Sample records for georgia athens ga

  1. Lamar Dodd School of Art 270 River Road Athens, GA 30602 GRADUATE ASSISTANTSHIP APPLICATION

    E-Print Network [OSTI]

    Arnold, Jonathan

    Lamar Dodd School of Art 270 River Road Athens, GA 30602 GRADUATE ASSISTANTSHIP BELOW: (1) I am currently enrolled in the Lamar Dodd School of Art ____________ degree program in the ____________________ area. (2) I have been officially accepted for admission to the Lamar Dodd School of Art

  2. Graduate School Enjoy Athens!

    E-Print Network [OSTI]

    Arnold, Jonathan

    Dean Graduate School Enjoy Athens! Great schools Affordable housing Eclectic dining Entertainment of the Graduate School. The University of Georgia (UGA), a land-grant/sea-grant university, is the largest schools and colleges, as well as a medical partnership with Georgia Regents University housed on the UGA

  3. Li (Lily) Wang Address: 223 Statistics Building, University of Georgia, Athens, GA 30602-7952

    E-Print Network [OSTI]

    Wang, Lily

    ). A nonparametric analysis on the environmental Kuznets curve. Environmetrics, 22(3), 420­430. [9] Liu, X., Wang, L

  4. NOTICE OF FACULTY VACANCY IN ART EDUCATION The Lamar Dodd School of Art at The University of Georgia invites applications for the

    E-Print Network [OSTI]

    Arnold, Jonathan

    NOTICE OF FACULTY VACANCY IN ART EDUCATION The Lamar Dodd School of Art at The University Education Search Committee Lamar Dodd School of Art The University of Georgia 270 River Rd. Athens, Ga in regard to both outdoor and urban activities (www.exploregeorgia.org). The Lamar Dodd School of Art

  5. A climatology, synoptic assessment, and thermodynamic evaluation for cloud-to-ground lightning in Georgia: a study for the 1996 Summer Olympics

    E-Print Network [OSTI]

    Livingston, Eric Scott

    1995-01-01T23:59:59.000Z

    flash density within 50 km of Savannah, Georgia for the month of August from 1986 to 1993. . . . . . . . . 35 Average ground flash density within 50 km of the Ocoee River in Tennessee for the month of July from 1986 to 1993.... LATITUDE LONGITUDE Ol ic Rin Columbus, GA Con ers, GA Athens, GA Ocoee River, TN Stone Mtn. , GA Wolf Creek, GA Savannah, GA Gainesville, GA 33. 74 32. 52 33. 67 33. 95 35. 07 33. 80 33. 67 32. 13 34. 32 84. 40 84. 95 83. 97 83. 32...

  6. Major Degree Campus Accounting B.B.A. Athens

    E-Print Network [OSTI]

    Arnold, Jonathan

    Major Degree Campus Accounting B.B.A. Athens Accounting M.Acc. Athens Adult Education Ed.D. Athens Adult Education Ed.S. Athens Adult Education M.Ed. Athens Adult Education Ph.D. Athens Adult Education Ed.D. Gwinnett Adult Education M.Ed. Online Advertising A.B.J. Athens African American Studies A

  7. PUTTING KNOWLEDGE TO WORK The University of Georgia and Ft. Valley State College, the U.S. Department of Agriculture and counties of the state cooperating.

    E-Print Network [OSTI]

    Navara, Kristen

    to Georgia soils. Soil test phosphorous level by itself is not adequate to determine environmental risk by applying less manure, adding buffers or applying other management procedures. Sources of Risk and Transport and Environmental Sciences / Athens, Georgia 30602-4356 MAY 2004 COMMERCIAL EGG TIP... GEORGIA'S PHOSPHOROUS INDEX

  8. PUTTING KNOWLEDGE TO WORK The University of Georgia and Ft. Valley State College, the U.S. Department of Agriculture and counties of the state cooperating.

    E-Print Network [OSTI]

    Navara, Kristen

    to Georgia soils. Soil test phosphorous level by itself is not adequate to determine environmental risk by applying less litter, adding buffers or applying other management procedures. Sources of Risk and Transport and Environmental Sciences / Athens, Georgia 30602-4356 MAY 2004 BROILER TIP... GEORGIA'S PHOSPHOROUS INDEX

  9. Epidemiologic characteristics of pityriasis rosea in Athens Greece

    E-Print Network [OSTI]

    Kyriakis, Kyriakos P; Palamaras, Ioulios; Terzoudi, Sofia; Pagana, Georgia; Emmanuelides, Smaro; Michailides, Charalambos

    2006-01-01T23:59:59.000Z

    of pityriasis rosea in Athens Greece Kyriakos P. Kyriakis,St. Barbara" Athens, Greece. fountou@spark.net.gr Pityriasis

  10. PhD Graduate Opportunity: Ecology of Juvenile Desert Tortoises Agency/Organization: University of Georgia's Savannah River Ecology Lab

    E-Print Network [OSTI]

    Georgia, University of

    of Georgia's Savannah River Ecology Lab Location: UGA (Athens, Georgia) / Mojave National Preserve research at Mojave National Preserve, California. Preference will be given to those applicants who qualify about Dr. Tuberville's lab, including people and publications, can be found at: http

  11. Forestry Policies (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia's Forests are managed by the Georgia Forestry Commission. In 2009 the Commission completed a statewide assessment of biomass resources:

  12. Georgia Hazardous Site Response Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Site Response Act is Georgia’s version of Superfund. The Act provides for graduated fees on the disposal of hazardous waste, a trust fund to enable the EPD to clean up or plan...

  13. Ritual and Authority in Early Athens

    E-Print Network [OSTI]

    Laughy, Michael Harold

    2010-01-01T23:59:59.000Z

    2. Athenian Plain 2.1. Athens: Apollo? 2.2. Athens: AthenaArtemis 7.4. Prasiai: Apollo 7.5. Mt. Pani, Peak: Zeus? 7.6.on ritual appointed by Apollo, to be a rival to aristocratic

  14. Georgia Radiation Control Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Radiation Control Act is designed to prevent any associated harmful effects upon the environment or the health and safety of the public through the institution and maintenance of a...

  15. Space Physics in Greece: Experience and Future Prospects Ioannis A. Daglis, Anastasios Anastasiadis and Georgia Tsiropoula

    E-Print Network [OSTI]

    Anastasiadis, Anastasios

    Space Physics in Greece: Experience and Future Prospects Ioannis A. Daglis, Anastasios Anastasiadis and Georgia Tsiropoula National Observatory of Athens, Institute of Ionospheric and Space Research, Penteli Engineering, Xanthi, Greece Abstract. Space Physics was born with the launch of the first artifi­ cial

  16. High energy hadron-hadron collisions. [Dept. of Physics and Astronomy, Univ. of Georgia, Athens, Georgia

    SciTech Connect (OSTI)

    Chou, T.T.

    1992-01-01T23:59:59.000Z

    Results of a study on high energy collisions with the geometrical model are summarized in three parts: (1) the elastic hadron-hadron collision, (2) the inelastic hadron-hadron collision, and (3) e[sup +]e[sup [minus

  17. Georgia Geriatric Education Center

    E-Print Network [OSTI]

    Arnold, Jonathan

    Georgia Geriatric Education Center © Photography courtesy of the U.S. Administration on Aging. Georgia Geriatric Education Center Latestresourcesandtrainingforbestpracticesingerontologyandgeriatrics. The Georgia Geriatric Education Center (GGEC) is a statewide effort designed to help you access the latest

  18. Georgia Water Quality Control Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Water Quality Control Act (WQCA) is a set of environmental regulations and permitting requirements that comply with the federal Clean Water Act. The Georgia Water Quality Control Act...

  19. Georgia Erosion and Sedimentation Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Erosion and Sedimentation Act (GESA) is designed to protect vegetated buffers. GESA establishes a minimum undisturbed, vegetated buffer of 25 feet for all streams in Georgia (measured...

  20. WAC 2005 Presentation Athens, Greece, 3-10-05

    E-Print Network [OSTI]

    Stavrakakis, Ioannis

    WAC 2005 Presentation Athens, Greece, 3-10-05 Context-Driven Self-Configuration of Mobile Ad Hoc://ee.surrey.ac.uk/CCSR/Networks/ WAC 2005 Presentation Athens, Greece, 3-10-05 Presentation Outline · Introduction · Research Objective Presentation Athens, Greece, 3-10-05 Presentation Outline · Introduction ··· Research Objective

  1. Lamar Dodd School of Art Enjoy Athens!

    E-Print Network [OSTI]

    Hall, Daniel

    Director Lamar Dodd School of Art Enjoy Athens! Great schools Affordable housing Eclectic dining and nominations for the position of Director, Lamar Dodd School of Art. Founded in 1937, the School has 50 full, and the Performing Arts Center. Additional information about the Lamar Dodd School of Art is available at: http

  2. Georgia Water Resources Institute Annual Technical Report

    E-Print Network [OSTI]

    , and lake associations. At the national level, GWRI has collaborative efforts with the California Energy with support from the U.S. Agency for International Development, World Bank, Food and Agriculture Organization Prices in Georgia" USGS 104B/GWRI Project, Susanna Ferriera # 2011GA275B #1266663 (3) Impact of Upstream

  3. Georgia Underground Storage Tank Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Underground Storage Act (GUST) provides a comprehensive program to prevent, detect, and correct releases from underground storage tanks (“USTs”) of “regulated substances” other than...

  4. Georgia Tech Dangerous Gas

    E-Print Network [OSTI]

    Sherrill, David

    1 Georgia Tech Dangerous Gas Safety Program March 2011 #12;Georgia Tech Dangerous Gas Safety.......................................................................................................... 5 6. DANGEROUS GAS USAGE REQUIREMENTS................................................. 7 6.1. RESTRICTED PURCHASE/ACQUISITION RULES: ................................................ 7 7. FLAMMABLE GAS

  5. athens area greece: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greece C. Bekas, IBM, Zurich, Switzerland P. Chaviaropoulos, Center For Renewable Energy Sources (CRES), Greece V. Dougalis, Univ. Athens & IACMFORTH, Greece D. Fotiadis,...

  6. PUTTING KNOWLEDGE TO WORK The University of Georgia and Ft. Valley State College, the U.S. Department of Agriculture and counties of the state cooperating.

    E-Print Network [OSTI]

    Navara, Kristen

    and Environmental Sciences / Athens, Georgia 30602-4356 NOVEMBER 2006 COMMERCIAL EGG TIP . . . BIOFUELS AND POULTRY PRODUCTION The generation of biofuels using current technology (ethanol from the fermentation of corn gain. As the production of biofuels has become established public policy, it is not surprising

  7. PUTTING KNOWLEDGE TO WORK The University of Georgia and Ft. Valley State College, the U.S. Department of Agriculture and counties of the state cooperating.

    E-Print Network [OSTI]

    Navara, Kristen

    in soils and risk of water contamination is complex. For nutrient management planning, a simple calculation Characteristics, Site Transport Characteristics, and Best Management Practices. Site Source Characteristics and Environmental Sciences / Athens, Georgia 30602-4356 JULY 2000 COMMERCIAL EGG TIP... THE PHOSPHOROUS INDEX

  8. PUTTING KNOWLEDGE TO WORK The University of Georgia and Ft. Valley State College, the U.S. Department of Agriculture and counties of the state cooperating.

    E-Print Network [OSTI]

    Navara, Kristen

    selected based on importance of legal risk, potential cost, or environmental damage. In order to meet and Environmental Sciences / Athens, Georgia 30602-4356 JULY 2002 BROILER TIP . . . AGRICULTURAL ENVIRONMENTAL MANAGEMENT SYSTEMS In this age of expanding environmental scrutiny, management strategies that have

  9. Athens Utility Board | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformationGuide | OpenAthens Utility Board Jump

  10. Democracy: Power to the People Athens and America

    E-Print Network [OSTI]

    Humphrey, Marty

    Democracy: Power to the People Athens and America Saturday, April 20, 2013 We offer this workshop. Athens was the first to develop a democracy as we understand it, and, when "power goes to the people," what obligations fall upon "the people" and individual citizens? We will examine this question

  11. ATHENS SANTORINI EPHESUS/KUSADASI RHODES MYKONOS KAVALA ISTANBUL

    E-Print Network [OSTI]

    Shapiro, Benjamin

    ATHENS · SANTORINI · EPHESUS/KUSADASI RHODES · MYKONOS · KAVALA · ISTANBUL 7-NIGHT LUXURY CRUISE;Santorini, Greece V1 VOTEDONEOFTHEWORLD'S BESTCRUISELINES MAY14­22,2014 ATHENS·SANTORINI·EPHESUS or travel to the ancient city of Ephesus and walk through its beautifully preserved ruins. Savor

  12. Georgia Air Quality Control Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Air Quality Control Act (AQCA) is a set of environmental regulations, permitting requirements, and air quality standards that control the amount of pollutants emitted and who emits them...

  13. Georgia Surface Mining Act of 1968 (Georgia)

    Broader source: Energy.gov [DOE]

    This law regulates all surface mining in Georgia, including the coastal zone. It includes provisions to “advance the protection of fish and wildlife and the protection and restoration of land,...

  14. Georgia Safe Dams Act of 1978 (Georgia)

    Broader source: Energy.gov [DOE]

    The purpose of the Georgia Safe Dams Act is to provide regulation, inspection and permitting of dams to the State. The Director of the Environmental Protection Division (EPD) is responsible for...

  15. Shore Protection Act (Georgia)

    Broader source: Energy.gov [DOE]

    The Shore Protection Act is the primary legal authority for protection and management of Georgia's shoreline features including sand dunes, beaches, sandbars, and shoals, collectively known as the...

  16. Athens Kusadasi Santorini Zakynthos Sicily Amalfi/Positano Rome Florence/Pisa Monte Carlo Marseille Barcelona

    E-Print Network [OSTI]

    McConnell, Terry

    . Depart Athens for Kusadasi and visit the nearby ruins of Ephesus. Admire the beautiful whitewashed towns

  17. Athens-Clarke County- Green Business Revolving Loan Fund

    Broader source: Energy.gov [DOE]

    Athens-Clarke County has created a Green Business Revolving Loan Fund for new or existing businesses. Funding is available for implementing eco-friendly products or services into a business or...

  18. athens greece assessment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IBSC27WP IX-3 Athens, 23-27 May 2005 LINKING HORIZONTAL AND VERTICAL MODELS TO PREDICT 3D + time DISTRIBUTIONS OF BIRD DENSITIES Judy Shamoun-Baranes1 , Henk Sierdsema. Royal...

  19. adjacent basement north: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21 @Georgia at Athens, Georgia Oct 05 @ Tulane at New Orleans, GA Oct 12 Middle Tennessee Denton, Texas Oct 19 @Louisiana Tech Mohanty, Saraju P. 268 North Shore City Tourism...

  20. archipelago tunisia north: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21 @Georgia at Athens, Georgia Oct 05 @ Tulane at New Orleans, GA Oct 12 Middle Tennessee Denton, Texas Oct 19 @Louisiana Tech Mohanty, Saraju P. First Page Previous Page 1 2 3 4 5...

  1. arne field north: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21 @Georgia at Athens, Georgia Oct 05 @ Tulane at New Orleans, GA Oct 12 Middle Tennessee Denton, Texas Oct 19 @Louisiana Tech Mohanty, Saraju P. 330 North Shore City Tourism...

  2. abeokuta north lga: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    21 @Georgia at Athens, Georgia Oct 05 @ Tulane at New Orleans, GA Oct 12 Middle Tennessee Denton, Texas Oct 19 @Louisiana Tech Mohanty, Saraju P. 111 North Shore City Tourism...

  3. Landscape and Urban Planning 97 (2010) 1121 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    2010-01-01T23:59:59.000Z

    , Byron J. Freemanc , James T. Petersond a University of Georgia River Basin Center, 110 Riverbend Road, Athens, GA 30602, USA b US Geological Survey Patuxent Wildlife Research Center, University of Georgia

  4. Georgia Underground Gas Storage Act of 1972 (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Underground Gas Storage Act, which permits the building of reserves for withdrawal in periods of peak demand, was created to promote the economic development of the State of Georgia and...

  5. Constructionism 2012, Athens, Greece ISBN: 978-960-88298-4-8 RESEARCH REPORT 370

    E-Print Network [OSTI]

    Wilensky, Uri

    Constructionism 2012, Athens, Greece ISBN: 978-960-88298-4-8 RESEARCH REPORT 370 Representational essentially tying the constructed knowledge structures to the game #12;Constructionism 2012, Athens, Greece

  6. Michael J. Poston Atlanta, GA 30307

    E-Print Network [OSTI]

    Orlando, Thomas

    Page | 1 Michael J. Poston Atlanta, GA 30307 Michael.Poston@gatech.edu Cell: 770.561.4756 U.S. Citizen Education PhD Candidate in Chemistry Georgia Institute of Technology, Atlanta, GA August 2007 with Application to Lunar Observations," JGR ­ Planets, 118, 105, doi: 10.1002/jgre.20025. Poston, M. J

  7. University of Georgia 2020 Strategic Plan

    E-Print Network [OSTI]

    Arnold, Jonathan

    ......................................................................34 Appendix E. University of Georgia Funding Source Trend Summary..........................................35University of Georgia 2020 Strategic Plan Building on Excellence October 30, 2012 #12;Building...............................................................................................................................................1 The Mission of the University of Georgia

  8. Georgia Oil and Gas Deep Drilling act of 1975 (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia's Oil and Gas and Deep Drilling Act regulates oil and gas drilling activities to provide protection of underground freshwater supplies and certain "environmentally sensitive" areas. The...

  9. Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Comprehensive Solid Waste Management Act (SWMA) of 1990 was implemented in order to improve solid waste management procedures, permitting processes and management throughout the state. ...

  10. Georgia Hazardous Waste Management Act

    Broader source: Energy.gov [DOE]

    The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

  11. 2014 Race to Zero Student Design Competition: Georgia Institute...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Georgia Institute of Technology Profile 2014 Race to Zero Student Design Competition: Georgia Institute of Technology Profile 2014 Race to Zero Student Design Competition: Georgia...

  12. E-Print Network 3.0 - athens tandem accelerator Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    results for: athens tandem accelerator Page: << < 1 2 3 4 5 > >> 1 Workshop on Thermonuclear Reaction Rates for Astrophysics Applications Summary: , particle physics, neutrino...

  13. Georgia Biofuel Directory A directory of Georgia industries that use biofuels.

    E-Print Network [OSTI]

    Georgia Biofuel Directory · A directory of Georgia industries that use biofuels. · Completed in May _________________________________________________________________ 3 Biofuels_____________________________________________________________________ 4 Biofuel Use in Georgia that Burn Self-Generated Biofuels as of May 2003__ 4 Chart 1.0 Biofuel Use from Contacted

  14. Georgia Cities Foundation- Green Communities Revolving Loan Fund (Georgia)

    Broader source: Energy.gov [DOE]

    The Green Communities Fund is a revolving loan fund providing low-interest loans to businesses located within the city limits of any city in Georgia. Loans are available for existing as well as new...

  15. Georgia Interfaith Power and Light- Energy Improvement Grants (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia Interfaith Power and Light (GIPL) offers grants of up to $10,000 to congregations or faith-based communities, including faith-based schools. Grant funds may be used for energy conservation...

  16. Georgia Power- Solar Buyback Program

    Broader source: Energy.gov [DOE]

    Georgia Power, the state's largest utility, has established a green power program, that allows the company to purchase limited solar generation at a premium price based on other customers volunta...

  17. Georgia Power- Advanced Solar Initiative

    Broader source: Energy.gov [DOE]

    Note: According to Georgia Power's website, the Advanced Solar Initiative's final program guidelines are due to be published on June 25th and the bidding period for is expected to open on July 10,...

  18. Stressors to Imperiled Fishes in the Etowah Basin Mechanisms, Sources and Management under the Etowah HCP

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    Geological Survey Patuxent Wildlife Research Center, Athens, GA 30602 Abstract The Etowah River basin, 2006 Edited February 1, 2007 1. University of Georgia River Basin Center, Athens, GA 30602 2. US and its Aquatic Fauna The Etowah River is a major headwater tributary of the Coosa River system

  19. Georgia Water Resources Institute Annual Technical Report

    E-Print Network [OSTI]

    dissemination, and works collaboratively with various local, state, and federal agencies. These include #35334). (5) Tidal Streams: A Renewable Energy Source for Georgia , Kevin Haas, Georgia Institute, environmental organizations, lake associations, California Energy Commission, California Department of Water

  20. Georgia Green Loans Save and Sustain Program

    Broader source: Energy.gov [DOE]

    Georgia Green Loans, a non-profit microlending agency, offers funding to "green" businesses using funding from a Georgia Environmental Finance Authority (GEFA) grant. The GEFA grant is based on...

  1. Criteria for Suitable Spawning Habitat for the Robust Redhorse Moxostoma robustum

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    USGS Patuxent Wildlife Research Center University of Georgia Athens, GA 30602 A Report to U.S. Fish extends from the Altamaha River drainage in Georgia northward to and including the Pee Dee River drainage portion of the Oconee River between Milledgeville and Dublin, Georgia, the Ocmulgee River between Macon

  2. 1197 South Lumpkin Street Athens Georgia 30602-3603 weddings@georgiacenter.uga.edu 706.542.2654 Bartender Charges

    E-Print Network [OSTI]

    Arnold, Jonathan

    the selection of alcohol. oPen Bar Prices domesTic Beer.................................................................................................................................................. imPorTed Beer of customers for this function. halF-hour service one-hour service Two-hour service domesTic Beer and house

  3. Popular urban settlements in Athens : a comparative study of low income housing

    E-Print Network [OSTI]

    Kitsiou, Triada

    1981-01-01T23:59:59.000Z

    This study is concerned with aspects of housing and urban development related to the lower income groups in the context of urbanization in Athens, Greece. It identifies and evaluates typical low income housing settlements ...

  4. athens greece 20-22: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IBSC27WP IX-3 Athens, 23-27 May 2005 LINKING HORIZONTAL AND VERTICAL MODELS TO PREDICT 3D + time DISTRIBUTIONS OF BIRD DENSITIES Judy Shamoun-Baranes1 , Henk Sierdsema. Royal...

  5. Georgia Southern University Information Technology

    E-Print Network [OSTI]

    Hutcheon, James M.

    Georgia Southern University Information Technology Organization Chart 2013-2014 FINAL: September 18, 2013 R\\Work\\Common:\\OrgCharts\\Rev2014\\ Information Technology \\CIO Produced: Strategic Research of the groups of units reporting there. President Vice President for Information Technology and Chief

  6. Georgia Tech Vehicle Acquisition and

    E-Print Network [OSTI]

    1 2012 Georgia Tech 10/10/2012 Vehicle Acquisition and Disposition Manual #12;2 Vehicle Procedures Regardless of value, all vehicles should be included in this process. Acquisition of a Vehicle 1. Contact Fleet Coordinator to guide the departments in the purchasing process for all vehicles. 2. Fill out

  7. Updated 11/1/2012 GEORGIA INSTITUTE OF TECHNOLOGY

    E-Print Network [OSTI]

    Li, Mo

    Updated 11/1/2012 GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF FINANCIAL SERVICES ADMINSTRATION Cash/Investment Management Debt Management Georgia Tech Facilities, Inc. Georgia Advanced Technology Ventures, Inc. Project Accounting Cost Accounting Rate Studies Negotiations Salary, Planning

  8. GEORGIA INSTITUTE OF TECHNOLOGY ENVIRONMENTAL HEALTH AND SAFETY POLICY

    E-Print Network [OSTI]

    Das, Suman

    GEORGIA INSTITUTE OF TECHNOLOGY ENVIRONMENTAL HEALTH AND SAFETY POLICY Ratified by the Institute Council on Environmental Health and Safety August 2008 POLICY Georgia Institute of Technology (Georgia environmental health and safety laws and regulations; and Demonstrating leadership in pollution prevention

  9. Renewable and Non-Renewable Resources Tariff RNR-7 (Georgia)

    Broader source: Energy.gov [DOE]

    The Renewable and Non-Renewable Resource tariff is authorized by the Georgia Public Service Commission (PSC), which requires that the investor owned utility, Georgia Power Company, purchase...

  10. Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia...

    Office of Environmental Management (EM)

    Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking Secretary Bodman Touts Importance of Cellulosic Ethanol at Georgia Biorefinery Groundbreaking October...

  11. GEORGIA RECOVERY ACT SNAPSHOT | Department of Energy

    Energy Savers [EERE]

    ACT SNAPSHOT Georgia has substantial natural resources, including biomass and hydroelectric power .The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  12. Qualifying RPS State Export Markets (Georgia)

    Broader source: Energy.gov [DOE]

    This entry lists the states with Renewable Portfolio Standard (RPS) policies that accept generation located in Georgia as eligible sources towards their RPS targets or goals. For specific...

  13. Petroleum Pipeline Eminent Domain Permit Procedures (Georgia)

    Broader source: Energy.gov [DOE]

    The Petroleum Pipeline Eminent Domain Permit Procedures serve to protect Georgia's natural and environmental resources by requiring permits be issued by the Director of the Environmental Protection...

  14. Wood Fired Steam Plants in Georgia 

    E-Print Network [OSTI]

    Bulpitt, W. S.

    1983-01-01T23:59:59.000Z

    . Shortly after that time, Georgia Tech and the Georgia Forestry Commission embarked on a number of projects directed toward providing the use of wood as an industrial energy source. This paper will present an overview of these programs with an emphasis...

  15. Georgia Water Resources Institute Annual Technical Report

    E-Print Network [OSTI]

    ) INFORM: Integrated Forecast and Reservoir Management System for Northern California, Aris Georgakakos PI Water Resources Institute GWRI mission is to help improve water resources management in Georgia, the US planning and management framework for Georgia. The GWRI planning tools are used to (i) determine flow

  16. Last date modified 7/9/13 Location and Institution GREECE -ATHENS

    E-Print Network [OSTI]

    Galles, David

    Last date modified 7/9/13 Location and Institution GREECE - ATHENS THE AMERICAN COLLEGE OF GREECE (DEREE) Program and Language · Minimum overall GPA of 3.0 or 2 in the comprehensive tuition fee for the American College of Greece Other Expenses Not Airfare

  17. THE NEW MULTICHANNEL RADIOSPECTROGRAPH ARTEMIS-IV/HECATE, OF THE UNIVERSITY OF ATHENS

    E-Print Network [OSTI]

    Athens, University of

    THE NEW MULTICHANNEL RADIOSPECTROGRAPH ARTEMIS-IV/HECATE, OF THE UNIVERSITY OF ATHENS C. CAROUBALOS@cc.uoa.gr (Received 14 April 2000; accepted in revised form 5 February 2001) Abstract. We present the new solar shocks, the acceleration of energetic particles from shock waves, and the relation of energetic electrons

  18. SYNOPTIC AND MESOSCALE WEATHER CONDITIONS DURING AIR POLLUTION EPISODES IN ATHENS, GREECE

    E-Print Network [OSTI]

    Pielke, Roger A.

    KALLOS (1), PAVLOS KASSOMENOS (1) and ROGER A. P1ELKE (2) (1) UniversityofAthens, Dept. ofApplied Physics portion of their surface is covered by pine forests. There are three hills up to 200 m inside the basin

  19. Central Georgia EMC- Photovoltaic Rebate Program

    Broader source: Energy.gov [DOE]

    In June 2008, Central Georgia Electric Membership Corporation (CGEMC) began offering a rebate of $450 per kilowatt (kW) to residential members who install photovoltaic (PV) systems that are...

  20. Alternative Fuels Data Center: Georgia Information

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    production facilities in Georgia, use the TransAtlas interactive mapping tool or use BioFuels Atlas to show the use and potential production of biofuels throughout the U.S. and...

  1. MSc STUDY PROGRAMME IN THE FACULTY OF GEOLOGY AND GEOENVIRONMENT, UNIVERSITY OF ATHENS 201314 Geology and Geoenvironment

    E-Print Network [OSTI]

    Kouroupetroglou, Georgios

    MSc STUDY PROGRAMME IN THE FACULTY OF GEOLOGY AND GEOENVIRONMENT, UNIVERSITY OF ATHENS 201314 1 Geology and Geoenvironment MSc Programme STUDENT HANDBOOK Applied Environmental Geology, Stratigraphy Paleontology, Geography and Environment, Dynamic Geology and Tectonics/ Hydrogeology, Geophysics

  2. The University of Georgia Center for Agribusiness and Economic Development

    E-Print Network [OSTI]

    Scott, Robert A.

    and Environmental Sciences An Evaluation of Direct and Indirect Economic Losses Incurred by Georgia FruitThe University of Georgia Center for Agribusiness and Economic Development College of Agricultural ............................................................................................................................................................ 3 Economic Consequences

  3. Sensible Solar Fueling Energy Revolution in Georgia | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Sensible Solar Fueling Energy Revolution in Georgia Sensible Solar Fueling Energy Revolution in Georgia May 14, 2010 - 3:35pm Addthis Joshua DeLung During his recent commencement...

  4. atlanta georgia usa: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    values SECURING AMERICA'S FUTURE 12;0 1Georgia Tech Research Institute Annual Report Bennett, Gisele 9 School of Biology Atlanta, Georgia 30332-0230 USA Biology and Medicine...

  5. Georgia Tech / Honeywell 4GCNVKOG%QQRGTCVKXG$GJCXKQTHQT

    E-Print Network [OSTI]

    Georgia Tech / Honeywell 4GCNVKOG%QQRGTCVKXG$GJCXKQTHQT 6CEVKECN/QDKNG4QDQV6GCOU and #12;Georgia Tech / Honeywell 6GEJPQNQI[6JTWUV#TGCU 3 Fault-tolerant reactive group behaviors 3 Communication analysis and management #12;Georgia Tech / Honeywell /KUUKQP.CD Problem Statement ­ Constructing robot

  6. Comparison of Georgia and US Per Capita Fruit, Vegetable, Livestock, and Poultry Consumption, 2011 Estimated 2011 Georgia

    E-Print Network [OSTI]

    Scott, Robert A.

    Comparison of Georgia and US Per Capita Fruit, Vegetable, Livestock, and Poultry Consumption, 2011 Capita) Data System 4 Value= Per capita consumption (column 3) multiplied by Georgia Population (9 Estimated 2011 Georgia Population (9,687,653)1 2011 Farm Gate Production (lbs)2 2010 Per Capita US

  7. Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,JumpValleyTopicsGeorgia/WindGeorgia:

  8. Georgia Power- Residential Solar and Heat Pump Water Heater Rebate (Georgia)

    Broader source: Energy.gov [DOE]

    Georgia Power customers may be eligible for rebates up to $250 each toward the installation costs of a 50 gallon or greater solar water heater or heat pump water heater. The solar water heater or...

  9. On the Minimum Ropelength of Knots and Links Jason Cantarella

    E-Print Network [OSTI]

    Cantarella, Jason

    . Sullivan ¢ £ University of Georgia, Athens, e-mail: cantarel@math.uga.edu¤ University of Massachusetts

  10. Georgia Southern University Business and Finance

    E-Print Network [OSTI]

    Hutcheon, James M.

    Georgia Southern University Business and Finance Organization Chart 2013-2014 FINAL: September 18, 2013 R:\\Work\\Common\\Org Charts\\Rev2014\\ Business & Finance Produced: Strategic Research & Analysis/KBM President Vice President for Business and Finance Associate Vice President for Finance Associate Vice

  11. Georgia Tech Profiling Overconsolidation Ratio in

    E-Print Network [OSTI]

    Mayne, Paul W.

    Properties: M = 6 sin'/(3-sin') ' = effective stress friction angle Cc = compression index Cs = swelling index . 1 ­ Cs/Cc IR = G/su = Undrained Rigidity Index G = shear modulus su = undrained shear strength vovot I qM OCR #12;Georgia Tech Determine Undrained Rigidity Index = shear stress= shear stress ss

  12. IEEE Energy2030 Atlanta, Georgia, USA

    E-Print Network [OSTI]

    Ratnasamy, Sylvia

    an innovative electric power architecture, rooted in lessons learned from the Internet and microgrids, whichIEEE Energy2030 Atlanta, Georgia, USA 17-18 November 2008 An Architecture for Local Energy-disruptive incremental adoption. Such a system, which we term a "LoCal" grid, is controlled by intelligent power switches

  13. The University of Georgia Senior Vice President

    E-Print Network [OSTI]

    Arnold, Jonathan

    directly to the Senior Vice President. In Summer 2011--in response to the recent development to the University of Georgia). These factors included, among others: decreasing state support; increased demands historic campus; and hiring, retention, compression and morale issues compounded by the inability

  14. The University of Georgia Teaching Academy

    E-Print Network [OSTI]

    Arnold, Jonathan

    The University of Georgia Teaching Academy Mission Statement The mission of the Academy is to promote and celebrate excellence in teaching and to foster learning through inquiry. Goals The Academy Engineering David S. Williams, Honors Program Teaching Academy Induction Dinner and Ceremony Membership Class

  15. Georgia Water Resources Institute Annual Technical Report

    E-Print Network [OSTI]

    and Wildlife Service. GWRI also has a significant international involvement in Europe, Africa, China, and South-based Hydrologic Forecasts, Aris Georgakakos PI, Georgia Institute of Technology, sponsored by NOAA OGP Climate graduate education, applied research, and technology transfer in the areas of water, energy

  16. Georgia Water Resources Institute Annual Technical Report

    E-Print Network [OSTI]

    associations. At the national level, GWRI collaborative efforts with the California Energy Commission program in Europe, Africa, China, Middle East, and South America with support from the U.S. Agency of Georgia, sponsored by USGS under grant #1266663 (Fund R7113). (5) Operational Multi-scale Forecast

  17. M. I. Finley's 'Studies in Land and Credit in Ancient Athens' Reconsidered

    E-Print Network [OSTI]

    Millett, Paul

    2013-10-30T23:59:59.000Z

    City-States’. This remarkable document has been preserved in the ‘Heichelheim Dossier’. It is effectively in seven parts: (i) a preamble, explaining the thinking behind the proposal; (ii) a detailed listing of proposed contents; (iii) an outline of a... -contradictory, on the face of it.’ As early as 1942, J.V.A. Fine, Professor of Greek History at Princeton, had been approached by his colleague Benjamin Meritt, representing the American School in Athens, and by Anthony Raubitschek to edit and publish those horoi...

  18. Forisk Consulting Forisk Consulting LLC PO Box 5070 Athens, GA 30604 770.725.8447 hclark@forisk.com

    E-Print Network [OSTI]

    Mazzotti, Frank

    .S. Forest Service FIA and TPO data, mill updates for Forisk's shapefiles database, and reports from Forisk

  19. Seth Marder Title: Regent's Professor, Georgia Power Chair in Energy Efficiency

    E-Print Network [OSTI]

    Garmestani, Hamid

    Seth Marder Title: Regent's Professor, Georgia Power Chair in Energy Efficiency University's Professor, the Georgia Power Chair of Energy Efficiency, and Professor of Chemistry and Materials Science

  20. Georgia Recovery Act State Memo | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Act State Memo Georgia has substantial natural resources, including biomass and hydroelectric power. The American Recovery & Reinvestment Act (ARRA) is making a meaningful down...

  1. Central Georgia EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Central Georgia Electric Member Corporation (CGEMC) offers rebates for residential customers to increase the energy efficiency of existing homes or to build new energy efficient homes.  This year,...

  2. GEORGIA TECH ENERGY AND SUSTAINABILITY SERVICES (GTESS) ANSI...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GEORGIA TECH ENERGY AND SUSTAINABILITY SERVICES (GTESS) ANSI-Accredited Standards Developer Clarification of Intent: SEP energy management standards Administrator: Holly Grell-Lawe...

  3. atlanta georgia metropolitan: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of 2004. Five notable plumes of SO2, apparently from coal-fired power plants, were Weber, Rodney 12 ACI Spring Convention Atlanta Georgia Engineering Websites Summary:...

  4. Ecology, 89(10), 2008, pp. 29532959 2008 by the Ecological Society of America

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    ,3 AND MARY C. FREEMAN 2 1 University of Georgia River Basin Center, 110 Riverbend Road, Athens, Georgia 30602 USA 2 U.S. Geological Survey, Patuxent Wildlife Research Center, Athens, Georgia 30602 USA Abstract

  5. EA-1963: Elba Liquefaction Project, Savannah, Georgia

    Broader source: Energy.gov [DOE]

    The Federal Energy Regulatory Commission (FERC) is preparing, with DOE as a cooperating agency, an EA to analyze the potential environmental impacts of a proposal to add natural gas liquefaction and export capabilities at the existing Elba Liquefied Natural Gas Terminal near Savannah, Georgia. Additional information is available at FERC’s eLibrary website, elibrary.ferc.gov/idmws/docket_search.asp; search for docket number PF13-3.

  6. EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology The Anemos Wind Power Forecasting Platform Technology -

    E-Print Network [OSTI]

    Boyer, Edmond

    the fluctuating output from wind farms into power plant dispatching and energy trading, wind power predictionsEWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology 1 The Anemos Wind Power a professional, flexible platform for operating wind power prediction models, laying the main focus on state

  7. The Gerontology Institute at Georgia State University invites applications for

    E-Print Network [OSTI]

    Arnold, Jonathan

    to external funding. Georgia State University is the Southeast's leading urban research institution. More thanThe Gerontology Institute at Georgia State University invites applications for a tenure. This position is affiliated with the University's Partnership in Urban Health Research (http

  8. URBAN/INDUSTRIAL LAND PRIVATIZATION The Republic of Georgia

    E-Print Network [OSTI]

    Onsrud, Harlan J.

    reviewed overall market reform prospects in the Republic of Georgia. The findings indicate that Georgia's market reform lags behind several other New Independent State (NIS) countries. This is largely due' support for market reform initiatives. With the ethnic conflict under control, the USAID assessment team

  9. Energy Incentive Programs, Georgia | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the YouTube|6721 Federal RegisterHydrogenDistributionFact SheetColoradoGeorgia Energy

  10. Gordon, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEI ReferenceJump to: navigation, searchGoodyear, Arizona:Georgia:

  11. Ailey, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta2004) |Agawam,Ahmeek, Michigan:County,Ailey, Georgia:

  12. Categorical Exclusion Determinations: Georgia | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO OverviewAttachments EnergyFebruary3 Categorical ExclusionCalifornia|Georgia Categorical

  13. Abbeville, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat 1AMEE Jump to: navigation, search40Georgia: Energy Resources

  14. Panthersville, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri:EnergyOssian, NewPalisades Park,Panthersville, Georgia: Energy

  15. Dunwoody, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE FacilityDimondale,South, New Jersey:JumpOregon: EnergyDunnDunwoody, Georgia:

  16. Milton, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|Mililani Town,Millinocket,Milo, Maine: EnergyGeorgia:

  17. Tucker, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTri Global Energy LLC Place: Dallas, Texas Zip:HillsTucker, Georgia: Energy

  18. Americus, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcat Place:Alvan Blanch GreenAmerenSamoa: EnergyAWSAmericus, Georgia:

  19. GEORGIA GENERAL ASSEMBLY 4/2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey Campbell isOklahoma City,GENERAL TERMS &GEORGIA

  20. Rochelle, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio: EnergyTennessee:Rochelle, Georgia: Energy

  1. Roswell, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:Roscommon County, Michigan: EnergyRosendaleRossie,Roswell, Georgia:

  2. Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current-

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Improved InGaN/GaN light-emitting diodes with a p-GaN/n-GaN/p-GaN/n-GaN/p-GaN current- spreading experimental and theoretical studies on the InGaN/GaN light-emitting diodes (LEDs) with optical output power and external quantum efficiency (EQE) levels substantially enhanced by incorporating p-GaN/n-GaN/p-GaN/n-GaN/p-GaN

  3. APPROVAL FORM FOR DOCTORAL DISSERTATION APPROVAL FORM FOR DOCTORAL DISSERTATION AND FINAL ORAL EXAMINATION

    E-Print Network [OSTI]

    Arnold, Jonathan

    APPROVAL FORM FOR DOCTORAL DISSERTATION APPROVAL FORM FOR DOCTORAL DISSERTATION AND FINAL ORAL EXAMINATION The University of Georgia Graduate School 279 Williams St., Athens, GA 30602 The Dissertation Of: Entitled: Part I: Submission of dissertation to the advisory committee. is submitted for examination

  4. APPROVAL FORM FOR DOCTORAL DISSERTATION APPROVAL FORM FOR DOCTORAL DISSERTATION AND FINAL ORAL EXAMINATION

    E-Print Network [OSTI]

    Arnold, Jonathan

    APPROVAL FORM FOR DOCTORAL DISSERTATION APPROVAL FORM FOR DOCTORAL DISSERTATION AND FINAL ORAL EXAMINATION The University of Georgia Graduate School 210 S. Jackson St., Athens, GA 30602 The Dissertation Of: Entitled: Part I: Submission of dissertation to the advisory committee. is submitted for examination

  5. 868 New Phytologist (2009) 183: 868879 The Authors (2009) 868www.newphytologist.org Journal compilation New Phytologist (2009)

    E-Print Network [OSTI]

    Rieseberg, Loren

    2009-01-01T23:59:59.000Z

    Research 868 New Phytologist (2009) 183: 868­879 © The Authors (2009) 868www of Plant Biology, University of Georgia, Athens GA 30606, USA; 2Department of Botany, University of British to carbon gain and resource use have long been observed and are often interpreted as potentially adaptive

  6. Georgia: Data Center and Historic Municipal Building Go Green...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Building Go Green Georgia: Data Center and Historic Municipal Building Go Green August 21, 2013 - 9:45am Addthis Data centers can consume 100 to 200 times more...

  7. EECBG Success Story: Georgia County Turning Industrial and Farm...

    Broader source: Energy.gov (indexed) [DOE]

    Georgia, a town that's poised to see big savings thanks to their investment in biodiesel. | Photo by Ken Cook EECBG Success Story: Atlanta Suburb Greases the Path to Savings...

  8. Agricultural Zoning as a Farmland Protection Tool in Georgia

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    Agricultural Zoning as a Farmland Protection Tool in Georgia Prepared by: Emily Franzen, Staff Attorney UGA River Basin Center 706-583-0282 emilyf@uga.edu Table of Contents Introduction to Agricultural Exclusive Agricultural Zoning

  9. Energy Secretary to Visit Georgia Nuclear Reactor Site and Tennessee...

    Broader source: Energy.gov (indexed) [DOE]

    D.C. - U.S. Secretary of Energy Secretary Steven Chu will visit the Vogtle nuclear power plant in Waynesboro, Georgia, and Oak Ridge National Laboratory on Wednesday,...

  10. Jackson EMC- Residential Energy Efficiency Rebate Program (Georgia)

    Broader source: Energy.gov [DOE]

    Jackson Electric Membership Corporation (EMC) is an electric cooperative that serves 194,000 customers in 10 counties in northeast Georgia. To encourage its residential customers to adopt energy...

  11. Panos Antsaklis and Kevin Passino, "Introduction to Intelligent Control Systems with High Degrees of Autonomy," in Greek, T echnical R e v i ew M onthly , Athens, Greece, pp 24-35, No 26, March 1994.

    E-Print Network [OSTI]

    Antsaklis, Panos

    of Autonomy," in Greek, T echnical R e v i ew M onthly , Athens, Greece, pp 24-35, No 26, March 1994. #12 of Autonomy," in Greek, T echnical R e v i ew M onthly , Athens, Greece, pp 24-35, No 26, March 1994. #12 of Autonomy," in Greek, T echnical R e v i ew M onthly , Athens, Greece, pp 24-35, No 26, March 1994. #12

  12. U.S. Hydropower Resource Assessment - Georgia

    SciTech Connect (OSTI)

    A. M. Conner; B. N. Rinehart; J. E. Francfort

    1998-10-01T23:59:59.000Z

    The U.S. Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of Georgia.

  13. Sustaining School Reform: Lessons from Georgia Education Policy and Evaluation Center, College of Education, University of Georgia

    E-Print Network [OSTI]

    Scott, Robert A.

    Sustaining School Reform: Lessons from Georgia Education Policy and Evaluation Center, College addressing lessons learned from two years of evaluation of Comprehensive School Reform (CSR) grant recipients implementing reform initiatives, in general. Background The Comprehensive School Reform (CSR) Program began

  14. US SoAtl GA Site Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    household (2,067) in Georgia are similar to the U.S. household averages. * Per household electricity consumption in Georgia is among the highest in the country, but similar to...

  15. State of Georgia CERTIFICATE OF EXEMPTION OF LOCAL HOTEL/MOTEL EXCISE TAX

    E-Print Network [OSTI]

    Teskey, Robert O.

    AND MOTEL OPERATORS: Effective April 2, 1987, Act Number 621 amending Official Code of Georgia Annotated for exemption of the local hotel/motel excise tax under Official Code of Georgia Annotated Chapter 48-13 (as Section 48-13-51 provides that Georgia state or local government officials or employees traveling

  16. On the effect of N-GaN/P-GaN/N-GaN/P-GaN/N-GaN built-in junctions in the n-GaN layer for

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    On the effect of N-GaN/P-GaN/N-GaN/P-GaN/N- GaN built-in junctions in the n-GaN layer for InGaN/GaN: N-GaN/P-GaN/N-GaN/P-GaN/N-GaN (NPNPN-GaN) junctions embedded between the n-GaN region and multiple the performance of InGaN/GaN light emitting diodes (LEDs) in this work. In the proposed architecture, each thin P-GaN

  17. Jefferson County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJane Capital PartnersGeorgia: EnergyGeorgia: Energy

  18. POLICY REGARDING SERVICE ANIMAL ACCESS TO UNIVERSITY OF GEORGIA FACILITIES,

    E-Print Network [OSTI]

    Arnold, Jonathan

    POLICY REGARDING SERVICE ANIMAL ACCESS TO UNIVERSITY OF GEORGIA FACILITIES, PROGRAMS, SERVICES AND ACTIVITIES This policy ("Policy") is to implement federal and state laws regarding access for service animals, for purposes of this Policy, "Service Animals" are collectively defined to include those that are defined

  19. Shipping and Receiving Dangerous Goods at Georgia Tech

    E-Print Network [OSTI]

    Shipping and Receiving Dangerous Goods at Georgia Tech Contacts: Biological Shipments: Shane://industry.gatech.edu/researchers/forms) GENERAL: The transportation of dangerous goods is regulated by a number of national and international of Dangerous Goods (Flash). PROCESS: 1) All shipments must have a Document Id number as well as a People

  20. Ambient habitat noise and vibration at the Georgia Aquarium

    E-Print Network [OSTI]

    Johnson, Michael T.

    Ambient habitat noise and vibration at the Georgia Aquarium P. M. Scheifele Department significant levels of background noise due to pumps and motors. This noise, together with pool architecture to quantify the ambient noise levels in the water from machine vibration and from in-air performance speaker

  1. Pulp and Paper Corrosion Symposium Georgia Tech Renewable Bioproducts Institute

    E-Print Network [OSTI]

    Das, Suman

    1 Pulp and Paper Corrosion Symposium Georgia Tech Renewable Bioproducts Institute November 2014 Digester Corrosion Margaret Gorog Federal Way, WA 2 · Chips plus a mixture of white and black liquor · The pulp is then blown from the bottom of the vessel into a blow tank · Corrosion occurs during filling

  2. School of Earth and Atmospheric Sciences Georgia Institute of Technology

    E-Print Network [OSTI]

    Weber, Rodney

    School of Earth and Atmospheric Sciences Georgia Institute of Technology Strategic Plan March 1 opportunities. Vision The vision of the School of Earth and Atmospheric Sciences is: To lead in innovative research and educate the future leaders in earth and atmospheric sciences for the 21st century, within

  3. GEORGIA TECH RESEARCH CORPORATION SPECIALIZED TESTING SERVICES AGREEMENT

    E-Print Network [OSTI]

    GEORGIA TECH RESEARCH CORPORATION SPECIALIZED TESTING SERVICES AGREEMENT Project No Members"). Section 2. Payment; Fixed Price Amount. 2.1 COMPANY agrees to pay GTRC $______ ("Fixed Price%) of the Fixed Price Amount to GTRC upon signing this Agreement. The advance payment will be applied against

  4. Transits of Venus and Solar diameter measures from ground: method and results from Athens (2004) and Huairou (2012)

    E-Print Network [OSTI]

    Sigismondi, Costantino; Wang, Xiaofan; Xie, Wenbin; Carinci, Massimo; Mimmo, Alessio

    2015-01-01T23:59:59.000Z

    The variation of the solar diameter in time and in position angle has implications in astrophysics and in general relativity, as the long series of studies attest. The Transits of Venus in 2004 and 2012 have been carefully studied because of the rarity of the phenomenon and its historical importance due the AU measure and to the discovery of Venus atmosphere. The characterization of Venus atmosphere and the measure of the solar diameter to the milliarcsecond level of precision have been studied also from satellite images. The results of the solar diameter measurements made with the observations in Athens (2004) and at the Huairou Solar Observing Station in China (2012) are presented. The topic of the oblateness of the Sun at sunset and its intrinsic value is drafted to introduce the general public to the relativistic relevance of measuring the solar figure, in the occasion of the International Year of Light 2015.

  5. University of Georgia College of Agricultural and Environmental Sciences Alumni Association 2012 Nomination Form

    E-Print Network [OSTI]

    Arnold, Jonathan

    University of Georgia College of Agricultural and Environmental Sciences Alumni Association 2012 in the College of Agricultural and Environmental Sciences Activity Center. To be displayed in an attractive

  6. adults georgia 2006-2007: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology, automatically supersede the contents of this manual. A GTA is a temporary Bennett, Gisele 3 Georgia Tech : Catalog 2006 2007 : Home 2006 -2007 General Catalog...

  7. Coweta-Fayette EMC- Residential Solar Water Heater Rebate Program (Georgia)

    Broader source: Energy.gov [DOE]

    Coweta-Fayette Electric Membership Corporation (EMC) provides electric and natural gas service to 58,000 customers in Georgia's Coweta, Fayette, Meriwether, Heard, Troop and Fulton counties.

  8. EcoCAR Challenge Georgia Institute of Technology

    E-Print Network [OSTI]

    Houston, Paul L.

    =rss&utm_source=feedburner&utm_medium=feed&utm_ca mpaign=Feed%3A+fastcompany%2Fheadlines+%28Fast+Company+H eadlines%29 October (10) BNET http://www.bnet.com/blog/electric-cars-formula-racing/ Green Beat http://venturebeat.com/2010/10/07/bad-news-for-electric-cars-people- dont-understand- them1 EcoCAR Challenge Georgia Institute of Technology Outreach Report - Appendix Date: 11/09/2010 #12

  9. Case Study: Georgia-Pacific Reduces Outside Fuel Costs and Increases Process Efficiency with Insulation Upgrade Program

    E-Print Network [OSTI]

    Jackson, D.

    A Georgia-Pacific plywood plant located in Madison, Georgia recently decided to insulate their steam lines for energy conservation, improved process efficiency and personnel protection. The goal of the project was to eliminate dependency...

  10. Assistant Professor of Gerontology The Gerontology Institute at Georgia State University invites applications for a tenure-track assistant

    E-Print Network [OSTI]

    Arnold, Jonathan

    lead to external funding. Georgia State University is the Southeast's leading urban researchAssistant Professor of Gerontology The Gerontology Institute at Georgia State University invites faculty representing numerous disciplines across the University. Further information about the Gerontology

  11. Archway Education Professional The University of Georgia is seeking a qualified candidate to serve as the Archway Education Professional in

    E-Print Network [OSTI]

    Arnold, Jonathan

    Archway Education Professional The University of Georgia is seeking a qualified candidate to serve as the Archway Education Professional in Dalton-Whitfield County, Georgia. The Archway Partnership was initiated with the University of Georgia. The Archway Education Professional is a UGA Public Service (Public Service Assistant

  12. EcoCAR by Georgia Tech efficiency through design and innovation

    E-Print Network [OSTI]

    Houston, Paul L.

    engineering competition sponsored by the Department of Energy and General Motors EcoCAR by Georgia Tech engineering competition sponsored by the Department of Energy and General Motors #12;GT EcoCAR GOALS: Increase by the Department of Energy and General Motors EcoCAR by Georgia Tech efficiency through design and innovation

  13. POLICY STATEMENT University of Georgia Research Foundation, Inc. Policy on Equity Acquisition in Licensing

    E-Print Network [OSTI]

    Arnold, Jonathan

    POLICY STATEMENT University of Georgia Research Foundation, Inc. Policy on Equity Acquisition the interests of the company over their responsibilities to UGARF and the University of Georgia. This Policy with this Policy. II. Policy In the course of intellectual property licensing, UGARF, through the work of TCO, may

  14. University of Georgia / University of Liverpool Seed Grant / Pump-Priming Grant Program

    E-Print Network [OSTI]

    Arnold, Jonathan

    University of Georgia / University of Liverpool Seed Grant / Pump-Priming Grant Program Program Description As part of the University of Georgia (UGA) / University of Liverpool Partnership, we are providing for ongoing sponsored funding to continue the collaborations. Eligibility Criteria To be eligible

  15. Efficiency of Surveying, Baiting, and Trapping Wild Pigs at Fort Benning, Georgia Brian Lee Williams

    E-Print Network [OSTI]

    Ditchkoff, Steve

    Efficiency of Surveying, Baiting, and Trapping Wild Pigs at Fort Benning, Georgia by Brian Lee surveys, trapping efficiency, Fort Benning Copyright 2010 by Brian Lee Williams Approved by Stephen S This study, conducted at Fort Benning, Georgia, sought to develop more efficient ways of surveying

  16. INTRODUCTION TO SMART GRID Weichao Wang (UNCC), Yi Pan (Georgia State),

    E-Print Network [OSTI]

    Wang, Weichao

    INTRODUCTION TO SMART GRID Weichao Wang (UNCC), Yi Pan (Georgia State), Wenzhan Song (Georgia State) and Le Xie (Texas A&M) NSF SFS Project Team on "Integrated Learning Environment for Smart Grid Security" #12; Objective of National Power Grid Modernization Architecture of Smart Grid What is Smart Grid

  17. Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum Well Structured Electron Blocking Layer

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Advantages of the Blue InGaN/GaN Light-Emitting Diodes with an AlGaN/GaN/AlGaN Quantum Well ABSTRACT: InGaN/GaN light-emitting diodes (LEDs) with p-(AlGaN/GaN/AlGaN) quantum well structured electron. The proposed QWEBL LED structure, in which a p-GaN QW layer is inserted in the p-AlGaN electron blocking layer

  18. Micromechanical resonators fabricated from lattice-matched and etch-selective GaAs/InGaP/GaAs heterostructures

    E-Print Network [OSTI]

    Micromechanical resonators fabricated from lattice-matched and etch-selective GaAs/InGaP September 2007 Utilizing lattice-matched GaAs/InGaP/GaAs heterostructures, clean micromechanical resonators are fabricated and characterized. The nearly perfect selectivity of GaAs/InGaP is demonstrated by realizing

  19. Ga nanoparticle-enhanced photoluminescence of GaAs

    SciTech Connect (OSTI)

    Kang, M.; Al-Heji, A. A.; Jeon, S.; Wu, J. H. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Lee, J.-E.; Saucer, T. W.; Zhao, L.; Sih, V. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)] [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States); Katzenstein, A. L. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, Eckerd College, St. Petersburg, Florida 33711-4744 (United States); Sofferman, D. L. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, Adelphi University, Garden City, New York 11530-0701 (United States); Goldman, R. S. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040 (United States)

    2013-09-02T23:59:59.000Z

    We have examined the influence of surface Ga nanoparticles (NPs) on the enhancement of GaAs photoluminescence (PL) efficiency. We have utilized off-normal focused-ion-beam irradiation of GaAs surfaces to fabricate close-packed Ga NP arrays. The enhancement in PL efficiency is inversely proportional to the Ga NP diameter. The maximum PL enhancement occurs for the Ga NP diameter predicted to maximize the incident electromagnetic (EM) field enhancement. The PL enhancement is driven by the surface plasmon resonance (SPR)-induced enhancement of the incident EM field which overwhelms the SPR-induced suppression of the light emission.

  20. Lee County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana: EnergyLands inLechee,Georgia: Energy

  1. Liberty County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and Wind EnergyIndiana:NewJumpLiberia: Energy ResourcesGeorgia:

  2. Macon County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECO AugerMaanGeorgia: Energy Resources Jump

  3. Madison County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther, Oklahoma:EnergyECOFlorida: Energy Resources Jump to:Georgia:

  4. Georgia/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489InformationFrenchtown,JumpValleyTopicsGeorgia/Wind

  5. Burke County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainable andBucoda,Burke County, Georgia: Energy Resources Jump to:

  6. Calhoun County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL Gas Recovery Biomass16 2013 Next »Georgia: Energy Resources

  7. Lighting Up Georgia Convenience Stores | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(FactDepartment ofLetterEconomy and Emissions Estimates |Park ServiceUp Georgia

  8. Carroll County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSL GasPermitsGreenCarrizo Energy Solar Farm Solar PowerGeorgia:

  9. City of Covington, Georgia (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, click here.TelluricPowerCity of Aplington,City ofCityCity of Covington, Georgia

  10. Sandy Springs, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to:RoscommonSBYSalton SeaBasinSandusky, Ohio: EnergySprings, Georgia:

  11. Georgia: Data Center and Historic Municipal Building Go Green | Department

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed off Energy.gov.Energy02.pdf7 OPAM Flash2011-37 OPAM DOEof Energy Georgia: Data Center and

  12. Jeff Davis County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetecGtelInterias SolarJane Capital PartnersGeorgia: Energy Resources Jump to:

  13. Harris County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| OpenInformation Handbook forHansungHarneyHarrah,County, Georgia:

  14. Heard County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG|Information OpenEIHas BeenLegalHeard County, Georgia: Energy

  15. Worth County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells, Wisconsin: Energy ResourcesWoodsCenters JumpGeorgia: Energy Resources

  16. Pine Lake, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal ProjectLake, Georgia: Energy

  17. Pine Mountain, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal PwerPerkins County, Nebraska: Energy ResourcesPicketGeothermal ProjectLake, Georgia:

  18. Georgia: Data Center and Historic Municipal Building Go Green | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdf Flash2006-52.pdf0.pdfDepartmentCounsel Law Studentof Energy Georgia: Data Center

  19. Central Georgia El Member Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovation inOpenadd: China DatangCentral El tricaCentral Georgia El Member

  20. City of Barnesville, Georgia (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |City of Ames,Barnesville, Georgia (Utility

  1. City of East Point, Georgia (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin Urban Transport |CityCity of Dayton,City of East Point, Georgia

  2. Georgia Department of Natural Resources (GDNR) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2,AUDIT REPORTEnergyFarms A SUK Place:Georgia Department of Natural

  3. Greene County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG ContractingGreenOrder Jump to:Greenburgh, New York:Georgia: Energy

  4. Gwinnett County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdfGetec AG| Open EnergyGuntersville Electric BoardGwinnett County, Georgia:

  5. Stephens County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt.Steep Gradient Flume Jump to:HIFStep-by-StepGeorgia:

  6. Stone Mountain, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk,SoutheastSt.SteepStimulation PredictionJumpMissouri:Georgia:

  7. Echols County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport, Maine:Eau ClaireEchols County, Georgia:

  8. Effingham County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois:Edinburgh University aka WaveKansas:New York:Georgia:

  9. Oconee County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer PlantMunhall,Missouri: EnergyExcellence SeedNunn,andOasysOchiltree County, Texas:Georgia:

  10. Marion County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:LandownersLuther,Jemez PuebloManteca,Marana,MariesWave)Georgia: Energy

  11. Miller County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville, Ohio:Menomonee|Mililani Town, Hawaii:MilleGeorgia: Energy Resources

  12. Mitchell County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula, Montana: Energy ResourcesMitchell County, Georgia: Energy

  13. Crisp County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew|CoreCp Holdings LlcCrenshawCrete,Crisp County, Georgia:

  14. Decatur County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOE Facility Database DataDatatechnicNewDeaf Smith County, Texas:DearbornGeorgia:

  15. Thomas County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyo Jump to:Thermosolar JumpGeorgia: Energy

  16. Georgia Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurTheBrookhaven NationalRegionalsResearch »Funding OpportunityGalleryGenomeGeorgia

  17. Middle Georgia El Member Corp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluatingGroup |JilinLu anMicrogreen Polymers Inc Jump to:Jump to:Middle Georgia El

  18. Atkinson County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,AsotinAstonInformation Georgia

  19. Workplace Charging Challenge Partner: Georgia Institute of Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnershipsAngieTerriDepartmentDepartment of Energy Georgia

  20. City of Monroe, Georgia (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:PowerCER.png El CER esDatasetCity of Holyoke,Monroe, Georgia (Utility

  1. Morgan County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,Monterey County,Monticello,Oklahoma:In EnergyGeorgia: Energy

  2. Mountain Park, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant JumpMarysville,Missoula,MontereyHill,Spurr Geothermal Project JumpPark, Georgia:

  3. Bacon County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to: JumpBPLColorado:Georgia: Energy

  4. Baker County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 Jump to:Bahamas:Georgia: Energy Resources

  5. Baldwin County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIM 2011-003 JumpBalch Springs, Texas:Alabama:Georgia:

  6. Barrow County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,Barrow County, Georgia: Energy Resources Jump

  7. Bartow County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass Conversions Inc JumpIMBarnard,Barrow County,Kansas:Bartow County, Georgia:

  8. Bleckley County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomass ConversionsSouthby 2022 |Bleckley County, Georgia: Energy Resources Jump to:

  9. Quitman County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod JumpGeorgia: Energy Resources Jump to: navigation, search

  10. Randolph County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation, search Name:Rancia 2 Geothermal PowerGeorgia: Energy

  11. Rockdale County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt Ltd Jump to: navigation,MazeOhio:Ohio: Energy JumpRockdale County, Georgia:

  12. Floyd County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs Valley Area (DOE GTP)TheFloyd County, Georgia:

  13. Franklin County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbsSalonga,FrancisAlabama: EnergyGeorgia: Energy

  14. Georgia's 10th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | OpenInformation Georgia's 10th congressional

  15. Georgia's 11st congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | OpenInformation Georgia's 10th

  16. Georgia's 11th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | OpenInformation Georgia's 10thInformation

  17. Georgia's 12th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | OpenInformation Georgia's

  18. Georgia's 13th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump1946865°,Park,2005) | OpenInformation Georgia'sInformation

  19. Twiggs County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown of Ladoga, IndianaTurtle Airships Jump to:Twiggs County, Georgia: Energy

  20. Clarke County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNew York: EnergyWashington: Energy Resources3Georgia:

  1. Clinch County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformation SmyrnaNewClayClearSpotYork:TrustClinch County, Georgia:

  2. Coffee County, Georgia: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model, clickInformationNew York: EnergyCoeur d Alene Fiber Fuels Inc akaGeorgia:

  3. AlGaN/GaN-based power semiconductor switches

    E-Print Network [OSTI]

    Lu, Bin, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    AlGaN/GaN-based high-electron-mobility transistors (HEMTs) have great potential for their use as high efficiency and high speed power semiconductor switches, thanks to their high breakdown electric field, mobility and ...

  4. GaAs/InGaP/AlGaAs quantum-well infrared photodetectors

    SciTech Connect (OSTI)

    Keshagupta, P.; Radpour, F. [Univ. of Cincinnati, OH (United States)

    1994-12-31T23:59:59.000Z

    In this paper, a new quantum-well infrared photodetector (QWIP) based on bound-to-miniband transitions in a GaAs/InGaP quantum well with GaAs/AlGaAs short superlattice barriers is presented and compared with the conventional GaAs/InGaP QWIPs. Results of the theoretical calculations of the detector parameters and the preliminary fabrication results of an embedded-well to miniband (EWTMB) GaAs/InGaP/AlGaAs quantum well/superlattice detector are presented. The advantages of the proposed design include improvement of the material quality, ability to adjust the peak wavelength in 8--12 {micro}m range, and in the lower dark current.

  5. Air Quality and Road Emission Results for Fort Stewart, Georgia

    SciTech Connect (OSTI)

    Kirkham, Randy R.; Driver, Crystal J.; Chamness, Mickie A.; Barfuss, Brad C.

    2004-02-02T23:59:59.000Z

    The Directorate of Public Works Environmental & Natural Resources Division (Fort Stewart /Hunter Army Airfield) contracted with the Pacific Northwest National Laboratory (PNNL) to monitor particulate matter (PM) concentrations on Fort Stewart, Georgia. The purpose of this investigation was to establish a PM sampling network using monitoring equipment typically used in U.S. Environmental Protection Agency (EPA) ''saturation sampling'', to determine air quality on the installation. In this initial study, the emphasis was on training-generated PM, not receptor PM loading. The majority of PM samples were 24-hr filter-based samples with sampling frequency ranging from every other day, to once every six days synchronized with the EPA 6th day national sampling schedule. Eight measurement sites were established and used to determine spatial variability in PM concentrations and evaluate whether fluctuations in PM appear to result from training activities and forest management practices on the installation. Data collected to date indicate the average installation PM2.5 concentration is lower than that of nearby urban Savannah, Georgia. At three sites near the installation perimeter, analyses to segregate PM concentrations by direction of air flow across the installation boundary indicate that air (below 80 ft) leaving the installation contains less PM2.5 than that entering the installation. This is reinforced by the observation that air near the ground is cleaner on average than the air at the top of the canopy.

  6. Carrier spin relaxation in GaInNAsSb/GaNAsSb/GaAs quantum well

    SciTech Connect (OSTI)

    Asami, T.; Nosho, H.; Tackeuchi, A. [Department of Applied Physics, Waseda University, Shinjuku, Tokyo 169-8555 (Japan); Li, L. H.; Harmand, J. C. [Laboratory for Photonics and Nanostructures-CNRS, Site Alcatel de Marcoussis, Route de Nozay, 91460 Marcoussis (France); Lu, S. L. [Suzhou Institute of Nano-tech and Nano-bionics, CAS, Dushu, Lake Higher Education Town, Ruoshui Road 398, Suzhou Industrial Park, Suzhou 215125 (China)

    2011-12-23T23:59:59.000Z

    We have investigated the carrier spin relaxation in GaInNAsSb/GaNAsSb/GaAs quantum well (QW) by time-resolved photoluminescence (PL) measurement. The sample consists of an 8-nm-thick GaIn{sub 0.36}N{sub 0.006}AsSb{sub 0.015} well, 5-nm-thick GaN{sub 0.01}AsSb{sub 0.11} intermediate barriers and 100-nm-thick GaAs barriers grown by molecular beam epitaxy on a GaAs(100) substrate. The spin relaxation time and recombination lifetime at 10 K are measured to be 228 ps and 151 ps, respectively. As a reference, we have also obtained a spin relaxation time of 125 ps and a recombination lifetime of 63 ps for GaInNAs/GaNAs/GaAs QW. This result shows that crystal quality is slightly improved by adding Sb, although these short carrier lifetimes mainly originate from a nonradiative recombination. These spin relaxation times are longer than the 36 ps spin relaxation time of InGaAs/InP QWs and shorter than the 2 ns spin relaxation time of GaInNAs/GaAs QW.

  7. sRecovery Act: Geologic Characterization of the South Georgia Rift Basin for Source Proximal CO2 Storage

    SciTech Connect (OSTI)

    Waddell, Michael

    2014-09-30T23:59:59.000Z

    This study focuses on evaluating the feasibility and suitability of using the Jurassic/Triassic (J/TR) sediments of the South Georgia Rift basin (SGR) for CO2 storage in southern South Carolina and southern Georgia The SGR basin in South Carolina (SC), prior to this project, was one of the least understood rift basin along the east coast of the U.S. In the SC part of the basin there was only one well (Norris Lightsey #1) the penetrated into J/TR. Because of the scarcity of data, a scaled approach used to evaluate the feasibility of storing CO2 in the SGR basin. In the SGR basin, 240 km (~149 mi) of 2-D seismic and 2.6 km2 3-D (1 mi2) seismic data was collected, process, and interpreted in SC. In southern Georgia 81.3 km (~50.5 mi) consisting of two 2-D seismic lines were acquired, process, and interpreted. Seismic analysis revealed that the SGR basin in SC has had a very complex structural history resulting the J/TR section being highly faulted. The seismic data is southern Georgia suggest SGR basin has not gone through a complex structural history as the study area in SC. The project drilled one characterization borehole (Rizer # 1) in SC. The Rizer #1 was drilled but due to geologic problems, the project team was only able to drill to 1890 meters (6200 feet) instead of the proposed final depth 2744 meters (9002 feet). The drilling goals outlined in the original scope of work were not met. The project was only able to obtain 18 meters (59 feet) of conventional core and 106 rotary sidewall cores. All the conventional core and sidewall cores were in sandstone. We were unable to core any potential igneous caprock. Petrographic analysis of the conventional core and sidewall cores determined that the average porosity of the sedimentary material was 3.4% and the average permeability was 0.065 millidarcy. Compaction and diagenetic studies of the samples determined there would not be any porosity or permeability at depth in SC. In Georgia there appears to be porosity in the J/TR section based on neutron log porosity values. The only zones in Rizer #1 that appear to be porous were fractured diabase units where saline formation water was flowing into the borehole. Two geocellular models were created for the SC and GA study area. Flow simulation modeling was performed on the SC data set. The injection simulation used the newly acquired basin data as well as the Petrel 3-D geologic model that included geologic structure. Due to the new basin findings as a result of the newly acquired data, during phase two of the modeling the diabase unit was used as reservoir and the sandstone units were used as caprock. Conclusion are: 1) the SGR basin is composed of numerous sub-basins, 2) this study only looked at portions of two sub-basins, 3) in SC, 30 million tonnes of CO2 can be injected into the diabase units if the fracture network is continuous through the units, 4) due to the severity of the faulting there is no way of assuring the injected CO2 will not migrate upward into the overlying Coastal Plain aquifers, 5) in Georgia there appears to porous zones in the J/TR sandstones, 6) as in SC there is faulting in the sub-basin and the seismic suggest the faulting extends upward into the Coastal Plain making that area not suitable for CO2 sequestration, 7) the complex faulting observed at both study areas appear to be associated with transfer fault zones (Heffner 2013), if sub-basins in the Georgia portion of the SGR basin can be located that are far away from the transfer fault zones there is a strong possibility of sequestering CO2 in these areas, and 9) the SGR basin covers area in three states and this project only studied two small areas so there is enormous potential for CO2 sequestration in other portions the basin and further research needs to be done to find these areas.

  8. Georgia Hosts Multi-Agency Waste Isolation Pilot Plant Transportation...

    Broader source: Energy.gov (indexed) [DOE]

    Ga. - Emergency personnel throughout the U.S. who respond in the event of a potential accident involving radioactive waste shipments take part in mock training scenarios to help...

  9. Compositionally-graded InGaAsInGaP alloys and GaAsSb alloys for metamorphic InP on GaAs

    E-Print Network [OSTI]

    Compositionally-graded InGaAs­InGaP alloys and GaAsSb alloys for metamorphic InP on GaAs Li Yang a of tandem graded layers of InGaAs and InGaP with compositional grading of the In concentration. This tandem

  10. Capacity and Energy Payments to Small Power Producers and Cogenerators Under PURPA Docket (Georgia)

    Broader source: Energy.gov [DOE]

    Docket No. 4822 was enacted by the Georgia Public Service Commission in accordance with The Public Utility Regulatory Policies Act of 1978 (PURPA) that was enacted to promote conservation and to...

  11. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Georgia

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01T23:59:59.000Z

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Georgia.

  12. UMass INFORMSProfessor Anna Nagurney Dr. Garrow is an Associate Professor at the Georgia Institute of

    E-Print Network [OSTI]

    Nagurney, Anna

    at the Georgia Institute of Technology. She earned her Ph.D. at Northwestern University, with an emphasis. The study considers extensions of this methodology to Generalized Extreme Value (GEV) discrete choice models Management Models with Censored Data" " #12;

  13. Sales Tax Exemption for Energy-Efficient Products (Sales Tax Holiday) (Georgia))

    Broader source: Energy.gov [DOE]

    Georgia allows an annual state and local sales tax exemption on Energy Star products of $1,500 or less per product, purchased for non-commercial home or personal use.The 100% exemption from the...

  14. EA-1255: Project Partnership Transportation of Foreign-Owned Enriched Uranium from the Republic of Georgia

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts for the proposal to transport 5.26 kilograms of enriched uranium-23 5 in the form of nuclear fuel, from the Republic of Georgia to the United Kingdom.

  15. Why Should I Study Engineering? Georgia Southern offers three engineering disciplines Civil, Electrical and Mechanical.

    E-Print Network [OSTI]

    Hutcheon, James M.

    , Electrical and Mechanical. Engineers plan, design, develop, test and analyze infrastructure components (CivilWhy Should I Study Engineering? Georgia Southern offers three engineering disciplines ­ Civil), electronic systems (Electrical), and systems with moving parts (Mechanical) that affect and improve people

  16. GEORGIA INSTITUTE OF TECHNOLOGY COLLEGE OF ENGINEERING 1 College of Engineering

    E-Print Network [OSTI]

    Li, Mo

    Electrical and Computer Engineering Industrial and Systems Engineering Materials Science and Engineering and Biomolecular Engineering Civil and Environmental Engineering Electrical and Computer Engineering IndustrialGEORGIA INSTITUTE OF TECHNOLOGY · COLLEGE OF ENGINEERING 1 College of Engineering Aerospace

  17. Energy Conservation Recommendations, Implementation Costs, and Projected Paybacks for Georgia's Targeted Schools and Hospitals Conservation Program

    E-Print Network [OSTI]

    Brown, M. L.; Moore, D. M.

    1988-01-01T23:59:59.000Z

    During the past year the Georgia Tech Research Institute performed technical assistance studies on over 100 school and hospital buildings under a program funded by the Governor's Office of Energy Resources. This program is known as the Targeted...

  18. Georgia Institute of Technology School of Chemistry and Biochemistry Johnson Graduate Student Travel Funds

    E-Print Network [OSTI]

    Sherrill, David

    Georgia Institute of Technology School of Chemistry and Biochemistry Johnson Graduate Student Travel funds may be used to meet any remaining costs not covered by the research advisor, GSF award___________________________________________________ Dates of Conference_____________________________________________________ Total estimated costs

  19. GEORGIA INSTITUTE OF TECHNOLOGY FABRICATED PROPERTY REPORT Revised 07-2014

    E-Print Network [OSTI]

    Li, Mo

    GEORGIA INSTITUTE OF TECHNOLOGY FABRICATED PROPERTY REPORT Revised 07-2014 TO: Property Control: ____________________________________________ Phone: _______________ COST OF PROPERTY Materials or Component Parts $ _______________ External Labor Costs $ _______________ Transportation $ _______________ Other Costs (explain on back

  20. Georgia Institute of Technology School of Chemistry and Biochemistry Johnson Graduate Student Travel Funds

    E-Print Network [OSTI]

    Sherrill, David

    Georgia Institute of Technology School of Chemistry and Biochemistry Johnson Graduate Student Travel funds may be used to meet any remaining costs not covered by the research advisor, SGA award_____________________________________________________ Total estimated costs for attending conference Transportation $_______________ Other Travel

  1. Synthesis of a jojoba bean disaccharide Alexander Kornienko, Georgia Marnera, Marc d'Alarcao *

    E-Print Network [OSTI]

    d'Alarcao, Marc

    Note Synthesis of a jojoba bean disaccharide Alexander Kornienko, Georgia Marnera, Marc d 1998 Abstract A synthesis of the disaccharide recently isolated from jojoba beans, 2-O Science Ltd. All rights reserved Keywords: chiro-Inositol; Jojoba beans; Glycosylation; Synthesis

  2. Wind Powering America: A New Wind Economy for South Carolina and Georgia Final Report

    SciTech Connect (OSTI)

    SC Energy Office: Southern Alliance for Clean Energy

    2013-02-12T23:59:59.000Z

    This report describes all activities undertaken by the Southern Alliance for Clean Energy (SACE) in cooperation with the states of Georgia and South Carolina to develop a public outreach program, including shared analytical and reference tools and other technical assistance.

  3. State of Georgia quarterly AIP Implementation Report: October--December 1995

    SciTech Connect (OSTI)

    NONE

    1996-01-19T23:59:59.000Z

    The objective of this report is to ensure the citizens of Georgia that health, safety and the environment are being protected through existing DOE programs at the Savannah River Site (SRS), through a vigorous program of independent monitoring and oversight by Georgia officials. SRS emergency plans will be annually reviewed and updated. Environmental monitoring will be conducted of surface water and related media, ground water, air, crops, milk, drinking water, soils and vegetation.

  4. Georgia Institute of Technology chilled water system evaluation and master plan

    SciTech Connect (OSTI)

    NONE

    1996-05-15T23:59:59.000Z

    As the host of the Olympic Village for the 1996 Atlanta Olympics, Georgia Tech has experienced a surge in construction activities over the last three years. Over 1.3 million square feet of new buildings have been constructed on the Georgia Tech campus. This growth has placed a strain on the Georgia Tech community and challenged the facilities support staff charged with planning and organizing utility services. In concert with Olympic construction, utility planners have worked to ensure long term benefits for Georgia Tech facilities while meeting the short term requirements of the Olympic Games. The concentration of building construction in the northwest quadrant of the campus allowed planners to construct a satellite chilled water plant to serve the needs of this area and provide the opportunity to integrate this section of the campus with the main campus chilled water system. This assessment and master plan, funded in part by the US Department of Energy, has evaluated the chilled water infrastructure at Georgia Tech, identified ongoing problems and made recommendations for long term chilled water infrastructure development and efficiency improvements. The Georgia Tech office of Facilities and RDA Engineering, Inc. have worked together to assemble relevant information and prepare the recommendations contained in this document.

  5. Low frequency noise in AlGaN/InGaN/GaN double heterostructure field effect transistors

    E-Print Network [OSTI]

    Pala, Nezih

    Torr and consisted of a 1.4 lm undoped GaN buffer layer on i-SiC substrate, * Corresponding authorLow frequency noise in AlGaN/InGaN/GaN double heterostructure field effect transistors N. Pala a November 2002 Abstract Low-frequency noise in AlGaN/InGaN/GaN double heterostructure field effect

  6. Polarization-engineered GaN/InGaN/GaN tunnel diodes

    E-Print Network [OSTI]

    Sriram Krishnamoorthy; Digbijoy N. Nath; Fatih Akyol; Pil Sung Park; Michele Esposto; Siddharth Rajan

    2010-08-24T23:59:59.000Z

    We report on the design and demonstration of polarization-engineered GaN/InGaN/GaN tunnel junction diodes with high current density and low tunneling turn-on voltage. Wentzel-Kramers-Brillouin (WKB) calculations were used to model and design tunnel junctions with narrow bandgap InGaN-based barrier layers. N-polar p-GaN/In0.33Ga0.67N/n-GaN heterostructure tunnel diodes were grown using molecular beam epitaxy. Efficient zero bias tunneling turn-on with a high current density of 118 A/cm2 at a reverse bias of 1V, reaching a maximum current density up to 9.2 kA/cm2 were obtained. These results represent the highest current density reported in III-nitride tunnel junctions, and demonstrate the potential of III-nitride tunnel devices for a broad range of optoelectronic and electronic applications.

  7. Violet to deep-ultraviolet InGaN/GaN and GaN/AlGaN quantum structures for UV electroabsorption modulators

    E-Print Network [OSTI]

    Demir, Hilmi Volkan

    Violet to deep-ultraviolet InGaN/GaN and GaN/AlGaN quantum structures for UV electroabsorption In this paper, we present four GaN based polar quantum structures grown on c-plane embedded in p-i-n diode GaN/AlGaN quantum structures for operation in the deep-UV spectral region and the other three

  8. Case Study: Georgia-Pacific Reduces Outside Fuel Costs and Increases Process Efficiency with Insulation Upgrade Program 

    E-Print Network [OSTI]

    Jackson, D.

    1997-01-01T23:59:59.000Z

    on purchased fuel. Georgia-Pacific realized immediate and significant results and reduced fuel cost by about one third over a one year period....

  9. ATHENS Programm Allgemeines

    E-Print Network [OSTI]

    Heiz, Ulrich

    'Ingénieurs de Paris: - AgroParisTech (AGROPT) - AgroParisTech (ENGREF) - Copernic (COP) - Ecole Nationale des

  10. Contracts & Grants Enjoy Athens!

    E-Print Network [OSTI]

    Kissinger, Jessica

    -award accounting functions; · maintenance of the University's Cost Accounting Standards Disclosure Statement (DS-2 of related campus policies, business processes, and operating procedures; and · sub-recipient monitoring Statement (DS-2) and related policies and procedures. The Director will lead in the effort to provide

  11. Luminescence Efficiency of InGaN/GaN Quantum Wells on Bulk GaN Substrate M. Dworzak1

    E-Print Network [OSTI]

    Nabben, Reinhard

    Luminescence Efficiency of InGaN/GaN Quantum Wells on Bulk GaN Substrate M. Dworzak1 , T. Stempel1/37, 01-142 Warsaw, Poland ABSTRACT Time-integrated and time-resolved photoluminescence measurements on InGaN quantum wells grown by MOCVD on two different substrates (sapphire and GaN) show that the lumines- cence

  12. Analysis of InGaN light-emitting diodes with GaN-AlGaN and AlGaN-GaN composition-graded barriers

    SciTech Connect (OSTI)

    Yang, Yujue; Wang, Junxi; Li, Jinmin; Zeng, Yiping, E-mail: ypzeng@semi.ac.cn [Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2014-06-21T23:59:59.000Z

    The effects of InGaN-based light-emitting diodes (LEDs) with Al composition increasing and decreasing GaN-AlGaN barriers along the growth direction are studied numerically. Simulation results suggest that the LEDs with GaN-AlGaN composition-decreased barriers show more significant enhancement of light-output power and internal quantum efficiency than LEDs with composition-increasing GaN-AlGaN barriers when compared with the conventional LED with GaN barriers, due to the improvement in hole injection efficiency and electron blocking capability. Moreover, the optical performance is further improved by replacing GaN-AlGaN barriers with AlGaN-GaN barriers of the same Al composition-decreasing range, which are mainly attributed to the modified band diagrams. In addition, the major causes of the different efficiency droop behaviors for all the designed structures are explained by the electron leakage current and the different increase rates of hole concentration with injection current.

  13. Design and fabrication of InGaN/GaN heterojunction bipolar transistors for microwave power amplifiers

    E-Print Network [OSTI]

    Keogh, David Martin

    2006-01-01T23:59:59.000Z

    T. Henderson, “High- Speed InGaP/GaAs HBT’s Using a SimpleA typical AlGaAs/GaAs HBT or InGaP/GaAs HBT has the opposite

  14. Investigation of the GaN-on-GaAs interface for vertical power device applications

    SciTech Connect (OSTI)

    Möreke, Janina, E-mail: janina.moereke@bristol.ac.uk; Uren, Michael J.; Kuball, Martin [H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Novikov, Sergei V.; Foxon, C. Thomas [Department of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Hosseini Vajargah, Shahrzad; Wallis, David J.; Humphreys, Colin J. [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Haigh, Sarah J. [Super STEM Laboratory, STFC Daresbury Campus, Keckwick Lane, Daresbury WA4 4AD (United Kingdom); School of Materials, University of Manchester, Manchester M13 9PL (United Kingdom); Al-Khalidi, Abdullah; Wasige, Edward; Thayne, Iain [School of Engineering, University of Glasgow, Rankine Bldg, Oakfield Avenue, Glasgow G12 8LT (United Kingdom)

    2014-07-07T23:59:59.000Z

    GaN layers were grown onto (111) GaAs by molecular beam epitaxy. Minimal band offset between the conduction bands for GaN and GaAs materials has been suggested in the literature raising the possibility of using GaN-on-GaAs for vertical power device applications. I-V and C-V measurements of the GaN/GaAs heterostructures however yielded a rectifying junction, even when both sides of the junction were heavily doped with an n-type dopant. Transmission electron microscopy analysis further confirmed the challenge in creating a GaN/GaAs Ohmic interface by showing a large density of dislocations in the GaN layer and suggesting roughening of the GaN/GaAs interface due to etching of the GaAs by the nitrogen plasma, diffusion of nitrogen or melting of Ga into the GaAs substrate.

  15. Ga NMR spectra and relaxation in wurtzite GaN M. Corti and A. Gabetta

    E-Print Network [OSTI]

    Svane, Axel Torstein

    69,71 Ga NMR spectra and relaxation in wurtzite GaN M. Corti and A. Gabetta Department of Physics properties of wurtzite GaN are studied by Ga nuclear magnetic resonance NMR in a GaN bulk crystal containing GaN is a wide band-gap semiconductor which crystallizes in the hexagonal wurtzite structure

  16. Cross-sectional Scanning Tunneling Microscopy and Spectroscopy of InGaP/GaAs Heterojunctions

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Cross-sectional Scanning Tunneling Microscopy and Spectroscopy of InGaP/GaAs Heterojunctions Y Abstract Compositionally abrupt InGaP/GaAs heterojunctions grown by gas-source molecular beam epitaxy have the InGaP layer show non-uniform In and Ga distribution. About 1.5 nm of transition region

  17. Role of Electrochemical Reactions in the Degradation Mechanisms of AlGaN/GaN HEMTs

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    Role of Electrochemical Reactions in the Degradation Mechanisms of AlGaN/GaN HEMTs Feng Gao1, USA tpalacios@mit.edu; (617) 324-2395 Keywords: AlGaN/GaN HEMTs, reliability, moisture, electro-chemical reactions Abstract The nature of structural degradation in AlGaN/GaN high electron mobility transistors

  18. Dopant-Free GaN/AlN/AlGaN Radial Nanowire Heterostructures as High

    E-Print Network [OSTI]

    Li, Yat

    Dopant-Free GaN/AlN/AlGaN Radial Nanowire Heterostructures as High Electron Mobility Transistors, 2006 ABSTRACT We report the rational synthesis of dopant-free GaN/AlN/AlGaN radial nanowire-organic chemical vapor deposition (MOCVD). Transmission electron microscopy (TEM) studies reveal that the GaN/ AlN/AlGaN

  19. Coordinator of Operations The University of Georgia is seeking a qualified candidate to serve as the Coordinator of Operations with the

    E-Print Network [OSTI]

    Arnold, Jonathan

    with the University of Georgia. The Archway Partnership has received funding from the Board of Regents to continueCoordinator of Operations The University of Georgia is seeking a qualified candidate to serve to bring the University of Georgia's expertise to communities and to facilitate community interaction

  20. Beta decay of Ga-62 

    E-Print Network [OSTI]

    Hyman, BC; Iacob, VE; Azhari, A.; Gagliardi, Carl A.; Hardy, John C.; Mayes, VE; Neilson, RG; Sanchez-Vega, M.; Tang, X.; Trache, L.; Tribble, Robert E.

    2003-01-01T23:59:59.000Z

    We report a study of the beta decay of Ga-62, whose dominant branch is a superallowed 0(+)-->0(+) transition to the ground state of Zn-62. We find the total half-life to be 115.84+/-0.25 ms. This is the first time that the Ga-62 half-life has been...

  1. Influence of GaAs surface termination on GaSb/GaAs quantum dot structure and band offsets

    SciTech Connect (OSTI)

    Zech, E. S.; Chang, A. S.; Martin, A. J.; Canniff, J. C.; Millunchick, J. M. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Lin, Y. H. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)] [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Goldman, R. S. [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States) [Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States); Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-2136 (United States)

    2013-08-19T23:59:59.000Z

    We have investigated the influence of GaAs surface termination on the nanoscale structure and band offsets of GaSb/GaAs quantum dots (QDs) grown by molecular-beam epitaxy. Transmission electron microscopy reveals both coherent and semi-coherent clusters, as well as misfit dislocations, independent of surface termination. Cross-sectional scanning tunneling microscopy and spectroscopy reveal clustered GaSb QDs with type I band offsets at the GaSb/GaAs interfaces. We discuss the relative influences of strain and QD clustering on the band offsets at GaSb/GaAs interfaces.

  2. Georgia Southern University Office of Career Services Eagle Career Net/NACElink Privacy and Use of Data Policy

    E-Print Network [OSTI]

    Hutcheon, James M.

    Georgia Southern University Office of Career Services Eagle Career Net/NACElink Privacy and Use of Data Policy Georgia Southern University Office of Career Services Eagle Career Net/NACElink Privacy and the NACElink Network to provide student with Eagle Career Net. Eagle Career Net is our online system

  3. Observations of short-circuiting flow paths within a free-surface wetland in Augusta, Georgia, U.S.A.

    E-Print Network [OSTI]

    Licciardi, Joseph M.

    constructed treatment wetland in Augusta, Georgia were used to quantify the size, distribution, velocity). In treatment wetlands, such heterogeneity nearly always results in reduced contaminant removal (WoObservations of short-circuiting flow paths within a free-surface wetland in Augusta, Georgia, U

  4. Energy conserving site design case study: Shenandoah, Georgia. Final report

    SciTech Connect (OSTI)

    Not Available

    1980-01-01T23:59:59.000Z

    The case study examines the means by which energy conservation can be achieved at an aggregate community level by using proper planning and analytical techniques for a new town, Shenandoah, Georgia, located twenty-five miles southwest of Atlanta's Hartsfield International Airport. A potentially implementable energy conservation community plan is achieved by a study team examining the land use options, siting characteristics of each building type, alternate infrastructure plans, possible decentralized energy options, and central utility schemes to determine how community energy conservation can be achieved by use of pre-construction planning. The concept for the development of mixed land uses as a passively sited, energy conserving community is based on a plan (Level 1 Plan) that uses the natural site characteristics, maximizes on passive energy siting requirement, and allows flexibility for the changing needs of the developers. The Level 2 Plan is identical with Level 1 plan plus a series of decentraized systems that have been added to the residential units: the single-family detached, the apartments, and the townhouses. Level 3 Plan is similar to the Level 1 Plan except that higher density dwellings have been moved to areas adjacent to central site. The total energy savings for each plan relative to the conventional plan are indicated. (MCW)

  5. Design and performance of the Georgia Tech Aquatic Center photovoltaic system. Final report

    SciTech Connect (OSTI)

    Rohatgi, A.; Begovic, M.; Long, R.; Ropp, M.; Pregelj, A.

    1996-12-31T23:59:59.000Z

    A building-integrated DC PV array has been constructed on the Georgia Tech campus. The array is mounted on the roof of the Georgia Tech Aquatic Center (GTAC), site of the aquatic events during the 1996 Paralympic and Olympic Games in Atlanta. At the time of its construction, it was the world`s largest roof-mounted photovoltaic array, comprised of 2,856 modules and rates at 342 kW. This section describes the electrical and physical layout of the PV system, and the associated data acquisition system (DAS) which monitors the performance of the system and collects measurements of several important meteorological parameters.

  6. Multiple-band-edge quantum-well intermixing in the InGaAs/InGaAsP/InGaP material system

    E-Print Network [OSTI]

    Coldren, Larry A.

    Multiple-band-edge quantum-well intermixing in the InGaAs/InGaAsP/InGaP material system Erik J InGaAs/InGaAsP/InGaP material system. © 2005 American Institute of Physics. DOI: 10 of achieving QWI in such active regions.3,4 However, InGaAs/InGaAsP/InGaP-based de- vices offer numerous

  7. GaInNAs laser gain

    SciTech Connect (OSTI)

    CHOW,WENG W.; JONES,ERIC D.; MODINE,NORMAND A.; KURTZ,STEVEN R.; ALLERMAN,ANDREW A.

    2000-05-23T23:59:59.000Z

    The optical gain spectra for GaInNAs/GaAs quantum wells are computed using a microscopic laser theory. From these spectra, the peak gain and carrier radiative decay rate as functions of carrier density are determined. These dependences allow the study of the lasing threshold current density of GaInNAs/GaAs quantum well structures.

  8. Red emitting photonic devices using InGaP/InGaAlP material system

    E-Print Network [OSTI]

    Kangude, Yamini

    2005-01-01T23:59:59.000Z

    In this thesis, two red emitting photonic devices are presented using the InGaP/InGaAlP material system. InGaP/InGaAlP material system provides large flexibility in the band gap energy while being lattice matched to GaAs ...

  9. Municipal Electric Authority of Georgia | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRose BendMiasoleTremor(Question) | OpenGA References: SGIC[1] This

  10. AlGaAs/InGaAs/AlGaAs Double Barrier

    E-Print Network [OSTI]

    Perera, A. G. Unil

    -state Er. Tunneling Quantum Dot Sensors for Multi-band Infrared and Terahertz Radiation Detection G radiation detection are demonstrated. In T-QDIP structures, photoabsorption takes place in InGaAs QDs (due

  11. Plant Physiol. (1992) 99, 548-552 0032-0889/92/99/0548/05/$01 .00/0

    E-Print Network [OSTI]

    Kieliszewski, Marcia

    1992-01-01T23:59:59.000Z

    , The University of Georgia, Athens, Georgia 30602 (M.J.K.); Michigan State University-Department of Energy Plant monocot (Zea mays) and a chenopod (Beta vulgaris) representative of primitive dicots. Because

  12. Video Personalization and Caching for Resource Constrained Environments

    E-Print Network [OSTI]

    Bhandarkar, Suchendra "Suchi" M.

    Video Personalization and Caching for Resource Constrained Environments Siddhartha Chattopadhyay Dept. of Computer Science, The University of Georgia, Athens, Georgia 30602-7404, USA Abstract: Video constrained, various video personalization strategies are used to provide personalized video content

  13. Fe-CYCLE BACTERIA FROM INDUSTRIAL CLAYS MINED IN GEORGIA, USA EVGENYA S. SHELOBOLINA

    E-Print Network [OSTI]

    Lovley, Derek

    Fe-CYCLE BACTERIA FROM INDUSTRIAL CLAYS MINED IN GEORGIA, USA EVGENYA S. SHELOBOLINA 1, *,{, SAM M are major discoloring impurities in mined commercial white kaolin clay. In order to evaluate the potential influence of Fe-cycle bacteria on Fe cycling during post- depositional clay-weathering alteration, Fe

  14. Georgia O'Keeffe: Horse's Skull with Pink Rose, 1931 Comparative Anatomy of Vertebrates

    E-Print Network [OSTI]

    Carrington, Emily

    Georgia O'Keeffe: Horse's Skull with Pink Rose, 1931 Syllabus Comparative Anatomy of Vertebrates Biology 453 Tentative: Autumn Quarter 2014 Course Web Page: http://courses'll want to cover your eyes with safety glasses or wear glasses on dissection lab days. Goals My course

  15. Georgia O'Keeffe: Horse's Skull with Pink Rose, 1931 Comparative Anatomy of Vertebrates

    E-Print Network [OSTI]

    Carrington, Emily

    Georgia O'Keeffe: Horse's Skull with Pink Rose, 1931 Syllabus Comparative Anatomy of Vertebrates Biology 453 Winter Quarter 2014 Course Web Page: http://courses.washington.edu/chordate/hmpg-biol453.html glasses on dissection lab days. Goals My course goals begin with learning the vocabulary of anatomy; you

  16. Adopted Version 1 Georgia Tech's "BuzzPort" Portal Usage Policy

    E-Print Network [OSTI]

    Li, Mo

    Adopted Version 1 Georgia Tech's "BuzzPort" Portal Usage Policy v. 7.1 1.0 PURPOSE This Policy are highly valued and sensitive Institute resources. This Policy establishes an acceptable usage framework.0 SCOPE This Policy applies to all authorized BuzzPort usage from any location at all times

  17. Georgia Institute of Technology Ventilation System Testing Effective Date 04/01/02

    E-Print Network [OSTI]

    Georgia Institute of Technology Ventilation System Testing Effective Date 04/01/02 Revised 05 for measuring ventilation system performance. 2. Sash Positions a. Vertical rising sashes will be surveyed traverse measurements will be performed per the procedures described in Industrial Ventilation. b. Static

  18. Georgia researchers uncover new ways to meet America's alternative energy needs. By Kathy Brister

    E-Print Network [OSTI]

    Nair, Sankar

    -up companies. State economic developers attracted more than $3 billion in commercial green-energy projects over-edge" biofuel projects. Here's a look at some of the bioenergy innovations under way in Georgia, Tapping Timber bioenergy company Range Fuels plans to crank up what's being billed as the United States' first commercial

  19. This article was downloaded by: [University of Georgia] On: 04 February 2014, At: 13:21

    E-Print Network [OSTI]

    Georgia, University of

    b a Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808, USA b Savannah River. Fletcherb and Andrew M. Grosseb,y a Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808, USA; b Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29808, USA (Received 30

  20. Color Removal from Pulp Mill Effluent Using Coal Ash Produced from Georgia Coal Combustion Power Plants

    E-Print Network [OSTI]

    Hutcheon, James M.

    permits. To improve the aesthetic qualities of the effluent, coal ash (from local power plants_mill_discharge.jpg 2. Coal Power Plant http://www.csmonitor.com/var/ezflow_site/storage/images/media/images/2008Color Removal from Pulp Mill Effluent Using Coal Ash Produced from Georgia Coal Combustion Power

  1. Board of Regents University System of Georgia Architecture and Engineering Design Standards

    E-Print Network [OSTI]

    Board of Regents University System of Georgia Architecture and Engineering Design Standards your pointer on the section title and pick/select. #12;010000 - ARCHITECTURAL 7 010001- General Requirements 7 013515 LEED and Sustainable Design 42 013516 Sustainable Design Reporting 47 015713- Temporary

  2. An Experimental Study of Microfabricated Nickel Spark Plug Georgia Institute of technology

    E-Print Network [OSTI]

    electrodeposition through polymer molds. The nickel spark plugs are tested at 20 Hz using spark energies of 5 mAn Experimental Study of Microfabricated Nickel Spark Plug Georgia Institute of technology Atlanta presents experimental. results of the erosion and wear characteristics of micromachined nickel spark plugs

  3. Habitat for Humanity: La Grange, Georgia, 2003 Jimmy Carter Work Project

    SciTech Connect (OSTI)

    Not Available

    2005-06-01T23:59:59.000Z

    The Troup-Chambers Habitat for Humanity built a Habitat house to ENERGY STAR standards in LaGrange, Georgia, in 2003. The project was so successfully that all Troup-Chambers houses will now be built to ENERGY STAR standards.

  4. Composition and Interface Analysis of InGaN/GaN Multiquantum...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Composition and Interface Analysis of InGaNGaN Multiquantum-Wells on GaN Substrates Using Atom Probe Tomography. Composition and Interface Analysis of InGaNGaN Multiquantum-Wells...

  5. GaAs, AlGaAs and InGaP Tunnel Junctions for Multi-Junction Solar Cells Under Concentration: Resistance Study

    SciTech Connect (OSTI)

    Wheeldon, Jeffrey F.; Valdivia, Christopher E.; Walker, Alex; Kolhatkar, Gitanja; Hall, Trevor J.; Hinzer, Karin [Centre for Research in Photonics, University of Ottawa, Ottawa, ON (Canada); Masson, Denis; Riel, Bruno; Fafard, Simon [Cyrium Technologies Inc., Ottawa, ON (Canada); Jaouad, Abdelatif; Turala, Artur; Ares, Richard; Aimez, Vincent [Centre de Recherche en Nanofabrication et en Nanocaracterisation CRN2, Universite de Sherbrooke, Sherbrooke, QC (Canada)

    2010-10-14T23:59:59.000Z

    The following four TJ designs, AlGaAs/AlGaAs, GaAs/GaAs, AlGaAs/InGaP and AlGaAs/GaAs are studied to determine minimum doping concentration to achieve a resistance of <10{sup -4} {omega}{center_dot}cm{sup 2} and a peak tunneling current suitable for MJ solar cells up to 1500-suns concentration (operating current of 21 A/cm{sup 2}). Experimentally calibrated numerical models are used to determine how the resistance changes as a function of doping concentration. The AlGaAs/GaAs TJ design is determined to require the least doping concentration to achieve the specified resistance and peak tunneling current, followed by the GaAs/GaAs, and AlGaAs/AlGaAs TJ designs. The AlGaAs/InGaP TJ design can only achieve resistances >5x10{sup -4} {omega}cm{sup 2}.

  6. PRESSURE DEPENDENCE OF OPTICAL TRANSITIONS IN InGaN/GaN MULTIPLE QUANTUM WELLS

    E-Print Network [OSTI]

    McCluskey, Matthew

    -µm thick GaN layer deposited on a sapphire substrate, and it is capped by a 0.2-µm GaN:Mg pPRESSURE DEPENDENCE OF OPTICAL TRANSITIONS IN InGaN/GaN MULTIPLE QUANTUM WELLS W. Shan,* J.W. Ager pressure on optical transitions in InGaN/GaN multiple quantum wells (MQWs) has been studied

  7. Free carrier accumulation at cubic AlGaN/GaN heterojunctions Q. Y. Wei,1

    E-Print Network [OSTI]

    As, Donat Josef

    ) substrate,7 with GaN and AlGaN layer thickness of 600 nm and 30 nm, respectively. The layer thicknessFree carrier accumulation at cubic AlGaN/GaN heterojunctions Q. Y. Wei,1 T. Li,1 J. Y. Huang,1 F. A (Received 24 February 2012; accepted 19 March 2012; published online 3 April 2012) Cubic Al0.3Ga0.7N/GaN

  8. InGaP/GaAs/InGaP double-heterojunction bipolar transistors grown by solid-source molecular-beam epitaxy with a valved phosphorus cracker

    E-Print Network [OSTI]

    Woodall, Jerry M.

    InGaP/GaAs/InGaP double-heterojunction bipolar transistors grown by solid-source molecular; accepted 17 November 1995 The growth and device characterization of an InGaP/GaAs double-quality phosphorus-containing compounds.1­4 The growth of high-performance InGaP/ GaAs and InGaAs/InP single

  9. InGaP/InGaAsN/GaAs NpN double-heterojunction bipolar transistor

    SciTech Connect (OSTI)

    Chang, P. C. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Baca, A. G. [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87123 (United States); Li, N. Y. [Emcore Photovoltaics, Emcore Corporation, Albuquerque, New Mexico 87123 (United States)] [Emcore Photovoltaics, Emcore Corporation, Albuquerque, New Mexico 87123 (United States); Xie, X. M. [Emcore Photovoltaics, Emcore Corporation, Albuquerque, New Mexico 87123 (United States)] [Emcore Photovoltaics, Emcore Corporation, Albuquerque, New Mexico 87123 (United States); Hou, H. Q. [Emcore Photovoltaics, Emcore Corporation, Albuquerque, New Mexico 87123 (United States)] [Emcore Photovoltaics, Emcore Corporation, Albuquerque, New Mexico 87123 (United States); Armour, E. [Emcore Corporation, Somerset, New Jersey 08873 (United States)] [Emcore Corporation, Somerset, New Jersey 08873 (United States)

    2000-04-17T23:59:59.000Z

    We have demonstrated a functional NpN double-heterojunction bipolar transistor (DHBT) using InGaAsN for the base layer. The InGaP/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}/GaAs DHBT has a low V{sub ON} of 0.81 V, which is 0.13 V lower than in a InGaP/GaAs heterojunction bipolar transistor (HBT). The lower turn-on voltage is attributed to the smaller band gap (1.20 eV) of metalorganic chemical vapor deposition-grown In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} base layer. GaAs is used for the collector; thus the breakdown voltage (BV{sub CEO}) is 10 V, consistent with the BV{sub CEO} of InGaP/GaAs HBTs of comparable collector thickness and doping level. To alleviate the current blocking phenomenon caused by the larger conduction band discontinuity between InGaAsN and GaAs, a graded InGaAs layer with {delta} doping is inserted at the base-collector junction. The improved device has a peak current gain of seven with ideal current-voltage characteristics. (c) 2000 American Institute of Physics.

  10. InGaP/InGaAsN/GaAs NpN double heterojunction bipolar transistor

    SciTech Connect (OSTI)

    Chang, P.C.; Baca, A.G.; Li, N.Y.; Xie, X.M.; Sharps, P.R.; Hou, H.Q.

    2000-01-10T23:59:59.000Z

    The authors have demonstrated a functional NpN double heterojunction bipolar transistor (DHBT) using InGaAsN for base layer. The InGaP/In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01}/GaAs DHBT has a low V{sub ON} of 0.81 V, which is 0.13 V lower than in a InGaP/GaAs HBT. The lower V{sub ON} is attributed to the smaller bandgap (E{sub g}=1.20eV) of MOCVD grown In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} base layer. GaAs is used for the collector; thus the BV{sub CEO} is 10 V, consistent with the BV{sub CEO} of InGaP/GaAs Hbts of comparable collector thickness and doping level. To alleviate the current blocking phenomenon caused by the larger {triangle}E{sub C} between InGaAsN and GaAs, a graded InGaAs layer with {delta}-doping is inserted at the base-collector junction. The improved device has a peak current gain of 7 with ideal IV characteristics.

  11. c Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering.

    E-Print Network [OSTI]

    Leach Jr.,W. Marshall

    c° Copyright 2009. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School. If the MOSFET is in the pinch-off region, the following equations for ID hold: ID = K (VGS - VT H)2 (5) 2 #12

  12. Georgia Southern University Career Services Williams Center (912) 478-5197 www.georgiasouthern.edu/career/ Explore. Experience. Excel.

    E-Print Network [OSTI]

    Hutcheon, James M.

    · Enterprise Resource Planning Sys. (SAP) · Accounting Information Systems · Business Application Development Developers · Project Analysts · Technical Consultant · Systems Programmer · Internet Developers · Application System Managers · Project Managers What Can I Do With A Major In . . . INFORMATION SYSTEMS #12;Georgia

  13. Summary of Needs and Opportunities from the 2011 Residential Energy Efficiency Stakeholders Meeting: Atlanta, Georgia -- March 16-18, 2011

    SciTech Connect (OSTI)

    Not Available

    2011-05-01T23:59:59.000Z

    This summary report outlines needs and issues for increasing energy efficiency of new and existing U.S homes, as identified at the U.S Department of Energy Building America program Spring 2011 stakeholder meeting in Atlanta, Georgia.

  14. Intrafacet migration effects in InGaN/GaN structures grown on triangular GaN ridges studied by submicron beam x-ray diffraction

    E-Print Network [OSTI]

    Sirenko, Andrei

    Intrafacet migration effects in InGaN/GaN structures grown on triangular GaN ridges studied for x-ray diffraction and reciprocal space mapping of InGaN/GaN multiple-quantum-well MQW structures grown on the sidewalls of 10- m-wide triangular GaN ridges with 1-1.1 facets. Samples were produced

  15. GaN0.011P0.989–GaP Double-Heterostructure Red Light-Emitting Diodes Directly Grown on GaP Substrates

    E-Print Network [OSTI]

    Tu, Charles W

    2000-01-01T23:59:59.000Z

    and C. W. Tu, GaN diodes on GaP substrates, 2000. [7] J. W.on a GaN directly grown on a GaP substrate was successfullyDH) directly a GaN grown on a (100) GaP substrate. Fig. 1(a)

  16. AlGaAs/InGaAsN/GaAs PnP double heterojunction bipolar transistor

    SciTech Connect (OSTI)

    Chang, P.C.; Baca, A.G.; Li, N.Y.; Sharps, P.R.; Hou, H.Q.; Laroche, J.R.; Ren, F.

    2000-01-11T23:59:59.000Z

    The authors have demonstrated a functional MOCVD-grown AlGaAs/InGaAsN/GaAsPnP DHBT that is lattice matched to GaAs and has a peak current gain ({beta}) of 25. Because of the smaller bandgap (E{sub g}=1.20eV)of In{sub 0.03}Ga{sub 0.97}As{sub 0.99}N{sub 0.01} used for the base layer, this device has a low V{sub ON} of 0.79 V, 0.25 V lower than in a comparable Pnp AlGaAs/GaAs HBT. The BV{sub CEO} is 12 V, consistent with its GaAs collector thickness and doping level.

  17. Asymmetric interfacial abruptness in N-polar and Ga-polar GaN/AlN/GaN heterostructures

    SciTech Connect (OSTI)

    Mazumder, B.; Hurni, C. A.; Zhang, J. Y.; Speck, J. S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Wong, M. H.; Mishra, U. K. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2012-08-27T23:59:59.000Z

    In this letter, we report on the interfacial abruptness of GaN/AlN/GaN heterostructures with pulsed laser atom probe tomography (APT). The samples were grown by plasma-assisted molecular beam epitaxy (MBE) under both metal-rich and N-rich conditions on both Ga-polar (0001) GaN templates and N-polar (0001) GaN substrates. An NH{sub 3} assisted MBE technique was involved to grow similar Ga-polar and N-polar structures on GaN:Fe substrates and GaN/Al{sub 2}O{sub 3} templates, respectively, for a comparison study. We find in all cases the interface with net positive polarization charge was chemically abrupt, whereas the interface with net negative polarization charge was diffuse. We discuss the implications on device design and performance. These data validate the efficiency of APT in studying interfaces for better performance in devices.

  18. Superior radiation-resistant properties of InGaP/GaAs tandem solar cells

    SciTech Connect (OSTI)

    Yamaguchi, M.; Okuda, T.; Taylor, S.J.; Takamoto, T. [Toyota Technological Institute 2-12-1 Hisakata, Tempaku, Nagoya 468 (Japan)] [Toyota Technological Institute 2-12-1 Hisakata, Tempaku, Nagoya 468 (Japan); Ikeda, E.; Kurita, H. [Central Resource Laboratory, Japan Energy Company, Niizo-Minami, Toda, Saitama 335 (Japan)] [Central Resource Laboratory, Japan Energy Company, Niizo-Minami, Toda, Saitama 335 (Japan)

    1997-03-01T23:59:59.000Z

    The observation of minority-carrier injection-enhanced annealing of radiation damage to InGa{sub 0.5}P{sub 0.5}/GaAs tandem solar cells is reported. Radiation resistance of InGaP/GaAs tandem solar cells as is similar with GaAs-on-Ge cells have been confirmed with 1 MeV electron irradiations. Moreover, minority-carrier injection under light illumination and forward bias conditions is shown to enhance defect annealing in InGaP and to result in the recovery of InGaP/GaAs tandem solar cell properties. These results suggest that the InGaP/GaAs(/Ge) multijunction solar cells and InGaP-based devices have great potential for space applications. {copyright} {ital 1997 American Institute of Physics.}

  19. Beta decay of Ga-62

    E-Print Network [OSTI]

    Hyman, BC; Iacob, VE; Azhari, A.; Gagliardi, Carl A.; Hardy, John C.; Mayes, VE; Neilson, RG; Sanchez-Vega, M.; Tang, X.; Trache, L.; Tribble, Robert E.

    2003-01-01T23:59:59.000Z

    from the ex- perimental ft value for a 01?01 b decay between analog states with the relation @3# 0556-2813/2003/68~1!/015501~6!/$20.00 68 015501- of 62Ga . Hardy, V. E. Mayes, R. G. Neilson, M. Sanchez-Vega, and R. E. Tribble y, College Station...

  20. GaN nanowires show more 3D piezoelectricity than bulk GaN

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    Logo GaN nanowires show more 3D piezoelectricity than bulk GaN admin / January 11, 2012 individual gallium nitride (GaN) nanowires showing strong piezoelectric effect in 3D. This is in spite of the fact that each nanowire only measures 100nm in diameter. While GaN is ubiquitous in optoelectronic

  1. Self-aligned AlGaN/GaN transistors for sub-mm wave applications

    E-Print Network [OSTI]

    Saadat, Omair I

    2010-01-01T23:59:59.000Z

    This thesis describes work done towards realizing self-aligned AlGaN/GaN high electron mobility transistors (HEMTs). Self-aligned transistors are important for improving the frequency of AlGaN/GaN HEMTs by reducing source ...

  2. Invited Paper GaN HEMT reliability

    E-Print Network [OSTI]

    del Alamo, Jesús A.

    Invited Paper GaN HEMT reliability J.A. del Alamo *, J. Joh Microsystems Technology Laboratories mechanism recently identified in GaN high-electron mobility transistors subject to electrical stress. Under high voltage, it has been found that electrically active defects are generated in the AlGaN barrier

  3. Computers and nautical archaeology: characterization of the C.S.S. Georgia wreck site

    E-Print Network [OSTI]

    Baker, James Graham

    1982-01-01T23:59:59.000Z

    , Texas A&N University's Cultural Resource Laboratory contracted with the Corps of Engineers to perform this characterization. Conditions at the Wreck Site The environment of the wreck is determined by the Savannah river. The sediment load is so heavy..., Savannah District, to investigate, characterize, and make recommendations regarding the wreck site of a Civil War period Confederate ironclad vessel, the C. S. S. GEORGIA. The survey proved to be difficult, since visibility in the Savannah River around...

  4. New GaInP/GaAs/GaInAs, Triple-Bandgap, Tandem Solar Cell for High-Efficiency Terrestrial Concentrator Systems

    SciTech Connect (OSTI)

    Kurtz, S.; Wanlass, M.; Kramer, C.; Young, M.; Geisz, J.; Ward, S.; Duda, A.; Moriarty, T.; Carapella, J.; Ahrenkiel, P.; Emery. K.; Jones, K.; Romero, M.; Kibbler, A.; Olson, J.; Friedman, D.; McMahon, W.; Ptak, A.

    2005-11-01T23:59:59.000Z

    GaInP/GaAs/GaInAs three-junction cells are grown in an inverted configuration on GaAs, allowing high quality growth of the lattice matched GaInP and GaAs layers before a grade is used for the 1-eV GaInAs layer. Using this approach an efficiency of 37.9% was demonstrated.

  5. InAs=InGaP=GaAs heterojunction power Schottky rectifiers

    E-Print Network [OSTI]

    Woodall, Jerry M.

    InAs=InGaP=GaAs heterojunction power Schottky rectifiers A. Chen, M. Young and J.M. Woodall A low-matched InGaP on GaAs, to make a high-temperature power rectifier. The LT molecular beam epitaxy technique enables the formation of an abrupt interface between InAs and InGaP. This heterojunction rectifier

  6. Monolithic Millimeter-wave Distributed Amplifiers using AlGaN/GaN HEMTs

    E-Print Network [OSTI]

    York, Robert A.

    Monolithic Millimeter-wave Distributed Amplifiers using AlGaN/GaN HEMTs Rajkumar Santhakumar, Yi have been designed and fabricated using AlGaN/GaN HEMTs. One of them uses a standard HEMT for the unit-gate distributed amplifier achieves a CW peak output power of 1W and a PAE of about 16% at 4GHz. Index Terms -- GaN

  7. Role of strain in polarization switching in semipolar InGaN/GaN quantum wells

    E-Print Network [OSTI]

    Role of strain in polarization switching in semipolar InGaN/GaN quantum wells Qimin Yan,1,a Patrick November 2010 The effect of strain on the valence-band structure of 112¯2 semipolar InGaN grown on GaN D6 is calculated for GaN and InN using density functional theory with the Heyd­Scuseria­ Ernzerhof

  8. GaN/AlGaN heterojunction infrared detector responding in 814 and 2070 m ranges

    E-Print Network [OSTI]

    Perera, A. G. Unil

    GaN/AlGaN heterojunction infrared detector responding in 8­14 and 20­70 m ranges G. Ariyawansa, M October 2006 A GaN/AlGaN heterojunction interfacial work function internal photoemission infrared detector, the work demonstrates 54 m 5.5 THz operation of the detector based on 1s­2p± transition of Si donors in GaN

  9. Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities. Outcomes of the International Conference, 11-15 December 2006, Athens, Greece

    SciTech Connect (OSTI)

    Batandjieva, B.; Laraia, M. [International Atomic Energy Agency, Vienna (Austria)

    2008-01-15T23:59:59.000Z

    Full text of publication follows: decommissioning activities are increasing worldwide covering wide range of facilities - from nuclear power plant, through fuel cycle facilities to small laboratories. The importance of these activities is growing with the recognition of the need for ensuring safe termination of practices and reuse of sites for various purposes, including the development of new nuclear facilities. Decommissioning has been undertaken for more than forty years and significant knowledge has been accumulated and lessons have been learned. However the number of countries encountering decommissioning for the first time is increasing with the end of the lifetime of the facilities around the world, in particular in countries with small nuclear programmes (e.g. one research reactor) and limited human and financial resources. In order to facilitate the exchange of lessons learned and good practices between all Member States and to facilitate and improve safety of the planned, ongoing and future decommissioning projects, the IAEA in cooperation with the Nuclear Energy Agency to OECD, European Commission and World Nuclear Association organised the international conference on Lessons Learned from the Decommissioning of Nuclear Facilities and the Safe Termination of Nuclear Activities, held in Athens, Greece. The conference also highlighted areas where future cooperation at national and international level is required in order to improve decommissioning planning and safety during decommissioning and to facilitate decommissioning by selecting appropriate strategies and technologies for decontamination, dismantling and management of waste. These and other aspects discussed at the conference are presented in this paper, together with the planned IAEA measures for amendment and implementation of the International Action Plan on Decommissioning of Nuclear Facilities and its future programme on decommissioning.

  10. Effect of buffer structures on AlGaN/GaN high electron mobility transistor reliability

    SciTech Connect (OSTI)

    Liu, L. [University of Florida, Gainesville; Xi, Y. Y. [University of Florida, Gainesville; Ren, F. [University of Florida; Pearton, S. J. [University of Florida; Laboutin, O. [Kopin Corporation, Taunton, MA; Cao, Yu [Kopin Corporation, Taunton, MA; Johnson, Wayne J. [Kopin Corporation, Taunton, MA; Kravchenko, Ivan I [ORNL

    2012-01-01T23:59:59.000Z

    AlGaN/GaN high electron mobility transistors (HEMTs) with three different types of buffer layers, including a GaN/AlGaN composite layer, or 1 or 2 lm GaN thick layers, were fabricated and their reliability compared. The HEMTs with the thick GaN buffer layer showed the lowest critical voltage (Vcri) during off-state drain step-stress, but this was increased by around 50% and 100% for devices with the composite AlGaN/GaN buffer layers or thinner GaN buffers, respectively. The Voff - state for HEMTs with thin GaN and composite buffers were 100 V, however, this degraded to 50 60V for devices with thick GaN buffers due to the difference in peak electric field near the gate edge. A similar trend was observed in the isolation breakdown voltage measurements, with the highest Viso achieved based on thin GaN or composite buffer designs (600 700 V), while a much smaller Viso of 200V was measured on HEMTs with the thick GaN buffer layers. These results demonstrate the strong influence of buffer structure and defect density on AlGaN/GaN HEMT performance and reliability.

  11. Growth of AlGaN/GaN heterojunction field effect transistors on semi-insulating GaN using an AlGaN interlayer

    SciTech Connect (OSTI)

    Chen, Z.; Denbaars, S. P. [Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); Materials Department, University of California, Santa Barbara, California 93106 (United States); Pei, Y.; Newman, S.; Chu, R.; Brown, D.; Keller, S.; Mishra, U. K. [Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); Chung, R.; Nakamura, S. [Materials Department, University of California, Santa Barbara, California 93106 (United States)

    2009-03-16T23:59:59.000Z

    Semi-insulating (SI) GaN layers were grown on 4H-SiC substrates by inserting an AlGaN layer between the AlN buffer and the GaN layer. Secondary ion mass spectroscopy measurements showed that the AlGaN layer prevented Si from diffusing from the substrate into the GaN layer. X-ray diffraction and atomic force microscopy analyses showed that an optimized AlGaN interlayer does not degrade the crystal quality or surface morphology of the SI GaN. The room temperature mobility of an AlGaN/GaN heterostructure using this SI GaN was 2200 cm{sup 2}/V s. High electron mobility transistors (HEMTs) with 0.65 {mu}m long gates were also fabricated on these SI GaN buffers. A power density of 19.0 W/mm with a power added efficiency of 48% was demonstrated at 10 GHz at a drain bias of 78 V. These HEMTs also exhibited sharp pinch off, low leakage, and negligible dispersion.

  12. Strain variations in InGaAsP/InGaP superlattices studied by scanning probe microscopy

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Strain variations in InGaAsP/InGaP superlattices studied by scanning probe microscopy Huajie Chen, Kista, Sweden Abstract Strain-compensated InGaAsP/InGaP superlattices are studied in cross- section. The strain compensated InGaAsP/InGaP/InP superlattices studied here have application for light sources

  13. AlGaN/GaN Metal Oxide Semiconductor Field Effect Transistors using Titanium Dioxide P. J. HANSEN

    E-Print Network [OSTI]

    York, Robert A.

    AlGaN/GaN Metal Oxide Semiconductor Field Effect Transistors using Titanium Dioxide P. J. HANSEN 1 epitaxially on AlGaN/GaN HFET structures by molecular beam epitaxy (MBE). Growth was first performed on GaN templates to establish epitaxial growth conditions. X-ray diffraction showed [001] TiO2 || [1010]GaN

  14. AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors using barium strontium titanate

    E-Print Network [OSTI]

    York, Robert A.

    AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors using barium strontium; published 13 October 2004) Use of high-k gate dielectrics in AlGaN/GaN heterostructure field transconductance and pinchoff voltage. To achieve this, AlGaN/GaN metal-oxide-semiconductor heterostructure field

  15. In this paper, an AlGaN/GaN high electron mobility transistor (HEMT) device based on a

    E-Print Network [OSTI]

    Yang, Kyounghoon

    205 Abstract In this paper, an AlGaN/GaN high electron mobility transistor (HEMT) device basedBm at 2 GHz have been demonstrated from the fabricated device. 1. Introduction In recent years, AlGaN/GaN noise amplifier and switch. Superior results have been reported in microwave power performance of AlGaN/GaN

  16. A New Architecture for AlGaN/GaN HEMT Frequency Doubler Using Active Integrated Antenna Design Approach

    E-Print Network [OSTI]

    Itoh, Tatsuo

    A New Architecture for AlGaN/GaN HEMT Frequency Doubler Using Active Integrated Antenna Design presents a new architecture for an AlGaN/GaN HEMT frequency doubler using the active integrated antenna. The antenna operates as a fundamental frequency reflector in this circuit. Using AlGaN/GaN with 1mm gate

  17. Generation-Recombination Defects In AlGaN/GaN HEMT On SiC Substrate,

    E-Print Network [OSTI]

    Boyer, Edmond

    Generation-Recombination Defects In AlGaN/GaN HEMT On SiC Substrate, Evidenced By Low Frequency Aristide Briand, 92.195 Meudon, France Abstract. Wide bandgap devices such as AlGaN/GaN High Electron of GR- bulges related respectively to AlGaN/GaN interface and quantum well are identified. Each GR

  18. Effect of dislocations on electron mobility in AlGaN/GaN and AlGaN/AlN/GaN heterostructures

    SciTech Connect (OSTI)

    Kaun, Stephen W.; Burke, Peter G.; Kyle, Erin C. H.; Speck, James S. [Materials Department, University of California, Santa Barbara, California 93106 (United States); Wong, Man Hoi; Mishra, Umesh K. [Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106 (United States)

    2012-12-24T23:59:59.000Z

    Al{sub x}Ga{sub 1-x}N/GaN (x = 0.06, 0.12, 0.24) and AlGaN/AlN/GaN heterostructures were grown on 6 H-SiC, GaN-on-sapphire, and free-standing GaN, resulting in heterostructures with threading dislocation densities of {approx}2 Multiplication-Sign 10{sup 10}, {approx}5 Multiplication-Sign 10{sup 8}, and {approx}5 Multiplication-Sign 10{sup 7} cm{sup -2}, respectively. All growths were performed under Ga-rich conditions by plasma-assisted molecular beam epitaxy. Dominant scattering mechanisms with variations in threading dislocation density and sheet concentration were indicated through temperature-dependent Hall measurements. The inclusion of an AlN interlayer was also considered. Dislocation scattering contributed to reduced mobility in these heterostructures, especially when sheet concentration was low or when an AlN interlayer was present.

  19. Landscape influences on headwater streams on Fort Stewart, Georgia, USA

    SciTech Connect (OSTI)

    Jager, Yetta [ORNL; Bevelhimer, Mark S [ORNL; al., et. [Various Institutes

    2011-01-01T23:59:59.000Z

    Military landscapes represent a mixture of undisturbed natural ecosystems, developed areas, and lands that support different types and intensities of military training. Research to understand water-quality influences of military landscapes usually involves intensive sampling in a few watersheds. In this study, we developed a survey design of accessible headwater watersheds intended to improve our ability to distinguish land water relationships in general, and training influences, in particular, on Fort Stewart, GA. We sampled and analyzed water from watershed outlets. We successfully developed correlative models for total suspended solids (TSS), total nitrogen (TN), organic carbon (OC), and organic nitrogen (ON), which dominated in this blackwater ecosystem. TSS tended to be greater in samples after rainfall and during the growing season, and models that included %Wetland suggested a build-and-flush relationship. We also detected a positive association between TSS and tank-training, which suggests a need to intercept sediment-laden runoff from training areas. Models for OC showed a negative association with %Grassland. TN and ON both showed negative associations with %Grassland, %Wetland, and %Forest. Unexpected positive associations were observed between OC and equipmenttraining activity and between ON and %Bare ground ? Roads. Future studies that combine our survey-based approach with more intensive monitoring of the timing and intensity of training would be needed to better understand the mechanisms for these empirical relationships involving military training. Looking beyond local effects on Fort Stewart streams, we explore questions about how exports of OC and nitrogen from coastal military installations ultimately influence estuaries downstream.

  20. High efficiency InGaP solar cells for InGaP/GaAs tandem cell application

    SciTech Connect (OSTI)

    Takamoto, T.; Ikeda, E.; Kurita, H.; Ohmori, M. [Japan Energy Corp., Toda, Saitama (Japan). Central Research Lab.

    1994-12-31T23:59:59.000Z

    In this paper, high conversion efficiency single junction InGaP solar cells with n-p-p{sup +} structure are presented and their application to InGaP/GaAs monolithic tandem cells is discussed. In the InGaP cells, a best conversion efficiency of 18.48% was achieved by introducing the p{sup +} peak back surface field (BSF) layer with a high carrier concentration of 2 {times} 10{sup 18} cm{sup {minus}3}, which improved both short circuit current (Isc) and open circuit voltage (Voc). However, in the case of InGaP/GaAs tandem cells, a decrease in carrier concentration of the InGaP BSF layer, which was caused by the diffusion of Zn, was found to reduce the Isc and Voc of the tandem cell. The reduction in the carrier concentration was suppressed by using a thicker BSF layer of 0.5 {micro}m, which reduced the current density in the GaAs bottom cell. An InGaP/GaAs tandem cell with 27.3% efficiency and a high Voc of 2.418 V was obtained.

  1. Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phase separation

    E-Print Network [OSTI]

    Relaxed, high-quality InP on GaAs by using InGaAs and InGaP graded buffers to avoid phaseAs was 70% of that on bulk InP at both temperatures. To achieve this, graded buffers in the InGaAs, InGaP

  2. AlGaN/GaN HEMTs grown by Molecular Beam Epitaxy on sapphire, Sic, and HVPE GaN templates

    E-Print Network [OSTI]

    Manfra, Michael J.

    PS-4 AlGaN/GaN HEMTs grown by Molecular Beam Epitaxy on sapphire, Sic, and HVPE GaN templates Nils ABSTRACT Molecular Beam Epitaxy of GaN and related alloys is becoming a rival to the more established, and HVPE SI-GaN templates on sapphire. While sapphire and SI-Sic are established substrates for the growth

  3. ZrO2 gate dielectrics produced by ultraviolet ozone oxidation for GaN and AlGaN/GaN transistors

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    MOSCAP process ?ow: n-GaN substrate; Ohmic metallization andtion for a AlGaN/ GaN HEMT on a substrate which has a poorsapphire substrate, a well-passivated AlGaN/ GaN HEMT grown

  4. Green light emission by InGaN/GaN multiple-quantum-well microdisks

    SciTech Connect (OSTI)

    Hsu, Yu-Chi; Lo, Ikai, E-mail: ikailo@mail.phys.nsysu.edu.tw; Shih, Cheng-Hung; Pang, Wen-Yuan; Hu, Chia-Hsuan; Wang, Ying-Chieh; Tsai, Cheng-Da; Chou, Mitch M. C. [Department of Physics, Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China)] [Department of Physics, Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China); Hsu, Gary Z. L. [United Crystal Corporation, No. 243-3, Wenshan 36061, Miaoli, Taiwan (China)] [United Crystal Corporation, No. 243-3, Wenshan 36061, Miaoli, Taiwan (China)

    2014-03-10T23:59:59.000Z

    The high-quality In{sub x}Ga{sub 1?x}N/GaN multiple quantum wells were grown on GaN microdisks with ?-LiAlO{sub 2} substrate by using low-temperature two-step technique of plasma-assisted molecular beam epitaxy. We demonstrated that the hexagonal GaN microdisk can be used as a strain-free substrate to grow the advanced In{sub x}Ga{sub 1?x}N/GaN quantum wells for the optoelectronic applications. We showed that the green light of 566-nm wavelength (2.192?eV) emitted from the In{sub x}Ga{sub 1?x}N/GaN quantum wells was tremendously enhanced in an order of amplitude higher than the UV light of 367-nm wavelength (3.383?eV) from GaN.

  5. InGaAsN/GaAs heterojunction for multi-junction solar cells

    DOE Patents [OSTI]

    Kurtz, Steven R. (Albuquerque, NM); Allerman, Andrew A. (Albuquerque, NM); Klem, John F. (Albuquerque, NM); Jones, Eric D. (Edgewood, NM)

    2001-01-01T23:59:59.000Z

    An InGaAsN/GaAs semiconductor p-n heterojunction is disclosed for use in forming a 0.95-1.2 eV bandgap photodetector with application for use in high-efficiency multi-junction solar cells. The InGaAsN/GaAs p-n heterojunction is formed by epitaxially growing on a gallium arsenide (GaAs) or germanium (Ge) substrate an n-type indium gallium arsenide nitride (InGaAsN) layer having a semiconductor alloy composition In.sub.x Ga.sub.1-x As.sub.1-y N.sub.y with 0GaAs layer, with the InGaAsN and GaAs layers being lattice-matched to the substrate. The InGaAsN/GaAs p-n heterojunction can be epitaxially grown by either molecular beam epitaxy (MBE) or metalorganic chemical vapor deposition (MOCVD). The InGaAsN/GaAs p-n heterojunction provides a high open-circuit voltage of up to 0.62 volts and an internal quantum efficiency of >70%.

  6. Review of Multi-Person Exposure Calls to a Regional Poison Control Center

    E-Print Network [OSTI]

    Morgan, Brent W; Skinner, Carl G; Kleiman, Richard J; Geller, Robert J; Chang, Arthur S

    2010-01-01T23:59:59.000Z

    Exposure Calls to a Regional Poison Control Center Brent W.Medicine and the Georgia Poison Center, Atlanta, GA †of Pediatrics and the Georgia Poison Center, Atlanta, GA

  7. InGaP/GaAs and InGaAs mechanically-stacked triple-junction solar cells

    SciTech Connect (OSTI)

    Takamoto, T.; Ikeda, E.; Agui, T. [Japan Energy Corp., Toda, Saitama (Japan)] [and others

    1997-12-31T23:59:59.000Z

    Triple-junction cells with AM1.5 efficiencies of over 33% have been demonstrated. A planar type InGaP/GaAs monolithic dual-junction cell was fabricated on a semi-insulating FaAs substrate, which has high infra-red transparency. Then a dual-junction cell, with efficiency of 27--28%, was mechanically stacked on an InGaAs cell fabricated on an InP substrate. The bottom InGaAs cell showed an efficiency of 6.2% under the InGaP/GaAs cell, and a total efficiency of 33--34% was achieved for the four-terminal triple-junction cell.

  8. Graphene induced remote surface scattering in graphene/AlGaN/GaN heterostructures

    SciTech Connect (OSTI)

    Liu, Xiwen; Li, Dan; Wang, Bobo; Liu, Bin; Chen, Famin; Jin, Guangri; Lu, Yanwu, E-mail: ywlu@bjtu.edu.cn [Department of Physics, Beijing Jiaotong University, Beijing 100044 (China)

    2014-10-20T23:59:59.000Z

    The mobilities of single-layer graphene combined with AlGaN/GaN heterostructures on two-dimensional electron gases in graphene/AlGaN/GaN double heterojunction are calculated. The impact of electron density in single-layer graphene is also studied. Remote surface roughness (RSR) and remote interfacial charge (RIC) scatterings are introduced into this heterostructure. The mobilities limited by RSR and RIC are an order of magnitude higher than that of interface roughness and misfit dislocation. This study contributes to designing structures for generation of higher electron mobility in graphene/AlGaN/GaN double heterojunction.

  9. Experimental evidence of Ga-vacancy induced room temperature ferromagnetic behavior in GaN films

    SciTech Connect (OSTI)

    Roul, Basanta; Kumar, Mahesh [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Central Research Laboratory, Bharat Electronics, Bangalore 560013 (India); Rajpalke, Mohana K.; Bhat, Thirumaleshwara N.; Krupanidhi, S. B. [Materials Research Centre, Indian Institute of Science, Bangalore 560012 (India); Kalghatgi, A. T. [Central Research Laboratory, Bharat Electronics, Bangalore 560013 (India); Kumar, Nitesh; Sundaresan, A. [Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064 (India)

    2011-10-17T23:59:59.000Z

    We have grown Ga deficient GaN epitaxial films on (0001) sapphire substrate by plasma-assisted molecular beam epitaxy and report the experimental evidence of room temperature ferromagnetic behavior. The observed yellow emission peak in room temperature photoluminescence spectra and the peak positioning at 300 cm{sup -1} in Raman spectra confirms the existence of Ga vacancies. The x-ray photoelectron spectroscopic measurements further confirmed the formation of Ga vacancies; since the N/Ga is found to be >1. The ferromagnetism is believed to originate from the polarization of the unpaired 2p electrons of N surrounding the Ga vacancy.

  10. Pre-Natural Resources (Two-year) Transfer Program Georgia Southern University, in cooperation with the Warnell School of Forestry and

    E-Print Network [OSTI]

    Hutcheon, James M.

    with the Warnell School of Forestry and Natural Resources, University of Georgia, offers a joint program of study, soil and water resources, environmental assessment, or forestry. Students selecting pre of Georgia, Warnell School of Forestry and Natural Resources must complete an application which is separate

  11. SUPPORTED BY THE UGA OFFICE OF THE VICE PRESIDENT FOR INSTRUCTION OVPI.UGA.EDU The University of Georgia hosts the

    E-Print Network [OSTI]

    Arnold, Jonathan

    , the Assessment Institute and Advising Research Seminar. She co-authored two articles in Academic advising: New NACADA Georgia Drive-in Conference The University of Georgia Academic Advising Coordinating Council #12 to undergraduate education, student success and retention, academic advising, curriculum and policy development

  12. Ultra-Thin, Triple-Bandgap GaInP/GaAs/GaInAs Monolithic Tandem Solar Cells

    SciTech Connect (OSTI)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, S.; Moriarty, T.; Romero, M. J.

    2007-02-01T23:59:59.000Z

    The performance of state-of-the-art, series-connected, lattice-matched (LM), triple-junction (TJ), III-V tandem solar cells could be improved substantially (10-12%) by replacing the Ge bottom subcell with a subcell having a bandgap of {approx}1 eV. For the last several years, research has been conducted by a number of organizations to develop {approx}1-eV, LM GaInAsN to provide such a subcell, but, so far, the approach has proven unsuccessful. Thus, the need for a high-performance, monolithically integrable, 1-eV subcell for TJ tandems has remained. In this paper, we present a new TJ tandem cell design that addresses the above-mentioned problem. Our approach involves inverted epitaxial growth to allow the monolithic integration of a lattice-mismatched (LMM) {approx}1-eV GaInAs/GaInP double-heterostructure (DH) bottom subcell with LM GaAs (middle) and GaInP (top) upper subcells. A transparent GaInP compositionally graded layer facilitates the integration of the LM and LMM components. Handle-mounted, ultra-thin device fabrication is a natural consequence of the inverted-structure approach, which results in a number of advantages, including robustness, potential low cost, improved thermal management, incorporation of back-surface reflectors, and possible reclamation/reuse of the parent crystalline substrate for further cost reduction. Our initial work has concerned GaInP/GaAs/GaInAs tandem cells grown on GaAs substrates. In this case, the 1-eV GaInAs experiences 2.2% compressive LMM with respect to the substrate. Specially designed GaInP graded layers are used to produce 1-eV subcells with performance parameters nearly equaling those of LM devices with the same bandgap (e.g., LM, 1-eV GaInAsP grown on InP). Previously, we reported preliminary ultra-thin tandem devices (0.237 cm{sup 2}) with NREL-confirmed efficiencies of 31.3% (global spectrum, one sun) (1), 29.7% (AM0 spectrum, one sun) (2), and 37.9% (low-AOD direct spectrum, 10.1 suns) (3), all at 25 C. Here, we include recent results of testing similar devices under the concentrated AMO spectrum, and also present the first demonstration of a high-efficiency, ultra-thin GaInP/GaAs/GaInAs tandem cell processed on a flexible kapton handle.

  13. September 16-21, 2007 Las Vegas, Nevada Gate recess technology on AlGaN/GaN HFET with InGaN as etch-stop layer

    E-Print Network [OSTI]

    Pala, Nezih

    0 2 V(V) C(pF) Before etching (material) After etching (device) G AlGaN substrate i-GaN DS AlN AlGaN substrate AlN i-GaN AlGaN S G DAlGaNAlGaN InGaNInGaN Standard gate recess InGaN stop layer gate recess InGaNICNS 7 September 16-21, 2007 ­ Las Vegas, Nevada Gate recess technology on AlGaN/GaN HFET with InGaN

  14. Rutile films grown by molecular beam epitaxy on GaN and AlGaN/GaN P. J. Hansen

    E-Print Network [OSTI]

    York, Robert A.

    Rutile films grown by molecular beam epitaxy on GaN and AlGaN/GaN P. J. Hansen Materials Department March 2005 Titanium dioxide TiO2, with the rutile structure was grown on 0001 oriented GaN and 0001 Al0.33Ga0.67N/GaN heterostructure field effect transistor HFET structures by molecular beam epitaxy. X

  15. Single-Wire Light-Emitting Diodes Based on GaN Wires Containing Both Polar and Nonpolar InGaN/GaN Quantum Wells

    E-Print Network [OSTI]

    Single-Wire Light-Emitting Diodes Based on GaN Wires Containing Both Polar and Nonpolar InGaN/GaN based on radial p­i­n multi quantum well (QW) junctions have been realized from GaN wires grown by catalyst- free metal organic vapor phase epitaxy. The Inx Ga1Àx N/GaN undoped QW system is coated over both

  16. High density plasma damage in InGaP/GaAs as AlGaAs/GaAs high electron mobility transistors

    SciTech Connect (OSTI)

    Lee, J.W.; Pearton, S.J. [Univ. of Florida, Gainesville, FL (United States). Dept. of Materials Science and Engineering; Ren, F.; Kopf, R.F.; Kuo, J.M. [Bell Labs., Murray Hill, NJ (United States). Lucent Technologies; Shul, R.J. [Sandia National Labs., Albuquerque, NM (United States); Constantine, C.; Johnson, D. [Plasma-Therm Inc., St. Petersburg, FL (United States)

    1998-11-01T23:59:59.000Z

    The introduction of plasma damage in InGaP/GaAs and AlGaAs/GaAs high electron mobility transistors (HEMTs) has been investigated using both inductively coupled plasma and electron cyclotron resonance Ar discharges. The saturated drain-source current is found to be decreased through introduction of compensating deep levels into the InGaP or AlGaAs donor layer. The degradation of device performance is a strong function of ion energy and ion flux, and an advantage of both high density plasma tools is that ion energy can be reduced by increasing the plasma density. Increasing process pressure and source power, and decreasing radio-frequency chuck power produce the lowest amounts of plasma damage in HEMTs.

  17. Comparison of compressive and tensile relaxed composition-graded GaAsP and ,,Al...InGaP substrates

    E-Print Network [OSTI]

    Comparison of compressive and tensile relaxed composition-graded GaAsP and ,,Al...InGaP substrates, around 104 cm-2 . The structures, grown on GaP or GaAs, consist of graded In-fraction InGaP and AlInGaP. High surface roughness and branch defects in Al InGaP lead to the lowest quality virtual substrates we

  18. Carrier Dynamics in InGaN/GaN SQW Structure Probed by the Transient Grating Method

    E-Print Network [OSTI]

    Okamoto, Koichi

    Carrier Dynamics in InGaN/GaN SQW Structure Probed by the Transient Grating Method; 78.55.Cr; 78.67.De; S7.14 Carrier dynamics in GaN and InGaN/GaN SQW structures were observed by using inhomogeneity of In composition. Recently, InGaN/GaN-based light emitting diodes (LEDs) have been commercialized

  19. N-Face GaN/AlGaN HEMTs Fabricated Through Layer Transfer Technology

    E-Print Network [OSTI]

    Chung, Jinwook

    We present a new method to fabricate N-face GaN/AlGaN high electron mobility transistors (HEMTs). These devices are extremely promising for ultrahigh frequency applications where low contact resistances and excellent carrier ...

  20. Development and Industrialization of InGaN/GaN LEDs on Patterned...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of InGaNGaN LEDs on Patterned Sapphire Substrates for Low Cost Emitter Architecture Development and Industrialization of InGaNGaN LEDs on Patterned Sapphire...

  1. Breakdown mechanism in AlGaN/GaN HEMTs on Si substrate

    E-Print Network [OSTI]

    Lu, Bin

    AlGaN/GaN high electron mobility transistors (HEMTs) grown on Si substrates have attracted a great interest for power electronics applications. Despite the low cost of the Si substrate, the breakdown voltage (V[subscript ...

  2. Siemens Pittsburgh, PA Novelis Corporation Atlanta, GA

    E-Print Network [OSTI]

    McGaughey, Alan

    Industrial Design ­ Shanghai, China Eaton Corporation ­ Pittsburgh, PA CMU, CTTEC ­ PittsburghSiemens ­ Pittsburgh, PA Novelis Corporation ­ Atlanta, GA Expense

  3. Strain-balanced InGaN/GaN multiple quantum wells

    SciTech Connect (OSTI)

    Van Den Broeck, D. M.; Hosalli, A. M.; Bedair, S. M. [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Bharrat, D.; El-Masry, N. A. [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-07-21T23:59:59.000Z

    InGaN/GaN multiple quantum well (MQW) structures suffer from a high amount of compressive strain in the InGaN wells and the accompanied piezoelectric field resulting in both a blue shift in emission and a reduction of emission intensity. We report the growth of In{sub x}Ga{sub 1?x}N/GaN “strain-balanced” multiple quantum wells (SBMQWs) grown on thick In{sub y}Ga{sub 1?y}N templates for x?>?y by metal organic chemical vapor deposition. SBMQWs consist of alternating layers of In{sub x}Ga{sub 1?x}N wells and GaN barriers under compressive and tensile stress, respectively, which have been lattice matched to a thick In{sub y}Ga{sub 1?y}N template. Growth of the In{sub y}Ga{sub 1?y}N template is also detailed in order to achieve thick, relaxed In{sub y}Ga{sub 1?y}N grown on GaN without the presence of V-grooves. When compared to conventional In{sub x}Ga{sub 1?x}N/GaN MQWs grown on GaN, the SBMQW structures exhibit longer wavelength emission and higher emission intensity for the same InN mole fraction due to a reduction in the well strain and piezoelectric field. By matching the average lattice constant of the MQW active region to the lattice constant of the In{sub y}Ga{sub 1?y}N template, essentially an infinite number of periods can be grown using the SBMQW growth method without relaxation-related effects. SBMQWs can be utilized to achieve longer wavelength emission in light emitting diodes without the use of excess indium and can be advantageous in addressing the “green gap.”.

  4. High current gain InGaN=GaN HBTs with C operating temperature

    E-Print Network [OSTI]

    Asbeck, Peter M.

    with an $20 nm low-temperature (Tg ¼ 550 C) GaN buffer layer on a (0001) sapphire substrate. The layer 1018 cmÀ3 Buffer GaN 2.5 mm ­ Substrate Sapphire ­ ­ HBT device processing began by depositing a 100 nmHigh current gain InGaN=GaN HBTs with 300 C operating temperature D.M. Keogh, P.M. Asbeck, T. Chung

  5. Atkinson County, Georgia ASHRAE 169-2006 Climate Zone | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-fTriWildcatAntrimArkansasAshford,AsotinAstonInformation Georgia ASHRAE

  6. Switchable piezoelectric transduction in AlGaN/GaN MEMS resonators

    E-Print Network [OSTI]

    Weinstein, Dana

    This work presents a new switching mechanism in piezoelectric transduction of AlGaN/GaN bulk acoustic resonators. A piezoelectric transducer is formed in the AlGaN, between a top Schottky electrode and a 2D electron gas ...

  7. Spontaneous emission in GaN/InGaN photonic crystal nanopillars

    E-Print Network [OSTI]

    Boyer, Edmond

    . Sigalas, "InGaN/GaN quantum-well heterostructure light-emitting diodes employing photonic crystal, "III-nitride blue and ultraviolet photonic crystal light emitting diodes," Appl. Phys. Lett. 84, 466, and H. Benisty, "Photonic-crystal GaN light-emitting diodes with tailored guided modes distribution

  8. GaInP/GaAs/GaInAs Monolithic Tandem Cells for High-Performance Solar Concentrators

    SciTech Connect (OSTI)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, S.; Moriarty, T.; Romero, M. J.

    2005-08-01T23:59:59.000Z

    We present a new approach for ultra-high-performance tandem solar cells that involves inverted epitaxial growth and ultra-thin device processing. The additional degree of freedom afforded by the inverted design allows the monolithic integration of high-, and medium-bandgap, lattice-matched (LM) subcell materials with lower-bandgap, lattice-mismatched (LMM) materials in a tandem structure through the use of transparent compositionally graded layers. The current work concerns an inverted, series-connected, triple-bandgap, GaInP (LM, 1.87 eV)/GaAs (LM, 1.42 eV)/GaInAs (LMM, {approx}1 eV) device structure grown on a GaAs substrate. Ultra-thin tandem devices are fabricated by mounting the epiwafers to pre-metallized Si wafer handles and selectively removing the parent GaAs substrate. The resulting handle-mounted, ultra-thin tandem cells have a number of important advantages, including improved performance and potential reclamation/reuse of the parent substrate for epitaxial growth. Additionally, realistic performance modeling calculations suggest that terrestrial concentrator efficiencies in the range of 40-45% are possible with this new tandem cell approach. A laboratory-scale (0.24 cm2), prototype GaInP/GaAs/GaInAs tandem cell with a terrestrial concentrator efficiency of 37.9% at a low concentration ratio (10.1 suns) is described, which surpasses the previous world efficiency record of 37.3%.

  9. Fine structure of Fe-Co-Ga and Fe-Cr-Ga alloys with low Ga content

    SciTech Connect (OSTI)

    Kleinerman, Nadezhda M., E-mail: kleinerman@imp.uran.ru; Serikov, Vadim V., E-mail: kleinerman@imp.uran.ru; Vershinin, Aleksandr V., E-mail: kleinerman@imp.uran.ru; Mushnikov, Nikolai V., E-mail: kleinerman@imp.uran.ru; Stashkova, Liudmila A., E-mail: kleinerman@imp.uran.ru [Institute of Metal Physics UB RAS, S. Kovalevskaya str. 18, 620990 Ekaterinburg (Russian Federation)

    2014-10-27T23:59:59.000Z

    Investigation of Ga influence on the structure of Fe-Cr and Fe-Co alloys was performed with the use of {sup 57}Fe Mössbauer spectroscopy and X-ray diffraction methods. In the alloys of the Fe-Cr system, doping with Ga handicaps the decomposition of solid solutions, observed in the binary alloys, and increases its stability. In the alloys with Co, Ga also favors the uniformity of solid solutions. The analysis of Mössbauer experiments gives some grounds to conclude that if, owing to liquation, clusterization, or initial stages of phase separation, there exist regions enriched in iron, some amount of Ga atoms prefer to enter the nearest surroundings of iron atoms, thus forming binary Fe-Ga regions (or phases)

  10. TEM Characterization of InAs/GaAs Quantum Dots Capped by a GaSb/GaAs Layer

    SciTech Connect (OSTI)

    Beltran, AM [Universidad de Cadiz, Spain; Ben, Teresa [Universidad de Cadiz, Spain; Sanchez, AM [Universidad de Cadiz, Spain; Sales Lerida, David [ORNL; Chisholm, Matthew F [ORNL; Varela del Arco, Maria [ORNL; Pennycook, Stephen J [ORNL; Galindo, Pedro [Universidad de Cadiz, Spain; Ripalda, JM [Instituto de Microelectronica de Madrid (CNM, CSIC); Molina Rubio, Sergio I [ORNL

    2008-01-01T23:59:59.000Z

    It is well known that there is intense interest in expanding the usable wavelength for electronic devices. This is one of the reasons to study new self-assembled semiconductor nanostructures. Telecommunication applications use InGaAsP/InP emitting at 1.3 and 1.55 m. Research efforts are dedicated to develop GaAs technology in order to achieve emission at the same range as InP, so GaAs could be used for optical fibre communications. Ga(As)Sb on InAs/GaAs quantum dots (QDs) is a promising nanostructure to be used in telecommunications. The introduction of antimony during or after the QDs growth is an effective solution to obtain a red shift in the emission wavelength, even at room temperature.

  11. Excitonic properties of strained wurtzite and zinc-blende GaNAlxGa1xN quantum dots

    E-Print Network [OSTI]

    Fonoberov, Vladimir

    Excitonic properties of strained wurtzite and zinc-blende GaNÕAlxGa1ÀxN quantum dots Vladimir A 2003 We investigate exciton states theoretically in strained GaN/AlN quantum dots with wurtzite WZ of GaN QDs.1­8 Molecu- lar beam epitaxial growth in the Stranski­Krastanov mode of wurtzite WZ Ga

  12. Morphological and compositional variations in strain-compensated InGaAsP/InGaP superlattices

    E-Print Network [OSTI]

    Feenstra, Randall

    Morphological and compositional variations in strain- compensated InGaAsP/InGaP superlattices R of Technology, Kista, Sweden Abstract We have investigated the properties of strain-compensated InGaAsP/In- GaP superlattices, grown by metalorganic vapor phase epitaxy, with and without InP interlayers inserted in the InGaP

  13. Operating Characteristics of GaAs/InGaP Self Aligned Stripe Lasers Benjamin J. Stevens1

    E-Print Network [OSTI]

    Operating Characteristics of GaAs/InGaP Self Aligned Stripe Lasers Benjamin J. Stevens1 , Kristian of GaAs based self-aligned lasers based upon a single overgrowth. A lattice matched n-doped InGaP layer were exposed to oxygen. True buried heterostructures devices utilising InGaP clad- ding layers have

  14. Microstructure and luminescent properties of novel InGaP alloys on relaxed GaAsP substrates

    E-Print Network [OSTI]

    Microstructure and luminescent properties of novel InGaP alloys on relaxed GaAsP substrates M. J of unconventional alloys of InGaP with In fraction of 0.2­0.4 grown on fully relaxed GaAsP virtual substrates demonstrate growth of extremely high quality InGaP heterostructures which hold promise for fabrication

  15. Band Offsets of InGaP/GaAs Heterojunctions by Scanning Tunneling Spectroscopy Y. Dong and R. M. Feenstra

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Band Offsets of InGaP/GaAs Heterojunctions by Scanning Tunneling Spectroscopy Y. Dong and R. M Abstract Scanning tunneling microscopy and spectroscopy are used to study InGaP/GaAs heterojunctions computation of the tunnel current. Curve fitting of theory to experiment is performed. Using an InGaP band gap

  16. Negative capacitance in GaN/AlGaN heterojunction dual-band detectors L. E. Byrum,1

    E-Print Network [OSTI]

    Dietz, Nikolaus

    Negative capacitance in GaN/AlGaN heterojunction dual-band detectors L. E. Byrum,1 G. Ariyawansa,1 online 2 September 2009 A study of trap states in n+ -GaN/AlGaN heterostructures using electrical related absorption centers attributed to shallow Si-donor pinned to the AlGaN barrier , N-vacancy/ C

  17. High Power Wideband AlGaN/GaN HEMT Feedback Amplifier Module with Drain and Feedback Loop

    E-Print Network [OSTI]

    Itoh, Tatsuo

    High Power Wideband AlGaN/GaN HEMT Feedback Amplifier Module with Drain and Feedback Loop amplifier module using AlGaN/GaN high electron mobility transistor (HEMT) has been developed that covers radars and communications systems. GaN-based HEMT's for high power applications at microwave frequencies

  18. Impact ionization in N-polar AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Killat, N., E-mail: Nicole.Killat@bristol.ac.uk, E-mail: Martin.Kuball@bristol.ac.uk; Uren, M. J.; Kuball, M., E-mail: Nicole.Killat@bristol.ac.uk, E-mail: Martin.Kuball@bristol.ac.uk [Center for Device Thermography and Reliability (CDTR), H. H. Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Keller, S.; Kolluri, S.; Mishra, U. K. [Department of Electrical and Computer Engineering, University of Santa Barbara California, Santa Barbara, California 93106 (United States)

    2014-08-11T23:59:59.000Z

    The existence of impact ionization as one of the open questions for GaN device reliability was studied in N-polar AlGaN/GaN high electron mobility transistors. Electroluminescence (EL) imaging and spectroscopy from underneath the device gate contact revealed the presence of hot electrons in excess of the GaN bandgap energy even at moderate on-state bias conditions, enabling impact ionization with hole currents up to several hundreds of pA/mm. The detection of high energy luminescence from hot electrons demonstrates that EL analysis is a highly sensitive tool to study degradation mechanisms in GaN devices.

  19. Georgia Southern's Student Sustainability Fee Funds $238,000 in Sustainability Projects STATESBORO, GA, May 10, 2014 -Georgia Southern University's Center for Sustainability is pleased to announce that the

    E-Print Network [OSTI]

    Hutcheon, James M.

    Supervisor, Department of Mechanical Engineering. Nanofiber Based Carbon Capture Technology to Reduce the CO2

  20. Tunable two-dimensional plasmon resonances in an InGaAs/InP high electron mobility transistor

    E-Print Network [OSTI]

    Peale, Robert E.

    of materials systems such as GaAs/AlGaAs,3 InGaP/InGaAs/GaAs,4 GaN/AlGaN,2,5 and Si Ref. 1 have been explored

  1. FUPWG Meeting Agenda - Atlanta, GA | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Atlanta, GA FUPWG Meeting Agenda - Atlanta, GA Energy on My Mind FUPWG Atlanta, GA May 3-4, 2006 Hosted by: AGL Resources Logo May 3-4, 2006 Hosted by AGL Resources Atlanta,...

  2. AlGaN/GaN heterostructure prepared on a Si (110) substrate via pulsed sputtering

    SciTech Connect (OSTI)

    Watanabe, T.; Ohta, J.; Kondo, T.; Ohashi, M.; Ueno, K.; Kobayashi, A. [Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Tokyo 153-8505 (Japan); Fujioka, H., E-mail: hfujioka@iis.u-tokyo.ac.jp [Institute of Industrial Science (IIS), The University of Tokyo, 4-6-1 Komaba, Tokyo 153-8505 (Japan); CREST, Japan Science and Technology Corporation (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan)

    2014-05-05T23:59:59.000Z

    GaN films were grown on Si (110) substrates using a low-temperature growth technique based on pulsed sputtering. Reduction of the growth temperature suppressed the strain in the GaN films, leading to an increase in the critical thickness for crack formation. In addition, an AlGaN/GaN heterostructure with a flat heterointerface was prepared using this technique. Furthermore, the existence of a two dimensional electron gas at the heterointerface with a mobility of 1360 cm{sup 2}/Vs and a sheet carrier density of 1.3?×?10{sup 13}?cm{sup ?2} was confirmed. Finally, the use of the AlGaN/GaN heterostructure in a high electron mobility transistor was demonstrated. These results indicate that low-temperature growth via pulsed sputtering is quite promising for the fabrication of GaN-based electronic devices.

  3. 56 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 1, JANUARY 2012 Metamorphic GaAsP and InGaP Solar Cells on GaAs

    E-Print Network [OSTI]

    Haller, Gary L.

    56 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 2, NO. 1, JANUARY 2012 Metamorphic GaAsP and InGaP Solar bandgap range. Index Terms--Epitaxy, GaAsP, InGaP, metamorphic. I. INTRODUCTION TODAY'S highest efficiency

  4. Defect structures in rapidly degraded InGaAsP/InGaP double-heterostructure lasers

    SciTech Connect (OSTI)

    Ueda, O.; Wakao, K.; Yamaguchi, A.; Isozumi, S.; Komiya, S.

    1985-03-01T23:59:59.000Z

    Rapidly degraded InGaAsP/InGaP double-heterostructure lasers grown on (001)-oriented GaAs substrates by liquid phase epitaxy have been investigated by photolumi

  5. The Future Computing Environments (FCE) Group at Georgia Tech is a collection of faculty and students that

    E-Print Network [OSTI]

    Abowd, Gregory D.

    , are discussed in [2]. THE GROUP: HISTORY AND EXPERTISE There are now seven full-time College of ComputingABSTRACT The Future Computing Environments (FCE) Group at Georgia Tech is a collection of faculty) Group mission is to invent and better understand what constitutes an effective, everyday partnership

  6. c Copywright 2008. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering.

    E-Print Network [OSTI]

    Leach Jr.,W. Marshall

    c° Copywright 2008. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School mode or the saturation region when vDS vGS - VTO, where VTO is the threshold or pinch-off voltage parameter which accounts for the change in with drain-source voltage. Because iG ' 0 in the pinch

  7. Prioritizing Areas of the Conasauga River Sub-basin in Georgia and Tennessee for Preservation and Restoration

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    controversial (Simon et al., 2007). Here we define restoration to mean direct modification of stream channels. Because both land preservation and stream restoration are expensive tools, there is a general public and Restoration SETH J. WENGER1,*, MEGAN M. HAGLER2, AND BYRON J. FREEMAN3 1University of Georgia River Basin

  8. Georgia Southern University Career Services Williams Center (912) 478-5197 www.georgiasouthern.edu/career/ Explore. Experience. Excel.

    E-Print Network [OSTI]

    Hutcheon, James M.

    · Consulting Engineering Firms · Utility Companies · Private Laboratories · Industrial Firms · Manufacturing.thegeorgiaengineer.com/ · American Council of Engineering Companies www.acec.org · Georgia Chamber of Commerce www://www.aeecenter.org/ · American Solar Energy Society http://www.ases.org/ · American Nuclear Society http://www.new.ans.org/ GSU

  9. Materials in Extreme Dynamic Environments Georgia Tech has a unique combination of experimental facilities and modeling and

    E-Print Network [OSTI]

    Li, Mo

    response of materials at various critical length and time scales emphasizes both highMaterials in Extreme Dynamic Environments Georgia Tech has a unique combination of experimental facilities and modeling and simulation capabilities to explore the behavior of materials subjected to high

  10. Digital Media Tenure Track Position Georgia Tech's School of Literature, Media, and Communication (LMC), which provides diverse

    E-Print Network [OSTI]

    Li, Mo

    Digital Media Tenure Track Position Georgia Tech's School of Literature, Media, and Communication Digital Media tenure track position at the rank of Assistant Professor, beginning in the fall of 2013. We's Computational Media and Digital Media programs. A Ph.D. in an appropriate field is required (e.g. digital media

  11. Emission properties of heterostructures with a (GaAsSb-InGaAs)/GaAs bilayer quantum well

    SciTech Connect (OSTI)

    Zvonkov, B. N.; Nekorkin, S. M.; Vikhrova, O. V.; Dikareva, N. V., E-mail: dikareva@nifti.unn.ru [Nizhni Novgorod State University, Physical-Technical Research Institute (Russian Federation)

    2013-09-15T23:59:59.000Z

    The specific features of the emission characteristics of GaAs-based heterostructures with a GaAs{sub 1-x}Sb{sub x}-In{sub y}Ga{sub 1-y}As bilayer quantum well are studied. The heterostructures are grown by metal-organic chemical vapor deposition (MOCVD). With an analysis of previously reported data on the MOCVD growth process taken into account, the temperature range (560-580 Degree-Sign C), the relation between the fluxes emitted by the sources of Group-V and -III elements ( Less-Than-Or-Equivalent-To 1), and the order of layer growth for the production of the active region of a GaAs/InGaP laser heterostructure are determined experimentally. The active region is a GaAs{sub 0.75}Sb{sub 0.25}-In{sub 0.2}Ga{sub 0.8}As bilayer quantum well. For the structure, a 1075-nm electroluminescence signal attributed to indirect transitions between the valence band of the GaAs{sub 0.75}Sb{sub 0.25} layer and the conduction band of the In{sub 0.2}Ga{sub 0.8}As layer is observed. An increase in the continuous-wave pump current yields a decrease in the 1075-nm emission intensity and initiates stable lasing at a wavelength of 1022 nm at a threshold current density of 1.4 kA cm{sup -2} at room temperature. Lasing occurs at transitions direct in coordinate space.

  12. AlGaN/GaN HFET Single-Ended Frequency Doubler Younkyu Chung and Tatsuo Itoh

    E-Print Network [OSTI]

    Itoh, Tatsuo

    AlGaN/GaN HFET Single-Ended Frequency Doubler Younkyu Chung and Tatsuo Itoh Department-mail: ykchung@ee.ucla.edu Abstract - This paper presents the first single-ended AlGaN/GaN heterojunction field, respectively. For the frequency doubler with 1mm gate periphery AlGaN/GaN HFET, conversion gain of 0.17 d

  13. Materials Science and Engineering B59 (1999) 319322 Microcalorimetric absorption spectroscopy in GaNAlGaN

    E-Print Network [OSTI]

    Nabben, Reinhard

    1999-01-01T23:59:59.000Z

    Microcalorimetric measurements of small absorption coefficients have been performed on thin GaN­AlGaN quantum wells in GaN­AlGaN quantum wells Axel Go¨ldner a, *, Axel Hoffmann a , Bernard Gil b , Pierre Lefebvre b at the energy of the GaN buffer and at the energy of the thick AlGaN barrier layers, we could also readily

  14. Al fraction induced effects on the capacitance characteristics -GaN/AlxGa1-xN IR detectors

    E-Print Network [OSTI]

    Dietz, Nikolaus

    substrate. As shown in Fig. 1(a), the device structures consist of a 0.2 m n+ -GaN top contact (emitter.1117/12.828156 Proc. of SPIE Vol. 7467 74670W-1 #12;(a) Sapphire Substrate n GaN Bottom Contact AlxGa1-xN Barrier n GaNAl fraction induced effects on the capacitance characteristics of n+ -GaN/AlxGa1-xN IR detectors

  15. Improvement of breakdown voltage in InGaP/InGaAs/GaAs heterostructure MESFETs for MMICs

    SciTech Connect (OSTI)

    Koh, Inoue; Yamane, Yasuro; Shiojima, Kenji [NTT LSI Lab., Kanagawa (Japan)] [and others

    1995-12-31T23:59:59.000Z

    This paper describes the trade-off between breakdown voltage and RF performance of InGaP/InGaAs/GaAs heterostructure MESFETs for power amplifiers and oscillators in multi-function MMICs in the millimeter-wave range. The authors successfully improved both gate-drain and drain-source breakdown voltages while maintaining excellent high-frequency performance by using a double-layered gate consisting of WSiN with different nitrogen contents, and by varying epitaxial layer thickness and implantation dose.

  16. Results of a baseflow tritium survey of surface water in Georgia across from the Savannah River Site

    SciTech Connect (OSTI)

    Nichols, R.L.

    1993-03-03T23:59:59.000Z

    In October 1991 the Georgia Department of Natural Resources (GDNR) issued a press release notifying the public that tritium had been measured in elevated levels (1,200 - 1,500 pCi/1) in water samples collected from drinking water wells in Georgia across from the Savannah River Site in Aiken Co. South Carolina. None of the elevated results were above the Primary Drinking Water Standard for tritium of 20,000 pCi/l. The GDNR initiated 2 surveys to determine the source and extent of elevated tritium: (1) baseflow survey of surface water quality, and (2) well evaluation program. Results from the 2 surveys indicate that the tritium measured in groundwater wells in Georgia is not the result of a groundwater flow from South Carolina under the Savannah River and into Georgia. Atmospheric transport and consequent rainout and infiltration has resulted in an increase of tritium in the water-table aquifer in the vicinity. Water samples collected from drinking water wells believed to have been installed in the aquifer beneath the water-table aquifer were actually from the shallower water-table aquifer. Water samples collected from the wells contain the amount of tritium expected for the water-table aquifer in the sample area. The measured tritium levels in the well samples and baseflow samples do not exceed Primary Drinking Water Standards. Tritium levels in the water-table in Georgia will decline as the atmospheric releases from SRS decline, tritium undergoes natural decay, and infiltration water with less tritium flushes through the subsurface.

  17. Structural and optical properties of InGaN–GaN nanowire heterostructures grown by molecular beam epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Limbach, F. [Institute of Bio- and Nanosystems (IBN-1), Research Centre Jülich GmbH and JARA-FIT Fundamentals of Future Information Technology (Germany); Gotschke, T. [Institute of Bio- and Nanosystems (IBN-1), Research Centre Jülich GmbH and JARA-FIT Fundamentals of Future Information Technology (Germany); Stoica, T. [Institute of Bio- and Nanosystems (IBN-1), Research Centre Jülich GmbH and JARA-FIT Fundamentals of Future Information Technology (Germany); Calarco, R. [Institute of Bio- and Nanosystems (IBN-1), Research Centre Jülich GmbH and JARA-FIT Fundamentals of Future Information Technology (Germany); Sutter, E. [Brookhaven National Lab., Upton, NY (United States); Ciston, J. [Brookhaven National Lab., Upton, NY (United States); Cusco, R. [Consell Superior d'Investigacions Cientifiques (CSIC), Barcelona (Spain); Artus, L. [Consell Superior d'Investigacions Cientifiques (CSIC), Barcelona (Spain); Kremling, S. [Univ. Wurzburg, Wilhelm Conrad Rontgen Research Centre Complex Matter Systems, Wurzburg (Germany); Hofling, S. [Univ. Wurzburg, Wilhelm Conrad Rontgen Research Centre Complex Matter Systems, Wurzburg (Germany); Worschech, L. [Univ. Wurzburg, Wilhelm Conrad Rontgen Research Centre Complex Matter Systems, Wurzburg (Germany); Grutzmacher, D. [Institute of Bio- and Nanosystems (IBN-1), Research Centre Jülich GmbH and JARA-FIT Fundamentals of Future Information Technology (Germany)

    2011-01-07T23:59:59.000Z

    InGaN/GaN nanowire (NW) heterostructures grown by plasma assisted molecular beam epitaxy were studied in comparison to their GaN and InGaN counterparts. The InGaN/GaN heterostructure NWs are composed of a GaN NW, a thin InGaN shell, and a multifaceted InGaN cap wrapping the top part of the GaN NW. High-resolution transmission electron microscopy (HRTEM) images taken from different parts of a InGaN/GaN NW show a wurtzite structure of the GaN core and the epitaxial InGaN shell around it, while additional crystallographic domains are observed whithin the InGaN cap region. Large changes in the lattice parameter along the wire, from pure GaN to higher In concentration demonstrate the successful growth of a complex InGaN/GaN NW heterostructure. Photoluminescence (PL) spectra of these heterostructure NW ensembles show rather broad and intense emission peak at 2.1 eV. However, ?-PL spectra measured on single NWs reveal a reduced broadening of the visible luminescence. The analysis of the longitudinal optical phonon Raman peak position and its shape reveal a variation in the In content between 20% and 30%, in agreement with the values estimated by PL and HRTEM investigations. The reported studies are important for understanding of the growth and properties of NW heterostructures suitable for applications in optoelectronics and photovoltaics.

  18. Necessity of Ga prelayers in GaAs/Ge growth using gas-source molecular beam epitaxy

    E-Print Network [OSTI]

    in a highly defective GaAs layer.as5 Recently, InGaP light-emitting diodes have been fabricated on Si using

  19. High-efficiency radiation-resistant InGaP/GaAs tandem solar cells

    SciTech Connect (OSTI)

    Takamoto, T. [Toyota Technological Inst., Tempaku, Nagoya (Japan); [Japan Energy Corp., Toda, Saitama (Japan); Yamaguchi, M.; Taylor, S.J. [Toyota Technological Inst., Tempaku, Nagoya (Japan); Ikeda, E.; Agui, T.; Kurita, H. [Japan Energy Corp., Toda, Saitama (Japan)

    1997-12-31T23:59:59.000Z

    A world-record efficiency of 26.9% (AM0, 28 C) has been obtained for InGaP/GaAs tandem solar cells fabricated by the MOCVD method. The radiation resistance of the InGaP/GaAs tandem solar cells has also been evaluated following 1 MeV electron irradiation. Degradation in the tandem cell performance has been confirmed to be mainly attributed to large degradation in the GaAs bottom cell, which features a highly doped base layer. Similar radiation-resistance with GaAs-on-Ge cells has been observed for the InGaP/GaAs tandem cell. However, some recovery of the tandem cell performance has been found due to minority-carrier injection under light illumination of forward bias, which causes defect annealing in InGaP cells. The optimal design of the InGaP base layer thickness for current matching at end of life (EOL) (after irradiation with 10{sup 15} electrons cm{sup {minus}2}) has been examined.

  20. Sampling and Quality Assurance Plan Little Commissioner Creek, Wilkinson County Georgia

    E-Print Network [OSTI]

    Rosemond, Amy Daum

    ) 946-4394 fsenn@wilkinsoncounty.net Kenneth L. Turner Mayor City of Gordon PO Box 387 Gordon, GA 31031) 946-1122 Fax (478) 946-4394 Paul Vendrell UGA Feed and Environmental Water Lab Agricultural Services

  1. Highly uniform, multi-stacked InGaAs/GaAs quantum dots embedded in a GaAs nanowire

    SciTech Connect (OSTI)

    Tatebayashi, J., E-mail: tatebaya@iis.u-tokyo.ac.jp; Ota, Y. [NanoQUINE, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Ishida, S.; Nishioka, M.; Iwamoto, S.; Arakawa, Y. [NanoQUINE, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2014-09-08T23:59:59.000Z

    We demonstrate a highly uniform, dense stack of In{sub 0.22}Ga{sub 0.78}As/GaAs quantum dot (QD) structures in a single GaAs nanowire (NW). The size (and hence emission energy) of individual QD is tuned by careful control of the growth conditions based on a diffusion model of morphological evolution of NWs and optical characterization. By carefully tailoring the emission energies of individual QD, dot-to-dot inhomogeneous broadening of QD stacks in a single NW can be as narrow as 9.3?meV. This method provides huge advantages over traditional QD stack using a strain-induced Stranski-Krastanow growth scheme. We show that it is possible to fabricate up to 200 uniform QDs in single GaAs NWs using this growth technique without degradation of the photoluminescence intensity.

  2. Strain induced variations in band offsets and built-in electric fields in InGaN/GaN multiple quantum wells

    E-Print Network [OSTI]

    Alpay, S. Pamir

    Strain induced variations in band offsets and built-in electric fields in InGaN/GaN multiple InxGa1-xN(InGaN)/GaN multilayers on the In composition and misfit strain. The results indicate that for non-polar m-plane configurations with ½1210InGaN//½1210GaN and ½0001InGaN//½0001GaN epitaxial

  3. Multi-bands photoconductive response in AlGaN/GaN multiple quantum wells

    SciTech Connect (OSTI)

    Chen, G.; Rong, X.; Xu, F. J.; Tang, N. [State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Wang, X. Q., E-mail: wangshi@pku.edu.cn; Shen, B., E-mail: bshen@pku.edu.cn [State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Fu, K.; Zhang, B. S. [Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Ruoshui Road 398, 215123 Suzhou (China); Hashimoto, H.; Yoshikawa, A. [Center for SMART Green Innovation Research, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522 (Japan); Ge, W. K. [Department of Physics, Tsinghua University, Beijing 100871 (China)

    2014-04-28T23:59:59.000Z

    Based on the optical transitions among the quantum-confined electronic states in the conduction band, we have fabricated multi-bands AlGaN/GaN quantum well infrared photodetectors. Crack-free AlGaN/GaN multiple quantum wells (MQWs) with atomically sharp interfaces have been achieved by inserting an AlN interlayer, which releases most of the tensile strain in the MQWs grown on the GaN underlayer. With significant reduction of dark current by using thick AlGaN barriers, photoconductive responses are demonstrated due to intersubband transition in multiple regions with center wavelengths of 1.3, 2.3, and 4??m, which shows potential applications on near infrared detection.

  4. High-performance InGaP/GaAs pnp {delta}-doped heterojunction bipolar transistor

    SciTech Connect (OSTI)

    Tsai, J.-H. [National Kaohsiung Normal University, Department of Electronic Engineering (China)], E-mail: jhtsai@nknucc.nknu.edu.tw; Chiu, S.-Y.; Lour, W.-S. [National Taiwan Ocean University, Department of Electrical Engineering (China); Guo, D.-F. [Air Force Academy, Department of Electronic Engineering (China)

    2009-07-15T23:59:59.000Z

    In this article, a novel InGaP/GaAs pnp {delta}-doped heterojunction bipolar transistor is first demonstrated. Though the valence band discontinuity at InGaP/GaAs heterojunction is relatively large, the addition of a {delta}-doped sheet between two spacer layers at the emitter-base (E-B) junction effectively eliminates the potential spike and increases the confined barrier for electrons, simultaneously. Experimentally, a high current gain of 25 and a relatively low E-B offset voltage of 60 mV are achieved. The offset voltage is much smaller than the conventional InGaP/GaAs pnp HBT. The proposed device could be used for linear amplifiers and low-power complementary integrated circuit applications.

  5. Synthesis, morphology and optical properties of GaN and AlGaN semiconductor nanostructures

    SciTech Connect (OSTI)

    Kuppulingam, B., E-mail: drbaskar2009@gmail.com; Singh, Shubra, E-mail: drbaskar2009@gmail.com; Baskar, K., E-mail: drbaskar2009@gmail.com [Crystal Growth Centre, Anna University, Chennai-600025 (India)

    2014-04-24T23:59:59.000Z

    Hexagonal Gallium Nitride (GaN) and Aluminum Gallium Nitride (AlGaN) nanoparticles were synthesized by sol-gel method using Ethylene Diamine Tetra Acetic acid (EDTA) complex route. Powder X-ray diffraction (PXRD) analysis confirms the hexagonal wurtzite structure of GaN and Al{sub 0.25}Ga{sub 0.75}N nanoparticles. Surface morphology and elemental analysis were carried out by Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX). The room temperature Photoluminescence (PL) study shows the near band edge emission for GaN at 3.35 eV and at 3.59 eV for AlGaN nanoparticles. The Aluminum (Al) composition of 20% has been obtained from PL emission around 345 nm.

  6. Effect of polarization on intersubband transition in AlGaN/GaN multiple quantum wells

    SciTech Connect (OSTI)

    Chen, G.; Li, Z. L.; Wang, X. Q.; Huang, C. C.; Rong, X.; Xu, F. J.; Tang, N.; Qin, Z. X.; Shen, B. [State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China)] [State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Sang, L. W.; Sumiya, M. [Optical and Electronic Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan)] [Optical and Electronic Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Chen, Y. H. [Laboratory of Semiconductor Material Science, Institute of Semiconductors, CAS, Beijing 100083 (China)] [Laboratory of Semiconductor Material Science, Institute of Semiconductors, CAS, Beijing 100083 (China); Ge, W. K. [Department of Physics, Tsinghua University, Beijing 100871 (China)] [Department of Physics, Tsinghua University, Beijing 100871 (China)

    2013-05-13T23:59:59.000Z

    Intersubband transitions (ISBT) of AlGaN/GaN multiple quantum wells (MQWs) with wavelength towards atmospheric window (3-5 {mu}m) have been investigated. A Ga-excess epitaxial method is used in the molecular beam epitaxy leading to ultra-sharp interface and negligible elements inter-diffusion. The absorption peak wavelength of the ISBT was successfully tuned in the range of 3-4 {mu}m by modifying the GaN well thickness from 2.8 to 5.5 nm. It was further found that the polarization charge density of the AlGaN/GaN MQWs was about -0.034 C/m{sup 2} which gave rise to blueshift of the ISBT wavelength and thus partially compensated its redshift with increasing well thickness.

  7. InGaN/GaN single-quantum-well microdisks

    SciTech Connect (OSTI)

    Hsu, Yu-Chi; Lo, Ikai; Shih, Cheng-Hung; Pang, Wen-Yuan; Hu, Chia-Hsuan; Wang, Ying-Chieh; Chou, Mitch M. C. [Department of Physics, Department of Materials and Optoelectronic Science, Center for Nanoscience and Nanotechnology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan (China)

    2012-06-11T23:59:59.000Z

    We have grown In{sub x}Ga{sub 1-x}N/GaN quantum wells atop GaN microdisk with {gamma}-LiAlO{sub 2} substrate by using plasma-assisted molecular beam epitaxy. The structural and optical properties of the samples were analyzed by transmission electron microscopy, x-ray diffraction, cathodoluminescence, and photoluminescence measurements. Based on the measured results, we obtained the indium concentration of the In{sub x}Ga{sub 1-x}N/GaN single quantum well to be x = 0.25 with a band-gap energy of 2.31 eV, which is consistent with the bowing effect of bulk In{sub x}Ga{sub 1-x}N: E{sub g}(x) = [3.42 - x * 2.65 - x * (1 - x) * 2.4] eV.

  8. Atomic layer deposition of GaN using GaCl3 and NH3 Oh Hyun Kim, Dojun Kim, and Tim Andersona

    E-Print Network [OSTI]

    Anderson, Timothy J.

    be grown at lower temperature than by CVD. As example, ALD growth of device quality GaAs, GaP, and InGaP

  9. Dependence of the ground-state transition energy versus optical pumping in GaAsSb/InGaAs/GaAs heterostructures

    SciTech Connect (OSTI)

    Morozov, S. V.; Kryzhkov, D. I., E-mail: krizh@ipmras.ru; Aleshkin, V. Ya. [Institute for Physics of Microstructures, RAS, 603950 Nizhny Novgorod (Russian Federation); Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation); Yablonsky, A. N.; Krasilnik, Z. F. [Institute for Physics of Microstructures, RAS, 603950 Nizhny Novgorod (Russian Federation); Zvonkov, B. N.; Vikhrova, O. V. [Physical-Technical Research Institute, Lobachevsky State University of Nizhny Novgorod, 603950 Nizhny Novgorod (Russian Federation)

    2014-01-13T23:59:59.000Z

    In this work, we report on the time-resolved photoluminescence studies of a double quantum well In{sub 0.2}Ga{sub 0.8}As/GaAs{sub 0.8}Sb{sub 0.2}/GaAs heterostructure which, in contrast to the GaAsSb/GaAs structures, is expected to provide effective confinement of electrons due to additional InGaAs layer. The studies at 4.2?K have revealed a complicated nonmonotonic dependence of the ground-state transition energy on the concentration of nonequilibrium charge carriers in the quantum well. The effect observed in this work is important in terms of creating sources of radiation, including stimulated emission, on the basis of InGaAs/GaAsSb/GaAs structures.

  10. AlGaN/GaN field effect transistors for power electronics—Effect of finite GaN layer thickness on thermal characteristics

    SciTech Connect (OSTI)

    Hodges, C., E-mail: chris.hodges@bristol.ac.uk; Anaya Calvo, J.; Kuball, M. [H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom)] [H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Stoffels, S.; Marcon, D. [IMEC, Kapeldreef 75, B3001 Leuven (Belgium)] [IMEC, Kapeldreef 75, B3001 Leuven (Belgium)

    2013-11-11T23:59:59.000Z

    AlGaN/GaN heterostructure field effect transistors with a 150?nm thick GaN channel within stacked Al{sub x}Ga{sub 1?x}N layers were investigated using Raman thermography. By fitting a thermal simulation to the measured temperatures, the thermal conductivity of the GaN channel was determined to be 60?W m{sup ?1} K{sup ?1}, over 50% less than typical GaN epilayers, causing an increased peak channel temperature. This agrees with a nanoscale model. A low thermal conductivity AlGaN buffer means the GaN spreads heat; its properties are important for device thermal characteristics. When designing power devices with thin GaN layers, as well as electrical considerations, the reduced channel thermal conductivity must be considered.

  11. PUTTING KNOWLEDGE TO WORK The University of Georgia and Ft. Valley State College, the U.S. Department of Agriculture and counties of the state cooperating.

    E-Print Network [OSTI]

    Navara, Kristen

    work force.. The University of Georgia Cooperative Extension Service College of Agricultural BY REDUCING HEAT LOSSES The winter months pose numerous problems and stresses on poultry growers. Rising fuel costs coupled with increased fuel consumption particularly can pose economic hardships

  12. InGaAsP/InGaP buried heterostructure lasers at 810 nm

    SciTech Connect (OSTI)

    Wakao, K.; Isozumi, S.; Nishi, H.; Ohsaka, S.

    1984-12-01T23:59:59.000Z

    InGaAsP/InGaP buried heterostructure lasers emitting at 810 nm have been grown on GaAs substrates using two-step liquid-phase epitaxy. A threshold current of 79 mA and an external differential quantum efficiency of 26% are obtained. Fundamental transverse mode operation up to 3 mW is achieved in the laser with the active region of 3.5 ..mu..m wide.

  13. Simplified 2DEG carrier concentration model for composite barrier AlGaN/GaN HEMT

    SciTech Connect (OSTI)

    Das, Palash, E-mail: d.palash@gmail.com; Biswas, Dhrubes, E-mail: d.palash@gmail.com [Indian Institute of Technology Kharagpur, Kharagpur - 721302, West Bengal (India)

    2014-04-24T23:59:59.000Z

    The self consistent solution of Schrodinger and Poisson equations is used along with the total charge depletion model and applied with a novel approach of composite AlGaN barrier based HEMT heterostructure. The solution leaded to a completely new analytical model for Fermi energy level vs. 2DEG carrier concentration. This was eventually used to demonstrate a new analytical model for the temperature dependent 2DEG carrier concentration in AlGaN/GaN HEMT.

  14. Ohmic contacts to n-GaSb

    E-Print Network [OSTI]

    Yang, Zhengchong

    1997-01-01T23:59:59.000Z

    In recent years, the Ill-V semiconductor GaSb and its ternary alloys containing antimony have exhibited interesting electrical and optical properties for device applications which include negative resistance tunnel devices, lasers, detectors and FET...

  15. The structure of GaAs/Si(211) heteroepitaxial layers

    SciTech Connect (OSTI)

    Liliental-Weber, Z.; Weber, E.R.; Washburn, J.; Liu, T.Y.; Kroemer, H.

    1985-05-01T23:59:59.000Z

    Gallium arsenide films grown on (211)Si by molecular-beam epitaxy have been investigated using transmission electron microscopy. The main defects observed in the alloy were of misfit dislocations, stacking faults, and microtwin lamellas. Silicon surface preparation was found to play an important role on the density of defects formed at the Si/GaAs interface. Two different types of strained-layer superlattices, InGaAs/InGaP and InGaAs/GaAs, were applied either directly to the Si substrate, to a graded layer (GaP-InGaP), or to a GaAs buffer layer to stop the defect propagation into the GaAs films. Applying InGaAs/GaAs instead of InGaAs/InGaP was found to be more effective in blocking defect propagation. In all cases of strained-layer superlattices investigated, dislocation propagation was stopped primarily at the top interface between the superlattice package and GaAs. Graded layers and unstrained AlGaAs/GaAs superlattices did not significantly block dislocations propagating from the interface with Si. Growing of a 50 nm GaAs buffer layer at 505/sup 0/C followed by 10 strained-layer superlattices of InGaAs/GaAs (5 nm each) resulted in the lowest dislocation density in the GaAs layer (approx.5 x 10/sup 7//cm/sup 2/) among the structures investigated. This value is comparable to the recently reported density of dislocations in the GaAs layers grown on (100)Si substrates. Applying three sets of the same strained layers decreased the density of dislocations an additional approx.2 to 3 times.

  16. Over 30{percent} efficient InGaP/GaAs tandem solar cells

    SciTech Connect (OSTI)

    Takamoto, T.; Ikeda, E.; Kurita, H. [Central Research Laboratory, Japan Energy Corporation, 3-17-35 Niizo-Minami, Toda, Saitama 335 (Japan)] [Central Research Laboratory, Japan Energy Corporation, 3-17-35 Niizo-Minami, Toda, Saitama 335 (Japan); Ohmori, M. [Japan Energy Research Center Company, Ltd., 1-11-9 Azabudai, Minato-ku, Tokyo 106 (Japan)] [Japan Energy Research Center Company, Ltd., 1-11-9 Azabudai, Minato-ku, Tokyo 106 (Japan)

    1997-01-01T23:59:59.000Z

    A two-terminal monolithic InGaP/GaAs tandem solar cell with a new efficiency record of 30.28{percent} is realized with a practical large area of 4 cm{sup 2} under one-sun air-mass 1.5 global illumination. We report improvements of the tandem cell performance by introducing a double-hetero (hereafter DH) structure InGaP tunnel junction, in which the InGaP layers are surrounded by high band gap AlInP barriers. The DH structure by AlInP barriers increase the peak current of InGaP tunnel junction. The AlInP barrier directly below the InGaP top cell, which takes the part of a back surface field (hereafter BSF) layer, is found to be considerably effective in reflecting minority carriers in the top cell. The AlInP BSF layer does not only form a high potential barrier but also prevents the diffusion of zinc from a high doped tunnel junction toward the top cell during epitaxial growth. Furthermore, an InGaP tunnel junction reduces the absorption loss, which exists in a GaAs tunnel junction, and increases the photogenerated current in the GaAs bottom cell. {copyright} {ital 1997 American Institute of Physics.}

  17. GaTe semiconductor for radiation detection

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Burger, Arnold (Nashville, TN); Mandal, Krishna C. (Ashland, MA)

    2009-06-23T23:59:59.000Z

    GaTe semiconductor is used as a room-temperature radiation detector. GaTe has useful properties for radiation detectors: ideal bandgap, favorable mobilities, low melting point (no evaporation), non-hygroscopic nature, and availability of high-purity starting materials. The detector can be used, e.g., for detection of illicit nuclear weapons and radiological dispersed devices at ports of entry, in cities, and off shore and for determination of medical isotopes present in a patient.

  18. Effects of the Georgia flood of `94 on Lake Blackshear Dam

    SciTech Connect (OSTI)

    Findlay, R.C.; Northrop, J.H. [Northrop, Devine & Tarbell, Inc., Portland, ME (United States); Crisp, R.L. Jr. [and others

    1995-12-31T23:59:59.000Z

    Tropical Storm Alberto produced record rainfall in central Georgia in early July, 1994. The area drains into Lake Blackshear, formed in the Flint River by Lake Blackshear Dam. The level of the lake rose 3.5 m (11.5 ft) above normal and caused the worst flooding of the area in recorded history. The north embankment of the dam was overtopped, causing a 215 m (700 ft) breach. Prior to the breach, a few concentrated boils were observed in the tailwater downstream of the non-breached portion of the dam. This portion remained intact through the flood, but the presence of the boils raised questions regarding its integrity. The effects of the flood on the north embankment are discussed, as well as the geotechnical investigation conducted to assess subsurface conditions at the breach and intact portions and the plan for remediation.

  19. Attir Khalid William Singhose

    E-Print Network [OSTI]

    Singhose, William

    Department of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405 David Frakes 4

  20. Probing temperature gradients within the GaN buffer layer of AlGaN/GaN high electron mobility transistors with Raman thermography

    SciTech Connect (OSTI)

    Hodges, C., E-mail: chris.hodges@bristol.ac.uk; Pomeroy, J.; Kuball, M. [H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom)

    2014-02-14T23:59:59.000Z

    We demonstrate the ability of confocal Raman thermography using a spatial filter and azimuthal polarization to probe vertical temperature gradients within the GaN buffer layer of operating AlGaN/GaN high electron mobility transistors. Temperature gradients in the GaN layer are measured by using offset focal planes to minimize the contribution from different regions of the GaN buffer. The measured temperature gradient is in good agreement with a thermal simulation treating the GaN thermal conductivity as homogeneous throughout the layer and including a low thermal conductivity nucleation layer to model the heat flow between the buffer and substrate.

  1. Thermoelectric effects in wurtzite GaN and AlxGa1-xN alloys and Alexander A. Balandin

    E-Print Network [OSTI]

    with the active thermoelectric cooling implemented on the same material system can improve the device performance, for the pro- posed cooling system should also be based on GaN. To real- ize this, the high-efficiency Ga,6 Great progress has been achieved in GaN-based microwave technology. GaN transistors with very high

  2. Journal of Crystal Growth 298 (2007) 272275 Dislocation analysis in homoepitaxial GaInN/GaN light emitting

    E-Print Network [OSTI]

    Wetzel, Christian M.

    2007-01-01T23:59:59.000Z

    of GaInN/GaN-based light emitting diodes (LED) on quasi-bulk GaN with an atomically flat polished were much improved. The optical output power of the light emitting diode increased by more than one. Cathodoluminescence; A1. Threading dislocation density; A2. Homoepitaxial growth; B1. GaInN; B3. Light emitting diode

  3. The Effect of the Thermal Boundary Resistance on Self-Heating of AlGaN/GaN HFETs

    E-Print Network [OSTI]

    The Effect of the Thermal Boundary Resistance on Self-Heating of AlGaN/GaN HFETs 1. Introduction, performance of these devices has been limited by self-heating [1] [6]. Thus, accurate modeling of heat diffusion and self-heating effects in AlGaN/GaN heterostructures and device optimization based

  4. InAsGaPInGaP high-temperature power Schottky rectifier and J. M. Woodall

    E-Print Network [OSTI]

    Woodall, Jerry M.

    °C. Further improvement of the thermal stability is expected to be achieved by reducing the diffusion is thought to be due to strong covalent bonding at the InAs/GaP interface. The InAs/GaP heterointerface effectively blocks impurity diffusion. Since InGaP is superior to GaP for high-power applica- tions, as shown

  5. GaAs-based self-aligned laser incorporating InGaP opto-electronic confinement layer

    E-Print Network [OSTI]

    GaAs-based self-aligned laser incorporating InGaP opto-electronic confinement layer K.M. Groom, B fabrication, is demonstrated. An n-doped InGaP layer is utilised for both electrical and optical confinement-doped InGaP current blocking layer that also provides optical confinement. This tech- nology relies

  6. GaN/ZnO and AlGaN/ZnO heterostructure LEDs: growth, fabrication, optical and electrical characterization

    E-Print Network [OSTI]

    Wetzel, Christian M.

    GaN/ZnO and AlGaN/ZnO heterostructure LEDs: growth, fabrication, optical and electrical 12180-3590, U.S.A. ABSTRACT The wide bandgap polar semiconductors GaN and ZnO and their related alloys fields, and surface terminations. With a small lattice mismatch of ~1.8 % between GaN and Zn

  7. Direct Evidence of Nanoscale Carrier Localization in InGaN/GaN Structures Grown on Si Substrates

    E-Print Network [OSTI]

    Nabben, Reinhard

    Direct Evidence of Nanoscale Carrier Localization in InGaN/GaN Structures Grown on Si Substrates: time-resolved photoluminescence, quantum dots, InGaN, Si substrate There exists a strong continuous expensive and are limited in size. Thus, heteroepitaxial growth of GaN on silicon substrates seems

  8. Inclined dislocation-pair relaxation mechanism in homoepitaxial green GaInN/GaN light-emitting diodes

    E-Print Network [OSTI]

    Wetzel, Christian M.

    -emitting diodes LEDs on low-defect density bulk GaN substrate, but not in green LEDs on sapphire substrate an ideal substrate for homoepitaxial growth. Here we study the microstructural properties of green GaInN/GaN-Koehler force10 resulting from a macroscopic relaxation of strain. II. CRYSTAL GROWTH c plane bulk GaN substrate

  9. Junction Temperature Measurements and Thermal Modeling of GaInN/GaN Quantum Well Light-Emitting Diodes

    E-Print Network [OSTI]

    Wetzel, Christian M.

    quantum well (QW) light-emitting diodes (LEDs) grown on sapphire and bulk GaN substrate by micro efficiency in dies grown on GaN substrates with a thermal resistance of 75 K/W. For dies on sapphire of GaN-based blue and green LEDs grown on sapphire and GaN substrates using micro-Raman spectroscopy

  10. Correlation between structural properties and optical amplification in InGaN/GaN heterostructures grown by molecular beam epitaxy

    E-Print Network [OSTI]

    Nabben, Reinhard

    . The lateral homogeneity can be drastically improved using a template of GaN grown on the sapphire substrate-grown heterostructures can drastically be reduced by using a template of MOVPE-GaN on the sapphire substrate, which leadsCorrelation between structural properties and optical amplification in InGaN/GaN heterostructures

  11. Ultra-high frequency photoconductivity decay in GaAs/Ge/GaAs double heterostructure grown by molecular beam epitaxy

    SciTech Connect (OSTI)

    Hudait, M. K.; Zhu, Y. [Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Johnston, S. W. [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States)] [National Renewable Energy Laboratory, Golden, Colorado 80401 (United States); Maurya, D.; Priya, S. [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States); Umbel, R. [Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)] [Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2013-03-04T23:59:59.000Z

    GaAs/Ge/GaAs double heterostructures (DHs) were grown in-situ using two separate molecular beam epitaxy chambers. High-resolution x-ray rocking curve demonstrates a high-quality GaAs/Ge/GaAs heterostructure by observing Pendelloesung oscillations. The kinetics of the carrier recombination in Ge/GaAs DHs were investigated using photoconductivity decay measurements by the incidence excitation from the front and back side of 15 nm GaAs/100 nm Ge/0.5 {mu}m GaAs/(100)GaAs substrate structure. High-minority carrier lifetimes of 1.06-1.17 {mu}s were measured when excited from the front or from the back of the Ge epitaxial layer, suggests equivalent interface quality of GaAs/Ge and Ge/GaAs. Wavelength-dependent minority carrier recombination properties are explained by the wavelength-dependent absorption coefficient of Ge.

  12. Metastable states in InGaN/GaN MQW structures doped with Sm, Eu, and Eu + Sm

    SciTech Connect (OSTI)

    Mezdrogina, M. M., E-mail: Margaret.M@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Kozhanova, Yu. V. [St. Petersburg State Polytechnical University (Russian Federation)

    2013-04-15T23:59:59.000Z

    Measurements of the microphotoluminescence (microPL) spectra of InGaN/GaN:Sm and InGaN/GaN:Eu quantum well (QW) structures show that the action of a magnetic field gives rise to Van Vleck paramagnetism for Eu{sup 3+} and Sm{sup 3+}. The macrophotoluminescence (macroPL) spectra recorded after measuring the microPL spectra of InGaN/GaN QW structures doped with Sm or Eu + Sm at a high excitation level (>10{sup 23} photons cm{sup -2} s{sup -1}) in magnetic fields contain no QW emission lines which are present in the macroPL spectra recorded before these microPL measurements. This is indicative of the presence of photoinduced defects. Annealing of the InGaN/GaN:Sm and InGaN/GaN:(Eu + Sm) structures reduces the concentration of photoinduced defects.

  13. Strategic Utilization of Paper/Wood Waste for Biodiesel Fuel Art J. Ragauskas, Institute of Paper Science and Technology; Georgia Institute of Technology, Atlanta, GA.

    E-Print Network [OSTI]

    Strategic Utilization of Paper/Wood Waste for Biodiesel Fuel Art J. Ragauskas, Institute of Paper lignocellulosics to biodiesel fuel Feedstocks ABSTRACT This poster examines the potential of utilizing waste paper CelluloseHemicelluloseLigninResource Cracking and Refining of Polysaccharides Bio-Diesel Substitutes

  14. Gas-source molecular beam epitaxial growth and characterization of the (Al,In,Ga)NP/GaP material system and Its applications to light-emitting diodes

    E-Print Network [OSTI]

    Odnoblyudov, Vladimir

    2006-01-01T23:59:59.000Z

    on metamorphic growth of InGaP layers on GaP substrates, astemperature amber photoluminescence from InGaP QWs, grownon a metamorphic InGaP layer. References: Fred Shubert E. ,

  15. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes

    SciTech Connect (OSTI)

    Krishnamoorthy, Sriram, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu; Akyol, Fatih [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Rajan, Siddharth, E-mail: krishnamoorthy.13@osu.edu, E-mail: rajan@ece.osu.edu [Department of Electrical and Computer Engineering, The Ohio State University, Columbus, Ohio 43210 (United States); Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210 (United States)

    2014-10-06T23:59:59.000Z

    InGaN/GaN tunnel junction contacts were grown using plasma assisted molecular beam epitaxy (MBE) on top of a metal-organic chemical vapor deposition (MOCVD)-grown InGaN/GaN blue (450?nm) light emitting diode. A voltage drop of 5.3?V at 100?mA, forward resistance of 2 × 10{sup ?2} ? cm{sup 2}, and a higher light output power compared to the reference light emitting diodes (LED) with semi-transparent p-contacts were measured in the tunnel junction LED (TJLED). A forward resistance of 5?×?10{sup ?4} ? cm{sup 2} was measured in a GaN PN junction with the identical tunnel junction contact as the TJLED, grown completely by MBE. The depletion region due to the impurities at the regrowth interface between the MBE tunnel junction and the MOCVD-grown LED was hence found to limit the forward resistance measured in the TJLED.

  16. ccsd-00000821(version1):6Nov2003 Alloy effects in Ga1-xInxN/GaN heterostructures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ccsd-00000821(version1):6Nov2003 Alloy effects in Ga1-xInxN/GaN heterostructures Duc-Phuong Nguyen, France We show that the large band offsets between GaN and InN and the heavy carrier effec- tive masses preclude the use of the Virtual Crystal Approximation to describe the electronic structure of Ga1-xInxN/GaN

  17. DESIGN, GROWTH, FABRICATION AND CHARACTERIZATION OF HIGH-BAND GAP InGaN/GaN SOLAR CELLS

    E-Print Network [OSTI]

    Honsberg, Christiana

    DESIGN, GROWTH, FABRICATION AND CHARACTERIZATION OF HIGH-BAND GAP InGaN/GaN SOLAR CELLS Omkar Jani1 with a band gap of 2.4 eV or greater. InxGa1-xN is one of a few alloys that can meet this key requirement. InGaN.4 eV. InGaN has the appropriate optical properties and has been well demonstrated for light

  18. AlGaN/GaN MIS-HEMT Gate Structure Improvement Using Al2O3 Deposited by PEALD

    E-Print Network [OSTI]

    Boyer, Edmond

    AlGaN/GaN MIS-HEMT Gate Structure Improvement Using Al2O3 Deposited by PEALD R. Meunier1 , A, 38054 Grenoble Cedex 9, France 2 LAAS-CNRS, 7 Avenue du Colonel Roche, 31400 Toulouse, France AlGaN /GaN behavior. Those trapped charges can be associated to the carbon contamination of the AlGaN surface

  19. Emission mechanisms of bulk GaN and InGaN quantum wells prepared by lateral epitaxial overgrowth

    E-Print Network [OSTI]

    Bowers, John

    Emission mechanisms of bulk GaN and InGaN quantum wells prepared by lateral epitaxial overgrowth S for publication 5 January 1999 The emission mechanisms of bulk GaN and InGaN quantum wells QWs were studied suggest that TDs simply reduce the net volume of light-emitting area. This effect is less pronounced in InGaN

  20. Comparison of strong coupling regimes in bulk GaAs, GaN and ZnO semiconductor microcavities

    E-Print Network [OSTI]

    Boyer, Edmond

    , transmission and absorption spectra of bulk GaAs, GaN and ZnO microcavities, in order to compareComparison of strong coupling regimes in bulk GaAs, GaN and ZnO semiconductor microcavities SAs and GaN microcavities. PACS numbers: 78.67.-n, 71.36.+c, 78.20.Ci, 78.55.Cr, 78.55.Et Keywords: polariton

  1. Near ultraviolet emission from nonpolar cubic AlxGa1-xN/GaN quantum wells

    E-Print Network [OSTI]

    As, Donat Josef

    molecular beam epitaxy on free standing 3C-SiC 001 substrates. During growth of Al0.15Ga0.85N/GaN quantum growth of the quantum structures an 800 nm thick GaN buffer layer was deposited on the 3C-SiC substrate. The buffer and the c-AlGaN/GaN quantum wells were grown at a substrate temperature of 720 °C. The layers were

  2. Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template

    SciTech Connect (OSTI)

    Wang, Y.D.; Zang, K.Y.; Chua, S.J.; Tripathy, S.; Chen, P.; Fonstad, C.G. [Singapore-MIT Alliance, E4-04-10, 4 Engineering Drive 3, Singapore 117576 (Singapore) and Centre for Optoelectronics, Department of Electrical and Computer Engineering, National University of Singapore, 2 Engineering Drive 3, Singapore 117576 (Singapore); Institute of Materials Research and Engineering, 3 Research Link, Singapore 117602 (Singapore); Department of Electrical and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2005-12-19T23:59:59.000Z

    We report the growth of high-quality GaN epilayers on an ordered nanoporous GaN template by metalorganic chemical vapor deposition. The nanopores in GaN template were created by inductively coupled plasma etching using anodic aluminum oxide film as an etch mask. The average pore diameter and interpore distance is about 65 and 110 nm, respectively. Subsequent overgrowth of GaN first begins at the GaN crystallite surface between the pores, and then air-bridge-mediated lateral overgrowth leads to the formation of the continuous layer. Microphotoluminescence and micro-Raman measurements show improved optical properties and significant strain relaxation in the overgrown layer when compared to GaN layer of same thickness simultaneously grown on sapphire without any template. Similar to conventional epitaxial lateral overgrown GaN, such overgrown GaN on a nanopatterned surface would also serve as a template for the growth of ultraviolet-visible light-emitting III-nitride devices.

  3. AlGaN/GaN HEMT With 300-GHz fmax

    E-Print Network [OSTI]

    Chung, Jinwook W.

    We report on a gate-recessed AlGaN/GaN high-electron mobility transistor (HEMT) on a SiC substrate with a record power-gain cutoff frequency (f[subscript max]). To achieve this high f[subscript max], we combined a low-damage ...

  4. Gate-First AlGaN/GaN HEMT Technology for High-Frequency Applications

    E-Print Network [OSTI]

    Piner, Edwin L.

    This letter describes a gate-first AlGaN/GaN high-electron mobility transistor (HEMT) with a W/high-k dielectric gate stack. In this new fabrication technology, the gate stack is deposited before the ohmic contacts, and ...

  5. High Indium Concentration InGaN/GaN Grown on Sapphire Substrate by MOCVD

    E-Print Network [OSTI]

    Hartono, Haryono

    The InGaN system provides the opportunity to fabricate light emitting devices over the whole visible and ultraviolet spectrum due to band-gap energies E[subscript g] varying between 3.42 eV for GaN and 1.89 eV for InN. ...

  6. Schottky-Drain Technology for AlGaN/GaN High-Electron Mobility Transistors

    E-Print Network [OSTI]

    Lu, Bin

    In this letter, we demonstrate 27% improvement in the buffer breakdown voltage of AlGaN/GaN high-electron mobility transistors (HEMTs) grown on Si substrate by using a new Schottky-drain contact technology. Schottky-drain ...

  7. Investigation of Strain in AlGaN/GaN Multi Quantum Wells by Complementary Techniques

    SciTech Connect (OSTI)

    Devaraju, G.; Sathish, N.; Pathak, A. P. [School of Physics, University of Hyderabad, Central University (P.0), Hyderabad 500 046 (India); Dhamodaran, S. [Department of Physics, Indian Institute of Technology, IIT P O, Kanpur UP 208016 (India); Gaca, J.; Wojcik, M. [Institute of Electronic Materials Technology, 01-919 Warsaw, ul. Wolczynska 133 (Poland); Turos, A. [Institute of Electronic Materials Technology, 01-919 Warsaw, ul. Wolczynska 133 (Poland); Soltan Institute for Nuclear Studies, Swierk/Otwock, Warsaw (Poland); Arora, B. M. [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai-400 005 (India)

    2009-03-10T23:59:59.000Z

    Al{sub 0.49}Ga{sub 0.51}N(12 nm)/GaN (13 nm) Multi Quantum Wells of 15 periods are grown on sapphire by MOCVD technique. GaN/AlN, each of thickness 200 nm and 20 nm respectively, are used as buffer layers between substrate and epilayer to incorporate the strain in epilayers. It is a well established technique to engineer the band gap in Al{sub x}Ga{sub 1-x}N by adjusting alloy composition. These samples are used in visible and UV light emitters. In the present study, we employ a photoluminescence technique to estimate the composition and luminescence peak positions of AlGaN and GaN. Crystallinity and quality of interfaces have been studied by Rocking curve scan. The Threading Dislocations formed at the GaN buffer layer travel across the entire layers to the surface to form good quality films. Photo-luminescence results show a very sharp GaN peak at 3.4 eV, as observed and reported by others, which shows that samples are free from point defects.

  8. Hydrocarbon geochemistry of the strait of Georgia: Modification of a Fraser River dominated regime by ocean dumping

    SciTech Connect (OSTI)

    Yunker, M.B.; Macdonald, R.W.; Paton, D. [Inst. of Ocean Sciences, Sidney, British Columbia (Canada)] [and others

    1996-12-31T23:59:59.000Z

    Despite the presence of Canada`s third largest city and of the largest river reaching the west coast of Canada, the study of the environmental and geochemical aspects of hydrocarbon distributions in the lower Fraser River and adjacent Strait of Georgia has not progressed beyond the cataloguing of environmental concentrations. Hence hydrocarbon distributions in the lower Fraser River are only poorly understood and very little is known about either the role that the Fraser River plays in defining the hydrocarbon geochemistry of the Strait of Georgia or how hydrocarbon distributions in the strait are being modified by shipping or dredging activities associated with the port of Vancouver. This report describes the results of analysis from sediments and particulate samples.

  9. Georgia Waste Control Law (Georgia)

    Broader source: Energy.gov [DOE]

    The Waste Control Law makes it unlawful to dump waste in any lakes, streams or surfaces waters of the State or on any private property without consent of the property owner. Waste is very broadly...

  10. Gallium surface diffusion on GaAs (001) surfaces measured by crystallization dynamics of Ga droplets

    SciTech Connect (OSTI)

    Bietti, Sergio, E-mail: sergio.bietti@mater.unimib.it; Somaschini, Claudio; Esposito, Luca; Sanguinetti, Stefano [L–NESS and Dipartimento di Scienza dei Materiali, Università di Milano Bicocca, Via Cozzi 55, I–20125 Milano (Italy); Fedorov, Alexey [L–NESS and CNR–IFN, via Anzani 42, I-22100 Como (Italy)

    2014-09-21T23:59:59.000Z

    We present accurate measurements of Ga cation surface diffusion on GaAs surfaces. The measurement method relies on atomic force microscopy measurement of the morphology of nano–disks that evolve, under group V supply, from nanoscale group III droplets, earlier deposited on the substrate surface. The dependence of the radius of such nano-droplets on crystallization conditions gives direct access to Ga diffusion length. We found an activation energy for Ga on GaAs(001) diffusion E{sub A}=1.31±0.15 eV, a diffusivity prefactor of D{sub 0}?=?0.53(×2.1±1) cm{sup 2} s{sup ?1} that we compare with the values present in literature. The obtained results permit to better understand the fundamental physics governing the motion of group III ad–atoms on III–V crystal surfaces and the fabrication of designable nanostructures.

  11. Lattice-matched epitaxial GaInAsSb/GaSb thermophotovoltaic devices

    SciTech Connect (OSTI)

    Wang, C.A.; Choi, H.K.; Turner, G.W.; Spears, D.L.; Manfra, M.J. [Massachusetts Inst. of Tech., Lexington, MA (United States). Lincoln Lab.; Charache, G.W. [Lockheed Martin, Inc., Schenectady, NY (United States)

    1997-05-01T23:59:59.000Z

    The materials development of Ga{sub 1{minus}x}In{sub x}As{sub y}Sb{sub 1{minus}y} alloys for lattice-matched thermophotovoltaic (TPV) devices is reported. Epilayers with cutoff wavelength 2--2.4 {micro}m at room temperature and lattice-matched to GaSb substrates were grown by both low-pressure organometallic vapor phase epitaxy and molecular beam epitaxy. These layers exhibit high optical and structural quality. For demonstrating lattice-matched thermophotovoltaic devices, p- and n-type doping studies were performed. Several TPV device structures were investigated, with variations in the base/emitter thicknesses and the incorporation of a high bandgap GaSb or AlGaAsSb window layer. Significant improvement in the external quantum efficiency is observed for devices with an AlGaAsSb window layer compared to those without one.

  12. Green cubic GaInN/GaN light-emitting diode on microstructured silicon (100)

    SciTech Connect (OSTI)

    Stark, Christoph J. M.; Detchprohm, Theeradetch; Wetzel, Christian, E-mail: wetzel@ieee.org [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States) [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Future Chips Constellation, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Lee, S. C.; Brueck, S. R. J. [Department of Electrical and Computer Engineering and Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 (United States)] [Department of Electrical and Computer Engineering and Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 (United States); Jiang, Y.-B. [Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131 (United States)] [Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2013-12-02T23:59:59.000Z

    GaInN/GaN light-emitting diodes free of piezoelectric polarization were prepared on standard electronic-grade Si(100) substrates. Micro-stripes of GaN and GaInN/GaN quantum wells in the cubic crystal structure were grown on intersecting (111) planes of microscale V-grooved Si in metal-organic vapor phase epitaxy, covering over 50% of the wafer surface area. Crystal phases were identified in electron back-scattering diffraction. A cross-sectional analysis reveals a cubic structure virtually free of line defects. Electroluminescence over 20 to 100??A is found fixed at 487?nm (peak), 516?nm (dominant). Such structures therefore should allow higher efficiency, wavelength-stable light emitters throughout the visible spectrum.

  13. Landesque capital as an alternative to food storage in Melanesia: irrigated taro terraces in New Georgia, Solomon Islands

    E-Print Network [OSTI]

    Bayliss-Smith, Tim; Hviding, Edvard

    2014-11-07T23:59:59.000Z

    from streams (Bayliss-Smith and Hviding 2012, 2014). By controlling the flow of water through pondfields high yields of taro can be achieved, enabling a large energy surplus to be accumulated in the form of a growing crop (Spriggs 1982, 1990; Kirch... , we chart its prehistoric rise and post-colonial fall, and we outline the factors that constrained its long-term expansion. Key words: landesque capital, New Georgia, Solomon Islands, taro, terraces, irrigation 2 Ways to achieve food...

  14. Large internal dipole moment in InGaN/GaN quantum dots Irina A. Ostapenko, Gerald Hnig, Christian Kindel, Sven Rodt, Andr Strittmatter et al.

    E-Print Network [OSTI]

    Nabben, Reinhard

    Large internal dipole moment in InGaN/GaN quantum dots Irina A. Ostapenko, Gerald Hönig, Christian transitions in wurtzite InGaN/GaN coupled quantum dot nanowire heterostructures with polarization internal dipole moment in InGaN/GaN quantum dots Irina A. Ostapenko,a Gerald Hönig, Christian Kindel, Sven

  15. Investigation of large Stark shifts in InGaN/GaN multiple quantum wells Guibao Xu, Guan Sun, Yujie J. Ding, Hongping Zhao, Guangyu Liu et al.

    E-Print Network [OSTI]

    Gilchrist, James F.

    Investigation of large Stark shifts in InGaN/GaN multiple quantum wells Guibao Xu, Guan Sun, Yujie overgrowth on residual strain and In incorporation in a-plane InGaN/GaN quantum wells on r- sapphire substrates J. Appl. Phys. 113, 023506 (2013) Anisotropic lattice relaxation in non-c-plane InGaN/GaN multiple

  16. Quantum confinement in GaP nanoclusters

    SciTech Connect (OSTI)

    Laurich, B.K.; Smith, D.C.; Healy, M.D.

    1994-06-01T23:59:59.000Z

    We have prepared GaP and GaAs nanoclusters from organometallic condensation reactions of E[Si(ChH{sub 3})3]3 (E = P, As) and GaCl{sub 3}. The size of the as synthesized clusters is 10 {Angstrom} to 15 {Angstrom}. Larger clusters of 20 {Angstrom} to 30 {Angstrom} size were obtained by thermal annealing of the as grown material. X-ray diffraction and transmission electron microscopy confirm the high crystalline quality. A lattice contraction of 6.7% could be seen for 10 {Angstrom} sized GaAs clusters. The clusters are nearly spherical in shape. Optical absorption spectra show a distinct line which can be assigned to the fundamental transition of the quantum confined electronic state. The measured blue shift, with respect to the GaP bulk absorption edge is 0.53 eV. As the cluster is smaller than the exciton radius, we can calculate the cluster size from this blue shift and obtain 20.2 {Angstrom}, consistent with the results from X-ray diffraction of 19.5 {Angstrom} for the same sample.

  17. UID-GaN doping1016 cm-3 2 m 5 m2 m

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2 µm Drain Silicon UID-GaN ­ doping1016 cm-3 1.1 µm 2 µm GateSource 2 µm 5 µm2 µm AirAir Al0.25GaN ­ doping1015 cm-3 30 nm Drain Silicon UID-GaN P-GaNSource AirAir AlxGaN Drain Silicon UID-GaN GateSource AirAir AlxGaN Gate (a) (b) (c) Drain Silicon UID-GaN P-GaNSource AirAir AlxGaN Gate (d) P-GaN P-GaN 30

  18. Carrier capture dynamics of single InGaAs/GaAs quantum-dot layers

    SciTech Connect (OSTI)

    Chauhan, K. N.; Riffe, D. M.; Everett, E. A.; Kim, D. J.; Yang, H. [Physics Department, Utah State University, Logan, Utah 84322-4415 (United States)] [Physics Department, Utah State University, Logan, Utah 84322-4415 (United States); Shen, F. K. [Center for Surface Analysis and Applications, Utah State University, Logan, Utah 84322-4415 (United States)] [Center for Surface Analysis and Applications, Utah State University, Logan, Utah 84322-4415 (United States)

    2013-05-28T23:59:59.000Z

    Using 800 nm, 25-fs pulses from a mode locked Ti:Al{sub 2}O{sub 3} laser, we have measured the ultrafast optical reflectivity of MBE-grown, single-layer In{sub 0.4}Ga{sub 0.6}As/GaAs quantum-dot (QD) samples. The QDs are formed via two-stage Stranski-Krastanov growth: following initial InGaAs deposition at a relatively low temperature, self assembly of the QDs occurs during a subsequent higher temperature anneal. The capture times for free carriers excited in the surrounding GaAs (barrier layer) are as short as 140 fs, indicating capture efficiencies for the InGaAs quantum layer approaching 1. The capture rates are positively correlated with initial InGaAs thickness and annealing temperature. With increasing excited carrier density, the capture rate decreases; this slowing of the dynamics is attributed to Pauli state blocking within the InGaAs quantum layer.

  19. Epitaxial GaN films by hyperthermal ion-beam nitridation of Ga droplets

    SciTech Connect (OSTI)

    Gerlach, J. W.; Ivanov, T.; Neumann, L.; Hoeche, Th.; Hirsch, D.; Rauschenbach, B. [Leibniz-Institut fuer Oberflaechenmodifizierung (IOM), D-04318 Leipzig (Germany)

    2012-06-01T23:59:59.000Z

    Epitaxial GaN film formation on bare 6H-SiC(0001) substrates via the process of transformation of Ga droplets into a thin GaN film by applying hyperthermal nitrogen ions is investigated. Pre-deposited Ga atoms in well defined amounts form large droplets on the substrate surface which are subsequently nitridated at a substrate temperature of 630 Degree-Sign C by a low-energy nitrogen ion beam from a constricted glow-discharge ion source. The Ga deposition and ion-beam nitridation process steps are monitored in situ by reflection high-energy electron diffraction. Ex situ characterization by x-ray diffraction and reflectivity techniques, Rutherford backscattering spectrometry, and electron microscopy shows that the thickness of the resulting GaN films depends on the various amounts of pre-deposited gallium. The films are epitaxial to the substrate, exhibit a mosaic like, smooth surface topography and consist of coalesced large domains of low defect density. Possible transport mechanisms of reactive nitrogen species during hyperthermal nitridation are discussed and the formation of GaN films by an ion-beam assisted process is explained.

  20. GaAs photoconductive semiconductor switch

    DOE Patents [OSTI]

    Loubriel, G.M.; Baca, A.G.; Zutavern, F.J.

    1998-09-08T23:59:59.000Z

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device is disclosed. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices. 5 figs.

  1. GaAs photoconductive semiconductor switch

    DOE Patents [OSTI]

    Loubriel, Guillermo M. (Sandia Park, NM); Baca, Albert G. (Albuquerque, NM); Zutavern, Fred J. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.

  2. GaN: Defect and Device Issues

    SciTech Connect (OSTI)

    Pearton, S.J.; Ren, F.; Shul, R.J.; Zolper, J.C.

    1998-11-09T23:59:59.000Z

    The role of extended and point defects, and key impurities such as C, O and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

  3. High-temperature molecular beam epitaxial growth of AlGaN/GaN on GaN templates with reduced interface impurity levels

    SciTech Connect (OSTI)

    Koblmueller, G. [Department of Materials, University of California, Santa Barbara, California 93106 (United States); Walter Schottky Institut, Technische Universitaet Muenchen, D-85748 Garching (Germany); Chu, R. M.; Raman, A.; Mishra, U. K. [Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States); Speck, J. S. [Department of Materials, University of California, Santa Barbara, California 93106 (United States)

    2010-02-15T23:59:59.000Z

    We present combined in situ thermal cleaning and intentional doping strategies near the substrate regrowth interface to produce high-quality AlGaN/GaN high electron mobility transistors on semi-insulating (0001) GaN templates with low interfacial impurity concentrations and low buffer leakage. By exposing the GaN templates to an optimized thermal dissociation step in the plasma-assisted molecular beam epitaxy environment, oxygen, carbon, and, to lesser extent, Si impurities were effectively removed from the regrowth interface under preservation of good interface quality. Residual Si was further compensated by C-doped GaN via CBr{sub 4} to yield highly resistive GaN buffer layers. Improved N-rich growth conditions at high growth temperatures were then utilized for subsequent growth of the AlGaN/GaN device structure, yielding smooth surface morphologies and low residual oxygen concentration with large insensitivity to the (Al+Ga)N flux ratio. Room temperature electron mobilities of the two-dimensional electron gas at the AlGaN/GaN interface exceeded >1750 cm{sup 2}/V s and the dc drain current reached {approx}1.1 A/mm at a +1 V bias, demonstrating the effectiveness of the applied methods.

  4. Defect studies in low-temperature-grown GaAs

    SciTech Connect (OSTI)

    Bliss, D.E.

    1992-11-01T23:59:59.000Z

    High content of excess As is incorporated in GaAs grown by low-temperature molecular-beam-epitaxy (LTMBE). The excess As exists primarily as As antisite defects AsGa and a lesser extent of gallium vacancies V[sub Ga]. The neutral AsGa-related defects were measured by infrared absorption at 1[mu]m. Gallium vacancies, V[sub Ga], was investigated by slow positron annihilation. Dependence of defect contents on doping was studied by Si and Be dopants. No free carriers are generated by n-type or p-type doping up to 10[sup 19] cm[sup [minus]3] Si or Be. Raman data indicate Be occupies Ga substitutional sites but Si atom is not substitutional. Si induces more As[sub Ga] in the layer. As As[sub Ga] increases, photoquenchable As[sub Ga] decreases. Fraction of photoquenchable defects correlates to defects within 3 nearest neighbor separations disrupting the metastability. Annealing reduces neutral As[sub Ga] content around 500C, similar to irradiation damaged and plastically deformed Ga[sub As], as opposed to bulk grown GaAs in which As[sub Ga]-related defects are stable up to 1100C. The lower temperature defect removal is due to V[sub Ga] enhanced diffusion of As[sub Ga] to As precipitates. The supersaturated V[sub GA] and also decreases during annealing. Annealing kinetics for As[sub Ga]-related defects gives 2.0 [plus minus] 0.3 eV and 1.5 [plus minus] 0.3 eV migration enthalpies for the As[sub Ga] and V[sub Ga]. This represents the difference between Ga and As atoms hopping into the vacancy. The non-photoquenchable As[sub Ga]-related defects anneal with an activation energy of 1.1 [plus minus] 0.3eV. Be acceptors can be activated by 800C annealing. Temperature difference between defect annealing and Be activation formation of As[sub Ga]-Be[sub Ga] pairs. Si donors can only be partially activated.

  5. PHYSICAL REVIEW B 85, 045319 (2012) Photoluminescence from In0.5Ga0.5As/GaP quantum dots coupled to photonic crystal cavities

    E-Print Network [OSTI]

    Vuckovic, Jelena

    2012-01-01T23:59:59.000Z

    in materials systems, including InP/InGaP,6­9 InP/GaP,10,11 InP/AlGaInP,12,13 GaInP/GaP,14 InAs/GaP,15 and Al have been observed only in the InP/InGaP and InP/AlGaInP systems. GaP-based materials, by contrastP compared to InGaP is preferable for on-chip frequency downconversion to telecom wavelengths. Recently,17

  6. Optical spectroscopy of quantum confined states in GaAs/AlGaAs quantum well tubes

    SciTech Connect (OSTI)

    Shi, Teng; Fickenscher, Melodie; Smith, Leigh; Jackson, Howard [Department of Physics, University of Cincinnati, Cincinnati, OH 45221 (United States); Yarrison-Rice, Jan [Department of Physics, Miami University, Oxford, OH 45056 (United States); Gao, Qiang; Tan, Hoe; Jagadish, Chennupati [Department of Electronic Materials and Engineering, Australian National University, Canberra, ACT 0200 (Australia); Etheridge, Joanne [Monash Centre for Electron Microscopy, Monash University, Victoria, 3800 (Australia); Wong, Bryan M. [Materials Chemistry Department, Sandia National Laboratories, Livermore, CA 94551 (United States)

    2013-12-04T23:59:59.000Z

    We have investigated the quantum confinement of electronic states in GaAs/Al{sub x}Ga{sub 1?x}As nanowire heterostructures which contain radial GaAs quantum wells of either 4nm or 8nm. Photoluminescence and photoluminescence excitation spectroscopy are performed on single nanowires. We observed emission and excitation of electron and hole confined states. Numerical calculations of the quantum confined states using the detailed structural information on the quantum well tubes show excellent agreement with these optical results.

  7. Strain-induced fundamental optical transition in (In,Ga)As/GaP quantum dots

    SciTech Connect (OSTI)

    Robert, C., E-mail: cedric.robert@insa-rennes.fr, E-mail: cedric.robert@tyndall.ie; Pedesseau, L.; Cornet, C.; Jancu, J.-M.; Even, J.; Durand, O. [Université Européenne de Bretagne, INSA Rennes, France and CNRS, UMR 6082 Foton, 20 Avenue des Buttes de Coësmes, 35708 Rennes (France)] [Université Européenne de Bretagne, INSA Rennes, France and CNRS, UMR 6082 Foton, 20 Avenue des Buttes de Coësmes, 35708 Rennes (France); Nestoklon, M. O. [Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)] [Ioffe Physico-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Pereira da Silva, K. [ICMAB-CSIC, Campus UAB, 08193 Bellaterra (Spain) [ICMAB-CSIC, Campus UAB, 08193 Bellaterra (Spain); Departamento de Física, Universidade Federal do Ceará, P.O. Box 6030, Fortaleza–CE, 60455-970 (Brazil); Alonso, M. I. [ICMAB-CSIC, Campus UAB, 08193 Bellaterra (Spain)] [ICMAB-CSIC, Campus UAB, 08193 Bellaterra (Spain); Goñi, A. R. [ICMAB-CSIC, Campus UAB, 08193 Bellaterra (Spain) [ICMAB-CSIC, Campus UAB, 08193 Bellaterra (Spain); ICREA, Passeig Lluís Companys 23, 08010 Barcelona (Spain); Turban, P. [Equipe de Physique des Surfaces et Interfaces, Institut de Physique de Rennes UMR UR1-CNRS 6251, Université de Rennes 1, F-35042 Rennes Cedex (France)] [Equipe de Physique des Surfaces et Interfaces, Institut de Physique de Rennes UMR UR1-CNRS 6251, Université de Rennes 1, F-35042 Rennes Cedex (France)

    2014-01-06T23:59:59.000Z

    The nature of the ground optical transition in an (In,Ga)As/GaP quantum dot is thoroughly investigated through a million atoms supercell tight-binding simulation. Precise quantum dot morphology is deduced from previously reported scanning-tunneling-microscopy images. The strain field is calculated with the valence force field method and has a strong influence on the confinement potentials, principally, for the conduction band states. Indeed, the wavefunction of the ground electron state is spatially confined in the GaP matrix, close to the dot apex, in a large tensile strain region, having mainly Xz character. Photoluminescence experiments under hydrostatic pressure strongly support the theoretical conclusions.

  8. Midinfrared intersubband absorption in GaN/AlGaN superlattices on Si(111) templates

    SciTech Connect (OSTI)

    Kandaswamy, P. K.; Monroy, E. [CEA/CNRS group 'Nanophysique et semiconducteurs', INAC/SP2M/NPSC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France); Machhadani, H.; Sakr, S.; Tchernycheva, M.; Julien, F. H. [Photis, Institut d'Electronique Fondamentale, Universite Paris-Sud, 91405 Orsay Cedex (France); Bougerol, C. [CEA/CNRS group 'Nanophysique et semiconducteurs', Institut Neel, 25 rue des Martyrs, 38042 Grenoble Cedex 9 (France)

    2009-10-05T23:59:59.000Z

    We report on the observation of midinfrared intersubband absorption in Si-doped GaN/AlGaN superlattices grown by plasma-assisted molecular-beam epitaxy on semi-insulating GaN-on-Si(111) templates. TM-polarized absorption attributed to transition between the first two electronic levels in the quantum wells peaked in the range from 2 to 9 {mu}m. The relative spectral width remains around 20% in the whole midinfrared spectral range. Doping is predicted to have a large influence on the intersubband absorption energy due to screening of polarization-induced internal electric field.

  9. Energy absorption in Ni-Mn-Ga/ polymer composites

    E-Print Network [OSTI]

    Feuchtwanger, Jorge

    2006-01-01T23:59:59.000Z

    In recent years Ni-Mn-Ga has attracted considerable attention as a new kind of actuator material. Off-stoichiometric single crystals of Ni2MnGa can regularly exhibit 6% strain in tetragonal martensites and orthorhombic ...

  10. Degradation mechanisms of GaN high electron mobility transistors

    E-Print Network [OSTI]

    Joh, Jungwoo

    2007-01-01T23:59:59.000Z

    In spite of their extraordinary performance, GaN high electron mobility transistors (HEMT) have still limited reliability. In RF power applications, GaN HEMTs operate at high voltage where good reliability is essential. ...

  11. On strongly GA-convex functions and stochastic processes

    SciTech Connect (OSTI)

    Bekar, Nurgül Okur [Department of Statistics, Giresun University, Giresun (Turkey); Akdemir, Hande Günay; ??can, ?mdat [Department of Mathematics, Giresun University, Giresun (Turkey)

    2014-08-20T23:59:59.000Z

    In this study, we introduce strongly GA-convex functions and stochastic processes. We provide related well-known Kuhn type results and Hermite-Hadamard type inequality for strongly GA-convex functions and stochastic processes.

  12. TEM-Untersuchungen an GaN basierten Halbleiterheterostrukturen fur

    E-Print Network [OSTI]

    Schubart, Christoph

    TEM-Untersuchungen an GaN basierten Halbleiterheterostrukturen f¨ur optoelektronische Anwendungen . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 5.1.2 Versetzungen bei Homoapitaxie auf GaN-Substraten . . . . 79 5.2 Versetzungsreduktion durch

  13. GaN Nanopore Arrays: Fabrication and Characterization

    E-Print Network [OSTI]

    Wang, Yadong

    GaN nanopore arrays with pore diameters of approximately 75 nm were fabricated by inductively coupled plasma etching (ICP) using anodic aluminum oxide (AAO) films as etch masks. Nanoporous AAO films were formed on the GaN ...

  14. Pyrococcus Furiosus Genome Supplementary Data from the Adams Laboratory at the University of Georgia

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Adams, Michael W.W.; Weinberg, Michael V.; Schut, Gerrit J.; Brehm, Scott; Datta, Susmitta; Zhou, J.

    The research in the Adams Laboratory focuses on the physiology of hyperthermophilic organisms with an emphasis on metal-containing enzymes in the hyperthermophilic marine archaeon Pyrococcus furiosus. Three of the many articles from this University of Georgia lab have supplementary materials that are available on the Adams Lab website. All three sets of data are Open Reading Frames (ORFs) used for DNA microarray experiments and the changes in signal intensities. The full citations for the three articles are: 1) Weinberg, M. V., Schut, G. J., Brehm, S., Datta, S. and Adams, M. W. W. (2005) Cold shock of a hyperthermophilic archaeon: Pyrococcus furiosus exhibits multiple responses to a suboptimal growth temperature with a key role for membrane-bound glycoproteins. J Bacteriol. 187, 336-348; 2) Schut, G. J., Brehm, S. D., Datta, S. and Adams, M. W. W. (2003) "Whole genome DNA microarray analysis of a hyperthermophile and an archaeon: Pyrococcus furiosus grown on carbohydrates or peptides" J. Bacteriol. 185, 3935-3947; Schut, G. J., Zhou, J. and Adams, M. W. W. (2001) "DNA microarray analysis of the hyperthermophilic archaeon Pyrococcus furiosus evidence for a new type of sulfur-reducing enzyme" J. Bacteriol. 183, 7027-7036. Note that these articles are copyrighted by the Journal of Bacteriology.

  15. Community Energy Systems and the Law of Public Utilities. Volume Twelve. Georgia

    SciTech Connect (OSTI)

    Feurer, D A; Weaver, C L

    1981-01-01T23:59:59.000Z

    A detailed description of the laws and programs of the State of Georgia governing the regulation of public energy utilities, the siting of energy generating and transmission facilities, the municipal franchising of public energy utilities, and the prescription of rates to be charged by utilities including attendant problems of cost allocations, rate base and operating expense determinations, and rate of return allowances. These laws and programs are analyzed to identify impediments which they may present to the implementation of Integrated Community Energy Systems (ICES). This report is one of fifty-one separate volumes which describe such regulatory programs at the Federal level and in each state as background to the report entitled Community Energy Systems and the Law of Public Utilities - Volume One: An Overview. This report also contains a summary of a strategy described in Volume One - An Overview for overcoming these impediments by working within the existing regulatory framework and by making changes in the regulatory programs to enhance the likelihood of ICES implementation.

  16. Height stabilization of GaSb/GaAs quantum dots by Al-rich capping

    SciTech Connect (OSTI)

    Smakman, E. P., E-mail: e.p.smakman@tue.nl; Koenraad, P. M. [Department of Applied Physics, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven (Netherlands); DeJarld, M.; Martin, A. J.; Millunchick, J. [Department of Material Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109 (United States); Luengo-Kovac, M.; Sih, V. [Department of Physics, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-09-01T23:59:59.000Z

    GaSb quantum dots (QDs) in a GaAs matrix are investigated with cross-sectional scanning tunneling microscopy (X-STM) and photoluminescence (PL). We observe that Al-rich capping materials prevent destabilization of the nanostructures during the capping stage of the molecular beam epitaxy (MBE) growth process and thus preserves the QD height. However, the strain induced by the absence of destabilization causes many structural defects to appear around the preserved QDs. These defects originate from misfit dislocations near the GaSb/GaAs interface and extend into the capping layer as stacking faults. The lack of a red shift in the QD PL suggests that the preserved dots do not contribute to the emission spectra. We suggest that a better control over the emission wavelength and an increase of the PL intensity is attainable by growing smaller QDs with an Al-rich overgrowth.

  17. 2DEG electrodes for piezoelectric transduction of AlGaN/GaN MEMS resonators

    E-Print Network [OSTI]

    Weinstein, Dana

    A 2D electron gas (2DEG) interdigitated transducer (IDT) in Gallium Nitride (GaN) resonators is introduced and demonstrated. This metal-free transduction does not suffer from the loss mechanisms associated with more commonly ...

  18. High-field quasi-ballistic transport in AlGaN/GaN heterostructures

    SciTech Connect (OSTI)

    Danilchenko, B. A.; Tripachko, N. A. [Institute of Physics, NASU, Pr. Nauki 46, Kiev 03028 (Ukraine); Belyaev, A. E. [Institute of Semiconductor Physics, NASU, Pr. Nauki 45, Kiev 03028 (Ukraine); Vitusevich, S. A., E-mail: s.vitusevich@fz-juelich.de; Hardtdegen, H.; Lüth, H. [Peter Grünberg Institute (PGI-8,PGI-9), Forschungszentrum Jülich, Jülich D-52425 (Germany)

    2014-02-17T23:59:59.000Z

    Mechanisms of electron transport formation in 2D conducting channels of AlGaN/GaN heterostructures in extremely high electric fields at 4.2?K have been studied. Devices with a narrow constriction for the current flow demonstrate high-speed electron transport with an electron velocity of 6.8?×?10{sup 7}?cm/s. Such a velocity is more than two times higher than values reported for conventional semiconductors and about 15% smaller than the limit value predicted for GaN. Superior velocity is attained in the channel with considerable carrier reduction. The effect is related to a carrier runaway phenomenon. The results are in good agreement with theoretical predictions for GaN-based materials.

  19. AlGaN/GaN High-Electron-Mobility Transistor Employing an Additional Gate for High-Voltage Switching Applications

    E-Print Network [OSTI]

    Seo, Kwang Seok

    AlGaN/GaN High-Electron-Mobility Transistor Employing an Additional Gate for High-Voltage Switching 16, 2004; accepted May 10, 2005; published September 8, 2005) We have proposed and fabricated an AlGaN/GaN: GaN, AlGaN, HEMT, switch 1. Introduction GaN has attracted attention for high-power and high

  20. Cubic AlGaN/GaN Hetero-Junction Field-Effect Transistors with Normally-on and Normally-off

    E-Print Network [OSTI]

    As, Donat Josef

    Cubic AlGaN/GaN Hetero-Junction Field-Effect Transistors with Normally-on and Normally-effect transistors (HFETs) in GaN technology. HFET structures were fabricated of non-polar cubic AlGaN/GaN hetero insulation of 3C-SiC was realized by Ar+ implantation before c-AlGaN/GaN growth. HFETs with normally

  1. A 3-10 GHZLCR-matched Power Amplifier using Flip-Chip Mounted AlGaN/GaN HEMTs

    E-Print Network [OSTI]

    York, Robert A.

    WE4A-5 A 3-10 GHZLCR-matched Power Amplifier using Flip-Chip Mounted AlGaN/GaN HEMTs Jane J a GaN-based broadband power amplifier using AlGaN/GaN-HEMTs, grown on sapphire substrates amplifier using GaN- HEMTs-on-Sapphire. I INTRODUCTION GaN HEMTs have enormous potential for realizing high

  2. IPAP Conference Series 1: IWN2000, Nov., 2000 1 Morphology Dependent Growth Kinetics of Ga-polar GaN(0001)

    E-Print Network [OSTI]

    Cohen, Philip I.

    IPAP Conference Series 1: IWN2000, Nov., 2000 1 Morphology Dependent Growth Kinetics of Ga-polar GaN, cohen@ece.umn.edu GaN grown on Ga polar GaN templates prepared by metal-organic vapor deposition shows to equilibrium models of the growth. The results indicate that Ga-polar GaN(0001) has a step energy of the order

  3. Engineering of AlGaN-Delta-GaN Quantum-Well Gain Media for Mid-and Deep-Ultraviolet Lasers

    E-Print Network [OSTI]

    Gilchrist, James F.

    Engineering of AlGaN-Delta-GaN Quantum-Well Gain Media for Mid- and Deep-Ultraviolet Lasers Volume.1109/JPHOT.2013.2248705 1943-0655/$31.00 Ó2013 IEEE #12;Engineering of AlGaN-Delta-GaN Quantum-Well Gain@Lehigh.Edu). Abstract: The gain characteristics of AlGaN-delta-GaN quantum wells (QWs) with varying delta-GaN positions

  4. Recent progress in InGaAsSb/GaSb TPV devices

    SciTech Connect (OSTI)

    Shellenbarger, Z.A.; Mauk, M.G.; DiNetta, L.C. [AstroPower, Inc., Newark, DE (United States); Charache, G.W. [Lockheed Martin Corp., Schenectady, NY (United States)

    1996-05-01T23:59:59.000Z

    AstroPower is developing InGaAsSb thermophotovoltaic (TPV) devices. This photovoltaic cell is a two-layer epitaxial InGaAsSb structure formed by liquid-phase epitaxy on a GaSb substrate. The (direct) bandgap of the In{sub 1{minus}x}Ga{sub x}As{sub 1{minus}y}Sb{sub y} alloy is 0.50 to 0.55 eV, depending on its exact alloy composition (x,y); and is closely lattice-matched to the GaSb substrate. The use of the quaternary alloy, as opposed to a ternary alloy--such as, for example InGaAs/InP--permits low bandgap devices optimized for 1,000 to 1,500 C thermal sources with, at the same time, near-exact lattice matching to the GaSb substrate. Lattice matching is important since even a small degree of lattice mismatch degrades device performance and reliability and increases processing complexity. Internal quantum efficiencies as high as 95% have been measured at a wavelength of 2 microns. At 1 micron wavelengths, internal quantum efficiencies of 55% have been observed. The open-circuit voltage at currents of 0.3 A/cm{sup 2} is 0.220 volts and 0.280 V for current densities of 2 A/cm{sup 2}. Fill factors of 56% have been measured at 60 mA/cm{sup 2}. However, as current density increases there is some decrease in fill factor. The results to date show that the GaSb-based quaternary compounds provide a viable and high performance energy conversion solution for thermophotovoltaic systems operating with 1,000 to 1,500 C source temperatures.

  5. AlGaAs/GaAs photovoltaic converters for high power narrowband radiation

    SciTech Connect (OSTI)

    Khvostikov, Vladimir; Kalyuzhnyy, Nikolay; Mintairov, Sergey; Potapovich, Nataliia; Shvarts, Maxim; Sorokina, Svetlana; Andreev, Viacheslav [Ioffe Physical-Technical Institute, 26 Polytechnicheskaya, St. Petersburg, 194021 (Russian Federation); Luque, Antonio [Ioffe Physical-Technical Institute, 26 Polytechnicheskaya, St. Petersburg, 194021, Russia and Instituto de Energia Solar, Universidad Politecnica de Madrid, Madrid (Spain)

    2014-09-26T23:59:59.000Z

    AlGaAs/GaAs-based laser power PV converters intended for operation with high-power (up to 100 W/cm{sup 2}) radiation were fabricated by LPE and MOCVD techniques. Monochromatic (? = 809 nm) conversion efficiency up to 60% was measured at cells with back surface field and low (x = 0.2) Al concentration 'window'. Modules with a voltage of 4 V and the efficiency of 56% were designed and fabricated.

  6. Sheet resistance under Ohmic contacts to AlGaN/GaN heterostructures

    SciTech Connect (OSTI)

    Haj?asz, M., E-mail: m.hajlasz@m2i.nl [Materials innovation institute (M2i), Mekelweg 2, 2628 CD, Delft (Netherlands); MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede (Netherlands); Donkers, J. J. T. M.; Sque, S. J.; Heil, S. B. S. [NXP Semiconductors Research, High Tech Campus 46, 5656 AE, Eindhoven (Netherlands); Gravesteijn, D. J. [NXP Semiconductors Research, High Tech Campus 46, 5656 AE, Eindhoven (Netherlands); MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede (Netherlands); Rietveld, F. J. R. [NXP Semiconductors, Gerstweg 2, 6534 AE, Nijmegen (Netherlands); Schmitz, J. [MESA Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede (Netherlands)

    2014-06-16T23:59:59.000Z

    For the determination of specific contact resistance in semiconductor devices, it is usually assumed that the sheet resistance under the contact is identical to that between the contacts. This generally does not hold for contacts to AlGaN/GaN structures, where an effective doping under the contact is thought to come from reactions between the contact metals and the AlGaN/GaN. As a consequence, conventional extraction of the specific contact resistance and transfer length leads to erroneous results. In this Letter, the sheet resistance under gold-free Ti/Al-based Ohmic contacts to AlGaN/GaN heterostructures on Si substrates has been investigated by means of electrical measurements, transmission electron microscopy, and technology computer-aided design simulations. It was found to be significantly lower than that outside of the contact area; temperature-dependent electrical characterization showed that it exhibits semiconductor-like behavior. The increase in conduction is attributed to n-type activity of nitrogen vacancies in the AlGaN. They are thought to form during rapid thermal annealing of the metal stack when Ti extracts nitrogen from the underlying semiconductor. The high n-type doping in the region between the metal and the 2-dimensional electron gas pulls the conduction band towards the Fermi level and enhances horizontal electron transport in the AlGaN. Using this improved understanding of the properties of the material underneath the contact, accurate values of transfer length and specific contact resistance have been extracted.

  7. TEM and HRXRD Analysis of LP MOVPE Grown InGaP/GaAs epilayers

    SciTech Connect (OSTI)

    Pelosi, Claudio; Bosi, Matteo; Attolini, Giovanni; Germini, Fabrizio; Frigeri, Cesare [CNR-IMEM Institute, Parco Area delle Scienze 37a, Loc Fontanini 43010 Parma (Italy); Prutskij, Tatiana [Instituto de Ciencias, BUAP, Privada 17 Norte, no. 3417, colSanMiguel Hueyotlipan, 72050 Puebla, Pue. (Mexico)

    2007-04-10T23:59:59.000Z

    The diffusion phenomena at interfaces between GaAs/InGaP layers grown by low pressure MOVPE have been studied by dark field (DF) transmission Electron Microscopy (TEM) and High resolution X-ray Diffractometry (HRXRD). By comparing the results of the two techniques a mismatched layer containing P or P and In has been evidenced. The causes of this behavior are briefly discussed.

  8. Guided Neuronal Growth on Arrays of Biofunctionalized GaAs/InGaAs Semiconductor Microtubes

    E-Print Network [OSTI]

    Cornelius S. Bausch; Aune Koitmäe; Eric Stava; Amanda Price; Pedro J. Resto; Yu Huang; David Sonnenberg; Yuliya Stark; Christian Heyn; Justin C. Williams; Erik W. Dent; Robert H. Blick

    2013-05-06T23:59:59.000Z

    We demonstrate embedded growth of cortical mouse neurons in dense arrays of semiconductor microtubes. The microtubes, fabricated from a strained GaAs/InGaAs heterostructure, guide axon growth through them and enable electrical and optical probing of propagating action potentials. The coaxial nature of the microtubes -- similar to myelin -- is expected to enhance the signal transduction along the axon. We present a technique of suppressing arsenic toxicity and prove the success of this technique by overgrowing neuronal mouse cells.

  9. InGaN/GaN quantum wells for polariton laser diodes: Role of inhomogeneous broadening

    SciTech Connect (OSTI)

    Glauser, Marlene; Mounir, Christian; Rossbach, Georg; Feltin, Eric; Carlin, Jean-François; Butté, Raphaël; Grandjean, Nicolas [École Polytechnique Fédérale de Lausanne (EPFL), Institute of Condensed Matter Physics, CH-1015 Lausanne (Switzerland)

    2014-06-21T23:59:59.000Z

    Contrary to the case of III-nitride based visible light-emitting diodes for which the inhomogeneous linewidth broadening characteristic of InGaN-based multiple quantum well (MQW) heterostructures does not appear as a detrimental parameter, such a broadening issue can prevent a microcavity (MC) system entering into the strong light-matter coupling regime (SCR). The impact of excitonic disorder in low indium content (x???0.1) In{sub x}Ga{sub 1–x}N/GaN MQW active regions is therefore investigated for the subsequent realization of polariton laser diodes by considering both simulations and optical characterizations. It allows deriving the requirements for such MQWs in terms of absorption, emission linewidth, and Stokes shift. Systematic absorption-like and photoluminescence (PL) spectroscopy experiments are performed on single and multiple In{sub 0.1}Ga{sub 0.9}N/GaN quantum wells (QWs). Micro-PL mappings reveal a low temperature PL linewidth of ?30?meV, compatible with SCR requirements, for single QWs for which the microscopic origin responsible for this broadening is qualitatively discussed. When stacking several InGaN/GaN QWs, a departure from such a narrow linewidth value and an increase in the Stokes shift are observed. Various possible reasons for this degradation such as inhomogeneous built-in field distribution among the QWs are then identified. An alternative solution for the MC design to achieve the SCR with the InGaN alloy is briefly discussed.

  10. X-Ray Absorption Spectroscopy of Metallobiomolecules

    E-Print Network [OSTI]

    Scott, Robert A.

    by the Center for Metalloenzyme Studies (CMS) at the University of Georgia, Athens. Reference Material: Shulman information at the supramolecular to macromolecular level, One-dimensional (1°) molecular level information

  11. X-Ray Absorption Spectroscopy of Metallobiomolecules

    E-Print Network [OSTI]

    Scott, Robert A.

    by the Center for Metalloenzyme Studies (CMS) at the University of Georgia, Athens. Reference Material: Shulman at the supramolecular to macromolecular level, One-dimensional (1°) molecular level information is available through

  12. Rapid Communications Strong piezoelectricity in individual GaN nanowires

    E-Print Network [OSTI]

    Espinosa, Horacio D.

    Rapid Communications Strong piezoelectricity in individual GaN nanowires Majid Minary@northwestern.edu (Received 12 July 2011; accepted 15 September 2011) Abstract GaN nanowires are promising building blocks piezoelectricity in individual single-crystal GaN nanowires revealed by direct measurement of the piezoelectric

  13. GaN Radiation Detectors for Particle Physics and

    E-Print Network [OSTI]

    Glasgow, University of

    GaN Radiation Detectors for Particle Physics and Synchrotron Applications James Paul Grant and monitoring applications. Gallium nitride (GaN) was investigated as a radiation hard particle detector diameter on three epitaxial GaN wafers grown on a sapphire sub- strate. Two of the wafers were obtained

  14. New Faces of GaN: Growth, Doping and Devices

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    New Faces of GaN: Growth, Doping and Devices James S. Speck Materials Department University of California Santa Barbara, CA LEO of a-GaN from circular opening Engineering Insights 2006 #12;#12;Personnel. Wraback (ARL) $$$ JST ­ ERATO UCSB SSLDC AFOSR ONR #12;Reversed direction of polarization Bulk GaN

  15. Analysis of the AlGaN/GaN vertical bulk current on Si, sapphire, and free-standing GaN substrates

    SciTech Connect (OSTI)

    Perez-Tomas, A.; Fontsere, A.; Llobet, J. [IMB-CNM-CSIC, Campus UAB, 08193 Bellaterra, Barcelona, CAT (Spain); Placidi, M. [IREC, Jardins Dones de Negre 1, 08930 Sant Adria de Besos, Barcelona (Spain); Rennesson, S.; Chenot, S.; Moreno, J. C.; Cordier, Y. [CRHEA-CNRS, Rue Bernard Gregory, Sophia Antipolis, 06560 Valbonne (France); Baron, N. [CRHEA-CNRS, Rue Bernard Gregory, Sophia Antipolis, 06560 Valbonne (France); PICOGIGA International, Pl M. Rebuffat, Courtaboeuf 7, 91140 Villejust (France)

    2013-05-07T23:59:59.000Z

    The vertical bulk (drain-bulk) current (I{sub db}) properties of analogous AlGaN/GaN hetero-structures molecular beam epitaxially grown on silicon, sapphire, and free-standing GaN (FS-GaN) have been evaluated in this paper. The experimental I{sub db} (25-300 Degree-Sign C) have been well reproduced with physical models based on a combination of Poole-Frenkel (trap assisted) and hopping (resistive) conduction mechanisms. The thermal activation energies (E{sub a}), the (soft or destructive) vertical breakdown voltage (V{sub B}), and the effect of inverting the drain-bulk polarity have also been comparatively investigated. GaN-on-FS-GaN appears to adhere to the resistive mechanism (E{sub a} = 0.35 eV at T = 25-300 Degree-Sign C; V{sub B} = 840 V), GaN-on-sapphire follows the trap assisted mechanism (E{sub a} = 2.5 eV at T > 265 Degree-Sign C; V{sub B} > 1100 V), and the GaN-on-Si is well reproduced with a combination of the two mechanisms (E{sub a} = 0.35 eV at T > 150 Degree-Sign C; V{sub B} = 420 V). Finally, the relationship between the vertical bulk current and the lateral AlGaN/GaN transistor leakage current is explored.

  16. A New Combustion Synthesis Method for GaN:Eu3+ and Ga2O3 :Eu3+

    E-Print Network [OSTI]

    McKittrick, Joanna

    A New Combustion Synthesis Method for GaN:Eu3+ and Ga2O3 :Eu3+ Luminescent Powders G. A. Hirata1 between the precursors. The preparation of Eu-doped Ga2O3 powders was achieved using a new combustion)3 and Ga(NO3)3 as the precursors and hydrazine as (non-carbonaceous) fuel. A spontaneous combustion

  17. Electron mobility enhancement in AlN/GaN/AlN heterostructures with InGaN nanogrooves

    E-Print Network [OSTI]

    improve the room-temperature carrier mobility in wurtzite AlN/GaN/AlN heterostructures, which is limited consider a narrow groove made of InxGa1-xN with small In content x inside a wurtzite AlN/GaN/AlN heteroN 2 nm /GaN 3 nm /AlN 3 nm . A well-known feature of wurtzite heterostructures is a strong buit

  18. Growth of GaN on porous SiC and GaN substrates C. K. Inoki1

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Growth of GaN on porous SiC and GaN substrates C. K. Inoki1 , T. S. Kuan1 , Ashutosh Sagar2 , C, Albuquerque, NM 87185 4 Beckman Institute, University of Illinois, Urbana, IL 61801 GaN films were grown on porous SiC and GaN templates using both plasma-assisted molecular beam epitaxy (PAMBE) and metal

  19. Structural, morphological, and optical properties of AlGaN/GaN heterostructures with AlN buffer and interlayer

    E-Print Network [OSTI]

    Ozbay, Ekmel

    N buffer layer BL grown on an Al2O3 substrate and an AlN IL grown under the AlGaN ternary layer TL. In the present study, we investigate the effects of an AlN BL on an Al2O3 substrate and an AlN IL between an AlGaNStructural, morphological, and optical properties of AlGaN/GaN heterostructures with AlN buffer

  20. From Schottky to Ohmic graphene contacts to AlGaN/GaN heterostructures: Role of the AlGaN layer microstructure

    SciTech Connect (OSTI)

    Fisichella, G. [CNR-IMM, Strada VIII, 5, 95121 Catania (Italy); Department of Electronic Engineering, University of Catania, 95124 Catania (Italy); Greco, G.; Roccaforte, F.; Giannazzo, F. [CNR-IMM, Strada VIII, 5, 95121 Catania (Italy)

    2014-08-11T23:59:59.000Z

    The electrical behaviour of graphene (Gr) contacts to Al{sub x}Ga{sub 1?x}N/GaN heterostructures has been investigated, focusing, in particular, on the impact of the AlGaN microstructure on the current transport at Gr/AlGaN interface. Two Al{sub 0.25}Ga{sub 0.75}N/GaN heterostructures with very different quality in terms of surface roughness and defectivity, as evaluated by atomic force microscopy (AFM) and transmission electron microscopy, were compared in this study, i.e., a uniform and defect-free sample and a sample with a high density of typical V-defects, which locally cause a reduction of the AlGaN thickness. Nanoscale resolution current voltage (I-V) measurements by an Au coated conductive AFM tip were carried out at several positions both on the bare and Gr-coated AlGaN surfaces. Rectifying contacts were found onto both bare AlGaN surfaces, but with a more inhomogeneous and lower Schottky barrier height (?{sub B}???0.6?eV) for AlGaN with V-defects, with respect to the case of the uniform AlGaN (?{sub B}???0.9?eV). Instead, very different electrical behaviours were observed in the presence of the Gr interlayer between the Au tip and AlGaN, i.e., a Schottky contact with reduced barrier height (?{sub B} ? 0.4?eV) for the uniform AlGaN and an Ohmic contact for the AlGaN with V-defects. Interestingly, excellent lateral uniformity of the local I-V characteristics was found in both cases and can be ascribed to an averaging effect of the Gr electrode over the AlGaN interfacial inhomogeneities. Due to the locally reduced AlGaN layer thickness, V defect act as preferential current paths from Gr to the 2DEG and can account for the peculiar Ohmic behaviour of Gr contacts on defective AlGaN.

  1. Lattice-Mismatched GaAs/InGaAs Two-Junction Solar Cells by Direct Wafer Bonding

    SciTech Connect (OSTI)

    Tanabe, K.; Aiken, D. J.; Wanlass, M. W.; Morral, A. F.; Atwater, H. A.

    2006-01-01T23:59:59.000Z

    Direct bonded interconnect between subcells of a lattice-mismatched III-V compound multijunction cell would enable dislocation-free active regions by confining the defect network needed for lattice mismatch accommodation to tunnel junction interfaces, while metamorphic growth inevitably results in less design flexibility and lower material quality than is desirable. The first direct-bond interconnected multijunction solar cell, a two-terminal monolithic GaAs/InGaAs two-junction solar cell, is reported and demonstrates viability of direct wafer bonding for solar cell applications. The tandem cell open-circuit voltage was approximately the sum of the subcell open-circuit voltages. This achievement shows direct bonding enables us to construct lattice-mismatched III-V multijunction solar cells and is extensible to an ultrahigh efficiency InGaP/GaAs/InGaAsP/InGaAs four-junction cell by bonding a GaAs-based lattice-matched InGaP/GaAs subcell and an InP-based lattice-matched InGaAsP/InGaAs subcell. The interfacial resistance experimentally obtained for bonded GaAs/InP smaller than 0.10 Ohm-cm{sup 2} would result in a negligible decrease in overall cell efficiency of {approx}0.02%, under 1-sun illumination.

  2. X-ray diffraction analysis of InGaP/GaAs heterointerfaces grown by metalorganic chemical vapor deposition

    SciTech Connect (OSTI)

    Nittono, T.; Hyuga, F. [NTT System Electronics Laboratories 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-01 (Japan)] [NTT System Electronics Laboratories 3-1, Morinosato Wakamiya, Atsugi-shi, Kanagawa, 243-01 (Japan)

    1997-03-01T23:59:59.000Z

    InGaP/GaAs heterointerfaces grown by metalorganic chemical vapor deposition have been characterized by a high-resolution x-ray diffraction analysis of multiple quantum well structures. The flow of AsH{sub 3} to InGaP surface produces an InGaAs-like interfacial layer at the GaAs-on-InGaP interface, indicating P atoms of the InGaP surface are easily replaced by As atoms. The flow of PH{sub 3} to GaAs surface, on the other hand, does not make any detectable interfacial layer, indicating that almost no As atoms of the GaAs surface are replaced by P atoms. It is also found that the flow of trimethylgallium (TMG) to the InGaP surface produces a GaP-like interfacial layer. This interfacial layer is probably formed by the reaction between TMG and excessive P atoms on the InGaP surface or residual PH{sub 3} in the growth chamber. {copyright} {ital 1997 American Institute of Physics.}

  3. Physica B 376377 (2006) 486490 Preferential substitution of Fe on physically equivalent Ga sites in GaN

    E-Print Network [OSTI]

    Nabben, Reinhard

    2006-01-01T23:59:59.000Z

    in GaN W. GehlhoffÃ, D. Azamat1 , U. Haboeck, A. Hoffmann Institute for Solid State Physics, Technical freestanding hydride vapor phase grown GaN have been studied in the X- and Q-band. A complex resonance pattern with C3v symmetry in the wurtzite structure of GaN. Aside from the displacement of their magnetic axis

  4. Superluminescence in Green Emission GaInN/GaN Quantum Well Structures under Pulsed Laser Excitation

    E-Print Network [OSTI]

    Wetzel, Christian M.

    and bulk GaN substrates, respectively. Under intense pulsed photo excitation, we observed strong the same excitation conditions, the blue shift for the m-axis grown structure on bulk GaN substrate is less-plane sapphire substrate and along the non-polar m-axis on m-plane bulk GaN substrate. The frequently used

  5. Composition and Interface Analysis of InGaN/GaN Multiquantum-Wells on GaN Substrates Using Atom Probe Tomography

    SciTech Connect (OSTI)

    Liu, Fang; Huang, Li; Davis, Robert F.; Porter, Lisa M.; Schreiber, Daniel K.; Kuchibhatla, S. V. N. T.; Shutthanandan, V.; Thevuthasan, Suntharampillai; Preble, Edward; Paskova, Tanya; Evans, K. R.

    2014-09-04T23:59:59.000Z

    In0.20Ga0.80N/GaN multi-quantum wells grown on [0001]-oriented GaN substrates with and without an InGaN buffer layer were characterized using three-dimensional atom probe tomography. In all samples, the upper interfaces of the QWs were slightly more diffuse than the lower interfaces. The buffer layers did not affect the roughness of the interfaces within the quantum well structure, a result attributed to planarization of the surface of the 1st GaN barrier layer which had an average root-mean-square roughness of 0.177 nm. The In and Ga distributions within the MQWs followed the expected distributions for a random alloy with no indications of In clustering.

  6. Point defect balance in epitaxial GaSb

    SciTech Connect (OSTI)

    Segercrantz, N., E-mail: natalie.segercrantz@aalto.fi; Slotte, J.; Makkonen, I.; Kujala, J.; Tuomisto, F. [Department of Applied Physics, Aalto University, P.O. Box 14100, FIN-00076 Aalto Espoo (Finland); Song, Y.; Wang, S. [Department of Microtechnology and Nanoscience, Chalmers University of Technology, 41296 Göteborg (Sweden); State Key Laboratory of Functional Materials for Informatics Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences 865 Changning Road, Shanghai 200050 (China)

    2014-08-25T23:59:59.000Z

    Positron annihilation spectroscopy in both conventional and coincidence Doppler broadening mode is used for studying the effect of growth conditions on the point defect balance in GaSb:Bi epitaxial layers grown by molecular beam epitaxy. Positron annihilation characteristics in GaSb are also calculated using density functional theory and compared to experimental results. We conclude that while the main positron trapping defect in bulk samples is the Ga antisite, the Ga vacancy is the most prominent trap in the samples grown by molecular beam epitaxy. The results suggest that the p–type conductivity is caused by different defects in GaSb grown with different methods.

  7. Engineering Study for a Full Scale Demonstration of Steam Reforming Black Liquor Gasification at Georgia-Pacific's Mill in Big Island, Virginia

    SciTech Connect (OSTI)

    Robert De Carrera; Mike Ohl

    2002-03-19T23:59:59.000Z

    Georgia-Pacific Corporation performed an engineering study to determine the feasibility of installing a full-scale demonstration project of steam reforming black liquor chemical recovery at Georgia-Pacific's mill in Big Island, Virginia. The technology considered was the Pulse Enhanced Steam Reforming technology that was developed and patented by Manufacturing and Technology Conversion, International (MTCI) and is currently licensed to StoneChem, Inc., for use in North America. Pilot studies of steam reforming have been carried out on a 25-ton per day reformer at Inland Container's Ontario, California mill and on a 50-ton per day unit at Weyerhaeuser's New Bern, North Carolina mill.

  8. Room-temperature cw operation of InGaAsP/InGaP lasers at 727 nm grown on GaAs substrates by liquid phase epitaxy

    SciTech Connect (OSTI)

    Wakao, K.; Nishi, H.; Kusunoki, T.; Isozumi, S.; Ohsaka, S.

    1984-06-01T23:59:59.000Z

    InGaAsP/InGaP lasers emitting at 724--727 nm have been fabricated on GaAs substrates using liquid phase epitaxy. The threshold current is reduced to 8 kA/cm/sup 2/ by thinning the active layer. Room-temperature cw operation is achieved for the first time in the lasing wavelength range below 760 nm in this quaternary system.

  9. Self-assembled In0.5Ga0.5As quantum dots on GaP Yuncheng Song,a

    E-Print Network [OSTI]

    Haller, Gary L.

    SAQDs . Several groups have investigated the growth of both InP and In-rich InGaP SAQDs on GaP.7­12 Most temperature operation of vis- ible light emitting diodes LEDs using InP/GaP and InGaP/ GaP SAQDs, respectively

  10. Current crowding in GaInN / GaN LEDs grown on insulating substrates X. Guo, E. F. Schubert and J. Jahns

    E-Print Network [OSTI]

    Jahns, Jürgen

    Current crowding in GaInN / GaN LEDs grown on insulating substrates X. Guo, E. F. Schubert and J spreading in a mesa-structure GaN-based LED grown on an insulating or semi-insulating substrate. (b. Jahns Current crowding in mesa-structure GaInN/GaN light-emitting diodes (LEDs) grown on insulating

  11. Gas-source molecular beam epitaxial growth and characterization of the (Al,In,Ga)NP/GaP material system and Its applications to light-emitting diodes

    E-Print Network [OSTI]

    Odnoblyudov, Vladimir

    2006-01-01T23:59:59.000Z

    ? G, Kcal/mol GaP GaN AlN o Substrate temperature, C Figurenm-thick GaN 0.006 P 0.994 layer on substrate temperature.substrate temperature for Reactions formation of AlP, GaP, GaN and

  12. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 2, FEBRUARY 2003 653 AlGaN/GaN HFET Power Amplifier Integrated With

    E-Print Network [OSTI]

    Itoh, Tatsuo

    the first demonstration of a GaN-based HFET was done on a sapphire substrate in 1993 [1]­[3]. This is due crystal quality compared to that of the sapphire substrate. Thanks to steadfast progress in AlGaN/GaN HFETIEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 2, FEBRUARY 2003 653 AlGaN/GaN

  13. Tunable THz plasmon resonances in InGaAs/InP HEMT R. E. Peale*a

    E-Print Network [OSTI]

    Peale, Robert E.

    , high ns, and small m*. A variety of materials systems such as GaAs/AlGaAs [3], InGaP/InGaAs/GaAs [4

  14. Prospective emission efficiency and in-plane light polarization of nonpolar m-plane InxGa1-xN/GaN blue light emitting diodes fabricated on freestanding GaN substrates

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    fabricated on freestanding GaN substrates T. Koyama and T.on freestanding m-plane GaN substrates. Although the ? inton the freestanding GaN substrate. cause the current was

  15. Reactive codoping of GaAlInP compound semiconductors

    DOE Patents [OSTI]

    Hanna, Mark Cooper (Boulder, CO); Reedy, Robert (Golden, CO)

    2008-02-12T23:59:59.000Z

    A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

  16. Influence of Ga content on the structure and anomalous Hall effect of Fe{sub 1?x}Ga{sub x} thin films on GaSb(100)

    SciTech Connect (OSTI)

    Anh Tuan, Duong; Shin, Yooleemi; Viet Cuong, Tran; Cho, Sunglae, E-mail: slcho@ulsan.ac.kr [Department of Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 680-749 (Korea, Republic of); Phan, The-Long [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2014-05-07T23:59:59.000Z

    The Fe{sub 1?x}Ga{sub x} thin films (x?=?0.4, 0.5) have been grown on GaSb(100) substrate using molecular beam epitaxy. An epitaxial film with bcc ?-Fe crystal structure (A2) is observed in Fe{sub 0.6}Ga{sub 0.4} film, while an impure Fe{sub 3}Ga phase with DO{sub 3} structure is appeared in Fe{sub 0.5}Ga{sub 0.5} film. The saturated magnetizations at room temperature are observed to be 570?emu/cm{sup 3} and 180?emu/cm{sup 3} and the coercivities to be 170 and 364?Oe for Fe{sub 0.6}Ga{sub 0.4} and Fe{sub 0.5}Ga{sub 0.5}, respectively. A hysteresis trend in Hall resistance vs. magnetic field is observed for Fe{sub 0.5}Ga{sub 0.5} film. However, there is a weak hysteresis noticed in Fe{sub 0.4}Ga{sub 0.6} thin film.

  17. Catastrophic degradation of InGaAsP/InGaP double-heterostructure lasers grown on (001) GaAs substrates by liquid-phase epitaxy

    SciTech Connect (OSTI)

    Ueda, O.; Wakao, K.; Komiya, S.; Yamaguchi, A.; Isozumi, S.; Umebu, I.

    1985-12-01T23:59:59.000Z

    Catastrophically degraded InGaAsP/InGaP double-heterostructure lasers grown on (001) GaAs substrates by liquid-phase epitaxy, emitting at 727 and 810 nm are investigated by photoluminescence topography, scanning electron microscopy, transmission electron microscopy, and energy dispersive x-ray spectroscopy. The degradation is mainly due to catastrophic optical damage at the facet, i.e., development of <110> dark-line defects from the facet, and rarely due to catastrophic optical damage at some defects, i.e., development of <110> dark-line defects from the defects inside the stripe region. These <110> dark-line defects correspond to complicated dislocation networks connected with dark knots, and are quite similar to those observed in catastrophically degraded GaAlAs/GaAs double-heterostructure lasers. The degradation characteristics of the InGaAsP/InGaP double-heterostructure lasers are rather similar to those in GaAlAs/GaAs double-heterostructure lasers concerning the catastrophic degradation.

  18. Dynamics of thermalization in GaInN/GaN quantum wells grown on ammonothermal GaN

    SciTech Connect (OSTI)

    Binder, J.; Korona, K. P.; Wysmo?ek, A.; Kami?ska, M. [Faculty of Physics, University of Warsaw, ul. Hoza 69, 00-681 Warsaw (Poland); Köhler, K.; Kirste, L.; Ambacher, O. [Fraunhofer Institute for Applied Solid State Physics, Tullastr. 72, 79108 Freiburg (Germany); Zaj?c, M.; Dwili?ski, R. [AMMONO SA, Czerwonego Krzy?a 2/31, 00-377 Warsaw (Poland)

    2013-12-14T23:59:59.000Z

    In this work, we present measurements of the dynamics of photoexcited carriers in GaInN/GaN quantum wells (QWs) grown on ammonothermal GaN, especially thermalization and recombination rates. Emission properties were measured by time-resolved photoluminescence (PL) and electroluminescence spectroscopy. Due to the use of high quality homoepitaxial material, we were able to obtain very valuable data on carrier thermalization. The temperature dependence of the QW energy observed in PL shows characteristic S-shape with a step of about 10?meV. Such a behavior (related to thermalization and localization at potential fluctuations) is often reported for QWs; but in our samples, the effect is smaller than in heteroepitaxial InGaN/GaN QWs due to lower potential fluctuation in our material. Absorption properties were studied by photocurrent spectroscopy measurements. A comparison of emission and absorption spectra revealed a shift in energy of about 60?meV. Contrary to PL, the QW energy observed in absorption decreases monotonically with temperature, which can be described by a Bose-like dependence E(T)?=?E(0) ? ?/(exp(?/T) ? 1), with parameters ??=?(0.11?±?0.01) eV, ??=?(355?±?20)?K, or by a Varshni dependence with coefficients ??=?(10?±?3) × 10{sup ?4}?eV/K and ??=?(1500?±?500) K. Taking into account absorption and emission, the fluctuation amplitude (according to Eliseev theory) was ??=?14?meV. The time resolved PL revealed that in a short period (<1?ns) after excitation, the PL peaks were broadened because of the thermal distribution of carriers. We interpreted this distribution in terms of quasi-temperature (T{sub q}) of the carriers. The initial T{sub q} was of the order of 500?K. The thermalization led to a fast decrease of T{sub q}. The obtained cooling time in the QW was ?{sub C}?=?0.3?ns, which was faster than the observed recombination time ?{sub R}?=?2.2?ns (at 4?K)

  19. Manipulation of emission energy in GaAs/AlGaAs core-shell nanowires with radial heterostructure

    SciTech Connect (OSTI)

    Barbosa, B. G.; Arakaki, H.; Souza, C. A. de; Pusep, Yu. A. [Instituto de Fisica de São Carlos, Universidade de São Paulo, 13560-970 Sao Carlos, SP (Brazil)

    2014-03-21T23:59:59.000Z

    Photoluminescence was studied in GaAs/AlGaAs nanowires (NWs) with different radial heterostructures. We demonstrated that manipulation of the emission energy may be achieved by appropriate choice of the shell structure. The emission at highest energy is generated in the NWs with tunneling thin AlGaAs inner shell and thin GaAs outer shell due to recombination of the photoexcited electrons confined in the outer shell with the holes in the core. Lower energy emission was shown to occur in the NWs with thick outer shell grown in the form of a short-period GaAs/AlGaAs multiple quantum well structure. In this case, the tunneling probability through the multiple quantum wells controls the energy emitted by the NWs. The doping of core results in dominated low energy emission from the GaAs core.

  20. 0.7-eV GaInAs Junction for a GaInP/GaAs/GaInAs(1eV)/GaInAs(0.7eV) Four-Junction Solar Cell

    SciTech Connect (OSTI)

    Friedman, D. J.; Geisz, J. F.; Norman, A. G.; Wanlass, M. W.; Kurtz, S. R.

    2006-01-01T23:59:59.000Z

    We discuss recent developments in III-V multijunction solar cells, focusing on adding a fourth junction to the Ga{sub 0.5}In{sub 0.5} P/GaAs/Ga{sub 0.75}In{sub 0.25}As inverted three-junction cell. This cell, grown inverted on GaAs so that the lattice-mismatched Ga{sub 0.75}In{sub 0.25}As third junction is the last one grown, has demonstrated 38% efficiency, and 40% is likely in the near future. To achieve still further gains, a lower-bandgap Ga{sub x}In{sub 1-x}As fourth junction could be added to the three-junction structure for a four-junction cell whose efficiency could exceed 45% under concentration. Here, we present the initial development of the Ga{sub x}In{sub 1-x}As fourth junction. Junctions of various bandgaps ranging from 0.88 to 0.73 eV were grown, in order to study the effect of the different amounts of lattice mismatch. At a bandgap of 0.88 eV, junctions were obtained with very encouraging {approx}80% quantum efficiency, 57% fill factor, and 0.36 eV open-circuit voltage. The device performance degrades with decreasing bandgap (i.e., increasing lattice mismatch). We model the four-junction device efficiency vs. fourth junction bandgap to show that an 0.7-eV fourth-junction bandgap, while optimal if it could be achieved in practice, is not necessary; an 0.9-eV bandgap would still permit significant gains in multijunction cell efficiency while being easier to achieve than the lower-bandgap junction.