentives for Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Owner/Driver to someone by E-mail Vehicle Owner/Driver to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Vehicle Owner/Driver on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Vehicle Owner/Driver on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Vehicle Owner/Driver on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Vehicle Owner/Driver on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Vehicle Owner/Driver on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Vehicle Owner/Driver on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

187

Alternative Fuels Data Center: Georgia Laws and Incentives for AFV  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

AFV Manufacturer/Retrofitter to someone by E-mail AFV Manufacturer/Retrofitter to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for AFV Manufacturer/Retrofitter on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for AFV Manufacturer/Retrofitter on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for AFV Manufacturer/Retrofitter on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for AFV Manufacturer/Retrofitter on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for AFV Manufacturer/Retrofitter on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for AFV Manufacturer/Retrofitter on AddThis.com... More in this section...

188

Alternative Fuels Data Center: Georgia Laws and Incentives for Fleet  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fleet Purchaser/Manager to someone by E-mail Fleet Purchaser/Manager to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Fleet Purchaser/Manager on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Fleet Purchaser/Manager on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fleet Purchaser/Manager on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fleet Purchaser/Manager on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Fleet Purchaser/Manager on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Fleet Purchaser/Manager on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

189

Magnetotellurics At Kilauea East Rift Area (Laney, 2005) | Open Energy  

Open Energy Info (EERE)

Magnetotellurics At Kilauea East Rift Area (Laney, Magnetotellurics At Kilauea East Rift Area (Laney, 2005) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes Magnetotelluric Imaging, G. Michael Hoversten. The project title derived from its inception. The project however moved from the application of MT on Kilauea in 2003 to the use of combined SP and conductivity mapping (MT) in 2004. The beginning of 2004 saw the completions of the Kilauea MT experiment by the acquisition of an additional 45 MT stations on Kilauea. We therefore decided to use the funds available to work at the Fort Bidwell Indian reservation where characterization work could be done at relatively low cost. We decided to perform a time lapse SP survey during a flow test

190

Kilauea Southwest Rift And South Flank Geothermal Area | Open Energy  

Open Energy Info (EERE)

Kilauea Southwest Rift And South Flank Geothermal Area Kilauea Southwest Rift And South Flank Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Southwest Rift And South Flank Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

191

Thermal Gradient Holes At Hualalai Northwest Rift Area (Thomas, 1986) |  

Open Energy Info (EERE)

Hualalai Northwest Rift Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not useful DOE-funding Unknown Notes Although not part of the current effort, two deep (approximately 2000 m) exploratory wells were drilled on the north flank of Hualalai near Puu Waawaa cinder cone. The geophysical data used for siting these wells were proprietary and hence unavailable for publication; however, the temperatures measured at the bottoms of the wells were reported to be below 20degrees C. Chemical analysis of water samples taken from these wells did not provide useful geothermal data due to contamination of the well water with drilling muds References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

192

Mauna Loa Northeast Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mauna Loa Northeast Rift Geothermal Area Mauna Loa Northeast Rift Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mauna Loa Northeast Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

193

Mauna Loa Southwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mauna Loa Southwest Rift Geothermal Area Mauna Loa Southwest Rift Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mauna Loa Southwest Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

194

Hualalai Northwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hualalai Northwest Rift Geothermal Area Hualalai Northwest Rift Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hualalai Northwest Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

195

Kilauea Southwest Rift And South Flank Geothermal Area | Open Energy  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Kilauea Southwest Rift And South Flank Geothermal Area (Redirected from Kilauea Southwest Rift And South Flank Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Southwest Rift And South Flank Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii

196

Haleakala SW Rift Zone Exploration | Open Energy Information  

Open Energy Info (EERE)

Haleakala SW Rift Zone Exploration Haleakala SW Rift Zone Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Haleakala SW Rift Zone Exploration Project Location Information Coordinates 20.63144440367°, -156.37383611407° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":20.63144440367,"lon":-156.37383611407,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

197

Lithonia, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lithonia, Georgia: Energy Resources Lithonia, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7123305°, -84.1051939° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7123305,"lon":-84.1051939,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

198

Alpharetta, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alpharetta, Georgia: Energy Resources Alpharetta, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0753762°, -84.2940899° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0753762,"lon":-84.2940899,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

199

Americus, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Americus, Georgia: Energy Resources Americus, Georgia: Energy Resources (Redirected from Americus, GA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.0723861°, -84.2326876° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0723861,"lon":-84.2326876,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

200

Redan, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Redan, Georgia: Energy Resources Redan, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.736233°, -84.159647° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.736233,"lon":-84.159647,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Scottdale, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Scottdale, Georgia: Energy Resources Scottdale, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7898269°, -84.2640889° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7898269,"lon":-84.2640889,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

202

Atlanta, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Atlanta, Georgia: Energy Resources Atlanta, Georgia: Energy Resources (Redirected from Atlanta, GA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7489954°, -84.3879824° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7489954,"lon":-84.3879824,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

203

Categorical Exclusion Determinations: Georgia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

February 25, 2010 February 25, 2010 CX-000902: Categorical Exclusion Determination Assessment of Energy Production Potential from Ocean Currents along the United States Coastline CX(s) Applied: A9 Date: 02/25/2010 Location(s): Georgia Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 9, 2010 CX-001069: Categorical Exclusion Determination City of Atlanta American Recovery and Reinvestment Act - Energy Efficiency and Conservation Block Grant (S) CX(s) Applied: A9, A11, B5.1 Date: 02/09/2010 Location(s): Atlanta, Georgia Office(s): Energy Efficiency and Renewable Energy, Golden Field Office February 9, 2010 CX-001070: Categorical Exclusion Determination City of Atlanta Revolving Loan Fund (Sustainable Housing Initiative for a New Economy Program) American Recovery and Reinvestment Act - Energy

204

Panthersville, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Panthersville, Georgia: Energy Resources Panthersville, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7073291°, -84.2718667° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7073291,"lon":-84.2718667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

205

Gordon, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Georgia: Energy Resources Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.8820866°, -83.3323848° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.8820866,"lon":-83.3323848,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Chamblee, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chamblee, Georgia: Energy Resources Chamblee, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8920468°, -84.2988126° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.8920468,"lon":-84.2988126,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

207

Doraville, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Doraville, Georgia: Energy Resources Doraville, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8981579°, -84.2832564° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.8981579,"lon":-84.2832564,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

208

Dalton, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Dalton, Georgia: Energy Resources Dalton, Georgia: Energy Resources (Redirected from Dalton, GA) Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.7698021°, -84.9702228° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.7698021,"lon":-84.9702228,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

209

Dunwoody, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Dunwoody, Georgia: Energy Resources Dunwoody, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9462125°, -84.3346473° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9462125,"lon":-84.3346473,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

210

Clarkston, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Clarkston, Georgia: Energy Resources Clarkston, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8095487°, -84.2396434° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.8095487,"lon":-84.2396434,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

211

Cumming, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Cumming, Georgia: Energy Resources Cumming, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.2073196°, -84.1401926° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.2073196,"lon":-84.1401926,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

Alapaha, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Alapaha, Georgia: Energy Resources Alapaha, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.3851954°, -83.2229323° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.3851954,"lon":-83.2229323,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

Tucker, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tucker, Georgia: Energy Resources Tucker, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8545479°, -84.2171424° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.8545479,"lon":-84.2171424,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

214

Adairsville, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Adairsville, Georgia: Energy Resources Adairsville, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.3687021°, -84.9341093° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.3687021,"lon":-84.9341093,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

215

Pineview, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pineview, Georgia: Energy Resources Pineview, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.1101702°, -83.501003° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.1101702,"lon":-83.501003,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

216

Rochelle, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rochelle, Georgia: Energy Resources Rochelle, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.9510105°, -83.4562744° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.9510105,"lon":-83.4562744,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

217

Ailey, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ailey, Georgia: Energy Resources Ailey, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.1874042°, -82.5656886° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.1874042,"lon":-82.5656886,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

218

Hapeville, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Hapeville, Georgia: Energy Resources Hapeville, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.660109°, -84.4102046° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.660109,"lon":-84.4102046,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

219

Woodstock, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Woodstock, Georgia: Energy Resources Woodstock, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.1014873°, -84.5193754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1014873,"lon":-84.5193754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

220

Georgia Institute of Technology Fire Watch Procedures  

E-Print Network (OSTI)

-385-1000) Area II (404-385-2000) Area III (404-385-3000) Area IV (404-385-4000) Area V (404-385-5000) II. Fire Marshal 404-894-2990 2. Georgia Tech Police Department 404-894-2500 3. Facilities-Area 1 (404 the fire watch is in effect. 2. Patrol the entire area affected by the service outage every 30 minutes

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

TVA - Energy Right Solutions for Business (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia) Georgia) TVA - Energy Right Solutions for Business (Georgia) < Back Eligibility Commercial Industrial Institutional Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Other Appliances & Electronics Home Weatherization Sealing Your Home Design & Remodeling Windows, Doors, & Skylights Heat Pumps Commercial Lighting Lighting Manufacturing Maximum Rebate Prescriptive Measures: $200,000 or 70% of cost per facility per year Custom Projects: 70% of cost Program Info Funding Source The Tennessee Valley Authority Start Date July 2010 State Georgia Program Type Utility Rebate Program Rebate Amount Air Conditioners and Heat Pumps: $40/ton Motors: $10-$300/motor Commercial Dishwashers: $400-$1500/unit Refrigerator w/ Glass Door: $60-$100 Ice Machines: $100-$400

222

Georgia Hazardous Waste Management Act | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Hazardous Waste Management Act Hazardous Waste Management Act Georgia Hazardous Waste Management Act < Back Eligibility Agricultural Commercial Construction Developer Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Environmental Regulations Siting and Permitting Provider Georgia Department of Natural Resources The Georgia Hazardous Waste Management Act (HWMA) describes a

223

Central Georgia EMC- Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

Central Georgia Electric Member Corporation (CGEMC) offers rebates for residential customers to increase the energy efficiency of existing homes or to build new energy efficient homes. This year,...

224

Categorical Exclusion Determination (Georgia-Alabama-SouthCarolina...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia-Alabama-South Carolina System of Projects More Documents & Publications CX-001068: Categorical Exclusion Determination SOCO-4-E Wholesale Power Rate Schedule Regulation-1...

225

,"Georgia Natural Gas Price Sold to Electric Power Consumers...  

U.S. Energy Information Administration (EIA) Indexed Site

ame","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic...

226

Workplace Charging Challenge Partner: Georgia Institute of Technology...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Institute of Technology is a leader in innovation and is committed to practicing sustainability. Georgia Tech's Parking and Transportation Services office is renowned for its...

227

Georgia Power - Energy Efficiency Home Improvement Rebates | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Power - Energy Efficiency Home Improvement Rebates Georgia Power - Energy Efficiency Home Improvement Rebates Georgia Power - Energy Efficiency Home Improvement Rebates < Back Eligibility Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Sealing Your Home Ventilation Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate All Incentives: 50% of cost Whole House Improvements: $2,200 Individual Improvements: $700 Program Info Start Date 1/1/2011 Expiration Date 12/31/2012 State Georgia Program Type Utility Rebate Program Rebate Amount Programmable Thermostat: $100 BPI Assessment: $200 Whole House Improvements: 50% Air Sealing: $400 Attic Insulation: $300

228

Seth Marder Title: Regent's Professor, Georgia Power Chair in Energy Efficiency  

E-Print Network (OSTI)

Seth Marder Title: Regent's Professor, Georgia Power Chair in Energy Efficiency University's Professor, the Georgia Power Chair of Energy Efficiency, and Professor of Chemistry and Materials Science

Garmestani, Hamid

229

Direct-Current Resistivity Survey At Hualalai Northwest Rift Area (Thomas,  

Open Energy Info (EERE)

Hualalai Northwest Rift Area (Thomas, Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A total of seven Schlumberger soundings were performed on Hualalai. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Hualalai_Northwest_Rift_Area_(Thomas,_1986)&oldid=510528" Category: Exploration Activities What links here Related changes

230

Kilauea East Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea East Rift Geothermal Area Kilauea East Rift Geothermal Area (Redirected from Kilauea East Rift Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea East Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (0) 10 Exploration Activities (28) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.47836,"lon":-154.8883,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

231

"1. Scherer","Coal","Georgia Power Co",3400 "2. Bowen","Coal","Georgia Power Co",3234  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia" Georgia" "1. Scherer","Coal","Georgia Power Co",3400 "2. Bowen","Coal","Georgia Power Co",3234 "3. Vogtle","Nuclear","Georgia Power Co",2302 "4. Wansley","Coal","Georgia Power Co",1793 "5. Edwin I Hatch","Nuclear","Georgia Power Co",1759 "6. Harllee Branch","Coal","Georgia Power Co",1607 "7. Yates","Coal","Georgia Power Co",1286 "8. McIntosh Combined Cycle Facility","Gas","Georgia Power Co",1257 "9. Murray Energy Facility","Gas","Duke Energy Generation Services",1250 "10. Wansley Combined Cycle","Gas","Southern Power Co",1143

232

Environmental radionuclide distribution in Georgia after the Chernobyl accident  

SciTech Connect

Atmospheric Chernobyl-released radioactivity, assessed at about 2 x 10{sup 18} Bq, caused global environmental contamination. Contaminated air masses appeared in the Transcaucasian region in early May, 1986. Rains that month promoted intense radionuclide deposition all over Georgia. The contamination level of western Georgia considerably exceeded the contamination level of eastern Georgia. The Black Sea coast of Georgia suffered from the Chernobyl accident as much as did strongly contaminated areas of the Ukraine and Belarus`. Unfortunately, governmental decrees on countermeasures against the consequences of the Chernobyl accident at that time did not even refer to the coast of Georgia. The authors observed the first increase in radioactivity background in rainfall samples collected on May 2, 1986, in Tbilisi. {gamma}-Spectrometric measurements of aerosol filters, vegetation, food stuffs, and other objects, in addition to rainfall, persistently confirmed the occurrence of short-lived radionuclides, including {sup 131}I. At first, this fact seemed unbelievable, because the Chernobyl accident had occurred only 4-5 days earlier and far from Georgia. However, these arguments proved to be faulty. Soon, environmental monitoring of radiation in Georgia became urgent. Environmental radionuclide distribution in Georgia shortly after the Chernobyl accident, as well as the methods of analysis, are reported in this paper.

Mosulishvili, L.M.; Shoniya, N.I.; Katamadze, N.M. [Institute of Physics, Tbilisi, Georgia (Russian Federation)] [and others

1994-01-01T23:59:59.000Z

233

Water Management Laws in Georgia Ciannat M. Howett  

E-Print Network (OSTI)

for the Northern District of Georgia (see State of Georgia v. United States Army Corps of Engineers et al., 2.01-CV Sharing Agreements/Interstate Compacts: The Example of the Tri-state Water Negotiations As water resources, states across the nation ­ even on the relatively water-rich east coast ­ have been focusing more

Rosemond, Amy Daum

234

The Quality Jobs Tax Credit (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Quality Jobs Tax Credit (Georgia) The Quality Jobs Tax Credit (Georgia) The Quality Jobs Tax Credit (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Corporate Tax Incentive Provider Georgia Department of Economic Development The Quality Jobs Tax Credit provides a tax credit of $2,500-$5,000 per job, per year, for up to five year to companies that create at least 50 jobs in a twelve month period. Credits may be carried forward for ten years

235

Georgia's 5th congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

5th congressional district: Energy Resources 5th congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Georgia. US Recovery Act Smart Grid Projects in Georgia's 5th congressional district Municipal Electric Authority of Georgia Smart Grid Project Registered Energy Companies in Georgia's 5th congressional district Ajeetco Alpha Renewable Energy American Process Inc C2 Biofuels Empower Energy Technology Ethanol Capital Funding Future Energy Resources G2 Energy GE Energy Formerly GE Power Systems GE Wind Energy Geoplasma LLC Georgia Power Global Energy Holdings Group formerly Xethanol Corporation Home Depot Foundation International Truck Navajo Wind Energy Plum Combustion

236

Qualifying RPS State Export Markets (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia) Georgia) Qualifying RPS State Export Markets (Georgia) < Back Eligibility Developer Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Renewables Portfolio Standards and Goals This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Georgia as eligible sources towards their RPS targets or goals. For specific information with regard to eligible technologies or other restrictions which may vary by state, see the RPS policy entries for the individual states, shown below in the Authority listings. Typically energy must be delivered to an in-state utility or Load Serving Entity, and often only a portion of compliance

237

Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary to Visit Georgia Nuclear Reactor Site and Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee Laboratory to Highlight Administration Support for Nuclear Energy February 13, 2012 - 6:16pm Addthis WASHINGTON, D.C. - U.S. Secretary of Energy Secretary Steven Chu will visit the Vogtle nuclear power plant in Waynesboro, Georgia, and Oak Ridge National Laboratory on Wednesday, February 15 to highlight steps the Obama Administration is taking to restart America's nuclear energy industry. In Waynesboro, Secretary Chu will join Southern Company CEO Thomas A. Fanning, Georgia Power CEO W. Paul Bowers, and local leaders for a tour of Vogtle units 3 and 4 -- the site of the first two new nuclear power units

238

Marketers' Certificate of Authority (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marketers' Certificate of Authority (Georgia) Marketers&#039; Certificate of Authority (Georgia) Marketers' Certificate of Authority (Georgia) < Back Eligibility Commercial Construction Developer Fuel Distributor Industrial Investor-Owned Utility Municipal/Public Utility Rural Electric Cooperative Utility Program Info State Georgia Program Type Siting and Permitting The Marketers' Certificate of Authority is mandated by the Georgia Public Service Commission (PSC), and is a part of the Natural Gas Competition and Reregulation Act. It requires that any company seeking to distribute natural gas in the state obtain a certificate of authority from the PSC. To obtain a certificate of authority, an applicant must demonstrate to the Commission's satisfaction that it possesses adequate financial and technical capability to sell or offer to sell natural gas within the state

239

Municipal Electric Authority of Georgia Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Georgia Smart Grid Project Georgia Smart Grid Project Jump to: navigation, search Project Lead Municipal Electric Authority of Georgia Country United States Headquarters Location Atlanta, Georgia Recovery Act Funding $12,267,350.00 Total Project Value $24,534,700.00 Coverage Area Coverage Map: Municipal Electric Authority of Georgia Smart Grid Project Coordinates 33.7489954°, -84.3879824° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

240

Georgia Energy and Cost Savings for New Single- and Multifamily Homes  

NLE Websites -- All DOE Office Websites (Extended Search)

12 IECC AS COMPARED TO THE 2009 GEORGIA ENERGY CODE 12 IECC AS COMPARED TO THE 2009 GEORGIA ENERGY CODE Georgia Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 Georgia Energy Code BUILDING TECHNOLOGIES PROGRAM 2 2012 IECC AS COMPARED TO THE 2009 GEORGIA ENERGY CODE Georgia Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 Georgia Energy Code The 2012 International Energy Conservation Code (IECC) yields positive benefits for Georgia homeowners. Moving to the 2012 IECC from the current Georgia Energy Code is cost-effective over a 30-year life cycle. On average, Georgia homeowners will save $3,973 with the 2012 IECC. Each year, the reduction to energy bills will significantly exceed increased mortgage costs. After accounting for up-front costs and

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Magnetotellurics At Kilauea Southwest Rift And South Flank Area (Laney,  

Open Energy Info (EERE)

Laney, Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Kilauea Southwest Rift And South Flank Area (Laney, 2005) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Magnetotellurics Activity Date Usefulness not indicated DOE-funding Unknown Notes Magnetotelluric Imaging, G. Michael Hoversten. The project title derived from its inception. The project however moved from the application of MT on Kilauea in 2003 to the use of combined SP and conductivity mapping (MT) in 2004. The beginning of 2004 saw the completions of the Kilauea MT experiment by the acquisition of an additional 45 MT stations on Kilauea. We therefore decided to use the funds available to work at the Fort Bidwell

242

Ground Magnetics At Kilauea East Rift Area (Leslie, Et Al., 2004) | Open  

Open Energy Info (EERE)

Ground Magnetics At Kilauea East Rift Area (Leslie, Et Al., 2004) Ground Magnetics At Kilauea East Rift Area (Leslie, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Kilauea East Rift Area (Leslie, Et Al., 2004) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Ground Magnetics Activity Date Usefulness useful DOE-funding Unknown Notes Paper states "magnetic data" - no further clarification regarding type of magnetic survey. References Stephen C. Leslie, Gregory F. Moore, Julia K. Morgan (2004) Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Ground_Magnetics_At_Kilauea_East_Rift_Area_(Leslie,_Et_Al.,_2004)&oldid=390100"

243

Self Potential At Mauna Loa Southwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Southwest Rift Area (Thomas, 1986) Southwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Mauna Loa Southwest Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Southwest Rift Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Field surveys in the South Point area were limited to a series of Schlumberger soundings and a self-potential traverse across the rift zone. The absence of groundwater wells and time and funding constraints precluded any geochemical field surveys. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Self_Potential_At_Mauna_Loa_Southwest_Rift_Area_(Thomas,_1986)&oldid=389751

244

A Time-Domain Electromagnetic Survey of the East Rift Zone Kilauea Volcano,  

Open Energy Info (EERE)

A Time-Domain Electromagnetic Survey of the East Rift Zone Kilauea Volcano, A Time-Domain Electromagnetic Survey of the East Rift Zone Kilauea Volcano, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library == A Time-Domain Electromagnetic Survey of the East Rift Zone Kilauea Volcano, HawaiiThesis/Dissertation == Author Catherine King Skokan Organization Colorado School of Mines Published Publisher Not Provided, 1974 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for A Time-Domain Electromagnetic Survey of the East Rift Zone Kilauea Volcano, Hawaii Citation [[Citation::Catherine King Skokan. 1974. A Time-Domain Electromagnetic Survey of the East Rift Zone Kilauea Volcano, Hawaii []. [ (!) ]: Colorado School of Mines.]] Retrieved from "http://en.openei.org/w/index.php?title=A_Time-Domain_Electromagnetic_Survey_of_the_East_Rift_Zone_Kilauea_Volcano,_Hawaii&oldid=682585"

245

Field Mapping At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Kilauea East Rift Area (Thomas, Field Mapping At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Field Mapping Activity Date Usefulness useful DOE-funding Unknown Notes Geologic mapping on the East Rift Zone (ERZ) conducted by Peterson (1967), J. Moore (1971), and Wright and Fiske (1971) detailed historic lava flows originating in the ERZ and developed structural models of the rift based on the locations and progressions of recorded eruptive cycles. These studies have more recently been expanded by Holcomb (1980, 1981) and R. Moore (1982, 1983) who have presented more detailed mapping of all surface flows (historic and prehistoric), fissures and faulting on the eastern flank of the Kilauea shield. The model developed from these studies is of a rift

246

Refraction Survey At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Refraction Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Seismic refraction surveys conducted by Broyles and Furumoto (1978) and Suyenaga et al. (1978) developed a cross-sectional model of the rift zone near the present site of HGP-A that proposed a 12- 17 km wide dike complex lying at a depth of 2 to 3 km (Fig. 51). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Refraction_Survey_At_Kilauea_East_Rift_Area_(Thomas,_1986)&oldid=386690"

247

Direct-Current Resistivity Survey At Kilauea Southwest Rift And South Flank  

Open Energy Info (EERE)

Direct-Current Resistivity Survey At Kilauea Southwest Rift And South Flank Direct-Current Resistivity Survey At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The electrical resistivity data acquired on the southwest rift delineated two distinct basement resistivity structures northwest of the rift zone: a high-resistivity basement at approximately 60 m a.s.l, and located north of a prehistoric fissure, and a low-resistivity deep basement (20 m a.s.1.) to

248

Direct-Current Resistivity At Kilauea Southwest Rift And South Flank Area  

Open Energy Info (EERE)

Direct-Current Resistivity At Kilauea Southwest Rift And South Flank Area Direct-Current Resistivity At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes The electrical resistivity data acquired on the southwest rift delineated two distinct basement resistivity structures northwest of the rift zone: a high-resistivity basement at approximately 60 m a.s.l, and located north of a prehistoric fissure, and a low-resistivity deep basement (20 m a.s.1.) to the south and east of this fissure (Figs 48, 49). These data suggest that a

249

A geochemical model of the Kilauea east rift zone | Open Energy Information  

Open Energy Info (EERE)

A geochemical model of the Kilauea east rift zone A geochemical model of the Kilauea east rift zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A geochemical model of the Kilauea east rift zone Abstract N/A Author Donald Thomas Published Journal US Geological Survey Professional Paper 1350, 1987 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for A geochemical model of the Kilauea east rift zone Citation Donald Thomas. 1987. A geochemical model of the Kilauea east rift zone. US Geological Survey Professional Paper 1350. (!) . Retrieved from "http://en.openei.org/w/index.php?title=A_geochemical_model_of_the_Kilauea_east_rift_zone&oldid=682589" Categories: Missing Required Information References Uncited References Geothermal References

250

SOUTHEASTERN FEDERAL POWER ALLIANCE Municipal Electric Authority of Georgia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SOUTHEASTERN FEDERAL POWER ALLIANCE SOUTHEASTERN FEDERAL POWER ALLIANCE Municipal Electric Authority of Georgia 1470 Riveredge Parkway NW, Atlanta, Georgia October 9, 2013 October 8, 2013: Meet in Wyndham Hotel lobby at 6:30 p.m. to travel to Dutch-treat dinner at Copeland's October 9, 2013: Meeting will begin at 8:30 a.m. in the offices of the Municipal Electric Authority of Georgia. *************************************** 1. Welcome, Announcements & MEAG 101 ................................................... Chart Bonham 2. Opening Comments ......................................... BG Ed Jackson, Alan Williford, Ken Legg 3. Washington Update ....................................................................................... Kamau Sadiki 4. American Public Power Association ............................................................. Will Coffman

251

Diverse Power - Energy Efficient Existing Homes Rebate Program (Georgia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Existing Homes Rebate Program Existing Homes Rebate Program (Georgia) Diverse Power - Energy Efficient Existing Homes Rebate Program (Georgia) < Back Eligibility Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Heat Pumps Heating Appliances & Electronics Water Heating Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Electric Heat Pump: $100/system Gas to Electric Heat Pump Switch: $300 Dual Fuel Heat Pump: $250/system Geothermal Heat Pump: $250/ton Electric Water Heaters: $75 - $150/unit Gas to Electric Water Heater Switch: $300 - $500 Waste Heat Recovery Unit: $250/house Provider Diverse Power Diverse Power is a member-owned electric cooperative that provides electric

252

Core Holes At Kilauea East Rift Geothermal Area (Bargar, Et Al...  

Open Energy Info (EERE)

Activity Details Location Kilauea East Rift Geothermal Area Exploration Technique Core Holes Activity Date 1989 - 1991 Usefulness useful DOE-funding Unknown Exploration...

253

Connection of the Panama fracture zone with the Galapagos rift zone, eastern tropical Pacific  

Science Journals Connector (OSTI)

Magnetic data recently collected in the eastern tropical Pacific confirm that the Galapagos rift zone is connected to the Panama fracture zone by a short north-south...

Paul J. Grim

1970-08-01T23:59:59.000Z

254

Jackson EMC - Residential Energy Efficiency Rebate Program (Georgia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jackson EMC - Residential Energy Efficiency Rebate Program Jackson EMC - Residential Energy Efficiency Rebate Program (Georgia) Jackson EMC - Residential Energy Efficiency Rebate Program (Georgia) < Back Eligibility Residential Savings Category Other Heating & Cooling Commercial Heating & Cooling Heat Pumps Appliances & Electronics Water Heating Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Heat Pump: $400 Marathon Water Heater: $525 Heat Pump Water Heater: $525 Energy Audit Measures: up to $400 Provider Jackson Electric Membership Corporation Jackson Electric Membership Corporation (EMC) is an electric cooperative that serves 194,000 customers in 10 counties in northeast Georgia. To encourage its residential customers to adopt energy efficient equipment in their homes, Jackson EMC provides rebates for qualified heat pumps and

255

The Natural Gas Competition and Regulation Act of 1998 (Georgia) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Natural Gas Competition and Regulation Act of 1998 (Georgia) The Natural Gas Competition and Regulation Act of 1998 (Georgia) The Natural Gas Competition and Regulation Act of 1998 (Georgia) < Back Eligibility Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Low-Income Residential Municipal/Public Utility Residential Rural Electric Cooperative Utility Program Info State Georgia Program Type Generating Facility Rate-Making Industry Recruitment/Support The Natural Gas Competition and Deregulation Act's stated intent and purposes are to: promote competition; protect the consumer during and after the transition to competition; maintain and encourage safe and reliable service; deregulate those components of the industry subject to actual competition; continue to regulate those services subject to monopoly power;

256

Georgia Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Georgia Regions Georgia Regions National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Middle School Regionals Georgia Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Georgia Coaches can review the middle school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your

257

Georgia-Climate Technology Initiative Private Financing Advisory Network  

Open Energy Info (EERE)

Georgia-Climate Technology Initiative Private Financing Advisory Network Georgia-Climate Technology Initiative Private Financing Advisory Network (CTI PFAN) Jump to: navigation, search Logo: Georgia-Climate Technology Initiative Private Financing Advisory Network (CTI PFAN) Name Georgia-Climate Technology Initiative Private Financing Advisory Network (CTI PFAN) Agency/Company /Organization Climate Technology Initiative (CTI), United States Agency for International Development (USAID), Renewable Energy and Energy Efficiency Partnership (REEEP) Partner International Centre for Environmental Technology Transfer Sector Energy Focus Area Agriculture, Biomass, - Biofuels, - Landfill Gas, - Waste to Energy, Buildings, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Solar, Transportation, Water Power, Wind Topics Adaptation, Co-benefits assessment, - Energy Access, - Environmental and Biodiversity, - Health, - Macroeconomic, Finance, Implementation, Low emission development planning, -NAMA, -TNA

258

City of West Point, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

West Point, Georgia (Utility Company) West Point, Georgia (Utility Company) Jump to: navigation, search Name City of West Point Place Georgia Utility Id 20393 Utility Location Yes Ownership M NERC Location SERC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Commercial Medium Commercial Commercial Residential Residential Small Commercial Commercial Average Rates Residential: $0.0923/kWh Commercial: $0.1080/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_West_Point,_Georgia_(Utility_Company)&oldid=410414"

259

Georgia Nonprofit Helps Homeowners Save Energy | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Nonprofit Helps Homeowners Save Energy Georgia Nonprofit Helps Homeowners Save Energy Georgia Nonprofit Helps Homeowners Save Energy April 21, 2010 - 12:44pm Addthis Joshua DeLung Job creation is helping more families in Georgia make ends meet, while the work being done because of those jobs - weatherization - is helping other families do the same by saving them money on their energy bills. Residents such as Mattie Williams are living in more comfortable and energy-efficient homes because of work done by the Central Savannah River Area Economic Opportunity Authority's weatherization program. Since its launch in 1976, CSRA EOA has helped 5.5 million households save energy, money and be more comfortable. Mattie learned about CSRA EOA online. She began searching for weatherization options in hopes of lowering her high energy bill.

260

Business Incentive Loans and Bonds (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » Business Incentive Loans and Bonds (Georgia) Business Incentive Loans and Bonds (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Maximum Rebate Unlimited but generally should not exceed 20% of the asset needs of the company's Gerogia location. Program Info State Georgia Program Type Bond Program Loan Program Provider Georgia Department of Community Affairs The Strategic Industries Loan Fund (SILF) is a program offered by the

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

City of Moultrie, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Moultrie, Georgia (Utility Company) Moultrie, Georgia (Utility Company) Jump to: navigation, search Name Moultrie City of Place Georgia Utility Id 13026 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Rates Commercial Residential Electric Rates Residential Average Rates Residential: $0.0936/kWh Commercial: $0.0995/kWh Industrial: $0.0822/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Moultrie,_Georgia_(Utility_Company)&oldid=409978"

262

Georgia Regions | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Georgia Regions Georgia Regions National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov High School Regionals Georgia Regions Print Text Size: A A A RSS Feeds FeedbackShare Page Georgia Coaches can review the high school regional locations listed below. Please note: Registrations are based on the location of your school. Please be sure to select the regional that is designated for your school's state, county, city, or district.

263

City of Doerun, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Doerun, Georgia (Utility Company) Doerun, Georgia (Utility Company) Jump to: navigation, search Name City of Doerun Place Georgia Utility Id 5236 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.1040/kWh Commercial: $0.1050/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Doerun,_Georgia_(Utility_Company)&oldid=409521" Categories: EIA Utility Companies and Aliases

264

The Small Business Tax Relief Program (Georgia) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

The Small Business Tax Relief Program (Georgia) The Small Business Tax Relief Program (Georgia) The Small Business Tax Relief Program (Georgia) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Transportation Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Personal Tax Incentives Corporate Tax Incentive The Small Business Tax Relief stipulation allows for faster depreciation on equipment deduction in which businesses can choose to claim the expense in one year as opposed to several years.

265

Georgia/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Georgia/Wind Resources/Full Version Georgia/Wind Resources/Full Version < Georgia‎ | Wind Resources Jump to: navigation, search Print PDF Georgia Wind Resources GeorgiaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

266

Georgia Power - Commercial Energy Efficiency Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Power - Commercial Energy Efficiency Program Georgia Power - Commercial Energy Efficiency Program Georgia Power - Commercial Energy Efficiency Program < Back Eligibility Commercial Institutional Nonprofit Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Home Weatherization Commercial Weatherization Sealing Your Home Ventilation Heat Pumps Commercial Lighting Lighting Water Heating Maximum Rebate Duct Sealing: $1,000 Lighting: $10,000 per building per year Cool Reflective Roof: $10,000 Program Info State Georgia Program Type Utility Rebate Program Rebate Amount Custom Lighting: $0.20/watt reduced New Construction Custom Lighting: $0.05/Annual kWh Savings CFLs: $6.50/fixture; $1.25/lamp LED Exit Sign: $7/fixture Lighting Occupancy Sensors: $10/sensor Air Conditioners: $20/ton

267

Sensible Solar Fueling Energy Revolution in Georgia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sensible Solar Fueling Energy Revolution in Georgia Sensible Solar Fueling Energy Revolution in Georgia Sensible Solar Fueling Energy Revolution in Georgia May 14, 2010 - 3:35pm Addthis Joshua DeLung During his recent commencement address at the Georgia Institute of Technology, Energy Secretary Steven Chu hailed the ingenuity of the engineers responsible for the Industrial Revolution. He noted, however, that the carbon emissions from that pivotal era have caused the world's climate to change drastically. "More frequent heat waves and increased water stress in many areas of the world are predicted," he said. "Rising sea levels and the severity of hurricanes and cyclones will threaten low-lying coastal areas. The climate will change so rapidly that many species, including many people, will have

268

Georgia Natural Gas LNG Storage Withdrawals (Million Cubic Feet...  

Gasoline and Diesel Fuel Update (EIA)

Withdrawals (Million Cubic Feet) Georgia Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

269

Georgia Natural Gas LNG Storage Net Withdrawals (Million Cubic...  

Gasoline and Diesel Fuel Update (EIA)

Net Withdrawals (Million Cubic Feet) Georgia Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8...

270

EcoCAR Challenge Georgia Institute of Technology  

E-Print Network (OSTI)

EcoCAR Challenge Georgia Institute of Technology Outreach Report Date: 11/09/2010 #12;11/9/2010 2 plan on leveraging our media contacts, GM sponsors, and Atlanta Clean Cities sponsors to potentially

Houston, Paul L.

271

Georgia Natural Gas Pipeline and Distribution Use (Million Cubic...  

Annual Energy Outlook 2012 (EIA)

(Million Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's...

272

Georgia's 11st congressional district: Energy Resources | Open...  

Open Energy Info (EERE)

This article is a stub. You can help OpenEI by expanding it. Equivalent URI DBpedia Retrieved from "http:en.openei.orgwindex.php?titleGeorgia%27s11stcongressionaldistrict&o...

273

Georgia Natural Gas Vehicle Fuel Price (Dollars per Thousand...  

U.S. Energy Information Administration (EIA) Indexed Site

Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Georgia Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5...

274

University of Georgia Marine Institute Procedures and Guidelines  

E-Print Network (OSTI)

University of Georgia Marine Institute Procedures and Guidelines I want to bring a class or do to be transported to UGAMI separately in certain instances. · Gasoline, Coleman fuel, radioactive materials, open

Arnold, Jonathan

275

Georgia: Data Center and Historic Municipal Building Go Green...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Municipal Building Go Green Georgia: Data Center and Historic Municipal Building Go Green August 21, 2013 - 9:45am Addthis Data centers can consume 100 to 200 times more...

276

City of Hampton, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Georgia (Utility Company) Georgia (Utility Company) Jump to: navigation, search Name City of Hampton Place Georgia Utility Id 8022 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Commercial Domestic Residential Average Rates Residential: $0.0769/kWh Commercial: $0.0717/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Hampton,_Georgia_(Utility_Company)&oldid=40969

277

Georgia-UNEP Risoe Technology Needs Assessment Program | Open Energy  

Open Energy Info (EERE)

Georgia-UNEP Risoe Technology Needs Assessment Program Georgia-UNEP Risoe Technology Needs Assessment Program Jump to: navigation, search Name Georgia-UNEP Risoe-Technology Needs Assessment Program Agency/Company /Organization UNEP-Risoe Centre Sector Energy Topics Background analysis, Low emission development planning, -Roadmap, Pathways analysis Website http://tech-action.org/ Country Georgia References UNEP Risoe-Technology Needs Assessment Program[1] Abstract UNEP DTIE in collaboration with the UNEP Risoe Centre will provide targeted financial, technical and methodological support to assist a total of 35 to 45 countries to conduct TNA projects Overview "Technology needs assessment (TNA) is a set of country-driven activities that identifies and determines the mitigation and adaptation technology

278

Sensible Solar Fueling Energy Revolution in Georgia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sensible Solar Fueling Energy Revolution in Georgia Sensible Solar Fueling Energy Revolution in Georgia Sensible Solar Fueling Energy Revolution in Georgia May 14, 2010 - 3:35pm Addthis Joshua DeLung During his recent commencement address at the Georgia Institute of Technology, Energy Secretary Steven Chu hailed the ingenuity of the engineers responsible for the Industrial Revolution. He noted, however, that the carbon emissions from that pivotal era have caused the world's climate to change drastically. "More frequent heat waves and increased water stress in many areas of the world are predicted," he said. "Rising sea levels and the severity of hurricanes and cyclones will threaten low-lying coastal areas. The climate will change so rapidly that many species, including many people, will have

279

Phanerozoic tectono-stratigraphic evolution of the Trans-Pecos and Permian basin regions (Mexico, Texas, New Mexico) using Landsat imagery, subsurface and outcrop data  

SciTech Connect

Integrating regional Landsat imagery, outcrop field studies, and subsurface data has resulted in a more comprehensive understanding and delineation of the tectono-stratigraphic evolution of the Trans-Pecos region. Landsat imagery were acquired and registered to the existing 1:25000 scale maps and mosaiced to create a regional view of the Trans-Pecos and Permian basin region. The imagery were used to extrapolate and map key stratigraphic and tectonic elements after calibration from documented outcrop and subsurface data. The interpretations aided in the extrapolation of scattered control information and were critical in the complete reconstruction of the geologic history of the area. The Trans-Pecos Phanerozoic history comprises five tectono-depositional phases, and these have controlled the shape of the modem landscape: (1) Late Proterozoic rifting (Gondwana from Laurentia), and development of the Early-Middle Paleozoic Tobosa basin; (2) Pennsylvanian collision (South and North Americas), and differentiation of the Tobosa basin into the Midland, Delaware, Orogrande, and Pedregosa basins separated by basement blocks: Central Basin Platform, Diablo Platform, Burro-Florida Platform; (3) Middle Mesozoic transtensional rifting (Mexico from North America), and Late Jurassic failed rifting of the Mexican Chihuahua and Coahuila Troughs west and south of the Diablo Platform; (4) Late Mesozoic Laramide collision (Mexico and Texas), and development of the Chihuahua fold/thrust belt limited by the western margin of the Diablo Platform; (5) Late Cenozoic North American basin and Range rifting, and development of Rio Grande grabens, block-faulted mountains, and volcanics. The Tobosa basin was a passive-margin interior sag; its continental margin was south of the Marathons.

Markello, J.R.; Sarg, J.F. [Mobil Technology Corporation, Dallas, TX (United States)

1996-08-01T23:59:59.000Z

280

Episodic Rifting of Phanerozoic Rocks in the Victoria Land Basin, Western Ross Sea, Antarctica  

Science Journals Connector (OSTI)

...Geological Survey multichannel seismic-reflection tracklines, and location of seismic line 407 (Fig. 2). 1085 the axis tow art iions of naginatic rocks. The faultsap-pear to cut sedimentary rocks near the seafloor and to show an increasing dis-Olacement...

ALAN K. COOPER; F. J. DAVEY

1985-09-13T23:59:59.000Z

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Static Temperature Survey At Rio Grande Rift Region (Morgan,...  

Open Energy Info (EERE)

Sares (2010) Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleStaticTem...

282

Data Acquisition-Manipulation At Rio Grande Rift Region (Morgan...  

Open Energy Info (EERE)

Sares (2010) Prospects For Electricity Generation In The San Luis Basin, Colorado, Usa Additional References Retrieved from "http:en.openei.orgwindex.php?titleDataAcqui...

283

Geophysical Study of Basin-Range Structure Dixie Valley Region, Nevada |  

Open Energy Info (EERE)

of Basin-Range Structure Dixie Valley Region, Nevada of Basin-Range Structure Dixie Valley Region, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Study of Basin-Range Structure Dixie Valley Region, Nevada Abstract The study aims to determine the subsurface structure and origin ofa tectonically active part of the Basin and Range province, which hasstructural similarities to the ocean ridge system and to continental blockfaultstructure such_;s the Rift Valleys of East Africa. A variety oftechniques was utilized, including seismic refraction, gravity measurements,magnetic measurements, photogeologic mapping, strain analysis of existinggeodetic data, and elevation measurements on shorelines of ancient lakes.Dixie Valley contains more than 10,000 feet of Cenozoic deposits andis underlain by a complex fault trough concealed within the

284

Geophysical and Structural Aspects of the Central Red Sea Rift Valley  

Science Journals Connector (OSTI)

...Structural Aspects of the Central Red Sea Rift Valley F. K. Kabbani Eight aeromagnetic traverses...trend northwesterly beginning immediately west of the 1000 m bathymetric contour. Depth...structural aspects of the central Red Sea rift valley Kabbani F. K. Author 89 97 A discussion...

1970-01-01T23:59:59.000Z

285

Bisbee basin and its bearing on Late Mesozoic Paleogeographic and paleotectonic relations between Cordilleran and Caribbean regions  

SciTech Connect

The Bisbee Group and its correlatives in southern Arizona, the New Mexico panhandle, and adjacent parts of Mexico are composed dominantly of Lower Cretaceous nonmarine, marginal marine, and shallow marine deposits, but apparently also include upper Upper Jurassic and lower Upper Cretaceous strata. Farther west, in southwestern Arizona and southeastern California, lithologically similar nonmarine strata of the McCoy Mountains Formation and its correlatives occupy the same general stratigraphic position as the Bisbee Group, but are poorly dated and may be older. The rifted Bisbee basin was a northwestern extension of the Chihuahua Trough, a late Mesozoic arm of the Gulf of Mexico depression. Basal zones of the Bisbee Group were deposited as alluvial fans marginal to active fault blocks during the rift phase of basin development, and are intercalated locally with lavas and ignimbrites. Subsequent thermotectonic subsidence of thinned crust beneath the Bisbee basin allowed intertonguing fluvial, lacustrine, deltaic, strandline, and marine shelf facies to invade the basin and bury the foundered fault-block topography. The upper Lower Cretaceous (Aptian-Albian) Mural Limestone was deposited during the phase of maximum transgression. Differing sandstone petrofacies of quartzose, arkosic, and volcaniclastic character reflect derivation of clastic detritus from varied sources bordering the Bisbee basin. The Bisbee basin and Chihuahua Trough developed in relation to Jurassic opening of the Gulf of Mexico, and were associated with changing plate configurations and motions throughout the Mesoamerican region.

Dickinson, W.R.; Klute, M.; Swift, P.N.

1986-04-01T23:59:59.000Z

286

Time-Domain Electromagnetics At Kilauea Southwest Rift And South Flank Area  

Open Energy Info (EERE)

And South Flank Area And South Flank Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes The assessment effort consisted of a reexamination of existing Schlumberger sounding (Hussong and Cox, 1967; Adams et al., 1970) and time-domain electromagnetic (Klein and Kauahikaua, 1975) data for the rift area (Kauahikaua and Mattice, 1981) The electrical resistivity data acquired on the southwest rift delineated two distinct basement resistivity structures northwest of the rift zone: a high-resistivity basement at approximately 60

287

Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano,  

Open Energy Info (EERE)

Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library : Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, HawaiiInfo Graphic/Map/Chart Authors Frank A. Trusdell and Richard B. Moore Published U.S. GEOLOGICAL SURVEY, 2006 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Hawaii Citation Frank A. Trusdell,Richard B. Moore. Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano, Hawaii. []. Place of publication not provided. U.S. GEOLOGICAL SURVEY. 2006. Available from: http://pubs.usgs.gov/imap/2614/downloads/pdf/2614map_508.pdf.

288

Direct-Current Resistivity At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Electrical resistivity studies performed on the Kilauea East Rift Zone have employed a variety of techniques. Bipole mapping was conducted by Keller et al. (1977a) as part of the Hawaii Geothermal Project (HGP) geoscience program and was able to provide data on the regional resistivity structure of the summit and eastern flank of Kilauea. The model developed indicated several different types of resistivity sections depending on the location

289

Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone  

Open Energy Info (EERE)

Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Internal Structure Of Puna Ridge- Evolution Of The Submarine East Rift Zone Of Kilauea Volcano, Hawaii Details Activities (3) Areas (1) Regions (0) Abstract: Multichannel seismic reflection, sonobuoy, gravity and magnetics data collected over the submarine length of the 75 km long Puna Ridge, Hawaii, resolve the internal structure of the active rift zone. Laterally continuous reflections are imaged deep beneath the axis of the East Rift Zone (ERZ) of Kilauea Volcano. We interpret these reflections as a layer of abyssal sediments lying beneath the volcanic edifice of Kilauea. Early

290

Gas Flux Sampling At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Gas Flux Sampling At Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Radon emanometry data for the same locality (Fig. 61) (Cox, 1980) similarly presented a complicated pattern of radon outgassing along the lower rift zone. Even though complexities are present within the rift zone, there

291

Direct-Current Resistivity Survey At Kilauea East Rift Area (Thomas, 1986)  

Open Energy Info (EERE)

Kilauea East Rift Area (Thomas, 1986) Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes Electrical resistivity studies performed on the Kilauea East Rift Zone have employed a variety of techniques. Bipole mapping was conducted by Keller et al. (1977a) as part of the Hawaii Geothermal Project (HGP) geoscience program and was able to provide data on the regional resistivity structure of the summit and eastern flank of Kilauea. The model developed indicated several different types of resistivity sections depending on the location

292

Aeromagnetic Survey At Kilauea Southwest Rift And South Flank Area (Thomas,  

Open Energy Info (EERE)

Thomas, Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Kilauea Southwest Rift And South Flank Area (Thomas, 1986) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes Aeromagnetic data (Godson et al., 1981) for the southwest rift appears to substantiate the presence of a thermal resource; there is a marked bipolar magnetic anomaly paralleling the rift zone from the summit to the lower rift near the coast suggesting either that intense hydrothermal alteration has occurred or that subsurface temperatures exceed the Curie temperature. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

293

Mercury Vapor At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Kilauea East Rift Area (Thomas, Mercury Vapor At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The sampling network for soil mercury concentrations undertaken by Cox (1981) identified a complicated pattern of mercury concentrations throughout the lower Puna area (Fig. 60). The highest soil mercury concentrations found were generally located within the rift zone, but an analysis of the data showed that soil type and soil pH also had a marked impact on mercury concentration. Making corrections for these effects improved the correspondence between the surface geological expression of the rift zone and the mercury concentrations observed; interpretation of

294

Ground Gravity Survey At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Ground Gravity Survey At Kilauea East Rift Area Ground Gravity Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes This model was later expanded through the examination of detailed and regional gravity data (Krivoy and Eaton, 1961) and regional aeromagnetic data (Malahoff and Woollard, 1966) to a three-dimensional map of the rift zone (Furumoto, 1978b). This model projected a dike complex (presumably at high temperatures) which has a width of approximately 20 km near the summit of Kilauea that narrows to approximately 12 km at the lower quarter of the subaerial portion of the rift (Fig. 52). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

295

Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mauna Loa Northeast Rift Area (Thomas, 1986) Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes Soil mercury and radon emanometry sampling conducted in the Keaau prospect were similarly unable to define any anomalies that could reasonably be interpreted to be due to subsurface thermal effects. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Mercury_Vapor_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=390060

296

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Mercury Vapor Activity Date Usefulness not indicated DOE-funding Unknown Notes The Hualalai lower northwest rift and southern flank were sampled for soil mercury concentration and radon emanation rates (Cox and Cuff, 1981d). The data generated by these surveys yielded complex patterns of mercury concentrations and radon emanation rates that generally did not show coincident anomalies (Figs 42, 43). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

297

Isotopic Analysis At Kilauea East Rift Area (Quane, Et Al., 2000) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis At Kilauea East Rift Area (Quane, Et Al., 2000) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Kilauea East Rift Area (Quane, Et Al., 2000) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown References S. L. Quane, M. O. Garcia, H. Guillou, T. P. Hulsebosch (2000) Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Drill Core From Soh 1 Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Kilauea_East_Rift_Area_(Quane,_Et_Al.,_2000)&oldid=687735"

298

Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes Two separate phases of geothermal exploratory drilling have occurred on the lower East Rift. The first was essentially a wildcat venture with relatively little surface exploratory data having been gathered, whereas the second was initiated after somewhat more geoscience information had been acquired under the Hawaii Geothermal Project. The results of the successful exploratory drilling program on the Kilauea

299

Ground Gravity Survey At Rio Grande Rift Region (Aiken & Ander, 1981) |  

Open Energy Info (EERE)

Rio Grande Rift Region (Aiken & Ander, 1981) Rio Grande Rift Region (Aiken & Ander, 1981) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Rio Grande Rift Region (Aiken & Ander, 1981) Exploration Activity Details Location Rio Grande Rift Geothermal Region Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown References Carlos L.V. Aiken, Mark E. Ander (1981) A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Retrieved from "http://en.openei.org/w/index.php?title=Ground_Gravity_Survey_At_Rio_Grande_Rift_Region_(Aiken_%26_Ander,_1981)&oldid=401473" Category: Exploration Activities What links here Related changes Special pages Printable version

300

Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Northeast Rift Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Soil mercury and radon emanometry sampling conducted in the Keaau prospect were similarly unable to define any anomalies that could reasonably be interpreted to be due to subsurface thermal effects. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Gas_Flux_Sampling_At_Mauna_Loa_Northeast_Rift_Area_(Thomas,_1986)&oldid=389039"

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From  

Open Energy Info (EERE)

Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Seismic And Gravity Data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Structure Of The Lower East Rift Zone Of Kilauea Volcano, Hawaii, From Seismic And Gravity Data Details Activities (2) Areas (1) Regions (0) Abstract: Two seismic refraction surveys were carried out in 1976 and 1977 on the east rift zone of Kilauea volcano as part of an exploratory program for geothermal resources. The short traverse seismic refraction survey of January 1976 delineated the upper surface structure of the east rift, revealing velocities of 2.5 km/s under the Kalapana line and 3.1 km/s under the Leilani line beneath a surface layer of low, but variable velocity. This survey was not successful in determining the depth of the

302

Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) | Open  

Open Energy Info (EERE)

Hualalai Northwest Rift Area (Thomas, 1986) Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Gas Flux Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes The Hualalai lower northwest rift and southern flank were sampled for soil mercury concentration and radon emanation rates (Cox and Cuff, 1981d). The data generated by these surveys yielded complex patterns of mercury concentrations and radon emanation rates that generally did not show coincident anomalies (Figs 42, 43). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

303

Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Self Potential At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Self Potential Activity Date Usefulness not indicated DOE-funding Unknown Notes Self-potential surveys conducted over the summit and flank of Hualalai (Jackson and Sako, 1982; D. B. Jackson, pers. commun., 1983) indicate an elongate self-potential anomaly extending across the summit and down the northwest rift to Kaupulehu Crater. The positively polarized anomaly extends over an area of approximately 6 km 2 and has been interpreted to be the result of one or more buried high-temperature intrusive bodies (Jackson

304

Anomalous seafloor mounds in the northern Natal Valley, southwest Indian Ocean: Implications for the East African Rift System  

Science Journals Connector (OSTI)

Abstract The Natal Valley (southwest Indian Ocean) has a complicated and protracted opening history, as has the surrounding southwest Indian Ocean. Recently collected multibeam swath bathymetry and 3.5kHz seismic data from the Natal Valley reveal anomalous seafloor mounds in the northern Natal Valley. The significance, of these domes, as recorders of the geological history of the Natal Valley and SE African Margin has been overlooked with little attempt made to identify their origin, evolution or tectonic significance. This paper aims to describe these features from a morphological perspective and to use their occurrence as a means to better understand the geological and oceanographic evolution of this basin. The seafloor mounds are distinct in both shallow seismic and morphological character from the surrounding seafloor of the Natal Valley. Between 25km and 31km long, and 16km and 18km wide, these features rise some 400m above the sedimentary deposits that have filled in the Natal Valley. Such macro-scale features have not previously been described from the Natal Valley or from other passive margins globally. They are not the result of bottom water circulation, salt tectonics; rather, igneous activity is favoured as the origin for these anomalous seafloor features. We propose a hypothesis that the anomalous seafloor mounds observed in the Natal Valley are related to igneous activity associated with the EARS. The complicated opening history and antecedent geology, coupled with the southward propagation of the East African Rift System creates a unique setting where continental rift associated features have been developed in a marine setting.

Errol Wiles; Andrew Green; Mike Watkeys; Wilfried Jokat; Ralph Krocker

2014-01-01T23:59:59.000Z

305

Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Taxes  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Taxes to someone by E-mail Fuel Taxes to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Taxes on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Taxes on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Taxes on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Taxes on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Taxes on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Taxes on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Fuel Taxes The list below contains summaries of all Georgia laws and incentives

306

Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

HEVs / PHEVs to someone by E-mail HEVs / PHEVs to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for HEVs / PHEVs on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for HEVs / PHEVs The list below contains summaries of all Georgia laws and incentives

307

Alternative Fuels Data Center: Georgia Laws and Incentives for Natural Gas  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas to someone by E-mail Natural Gas to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Natural Gas on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Natural Gas on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Natural Gas on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Natural Gas on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Natural Gas on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Natural Gas on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Natural Gas The list below contains summaries of all Georgia laws and incentives

308

E-Print Network 3.0 - atlanta georgia usa Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

georgia usa Search Powered by Explorit Topic List Advanced Search Sample search results for: atlanta georgia usa Page: << < 1 2 3 4 5 > >> 1 (virulence) CAI-1 System Summary: OF...

309

Kilauea East Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Kilauea East Rift Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea East Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (0) 10 Exploration Activities (28) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":19.47836,"lon":-154.8883,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

310

City of Chattanooga, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Georgia (Utility Company) Georgia (Utility Company) Jump to: navigation, search Name Chattanooga City of Place Georgia Service Territory Georgia Website www.epb.net Green Button Reference Page www.epb.net/news/news-arc Green Button Committed Yes Utility Id 3408 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GSA - 1 Commercial Average Rates Residential: $0.0901/kWh Commercial: $0.0996/kWh Industrial: $0.0925/kWh The following table contains monthly sales and revenue data for Chattanooga City of (Georgia). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

311

Connect, Collaborate, Commercialize There are many different opportunities for engagement and technology transfer at Georgia  

E-Print Network (OSTI)

and technology transfer at Georgia Tech. Working together we can tailor a relationship unique to your company

Garmestani, Hamid

312

2014 Race to Zero Student Design Competition: Georgia Institute of Technology Profile  

Energy.gov (U.S. Department of Energy (DOE))

2014 Race to Zero Student Design Competition: Georgia Institute of Technology Profile, from the U.S. Department of Energy.

313

UGA ID Number Last Name First MI Academic Term THE UNIVERSITY OF GEORGIA  

E-Print Network (OSTI)

UGA ID Number Last Name First MI Academic Term THE UNIVERSITY OF GEORGIA APPLICATION TO MAKE LATE's Office UGA ID Number Last Name First MI Academic Term THE UNIVERSITY OF GEORGIA APPLICATION TO MAKE LATE's Office UGA ID Number Last Name First MI Academic Term THE UNIVERSITY OF GEORGIA APPLICATION TO MAKE LATE

Arnold, Jonathan

314

A Spatial Simulation Model of Land Use Changes in a Piedmont County in Georgia  

E-Print Network (OSTI)

A Spatial Simulation Model of Land Use Changes in a Piedmont County in Georgia Monica Goigel Turner* Institute of Ecology University of Georgia Athens, Georgia ABSTRACT A spatial simulation model was developed be explicitly included in simulation models to gain an understanding of landscape level phenomena, and at least

Turner, Monica G.

315

City of Thomaston, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Thomaston, Georgia (Utility Company) Thomaston, Georgia (Utility Company) Jump to: navigation, search Name City of Thomaston Place Georgia Utility Id 18847 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Industrial Service Industrial Large Power Commercial Medium Power Rate Commercial Off-Peak Billing Demand Rider Residential Power Residential School Electric Service Commercial Small General Service Non-Demand Commercial Small-Power Commercial Average Rates Residential: $0.0840/kWh

316

City of Douglas, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Douglas, Georgia (Utility Company) Douglas, Georgia (Utility Company) Jump to: navigation, search Name City of Douglas Place Georgia Utility Id 5325 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Irrigation Time of Use Service Commercial Large Power Industrial Medium Power Industrial Residential Residential Seasonal Agricultural Service Commercial Security Lights - 100 Watt HPS Vapor - Non-Metered Lighting Security Lights - 1000 Watt MH Flood Vapor - Metered Lighting

317

City of Covington, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

City of Covington, Georgia (Utility Company) City of Covington, Georgia (Utility Company) Jump to: navigation, search Name Covington City of Place Georgia Utility Id 4433 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes ISO Other Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service Commercial Hospital Service Commercial Industrial Service Industrial Large Industrial Service Industrial Residential Residential Security Lighting, Area, HPS 150 Lighting Security Lighting, Area, HPS 250 Lighting Security Lighting, Area, HPS 400 Lighting Security Lighting, Basic Lighting

318

City of Adel, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Adel, Georgia (Utility Company) Adel, Georgia (Utility Company) Jump to: navigation, search Name City of Adel Place Georgia Utility Id 123 Utility Location Yes Ownership M NERC Location SERC NERC ERCOT Yes NERC SERC Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Extra Large power Service Industrial General Service Non-Demand Commercial Large Power Service- Commercial Commercial Large Power Service- Industrial Industrial Medium Power Service- Commercial Commercial Medium Power Service- Industrial Industrial

319

City of Thomasville, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Thomasville, Georgia (Utility Company) Thomasville, Georgia (Utility Company) Jump to: navigation, search Name City of Thomasville Place Georgia Utility Id 18848 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Commercial Service Large General Service Commercial Electric Commercial Service Large General Service High Load Factor Commercial Electric Commercial Service Medium General Service Commercial Electric Commercial Service Small General Service Commercial Electric Residential Service Rate Schedule ER Residential

320

City of Sylvania, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Sylvania, Georgia (Utility Company) Sylvania, Georgia (Utility Company) Jump to: navigation, search Name City of Sylvania Place Georgia Utility Id 18397 Utility Location Yes Ownership M NERC Location SERC NERC ERCOT Yes NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agri SS Elec Commercial Agri SS Elec Demand Commercial Cobra Head Mercury Vapor Lighting Commercial Electric under 500 DMD Commercial Commercial Electric Commercial Commercial Electric - DISC Commercial Commercial Electric DMD Commercial Commercial Electric Over 500 Commercial Commercial Electric Rate Commercial

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

City of Acworth, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Acworth, Georgia (Utility Company) Acworth, Georgia (Utility Company) Jump to: navigation, search Name City of Acworth Place Georgia Utility Id 308 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Customer Choice Rate Residential Economic Development II Service Commercial General Service, Demand Commercial General Service, Non Demand Commercial Institutional Demand Service Commercial Institutional Non-Demand Service Commercial Outdoor Lighting Service 100 W HPS Lighting Outdoor Lighting Service 1000 W HPS Lighting

322

Georgia-Enhancing Capacity for Low Emission Development Strategies  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Georgia-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Georgia-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Agency/Company /Organization United States Agency for International Development, United States Environmental Protection Agency, United States Department of Energy, United States Department of Agriculture, United States Department of State Sector Climate, Energy, Land Topics Low emission development planning, -LEDS Program Start 2010 Program End 2016 Country Georgia References EC-LEDS[1] Contents 1 Overview 2 Framework 3 Lessons Learned and Good Practices 4 Progress and Outcomes 5 Fact Sheet 6 References Overview

323

City of Ellaville, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Ellaville, Georgia (Utility Company) Ellaville, Georgia (Utility Company) Jump to: navigation, search Name City of Ellaville Place Georgia Utility Id 5796 Utility Location Yes Ownership M NERC Location SERC Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Non-Demand Electric Service Commercial Commercial-Demand Electric Service Commercial Municiple Electric Service Public Schools Electric Service Commercial Residential Residential Security Lighting Service 100 W HPSV Lighting Security Lighting Service 1000 W MH Lighting Security Lighting Service 150 W HPSV Lighting

324

City of Commerce, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Commerce, Georgia (Utility Company) Commerce, Georgia (Utility Company) Jump to: navigation, search Name City of Commerce Place Georgia Utility Id 4091 Utility Location Yes Ownership M NERC Location SERC Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CITY RATES Commercial CONTRACTOR'S Commercial LARGE POWER Commercial MEDIUM POWER Commercial RESIDENTIAL Residential SECURITY LIGHTING SERVICE, HPS 100 Lighting SECURITY LIGHTING SERVICE, HPS 250 Lighting SECURITY LIGHTING SERVICE, HPS 400 Lighting SECURITY LIGHTING SERVICE, MH 400 Lighting SECURITY LIGHTING SERVICE, MV 175 Lighting

325

City of Griffin, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Griffin, Georgia (Utility Company) Griffin, Georgia (Utility Company) Jump to: navigation, search Name City of Griffin Place Georgia Utility Id 7679 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GOVERNMENTAL REDISTRIBUTION Commercial INDUSTRIAL Industrial LARGE POWER Commercial MEDIUM POWER Commercial MUNICIPAL SEVICE Commercial RESIDENTIAL Residential SCHOOL SERVICE Commercial SECURITY LIGHTING, HPS 1000 Lighting SECURITY LIGHTING, HPS 1000, FLOOD Lighting SECURITY LIGHTING, HPS 150 Lighting SECURITY LIGHTING, HPS 150, DECORATIVE Lighting

326

Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Touts Importance of Cellulosic Ethanol at Georgia Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking October 6, 2007 - 4:21pm Addthis SOPERTON, GA - U.S. Secretary of Energy Samuel W. Bodman today attended a groundbreaking ceremony for Range Fuels' biorefinery - one of the nation's first commercial-scale cellulosic ethanol biorefineries - and made the following statement. "Together, the Department of Energy and private sector pioneers, such as Range Fuels, are blending science and technology to advance the President's goal of reducing our dependence on foreign oil," U.S. Secretary of Energy Samuel W. Bodman said. "The production of cost-competitive cellulosic ethanol is a significant part of America's energy future. This new

327

Central Georgia El Member Corp | Open Energy Information  

Open Energy Info (EERE)

Georgia El Member Corp Georgia El Member Corp Place Georgia Utility Id 3248 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Outdoor Lighting Overhead Wiring HPS 100 W Existing Pole Lighting Outdoor Lighting Overhead Wiring HPS 100 W No Exisitng Pole Lighting Outdoor Lighting Overhead Wiring HPS 250 W Existing Pole Lighting Outdoor Lighting Overhead Wiring HPS 250 W No Existing Pole Lighting Outdoor Lighting Underground Wiring 100 W Lighting Outdoor Lighting Underground Wiring 250 W Lighting

328

City of Palmetto, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Georgia (Utility Company) Georgia (Utility Company) Jump to: navigation, search Name City of Palmetto Place Georgia Utility Id 14396 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Commercial Commercial Residential Electric Rates Residential Security Lighting Service 100 W HPSV Lighting Security Lighting Service 250 W HPSV Lighting Security Lighting Service 400W HPSV Lighting Security Lighting Service 400W MV Lighting Security Lighting Service- 1000 W MH Lighting Security Lighting Service- 175W MV Lighting

329

City of East Point, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Georgia (Utility Company) Georgia (Utility Company) Jump to: navigation, search Name City of East Point Place Georgia Utility Id 5582 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GENERAL SERVICE Commercial GREEN POWER RIDER INCREMENTAL LOAD RIDER Commercial LARGE POWER SERVICE Commercial MEDIUM POWER SERVICE Commercial OFF-PEAK DEMAND RIDER Commercial RESIDENTIAL SERVICE Residential SECURITY LIGHTING SERVICE, HPS FLOOD 250 Lighting SECURITY LIGHTING SERVICE, HPS 100 Lighting

330

Middle Georgia El Member Corp | Open Energy Information  

Open Energy Info (EERE)

Middle Georgia El Member Corp Middle Georgia El Member Corp Place Georgia Utility Id 12472 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Agricultural Time- Of- Use Commercial Athletic Field Lighting Lighting Cotton Gins Industrial General Service Commercial General Service- Not Metered Commercial General Service/ Demand Commercial Large Power Service Industrial Load Management- Irrigation Commercial Load Management- Poultry Commercial Outdoor Lighting Cobra Head 250 W Fiberglass Pole Lighting Outdoor Lighting Cobra Head 400 W Fiberglass Lighting

331

City of Mansfield, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Mansfield, Georgia (Utility Company) Mansfield, Georgia (Utility Company) Jump to: navigation, search Name City of Mansfield Place Georgia Utility Id 11587 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Electric Rates Commercial Commercial Outdoor Light Rates Lighting Residential Electric Rates Residential Outdoor light Rates Lighting Average Rates Residential: $0.1120/kWh Commercial: $0.1170/kWh Industrial: $0.1090/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

332

City of Monroe, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Monroe, Georgia (Utility Company) Monroe, Georgia (Utility Company) (Redirected from Monroe Water, Light & Gas Comm) Jump to: navigation, search Name City of Monroe Place Georgia Utility Id 12800 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL DEMAND RATE Commercial COMMERCIAL NON DEMAND RATE Commercial Church Service Commercial City Electric Service Commercial Industrial Service Industrial RESIDENTIAL RATE Residential SECURITY LIGHT - 1000 Watt MH Lighting SECURITY LIGHT - 400 Watt HPS Lighting

333

City of Elberton, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Elberton, Georgia (Utility Company) Elberton, Georgia (Utility Company) Jump to: navigation, search Name City of Elberton Place Georgia Utility Id 5730 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1000W Metal Halide Flood Lighting 1500W Metal Halide Flood Lighting 175W Mercury Vapor Lighting 250W Metal Halide Flood Lighting 400W Metal Halide Flood Lighting Commercial Service, Demand Commercial Commercial Service, Non-Demand Commercial Industrial Service, Schedule 1 Industrial

334

City of Monticello, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Monticello, Georgia (Utility Company) Monticello, Georgia (Utility Company) Jump to: navigation, search Name City of Monticello Place Georgia Utility Id 12851 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electric Commercial Inside Commercial Electric Commercial Outside Commercial Electric Demand Inside Commercial Electric Residential Inside Commercial Electric Residential Outside Residential Average Rates Residential: $0.0833/kWh Commercial: $0.1040/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

335

City of Cartersville, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Cartersville, Georgia (Utility Company) Cartersville, Georgia (Utility Company) Jump to: navigation, search Name Cartersville City of Place Georgia Utility Id 3108 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Construction Power Service Commercial Extra Large Power Service, XLP-2 ( Industrial) Industrial Extra Large Power Service, XLP-2 ( commercial) Commercial Large Power Service, LP-3( Commercial) Commercial Large Power Service- Industrial Industrial Medium Power Service- Commercial Commercial Medium Power Service-Industrial Industrial

336

City of Washington, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Georgia (Utility Company) Georgia (Utility Company) Jump to: navigation, search Name City of Washington Place Georgia Utility Id 20140 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City of Washington (Municipal Govt) Commercial City of Washington (OMI Accounts) Commercial Commercial Service Commercial Residential Service Residential Schools (All-Electric) Commercial Schools (Standard) Commercial Yard Lights (Large) Lighting Yard Lights (Medium) Lighting Yard Lights (Small) Lighting Average Rates

337

FUPWG Meeting Agenda - Jekyll Island, Georgia | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jekyll Island, Georgia Jekyll Island, Georgia FUPWG Meeting Agenda - Jekyll Island, Georgia October 7, 2013 - 2:42pm Addthis Logo for the FUPWG Spring 2012 meeting showing a crane, a lake, and wind turbines. The logo reads: Preserving our future with energy efficiency. April 11-12, 2012 Hosted by AGL Resources Wednesday, April 11, 2012 8:30 am Welcome Hank Linginfelter, EVP Distribution Operations - AGL Resources 8:45 am Chairman's Corner David McAndrew, FEMP 9:00 am Washington Update Tim Unruh, FEMP 9:30 am UESC Data Collection Update Evan Fuka, Energetics 9:45 am Networking Break 10:05 am Effective Use of Appropriations and Alternative Finance to Fund Energy Efficiency Projects John Shonder, Oak Ridge National Laboratory 10:45 am DOD Approaches to Utility Partnerships and UESCs Mike Rits, AFCESA

338

Georgia Nonprofit Spreads the Word About Energy Efficiency | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Nonprofit Spreads the Word About Energy Efficiency Georgia Nonprofit Spreads the Word About Energy Efficiency Georgia Nonprofit Spreads the Word About Energy Efficiency January 12, 2010 - 3:25pm Addthis Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy At a time of strapped budgets, service organizations that find ways to save money through energy efficiency will more easily meet their fundraising goals. CHRIS Kids, an Atlanta-based nonprofit that provides housing to disadvantaged young people, is taking that idea to the next level. By upgrading its buildings with the latest in high-efficiency technologies, the group will reap the rewards of increased energy savings and, at the same time, teach the next generation about energy-efficiency technologies and behaviors.

339

City of Calhoun, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Calhoun, Georgia (Utility Company) Calhoun, Georgia (Utility Company) Jump to: navigation, search Name City of Calhoun Place Georgia Utility Id 2812 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Large Industrial Rate Industrial Large Power Service Commercial Large Power Service- Industrial Industrial Medium Power Service- Commercial Commercial Medium Power Service- Industrial Industrial Residential Service Residential Security Light 400 W MH Flood Type Lighting

340

Georgia System Operations Corporation Inc. Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Corporation Inc. Smart Grid Project Corporation Inc. Smart Grid Project Jump to: navigation, search Project Lead Georgia System Operations Corporation Inc. Country United States Headquarters Location Tucker, Georgia Recovery Act Funding $6,456,501.00 Total Project Value $12,913,003.00 Coverage Area Coverage Map: Georgia System Operations Corporation Inc. Smart Grid Project Coordinates 33.8545479°, -84.2171424° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Georgia - Seds - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA) Indexed Site

Georgia - Seds - U.S. Energy Information Administration (EIA) Georgia - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming The page does not exist for . To view this page, please select a state: Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida

342

City of Hogansville, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Hogansville, Georgia (Utility Company) Hogansville, Georgia (Utility Company) Jump to: navigation, search Name Hogansville City of Place Georgia Utility Id 8698 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Residential Security Lights, HPS 100 Lighting Security Lights, HPS 250 Lighting Security Lights, HPS 400 Lighting Security Lights, HPS Flood 250 Lighting Security Lights, HPS Flood 400 Lighting Security Lights, MH 1000 Lighting Security Lights, MH 400 Lighting Security Lights, MV 175 Lighting

343

City of Sandersville, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Sandersville, Georgia (Utility Company) Sandersville, Georgia (Utility Company) Jump to: navigation, search Name City of Sandersville Place Georgia Utility Id 16637 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Demand Commercial Commercial Non-Demand Commercial Industrial Industrial Residential Residential Security Lighting Service 100 W HPSV Lighting Security Lighting Service 1000 W HPSV Lighting Security Lighting Service 1000 W MH Lighting Security Lighting Service 150 W HPSV Lighting Security Lighting Service 250 W HPSV Lighting

344

City of Cairo, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Cairo, Georgia (Utility Company) Cairo, Georgia (Utility Company) Jump to: navigation, search Name City of Cairo Place Georgia Utility Id 2773 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Competetive Service Electric Rate CS-1 Commercial Curtailable Electric Rates C-1 Commercial General Service Electric Rates GS-1 (Multi Phase) Commercial General Service Electric Rates GS-1 (Single Phase) Commercial General Service Electric Rates GSD-1( single phase and multi phase) Commercial Large General Service Demand Commercial

345

City of La Grange, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Georgia (Utility Company) Georgia (Utility Company) Jump to: navigation, search Name City of La Grange Place Georgia Utility Id 10585 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL ELECTRIC SERVICE Commercial GENERAL ELECTRIC SERVICE Commercial HPS Acorn, 100 Lighting HPS Acorn, 250 Lighting HPS Open Bottom, 100 Lighting HPS Post Top, 100 Lighting HPS Post Top, 150 Lighting HPS or MH - Flood or Shoebox, 150 Lighting HPS or MH - Flood or Shoebox, 250 Lighting HPS or MH - Flood or Shoebox, 400 Lighting

346

City of Norcross, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Norcross, Georgia (Utility Company) Norcross, Georgia (Utility Company) Jump to: navigation, search Name City of Norcross Place Georgia Utility Id 13646 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Church Service Commercial Commercial Demand Service (kWh 200-400 hours times the billing demand) Commercial Commercial Demand Service (kWh 400-600 hours times the billing demand) Commercial Commercial Demand Service (kWh in excess of 600 hours times the billing demand) Commercial

347

City of Grantville, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Grantville, Georgia (Utility Company) Grantville, Georgia (Utility Company) Jump to: navigation, search Name City of Grantville Place Georgia Utility Id 7515 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Large/Industrial -Monthly Industrial Commercial Small-Monthly Commercial Municipal- Monthly Commercial Residential-Monthly Residential School-Monthly Commercial Security /Street-Monthly-After Meter- 100 W HPSV Lighting Security /Street-Monthly-After Meter- 1000 W MH Lighting Security /Street-Monthly-After Meter- 175 W MV Lighting

348

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

43 $0.0294 W - W W - - - 43 $0.0294 W - W W - - - Northern Appalachian Basin Florida $0.0161 W W W W $0.0216 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0296 $0.0277 $0.0292 $0.0309 $0.0325 $0.0328 $0.0357 $0.0451 $0.0427 4.7 -5.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

349

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$15.49 $13.83 W - W W - - - $15.49 $13.83 W - W W - - - Northern Appalachian Basin Florida $19.46 W W W W $29.49 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $10.33 $9.58 $10.68 $12.03 $13.69 $14.71 $16.11 $19.72 $20.69 9.1 4.9 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

350

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

$0.0323 $0.0284 W - W W - - - $0.0323 $0.0284 W - W W - - - Northern Appalachian Basin Florida $0.0146 W W W W $0.0223 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $0.0269 $0.0255 $0.0275 $0.0299 $0.0325 $0.0339 $0.0380 $0.0490 $0.0468 7.2 -4.3 Northern Appalachian Basin Massachusetts W W - - - - - - - - -

351

SBOT GEORGIA SOUTHEASTERN POWER ADMIN POC Ann Craft Telephone  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

GEORGIA GEORGIA SOUTHEASTERN POWER ADMIN POC Ann Craft Telephone (706) 213-3823 Email annc@sepa.doe.gov ADMINISTATIVE / WASTE / REMEDIATION Office Administrative Services 561110 Facilities Support Services 561210 Security Systems Services (except Locksmiths) 561621 Locksmiths 561622 Exterminating and Pest Control Services 561710 Janitorial Services 561720 Landscaping Services 561730 Other Nonhazardous Waste Treatment and Disposal 562219 Remediation Services 562910 CONSTRUCTION Industrial Building Construction 236210 Commercial and Institutional Building Construction 236220 Water and Sewer Line and Related Structures Construction 237110 Power and Communication Line and Related Structures Construction 237130 Other Heavy and Civil Engineering Construction 237990 Other Foundation, Structure, and Building Exterior Contractors

352

Compound and Elemental Analysis At Kilauea Southwest Rift And South Flank  

Open Energy Info (EERE)

Flank Flank Area (Coombs, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Kilauea Southwest Rift And South Flank Area (Coombs, Et Al., 2006) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown References Michelle L. Coombs, Thomas W. Sisson, Peter W. Lipman (2006) Growth History Of Kilauea Inferred From Volatile Concentrations In Submarine-Collected Basalts Retrieved from "http://en.openei.org/w/index.php?title=Compound_and_Elemental_Analysis_At_Kilauea_Southwest_Rift_And_South_Flank_Area_(Coombs,_Et_Al.,_2006)&oldid=510423"

353

Basin Destination State  

U.S. Energy Information Administration (EIA) Indexed Site

Basin Basin Destination State 2001 2002 2003 2004 2005 2006 2007 2008 2009 2001-2009 2008-2009 Northern Appalachian Basin Delaware W W $16.45 $14.29 W - W W - - - Northern Appalachian Basin Florida $21.45 W W W W $28.57 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin Indiana W W W W W W W W W W W Northern Appalachian Basin Kentucky - - W W - - - - - - - Northern Appalachian Basin Maryland $11.39 $10.39 $11.34 $12.43 $13.69 $14.25 $15.17 $18.16 $18.85 6.5 3.8

354

Sedimentation and structure of the continental margin in the vicinity of the Otway Basin, southern Australia  

Science Journals Connector (OSTI)

The continental margin of southern Australia is divisible into four contrasting physiographic provinces on the basis of shelf-break depth and continental slope gradient. These provinces correspond with four structural provinces, which in turn are intimately related to the geology. Zones of relatively stable pre-Mesozoic shallow basement extending out to the shelf edge characterize two of the above provinces, one of which occurs south of Kangaroo Island and the other off Tasmania's northwest coast. In contrast, zones of Mesozoic to Tertiary deep offshore basin formation typify the remaining two provinces, one being situated at the eastern end of the Great Australian Bight and the other along the seaward portion of the Otway Basin. A possible model is presented, based on an assumption of continental rifting and drifting, which explains the structural peculiarities of that portion of the Otway Basin which occurs beneath the present continental shelf and upper slope.

C.C. Von Der Borch; J.R. Conolly; R.S. Dietz

1970-01-01T23:59:59.000Z

355

Water Basins Civil Engineering  

E-Print Network (OSTI)

Water Basins Civil Engineering Objective · Connect the study of water, water cycle, and ecosystems with engineering · Discuss how human impacts can effect our water basins, and how engineers lessen these impacts: · The basic concepts of water basins are why they are important · To use a topographic map · To delineate

Provancher, William

356

Alternative Fuels Data Center: Georgia Laws and Incentives for Loans and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Loans and Leases to someone by E-mail Loans and Leases to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Loans and Leases on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Loans and Leases on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Loans and Leases on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Loans and Leases on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Loans and Leases on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Loans and Leases on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Georgia Laws and Incentives for Loans and Leases

357

Renewable and Non-Renewable Resources Tariff RNR-7 (Georgia) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable and Non-Renewable Resources Tariff RNR-7 (Georgia) Renewable and Non-Renewable Resources Tariff RNR-7 (Georgia) Renewable and Non-Renewable Resources Tariff RNR-7 (Georgia) < Back Eligibility Commercial Construction Fuel Distributor General Public/Consumer Industrial Installer/Contractor Investor-Owned Utility Municipal/Public Utility Retail Supplier Rural Electric Cooperative Systems Integrator Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Georgia Program Type Green Power Purchasing Mandatory Utility Green Power Option Provider Georgia Power Company The Renewable and Non-Renewable Resource tariff is authorized by the Georgia Public Service Commission (PSC), which requires that the investor owned utility, Georgia Power Company, purchase renewable energy cumulative

358

Georgia Power - Energy Star New Home Builder Rebate Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Georgia Power - Energy Star New Home Builder Rebate Program Georgia Power - Energy Star New Home Builder Rebate Program Georgia Power - Energy Star New Home Builder Rebate Program < Back Eligibility Installer/Contractor Residential Savings Category Heating & Cooling Home Weatherization Construction Commercial Weatherization Commercial Heating & Cooling Design & Remodeling Program Info State Georgia Program Type Utility Rebate Program Rebate Amount $300 Provider Georgia Power Company '''Incentives under this program have been temporarily suspended. View the program web site in early 2013 for details on incentive availability. ''' Georgia Power provides an incentive for home builders to construct new homes which meet ENERGY STAR guidelines. Through this program, builders constructing new efficient homes in Georgia Power's service territory,

359

Pulp and Paper Corrosion Symposium Georgia Tech Renewable Bioproducts Institute  

E-Print Network (OSTI)

1 Pulp and Paper Corrosion Symposium Georgia Tech Renewable Bioproducts Institute November 2014 Digester Corrosion Margaret Gorog Federal Way, WA 2 · Chips plus a mixture of white and black liquor · The pulp is then blown from the bottom of the vessel into a blow tank · Corrosion occurs during filling

Das, Suman

360

LCA-based Selection for XML Document Collections Georgia Koloniari  

E-Print Network (OSTI)

LCA-based Selection for XML Document Collections Georgia Koloniari Department of Computer Science in the collection to the query. We consider keyword queries and support Lowest Common Ancestor (LCA) semantics of the LCA of those nodes in the XML docu- ment that contain the query keywords. To avoid evaluating queries

Pitoura, Evaggelia

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Modeling Internet Topology Kenneth L. Calvert, Georgia Tech  

E-Print Network (OSTI)

such as the Internet, has a strong bearing on many management and performance issues. Good models of the topologicalModeling Internet Topology Kenneth L. Calvert, Georgia Tech Matthew B. Doar, Ascom Nexion Ellen W aspects of locality and hierarchy present in the Internet. Two implemen­ tations that generate networks

Zegura, Ellen W.

362

POLICY REGARDING SERVICE ANIMAL ACCESS TO UNIVERSITY OF GEORGIA FACILITIES,  

E-Print Network (OSTI)

POLICY REGARDING SERVICE ANIMAL ACCESS TO UNIVERSITY OF GEORGIA FACILITIES, PROGRAMS, SERVICES AND ACTIVITIES This policy ("Policy") is to implement federal and state laws regarding access for service animals, for purposes of this Policy, "Service Animals" are collectively defined to include those that are defined

Arnold, Jonathan

363

Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island | Open  

Open Energy Info (EERE)

Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geoelectric Studies on the East Rift, Kilauea Volcano, Hawaii Island Abstract Three geophysical research organizations, working together under the auspices of the Hawaii Geothermal Project, have used several electrical and electromagnetic exploration techniques on Kilauea volcano, Hawaii to assess its geothermal resources. This volume contains four papers detailing their methods and conclusions. Keller et al. of the Colorado School of Mines used the dipole mapping and time-domain EM sounding techniques to define low resistivity areas around the summit and flanks of Kilauea. Kauahikaua and Klein of the Hawaii Institute of Geophysics then detailed the East Rift

364

Time-Domain Electromagnetics At Kilauea East Rift Area (Thomas, 1986) |  

Open Energy Info (EERE)

Time-Domain Electromagnetics At Kilauea East Rift Time-Domain Electromagnetics At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes A series of time-domain electromagnetic (TDEM) soundings were also performed in the lower East Rift Zone as part of the HGP exploration program (Klein and Kauahikaua, 1975; Kauahikaua and Klein, 1977); this work was recently expanded to include additional TDEM and vertical electrical soundings, and the entire data set was reinterpreted (Kauahikaua, 1981b; Kauahikaua and Mattice, 1981). The resistivity model presented by Kauahikaua (1981b) suggests that moderate to high basement resistivities, corresponding to cold freshwater saturated basalts, are present north of

365

Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On  

Open Energy Info (EERE)

Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Drill Core From Soh 1 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Drill Core From Soh 1 Details Activities (4) Areas (1) Regions (0) Abstract: Deep drilling has allowed for the first time an examination of most of the shield stage of a Hawaiian volcano when it is centered over the hotspot and most of its volume is produced. We determined the lithologies, ages, geochemical characteristics and accumulation rates of rocks from the continuously cored, ~1.7 km deep Scientific Observation Hole (SOH) 1, which was drilled into Kilauea's East Rift Zone. The uppermost ~750 m of this hole contain relatively unaltered subaerially quenched lavas; the lower

366

Static Temperature Survey At Kilauea East Rift Area (Rudman & Epp, 1983) |  

Open Energy Info (EERE)

Static Temperature Survey At Kilauea East Rift Area (Rudman & Epp, 1983) Static Temperature Survey At Kilauea East Rift Area (Rudman & Epp, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Kilauea East Rift Area (Rudman & Epp, 1983) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Static Temperature Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Drilling of HGP-A was completed on April 28, 1976. An equilibrium temperature was not measured in HGP-A; the well was flashed before the drilling disturbance was dissipated. However, before the mud was pumped out, temperatures in the well were measured at 15, 75, 97,145, and 193 hours, and at 13, 21, and 22 days after circulation of the drilling mud stopped. These temperature data are shown in Fig. 2. Between 305 m and 914

367

History and Results of Surface Exploration in the Kilauea East Rift Zone |  

Open Energy Info (EERE)

History and Results of Surface Exploration in the Kilauea East Rift Zone History and Results of Surface Exploration in the Kilauea East Rift Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: History and Results of Surface Exploration in the Kilauea East Rift Zone Abstract Government-funded surveys of the Kilauea East Rift Zone have resulted in a wealth of geophysical and geochemical data from an active volcanic area. All data are clearly of academic interest; Hawaii was used as a testing ground for various geophysical methods in the early days of geothermal exploration. Some surveys, such as gravity and magnetic, are useful a regional perspective for determining broad structural trends and grossly identifying magmatic intrusions. Seismic data are currently being used for a more sitespecific purpose: to determine fault locations and geometries.

368

Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank Area (Wyss, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Kilauea Southwest Rift And South Flank Area (Wyss, Et Al., 2001) Exploration Activity Details Location Kilauea Southwest Rift And South Flank Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes In spite of the complications discovered in this b-value analysis of Kilauea's South Flank, there are many similarities with the case histories of the other volcanoes we have studied, and the correlation of high b-value anomalies withmagma reservoirs is confirmed.

369

Self Potential At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Self Potential At Kilauea East Rift Area (Thomas, Self Potential At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Self Potential Activity Date Usefulness useful DOE-funding Unknown Notes An extensive network of self-potential surveys have been performed over the summit and flanks of Kilauea as part of the HGP exploration surveys and in separate studies of the source mechanism for the potential anomalies observed (Zablocki, 1976, 1977). The geothermal exploration surveys were performed primarily on the lower East Rift Zone and identified four separate self-potential anomalies (Fig. 59) (Zablocki, 1977). The source mechanism for the anomalies observed was inferred to be the result of electrokinetic phenomena; thermal groundwater escaping from a geothermal

370

Micro-Earthquake At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Micro-Earthquake At Kilauea East Rift Area (Thomas, Micro-Earthquake At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Micro-Earthquake Activity Date Usefulness not indicated DOE-funding Unknown Notes Microseismic and ground noise studies were performed along the East Rift Zone in an effort to identify areas in which earthquake activity might suggest rock fracturing as a result of cold water coming into contact with heated reservoir rocks (Furumoto, 1978a). One of the microseismic surveys utilized an array of seven seismometers to monitor earthquake activity in the vicinity of the then proposed site of the HGP-A well (Fig. 53) (Suyenaga and Furumoto, 1978). The second microearthquake study utilized only two seismometers located near the junction of the Pahoa-Kalapana and

371

Water Sampling At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Water Sampling At Kilauea East Rift Area (Thomas, Water Sampling At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Studies of groundwater and coastal spring- sources that have identified thermal fluids on the lower East Rift Zone date back to the early part of this century (Guppy, 1906). More recent investigations of temperature and groundwater chemistry were performed for the HGP geoscience program (Macdonald, 1977; McMurtry et al., 1977; Epp and Halunen, 1979). Epp and Halunen (1979) identified several warm water wells, one having a temperature in excess of 90degrees C, and coastal springs in lower Puna; temperature profiles obtained by this study indicated that in some

372

Magmatic History Of The East Rift Zone Of Kilauea Volcano, Hawaii...  

Open Energy Info (EERE)

History Of The East Rift Zone Of Kilauea Volcano, Hawaii Based On Drill Core From SOH 1 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Magmatic...

373

Climate-driven variations in geothermal activity in the northern Kenya rift valley  

Science Journals Connector (OSTI)

... In the northern Kenya rift valley, geothermal activity is associated with a series of Quaternary volcanoes (Fig. 1). Hot, ... tables, a consequence of the semi-arid to arid climate of the region.

N. C. Sturchio; P. N. Dunkley; M. Smith

1993-03-18T23:59:59.000Z

374

Long-term changes in chemical features of waters of seven Ethiopian rift-valley lakes  

Science Journals Connector (OSTI)

Chemical and chlorophyll a concentrations of seven Ethiopian rift-valley lakes were studied during 19902000. Results ... 1960 and 1990 in an attempt to detect long-term changes. Three different trends are appare...

G. M. Zinabu; Elizabeth Kebede-Westhead; Zerihun Desta

2002-06-01T23:59:59.000Z

375

Direct-Current Resistivity Survey At Mauna Loa Southwest Rift Area (Thomas,  

Open Energy Info (EERE)

Area (Thomas, Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Mauna Loa Southwest Rift Area (Thomas, 1986) Exploration Activity Details Location Mauna Loa Southwest Rift Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Field surveys in the South Point area were limited to a series of Schlumberger soundings and a self-potential traverse across the rift zone. The absence of groundwater wells and time and funding constraints precluded any geochemical field surveys. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Mauna_Loa_Southwest_Rift_Area_(Thomas,_1986)&oldid=510541"

376

E-Print Network 3.0 - african rift system Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

.H. Baker, P.A. Mohr and L.A.J. Williams, Geology of the eastern rift system of Africa, Geol. Soc. Am., Spec... .V., Amsterdam - Printed in The Netherlands 5 Small-scale...

377

Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Texas-Louisiana- Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin Appalachian Basin Wind River Basin Eastern Shelf NW Shelf Abo Sussex-Shannon Muddy J Mesaverde- Lance-Lewis Medina/Clinton-Tuscarora Bradford-Venango-Elk Berea-Murrysville Piceance Basin Bossier Williston Basin Ft Worth Basin Davis Bighorn Basin Judith River- Eagle Permian Basin Anadarko Basin Denver Basin San Juan Basin North-Central Montana Area Uinta Basin Austin Chalk Codell-Niobrara Penn-Perm Carbonate Niobrara Chalk Dakota Morrow Mesaverde Thirty- One Cleveland Ozona Canyon Wasatch- Mesaverde Red Fork Mesaverde Granite Wash Stuart City-Edwards Bowdoin- Greenhorn Travis Peak Olmos Cotton Valley Vicksburg Wilcox Lobo Pictured Cliffs Cretaceous Cretaceous-Lower Tertiary Mancos- Dakota Gilmer Lime Major Tight Gas Plays, Lower 48 States

378

Divergent/passive margin basins  

SciTech Connect

This book discusses the detailed geology of the four divergent margin basins and establishes a set of analog scenarios which can be used for future petroleum exploration. The divergent margin basins are the Campos basin of Brazil, the Gabon basin, the Niger delta, and the basins of the northwest shelf of Australia. These four petroleum basins present a wide range of stratigraphic sequences and structural styles that represent the diverse evolution of this large and important class of world petroleum basins.

Edwards, J.D. (Shell Oil Company (US)); Santogrossi, P.A. (Shell Offshore Inc. (US))

1989-01-01T23:59:59.000Z

379

EFFECT OF CLIMATE CHANGE ON WATERSHED RUNOFF FLOW - UPPER COOSA RIVER BASIN UPSTREAM FROM PLANT HAMMOND  

SciTech Connect

The ability of water managers to maintain adequate supplies in the coming decades depends on future weather conditions, as climate change has the potential to reduce stream flows from their current values due to potentially less precipitation and higher temperatures, and possibly rendering them unable to meet demand. The upper Coosa River basin, located in northwest Georgia, plays an important role in supplying water for industry and domestic use in northern Georgia, and has been involved in water disputes in recent times. The seven-day ten-year low flow (7Q10 flow) is the lowest average flow for seven consecutive days that has an average recurrence interval of 10 years. The 7Q10 flow is statistically derived from the observed historical flow data, and represents the low flow (drought) condition for a basin. The upper Coosa River basin also supplies cooling water for the 935MW coal-fired Hammond plant, which draws about 65% of the 7Q10 flow of the upper Coosa River to dissipate waste heat. The water is drawn through once and returned to the river directly from the generator (i.e., no cooling tower is used). Record low flows in 2007 led to use of portable cooling towers to meet temperature limits. Disruption of the Plant Hammond operation may trigger closure of area industrial facilities (e.g. paper mill). The population in Georgia is expected to double from 9 million to 18 million residents in the next 25 years, mostly in the metropolitan Atlanta area. Therefore, there will be an even greater demand for potable water and for waste assimilation. Climate change in the form of persistent droughts (causing low flows) and high ambient temperatures create regulatory compliance challenges for Plant Hammond operating with a once-through cooling system. Therefore, the Upper Coosa River basin was selected to study the effect of potential future weather change on the watershed runoff flow.

Chen, K.

2011-10-24T23:59:59.000Z

380

Georgia Regional Middle School Science Bowl | U.S. DOE Office of Science  

Office of Science (SC) Website

Georgia Regions » Georgia Regional Middle Georgia Regions » Georgia Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms, and Resources Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Georgia Regions Georgia Regional Middle School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Donna Mullenax Email: donna.mullenax@armstrong.edu Regional Event Information Date: Saturday, February 22, 2014

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Georgia Regional High School Science Bowl | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Georgia Regions » Georgia Regional High School Georgia Regions » Georgia Regional High School Science Bowl National Science Bowl® (NSB) NSB Home About High School High School Students High School Coaches High School Regionals High School Rules, Forms, and Resources Middle School Attending National Event Volunteers 2013 Competition Results News Media WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: 202-586-6702 E: National.Science.Bowl@science.doe.gov Georgia Regions Georgia Regional High School Science Bowl Print Text Size: A A A RSS Feeds FeedbackShare Page Regional Coordinator Information Name: Donna Mullenax Email: donna.mullenax@armstrong.edu Regional Event Information Date: Saturday, February 22, 2014 Maximum Number of Teams: 72

382

Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fuel Economy / Efficiency to someone by E-mail Fuel Economy / Efficiency to someone by E-mail Share Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Facebook Tweet about Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Twitter Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Google Bookmark Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Delicious Rank Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on Digg Find More places to share Alternative Fuels Data Center: Georgia Laws and Incentives for Fuel Economy / Efficiency on AddThis.com... More in this section... Federal State Advanced Search

383

Gwinnett County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gwinnett County, Georgia: Energy Resources Gwinnett County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9190653°, -84.0167423° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9190653,"lon":-84.0167423,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Grady County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Georgia: Energy Resources County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.9050079°, -84.2278796° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.9050079,"lon":-84.2278796,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Towns County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Towns County, Georgia: Energy Resources Towns County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.9208214°, -83.7199136° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9208214,"lon":-83.7199136,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

North Decatur, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Decatur, Georgia: Energy Resources Decatur, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7903828°, -84.3060349° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7903828,"lon":-84.3060349,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

Belvedere Park, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Belvedere Park, Georgia: Energy Resources Belvedere Park, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.4606984°, -84.9040969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.4606984,"lon":-84.9040969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

Troup County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Troup County, Georgia: Energy Resources Troup County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0698575°, -85.023346° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0698575,"lon":-85.023346,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

389

Toombs County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Toombs County, Georgia: Energy Resources Toombs County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.0795072°, -82.345189° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0795072,"lon":-82.345189,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

Rabun County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rabun County, Georgia: Energy Resources Rabun County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.9027286°, -83.3789389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9027286,"lon":-83.3789389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

Muscogee County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Muscogee County, Georgia: Energy Resources Muscogee County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.4794133°, -84.8984775° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.4794133,"lon":-84.8984775,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

392

Glynn County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glynn County, Georgia: Energy Resources Glynn County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.2624169°, -81.6035062° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.2624169,"lon":-81.6035062,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

393

McDuffie County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

McDuffie County, Georgia: Energy Resources McDuffie County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5258626°, -82.5185837° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.5258626,"lon":-82.5185837,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

394

Johns Creek, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Georgia: Energy Resources Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0289259°, -84.198579° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0289259,"lon":-84.198579,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

Tift County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tift County, Georgia: Energy Resources Tift County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.4205597°, -83.5496566° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.4205597,"lon":-83.5496566,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

Calhoun County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Georgia: Energy Resources County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.5621777°, -84.6479124° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.5621777,"lon":-84.6479124,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

Lumpkin County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lumpkin County, Georgia: Energy Resources Lumpkin County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.5813972°, -83.9744262° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.5813972,"lon":-83.9744262,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

Georgia Department of Natural Resources (GDNR) | Open Energy Information  

Open Energy Info (EERE)

Resources (GDNR) Resources (GDNR) Jump to: navigation, search State Georgia Name Georgia Department of Natural Resources (GDNR) Address 2 Martin Luther King, Jr. Drive, S. E., Suite 1252 East Tower City, State Atlanta, GA Zip 30334 Website http://www.gadnr.org/ Coordinates 33.749977°, -84.385455° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.749977,"lon":-84.385455,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

Telfair County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Telfair County, Georgia: Energy Resources Telfair County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.8907647°, -82.9931607° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.8907647,"lon":-82.9931607,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

Whitfield County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Georgia: Energy Resources County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8033566°, -84.981754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8033566,"lon":-84.981754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Rockdale County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Rockdale County, Georgia: Energy Resources Rockdale County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6752492°, -84.0378894° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.6752492,"lon":-84.0378894,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

402

Twiggs County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Twiggs County, Georgia: Energy Resources Twiggs County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.68356°, -83.4643551° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.68356,"lon":-83.4643551,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

403

Ware County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Ware County, Georgia: Energy Resources Ware County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.134411°, -82.4752757° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.134411,"lon":-82.4752757,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

404

Glascock County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Glascock County, Georgia: Energy Resources Glascock County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.2422994°, -82.6267345° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.2422994,"lon":-82.6267345,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

405

Jenkins County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jenkins County, Georgia: Energy Resources Jenkins County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.7781246°, -81.9971108° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.7781246,"lon":-81.9971108,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

406

Spalding County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Spalding County, Georgia: Energy Resources Spalding County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.2636732°, -84.3121264° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.2636732,"lon":-84.3121264,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

407

Bulloch County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bulloch County, Georgia: Energy Resources Bulloch County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.3595678°, -81.7787021° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.3595678,"lon":-81.7787021,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

408

Lanier County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Lanier County, Georgia: Energy Resources Lanier County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.0291269°, -83.0361376° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.0291269,"lon":-83.0361376,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

409

Georgia Natural Gas Input Supplemental Fuels (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Input Supplemental Fuels (Million Cubic Feet) Input Supplemental Fuels (Million Cubic Feet) Georgia Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 24 57 151 84 28 121 124 248 241 292 1990's 209 185 166 199 123 130 94 14 16 12 2000's 73 51 7 14 5 0 3 2 52 2010's 732 701 660 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Total Supplemental Supply of Natural Gas Georgia Supplemental Supplies of Natural Gas Supplies of Natural Gas Supplemental Fuels (Annual Supply &

410

Meriwether County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Meriwether County, Georgia: Energy Resources Meriwether County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.0561282°, -84.6897495° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.0561282,"lon":-84.6897495,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

411

Haralson County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Haralson County, Georgia: Energy Resources Haralson County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7922562°, -85.1894045° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7922562,"lon":-85.1894045,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

Clinch County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Clinch County, Georgia: Energy Resources Clinch County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.9716985°, -82.820974° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.9716985,"lon":-82.820974,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

413

Atkinson County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Atkinson County, Georgia: Energy Resources Atkinson County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.2932161°, -82.8640623° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.2932161,"lon":-82.8640623,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

414

Candler-McAfee, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Candler-McAfee, Georgia: Energy Resources Candler-McAfee, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7254622°, -84.2752831° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7254622,"lon":-84.2752831,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

415

Heard County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Heard County, Georgia: Energy Resources Heard County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.2990406°, -85.1479364° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.2990406,"lon":-85.1479364,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

Lowndes County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Georgia: Energy Resources Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.8600022°, -83.2934086° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.8600022,"lon":-83.2934086,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

417

Butts County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Butts County, Georgia: Energy Resources Butts County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.2691443°, -83.9532571° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.2691443,"lon":-83.9532571,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

418

Chattahoochee Hill Country, Georgia: Energy Resources | Open Energy  

Open Energy Info (EERE)

Country, Georgia: Energy Resources Country, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.721548°, -83.2599068° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.721548,"lon":-83.2599068,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

419

Emanuel County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Emanuel County, Georgia: Energy Resources Emanuel County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.5726629°, -82.3017728° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.5726629,"lon":-82.3017728,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Tattnall County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Tattnall County, Georgia: Energy Resources Tattnall County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.0634576°, -82.0842901° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0634576,"lon":-82.0842901,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Barrow County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Georgia: Energy Resources Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.0142667°, -83.6986568° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.0142667,"lon":-83.6986568,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

422

Charlton County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Georgia: Energy Resources County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.7917361°, -82.0842901° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.7917361,"lon":-82.0842901,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

423

Pine Lake, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pine Lake, Georgia: Energy Resources Pine Lake, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7937162°, -84.2060309° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7937162,"lon":-84.2060309,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

424

Schley County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Schley County, Georgia: Energy Resources Schley County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2736136°, -84.3121264° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.2736136,"lon":-84.3121264,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

425

Coweta County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Coweta County, Georgia: Energy Resources Coweta County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3716708°, -84.7315563° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.3716708,"lon":-84.7315563,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

426

Colquitt County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Colquitt County, Georgia: Energy Resources Colquitt County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.2072856°, -83.8473015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.2072856,"lon":-83.8473015,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

427

City of Monroe, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Georgia Georgia Utility Id 12800 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL DEMAND RATE Commercial COMMERCIAL NON DEMAND RATE Commercial Church Service Commercial City Electric Service Commercial Industrial Service Industrial RESIDENTIAL RATE Residential SECURITY LIGHT - 1000 Watt MH Lighting SECURITY LIGHT - 400 Watt HPS Lighting SECURITY LIGHT - 400 Watt MH Lighting SECURITY LIGHT - 150 Watt HPS Lighting SECURITY LIGHT - 150 Watt HPS (ornamental) Lighting SECURITY LIGHT - 175 Watt MV Lighting

428

City of Oxford, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Oxford City of Oxford City of Place Georgia Utility Id 40369 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Residential Residential Average Rates Residential: $0.1090/kWh Commercial: $0.1070/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Oxford,_Georgia_(Utility_Company)&oldid=410079" Categories: EIA Utility Companies and Aliases Utility Companies Organizations Stubs What links here

429

Pierce County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Pierce County, Georgia: Energy Resources Pierce County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.343806°, -82.1713632° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.343806,"lon":-82.1713632,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

430

Screven County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Screven County, Georgia: Energy Resources Screven County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.7074673°, -81.6035062° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.7074673,"lon":-81.6035062,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

431

Catoosa County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Catoosa County, Georgia: Energy Resources Catoosa County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.8981727°, -85.1479364° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.8981727,"lon":-85.1479364,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

432

Treutlen County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Treutlen County, Georgia: Energy Resources Treutlen County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.3870233°, -82.5834947° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.3870233,"lon":-82.5834947,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

433

Dougherty County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Dougherty County, Georgia: Energy Resources Dougherty County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.5439375°, -84.2278796° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.5439375,"lon":-84.2278796,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

434

Brantley County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Brantley County, Georgia: Energy Resources Brantley County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.1510963°, -81.9971108° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.1510963,"lon":-81.9971108,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

435

Jasper County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Jasper County, Georgia: Energy Resources Jasper County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.3246924°, -83.7199136° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.3246924,"lon":-83.7199136,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

Bleckley County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bleckley County, Georgia: Energy Resources Bleckley County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.4087854°, -83.3789389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.4087854,"lon":-83.3789389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

437

Sandy Springs, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Springs, Georgia: Energy Resources Springs, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.9242688°, -84.3785379° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9242688,"lon":-84.3785379,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

438

City of Jackson, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Jackson City of Jackson City of Place Georgia Utility Id 9573 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COMMERCIAL (02) Commercial COMMERCIAL (03) Commercial COMMERCIAL (04) Commercial INDUSTRIAL Industrial RESIDENTIAL Residential Average Rates Residential: $0.1020/kWh Commercial: $0.1150/kWh Industrial: $0.0696/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Jackson,_Georgia_(Utility_Company)&oldid=40977

439

Candler County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Candler County, Georgia: Energy Resources Candler County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.4241804°, -82.0842901° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.4241804,"lon":-82.0842901,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

440

North Atlanta, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

North Atlanta, Georgia: Energy Resources North Atlanta, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.8651033°, -84.3365917° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.8651033,"lon":-84.3365917,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

DeKalb County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Georgia: Energy Resources Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7956441°, -84.2278796° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7956441,"lon":-84.2278796,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

442

Bartow County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Bartow County, Georgia: Energy Resources Bartow County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.2660473°, -84.8150781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.2660473,"lon":-84.8150781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

443

Gresham Park, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Gresham Park, Georgia: Energy Resources Gresham Park, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7034405°, -84.3143682° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7034405,"lon":-84.3143682,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

444

Cook County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Georgia: Energy Resources County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.1428037°, -83.4643551° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.1428037,"lon":-83.4643551,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

445

Chattahoochee County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chattahoochee County, Georgia: Energy Resources Chattahoochee County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.2952274°, -84.8150781° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.2952274,"lon":-84.8150781,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

446

Druid Hills, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Druid Hills, Georgia: Energy Resources Druid Hills, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7803832°, -84.3360359° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7803832,"lon":-84.3360359,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

447

Chattooga County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Chattooga County, Georgia: Energy Resources Chattooga County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.4632661°, -85.3136218° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.4632661,"lon":-85.3136218,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

448

Harris County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Georgia: Energy Resources Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.7032697°, -84.8567932° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.7032697,"lon":-84.8567932,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

449

City of Blakely, Georgia (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Blakely Blakely Place Georgia Utility Id 1826 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City Rate Commercial Commercial- Non-Demand Commercial Industrial Industrial Residential Residential Senior Citizens Rate Residential Average Rates Residential: $0.0873/kWh Commercial: $0.0932/kWh Industrial: $0.0675/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=City_of_Blakely,_Georgia_(Utility_Company)&oldid=40934

450

Taliaferro County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Taliaferro County, Georgia: Energy Resources Taliaferro County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.5697878°, -82.8855961° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.5697878,"lon":-82.8855961,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

451

North Georgia Elec Member Corp | Open Energy Information  

Open Energy Info (EERE)

EMC) EMC) Jump to: navigation, search Name North Georgia Elec Member Corp Place Georgia Utility Id 13716 Utility Location Yes Ownership C NERC Location SERC NERC SERC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Power(GSA 1- Tier 1) Commercial General Power(GSA 1- Tier 2) Commercial General Power(GSA2) Industrial Outdoor Lighting Decorative/ Pole Fluted Lighting Outdoor Lighting Decorative/ Pole Straight Lighting Outdoor Lighting HPS 100 W Lighting Outdoor Lighting HPS 200 W Lighting Outdoor Lighting HPS 400 W Lighting Outdoor Lighting LPS 135 W Lighting

452

McCaysville, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

McCaysville, Georgia: Energy Resources McCaysville, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 34.9861914°, -84.3713117° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.9861914,"lon":-84.3713117,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

Irwin County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Georgia: Energy Resources County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.5893221°, -83.2934086° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.5893221,"lon":-83.2934086,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

454

East Point, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Georgia: Energy Resources Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.6795531°, -84.4393724° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.6795531,"lon":-84.4393724,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

455

Upson County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

County, Georgia: Energy Resources County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.9047684°, -84.3121264° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.9047684,"lon":-84.3121264,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

456

Avondale Estates, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Avondale Estates, Georgia: Energy Resources Avondale Estates, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 33.7714939°, -84.2671444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.7714939,"lon":-84.2671444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

457

Dooly County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Dooly County, Georgia: Energy Resources Dooly County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 32.1593447°, -83.804868° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.1593447,"lon":-83.804868,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

458

Thomas County, Georgia: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Thomas County, Georgia: Energy Resources Thomas County, Georgia: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 30.8417409°, -83.8473015° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.8417409,"lon":-83.8473015,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

459

River Basin Commissions (Indiana)  

Energy.gov (U.S. Department of Energy (DOE))

This legislation establishes river basin commissions, for the Kankakee, Maumee, St. Joseph, and Upper Wabash Rivers. The commissions facilitate and foster cooperative planning and coordinated...

460

Microsoft Word - DOE-ID-14-043 Georgia Institute of Tech. _1...  

NLE Websites -- All DOE Office Websites (Extended Search)

3 SECTION A. Project Title: Optimizing Polymer-Grafted Amidoxime-based Adsorbents for Uranium Uptake from Seawater - Georgia Institute of Technology SECTION B. Project Description...

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

E-Print Network 3.0 - area waynesboro georgia Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Wildlife Habitat Conservation Summary: landowners in priority areas, has increased. Cherokee Rock Village, Walker County, Georgia Nate... , and public access to recreation areas....

462

E-Print Network 3.0 - airfield savannah georgia Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Engineering Alliance Students Summary: You must be in good academic standing at Armstrong to cross-register at Georgia Tech Savannah (GTS... .gatech.educalendar-events...

463

A renewable energy plan for the Oak Grove Sanitary Landfill In Winder, Georgia.  

E-Print Network (OSTI)

??Oak Grove Sanitary Landfill in Winder, Georgia is already refining its landfill gas (LFG) and sending it through the natural gas pipeline. This is more (more)

Hambrick, Tracy L.

2011-01-01T23:59:59.000Z

464

Culex pipiens, an Experimental Efficient Vector of West Nile and Rift Valley Fever Viruses in the Maghreb Region  

E-Print Network (OSTI)

Culex pipiens, an Experimental Efficient Vector of West Nile and Rift Valley Fever Viruses, Daaboub J, et al. (2012) Culex pipiens, an Experimental Efficient Vector of West Nile and Rift Valley Institut Pasteur, Department of Virology, Arboviruses and Insect Vectors, Paris, France Abstract West Nile

Paris-Sud XI, Université de

465

K-Basins.pub  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2 2 AUDIT REPORT U.S. DEPARTMENT OF ENERGY OFFICE OF INSPECTOR GENERAL OFFICE OF AUDIT SERVICES COMPLETION OF K BASINS MILESTONES APRIL 2002 MEMORANDUM FOR THE SECRETARY FROM: Gregory H. Friedman (Signed) Inspector General SUBJECT: INFORMATION: Audit Report on "Completion of K Basins Milestones" BACKGROUND The Department of Energy (Department) has been storing 2,100 metric tons of spent nuclear fuel at the Hanford Site in southeastern Washington. The fuel, used in support of Hanford's former mission, is currently stored in canisters that are kept in two enclosed water-filled pools known as the K Basins. The K Basins represent a significant risk to the environment due to their deteriorating condition. In fact, the K East Basin, which is near the Columbia River, has

466

Aeromagnetic Survey At Kilauea East Rift Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Thomas, 1986) Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Kilauea East Rift Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes More recent aeromagnetic data (Godson et al., 1981) generally substantiate the presence of a nearly continuous rift zone from the Kilauea summit down to sea level; the apparent width of the magnetic anomaly does not appear to match that projected by Furumoto (1978a) or Broyles et al. (1979); however, to date, no detailed analysis of the more recent data has been completed (R. B. Moore, pers. commun., 1984). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

467

Control of Well Ks-8 in the Kilauea Lower East Rift Zone | Open Energy  

Open Energy Info (EERE)

of Well Ks-8 in the Kilauea Lower East Rift Zone of Well Ks-8 in the Kilauea Lower East Rift Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Control of Well Ks-8 in the Kilauea Lower East Rift Zone Abstract In June 1991, a well located in Hawaii kicked and unloaded at 3,476 ft (1,059 m). This well was estimatedto have a possible bottomhole temperature of 650°F (343°C)and a reservoir pressure approaching 2,300 psi 5,858 Immediate attempts to kill the well were unsuccessful, and the long processof well control was started. Besides the harsh geological and reservoir conditions encountered,the scarce availability of materials in a remote location and long distance transportation of necessary equipment figured heavily in to the time delay of the final kill procedure of the

468

Conduction Models Of The Temperature Distribution In The East Rift Zone Of  

Open Energy Info (EERE)

Conduction Models Of The Temperature Distribution In The East Rift Zone Of Conduction Models Of The Temperature Distribution In The East Rift Zone Of Kilauea Volcano Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Conduction Models Of The Temperature Distribution In The East Rift Zone Of Kilauea Volcano Details Activities (2) Areas (1) Regions (0) Abstract: Temperature variations in the 1966-meter Hawaii Geothermal Project well HGP-A are simulated by model studies using a finite element code for conductive heat flow. Three models were generated: a constant temperature source from a vertical dike; a constant heat-generating magma chamber; and a transient heat source from a tapered vertical dike. Fair correlation is obtained between the HGP-A well temperature and the tapered dike 125 years after it is injected with an initial (transient) 1200°C

469

Time-Domain Electromagnetics At Hualalai Northwest Rift Area (Thomas, 1986)  

Open Energy Info (EERE)

Time-Domain Electromagnetics At Hualalai Northwest Time-Domain Electromagnetics At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details Location Hualalai Northwest Rift Area Exploration Technique Time-Domain Electromagnetics Activity Date Usefulness useful DOE-funding Unknown Notes Three time-domain electromagnetic soundings were conducted on the middle northwest rift at elevations of 280-320 m (Fig. 40) (Kauahikaua and Mattice, 1981). These soundings penetrated to a greater depth than the Schlumberger soundings and two of them were able to resolve basement resistivities ranging from 9 to 12 ohm-m at depths of 1500 to 1800 m. One sounding detected a 9 ohm.m layer at 600 m depth that was underlain by a more resistive basement. These results suggest that thermal fluids may be responsible for the low-resistivity basement, whereas the high-resistivity

470

Chattanooga Eagle Ford Western Gulf TX-LA-MS Salt Basin Uinta Basin  

U.S. Energy Information Administration (EIA) Indexed Site

Western Western Gulf TX-LA-MS Salt Basin Uinta Basin Devonian (Ohio) Marcellus Utica Bakken*** Avalon- Bone Spring San Joaquin Basin Monterey Santa Maria, Ventura, Los Angeles Basins Monterey- Temblor Pearsall Tuscaloosa Big Horn Basin Denver Basin Powder River Basin Park Basin Niobrara* Mowry Niobrara* Heath** Manning Canyon Appalachian Basin Antrim Barnett Bend New Albany Woodford Barnett- Woodford Lewis Hilliard- Baxter- Mancos Excello- Mulky Fayetteville Floyd- Neal Gammon Cody Haynesville- Bossier Hermosa Mancos Pierre Conasauga Michigan Basin Ft. Worth Basin Palo Duro Basin Permian Basin Illinois Basin Anadarko Basin Greater Green River Basin Cherokee Platform San Juan Basin Williston Basin Black Warrior Basin A r d m o r e B a s i n Paradox Basin Raton Basin Montana Thrust Belt Marfa Basin Valley & Ridge Province Arkoma Basin Forest

471

POLICY STATEMENT University of Georgia Research Foundation, Inc. Policy on Equity Acquisition in Licensing  

E-Print Network (OSTI)

POLICY STATEMENT University of Georgia Research Foundation, Inc. Policy on Equity Acquisition the interests of the company over their responsibilities to UGARF and the University of Georgia. This Policy with this Policy. II. Policy In the course of intellectual property licensing, UGARF, through the work of TCO, may

Arnold, Jonathan

472

Color Removal from Pulp Mill Effluent Using Coal Ash Produced from Georgia Coal Combustion Power Plants  

E-Print Network (OSTI)

/0702/citing-global- warming-georgia-judge-blocks-coal-plant/picture1.jpg/5307532-1-eng-US/picture1.jpgColor Removal from Pulp Mill Effluent Using Coal Ash Produced from Georgia Coal Combustion Power color from pulp mill effluent using coal ash. Prevent coal ash adsorbent from leaching arsenic

Hutcheon, James M.

473

May 14-16, 2009 Young Harris College, Young Harris, Georgia  

E-Print Network (OSTI)

May 14-16, 2009 Young Harris College, Young Harris, Georgia Master Beekeeper levels: · Certified · Journeyman · Master · Master Craftsman Young Harris College and the University of Georgia are offering, candles, section comb honey, mead, and beekeeping gadgets. We urge students to participate

Delaplane, Keith S.

474

Impacts of Standard 90.1-2007 for Commercial Buildings at State Level - Georgia  

NLE Websites -- All DOE Office Websites (Extended Search)

Georgia Georgia September 2009 Prepared by Pacific Northwest National Laboratory for the U.S. Department of Energy Building Energy Codes Program BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN GEORGIA BUILDING ENERGY CODES PROGRAM IMPACTS OF STANDARD 90.1-2007 FOR COMMERCIAL BUILDINGS IN THE DISTRICT OF COLUMBIA Georgia Summary Standard 90.1-2007 contains improvements in energy efficiency over the current state commercial energy code, Standard 90.1-2004 with amendments. The Georgia state-specific version of COMcheck 3.6.1 was used to identify the envelope and lighting requirements to be used in the baseline for the analysis. Standard 90.1-2007

475

Assessment of U.S. Agriculture Sector and Human Vulnerability to a Rift Valley Fever Outbreak  

E-Print Network (OSTI)

on the assessment of the U.S. agricultural sector and human vulnerability to a Rift Valley Fever (RVF) outbreak and the value of a select set of alternative disease control strategies. RVF is a vector-borne, zoonotic disease that affects both livestock and humans...

Hughes, Randi Catherine

2011-08-08T23:59:59.000Z

476

3D Graph Visualization with the Oculus Rift Virtual Graph Reality  

E-Print Network (OSTI)

3D Graph Visualization with the Oculus Rift Virtual Graph Reality Farshad Barahimi, Stephen Wismath regarding three- dimensional (3D) representations of graphs. However, the actual usefulness of such 3D reality environment such as a CAVE, or · printed as a physical model with a 3D printer. Early studies

Wismath, Stephen

477

The electrical resistivity structure of the crust beneath the northern Main Ethiopian Rift  

E-Print Network (OSTI)

The electrical resistivity structure of the crust beneath the northern Main Ethiopian Rift K containing partial melt. The crust is much more resistive beneath the southern plateau, and has no resistivity contrast between the upper and lower crust. The inferred geoelectric strike direction

478

Georgia Natural Gas LNG Storage Additions (Million Cubic Feet)  

U.S. Energy Information Administration (EIA) Indexed Site

Additions (Million Cubic Feet) Additions (Million Cubic Feet) Georgia Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 20,484 1,508 1,555 1,024 678 1,834 1,942 1,150 1,702 2,930 1990's 2,779 1,969 1,573 1,855 3,788 3,746 6,523 3,221 1,760 607 2000's 3,241 6,772 3,426 5,422 5,570 5,971 7,705 2,817 4,372 3,182 2010's 2,693 3,306 2,097 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Additions of Liquefied Natural Gas into Storage Georgia Liquefied Natural Gas Additions to and Withdrawals from Storage Additions of Liquefied Natural Gas into

479

Georgia Green Power Electric Member Cooperative EMC | Open Energy  

Open Energy Info (EERE)

Cooperative EMC Cooperative EMC Jump to: navigation, search Name Georgia Green Power Electric Member Cooperative (EMC) Place Tucker, Georgia Zip 30084 Sector Hydro Product A partnership of Georgian electricity cooperatives, which produces power by low-impact hydro projects and landfill gas-to-electricity projects and sells it through the coops to customer who opt for green power. Coordinates 33.854351°, -84.212033° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.854351,"lon":-84.212033,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

480

Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per  

U.S. Energy Information Administration (EIA) Indexed Site

Price (Dollars per Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Georgia Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0.19 0.19 0.19 1970's 0.20 0.22 0.23 0.25 0.28 0.32 0.36 0.67 0.90 1.35 1980's 2.10 2.78 3.11 3.22 3.26 3.23 3.32 2.50 2.41 2.69 1990's 2.19 2.08 2.08 2.24 2.14 1.93 2.62 3.09 2.48 2.18 2000's 3.30 4.57 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 12/12/2013 Next Release Date: 1/7/2014 Referring Pages: Price for Natural Gas Pipeline and Distribution Use Georgia Natural Gas Prices Price for Natural Gas Pipeline and Distribution Use

Note: This page contains sample records for the topic "georgia rift basin" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Structural style and evolution of a Late Triassic rift basin in the Central High Atlas, Morocco: controls on sediment deposition  

E-Print Network (OSTI)

: controls on sediment deposition CATHERINE BAUDON*, IVAN FABUEL-PEREZ and JONATHAN REDFERN* North Africa, Oxford Road, Williamson Building, Manchester M13 9PL, UK Late Triassic continental sediments deposited dimension, geometry of the half-graben and created the accommodation for sediment deposition. The presence

Demouchy, Sylvie

482

A marine geophysical study of the Wilkes Land rifted continental margin, Antarctica  

Science Journals Connector (OSTI)

......GA-199 in the Great Australian Bight (GAB). Seamount...Block; BB, Bight Basin; BC, Budd Coast...anomalies in the Australian-Antarctic Basin: are they isochrons...framework for the Great Australian Bight: starting with......

D. I. Close; A. B. Watts; H. M. J. Stagg

2009-05-01T23:59:59.000Z

483

Categorical Exclusion Determination Form Proposed Action Title: (0473-1543) Georgia Tech Research Corporation-  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3-1543) Georgia Tech Research Corporation- 3-1543) Georgia Tech Research Corporation- Prosumer-Based Distributed Autonomous Cyber-Physical Architecture for Ultra-Reliable Green Electricity Internetworks Program or Field Office: Advanced Research Projects Agency - Energy Location(s) (City/County/State): Georgia Proposed Action Description: Funding will support development of an internet-like software architecture capable of independently controlling and coordinating distributed energy sources generated by "prosumers," such as wind and solar power, to improve the reliability, efficiency, flexibility, and communications within the electrical grid. Proposed work consists of (1) developing an independently networked inverter controller that incorporates Kuramoto oscillators to reduce required

484

Towards a better understanding of Rift Valley fever epidemiology in the south-west of the Indian Ocean  

Science Journals Connector (OSTI)

Rift Valley fever virus (Phlebovirus, Bunyaviridae) is an arbovirus causing intermittent epizootics and sporadic epidemics primarily in East Africa. Infection causes severe and often fatal illness in young sheep,...

Thomas Balenghien; Eric Cardinale; Vronique Chevalier; Nohal Elissa

2013-09-01T23:59:59.000Z

485

Characterization and Mapping of the Gene Conferring Resistance to Rift Valley Fever Virus Hepatic Disease in WF.LEW Rats  

E-Print Network (OSTI)

Rift Valley Fever Virus is a plebovirus that causes epidemics and epizootics in sub-Saharan African countries but has expanded to Egypt and the Arabian Peninsula. The laboratory rat (Rattus norvegicus) is susceptible to RVFV and has been shown...

Callicott, Ralph J.

2010-01-14T23:59:59.000Z

486

Geology of oil fields and future exploration potential in west African Aptian Salt basin  

SciTech Connect

The Aptian Salt basin of west Africa, extends from Equatorial Guinea southward to Angola, contains recoverable reserves estimated at nearly 4 billion BOE, and is current producing 600,000 BOPD. The basin developed as a result of tensional forces between west Africa and South America initiated at the end of the Jurassic. The prospective sedimentary sequences ranged in age from Early Cretaceous (uppermost Jurassic in places) to Holocene and is divided by the Aptian transgressive sand and salt into a pre-salt, nonmarine, syn-rift sequence and a post-salt, marine, post-rift sequence. Both the pre- and post-salt sequences contain several successful exploration plays, the most prolific of which are the Early Cretaceous nonmarine sandstone fields in tilted fault blocks of Gabon and Cabinda; Early Cretaceous carbonate buildups on the margins of basement highs in Cabinda; Early Cretaceous transgressive marine sandstone fields in anticlines draped over basement highs in Gabon; Late Cretaceous shallow marine sandstone and carbonate fields in salt-related structures in the Congo, Zaire, Cabinda, and Angola; Late Cretaceous dolomites in structural/stratigraphic traps in Angola; Late Cretaceous/early Tertiary deltaic/estuarine sandstone traps formed by salt movement in Gabon, Cabinda, and angola; and Tertiary marine turbidite fields in Cabinda and Angola. Despite the exploration success in these trends, much of the basin is under or poorly explored. The major problems for exploration are the poor quality of seismic definition beneath the salt, which makes it difficult to predict pre-salt structure and stratigraphy, and the importance of a stratigraphic element in many of the post-salt traps, also difficult to detect on seismic.

Bignell, R.D.; Edwards, A.D.

1987-05-01T23:59:59.000Z

487

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

61 - 9870 of 29,416 results. 61 - 9870 of 29,416 results. Download CX-010644: Categorical Exclusion Determination Pittsburgh Building 65 and Building 74 Loading Dock Railing Project CX(s) Applied: B2.1, B2.3 Date: 06/28/2013 Location(s): Pennsylvania Offices(s): National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-010644-categorical-exclusion-determination Download CX-010635: Categorical Exclusion Determination Geologic Characterization of the South Georgia Rift Basin (Task 8.2) CX(s) Applied: A9, B3.1 Date: 07/01/2013 Location(s): Georgia Offices(s): National Energy Technology Laboratory http://energy.gov/nepa/downloads/cx-010635-categorical-exclusion-determination Download CX-010636: Categorical Exclusion Determination Geologic Characterization of the South Georgia Rift Basin (Task 8.2)