National Library of Energy BETA

Sample records for geophysics planetary physics

  1. Institute of Geophysics, Planetary Physics, and Signatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute of Geophysics, Planetary Physics, and Signatures Institute of Geophysics, Planetary Physics, and Signatures Promoting and supporting high-quality, cutting-edge science in...

  2. Institute of Geophysics and Planetary Physics 1993 annual report, October 1, 1992--September 30, 1993

    SciTech Connect (OSTI)

    Ryerson, F.J.; Budwine, C.M. [eds.

    1994-06-15

    This report contains brief papers on the research being conducted at the Institute of Geophysics and Planetary Physics in 1993 in Geosciences, High-Pressure sciences, and Astrophysics.

  3. Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, 1996 Annual Report

    SciTech Connect (OSTI)

    Ryerson, F. J., Institute of Geophysics and Planetary Physics

    1998-03-23

    The Institute of Geophysics and Planetary Physics (IGPP) is a Multicampus Research Unit of the University of California (UC). IGPP was founded in 1946 at UC Los Angeles with a charter to further research in the earth and planetary sciences and in related fields. The Institute now has branches at UC campuses in Los Angeles, San Diego, and Riverside, and at Los Alamos and Lawrence Livermore national laboratories. The University-wide IGPP has played an important role in establishing interdisciplinary research in the earth and planetary sciences. For example, IGPP was instrumental in founding the fields of physical oceanography and space physics, which at the time fell between the cracks of established university departments. Because of its multicampus orientation, IGPP has sponsored important interinstitutional consortia in the earth and planetary sciences. Each of the five branches has a somewhat different intellectual emphasis as a result of the interplay between strengths of campus departments and Laboratory programs. The IGPP branch at Lawrence Livermore National Laboratory (LLNL) was approved by the Regents of the University of California in 1982. IGPP-LLNL emphasizes research in seismology, geochemistry, cosmochemistry, and astrophysics. It provides a venue for studying the fundamental aspects of these fields, thereby complementing LLNL programs that pursue applications of these disciplines in national security and energy research. IGPP-LLNL is directed by Charles Alcock and was originally organized into three centers: Geosciences, stressing seismology; High-Pressure Physics, stressing experiments using the two-stage light-gas gun at LLNL; and Astrophysics, stressing theoretical and computational astrophysics. In 1994, the activities of the Center for High-Pressure Physics were merged with those of the Center for Geosciences. The Center for Geosciences, headed by Frederick Ryerson, focuses on research in geophysics and geochemistry. The Astrophysics Research Center, headed by Charles Alcock, provides a home for theoretical and observational astrophysics and serves as an interface with the Physics and Space Technology Department's Laboratory for Experimental Astrophysics and with other astrophysics efforts at LLNL. The IGPP branch at LLNL (as well as the branch at Los Alamos) also facilitates scientific collaborations between researchers at the UC campuses and those at the national laboratories in areas related to earth science, planetary science, and astrophysics. It does this by sponsoring the University Collaborative Research Program (UCRP), which provides funds to UC campus scientists for joint research projects with LLNL. The goals of the UCRP are to enrich research opportunities for UC campus scientists by making available to them some of LLNL's unique facilities and expertise, and to broaden the scientific program at LLNL through collaborative or interdisciplinary work with UC campus researchers. UCRP funds (provided jointly by the Regents of the University of California and by the Director of LLNL) are awarded annually on the basis of brief proposals, which are reviewed by a committee of scientists from UC campuses, LLNL programs, and external universities and research organizations. Typical annual funding for a collaborative research project ranges from $5,000 to $25,000. Funds are used for a variety of purposes, including salary support for visiting graduate students, postdoctoral fellows, and faculty; released-time salaries for LLNL scientists; and costs for experimental facilities. Although the permanent LLNL staff assigned to IGPP is relatively small (presently about five full-time equivalents), IGPP's research centers have become vital research organizations. This growth has been possible because of IGPP support for a substantial group of resident postdoctoral fellows; because of the 20 or more UCRP projects funded each year; and because IGPP hosts a variety of visitors, guests, and faculty members (from both UC and other institutions) on sabbatical leave. To focus attention on areas of topical interest i

  4. Institute of Geophysics and Planetary Physics (IGPP), Lawrence Livermore National Laboratory (LLNL): Quinquennial report, November 14-15, 1996

    SciTech Connect (OSTI)

    Tweed, J.

    1996-10-01

    This Quinquennial Review Report of the Lawrence Livermore National Laboratory (LLNL) branch of the Institute for Geophysics and Planetary Physics (IGPP) provides an overview of IGPP-LLNL, its mission, and research highlights of current scientific activities. This report also presents an overview of the University Collaborative Research Program (UCRP), a summary of the UCRP Fiscal Year 1997 proposal process and the project selection list, a funding summary for 1993-1996, seminars presented, and scientific publications. 2 figs., 3 tabs.

  5. Planetary Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planetary Physics Some of the most intriguing NIF experiments test the physics believed to determine the structures of planets down to their cores, both in our solar system and ...

  6. Institute of geophysics and planetary physics

    SciTech Connect (OSTI)

    Ryerson, F.; Budwine, C.M.

    1991-05-10

    This report contains brief discussions on topics of high-pressure sciences, astrophysics, and geosciences. (LSP)

  7. Institute of Geophysics, Planetary Physics and Signatures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    trends in the future. Cover feature (jpg) Feature article Student opportunities SAGE sage logo Space Weather Summer School Student Programs Documents Climate Brochure (pdf)...

  8. GeoPhysical Analysis Code

    Energy Science and Technology Software Center (OSTI)

    2011-05-21

    GPAC is a code that integrates open source libraries for element formulations, linear algebra, and I/O with two main LLNL-Written components: (i) a set of standard finite elements physics solvers for rersolving Darcy fluid flow, explicit mechanics, implicit mechanics, and fluid-mediated fracturing, including resolution of contact both implicity and explicity, and (ii) a MPI-based parallelization implementation for use on generic HPC distributed memory architectures. The resultant code can be used alone for linearly elastic problemsmore » and problems involving hydraulic fracturing, where the mesh topology is dynamically changed. The key application domain is for low-rate stimulation and fracture control in subsurface reservoirs (e.g., enhanced geothermal sites and unconventional shale gas stimulation). GPAC also has interfaces to call external libraries for, e.g., material models and equations of state; however, LLNL-developed EOS and material models will not be part of the current release.« less

  9. Geophysics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 Geophysics We perform research using seismology, infrasound, ground-shock modeling, and acoustics to address critical needs in energy, seismic hazards, threat detection and reduction, earthquake prediction, and subsurface imaging. Contact Us Group Leader David Coblentz Email Deputy Group Leader Cathy Snelson Email Profile pages header Search our Profile pages Wave geophysics researcher Paul Johnson holds a block of acrylic plastic used in studying cracked solids EES-17 geophysicist Paul

  10. Institute of Geophysics and Planetary Physics, 1992. Annual report, October 1, 1991--September 30, 1992

    SciTech Connect (OSTI)

    Ryerson, F.J.; Budwine, C.M.

    1993-06-14

    This report contains brief discussions on topics in the following areas: High-pressure sciences; astrophysics; and geosciences.

  11. Geophysical Institute. Biennial report, 1993-1994

    SciTech Connect (OSTI)

    1996-01-01

    The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.

  12. Fiber optic geophysical sensors

    DOE Patents [OSTI]

    Homuth, E.F.

    1991-03-19

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  13. SC e-journals, Physics

    Office of Scientific and Technical Information (OSTI)

    ... in Physics - OAJ Review of Physics in Technology Reviews of Geophysics Reviews of Modern Physics Rheologica Acta Russian Physics Journal Science Science and Technology of Advanced ...

  14. Amitava Bhattacharjee Elected a Fellow of the American Geophysical Union |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Amitava Bhattacharjee Elected a Fellow of the American Geophysical Union By Raphael Rosen September 18, 2015 Tweet Widget Google Plus One Share on Facebook (Photo by Photo Credit: Elle Starkman/PPPL Office of Communications) Amitava Bhattacharjee, head of the Theory Department at the Princeton Plasma Physics Laboratory (PPPL) and professor of astrophysical sciences at Princeton University, has been elected a fellow of the American Geophysical Union (AGU). The

  15. Geophysical Techniques | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area 1977 1977 Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Raft River Geothermal Area Document Analysis Type Applicant Geothermal...

  16. Category:Geophysical Techniques | Open Energy Information

    Open Energy Info (EERE)

    Geophysical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geophysical Techniques page? For detailed information on...

  17. Generic Geophysical Permit | Open Energy Information

    Open Energy Info (EERE)

    Generic Geophysical Permit Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: Generic Geophysical Permit Published Publisher Not Provided, Date Not...

  18. Summer of Applied Geophysical Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summer of Applied Geophysical Experience (SAGE) 2016 - Our 34 rd Year! SAGE is a 3-4 week research and education program in exploration geophysics for graduate, undergraduate students, and working professionals based in Santa Fe, NM, U.S.A. Application deadline March 27, 2016, 5:00pm MDT SAGE students, faculty, teaching assistants, and visiting scientists acquire, process and interpret reflection/refraction seismic, magnetotelluric (MT)/electromagnetic (EM), ground penetrating radar (GPR),

  19. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on MaterialsCondensed ...

  20. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group (PDG) Organizations American Institute of Physics (AIP) American Physical Society (APS) Institute of Physics (IOP) SPIE - International society for optics and photonics Top...

  1. Amitava Bhattacharjee Elected a Fellow of the American Geophysical Union |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab Amitava Bhattacharjee Elected a Fellow of the American Geophysical Union By Raphael Rosen September 18, 2015 Tweet Widget Google Plus One Share on Facebook PPPL Physicist Amitava Bhattacharjee (Photo by Elle Starkman) PPPL Physicist Amitava Bhattacharjee Amitava Bhattacharjee, head of the Theory Department at the Princeton Plasma Physics Laboratory (PPPL) and professor of astrophysical sciences at Princeton University, has been elected a fellow of the American

  2. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on MaterialsCondensed Matter, ...

  3. Geophysical Exploration Technologies | Open Energy Information

    Open Energy Info (EERE)

    ,"rectangles":,"locations":"text":"Geophysical,GeologicandGeoche...

  4. Annual review of earth and planetary sciences. Vol. 19

    SciTech Connect (OSTI)

    Wetherill, G.W.; Albee, A.L.; Burke, K.C. (Carnegie Inst. of Washington, DC (United States) California Inst. of Tech., Pasadena (United States) National Research Council, Washington, DC (United States))

    1991-01-01

    Various review papers on earth and planetary sciences are presented. The individual topics addressed include: tectonics of the New Guinea area, interpretation of ancient Eolian and dunes, seismic tomography of the earth's mantle, shock modification and chemistry and planetary geologic processes, the significance of evaporites, the magnetosphere, untangling the effects of burial alteration and ancient soil formation. Also discussed are: pressure-temperature-time paths, fractals in rock physics, earthquake prediction, rings in the ocean, applications of Be{minus}10 to problems in the earth sciences, measurement of crustal deformation using the GPS, physics and physical mechanisms of nuclear winter, experiemental determination of bed-form stability.

  5. Geophysical subsurface imaging and interface identification.

    SciTech Connect (OSTI)

    Pendley, Kevin; Bochev, Pavel Blagoveston; Day, David Minot; Robinson, Allen Conrad; Weiss, Chester Joseph

    2005-09-01

    Electromagnetic induction is a classic geophysical exploration method designed for subsurface characterization--in particular, sensing the presence of geologic heterogeneities and fluids such as groundwater and hydrocarbons. Several approaches to the computational problems associated with predicting and interpreting electromagnetic phenomena in and around the earth are addressed herein. Publications resulting from the project include [31]. To obtain accurate and physically meaningful numerical simulations of natural phenomena, computational algorithms should operate in discrete settings that reflect the structure of governing mathematical models. In section 2, the extension of algebraic multigrid methods for the time domain eddy current equations to the frequency domain problem is discussed. Software was developed and is available in Trilinos ML package. In section 3 we consider finite element approximations of De Rham's complex. We describe how to develop a family of finite element spaces that forms an exact sequence on hexahedral grids. The ensuing family of non-affine finite elements is called a van Welij complex, after the work [37] of van Welij who first proposed a general method for developing tangentially and normally continuous vector fields on hexahedral elements. The use of this complex is illustrated for the eddy current equations and a conservation law problem. Software was developed and is available in the Ptenos finite element package. The more popular methods of geophysical inversion seek solutions to an unconstrained optimization problem by imposing stabilizing constraints in the form of smoothing operators on some enormous set of model parameters (i.e. ''over-parametrize and regularize''). In contrast we investigate an alternative approach whereby sharp jumps in material properties are preserved in the solution by choosing as model parameters a modest set of variables which describe an interface between adjacent regions in physical space. While still over-parametrized, this choice of model space contains far fewer parameters than before, thus easing the computational burden, in some cases, of the optimization problem. And most importantly, the associated finite element discretization is aligned with the abrupt changes in material properties associated with lithologic boundaries as well as the interface between buried cultural artifacts and the surrounding Earth. In section 4, algorithms and tools are described that associate a smooth interface surface to a given triangulation. In particular, the tools support surface refinement and coarsening. Section 5 describes some preliminary results on the application of interface identification methods to some model problems in geophysical inversion. Due to time constraints, the results described here use the GNU Triangulated Surface Library for the manipulation of surface meshes and the TetGen software library for the generation of tetrahedral meshes.

  6. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics user facilities and resources Lujan Neutron Scattering Center Proton ... battlefield MRI, which uses ultra-low-field magnetic resonance imaging to create images of ...

  7. SAGE, Summer of Applied Geophysical Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and modeling of geophysical data are PC and workstation-based, using state-of-the-art software. Modern field equipment and vehicles are provided by various academic...

  8. SURFACE GEOPHYSICAL EXPLORATION - COMPENDIUM DOCUMENT

    SciTech Connect (OSTI)

    RUCKER DF; MYERS DA

    2011-10-04

    This report documents the evolution of the surface geophysical exploration (SGE) program and highlights some of the most recent successes in imaging conductive targets related to past leaks within and around Hanford's tank farms. While it is noted that the SGE program consists of multiple geophysical techniques designed to (1) locate near surface infrastructure that may interfere with (2) subsurface plume mapping, the report will focus primarily on electrical resistivity acquisition and processing for plume mapping. Due to the interferences from the near surface piping network, tanks, fences, wells, etc., the results of the three-dimensional (3D) reconstruction of electrical resistivity was more representative of metal than the high ionic strength plumes. Since the first deployment, the focus of the SGE program has been to acquire and model the best electrical resistivity data that minimizes the influence of buried metal objects. Toward that goal, two significant advances have occurred: (1) using the infrastructure directly in the acquisition campaign and (2) placement of electrodes beneath the infrastructure. The direct use of infrastructure was successfully demonstrated at T farm by using wells as long electrodes (Rucker et al., 2010, 'Electrical-Resistivity Characterization of an Industrial Site Using Long Electrodes'). While the method was capable of finding targets related to past releases, a loss of vertical resolution was the trade-off. The burying of electrodes below the infrastructure helped to increase the vertical resolution, as long as a sufficient number of electrodes are available for the acquisition campaign.

  9. Sandia National Laboratories: Planetary Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Planetary Research Alt text Our Pulsed Power scientists are answering intriguing questions like these: What are the various planets made of? Why is Saturn more luminous than Jupiter? What causes Neptune's abnormal magnetic field? Does it rain diamonds deep in Neptune's atmosphere? Supercomputers and quantum mechanics are also used to calculate and simulate atoms, molecules, solids, and plasmas under planetary conditions. By combining experiments and theory, we are gaining new revolutionary

  10. Crustal Geophysics and Geochemistry Science Center | Open Energy...

    Open Energy Info (EERE)

    Geophysics and Geochemistry Science Center Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Crustal Geophysics and Geochemistry Science Center Author...

  11. MCA 82-1-1 Geophysical Exploration | Open Energy Information

    Open Energy Info (EERE)

    MCA 82-1-1 Geophysical ExplorationLegal Abstract Montana statute governing the procedures and permission required prior to conducting geophysical exploration activities....

  12. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D ...

  13. Education and Strategic Research Collaborations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centers, Institutes Center for Nonlinear Studies Engineering Institute Information Science & Technology Institute Institute of Geophysics, Planetary Physics, and Signatures...

  14. Borehole Geophysical Methods | Open Energy Information

    Open Energy Info (EERE)

    Methods Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Borehole Geophysical Methods Author Carole D. Johnson Published USGS, Date Not Provided DOI Not...

  15. Borehole Geophysical Logging | Open Energy Information

    Open Energy Info (EERE)

    Logging Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Borehole Geophysical Logging Authors Hager-Richter Geoscience and Inc. Published Publisher Not...

  16. Integrated Surface Geophysical Methods for Characterization of...

    Open Energy Info (EERE)

    Integrated Surface Geophysical Methods for Characterization of the Naval Air Warfare Center, New Jersey Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site:...

  17. Summer of Applied Geophysical Experience Reading List

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geophysical Experience Reading List Summer of Applied Geophysical Experience Reading List A National Science Foundation Research Experiences for Undergraduates program Contacts Institute Director Reinhard Friedel-Los Alamos SAGE Co-Director W. Scott Baldridge-Los Alamos SAGE Co-Director Larry Braile-Purdue University Professional Staff Assistant Georgia Sanchez (505) 665-0855 Keller, R., Khan, M. A., Morgan, P., et al., 1991, A Comparative Study of the Rio Grande and Kenya rifts, Tectonophys.,

  18. Non-Seismic Geophysical Approaches to Monitoring

    SciTech Connect (OSTI)

    Hoversten, G.M.; Gasperikova, Erika

    2004-09-01

    This chapter considers the application of a number of different geophysical techniques for monitoring geologic sequestration of CO2. The relative merits of the seismic, gravity, electromagnetic (EM) and streaming potential (SP) geophysical techniques as monitoring tools are examined. An example of tilt measurements illustrates another potential monitoring technique, although it has not been studied to the extent of other techniques in this chapter. This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques on two synthetic modeling scenarios. The first scenario represents combined CO2 enhance oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. The second scenario is of a pilot DOE CO2 sequestration experiment scheduled for summer 2004 in the Frio Brine Formation in South Texas, USA. Numerical flow simulations of the CO2 injection process for each case were converted to geophysical models using petrophysical models developed from well log data. These coupled flow simulation geophysical models allow comparrison of the performance of monitoring techniques over time on realistic 3D models by generating simulated responses at different times during the CO2 injection process. These time-lapse measurements are used to produce time-lapse changes in geophysical measurements that can be related to the movement of CO2 within the injection interval.

  19. A small RTG for future planetary missions

    SciTech Connect (OSTI)

    Cockfield, R.D.; Kull, R.A.

    1997-01-01

    A design study was conducted to characterize conceptual designs for a small Radioisotope Thermoelectric Generator (RTG), one that might be suitable for future planetary missions. Conceptual design configurations were derived from the General Purpose Heat Source{emdash}RTG (GPHS-RTG), with the design goal of providing 70 watts of electrical power at the end of a ten year mission life. Design improvements for mass minimization were evaluated, considering also the technical risk of the corresponding engineering development required. It was concluded that an RTG mass of 18 kg could be achieved with moderate risk. Further studies are recommended to define in detail the testing and other development activities that would be required to bring the conceptual design for such an RTG to reality. {copyright} {ital 1997 American Institute of Physics.}

  20. Geophysical technique for mineral exploration and discrimination based on electromagnetic methods and associated systems

    DOE Patents [OSTI]

    Zhdanov; Michael S.

    2008-01-29

    Mineral exploration needs a reliable method to distinguish between uneconomic mineral deposits and economic mineralization. A method and system includes a geophysical technique for subsurface material characterization, mineral exploration and mineral discrimination. The technique introduced in this invention detects induced polarization effects in electromagnetic data and uses remote geophysical observations to determine the parameters of an effective conductivity relaxation model using a composite analytical multi-phase model of the rock formations. The conductivity relaxation model and analytical model can be used to determine parameters related by analytical expressions to the physical characteristics of the microstructure of the rocks and minerals. These parameters are ultimately used for the discrimination of different components in underground formations, and in this way provide an ability to distinguish between uneconomic mineral deposits and zones of economic mineralization using geophysical remote sensing technology.

  1. Role of borehole geophysics in defining the physical characteristics...

    Open Energy Info (EERE)

    the reservoir is based on much less corroborative evidence. Extensive use was made of computer plotting techniques to arrive at some interpretations.Both the stratigraphic...

  2. Advanced signal processing in geophysical remote sensing

    SciTech Connect (OSTI)

    Witten, A.J.; King, W.C.

    1993-06-01

    This paper describes advanced signal processing methods which have improved the capabilities to detect and image the subsurface environment with geophysical remote sensing techniques. Field results are presented showing target detection, subsurface characterizations, and imaging of insitu waste treatment processes, all previously unachievable with such tools as ground penetrating radar, magnetometry and seismic.

  3. Advanced signal processing in geophysical remote sensing

    SciTech Connect (OSTI)

    Witten, A.J. ); King, W.C. . Dept. of Geography and Environmental Engineering)

    1993-01-01

    This paper describes advanced signal processing methods which have improved the capabilities to detect and image the subsurface environment with geophysical remote sensing techniques. Field results are presented showing target detection, subsurface characterizations, and imaging of insitu waste treatment processes, all previously unachievable with such tools as ground penetrating radar, magnetometry and seismic.

  4. An Integrated Geophysical Study Of The Northern Kenya Rift |...

    Open Energy Info (EERE)

    Geophysical Study Of The Northern Kenya Rift Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: An Integrated Geophysical Study Of The Northern...

  5. Role of Geological and Geophysical Data in Modeling a Southwestern...

    Open Energy Info (EERE)

    actual computer time necessary for model calibration was minimal. The conceptually straightforward approach for parameter estimation utilizing existing hydrological, geophysical,...

  6. Geophysical Method At Raft River Geothermal Area (1975) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River...

  7. Geophysical Method At Raft River Geothermal Area (1977) | Open...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River...

  8. ARM - Measurement - Planetary boundary layer height

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsPlanetary boundary layer height ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Planetary boundary layer height Top of the planetary boundary layer; also known as depth or height of the mixing layer. Categories Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each

  9. Planetary Fuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Fuels LLC Jump to: navigation, search Name: Planetary Fuels, LLC Place: Seattle, Washington Product: Seattle-based start-up dedicated to the production of biodiesel. Coordinates:...

  10. COLLOQUIUM: Fusion Rockets for Planetary Defense | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG AUDITORIUM COLLOQUIUM: Fusion Rockets for Planetary Defense Dr. Glen Wurden Los Alamos National Laboratory Fusion rocket engines could enable a rapid response capability for ...

  11. Planetary Emissions Management | Open Energy Information

    Open Energy Info (EERE)

    Management Jump to: navigation, search Name: Planetary Emissions Management Place: Cambridge, Massachusetts Sector: Carbon Product: US-based, company offering measurements of...

  12. Fusion Rockets for Planetary Defense

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED Fusion Rockets for Planetary Defense Glen Wurden Los Alamos National Laboratory PPPL Colloquium March 16, 2016 LA-UR-15-xxxx LA-UR-16-21396 | Los Alamos National Laboratory | Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA UNCLASSIFIED My collaborators on this topic: T. E. Weber 1 , P. J. Turchi 2 , P. B. Parks 3 , T. E. Evans 3 , S. A. Cohen 4 , J. T.

  13. SAGE, Summer of Applied Geophysical Experience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Apply Who Qualifies Special Undergrad Information Contributors Faculty Past Programs Photo Gallery NSEC » CSES » SAGE SAGE, the Summer of Applied Geophysical Experience A National Science Foundation Research Experiences for Undergraduates program Contacts Institute Director Reinhard Friedel-Los Alamos SAGE Co-Director W. Scott Baldridge-Los Alamos SAGE Co-Director Larry Braile-Purdue University Professional Staff Assistant Georgia Sanchez (505) 665-0855 Email U.S. undergraduates

  14. Technical Sessions M. C. MacCracken Atmospheric amj Geophysical Sciences Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M. C. MacCracken Atmospheric amj Geophysical Sciences Division Lawrence Livermore National Laboratory Li~'ermore, CA 94550 The goal of the CHAMMP Climate Modeling Program is to develop, verify, and apply a new generation of climate models within a coordinated framework that incorporates the best available scientific and numeric:al approaches to represent physical, biogeochemical, and ecological pro- cesses; that fully utilizes the hardware and software capa- bilities of new computer

  15. SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Signals in the Subsurface | Department of Energy SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical Signals in the Subsurface SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical Signals in the Subsurface PDF icon Grand Challenge Workshop -Imaging Subsurface.pdf More Documents & Publications AGU SubTER Town Hall Presentation 2015 SubTER Fact Sheet SubTER Presentation at Town Hall - American Geophysical Union

  16. Ch. VI, The geophysical environment around Waunita Hot Springs...

    Open Energy Info (EERE)

    VI, The geophysical environment around Waunita Hot Springs Author A. L. Lange Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the U.S. Department...

  17. Merging high resolution geophysical and geochemical surveys to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    combine a suite of high resolution geophysical and geochemical techniques to reduce exploration risk by characterizing hydrothermal alteration, fault geometries and relationships. ...

  18. The Geophysical Environment Around Waunita Hot Springs | Open...

    Open Energy Info (EERE)

    to library Report: The Geophysical Environment Around Waunita Hot Springs Author A. L. Lange Organization Colorado Geological Survey in Cooperation with the U.S. Department...

  19. Reconnaissance geophysical studies of the geothermal system in...

    Open Energy Info (EERE)

    Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  20. Amitava Bhattacharjee Elected a Fellow of the American Geophysical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amitava Bhattacharjee Elected a Fellow of the American Geophysical Union By Raphael Rosen September 18, 2015 Tweet Widget Google Plus One Share on Facebook PPPL Physicist Amitava...

  1. An introduction to electrical resistivity in geophysics | Open...

    Open Energy Info (EERE)

    introduction to electrical resistivity in geophysics Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: An introduction to electrical resistivity...

  2. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop improved geophysical imaging method for characterizing subsurface structure, identify fluid locations, and characterize fractures.

  3. Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization

    Broader source: Energy.gov [DOE]

    Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization presentation at the April 2013 peer review meeting held in Denver, Colorado.

  4. New perspectives on superparameterization for geophysical turbulence

    SciTech Connect (OSTI)

    Majda, Andrew J.; Grooms, Ian

    2014-08-15

    This is a research expository paper regarding superparameterization, a class of multi-scale numerical methods designed to cope with the intermittent multi-scale effects of inhomogeneous geophysical turbulence where energy often inverse-cascades from the unresolved scales to the large scales through the effects of waves, jets, vortices, and latent heat release from moist processes. Original as well as sparse spacetime superparameterization algorithms are discussed for the important case of moist atmospheric convection including the role of multi-scale asymptotic methods in providing self-consistent constraints on superparameterization algorithms and related deterministic and stochastic multi-cloud parameterizations. Test models for the statistical numerical analysis of superparameterization algorithms are discussed both to elucidate the performance of the basic algorithms and to test their potential role in efficient multi-scale data assimilation. The very recent development of grid-free seamless stochastic superparameterization methods for geophysical turbulence appropriate for eddy-permitting mesoscale ocean turbulence is presented here including a general formulation and illustrative applications to two-layer quasigeostrophic turbulence, and another difficult test case involving one-dimensional models of dispersive wave turbulence. This last test case has randomly generated solitons as coherent structures which collapse and radiate wave energy back to the larger scales, resulting in strong direct and inverse turbulent energy cascades.

  5. Monitoring DNAPL pumping using integrated geophysical techniques

    SciTech Connect (OSTI)

    Newmark, R.L.; Daily, W.D.; Kyle, K.R.; Ramirez, A.L.

    1996-11-01

    The removal of DNAPL during pumping has been monitored using integrated in situ geophysical techniques. At Hill Air Force Base in Utah, a free-product DNAPL plume (consisting predominantly of TCE) is pooled in water-wet soil on a thick clay aquitard. Groundwater pumping at Operable Unit 2 (OU 2) began in 1994; to date, nearly 30,000 gallons of DNAPL have been recovered from the site. From September, 1994 through September, 1995, changes in the basin during DNAPL pumping were monitored using an integrated geophysical system. Fiber optic sensors and neutron logs verify the presence of DNAPL in the vicinity of three boreholes which form a cross section from the perimeter of the basin to its center. Cross borehole electrical resistance tomography (ERT) images the changes in formation electrical properties due to the removal of DNAPL, extending the understanding of DNAPL removal between the boreholes. During pumping, electrical resistivities decreased; we suggest that these decreases are directly caused by the reduction in DNAPL. During ground water pumping, water with relatively low resistivity replaces some of the DNAPL pockets as the highly insulating DNAPL is removed. The results suggest that, as DNAPL is pumped from a nearby well, product slowly drains along the top of an aquitard and into the pump well, where it collects.

  6. COLLOQUIUM: Fusion Rockets for Planetary Defense | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6, 2016, 4:15pm to 5:30pm MBG AUDITORIUM COLLOQUIUM: Fusion Rockets for Planetary Defense Dr. Glen Wurden Los Alamos National Laboratory Contact Information Coordinator(s): Ms....

  7. Enhancing Human and Planetary Health Through Innovation

    SciTech Connect (OSTI)

    Brown, Ben

    2014-10-17

    Ben Brown mesmerizes the audience on how to enhance human and planetary health through innovation at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  8. Expedited Site Characterization geophysics: Geophysical methods and tools for site characterization

    SciTech Connect (OSTI)

    Goldstein, N.E.

    1994-03-01

    This report covers five classes of geophysical technologies: Magnetics; Electrical/electromagnetic; Seismic reflection; Gamma-ray spectrometry; and Metal-specific spectrometry. Except for radiometry, no other classes of geophysical tedmologies are specific for direct detection of the types of contaminants present at the selected sites. For each of the five classes covered, the report gives a general description of the methodology, its field use, and its general applicability to the ESC Project. In addition, the report gives a sample of the most promising instruments available for each class, including the following information: Hardware/software attributes; Purchase and rental costs; Survey rate and operating costs; and Other applicable information based on case history and field evaluations.

  9. Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal Reservoir

    Broader source: Energy.gov [DOE]

    Project objectives: Joint inversion of geophysical data for ground water flow imaging; Reduced the cost in geothermal exploration and monitoring; & Combined passive and active geophysical methods.

  10. Time-lapse Joint Inversion of Geophysical Data and its Applications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal ...

  11. Modeling and Evaluation of Geophysical Methods for Monitoring and Tracking CO2 Migration

    SciTech Connect (OSTI)

    Daniels, Jeff

    2012-11-30

    Geological sequestration has been proposed as a viable option for mitigating the vast amount of CO{sub 2} being released into the atmosphere daily. Test sites for CO{sub 2} injection have been appearing across the world to ascertain the feasibility of capturing and sequestering carbon dioxide. A major concern with full scale implementation is monitoring and verifying the permanence of injected CO{sub 2}. Geophysical methods, an exploration industry standard, are non-invasive imaging techniques that can be implemented to address that concern. Geophysical methods, seismic and electromagnetic, play a crucial role in monitoring the subsurface pre- and post-injection. Seismic techniques have been the most popular but electromagnetic methods are gaining interest. The primary goal of this project was to develop a new geophysical tool, a software program called GphyzCO2, to investigate the implementation of geophysical monitoring for detecting injected CO{sub 2} at test sites. The GphyzCO2 software consists of interconnected programs that encompass well logging, seismic, and electromagnetic methods. The software enables users to design and execute 3D surface-to-surface (conventional surface seismic) and borehole-to-borehole (cross-hole seismic and electromagnetic methods) numerical modeling surveys. The generalized flow of the program begins with building a complex 3D subsurface geological model, assigning properties to the models that mimic a potential CO{sub 2} injection site, numerically forward model a geophysical survey, and analyze the results. A test site located in Warren County, Ohio was selected as the test site for the full implementation of GphyzCO2. Specific interest was placed on a potential reservoir target, the Mount Simon Sandstone, and cap rock, the Eau Claire Formation. Analysis of the test site included well log data, physical property measurements (porosity), core sample resistivity measurements, calculating electrical permittivity values, seismic data collection, and seismic interpretation. The data was input into GphyzCO2 to demonstrate a full implementation of the software capabilities. Part of the implementation investigated the limits of using geophysical methods to monitor CO{sub 2} injection sites. The results show that cross-hole EM numerical surveys are limited to under 100 meter borehole separation. Those results were utilized in executing numerical EM surveys that contain hypothetical CO{sub 2} injections. The outcome of the forward modeling shows that EM methods can detect the presence of CO{sub 2}.

  12. Understanding biogeobatteries: Where geophysics meets microbiology

    SciTech Connect (OSTI)

    Revil, A.; Mendonca, C.A.; Atekwana, E.A.; Kulessa, B.; Hubbard, S.S.; Bohlen, K.

    2009-08-15

    Although recent research suggests that contaminant plumes behave as geobatteries that produce an electrical current in the ground, no associated model exists that honors both geophysical and biogeochemical constraints. Here, we develop such a model to explain the two main electrochemical contributions to self-potential signals in contaminated areas. Both contributions are associated with the gradient of the activity of two types of charge carriers, ions and electrons. In the case of electrons, bacteria act as catalysts for reducing the activation energy needed to exchange the electrons between electron donor and electron acceptor. Possible mechanisms that facilitate electron migration include iron oxides, clays, and conductive biological materials, such as bacterial conductive pili or other conductive extracellular polymeric substances. Because we explicitly consider the role of biotic processes in the geobattery model, we coined the term 'biogeobattery'. After theoretical development of the biogeobattery model, we compare model predictions with self-potential responses associated with laboratory and field-scale conducted in contaminated environments. We demonstrate that the amplitude and polarity of large (>100 mV) self-potential signatures requires the presence of an electronic conductor to serve as a bridge between electron donors and acceptors. Small self-potential anomalies imply that electron donors and electron acceptors are not directly interconnected, but instead result simply from the gradient of the activity of the ionic species that are present in the system.

  13. Detailed Geophysical Fault Characterization in Yucca Flat, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Theodore H. Asch; Donald Sweetkind; Bethany L. Burton; Erin L. Wallin

    2009-02-10

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada. Between the years 1951 and 1992, 659 underground nuclear tests took place in Yucca Flat; most were conducted in large, vertical excavations that penetrated alluvium and the underlying Cenozoic volcanic rocks. Radioactive and other potential chemical contaminants at the NTS are the subject of a long-term program of investigation and remediation by the U.S. Department of Energy (DOE), National Nuclear Security Administration, Nevada Site Office, under its Environmental Restoration Program. As part of the program, the DOE seeks to assess the extent of contamination and to evaluate the potential risks to humans and the environment from byproducts of weapons testing. To accomplish this objective, the DOE Environmental Restoration Program is constructing and calibrating a ground-water flow model to predict hydrologic flow in Yucca Flat as part of an effort to quantify the subsurface hydrology of the Nevada Test Site. A necessary part of calibrating and evaluating a model of the flow system is an understanding of the location and characteristics of faults that may influence ground-water flow. In addition, knowledge of fault-zone architecture and physical properties is a fundamental component of the containment of the contamination from underground nuclear tests, should such testing ever resume at the Nevada Test Site. The goal of the present investigation is to develop a detailed understanding of the geometry and physical properties of fault zones in Yucca Flat. This study was designed to investigate faults in greater detail and to characterize fault geometry, the presence of fault splays, and the fault-zone width. Integrated geological and geophysical studies have been designed and implemented to work toward this goal. This report describes the geophysical surveys conducted near two drill holes in Yucca Flat, the data analyses performed, and the integrated interpretations developed from the suite of geophysical methodologies utilized in this investigation. Data collection for this activity started in the spring of 2005 and continued into 2006. A suite of electrical geophysical surveys were run in combination with ground magnetic surveys; these surveys resulted in high-resolution subsurface data that portray subsurface fault geometry at the two sites and have identified structures not readily apparent from surface geologic mapping, potential field geophysical data, or surface effects fracture maps.

  14. Geophysical logging case history of the Raft River geothermal...

    Open Energy Info (EERE)

    logging case history of the Raft River geothermal system, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical logging case history of the...

  15. Borehole geophysics evaluation of the Raft River geothermal reservoir...

    Open Energy Info (EERE)

    HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Authors Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace and T.L. Published Journal Geophysics, 21...

  16. A Geothermal Field Model Based On Geophysical And Thermal Prospectings...

    Open Energy Info (EERE)

    Field Model Based On Geophysical And Thermal Prospectings In Nea Kessani (Ne Greece) Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A...

  17. A Geological and Geophysical Study of Chena Hot Springs, Alaksa...

    Open Energy Info (EERE)

    Alaksa Jump to: navigation, search OpenEI Reference LibraryAdd to library M.Sc. Thesis: A Geological and Geophysical Study of Chena Hot Springs, AlaksaThesisDissertation...

  18. SubTER Grand Challenge Roundtable: Imaging Geophysical and

    Energy Savers [EERE]

    SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical Signals in the Subsurface The Grand Challenge SubTER Panel (Dr. Marcia McNutt, Chair) DOE Leads: Margaret ...

  19. Exploring the geophysical signatures of microbial processes in the earth

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Exploring the geophysical signatures of microbial processes in the earth Citation Details In-Document Search Title: Exploring the geophysical signatures of microbial processes in the earth × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in

  20. Geophysical monitoring of foam used to deliver remediation treatments

    Office of Scientific and Technical Information (OSTI)

    within the vadose zone (Journal Article) | SciTech Connect Geophysical monitoring of foam used to deliver remediation treatments within the vadose zone Citation Details In-Document Search Title: Geophysical monitoring of foam used to deliver remediation treatments within the vadose zone × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public

  1. Submit IGPPS Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Staff Assistant Georgia D. Sanchez (505) 665-0855 Email The Institute of Geophysics, Planetary Physics and Signatures (IGPPS) at Los Alamos National Laboratory (LANL)...

  2. Laser Mass Spectrometry in Planetary Science

    SciTech Connect (OSTI)

    Wurz, P.; Whitby, J. A.; Managadze, G. G.

    2009-06-16

    Knowing the chemical, elemental, and isotopic composition of planetary objects allows the study of their origin and evolution within the context of our solar system. Exploration plans in planetary research of several space agencies consider landing spacecraft for future missions. Although there have been successful landers in the past, more landers are foreseen for Mars and its moons, Venus, the jovian moons, and asteroids. Furthermore, a mass spectrometer on a landed spacecraft can assist in the sample selection in a sample-return mission and provide mineralogical context, or identify possible toxic soils on Mars for manned Mars exploration. Given the resources available on landed spacecraft mass spectrometers, as well as any other instrument, have to be highly miniaturised.

  3. Well casing-based geophysical sensor apparatus, system and method

    DOE Patents [OSTI]

    Daily, William D.

    2010-03-09

    A geophysical sensor apparatus, system, and method for use in, for example, oil well operations, and in particular using a network of sensors emplaced along and outside oil well casings to monitor critical parameters in an oil reservoir and provide geophysical data remote from the wells. Centralizers are affixed to the well casings and the sensors are located in the protective spheres afforded by the centralizers to keep from being damaged during casing emplacement. In this manner, geophysical data may be detected of a sub-surface volume, e.g. an oil reservoir, and transmitted for analysis. Preferably, data from multiple sensor types, such as ERT and seismic data are combined to provide real time knowledge of the reservoir and processes such as primary and secondary oil recovery.

  4. Geophysical monitoring of foam used to deliver remediation treatments

    Office of Scientific and Technical Information (OSTI)

    within the vadose zone (Journal Article) | SciTech Connect Geophysical monitoring of foam used to deliver remediation treatments within the vadose zone Citation Details In-Document Search Title: Geophysical monitoring of foam used to deliver remediation treatments within the vadose zone Authors: Wu, Y. ; Hubbard, S. S. ; Wellman, D. Publication Date: 2012-05-01 OSTI Identifier: 1212441 Report Number(s): LBNL-5702E Journal ID: ISSN 1539--1663 DOE Contract Number: DE-AC02-05CH11231 Resource

  5. Planetary Boundary Layer from AERI and MPL (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Search Results Planetary Boundary Layer from AERI and MPL Title: Planetary Boundary Layer from AERI and MPL The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of

  6. Melting of clinopyroxene + magnesite in iron-bearing planetary...

    Office of Scientific and Technical Information (OSTI)

    Melting of clinopyroxene + magnesite in iron-bearing planetary mantles and implications for the Earth and Mars Citation Details In-Document Search Title: Melting of clinopyroxene + ...

  7. Nonlinear symmetric stability of planetary atmospheres

    SciTech Connect (OSTI)

    Bowman, J.C.; Shepherd, T.G.

    1994-11-01

    The energy-Casimir method is applied to the problem of symmetric stability in the context of a compressible, hydrostatic planetary atmosphere with a general equation of state. Linear stability criteria for symmetric disturbances to a zonally symmetric baroclinic flow are obtained. In the special case of a perfect gas the results of Stevens (1983) are recovered. Nonlinear stability conditions are also obtained that, in addition to implying linear stability, provide an upper bound on a certain positive-definite measure of disturbance amplitude.

  8. Near-Surface Geophysics at the Hanford Nuclear Site, the United States

    SciTech Connect (OSTI)

    Johnson, Timothy C.; Rucker, Dale F.; Glaser, Danney R.

    2015-05-01

    This book chapter describes how near surface geophysics is being used to assist Hanford site cleanup efforts and related studies.

  9. Hydromechanical transmission with compound planetary assembly

    DOE Patents [OSTI]

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1980-01-01

    A power transmission having three distinct ranges: (1) hydrostatic, (2) simple power-split hydromechanical, and (3) compound power-split hydromechanical. A single compound planetary assembly has two sun gears, two ring gears, and a single carrier with two sets of elongated planet gears. The two sun gears may be identical in size, and the two ring gears may be identical in size. A speed-varying module in driving relationship to the first sun gear is clutchable, in turn, to (1) the input shaft and (2) the second sun gear. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being the one clutchable to either the input shaft or to the second sun gear. The other unit, which may have a fixed stroke, is connected in driving relation to the first sun gear. A brake grounds the carrier in the first range and in reverse and causes drive to be delivered to the output shaft through the first ring gear in a hydrostatic mode, the first ring gear being rigidly connected to the output shaft. The input shaft is also clutchable to the second ring gear of the compound planetary assembly.

  10. Geophysics-based method of locating a stationary earth object

    DOE Patents [OSTI]

    Daily, Michael R.; Rohde, Steven B.; Novak, James L.

    2008-05-20

    A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

  11. Sandians Participate in 46th Annual American Geophysical Union (AGU)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Conference Participate in 46th Annual American Geophysical Union (AGU) Conference - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing

  12. History of geophysical studies at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico

    SciTech Connect (OSTI)

    Borns, D.J.

    1997-03-05

    A variety of geophysical methods including the spectrum of seismic, electrical, electromagnetic and potential field techniques have supported characterization, monitoring and experimental studies at the Waste Isolation Pilot Plant (WIPP). The geophysical studies have provided significant understanding of the nature of site deformation, tectonics and stability. Geophysical methods have delineated possible brine reservoirs beneath the underground facility and have defined the disturbed rock zone that forms around underground excavations. The role of geophysics in the WIPP project has evolved with the project. The early uses were for site characterization to satisfy site selection criteria or factors. As the regulatory framework for WIPP grew since 1980, the geophysics program supported experimental and field programs such as Salado hydrogeology and underground room systems and excavations. In summary, the major types of issues that geophysical studies addressed for WIPP are: Site Characterization; Castile Brine Reservoirs; Rustler/Dewey Lake Hydrogeology; Salado Hydrogeology; and Excavation Effects. The nature of geophysics programs for WIPP has been to support investigation rather than being the principal investigation itself. The geophysics program has been used to define conceptual models (e.g., the Disturbed Rock Zone-DRZ) or to test conceptual models (e.g., high transmissivity zones in the Rustler Formation). The geophysics program primarily supported larger characterization and experimental programs. Funding was not available for the complete documentation and interpretation. Therefore, a great deal of the geophysics survey information resides in contractor reports.

  13. YOUNG PLANETARY NEBULAE: HUBBLE SPACE TELESCOPE IMAGING AND A NEW MORPHOLOGICAL CLASSIFICATION SYSTEM

    SciTech Connect (OSTI)

    Sahai, Raghvendra; Villar, Gregory G.; Morris, Mark R.

    2011-04-15

    Using Hubble Space Telescope images of 119 young planetary nebulae (PNs), most of which have not previously been published, we have devised a comprehensive morphological classification system for these objects. This system generalizes a recently devised system for pre-planetary nebulae, which are the immediate progenitors of PNs. Unlike previous classification studies, we have focused primarily on young PNs rather than all PNs, because the former best show the influences or symmetries imposed on them by the dominant physical processes operating at the first and primary stage of the shaping process. Older PNs develop instabilities, interact with the ambient interstellar medium, and are subject to the passage of photoionization fronts, all of which obscure the underlying symmetries and geometries imposed early on. Our classification system is designed to suffer minimal prejudice regarding the underlying physical causes of the different shapes and structures seen in our PN sample, however, in many cases, physical causes are readily suggested by the geometry, along with the kinematics that have been measured in some systems. Secondary characteristics in our system, such as ansae, indicate the impact of a jet upon a slower-moving, prior wind; a waist is the signature of a strong equatorial concentration of matter, whether it be outflowing or in a bound Keplerian disk, and point symmetry indicates a secular trend, presumably precession, in the orientation of the central driver of a rapid, collimated outflow.

  14. ChemCam data abundant at Planetary Conference

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ChemCam data abundant at Planetary Conference ChemCam data abundant at Planetary Conference Members of the Mars Science Laboratory Curiosity rover ChemCam team will present more than two dozen posters and talks during the 44th Lunar and Planetary Science Conference. March 15, 2013 This image shows the ChemCam mast unit mounted on the Curiosity rover as it is being prepared in the clean room prior to the launch of NASA's Mars Science Laboratory mission. ChemCam fires a powerful laser that can

  15. Atmospheric and Geophysical Sciences Division Program Report, 1988--1989

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    In 1990, the Atmospheric and Geophysical Sciences Division begins its 17th year as a division. As the Division has grown over the years, its modeling capabilities have expanded to include a broad range of time and space scales ranging from hours to decades and from local to global. Our modeling is now reaching out from its atmospheric focus to treat linkages with the oceans and the land. In this report, we describe the Division's goal and organizational structure. We also provide tables and appendices describing the Division's budget, personnel, models, and publications. 2 figs., 1 tab.

  16. ARM - PI Product - Planetary Boundary Layer from AERI and MPL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Planetary Boundary Layer from AERI and MPL The distribution and transport of...

  17. The effect of carbon monoxide on planetary haze formation

    SciTech Connect (OSTI)

    Hörst, S. M.; Tolbert, M. A

    2014-01-20

    Organic haze plays a key role in many planetary processes ranging from influencing the radiation budget of an atmosphere to serving as a source of prebiotic molecules on the surface. Numerous experiments have investigated the aerosols produced by exposing mixtures of N{sub 2}/CH{sub 4} to a variety of energy sources. However, many N{sub 2}/CH{sub 4} atmospheres in both our solar system and extrasolar planetary systems also contain carbon monoxide (CO). We have conducted a series of atmosphere simulation experiments to investigate the effect of CO on the formation and particle size of planetary haze analogues for a range of CO mixing ratios using two different energy sources, spark discharge and UV. We find that CO strongly affects both number density and particle size of the aerosols produced in our experiments and indicates that CO may play an important, previously unexplored, role in aerosol chemistry in planetary atmospheres.

  18. Planetary Boundary Layer from AERI and MPL

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sawyer, Virginia

    2014-02-13

    The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.

  19. Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting

    Broader source: Energy.gov [DOE]

    Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting presentation at the April 2013 peer review meeting held in Denver, Colorado.

  20. Geophysical Techniques for Monitoring CO2 Movement During Sequestration

    SciTech Connect (OSTI)

    Erika Gasperikova; G. Michael Hoversten

    2005-11-15

    The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of carbon dioxide (CO{sub 2}). This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques for two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model.

  1. Upcoming Events | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upcoming Events University Physics Events Upcoming Events Events Calendar Colloquia Archive Science On Saturday Archive Event Type - Any - Colloquia Conference Geophysical Fluid Dynamics Laboratory Open House Princeton University Research Seminar Science Education Science On Saturday Apply Reset There are no Ongoing Events. Check back soon! May 17, 2016, 4:15pm to 5:30pm MBG Auditorium, PPPL (284 cap.) COLLOQUIUM: Functional capabilities and design of the ITER EC H&CD system Dr. Mark

  2. RADIO OBSERVATIONS OF HD 80606 NEAR PLANETARY PERIASTRON

    SciTech Connect (OSTI)

    Lazio, T. Joseph W.; Farrell, W. M.; Shankland, P. D.; Blank, D. L.

    2010-12-15

    This paper reports Very Large Array observations at 325 and 1425 MHz ({lambda}90 cm and {lambda}20 cm) during and near the periastron passage of HD 80606b on HJD 2454424.86 (2007 November 20). We obtain flux density limits (3{sigma}) of 1.7 mJy and 48 {mu}Jy at 325 and 1425 MHz, respectively, equivalent to planetary luminosity limits of 2.3 x 10{sup 24} erg s{sup -1} and 2.7 x 10{sup 23} erg s{sup -1}. Unfortunately, these are several orders of magnitude above the nominal Jovian value (at 40 MHz) of 2 x 10{sup 18} erg s{sup -1}. The motivation for these observations was that the planetary magnetospheric emission is driven by a stellar wind-planetary magnetosphere interaction so that the planetary luminosity would be elevated near periastron. We estimate that, near periastron, HD 80606b might be as much as 3000 times more luminous than Jupiter. Recent transit observations of HD 80606b provide reasonably stringent constraints on the planetary mass and radius, and, because of the planet's highly eccentric orbit, its rotation period is likely to be 'pseudo-synchronized' to its orbital period, allowing a robust estimate of the former. Consequently, we are able to make relatively robust estimates of the emission frequency of the planetary magnetospheric emission and find it to be around 60-90 MHz. While this is too low for our reported observations, we compare HD 80606b to other high-eccentricity systems and assess the detection possibilities for both near-term and more distant future systems. Of the known high-eccentricity planets, only HD 80606b is likely to be detectable, as the others (HD 20782B and HD 4113) are both lower mass and longer rotational periods, which imply weaker magnetic field strengths. We find that both the forthcoming 'EVLA low band' system, which will operate as low as 65 MHz, and the Low Frequency Array may be able to improve upon our planetary luminosity limits for HD 80606b, and do so at a more optimum frequency. If the low-frequency component of the Square Kilometre Array (SKA-lo) and a future lunar radio array are able to approach their thermal noise limits, they should be able to detect an HD 80606b-like planet, unless the amount by which the planet's luminosity increases is substantially less than the factor of 3000 that we estimate; for the SKA-lo, which is to be located in the southern hemisphere, future planetary surveys will have to find southern hemisphere equivalents of HD 80606b.

  3. PHYSICAL SCIENCES, Physics Phase

    Office of Scientific and Technical Information (OSTI)

    SCIENCES, Physics Phase competition in trisected superconducting dome I. M. Vishik, 1, 2 M Hashimoto, 3 R.-H. He, 4 W. S. Lee, 1, 2 F. Schmitt, 1, 2 D. H. Lu, 3 R. G. Moore, 1...

  4. A geophysical shock and air blast simulator at the National Ignition Facility

    SciTech Connect (OSTI)

    Fournier, K. B.; Brown, C. G.; May, M. J.; Compton, S.; Walton, O. R.; Shingleton, N.; Kane, J. O.; Holtmeier, G.; Loey, H.; Mirkarimi, P. B.; Dunlop, W. H.; Guyton, R. L.; Huffman, E.

    2014-09-01

    The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.

  5. Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics (P-24) is committed to scientific excellence in basic and applied research. Our breadth and depth in experimental high energy density physics and plasma physics is ...

  6. Genetic algorithms and their use in Geophysical Problems

    SciTech Connect (OSTI)

    Parker, Paul B.

    1999-04-01

    Genetic algorithms (GAs), global optimization methods that mimic Darwinian evolution are well suited to the nonlinear inverse problems of geophysics. A standard genetic algorithm selects the best or ''fittest'' models from a ''population'' and then applies operators such as crossover and mutation in order to combine the most successful characteristics of each model and produce fitter models. More sophisticated operators have been developed, but the standard GA usually provides a robust and efficient search. Although the choice of parameter settings such as crossover and mutation rate may depend largely on the type of problem being solved, numerous results show that certain parameter settings produce optimal performance for a wide range of problems and difficulties. In particular, a low (about half of the inverse of the population size) mutation rate is crucial for optimal results, but the choice of crossover method and rate do not seem to affect performance appreciably. Optimal efficiency is usually achieved with smaller (< 50) populations. Lastly, tournament selection appears to be the best choice of selection methods due to its simplicity and its autoscaling properties. However, if a proportional selection method is used such as roulette wheel selection, fitness scaling is a necessity, and a high scaling factor (> 2.0) should be used for the best performance. Three case studies are presented in which genetic algorithms are used to invert for crustal parameters. The first is an inversion for basement depth at Yucca mountain using gravity data, the second an inversion for velocity structure in the crust of the south island of New Zealand using receiver functions derived from teleseismic events, and the third is a similar receiver function inversion for crustal velocities beneath the Mendocino Triple Junction region of Northern California. The inversions demonstrate that genetic algorithms are effective in solving problems with reasonably large numbers of free parameters and with computationally expensive objective function calculations. More sophisticated techniques are presented for special problems. Niching and island model algorithms are introduced as methods to find multiple, distinct solutions to the nonunique problems that are typically seen in geophysics. Finally, hybrid algorithms are investigated as a way to improve the efficiency of the standard genetic algorithm.

  7. Geophysical methods for fracture characterization in and around potential sites for nuclear waste disposal

    SciTech Connect (OSTI)

    Majer, E.L.; Lee, K.H. ); Morrison, H.F. )

    1992-08-01

    Historically, geophysical methods have been used extensively to successfully explore the subsurface for petroleum, gas, mineral, and geothermal resources. Their application, however, for site characterization, and monitoring the performance of near surface waste sites or repositories has been somewhat limited. Presented here is an overview of the geophysical methods that could contribute to defining the subsurface heterogeneity and extrapolating point measurements at the surface and in boreholes to volumetric descriptions in a fractured rock. In addition to site characterization a significant application of geophysical methods may be in performance assessment and in monitoring the repository to determine if the performance is as expected.

  8. An iterative particle filter approach for coupled hydro-geophysical inversion of a controlled infiltration experiment

    SciTech Connect (OSTI)

    Manoli, Gabriele; Rossi, Matteo; Pasetto, Damiano; Deiana, Rita; Ferraris, Stefano; Cassiani, Giorgio; Putti, Mario

    2015-02-15

    The modeling of unsaturated groundwater flow is affected by a high degree of uncertainty related to both measurement and model errors. Geophysical methods such as Electrical Resistivity Tomography (ERT) can provide useful indirect information on the hydrological processes occurring in the vadose zone. In this paper, we propose and test an iterated particle filter method to solve the coupled hydrogeophysical inverse problem. We focus on an infiltration test monitored by time-lapse ERT and modeled using Richards equation. The goal is to identify hydrological model parameters from ERT electrical potential measurements. Traditional uncoupled inversion relies on the solution of two sequential inverse problems, the first one applied to the ERT measurements, the second one to Richards equation. This approach does not ensure an accurate quantitative description of the physical state, typically violating mass balance. To avoid one of these two inversions and incorporate in the process more physical simulation constraints, we cast the problem within the framework of a SIR (Sequential Importance Resampling) data assimilation approach that uses a Richards equation solver to model the hydrological dynamics and a forward ERT simulator combined with Archie's law to serve as measurement model. ERT observations are then used to update the state of the system as well as to estimate the model parameters and their posterior distribution. The limitations of the traditional sequential Bayesian approach are investigated and an innovative iterative approach is proposed to estimate the model parameters with high accuracy. The numerical properties of the developed algorithm are verified on both homogeneous and heterogeneous synthetic test cases based on a real-world field experiment.

  9. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Programs Office of Science Nuclear Physics science-innovationassetsimagesicon-science.jpg Nuclear Physics Enabling remarkable discoveries and tools that ...

  10. Geophysical variables and behavior: LIII. Epidemiological considerations for incidence of cancer and depression in areas of frequent UFO reports

    SciTech Connect (OSTI)

    Persinger, M.A.

    1988-12-01

    Luminous phenomena and anomalous physical forces have been hypothesized to be generated by focal tectonic strain fields that precede earthquakes. If these geophysical processes exist, then their spatial and temporal density should be greatest during periods of protracted, localized UFO reports; they might be used as dosimetric indicators. Contemporary epidemiological data concerning the health risks of power frequency electromagnetic fields and radon gas levels (expected correlates of certain tectonic strain fields), suggest that increased incidence (odds ratios greater 1:3) of brain tumors and leukemia should be evident within flap areas. In addition the frequency of variants of temporal lobe lability, psychological depression and posttraumatic stress should be significantly elevated. UFO field investigators, because they have repeated, intermittent close proximity to these fields, are considered to be a particularly high risk population for these disorders. 22 references.

  11. Environmental geophysics at Beach Point, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    McGinnis, L.D.; Daudt, C.R.; Thompson, M.D.; Miller, S.F.; Mandell, W.A.; Wrobel, J.

    1994-07-01

    Geophysical studies at Beach Point Peninsula, in the Edgewood area of Aberdeen Proving Ground, Maryland, provide diagnostic signatures of the hydrogeologic framework and possible contaminant pathways. These studies permit construction of the most reasonable scenario linking dense, nonaqueous-phase liquid contaminants introduced at the surface with their pathway through the surficial aquifer. Subsurface geology and contaminant presence were identified by drilling, outcrop mapping, and groundwater sampling and analyses. Suspected sources of near-surface contaminants were defined by magnetic and conductivity measurements. Negative conductivity anomalies may be associated with unlined trenches. Positive magnetic and conductivity anomalies outline suspected tanks and pipes. The anomalies of greatest concern are those spatially associated with a concrete slab that formerly supported a mobile clothing impregnating plant. Resistivity and conductivity profiling and depth soundings were used to identify an electrical anomaly extending through the surficial aquifer to the basal pleistocene unconformity, which was mapped by using seismic reflection methods. The anomaly may be representative of a contaminant plume connected to surficial sources. Major activities in the area included liquid rocket fuel tests, rocket fuel fire suppression tests, pyrotechnic material and smoke generator tests, and the use of solvents at a mobile clothing impregnating plant.

  12. Merging high resolution geophysical and geochemical surveys to reduce exploration risk at Glass Buttes, Oregon

    Broader source: Energy.gov [DOE]

    DOE Geothermal Technologies Peer Review - 2010. The primary objective of this project is to combine a suite of high resolution geophysical and geochemical techniques to reduce exploration risk by characterizing hydrothermal alteration, fault geometries and relationships.

  13. 31 TAC, part 1, chapter 9, rule 9.11 Geophysical and Geochemical...

    Open Energy Info (EERE)

    9, rule 9.11 Geophysical and Geochemical Exploration Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 31 TAC, part...

  14. NMAC 19.2.17 Geophysical Exploration on Unleased State Trust...

    Open Energy Info (EERE)

    2.17 Geophysical Exploration on Unleased State Trust Lands Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NMAC 19.2.17...

  15. SubTER Presentation at Town Hall - American Geophysical Union | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Presentation at Town Hall - American Geophysical Union SubTER Presentation at Town Hall - American Geophysical Union Subter, the Subsurface Crosscut at the Energy Department, conducted a Town Hall meeting to share information and create a dialogue regarding the grand challenges of energy production and storage in the subsurface. The event was held at the AGU Fall Meeting in San Francisco on December 15, 2014. Click here to learn more about SubTER. Open the full slide presentation

  16. Subatomic Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Subatomic Physics We play a major role in large-scale scientific collaborations around the world, performing nuclear physics experiments that advance the understanding of the ...

  17. Center for Space and Earth Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Institute of Geophysics, Planetary Physics, and Signatures Center for Space and Earth Science Promoting and supporting high-quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. Contact Director Reiner Friedel (505) 665-1936 Email Professional Staff Assistant Georgia Sanchez (505) 665-0855 Email Astophysics and Cosmology Hui Li (505) 665-3131 Email Climate Keeley Costigan (505) 665-4788 Email Geophysics David Coblentz (505)

  18. Soft x-ray shock loading and momentum coupling in meteorite and planetary

    Office of Scientific and Technical Information (OSTI)

    materials. (Technical Report) | SciTech Connect Technical Report: Soft x-ray shock loading and momentum coupling in meteorite and planetary materials. Citation Details In-Document Search Title: Soft x-ray shock loading and momentum coupling in meteorite and planetary materials. X-ray momentum coupling coefficients, C{sub M}, were determined by measuring stress waveforms in planetary materials subjected to impulsive radiation loading from the Sandia National Laboratories Z-machine. Results

  19. Integrated geophysical and geomicrobial surveys, Chapare region, Sub-Andean Boliva

    SciTech Connect (OSTI)

    Widdoes, D.; Verteuil, N. de; Hitzman, D.

    1996-12-31

    Approximately 4800 square kilometers of the Chapare region of Sub-Andean, Bolivia were surveyed in 1994 using combined 2-D seismic and geomicrobial surface geochemistry. The Microbial Oil Survey Technique, M.O.S.T., measures evidence of hydrocarbon microseepage by evaluating surface soils for butane associated microorganisms. Approximately 615 kilometers of seismic and over 2500 soil samples were collected for this integrated reconnaissance survey. Elevated microbial populations of these specific microorganisms indicate anomalous hydrocarbon microseepage is leaking from hydrocarbon accumulations. Integration of the geomicrobial data with geological and geophysical data was completed. Parallel seismic and microbial traverses revealed significant areas of structural targets. A portion of the frontier study area demonstrates strong hydrocarbon microseepage which aligns with geophysical targets. A fault system identified from seismic interpretation was also mapped by distinct microbial anomalies at the surface. Comparative profiles and survey maps link microbial anomalies with geological and geophysical targets.

  20. Integrated geophysical and geomicrobial surveys, Chapare region, Sub-Andean Boliva

    SciTech Connect (OSTI)

    Widdoes, D. ); Verteuil, N. de ); Hitzman, D. )

    1996-01-01

    Approximately 4800 square kilometers of the Chapare region of Sub-Andean, Bolivia were surveyed in 1994 using combined 2-D seismic and geomicrobial surface geochemistry. The Microbial Oil Survey Technique, M.O.S.T., measures evidence of hydrocarbon microseepage by evaluating surface soils for butane associated microorganisms. Approximately 615 kilometers of seismic and over 2500 soil samples were collected for this integrated reconnaissance survey. Elevated microbial populations of these specific microorganisms indicate anomalous hydrocarbon microseepage is leaking from hydrocarbon accumulations. Integration of the geomicrobial data with geological and geophysical data was completed. Parallel seismic and microbial traverses revealed significant areas of structural targets. A portion of the frontier study area demonstrates strong hydrocarbon microseepage which aligns with geophysical targets. A fault system identified from seismic interpretation was also mapped by distinct microbial anomalies at the surface. Comparative profiles and survey maps link microbial anomalies with geological and geophysical targets.

  1. Status of data, major results, and plans for geophysical activities, Yucca Mountain Project

    SciTech Connect (OSTI)

    Oliver, H.W.; Hardin, E.L.; Nelson, P.H.

    1990-07-01

    This report describes past and planned geophysical activities associated with the Yucca Mountain Project and is intended to serve as a starting point for integration of geophysical activities. This report relates past results to site characterization plans, as presented in the Yucca Mountain Site Characterization Plan (SCP). This report discusses seismic exploration, potential field methods, geoelectrical methods, teleseismic data collection and velocity structural modeling, and remote sensing. This report discusses surface-based, airborne, borehole, surface-to-borehole, crosshole, and Exploratory Shaft Facility-related activities. The data described in this paper, and the publications discussed, have been selected based on several considerations; location with respect to Yucca Mountain, whether the success or failure of geophysical data is important to future activities, elucidation of features of interest, and judgment as to the likelihood that the method will produce information that is important for site characterization. 65 refs., 19 figs., 12 tabs.

  2. Interim progress report addendun - environmental geophysics: Building E5032 decommissioning, Aberdeen Proving Ground, January 1994 resurvey

    SciTech Connect (OSTI)

    Thompson, M.D.; McGinnis, L.D.; Benson, M.A.; Borden, H.M.; Padar, C.A.

    1994-12-01

    Geophysical surveying around Building E5032 using three new continuously recording geophysical instruments - two types of electromagnetic induction instruments and a cesium vapor magnetometer that were unavailable at the time of the original survey - has provided additional information for defining the location of buried debris, vaults, tanks, and the drainage/sump system near the building. The dominant geophysical signature around Building E5032 consists of a complex pattern of linear magnetic, electrical-conductivity, and electromagnetic field anomalies that appear to be associated with drainage/sewer systems, ditches, past railway activity, the location for Building T5033 (old number 99A), and the probable location of Building 91. Integrated analysis of data acquired using the three techniques, plus a review of the existing ground-penetrating-radar data, allow a more thorough definition of the sources for the observed anomalies.

  3. Planetary scientist to discuss Curiosity rover's visit to Mars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientist to discuss Curiosity rover's visit to Mars Planetary scientist to discuss Curiosity rover's visit to Mars Agnes Cousin-Pilleri will discuss the trailblazing discoveries made by the ChemCam instrument on the Curiosity rover on Mars on May 28. May 23, 2014 Curiosity zaps Mars for vital signs: ChemCam, designed by Lab team, looks for elements such as carbon, nitrogen, and oxygen, all of which are crucial for life. Curiosity zaps Mars for vital signs: ChemCam, designed by Lab team, looks

  4. TRANSIENT CHAOS AND FRACTAL STRUCTURES IN PLANETARY FEEDING ZONES

    SciTech Connect (OSTI)

    Kovcs, T. [Also at University of Applied Sciences, Nagy Lajos kir. tja 1-9, H-1148 Budapest, Hungary. (Hungary); Regly, Zs. [Konkoly Observatory of the Hungarian Academy of Sciences, P.O. Box 67, H-1525 Budapest (Hungary)

    2015-01-01

    The circular restricted three-body problem is investigated in the context of accretion and scattering processes. In our model, a large number of identical non-interacting mass-less planetesimals are considered in the planar case orbiting a star-planet system. This description allows us to investigate the gravitational scattering and possible capture of the particles by the forming planetary embryo in a dynamical systems approach. Although the problem serves a large variety of complex motions, the results can be easily interpreted because of the low dimensionality of the phase space. We show that initial conditions define isolated regions of the disk, where planetesimals accrete or escape, which have, in fact, a fractal structure. The fractal geometry of these ''basins'' implies that the dynamics is very complex. Based on the calculated escape rates and escape times, it is also demonstrated that the planetary accretion rate is exponential for short times and follows a power law for longer integration. A new numerical calculation of the maximum mass that a planet can reach (described by the expression of the isolation mass) is also derived.

  5. Predictions for microlensing planetary events from core accretion theory

    SciTech Connect (OSTI)

    Zhu, Wei; Mao, Shude; Penny, Matthew; Gould, Andrew; Gendron, Rieul

    2014-06-10

    We conduct the first microlensing simulation in the context of a planet formation model. The planet population is taken from the Ida and Lin core accretion model for 0.3 M {sub ?} stars. With 6690 microlensing events, we find that for a simplified Korea Microlensing Telescopes Network (KMTNet), the fraction of planetary events is 2.9%, out of which 5.5% show multiple-planet signatures. The numbers of super-Earths, super-Neptunes, and super-Jupiters detected are expected to be almost equal. Our simulation shows that high-magnification events and massive planets are favored by planet detections, which is consistent with previous expectation. However, we notice that extremely high-magnification events are less sensitive to planets, which is possibly because the 10 minute sampling of KMTNet is not intensive enough to capture the subtle anomalies that occur near the peak. This suggests that while KMTNet observations can be systematically analyzed without reference to any follow-up data, follow-up observations will be essential in extracting the full science potential of very high magnification events. The uniformly high-cadence observations expected for KMTNet also result in ?55% of all detected planets not being caustic crossing, and more low-mass planets even down to Mars mass being detected via planetary caustics. We also find that the distributions of orbital inclinations and planet mass ratios in multiple-planet events agree with the intrinsic distributions.

  6. Major results of geophysical investigations at Yucca Mountain and vicinity, southern Nevada

    SciTech Connect (OSTI)

    Oliver, H.W.; Ponce, D.A.; Hunter, W.C.

    1995-12-31

    In the consideration of Yucca Mountain as a possible site for storing high level nuclear waste, a number of geologic concerns have been suggested for study by the National Academy of Sciences which include: (1) natural geologic and geochemical barriers, (2) possible future fluctuations in the water table that might flood a mined underground repository, (3) tectonic stability, and (4) considerations of shaking such as might be caused by nearby earthquakes or possible volcanic eruptions. This volume represents the third part of an overall plan of geophysical investigation of Yucca Mountain, preceded by the Site Characterization Plan (SCP; dated 1988) and the report referred to as the Geophysical White Paper, Phase 1, entitled Status of Data, Major Results, and Plans for Geophysical Activities, Yucca Mountain Project (Oliver and others, 1990). The SCP necessarily contained uncertainty about applicability and accuracy of methods then untried in the Yucca Mountain volcano-tectonic setting, and the White Paper, Phase 1, focused on summarization of survey coverage, data quality, and applicability of results. For the most part, it did not present data or interpretation. The important distinction of the current volume lies in presentation of data, results, and interpretations of selected geophysical methods used in characterization activities at Yucca Mountain. Chapters are included on the following: gravity investigations; magnetic investigations; regional magnetotelluric investigations; seismic refraction investigations; seismic reflection investigations; teleseismic investigations; regional thermal setting; stress measurements; and integration of methods and conclusions. 8 refs., 60 figs., 2 tabs.

  7. Capabilities for measuring physical and chemical properties of rocks at high pressure

    SciTech Connect (OSTI)

    Durham, W.B.

    1990-01-01

    The Experimental Geophysics Group of the Earth Sciences Department at Lawrence Livermore National Laboratory (LLNL) has experimental equipment that measures a variety of physical properties and phase equilibria and kinetics on rocks and minerals at extreme pressures (to 500 GPa) and temperatures (from 10 to 2800 K). These experimental capabilities are described in this report in terms of published results, photographs, and schematic diagrams.

  8. Theoretical Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HEP Theoretical Physics Understanding discoveries at the Energy, Intensity, and Cosmic Frontiers Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email HEP Theory at Los Alamos The Theoretical High Energy Physics group at Los Alamos National Laboratory is active in a number of diverse areas of research. Their primary areas of interest are in physics beyond the Standard Model, cosmology, dark matter, lattice quantum chromodynamics, neutrinos, the fundamentals of

  9. Nuclear Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics /science-innovation/_assets/images/icon-science.jpg Nuclear Physics Enabling remarkable discoveries and tools that transform our understanding of energy and matter and advance national, economic, and energy security. Isotopes» A roadmap of matter that will help unlock the secrets of how the universe is put together The DOE Office of Science's Nuclear Physics (NP) program supports the experimental and theoretical research needed to create this roadmap. This quest requires a broad

  10. Physical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the universe around us. Physics Division researchers are studying these interactions from the outermost reaches of the cosmos, to the innermost confines of subatomic particles....

  11. physical security

    National Nuclear Security Administration (NNSA)

    5%2A en Physical Security Systems http:nnsa.energy.govaboutusourprogramsnuclearsecurityphysicalsecuritysystems

  12. Theoretical Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Their primary areas of interest are in physics beyond the Standard Model, cosmology, dark matter, lattice quantum chromodynamics, neutrinos, the fundamentals of quantum field ...

  13. FORMATION OF FULLERENES IN H-CONTAINING PLANETARY NEBULAE

    SciTech Connect (OSTI)

    GarcIa-Hernandez, D. A.; Manchado, A.; Stanghellini, L.; Shaw, R. A.; Villaver, E.; Szczerba, R.; Perea-Calderon, J. V. E-mail: amt@iac.e E-mail: shaw@noao.ed E-mail: eva.villaver@uam.e E-mail: Jose.Perea@sciops.esa.in

    2010-11-20

    Hydrogen depleted environments are considered an essential requirement for the formation of fullerenes. The recent detection of C{sub 60} and C{sub 70} fullerenes in what was interpreted as the hydrogen-poor inner region of a post-final helium shell flash planetary nebula (PN) seemed to confirm this picture. Here, we present strong evidence that challenges the current paradigm regarding fullerene formation, showing that it can take place in circumstellar environments containing hydrogen. We report the simultaneous detection of polycyclic aromatic hydrocarbons (PAHs) and fullerenes toward C-rich and H-containing PNe belonging to environments with very different chemical histories such as our own Galaxy and the Small Magellanic Cloud. We suggest that PAHs and fullerenes may be formed by the photochemical processing of hydrogenated amorphous carbon. These observations suggest that modifications may be needed to our current understanding of the chemistry of large organic molecules as well as the chemical processing in space.

  14. FOREVER ALONE? TESTING SINGLE ECCENTRIC PLANETARY SYSTEMS FOR MULTIPLE COMPANIONS

    SciTech Connect (OSTI)

    Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.; Bailey, J.; Salter, G. S.; Wright, D.; Wang Songhu; Zhou Jilin; Butler, R. P.; Jones, H. R. A.; O'Toole, S. J.; Carter, B. D.

    2013-09-15

    Determining the orbital eccentricity of an extrasolar planet is critically important for understanding the system's dynamical environment and history. However, eccentricity is often poorly determined or entirely mischaracterized due to poor observational sampling, low signal-to-noise, and/or degeneracies with other planetary signals. Some systems previously thought to contain a single, moderate-eccentricity planet have been shown, after further monitoring, to host two planets on nearly circular orbits. We investigate published apparent single-planet systems to see if the available data can be better fit by two lower-eccentricity planets. We identify nine promising candidate systems and perform detailed dynamical tests to confirm the stability of the potential new multiple-planet systems. Finally, we compare the expected orbits of the single- and double-planet scenarios to better inform future observations of these interesting systems.

  15. RESOLVING THE ELECTRON TEMPERATURE DISCREPANCIES IN H II REGIONS AND PLANETARY NEBULAE: {kappa}-DISTRIBUTED ELECTRONS

    SciTech Connect (OSTI)

    Nicholls, David C.; Dopita, Michael A.; Sutherland, Ralph S.

    2012-06-20

    The measurement of electron temperatures and metallicities in H II regions and planetary nebulae (PNe) has-for several decades-presented a problem: results obtained using different techniques disagree. What is worse, they disagree consistently. There have been numerous attempts to explain these discrepancies, but none has provided a satisfactory solution to the problem. In this paper, we explore the possibility that electrons in H II regions and PNe depart from a Maxwell-Boltzmann equilibrium energy distribution. We adopt a '{kappa}-distribution' for the electron energies. Such distributions are widely found in solar system plasmas, where they can be directly measured. This simple assumption is able to explain the temperature and metallicity discrepancies in H II regions and PNe arising from the different measurement techniques. We find that the energy distribution does not need to depart dramatically from an equilibrium distribution. From an examination of data from H II regions and PNe, it appears that {kappa} {approx}> 10 is sufficient to encompass nearly all objects. We argue that the kappa-distribution offers an important new insight into the physics of gaseous nebulae, both in the Milky Way and elsewhere, and one that promises significantly more accurate estimates of temperature and metallicity in these regions.

  16. A resolution analysis of two geophysical imaging methods for characterizing and monitoring hydrologic conditions in the Vadose zone.

    SciTech Connect (OSTI)

    Brainard, James Robert; Hammond, Gary.; Alumbaugh, David L.; La Brecque, D.J.

    2007-06-01

    This research project analyzed the resolution of two geophysical imaging techniques, electrical resistivity tomography (ERT) and cross-borehole ground penetrating radar (XBGPR), for monitoring subsurface flow and transport processes within the vadose zone. The study was based on petrophysical conversion of moisture contents and solute distributions obtained from unsaturated flow forward modeling. This modeling incorporated boundary conditions from a potable water and a salt tracer infiltration experiment performed at the Sandia-Tech Vadose Zone (STVZ) facility, and high-resolution spatial grids (6.25-cm spacing over a 1700-m domain) and incorporated hydraulic properties measured on samples collected from the STVZ. The analysis process involved petrophysical conversion of moisture content and solute concentration fields to geophysical property fields, forward geophysical modeling using the geophysical property fields to obtain synthetic geophysical data, and finally, inversion of this synthetic data. These geophysical property models were then compared to those derived from the conversion of the hydrologic forward modeling to provide an understanding of the resolution and limitations of the geophysical techniques.

  17. A new geophysical contribution to the study of the Campidano Geothermal area (Sardinia, Italy)

    SciTech Connect (OSTI)

    Balia, R. )

    1991-01-01

    This paper reports that in order to achieve a better definition of the geothermal potential in the area of the Campidano graben (Sardinia, Italy), where there are some thermal springs, a multi-methodological geophysical survey has been combined with recent surface and subsurface geological information. New gravity and magnetic stations, distributed over the northern part of the area (Campidano of Oristano), have been measured to complement already published data for the central-southern part of the graben. Deep dipole-dipole geoelectrical soundings have also been performed along two profiles perpendicular to the strike of the graben. The geological interpretation of the geophysical data allows us to conclude that no shallow, exploitable, geothermal reservoir exists in the survey area.

  18. Physical Scientist

    Broader source: Energy.gov [DOE]

    The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, providing more than 40 percent of total funding for this vital area of...

  19. Visit us at the American Geophysical Union (AGU) Fall Meeting, Booth#1211 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dec 14-18th us at the American Geophysical Union (AGU) Fall Meeting, Booth#1211 | Dec 14-18th - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization

  20. Subsurface geological and geophysical study of the Cerro Prieto geothermal field, Baja California, Mexico

    SciTech Connect (OSTI)

    Lyons, D.J.; van de Kamp, P.C.

    1980-01-01

    The subsurface investigation of the Cerro Prieto field and surrounding area is described including the stratigraphy, structure, hydrothermal alteration, and reservoir properties for use in designing reservoir simulation models and planning development of the field. Insights into the depositional, tectonic, and thermal history of the area are presented. The following types of data were used: well sample descriptions and analyses, well logs, geophysical surveys; physiography, and regional geology. (MHR)

  1. Crump Geyser: High Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling

    Broader source: Energy.gov [DOE]

    DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Discover new 260F and 300F geothermal reservoirs in Oregon. To demonstrate the application of high precision geophysics for well targeting. Demonstrate a combined testing approach to Flowing Differential Self Potential (FDSP) and electrical tomography resistivity as a guide to exploration and development. Demonstrate utility and benefits of sump-less drilling for a low environmental impact. Create both short and long term employment through exploration, accelerated development timeline and operation.

  2. Clear Skies T. J. Kulp and J. Shinn Geophysics and Environmental Research Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T. J. Kulp and J. Shinn Geophysics and Environmental Research Program Lawrence Livermore National Laboratory Livermore, CA 94550 Introduction Completion of the Experimental Apparatus The experimental apparatus used to make our measurements consists of the multipass cell and its chamber, the FTIR spectrometer, the TDLAS system, and the necessary data collection apparatus. This equipment was assembled and the chamber was constructed during the first year of our project. The primary thrust of that

  3. Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Almost all of the observable matter in the universe is in the plasma state. Formed at high temperatures, plasmas consist of freely moving ions and free electrons. They are often called the "fourth state of matter" because their unique physical properties distinguish them from solids, liquids and gases. Plasma densities and temperatures vary widely, from the cold gases of interstellar space to the extraordinarily hot, dense cores of stars and inside a detonating nuclear

  4. Highlights of the 2009 SEG summer research workshop on"CO2 Sequestration Geophysics"

    SciTech Connect (OSTI)

    Lumley, D.; Sherlock, D.; Daley, T.; Huang, L.; Lawton, D.; Masters, R.; Verliac, M.; White, D.

    2010-01-15

    The 2009 SEG Summer Research Workshop on CO2 Sequestration Geophysics was held August 23-27, 2009 in Banff, Canada. The event was attended by over 100 scientists from around the world, which proved to be a remarkably successful turnout in the midst of the current global financial crisis and severe corporate travel restrictions. Attendees included SEG President Larry Lines (U. Calgary), and CSEG President John Downton (CGG Veritas), who joined SRW Chairman David Lumley (UWA) in giving the opening welcome remarks at the Sunday Icebreaker. The workshop was organized by an expert technical committee (see side bar) representing a good mix of industry, academic, and government research organizations. The format consisted of four days of technical sessions with over 60 talks and posters, plus an optional pre-workshop field trip to the Columbia Ice Fields to view firsthand the effects of global warming on the Athabasca glacier (Figures 1-2). Group technical discussion was encouraged by requiring each presenter to limit themselves to 15 minutes of presentation followed by a 15 minute open discussion period. Technical contributions focused on the current and future role of geophysics in CO2 sequestration, highlighting new research and field-test results with regard to site selection and characterization, monitoring and surveillance, using a wide array of geophysical techniques. While there are too many excellent contributions to mention all individually here, in this paper we summarize some of the key workshop highlights in order to propagate new developments to the SEG community at large.

  5. Highlights of the 2009 SEG summer research workshop on ""CO2 sequestration geophysics

    SciTech Connect (OSTI)

    Huang, Lianjie; Lumley, David; Sherlock, Don; Daley, Tom; Lawton, Don; Masters, Ron; Verliac, Michel; White, Don

    2009-01-01

    The 2009 SEG Summer Research Workshop on 'CO{sub 2} Sequestration Geophysics' was held August 23-27, 2009 in Banff, Canada. The event was attended by over 100 scientists from around the world, which proved to be a remarkably successful turnout in the midst of the current global financial crisis and severe corporate travel restrictions. Attendees included SEG President Larry Lines (U. Calgary), and CSEG President John Downton (CGG Veritas), who joined SRW Chairman David Lumley (UWA) in giving the opening welcome remarks at the Sunday Icebreaker. The workshop was organized by an expert technical committee representing a good mix of industry, academic, and government research organizations. The format consisted of four days of technical sessions with over 60 talks and posters, plus an optional pre-workshop field trip to the Columbia Ice Fields to view firsthand the effects of global warming on the Athabasca glacier. Group technical discussion was encouraged by requiring each presenter to limit themselves to 15 minutes of presentation followed by a 15 minute open discussion period. Technical contributions focused on the current and future role of geophysics in CO{sub 2} sequestration, highlighting new research and field-test results with regard to site selection and characterization, monitoring and surveillance, using a wide array of geophysical techniques. While there are too many excellent contributions to mention all individually here, in this paper we summarize some of the key workshop highlights in order to propagate new developments to the SEG community at large.

  6. Karst characterization in a semi-arid region using gravity, seismic, and resistivity geophysical techniques.

    SciTech Connect (OSTI)

    Barnhart, Kevin Scott

    2013-10-01

    We proposed to customize emerging in situ geophysical monitoring technology to generate time-series data during sporadic rain events in a semi-arid region. Electrodes were to be connected to wireless %5Cnodes%22 which can be left in the eld for many months. Embedded software would then increase sampling frequency during periods of rainfall. We hypothesized that this contrast between no-volume ow in karst passageways dur- ing dry periods and partial- or saturated-volume ow during a rain event is detectable by these Wireless Sensor Network (WSN) geophysical nodes, we call this a Wireless Resistivity Network (WRN). The development of new methodologies to characterize semi-arid karst hydrology is intended to augment Sandia National Laboratorys mission to lead e orts in energy technologies, waste disposal and climate security by helping to identify safe and secure regions and those that are at risk. Development and initial eld testing identi ed technological barriers to using WRNs for identifying semi-arid karst, exposing R&D which can be targeted in the future. Gravity, seismic, and resis- tivity surveys elucidated how each technique might e ectively be used to characterize semi-arid karst. This research brings to light the importance and challenges with char- acterizing semi-arid karst through a multi-method geophysical study. As there have been very few studies with this emphasis, this study has expanded the body of practical experience needed to protect the nations water and energy security interests.

  7. Geophysical monitoring of active hydrologic processes as part of the Dynamic Underground Stripping Project

    SciTech Connect (OSTI)

    Newmark, R.L.

    1992-05-01

    Lawrence Livermore National Laboratory, in collaboration with University of California at Berkeley and Lawrence Berkeley Laboratory, is conducting the Dynamic Underground Stripping Project (DUSP), an integrated project demonstrating the use of active thermal techniques to remove subsurface organic contamination. Complementary techniques address a number of environmental restoration problems: (1) steam flood strips organic contaminants from permeable zones, (2) electrical heating drives contaminants from less permeable zones into the more permeable zones from which they can be extracted, and (3) geophysical monitoring tracks and images the progress of the thermal fronts, providing feedback and control of the active processes. The first DUSP phase involved combined steam injection and vapor extraction in a ``clean`` site in the Livermore Valley consisting of unconsolidated alluvial interbeds of clays, sands and gravels. Steam passed rapidly through a high-permeability gravel unit, where in situ temperatures reached 117{degree}C. An integrated program of geophysical monitoring was carried out at the Clean Site. We performed electrical resistance tomography (ERT), seismic tomography (crossborehole), induction tomography, passive seismic monitoring, a variety of different temperature measurement techniques and conventional geophysical well logging.

  8. Geophysical monitoring of active hydrologic processes as part of the Dynamic Underground Stripping Project

    SciTech Connect (OSTI)

    Newmark, R.L.

    1992-05-01

    Lawrence Livermore National Laboratory, in collaboration with University of California at Berkeley and Lawrence Berkeley Laboratory, is conducting the Dynamic Underground Stripping Project (DUSP), an integrated project demonstrating the use of active thermal techniques to remove subsurface organic contamination. Complementary techniques address a number of environmental restoration problems: (1) steam flood strips organic contaminants from permeable zones, (2) electrical heating drives contaminants from less permeable zones into the more permeable zones from which they can be extracted, and (3) geophysical monitoring tracks and images the progress of the thermal fronts, providing feedback and control of the active processes. The first DUSP phase involved combined steam injection and vapor extraction in a clean'' site in the Livermore Valley consisting of unconsolidated alluvial interbeds of clays, sands and gravels. Steam passed rapidly through a high-permeability gravel unit, where in situ temperatures reached 117{degree}C. An integrated program of geophysical monitoring was carried out at the Clean Site. We performed electrical resistance tomography (ERT), seismic tomography (crossborehole), induction tomography, passive seismic monitoring, a variety of different temperature measurement techniques and conventional geophysical well logging.

  9. SURFACE GEOPHYSICAL EXPLORATION OF SX TANK FARM AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH MAGNETICS AND ELECTROMAGNETICS

    SciTech Connect (OSTI)

    MYERS DA; RUCKER D; LEVIT M; CUBBAGE B; HENDERSON C

    2009-09-24

    This report presents the results of the background characterization of the cribs and trenches surrounding the SX tank farm prepared by HydroGEOPHYSICS Inc, Columbia Energy & Environmental Services Inc and Washington River Protection Solutions.

  10. ChemCam contributions to the Lunar and Planetary Science Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: ChemCam contributions to the Lunar and Planetary Science Conference Authors: Forni, O. 1 ; Mangold, N 2 ; Ollila, Ann M. 3 ; Anderson, R. 4 ; Berger, G. 5 ; ...

  11. Dynamic Analysis of Wind Turbine Planetary Gears Using an Extended Harmonic Balance Approach: Preprint

    SciTech Connect (OSTI)

    Guo, Y.; Keller, J.; Parker, R. G.

    2012-06-01

    The dynamics of wind turbine planetary gears with gravity effects are investigated using an extended harmonic balance method that extends established harmonic balance formulations to include simultaneous internal and external excitations. The extended harmonic balance method with arc-length continuation and Floquet theory is applied to a lumped-parameter planetary gear model including gravity, fluctuating mesh stiffness, bearing clearance, and nonlinear tooth contact to obtain the planetary gear dynamic response. The calculated responses compare well with time domain integrated mathematical models and experimental results. Gravity is a fundamental vibration source in wind turbine planetary gears and plays an important role in system dynamics, causing hardening effects induced by tooth wedging and bearing-raceway contacts. Bearing clearance significantly reduces the lowest resonant frequencies of translational modes. Gravity and bearing clearance together lowers the speed at which tooth wedging occurs lower than the resonant frequency.

  12. Soft X-ray Shock Loading and Momentum Coupling in Meteorite and Planetary

    Office of Scientific and Technical Information (OSTI)

    Materials. (Journal Article) | SciTech Connect Journal Article: Soft X-ray Shock Loading and Momentum Coupling in Meteorite and Planetary Materials. Citation Details In-Document Search Title: Soft X-ray Shock Loading and Momentum Coupling in Meteorite and Planetary Materials. Abstract not provided. Authors: Furnish, Michael David ; Remo, John L. ; Lawrence, R. Jeffery Publication Date: 2010-09-01 OSTI Identifier: 1122355 Report Number(s): SAND2010-6653J 491446 DOE Contract Number:

  13. Melting of clinopyroxene + magnesite in iron-bearing planetary mantles and

    Office of Scientific and Technical Information (OSTI)

    implications for the Earth and Mars (Journal Article) | SciTech Connect Melting of clinopyroxene + magnesite in iron-bearing planetary mantles and implications for the Earth and Mars Citation Details In-Document Search Title: Melting of clinopyroxene + magnesite in iron-bearing planetary mantles and implications for the Earth and Mars Authors: Martin, Audrey M. ; Righter, Kevin [1] + Show Author Affiliations (NASA-JSC) [NASA-JSC Publication Date: 2013-12-05 OSTI Identifier: 1107421 Resource

  14. Studies of planetary boundary layer by infrared thermal imagery

    SciTech Connect (OSTI)

    Albina, Bogdan; Dimitriu, Dan Gheorghe Gurlui, Silviu Octavian; Cazacu, Marius Mihai; Timofte, Adrian

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  15. Flavor Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flavor Physics and CP Violation Conference, Bled, 2007 1 The Search for ν µ → ν e Oscillations at MiniBooNE H. A. Tanaka, for the MiniBooNE collaboration Department of Physics, Joseph Henry Laboratories, Princeton University, Princeton, New Jersey, 08544 United States of America MiniBooNE (Mini Booster Neutrino Experiment) searches for the ν µ → ν e oscillations with ∆m 2 ∼ 1 eV 2 /c 4 indicated by the LSND experiment. The LSND evidence, when taken with the solar and atmospheric

  16. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2009-07-23

    This Manual establishes requirements for the physical protection of interests under the U.S. Department of Energys (DOEs) purview ranging from facilities, buildings, Government property, and employees to national security interests such as classified information, special nuclear material (SNM), and nuclear weapons. Cancels Section A of DOE M 470.4-2 Chg 1. Canceled by DOE O 473.3.

  17. Physical Properties of Gas Hydrates: A Review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gabitto, Jorge F.; Tsouris, Costas

    2010-01-01

    Memore » thane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 10 16   m 3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.« less

  18. Excitation of the orbital inclination of Iapetus during planetary encounters

    SciTech Connect (OSTI)

    Nesvorn, David; Vokrouhlick, David; Deienno, Rogerio; Walsh, Kevin J.

    2014-09-01

    Saturn's moon, Iapetus, has an orbit in a transition region where the Laplace surface is bending from the equator to the orbital plane of Saturn. The orbital inclination of Iapetus to the local Laplace plane is ? 8, which is unexpected because the inclination should be ? 0 if Iapetus formed from a circumplanetary disk on the Laplace surface. It thus appears that some process has pumped up Iapetus's inclination while leaving its eccentricity near zero (e ? 0.03 at present). Here, we examined the possibility that Iapetus's inclination was excited during the early solar system instability when encounters between Saturn and ice giants occurred. We found that the dynamical effects of planetary encounters on Iapetus's orbit sensitively depend on the distance of the few closest encounters. In 4 out of 10 instability cases studied here, the orbital perturbations were too large to be plausible. In one case, Iapetus's orbit was practically unaffected. In the remaining five cases, the perturbations of Iapetus's inclination were adequate to explain its present value. In three of these cases, however, Iapetus's eccentricity was excited to >0.1-0.25, and it is not clear whether it could have been damped to its present value (? 0.03) by a subsequent process (e.g., tides and dynamical friction from captured irregular satellites do not seem to be strong enough). Our results therefore imply that only 2 out of 10 instability cases (?20%) can excite Iapetus's inclination to its current value (?30% of trials lead to >5) while leaving its orbital eccentricity low.

  19. THE THREE-DIMENSIONAL ARCHITECTURE OF THE ? ANDROMEDAE PLANETARY SYSTEM

    SciTech Connect (OSTI)

    Deitrick, Russell; Barnes, Rory; Quinn, Thomas R.; Luger, Rodrigo; Antonsen, Adrienne [Department of Astronomy, University of Washington, Seattle, WA 98195-1580 (United States); McArthur, Barbara; Fritz Benedict, G., E-mail: deitrr@astro.washington.edu [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States)

    2015-01-01

    The ? Andromedae system is the first exoplanetary system to have the relative inclination of two planets' orbital planes directly measured, and therefore offers our first window into the three-dimensional configurations of planetary systems. We present, for the first time, full three-dimensional, dynamically stable configurations for the three planets of the system consistent with all observational constraints. While the outer two planets, c and d, are inclined by ?30, the inner planet's orbital plane has not been detected. We use N-body simulations to search for stable three-planet configurations that are consistent with the combined radial velocity and astrometric solution. We find that only 10 trials out of 1000 are robustly stable on 100Myr timescales, or ?8 billion orbits of planet b. Planet b's orbit must lie near the invariable plane of planets c and d, but can be either prograde or retrograde. These solutions predict that b's mass is in the range of 2-9 M {sub Jup} and has an inclination angle from the sky plane of less than 25. Combined with brightness variations in the combined star/planet light curve ({sup p}hase curve{sup )}, our results imply that planet b's radius is ?1.8 R {sub Jup}, relatively large for a planet of its age. However, the eccentricity of b in several of our stable solutions reaches >0.1, generating upward of 10{sup 19} W in the interior of the planet via tidal dissipation, possibly inflating the radius to an amount consistent with phase curve observations.

  20. Geophysical exploration and hydrologic impact of the closed Gracelawn landfill in Auburn, ME

    SciTech Connect (OSTI)

    Wisniewski, D. . Geology Dept.)

    1993-03-01

    Several geophysical methods were used over portions of the Gracelawn landfill, in Auburn, Maine to determine the surface boundaries and subsurface structure of this closed landfill, and to determine the landfill's effects on groundwater quality. The landfill was originally a sand and gravel pit excavated in the 1950's and early 1960's, and was used as a landfill from 1964--1977. The site is unlined, has a clay cap, and has been graded and developed as a baseball park. Two seismic refraction lines were performed to obtain a minimum depth to bedrock of 80 m. Seismic velocities of methane gas-saturated trash ranged from 250 to 340 m/s, and sand velocities are approximately 800 m/s. Two electrical resistivity Wenner surveys over the trash yielded the depth to saturated material and thickness of the trash layers. Resistivity values for dry refuse ranged from 1,000-2,000 [Omega]*m. A third electrical resistivity survey yielded the thickness of unsaturated and saturated sands bordering the landfill. Dry sands were found to have a resistivity of 1,000 [Omega]*m, and saturated sands a resistivity of 500 [Omega]*m. Gravity and magnetic survey grids across the site revealed anomalies which were mapped to illustrate the irregular morphology of the buried trash as well as its surface boundaries. Residual magnetic anomalies are on the order of 2,000 nT. Residual gravity anomalies are up to 5 mGal. Groundwater elevations determined by the geophysical survey, combined with a survey of existing water monitoring well logs, indicate that the groundwater flow in the sand and gravel aquifer is to the southeast, away from the public water supply, Lake Auburn, which lies to the north of the site. However, correlations between the bedrock fracture analysis and the geophysical survey illustrate that there is potential for contamination of Lake Auburn via the bedrock aquifer.

  1. Physics Division News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PADSTE ADEPS Physics Physics Division News Physics Division News Discover more about the wide-ranging scope of Physics Division science and technology. Contact Us ADEPS ...

  2. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    This Manual establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Chg 1, dated 3/7/06. Cancels: DOE M 473.1-1 and DOE M 471.2-1B

  3. Physical Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2005-08-26

    Establishes requirements for the physical protection of safeguards and security interests. Copies of Section B, Safeguards and Security Alarm Management System, which contains Unclassified Controlled Nuclear Information, and Appendix 1, Security Badge Specifications, which contains Official Use Only information, are only available, by request, from the program manager, Protection Program Operations, 301-903-6209. Cancels: DOE M 473.1-1 and DOE M 471.2-1B.

  4. Selecting surface geophysical methods for geological, hydrological, geotechnical, and environmental investigation: The rationale for the ASTM provisional guide

    SciTech Connect (OSTI)

    Saunders, W.; Benson, R.; Snelgrove, F.; Soloyanis, S.

    1999-07-01

    The ASTM Provisional Guide (PS 78-97) for Selecting Surface Geophysical Methods was developed as a guide for project managers, contractors, geologists, and geophysicists to assist in selecting the most likely geophysical method or methods to conduct specific subsurface investigations. Numerous surface geophysical methods and techniques exist that can be used to determine subsurface soil and rock properties and their distribution. These same methods are also widely used to investigate and locate manmade structures such as buried objective and landfills. This paper discusses the general uses of surface geophysics and the use of the provisional guide. This paper is not intended to be used as he guide. The ASTM Provisional Guide provides direction in selecting the most appropriate geophysical method or methods for a specific application under general site conditions. Secondary methods are also proposed that, under certain circumstances, should be evaluated before a final selection is made. Some typical conditions under which a primary or secondary method might or might not provide satisfactory results are given in the provisional guide. references for further information about selected methods and to method-specific ASTM guides are also provided. Secondary methods usually have less than desired performance, higher cost, or greater labor requirements as compared to the primary methods.

  5. Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt & Subtle Volcanic Systems, Hawaii & Maui

    Broader source: Energy.gov [DOE]

    DOE Geothermal Technologies Peer Review 2010 - Presentation. Project Objective: To use a combination of traditional geophysical and geochemical tools with exploration suites not typically used in geothermal exploration.

  6. Hydromechanical transmission with two planetary assemblies that are clutchable to both the input and output shafts

    DOE Patents [OSTI]

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1979-01-01

    A power transmission having two planetary assemblies, each having its own carrier and its own planet, sun, and ring gears. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the two sun gears, which are connected together. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gears. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output shaft through the first ring gear in a hydrostatic mode, the first ring gear being rigidly connected to the output shaft. The input shaft also is clutchable to either the carrier or the ring gear of the second planetary assembly. The output shaft is also clutchable to the carrier of the second planetary assembly when the input is clutched to the ring gear of the second planetary assembly, and is clutchable to the ring gear of the second planetary assembly when the input is clutched to the carrier thereof.

  7. Hadron physics

    SciTech Connect (OSTI)

    Bunce, G.

    1984-05-30

    Is all hadronic physics ultimately describable by QCD. Certainly, many disparate phenomena can be understood within the QCD framework. Also certainly, there are important questions which are open, both theoretically (little guidance, as yet) and experimentally, regarding confinement. Are there dibaryons, baryonium, glueballs. In addition, there are experimental results which at present do not have an explanation. This talk, after a short section on QCD successes and difficulties, will emphasize two experimental topics which have recent results - glueball spectroscopy and exclusive reactions at large momentum transfer. Both are experimentally accessible in the AGS/LAMPF II/AGS II/TRIUMF II/SIN II energy domain.

  8. Geophysical interpretations west of and within the northwestern part of the Nevada Test Site

    SciTech Connect (OSTI)

    Grauch, V.J.; Sawyer, D.A.; Fridrich, C.J.; Hudson, M.R.

    1997-12-31

    This report focuses on interpretation of gravity and new magnetic data west of the Nevada Test Site (NTS) and within the northwestern part of NTS. The interpretations integrate the gravity and magnetic data with other geophysical, geological, and rock property data to put constraints on tectonic and magmatic features not exposed at the surface. West of NTS, where drill hole information is absent, these geophysical data provide the best available information on the subsurface. Interpreted subsurface features include calderas, intrusions, basalt flows and volcanoes, Tertiary basins, structurally high pre-Tertiary rocks, and fault zones. New features revealed by this study include (1) a north-south buried tectonic fault east of Oasis Mountain, which the authors call the Hogback fault; (2) an east striking fault or accommodation zone along the south side of Oasis Valley basin, which they call the Hot Springs fault; (3) a NNE striking structural zone coinciding with the western margins of the caldera complexes; (4) regional magnetic highs that probably represent a thick sequence of Tertiary volcanic rocks; and (5) two probable buried calderas that may be related to the tuffs of Tolicha Peak and of Sleeping Butte, respectively.

  9. Environmental geophysics at the Southern Bush River Peninsula, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    Davies, B.E.; Miller, S.F.; McGinnis, L.D.

    1995-05-01

    Geophysical studies have been conducted at five sites in the southern Bush River Peninsula in the Edgewood Area of Aberdeen Proving Ground, Maryland. The goals of the studies were to identify areas containing buried metallic objects and to provide diagnostic signatures of the hydrogeologic framework of the site. These studies indicate that, during the Pleistocene Epoch, alternating stands of high and low sea level resulted in a complex pattern of channel-fill deposits. Paleochannels of various sizes and orientations have been mapped throughout the study area by means of ground-penetrating radar and EM-31 techniques. The EM-31 paleochannel signatures are represented onshore either by conductivity highs or lows, depending on the depths and facies of the fill sequences. A companion study shows the features as conductivity highs where they extend offshore. This erosional and depositional system is environmentally significant because of the role it plays in the shallow groundwater flow regime beneath the site. Magnetic and electromagnetic anomalies outline surficial and buried debris throughout the areas surveyed. On the basis of geophysical measurements, large-scale (i.e., tens of feet) landfilling has not been found in the southern Bush River Peninsula, though smaller-scale dumping of metallic debris and/or munitions cannot be ruled out.

  10. Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project

    SciTech Connect (OSTI)

    Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.; USA, Richland Washington; Bonneville, Alain; USA, Richland Washington; Sullivan, E. Charlotte; USA, Richland Washington; Johnson, Tim C.; USA, Richland Washington; Spane, Frank A.; USA, Richland Washington; Gilmore, Tyler J.; USA, Richland Washington

    2014-12-31

    A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO2 and will be used for: (1) tracking the spatial extent of the free phase CO2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated for a number of geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.

  11. Hiereachical Bayesian Model for Combining Geochemical and Geophysical Data for Environmental Applications Software

    Energy Science and Technology Software Center (OSTI)

    2013-05-01

    Development of a hierarchical Bayesian model to estimate the spatiotemporal distribution of aqueous geochemical parameters associated with in-situ bioremediation using surface spectral induced polarization (SIP) data and borehole geochemical measurements collected during a bioremediation experiment at a uranium-contaminated site near Rifle, Colorado. The SIP data are first inverted for Cole-Cole parameters including chargeability, time constant, resistivity at the DC frequency and dependence factor, at each pixel of two-dimensional grids using a previously developed stochastic method.more » Correlations between the inverted Cole-Cole parameters and the wellbore-based groundwater chemistry measurements indicative of key metabolic processes within the aquifer (e.g. ferrous iron, sulfate, uranium) were established and used as a basis for petrophysical model development. The developed Bayesian model consists of three levels of statistical sub-models: 1) data model, providing links between geochemical and geophysical attributes, 2) process model, describing the spatial and temporal variability of geochemical properties in the subsurface system, and 3) parameter model, describing prior distributions of various parameters and initial conditions. The unknown parameters are estimated using Markov chain Monte Carlo methods. By combining the temporally distributed geochemical data with the spatially distributed geophysical data, we obtain the spatio-temporal distribution of ferrous iron, sulfate and sulfide, and their associated uncertainity information. The obtained results can be used to assess the efficacy of the bioremediation treatment over space and time and to constrain reactive transport models.« less

  12. Geophysical Monitoring Methods Evaluation for the FutureGen 2.0 Project

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Strickland, Chris E.; USA, Richland Washington; Vermeul, Vince R.; USA, Richland Washington; Bonneville, Alain; USA, Richland Washington; Sullivan, E. Charlotte; USA, Richland Washington; Johnson, Tim C.; USA, Richland Washington; et al

    2014-12-31

    A comprehensive monitoring program will be needed in order to assess the effectiveness of carbon sequestration at the FutureGen 2.0 carbon capture and storage (CCS) field-site. Geophysical monitoring methods are sensitive to subsurface changes that result from injection of CO2 and will be used for: (1) tracking the spatial extent of the free phase CO2 plume, (2) monitoring advancement of the pressure front, (3) identifying or mapping areas where induced seismicity occurs, and (4) identifying and mapping regions of increased risk for brine or CO2 leakage from the reservoir. Site-specific suitability and cost effectiveness were evaluated for a number ofmore » geophysical monitoring methods including: passive seismic monitoring, reflection seismic imaging, integrated surface deformation, time-lapse gravity, pulsed neutron capture logging, cross-borehole seismic, electrical resistivity tomography, magnetotellurics and controlled source electromagnetics. The results of this evaluation indicate that CO2 injection monitoring using reflection seismic methods would likely be difficult at the FutureGen 2.0 site. Electrical methods also exhibited low sensitivity to the expected CO2 saturation changes and would be affected by metallic infrastructure at the field site. Passive seismic, integrated surface deformation, time-lapse gravity, and pulsed neutron capture monitoring were selected for implementation as part of the FutureGen 2.0 storage site monitoring program.« less

  13. Summaries of physical research in the geosciences

    SciTech Connect (OSTI)

    Not Available

    1990-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of the geosciences which are germane to the Department of Energy's many missions. The Division of Engineering and Geosciences, part of the Office of Basic Energy Sciences of the Office of Energy Research, supports the Geosciences Research Program. The participants in this program include Department of Energy laboratories, industry, universities, and other governmental agencies. The summaries in this document, prepared by the investigators, briefly describe the scope of the individual programs. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, solar physics, solar-terrestrial relationships, aeronomy, seismology, and natural resource modeling and analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's long-range technological needs.

  14. Documenting the Physical Universe:Preserving the Record of SLAC from 1962 to 2005

    SciTech Connect (OSTI)

    Deken, Jean Marie; /SLAC

    2006-03-10

    Since 1905, Albert Einstein's ''miraculous year'', modern physics has advanced explosively. In 2005, the World Year of Physics, a session at the SAA Annual meeting discusses three institutional initiatives--Einstein's collected papers, an international geophysical program, and a research laboratory--to examine how physics and physicists are documented and how that documentation is being collected, preserved, and used. This paper provides a brief introduction to the research laboratory (SLAC), discusses the origins of the SLAC Archives and History Office, its present-day operations, and the present and future challenges it faces in attempting to preserve an accurate historical record of SLAC's activities.

  15. MOA-2010-BLG-311: A PLANETARY CANDIDATE BELOW THE THRESHOLD OF RELIABLE DETECTION

    SciTech Connect (OSTI)

    Yee, J. C.; Hung, L.-W.; Gould, A.; Gaudi, B. S.; Bond, I. A.; Allen, W.; Monard, L. A. G.; Albrow, M. D.; Fouque, P.; Dominik, M.; Tsapras, Y.; Udalski, A.; Zellem, R.; Christie, G. W.; DePoy, D. L.; Dong, Subo; Drummond, J.; Gorbikov, E.; Han, C. E-mail: rzellem@lpl.arizona.edu; Collaboration: muFUN Collaboration; MOA Collaboration; OGLE Collaboration; PLANET Collaboration; RoboNet Collaboration; MiNDSTEp Consortium; and others

    2013-05-20

    We analyze MOA-2010-BLG-311, a high magnification (A{sub max} > 600) microlensing event with complete data coverage over the peak, making it very sensitive to planetary signals. We fit this event with both a point lens and a two-body lens model and find that the two-body lens model is a better fit but with only {Delta}{chi}{sup 2} {approx} 80. The preferred mass ratio between the lens star and its companion is q = 10{sup -3.7{+-}0.1}, placing the candidate companion in the planetary regime. Despite the formal significance of the planet, we show that because of systematics in the data the evidence for a planetary companion to the lens is too tenuous to claim a secure detection. When combined with analyses of other high-magnification events, this event helps empirically define the threshold for reliable planet detection in high-magnification events, which remains an open question.

  16. Three-Dimensional Surface Geophysical Exploration of the 200-Series Tanks at the 241-C Tank Farm

    SciTech Connect (OSTI)

    Crook, N.; McNeill, M.; Dunham, Ralph; Glaser, Danney R.

    2014-02-26

    A surface geophysical exploration (SGE) survey using direct current electrical resistivity was conducted within the C Tank Farm in the vicinity of the 200-Series tanks at the Hanford Site near Richland, Washington. This survey was the second successful SGE survey to utilize the Geotection(TM)-180 Resistivity Monitoring System which facilitated a much larger survey size and faster data acquisition rate. The primary objective of the C Tank Farm SGE survey was to provide geophysical data and subsurface imaging results to support the Phase 2 RCRA Facility Investigation, as outlined in the Phase 2 RCRA Facility Investigation / Corrective Measures work plan RPP-PLAN-39114.

  17. Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation

    SciTech Connect (OSTI)

    Wu, Y.; Ajo-Franklin, J.B.; Spycher, N.; Hubbard, S.S.; Zhang, G.; Williams, K.H.; Taylor, J.; Fujita, Y.; Smith, R.

    2011-07-15

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH{sub 4}{sup +} production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface.

  18. Geophysical Monitoring and Reactive Transport Modeling of Ureolytically-Driven Calcium Carbonate Precipitation

    SciTech Connect (OSTI)

    Yuxin Wu; Jonathan B. Ajo-Franklin; Nicolas Spycher; Susan S. Hubbard; Guoxiang Zhang; Kenneth H. Williams; Joanna Taylor; Yoshiko Fujita; Robert Smith

    2011-09-01

    Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4+ production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface.

  19. Physics Topics - MST - UW Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Topics UW Madison Madison Symmetric Torus Physics Topics MST HomeGraduate Student InformationLinksTourControl and Auxiliary SystemsPhysics TopicsDeviceResearch MissionMST ...

  20. Physics of Cancer | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MBG Auditorium Physics of Cancer Professor Wolfgang Losert, Associate Professor, and ... PDF icon Wolfgang Losert Bio.pdf Physics of Cancer Contact Information ...

  1. A Feasibility Study of Non-Seismic Geophysical Methods forMonitoring Geologic CO2 Sequestration

    SciTech Connect (OSTI)

    Gasperikova, Erika; Hoversten, G. Michael

    2006-07-01

    Because of their wide application within the petroleumindustry it is natural to consider geophysical techniques for monitoringof CO2 movement within hydrocarbon reservoirs, whether the CO2 isintroduced for enhanced oil/gas recovery or for geologic sequestration.Among the available approaches to monitoring, seismic methods are by farthe most highly developed and applied. Due to cost considerations, lessexpensive techniques have recently been considered. In this article, therelative merits of gravity and electromagnetic (EM) methods as monitoringtools for geological CO2 sequestration are examined for two syntheticmodeling scenarios. The first scenario represents combined CO2 enhancedoil recovery (EOR) and sequestration in a producing oil field, theSchrader Bluff field on the north slope of Alaska, USA. The secondscenario is a simplified model of a brine formation at a depth of 1,900m.

  2. Merging high resolution geophysical and geochemical surveys to reduce exploration risk at glass buttes, Oregon

    SciTech Connect (OSTI)

    Walsh, Patrick; Fercho, Steven; Perkin, Doug; Martini, Brigette; Boshmann, Darrick

    2015-06-01

    The engineering and studies phase of the Glass Buttes project was aimed at reducing risk during the early stages of geothermal project development. The project’s inclusion of high resolution geophysical and geochemical surveys allowed Ormat to evaluate the value of these surveys both independently and in combination to quantify the most valuable course of action for exploration in an area where structure, permeability, and temperature are the most pressing questions. The sizes of the thermal anomalies at Glass Buttes are unusually large. Over the course of Phase I Ormat acquired high resolution LIDAR data to accurately map fault manifestations at the surface and collected detailed gravity and aeromagnetic surveys to map subsurface structural features. In addition, Ormat collected airborne hyperspectral data to assist with mapping the rock petrology and mineral alteration assemblages along Glass Buttes faults and magnetotelluric (MT) survey to try to better constrain the structures at depth. Direct and indirect identification of alteration assemblages reveal not only the geochemical character and temperature of the causative hydrothermal fluids but can also constrain areas of upflow along specific fault segments. All five datasets were merged along with subsurface lithologies and temperatures to predict the most likely locations for high permeability and hot fluids. The Glass Buttes temperature anomalies include 2 areas, totaling 60 km2 (23 mi2) of measured temperature gradients over 165° C/km (10° F/100ft). The Midnight Point temperature anomaly includes the Strat-1 well with 90°C (194 °F) at 603 m (1981 ft) with a 164 °C/km (10°F/100ft) temperature gradient at bottom hole and the GB-18 well with 71°C (160 °F) at 396 m (1300 ft) with a 182°C/km (11°F/100ft) gradient. The primary area of alteration and elevated temperature occurs near major fault intersections associated with Brothers Fault Zone and Basin and Range systems. Evidence for faulting is observed in each data set as follows. Field observations include fault plane orientations, complicated fault intersections, and hydrothermal alteration apparently pre-dating basalt flows. Geophysical anomalies include large, linear gradients in gravity and aeromagnetic data with magnetic lows possibly associated with alteration. Resistivity low anomalies also appear to have offsets associated with faulting. Hyperspectral and XRF identified alteration and individual volcanic flow units, respectively. When incorporated into a 3D geologic model, the fault intersections near the highest proven temperature and geophysical anomalies provide the first priority targets at Midnight Point. Ormat geologists selected the Midnight Point 52-33 drilling target based on a combination of pre-existing drilling data, geologic field work, geophysical interpretation, and geochemical analysis. Deep temperatures of well 52-33 was lower than anticipated. Temperature gradients in the well mirrored those found in historical drilling, but they decreased below 1500 ft and were isothermal below 2000 ft.

  3. High Energy Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Energy Physics science-innovationassetsimagesicon-science.jpg High Energy Physics Investigating the field of high energy physics through experiments that strengthen our ...

  4. Delineating Bukit Bunuh impact crater boundary by geophysical and geotechnical investigation

    SciTech Connect (OSTI)

    Azwin, I. N. Rosli, S.; Nordiana, M. M.; Ragu, R. R.; Mark, J.; Mokhtar, S.

    2015-03-30

    Evidences of crater morphology and shock metamorphism in Bukit Bunuh, Lenggong, Malaysia were found during the archaeological research conducted by the Centre for Global Archaeological Research Malaysia, Universiti Sains Malaysia. In order to register Bukit Bunuh as one of the world meteorite impact site, detailed studies are needed to verify the boundary of the crater accordingly. Geophysical study was conducted utilising the seismic refraction and 2-D electrical resistivity method. Seismic refraction survey was done using ABEM MK8 24 channel seismograph with 14Hz geophones and 40kg weight drop while 2-D electrical resistivity survey was performed using ABEM SAS4000 Terrameter and ES10-64C electrode selector with pole-dipole array. Bedrock depths were digitized from the sections obtained. The produced bedrock topography map shows that there is low bedrock level circulated by high elevated bedrock and interpreted as crater and rim respectively with diameter approximately 8km. There are also few spots of high elevated bedrock appear at the centre of the crater which interpreted as rebounds zone. Generally, the research area is divided into two layers where the first layer with velocity 400-1100?m/s and resistivity value of 10-800 Om predominantly consists of alluvium mix with gravel and boulders. Second layer represents granitic bedrock with depth of 5-50m having velocity >2100?m/s and resistivity value of >1500 Om. This research is strengthen by good correlation between geophysical data and geotechnical borehole records executed inside and outside of the crater, on the rim, as well as at the rebound area.

  5. Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska

    SciTech Connect (OSTI)

    Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

    1985-01-01

    An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

  6. Saturday Morning Physics - Talks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Further information online Contemporary Physics Education Project The Particle Adventure Particle Physics - Education and Outreach (Fermilab) CERN (Education Website) Wikipedia: ...

  7. GEOPHYSICS AND SITE CHARACTERIZATION AT THE HANFORD SITE THE SUCCESSFUL USE OF ELECTRICAL RESISTIVITY TO POSITION BOREHOLES TO DEFINE DEEP VADOSE ZONE CONTAMINATION - 11509

    SciTech Connect (OSTI)

    GANDER MJ; LEARY KD; LEVITT MT; MILLER CW

    2011-01-14

    Historic boreholes confirmed the presence of nitrate and radionuclide contaminants at various intervals throughout a more than 60 m (200 ft) thick vadose zone, and a 2010 electrical resistivity survey mapped the known contamination and indicated areas of similar contaminants, both laterally and at depth; therefore, electrical resistivity mapping can be used to more accurately locate characterization boreholes. At the Hanford Nuclear Reservation in eastern Washington, production of uranium and plutonium resulted in the planned release of large quantities of contaminated wastewater to unlined excavations (cribs). From 1952 until 1960, the 216-U-8 Crib received approximately 379,000,000 L (100,000,000 gal) of wastewater containing 25,500 kg (56,218 lb) uranium; 1,029,000 kg (1,013 tons) of nitrate; 2.7 Ci of technetium-99; and other fission products including strontium-90 and cesium-137. The 216-U-8 Crib reportedly holds the largest inventory of waste uranium of any crib on the Hanford Site. Electrical resistivity is a geophysical technique capable of identifying contrasting physical properties; specifically, electrically conductive material, relative to resistive native soil, can be mapped in the subsurface. At the 216-U-8 Crib, high nitrate concentrations (from the release of nitric acid [HNO{sub 3}] and associated uranium and other fission products) were detected in 1994 and 2004 boreholes at various depths, such as at the base of the Crib at 9 m (30 ft) below ground surface (bgs) and sporadically to depths in excess of 60 m (200 ft) bgs. These contaminant concentrations were directly correlative with the presence of observed low electrical resistivity responses delineated during the summer 2010 geophysical survey. Based on this correlation and the recently completed mapping of the electrically conductive material, additional boreholes are planned for early 2011 to identify nitrate and radionuclide contamination: (a) throughout the entire vertical length of the vadose zone (i.e., 79 m [260 ft] bgs) within the footprint of the Crib, and (b) 15 to 30 m (50 to 100 ft) east of the Crib footprint, where contaminants are inferred to have migrated through relatively permeable soils. Confirmation of the presence of contamination in historic boreholes correlates well with mapping from the 2010 survey, and serves as a basis to site future characterization boreholes that will likely intersect contamination both laterally and at depth.

  8. A NEW UNDERSTANDING OF THE EUROPA ATMOSPHERE AND LIMITS ON GEOPHYSICAL ACTIVITY

    SciTech Connect (OSTI)

    Shemansky, D. E.; Liu, X.; Yoshii, J.; Yung, Y. L.; Hansen, C. J.; Hendrix, A. R.; Esposito, L. W.

    2014-12-20

    Deep extreme ultraviolet spectrograph exposures of the plasma sheet at the orbit of Europa, obtained in 2001 using the Cassini Ultraviolet Imaging Spectrograph experiment, have been analyzed to determine the state of the gas. The results are in basic agreement with earlier results, in particular with Voyager encounter measurements of electron density and temperature. Mass loading rates and lack of detectable neutrals in the plasma sheet, however, are in conflict with earlier determinations of atmospheric composition and density at Europa. A substantial fraction of the plasma species at the Europa orbit are long-lived sulfur ions originating at Io, with ?25% derived from Europa. During the outward radial diffusion process to the Europa orbit, heat deposition forces a significant rise in plasma electron temperature and latitudinal size accompanied with conversion to higher order ions, a clear indication that mass loading from Europa is very low. Analysis of far ultraviolet spectra from exposures on Europa leads to the conclusion that earlier reported atmospheric measurements have been misinterpreted. The results in the present work are also in conflict with a report that energetic neutral particles imaged by the Cassini ion and neutral camera experiment originate at the Europa orbit. An interpretation of persistent energetic proton pitch angle distributions near the Europa orbit as an effect of a significant population of neutral gas is also in conflict with the results of the present work. The general conclusion drawn here is that Europa is geophysically far less active than inferred in previous research, with mass loading of the plasma sheet ?4.5 10{sup 25} atoms s{sup 1} two orders of magnitude below earlier published calculations. Temporal variability in the region joining the Io and Europa orbits, based on the accumulated evidence, is forced by the response of the system to geophysical activity at Io. No evidence for the direct injection of H{sub 2}O into the Europa atmosphere or from Europa into the magnetosphere system, as has been observed at Enceladus in the Saturn system, is obtained in the present investigation.

  9. SURFACE GEOPHYSICAL EXPLORATION DEVELOPING NONINVASIVE TOOLS TO MONITOR PAST LEAKS AROUND HANFORD TANK FARMS

    SciTech Connect (OSTI)

    MYERS DA; RUCKER DF; LEVITT MT; CUBBAGE B; NOONAN GE; MCNEILL M; HENDERSON C

    2011-06-17

    A characterization program has been developed at Hanford to image past leaks in and around the underground storage tank facilities. The program is based on electrical resistivity, a geophysical technique that maps the distribution of electrical properties of the subsurface. The method was shown to be immediately successful in open areas devoid of underground metallic infrastructure, due to the large contrast in material properties between the highly saline waste and the dry sandy host environment. The results in these areas, confirmed by a limited number of boreholes, demonstrate a tendency for the lateral extent of the underground waste plume to remain within the approximate footprint of the disposal facility. In infrastructure-rich areas, such as tank farms, the conventional application of electrical resistivity using small point-source surface electrodes initially presented a challenge for the resistivity method. The method was then adapted to directly use the buried infrastructure as electrodes for both transmission of electrical current and measurements of voltage. For example, steel-cased wells that surround the tanks were used as long electrodes, which helped to avoid much of the infrastructure problems. Overcoming the drawbacks of the long electrode method has been the focus of our work over the past seven years. The drawbacks include low vertical resolution and limited lateral coverage. The lateral coverage issue has been improved by supplementing the long electrodes with surface electrodes in areas devoid of infrastructure. The vertical resolution has been increased by developing borehole electrode arrays that can fit within the small-diameter drive casing of a direct push rig. The evolution of the program has led to some exceptional advances in the application of geophysical methods, including logistical deployment of the technology in hazardous areas, development of parallel processing resistivity inversion algorithms, and adapting the processing tools to accommodate electrodes of all shapes and locations. The program is accompanied by a full set of quality assurance procedures that cover the layout of sensors, measurement strategies, and software enhancements while insuring the integrity of stored data. The data have been shown to be useful in identifying previously unknown contaminant sources and defining the footprint of precipitation recharge barriers to retard the movement of existing contamination.

  10. Carl A. Gagliardi PHYSICS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A. Gagliardi PHYSICS Fundamental interactions and nuclear astrophysics - Fellow, American Physical Society - Distinguished Achievement Award in Teaching, AFS, - Texas A&M John C. Hardy PHYSICS Fundamental interactions and exotic nuclei - Fellow, Royal Society of Canada - Fellow, American Physical Society Che Ming Ko PHYSICS Theoretical hadron physics and heavy-ion collisions - Humboldt Research Award - Fellow, American Physical Society Joseph B. Natowitz CHEMISTRY Heavy-ion reaction

  11. Plasma physics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physics Subscribe to RSS - Plasma physics The study of plasma, a partially-ionized gas that is electrically conductive and able to be confined within a magnetic field, and how it ...

  12. Detecting Weak Explosions at Local Distances by Fusing Multiple Geophysical Phenomenologies

    SciTech Connect (OSTI)

    Carmichael, Joshua D.; Nemzek, Robert J.; Arrowsmith, Stephen J.; Sentz, Kari

    2015-03-23

    Comprehensive explosion monitoring requires the technical capability to identify certain signatures at low signal strengths. For particularly small, evasively conducted explosions, conventional monitoring methods that use single geophysical phenomenologies may produce marginal or absent detections. To address this challenge, we recorded coincident acoustic, seismic and radio-frequency emissions during the above-ground detonation of ~ 2-12 kg solid charges and assessed how waveform data could be fused to increase explosion-screening capability. Our data provided identifiable explosion signatures that we implemented as template-events in multichannel correlation detectors to search for similar, matching waveforms. We thereby observed that these highly sensitive correlation detectors missed explosive events when applied separately to data streams that were heavily contaminated with noise and signal clutter. By then adding the p-values of these statistics through Fisher’s combined probability test, we correctly identified the explosion signals at thresholds consistent with the false alarm rates of the correlation detectors. This resulting Fisher test thereby provided high-probability detections, zero false alarms, and higher theoretical detection capability. We conclude that inclusion of these fusion methods in routine monitoring operations will likely lower both detection thresholds for small explosions, while reducing false attribution rates.

  13. A Hybrid Hydrologic-Geophysical Inverse Technique for the Assessment and Monitoring of Leachates in the Vadose Zone

    SciTech Connect (OSTI)

    ALUMBAUGH,DAVID L.; YEH,JIM; LABRECQUE,DOUG; GLASS,ROBERT J.; BRAINARD,JAMES; RAUTMAN,CHRIS

    1999-06-15

    The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from 3D electric resistivity tomography (ERT) and/or 2D cross borehole ground penetrating radar (XBGPR) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity and dielectric constant of the vadose zone (from the ERT and XBGPR measurements, respectively) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related.

  14. Fall 2007 American Geophysical Union Meeting Student Travel Support for Environmental Nanomaterials Session (#B35) (December 10-14, 2007)

    SciTech Connect (OSTI)

    Michael F. Hochella, Jr.

    2007-10-01

    The purpose of award no. DE-FG02-08ER15925 was to fund travel for students to present at the Fall 2007 American Geophysical Meeting. This was done successfully, and five students (Bin Xie, Qiaona Hu, Katie Schreiner, Daria Kibanova, and Frank-Andreas Weber) gave excellent oral and poster presentations at the meeting. Provided are the conference abstracts for their presentations.

  15. An Analysis of Wind Power Development in the Town of Hull, MA_Appendix 4_Geophysical Survey Report

    SciTech Connect (OSTI)

    Adams, Christopher

    2013-06-30

    CR Environmental, Inc. (CR) was contracted by GZA GeoEnvironmental, Inc. (GZA) to perform hydrographic and geophysical surveys of an approximately 3.35 square mile area off the eastern shore of Hull, Massachusetts. Survey components included: Single-beam bathymetry; 100-kHz and 500-kHz side scan sonar; Magnetometry; and Low to mid-frequency sub-bottom profiling.

  16. New method to determine planetary boundary layer depth | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) New method to determine planetary boundary layer depth Biological and Environmental Research (BER) BER Home About Research Facilities Science Highlights Searchable Archive of BER Highlights External link Benefits of BER Funding Opportunities Biological & Environmental Research Advisory Committee (BERAC) Community Resources Contact Information Biological and Environmental Research U.S. Department of Energy SC-23/Germantown Building 1000 Independence Ave., SW Washington, DC

  17. Properties of LMC planetary nebulae and parent populations in the MACHO database

    SciTech Connect (OSTI)

    Alves, D.R. |; Alcock, C.; Cook, K.H.

    1996-10-01

    The MACHO microlensing experiment's time-sampled photometry database contains blue and red lightcurves for nearly 9 million stars in the central bar region of the Large Magellanic Cloud (LMC). We have identified known LMC Planetary Nebulae (PN) in the database and find one, Jacoby 5, to be variable. We additionally present data on the ``parent populations`` of LMC PN, and discuss the star formation history of the LMC bar. 14 refs., 1 fig.

  18. DOE/SC-ARM/TR-132 Planetary Boundary Layer (PBL) Height Value

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Planetary Boundary Layer (PBL) Height Value Added Product (VAP): Radiosonde Retrievals C Sivaraman S McFarlane 1 E Chapman Pacific Northwest National Laboratory M Jensen T Toto Brookhaven National Laboratory S Liu University of Maryland M Fischer Lawrence Berkeley National Laboratory August 2013 Version 1.0 1 Now at the U.S. Department of Energy, Climate & Environmental Science Division DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the

  19. PLANETARY TRANSITS WITH THE ATACAMA LARGE MILLIMETER/SUBMILLIMETER ARRAY RADIO INTERFEROMETER

    SciTech Connect (OSTI)

    Selhorst, C. L.; Barbosa, C. L.; Vlio, Adriana

    2013-11-10

    Planetary transits are commonly observed at visible wavelengths. Here we investigate the shape of a planetary transit observed at radio wavelengths. Solar maps at 17 GHz are used as a proxy for the stellar eclipse by several sizes of planets from super-Earths to hot Jupiters. The relative depth at mid-transit is the same as observed at visible wavelengths, but the limb brightening of the stellar disk at 17 GHz is clearly seen in the shape of the transit light curve. Moreover, when the planet occults an active region the depth of the transit decreases even further, depending on the brightness of the active region relative to the surrounding disk. For intense active region, with 50 times the brightness temperature of the surrounding disk, the decrease can supercede the unperturbed transit depth depending on the size of the eclipsing planet. For a super-Earth (R{sub p} = 0.02 R{sub s} ) crossing, the decrease in intensity is 0.04%, increasing to 0.86% in the case when a strong active region is present. On the other hand, for a hot Jupiter with R{sub p} = 0.17R{sub s} , the unperturbed transit depth is 3% increasing to 4.7% when covering this strong active region. This kind of behavior can be verified with observation of planetary transits with the Atacama Large Millimeter/submillimeter Array radio interferometer.

  20. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Privacy and Security Notice Skip over navigation Search the JLab Site Nuclear Physics Program Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Nuclear Physics Program Physics Home Events Experiment Research User/Researcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser (FEL) Medical Imaging Physics Topics

  1. Nuclear Physics: Recent Talks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Additional Information Computing at JLab Operations Logbook Physics Topics: ...

  2. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    personnel, and to various experimental instrument specialists in the Physics Division. ... Barbara Weller in the Physics Division of Argonne National Laboratory at (630) 252-4044 or ...

  3. Physics Thrust Areas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thrust Areas Physics Thrust Areas Physics Division serves the nation through its broad portfolio of fundamental and applied research. Quality basic science research: critical ...

  4. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics justification: The main focus of the HELIOS research program is the study of ... Physics justification: Spectroscopy following the decay of nuclear ground states and ...

  5. ORISE: Health Physics Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Physics Training Student performs an analysis during an ORAU health physics training course Training and educating a highly skilled workforce that can meet operational ...

  6. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... equipped with the instruments required for precision nuclear and atomic physics research. ... Mass Analyzer (FMA), an atomic physics beam line, and two general purpose beam lines. ...

  7. ORISE: Health physics services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health physics services Nuclear power plant The Oak Ridge Institute for Science and Education (ORISE) offers comprehensive health physics services in a number of technical areas ...

  8. Saturday Morning Physics - Talks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Further information online Contemporary Physics Education Project Secret Worlds: The Universe within (Java animation) The Particle Adventure Particle Physics - Education and ...

  9. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Aspects of radiation safety at ATLAS: Health Physics Coverage at ATLAS is provided by Argonne National Laboratory. Health Physics personnel must be notified if there is a ...

  10. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advantage of new physics opportunities with a suitable suite of experimental equipment. ... focus on delineating the goals of the physics program for the next decade, and on ...

  11. Nuclear Physics: Meetings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Topics: Meetings Talks given at the Science & Technology Review 2004 Larry Cardman: Science Overview and the Experimental Program ppt | pdf Tony Thomas: Nuclear Physics ...

  12. Nuclear Physics Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hall A Hall B Hall C Hall D Physics Departments Administrative Office Data Acquisition Group Detector & Imaging Group Electronics Group User Liaison Nuclear Physics Program HALL A ...

  13. INSTITUTE OF PHYSICS PUBLISHING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Missoula, MT, USA 8 Princeton Plasma Physics Laboratory, Princeton, NJ, USA Received ... can be produced in two quite different physics regimes: standard-confinement plasmas ...

  14. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety Tom Mullen, Physics Division Safety Engineer. Please Note: If you have any comments or concerns regarding safety at ATLAS, please contact the Physics Division Safety ...

  15. Nuclear Physics: Campaigns

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free-Electron Laser (FEL) Medical Imaging Physics Topics Campaigns The Structure of the Nuclear Building Blocks The Structure of Nuclei Symmetry Tests in Nuclear Physics Meetings ...

  16. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Casten Rick Yale University rick@riviera.physics.yale.edu Chaudhuri Ankur Argonne National ... University of Guelph pgarrett@physics.uoguelph.ca Gregorich Kenneth Lawrence Berkeley Nat. ...

  17. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Mark Florida State University mriley@physics.fsu.edu Rogers Andrew Michigan State ... Florida State University Tabor@nucmar.physics.fsu.edu Walters Bill University of ...

  18. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Working Groups - Session 1 - Focus on Physics 1: Nuclear Structure (Auditorium) ... Working Groups - Session 1 - Focus on Physics Nuclear Structure Nuclear reactions and ...

  19. Experimental Physical Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Physics, Chair ASM International, Board of Trustees Association for Iron & Steel Technology, Board of Directors National Science Foundation, Condensed Matter Physics, Program...

  20. Office of Physical Protection

    Broader source: Energy.gov [DOE]

    The Office of Physical Protection is comprised of a team of security specialists engaged in providing Headquarters-wide physical protection.

  1. Crump Geyser Exploration and Drilling Project. High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling

    SciTech Connect (OSTI)

    Fairbank, Brian D.; Smith, Nicole

    2015-06-10

    The Crump Geyser Exploration and Drilling Project – High Precision Geophysics and Detailed Structural Exploration and Slim Well Drilling ran from January 29, 2010 to September 30, 2013. During Phase 1 of the project, collection of all geophysical surveys was completed as outlined in the Statement of Project Objectives. In addition, a 5000-foot full sized exploration well was drilled by Ormat, and preexisting drilling data was discovered for multiple temperature gradient wells within the project area. Three dimensional modeling and interpretation of results from the geophysical surveys and drilling data gave confidence to move to the project into Phase 2 drilling. Geological and geophysical survey interpretations combined with existing downhole temperature data provided an ideal target for the first slim-hole drilled as the first task in Phase 2. Slim-hole 35-34 was drilled in September 2011 and tested temperature, lithology, and permeability along the primary range-bounding fault zone near its intersection with buried northwest-trending faults that have been identified using geophysical methods. Following analysis of the results of the first slim-hole 35-34, the second slim hole was not drilled and subsequent project tasks, including flowing differential self-potential (FDSP) surveys that were designed to detail the affect of production and injection on water flow in the shallow aquifer, were not completed. NGP sold the Crump project to Ormat in August 2014, afterwards, there was insufficient time and interest from Ormat available to complete the project objectives. NGP was unable to continue managing the award for a project they did not own due to liability issues and Novation of the award was not a viable option due to federal award timelines. NGP submitted a request to mutually terminate the award on February 18, 2015. The results of all of the technical surveys and drilling are included in this report. Fault interpretations from surface geology, aeromag, seismic, and gravity data sets are in good agreement, illustrating two or more major range-bounding faults and buried northwest trending faults. The intersections of these fault systems provide the primary targets for drilling.

  2. Identification and Characterization of Hydrogeologic Units at the Nevada Test Site Using Geophysical Logs: Examples from the Underground Test Area Project

    SciTech Connect (OSTI)

    Lance Prothro, Sigmund Drellack, Margaret Townsend

    2009-03-25

    The diverse and complex geology of the Nevada Test Site region makes for a challenging environment for identifying and characterizing hydrogeologic units penetrated by wells drilled for the U.S. Department of Energy, National Nuclear Security Administration, Underground Test Area (UGTA) Environmental Restoration Sub-Project. Fortunately, UGTA geoscientists have access to large and robust sets of subsurface geologic data, as well as a large historical knowledge base of subsurface geological analyses acquired mainly during the underground nuclear weapons testing program. Of particular importance to the accurate identification and characterization of hydrogeologic units in UGTA boreholes are the data and interpretation principles associated with geophysical well logs. Although most UGTA participants and stakeholders are probably familiar with drill hole data such as drill core and cuttings, they may be less familiar with the use of geophysical logs; this document is meant to serve as a primer on the use of geophysical logs in the UGTA project. Standard geophysical logging tools used in the UGTA project to identify and characterize hydrogeologic units are described, and basic interpretation principles and techniques are explained. Numerous examples of geophysical log data from a variety of hydrogeologic units encountered in UGTA wells are presented to highlight the use and value of geophysical logs in the accurate hydrogeologic characterization of UGTA wells.

  3. AUTOMATED LEAK DETECTION OF BURIED TANKS USING GEOPHYSICAL METHODS AT THE HANFORD NUCLEAR SITE

    SciTech Connect (OSTI)

    CALENDINE S; SCHOFIELD JS; LEVITT MT; FINK JB; RUCKER DF

    2011-03-30

    At the Hanford Nuclear Site in Washington State, the Department of Energy oversees the containment, treatment, and retrieval of liquid high-level radioactive waste. Much of the waste is stored in single-shelled tanks (SSTs) built between 1943 and 1964. Currently, the waste is being retrieved from the SSTs and transferred into newer double-shelled tanks (DSTs) for temporary storage before final treatment. Monitoring the tanks during the retrieval process is critical to identifying leaks. An electrically-based geophysics monitoring program for leak detection and monitoring (LDM) has been successfully deployed on several SSTs at the Hanford site since 2004. The monitoring program takes advantage of changes in contact resistance that will occur when conductive tank liquid leaks into the soil. During monitoring, electrical current is transmitted on a number of different electrode types (e.g., steel cased wells and surface electrodes) while voltages are measured on all other electrodes, including the tanks. Data acquisition hardware and software allow for continuous real-time monitoring of the received voltages and the leak assessment is conducted through a time-series data analysis. The specific hardware and software combination creates a highly sensitive method of leak detection, complementing existing drywell logging as a means to detect and quantify leaks. Working in an industrial environment such as the Hanford site presents many challenges for electrical monitoring: cathodic protection, grounded electrical infrastructure, lightning strikes, diurnal and seasonal temperature trends, and precipitation, all of which create a complex environment for leak detection. In this discussion we present examples of challenges and solutions to working in the tank farms of the Hanford site.

  4. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; Normand, Jonathan; Dermond, Jeffrey A.; Fang, Yilin; Sullivan, E. C.

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3/yr-1more » into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.« less

  5. Geophysical Monitoring of Ground Surface Deformation Associated with a Confined Aquifer Storage and Recovery Operation

    SciTech Connect (OSTI)

    Bonneville, Alain; Heggy, Essam; Strickland, Christopher E.; Normand, Jonathan; Dermond, Jeffrey A.; Fang, Yilin; Sullivan, E. C.

    2015-08-11

    A main issue in the storage of large volumes of fluids, mainly water and CO2, in the deep subsurface is to determine their field-scale-induced displacements and consequences on the mechanical behavior of the storage reservoir and surroundings. A quantifiable estimation of displacement can be made by combining the robust, cost-effective, and repeatable geophysical techniques of micro-gravimetry, differential global positioning system (DGPS), and differential synthetic aperture radar interferometry (DInSAR). These techniques were field tested and evaluated in an active large-volume aquifer storage and recovery (ASR) project in Pendleton, Oregon, USA, where three ASR wells are injecting up to 1.9 million m3/yr-1 into basalt aquifers to a depth of about 150 m. Injection and recovery of water at the wells was accompanied by significant gravity anomalies and vertical deformation of the ground surface localized to the immediate surroundings of the injection wells as evidenced by DGPS and gravity measurements collected in 2011. At a larger scale, and between 2011 and 2013, DInSAR monitoring of the Pendleton area suggests the occurrence of sub-centimetric deformation in the western part of the city and close to the injection locations associated with the ASR cycle. A numerical simulation of the effect of the water injection gives results in good agreement with the observations and confirms the validity of the approach, which could be deployed in similar geological contexts to look at the mechanical effects of water and gas injections. The gravity signal reflects deep phenomena and gives additional insight into the repartition of fluids in the subsurface.

  6. High Energy Physics and Nuclear Physics Network Requirements...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: High Energy Physics and Nuclear Physics Network Requirements Citation Details In-Document Search Title: High Energy Physics and Nuclear Physics Network ...

  7. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    search Nuclear Physics Program Please upgrade your browser. This site's design is only visible in a graphical browser that supports web standards, but its content is accessible to any browser. Concerns? Nuclear Physics Program Physics Home Seminars & Colloquia Experiment Research User/Researcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks

  8. Integration & Co-development of a Geophysical CO2 Monitoring Suite

    SciTech Connect (OSTI)

    Friedmann, S J

    2007-07-24

    Carbon capture and sequestration (CCS) has emerged as a key technology for dramatic short-term reduction in greenhouse gas emissions in particular from large stationary. A key challenge in this arena is the monitoring and verification (M&V) of CO2 plumes in the deep subsurface. Towards that end, we have developed a tool that can simultaneously invert multiple sub-surface data sets to constrain the location, geometry, and saturation of subsurface CO2 plumes. We have focused on a suite of unconventional geophysical approaches that measure changes in electrical properties (electrical resistance tomography, electromagnetic induction tomography) and bulk crustal deformation (til-meters). We had also used constraints of the geology as rendered in a shared earth model (ShEM) and of the injection (e.g., total injected CO{sub 2}). We describe a stochastic inversion method for mapping subsurface regions where CO{sub 2} saturation is changing. The technique combines prior information with measurements of injected CO{sub 2} volume, reservoir deformation and electrical resistivity. Bayesian inference and a Metropolis simulation algorithm form the basis for this approach. The method can (a) jointly reconstruct disparate data types such as surface or subsurface tilt, electrical resistivity, and injected CO{sub 2} volume measurements, (b) provide quantitative measures of the result uncertainty, (c) identify competing models when the available data are insufficient to definitively identify a single optimal model and (d) rank the alternative models based on how well they fit available data. We present results from general simulations of a hypothetical case derived from a real site. We also apply the technique to a field in Wyoming, where measurements collected during CO{sub 2} injection for enhanced oil recovery serve to illustrate the method's performance. The stochastic inversions provide estimates of the most probable location, shape, volume of the plume and most likely CO{sub 2} saturation. The results suggest that the method can reconstruct data with poor signal to noise ratio and use hard constraints available from many sites and applications. External interest in the approach and method is high, and already commercial and DOE entities have requested technical work using the newly developed methodology for CO{sub 2} monitoring.

  9. Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.

    SciTech Connect (OSTI)

    Gardner, Martin G.; Price, Randall K.

    2007-02-01

    During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

  10. GIS Regional Spatial Data from the Great Basin Center for Geothermal Energy: Geochemical, Geodesic, Geologic, Geophysical, Geothermal, and Groundwater Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Great Basin Center for Geothermal Energy, part of the University of Nevada, Reno, conducts research towards the establishment of geothermal energy as an economically viable energy source within the Great Basin. The Center specializes in collecting and synthesizing geologic, geochemical, geodetic, geophysical, and tectonic data, and using Geographic Information System (GIS) technology to view and analyze this data and to produce favorability maps of geothermal potential. The center also makes its collections of spatial data available for direct download to the public. Data are in Lambert Conformable Conic Projection.

  11. Microsoft Word - FY16 Call for Research Proposals v4.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSES 2016 Call for Proposals Released February 8, 2016 Reiner Friedel - Center for Space and Earth Science (CSES) National Science Education Center (NSEC) - LANL 2 CSES 2 016 C all f or P roposals 1 Announcing t he C enter f or S pace a nd E arth S cience ( CSES) Formerly the Institute of Geophysics, Planetary Physics and Signatures (IGPPS) New website at http://www.lanl.gov/projects/national-security-education-center/space- earth-center/index.php The Institute of Geophysics and Planetary

  12. Fermilab | Science | Particle Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle Physics photo At Fermilab, a robust scientific program pursues answers to key questions about the laws of nature and the cosmos. The challenge of particle physics is to ...

  13. Physics Informed Machine Learning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Informed Machine Learning Physics Informed Machine Learning WHEN: Jan 19, 2016 8:00 AM - Jan 22, 2016 4:00 PM WHERE: Inn at Loretto, Santa Fe CATEGORY: Science TYPE: ...

  14. INSTITUTE OF PHYSICS PUBLISHING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and C.B. Forest 1 Department of Physics, University of Wisconsin, 1150 University ... The plasma physics of the problem is entirely described by the 2 2 spectral surface ...

  15. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    It is supported by the Office of Nuclear Physics of the Department of Energy. The Users ... main goals and is aligned with i the US Nuclear Physics long-range plan priorities. ...

  16. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In addition, the role of ATLAS for the low-energy nuclear physics community needs to be ... The facility and its users are encouraged by the DOE Office of Nuclear Physics to look ...

  17. Future Physics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Future Physics March 5, 2009 In late January, we held a meeting of our Physics Advisory Committee, PAC34 to be precise. We had two primary goals for the PAC, one related to the ...

  18. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ATLAS User Group shall be formed from the members of the nuclear physics, nuclear chemistry and atomic physics community who are past, present, or potential users of the ATLAS ...

  19. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Nuclear Physics at the Department of Energy to upgrade the capabilities of ATLAS in the area of physics with rare isotopes. A copy of the proposal for the CAlifornium...

  20. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2015 Princeton Plasma Physics Laboratory. A...

  1. MST - UW Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Madison Symmetric Torus produces hot plasma for research in plasma physics and fusion power generation, the energy source of the sun. Located in the Physics Department of the ...

  2. Physics Informed Machine Learning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Informed Machine Learning Physics Informed Machine Learning WHEN: Jan 19, 2016 8:00 AM - Jan 22, 2016 4:00 PM WHERE: Inn at Loretto, Santa Fe CATEGORY: Science TYPE:...

  3. ORISE: Health Physics Training

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health Physics Training Student performs an analysis during an ORAU health physics training course Training and educating a highly skilled workforce that can meet operational commitments in the areas of radiation and health physics is an essential part of protecting your workers, the public and the environment. ORAU, the managing contractor of the Oak Ridge Institute for Science and Education, offers hands-on, laboratory-based training courses in a variety of health physics areas. Training

  4. Introduction to Neutrino Physics

    SciTech Connect (OSTI)

    Linares, Edgar Casimiro

    2009-04-30

    I present a basic introduction to the physics of the neutrino, with emphasis on experimental results and developments.

  5. American Physical Society Awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physical Society Awards American Physical Society (APS) is one of the most important professional societies for gauging the quality of R&D done at the Laboratory. The APS sponsors a number of awards including the John Dawson Award of Excellence in Plasma Physics, James Clerk Maxwell Prize for Plasma Physics, as well as Dinstinguised Lectuerer and Doctoral Dissertation prizes. Name Year Name of Award and Citation Yu-hsin Chen 2012 Marshall N. Rosenbluth Outstanding Doctoral Thesis For

  6. How to Popularize Physics

    ScienceCinema (OSTI)

    Simmons, Elizabeth [Michigan State University, East Landing, Michigan, United States

    2009-09-01

    This talk discusses the whys and hows of educational outreach and presents examples from several fields of physics.

  7. American Physical Society awards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    awards fellowships to Los Alamos scientists December 18, 2012 American Physical Society Awards Fellowships to Los Alamos Scientists LOS ALAMOS, NEW MEXICO, December 18, 2012-Ten scientists at Los Alamos National Laboratory are being inducted into the ranks of fellowship in the American Physical Society (APS) for 2012. The criterion for election as an APS Fellow is exceptional contributions to the physics enterprise; such as performing outstanding physics research, important applications of

  8. RESONANCES REQUIRED: DYNAMICAL ANALYSIS OF THE 24 Sex AND HD 200964 PLANETARY SYSTEMS

    SciTech Connect (OSTI)

    Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.

    2012-12-20

    We perform several suites of highly detailed dynamical simulations to investigate the architectures of the 24 Sextantis and HD 200964 planetary systems. The best-fit orbital solution for the two planets in the 24 Sex system places them on orbits with periods that lie very close to 2:1 commensurability, while that for the HD 200964 system places the two planets therein in orbits whose periods lie close to a 4:3 commensurability. In both cases, the proposed best-fit orbits are mutually crossing-a scenario that is only dynamically feasible if the planets are protected from close encounters by the effects of mutual mean-motion resonance (MMR). Our simulations reveal that the best-fit orbits for both systems lie within narrow islands of dynamical stability, and are surrounded by much larger regions of extreme instability. As such, we show that the planets are only feasible if they are currently trapped in mutual MMR-the 2:1 resonance in the case of 24 Sex b and c, and the 4:3 resonance in the case of HD 200964 b and c. In both cases, the region of stability is strongest and most pronounced when the planetary orbits are mutually coplanar. As the inclination of planet c with respect to planet b is increased, the stability of both systems rapidly collapses.

  9. WEST COAST REGIONAL CARBON SEQUESTRATION PARTNERSHIP - REPORT ON GEOPHYSICAL TECHNIQUES FOR MONITORING CO2 MOVEMENT DURING SEQUESTRATION

    SciTech Connect (OSTI)

    Gasperikova, Erika; Gasperikova, Erika; Hoversten, G. Michael

    2005-10-01

    The relative merits of the seismic, gravity, and electromagnetic (EM) geophysical techniques are examined as monitoring tools for geologic sequestration of CO{sub 2}. This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques on two synthetic modeling scenarios. The first scenario represents combined CO{sub 2} enhance oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. EOR/sequestration projects in general and Schrader Bluff in particular represent relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}). This model represents the most difficult end member of a complex spectrum of possible sequestration scenarios. The time-lapse performance of seismic, gravity, and EM techniques are considered for the Schrader Bluff model. The second scenario is a gas field that in general resembles conditions of Rio Vista reservoir in the Sacramento Basin of California. Surface gravity, and seismic measurements are considered for this model.

  10. Education and Strategic Research Collaborations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Menu Program Offices Energy Security Council New Mexico Consortium Coordination Office Postdoc Program Students/Internships Centers, Institutes Center for Nonlinear Studies Engineering Institute Information Science & Technology Institute Center for Space and Earth Science Institute for Materials Science Seaborg Institute Summer Schools Engineering Institute Institute of Geophysics, Planetary Physics, Signatures Events Collaborations for education and strategic research, student opportunities

  11. Education and Strategic Research Collaborations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Menu Program Offices Energy Security Council New Mexico Consortium Coordination Office Postdoc Program Students/Internships Centers, Institutes Center for Nonlinear Studies Engineering Institute Information Science & Technology Institute Center for Space and Earth Science Institute for Materials Science Seaborg Institute Summer Schools Engineering Institute Institute of Geophysics, Planetary Physics, Signatures Events Collaborations for education and strategic research, student opportunities

  12. Events, Tours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Menu Program Offices Energy Security Council New Mexico Consortium Coordination Office Postdoc Program Students/Internships Centers, Institutes Center for Nonlinear Studies Engineering Institute Information Science & Technology Institute Center for Space and Earth Science Institute for Materials Science Seaborg Institute Summer Schools Engineering Institute Institute of Geophysics, Planetary Physics, Signatures Events NSEC » Events, Tours Events, Tours The Summer Lecture Series is designed

  13. Education and Strategic Research Collaborations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Offices Energy Security Council New Mexico Consortium Coordination Office Postdoc Program Students/Internships Centers, Institutes Center for Nonlinear Studies Engineering Institute Information Science & Technology Institute Center for Space and Earth Science Institute for Materials Science Seaborg Institute Summer Schools Engineering Institute Institute of Geophysics, Planetary Physics, Signatures Events Collaborations for education and strategic research, student opportunities

  14. Summer Schools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program Offices Energy Security Council New Mexico Consortium Coordination Office Postdoc Program Students/Internships Centers, Institutes Center for Nonlinear Studies Engineering Institute Information Science & Technology Institute Center for Space and Earth Science Institute for Materials Science Seaborg Institute Summer Schools Engineering Institute Institute of Geophysics, Planetary Physics, Signatures Events NSEC » Summer Schools Summer Schools Offering various 8 to 12-week programs

  15. Joint seismic-geodynamic-mineral physical modelling of African geodynamics: A reconciliation of deep-mantle convection with surface geophysical constraints

    SciTech Connect (OSTI)

    Forte, A M; Quere, S; Moucha, R; Simmons, N A; Grand, S P; Mitrovica, J X; Rowley, D B

    2008-08-22

    Recent progress in seismic tomography provides the first complete 3-D images of the combined thermal and chemical anomalies that characterise the unique deep mantle structure below the African continent. With these latest tomography results we predict flow patterns under Africa that reveal a large-scale, active hot upwelling, or superplume, below the western margin of Africa under the Cape Verde Islands. The scale and dynamical intensity of this West African superplume (WASP) is comparable to that of the south African superplume (SASP) that has long been assumed to dominate the flow dynamics under Africa. On the basis of this new tomography model, we find the dynamics of the SASP is strongly controlled by chemical contributions to deep mantle buoyancy that significantly compensate its thermal buoyancy. In contrast, the WASP appears to be entirely dominated by thermal buoyancy. New calculations of mantle convection incorporating these two superplumes reveal that the plate-driving forces due to the flow generated by the WASP is as strong as that due to the SASP. We find that the chemical buoyancy of the SASP exerts a strong stabilising control on the pattern and amplitude of shallow mantle flow in the asthenosphere below the southern half of the African plate. The asthenospheric flow predictions provide the first high resolution maps of focussed upwellings that lie below the major centres of Late Cenozoic volcanism, including the Kenya domes and Hoggar massif that lies above a remnant plume head in the upper mantle. Inferences of sublithospheric deformation from seismic anisotropy data are shown to be sensitive to the contributions of chemical buoyancy in the SASP.

  16. Luu, T; Platter, L 73 NUCLEAR PHYSICS AND RADIATION PHYSICS;...

    Office of Scientific and Technical Information (OSTI)

    constraints from Big Bang nucleosynthesis Bedaque, P; Luu, T; Platter, L 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; DEUTERIUM; FIELD THEORIES; NUCLEAR PHYSICS; NUCLEOSYNTHESIS;...

  17. Physics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Physics Physics On January 13, 2012, Lawrence Berkeley National Laboratory senior scientist Dr. Saul Perlmutter spoke with Energy Department staff about his research that earned him a 2011 Nobel Prize in Physics. Featured Dark Energy Cam: Fermilab Expands Understanding of Expanding Universe Researchers at Fermi National Lab team stand beside the 570-megapixels, five-ton Dark Energy camera, which will be capable of measuring the expansion of the universe - and developing better models about how

  18. ORISE: Health physics services

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Health physics services Nuclear power plant The Oak Ridge Institute for Science and Education (ORISE) offers comprehensive health physics services in a number of technical areas for the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), as well as other federal and state agencies. From radiological facility audits and reviews to dose modeling and technical evaluations, ORISE is nationally-recognized for its health physics support to decontamination and decommissioning

  19. physics-based-html

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physical security Physical Security Systems After the 9/11 terrorist attacks, NNSA took steps to protect its critical facilities from vehicle bombs and strengthened its facilities against attacks. NNSA has begun consolidating its nuclear weapons material which reduces the number of targets to be protected. It has hardened its

    Physics-based High-Resolution Numerical Modeling of Bridge Foundation Scour

  20. American Physical Society Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    American Physical Society Fellows American Physical Society (APS) Fellowships recognize those who have made advances in knowledge through original research or have made significant and innovative contributions in the application of physics to science and technology. Each year, no more than one-half of one percent of APS's current membership is recognized by their peers for election to the status of Fellow. The hundred-year-old society numbers tens of thousands of physicists worldwide. Name Year

  1. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Additional Information Computing at JLab Operations Logbook Experiment ...

  2. Physical Protection Program Manual

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-23

    Supplements DOE O 473.1, by establishing requirements for the physical protection of safeguards and security interests. Cancels: DOE M 5632.1C-1

  3. Internships for Physics Majors

    Broader source: Energy.gov [DOE]

    Fermilab's IPM program offers ten-week summer internships to outstanding undergraduate physics majors. This program has been developed to familiarize students with opportunities at the frontiers of...

  4. Furth Plasma Physics Library | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart ... Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart ...

  5. A detailed analysis of the HD 73526 2:1 resonant planetary system

    SciTech Connect (OSTI)

    Wittenmyer, Robert A.; Horner, Jonathan; Tinney, C. G.; Salter, G. S.; Bailey, J.; Wright, D.; Tan, Xianyu; Lee, Man Hoi; Butler, R. P.; Arriagada, P.; Carter, B. D.; Jones, H. R. A.; O'Toole, S. J.; Crane, J. D.; Schectman, S. A.; Thompson, I.; Minniti, D.; Diaz, M.

    2014-01-10

    We present six years of new radial velocity data from the Anglo-Australian and Magellan Telescopes on the HD 73526 2:1 resonant planetary system. We investigate both Keplerian and dynamical (interacting) fits to these data, yielding four possible configurations for the system. The new data now show that both resonance angles are librating, with amplitudes of 40 and 60, respectively. We then perform long-term dynamical stability tests to differentiate these solutions, which only differ significantly in the masses of the planets. We show that while there is no clearly preferred system inclination, the dynamical fit with i = 90 provides the best combination of goodness-of-fit and long-term dynamical stability.

  6. Episodic mass loss from the hydrogen-deficient central star of the planetary nebula Longmore 4

    SciTech Connect (OSTI)

    Bond, Howard E.

    2014-09-01

    A spectacular transient mass-loss episode from the extremely hot, hydrogen-deficient central star of the planetary nebula (PN) Longmore 4 (Lo 4) was discovered in 1992 by Werner et al. During that event, the star temporarily changed from its normal PG 1159 spectrum to that of an emission-line low-luminosity early-type Wolf-Rayet [WCE] star. After a few days, Lo 4 reverted to its normal, predominantly absorption-line PG 1159 type. To determine whether such events recur, and if so how often, I monitored the optical spectrum of Lo 4 from early 2003 to early 2012. Out of 81 spectra taken at random dates, 4 of them revealed mass-loss outbursts similar to that seen in 1992. This indicates that the episodes recur approximately every 100 days (if the recurrence rate has been approximately constant and the duration of a typical episode is ?5 days), and that the star is in a high-mass-loss state about 5% of the time. Since the enhanced stellar wind is hydrogen-deficient, it arises from the photosphere and is unlikely to be related to phenomena such as a binary or planetary companion or infalling dust. I speculate on plausible mechanisms for these unique outbursts, including the possibility that they are related to the non-radial GW Vir-type pulsations exhibited by Lo 4. The central star of the PN NGC 246 has stellar parameters similar to those of Lo 4, and it is also a GW Vir-type pulsator with similar pulsation periods. I obtained 167 spectra of NGC 246 between 2003 and 2011, but no mass ejections were found.

  7. HD106906b: A PLANETARY-MASS COMPANION OUTSIDE A MASSIVE DEBRIS DISK

    SciTech Connect (OSTI)

    Bailey, Vanessa; Reiter, Megan; Morzinski, Katie; Males, Jared; Su, Kate Y. L.; Hinz, Philip M.; Stark, Daniel; Close, Laird M.; Follette, Katherine B.; Rodigas, Timothy; Meshkat, Tiffany; Kenworthy, Matthew; Mamajek, Eric; Briguglio, Runa; Puglisi, Alfio; Xompero, Marco; Weinberger, Alycia J.

    2014-01-01

    We report the discovery of a planetary-mass companion, HD106906 b, with the new Magellan Adaptive Optics (MagAO) + Clio2 system. The companion is detected with Clio2 in three bands: J, K{sub S} , and L', and lies at a projected separation of 7.''1 (650 AU). It is confirmed to be comoving with its 13 2 Myr F5 host using Hubble Space Telescope Advanced Camera for Surveys astrometry over a time baseline of 8.3 yr. DUSTY and COND evolutionary models predict that the companion's luminosity corresponds to a mass of 11 2 M {sub Jup}, making it one of the most widely separated planetary-mass companions known. We classify its Magellan/Folded-Port InfraRed Echellette J/H/K spectrum as L2.5 1; the triangular H-band morphology suggests an intermediate surface gravity. HD106906 A, a pre-main-sequence Lower Centaurus Crux member, was initially targeted because it hosts a massive debris disk detected via infrared excess emission in unresolved Spitzer imaging and spectroscopy. The disk emission is best fit by a single component at 95 K, corresponding to an inner edge of 15-20 AU and an outer edge of up to 120 AU. If the companion is on an eccentric (e > 0.65) orbit, it could be interacting with the outer edge of the disk. Close-in, planet-like formation followed by scattering to the current location would likely disrupt the disk and is disfavored. Furthermore, we find no additional companions, though we could detect similar-mass objects at projected separations >35 AU. In situ formation in a binary-star-like process is more probable, although the companion-to-primary mass ratio, at <1%, is unusually small.

  8. Applications of Geophysical and Geological Techniques to Identify Areas for Detailed Exploration in Black Mesa Basin, Arizona

    SciTech Connect (OSTI)

    George, S.; Reeves, T.K.; Sharma, Bijon; Szpakiewicz, M.

    1999-04-29

    A recent report submitted to the U.S. Department of Energy (DOE) (NIPER/BDM-0226) discussed in considerable detail, the geology, structure, tectonics, and history of oil production activities in the Black Mesa basin in Arizona. As part of the final phase of wrapping up research in the Black Mesa basin, the results of a few additional geophysical studies conducted on structure, stratigraphy, petrophysical analysis, and oil and gas occurrences in the basin are presented here. A second objective of this study is to determine the effectiveness of relatively inexpensive, noninvasive techniques like gravity or magnetic in obtaining information on structure and tectonics in sufficient detail for hydrocarbon exploration, particularly by using the higher resolution satellite data now becoming available to the industry.

  9. Nuclear & Particle Physics, Astrophysics, Cosmology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear & Particle Physics science-innovationassetsimagesicon-science.jpg Nuclear & Particle Physics, Astrophysics, Cosmology National security depends on science and ...

  10. Organization | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Careers Human Resources Directory Environment, Safety & Health Furth Plasma Physics ... Safety & Health Furth Plasma Physics Library Lab Leadership Organization Chart ...

  11. Physical Hydrogen Storage

    Broader source: Energy.gov [DOE]

    Physical storage is the most mature hydrogen storage technology. The current near-term technology for onboard automotive physical hydrogen storage is 350 and 700 bar (5,000 and 10,000 psi) nominal working-pressure compressed gas vessels—that is, "tanks."

  12. Physical Uncertainty Bounds (PUB)

    SciTech Connect (OSTI)

    Vaughan, Diane Elizabeth; Preston, Dean L.

    2015-03-19

    This paper introduces and motivates the need for a new methodology for determining upper bounds on the uncertainties in simulations of engineered systems due to limited fidelity in the composite continuum-level physics models needed to simulate the systems. We show that traditional uncertainty quantification methods provide, at best, a lower bound on this uncertainty. We propose to obtain bounds on the simulation uncertainties by first determining bounds on the physical quantities or processes relevant to system performance. By bounding these physics processes, as opposed to carrying out statistical analyses of the parameter sets of specific physics models or simply switching out the available physics models, one can obtain upper bounds on the uncertainties in simulated quantities of interest.

  13. Toward a constructive physics

    SciTech Connect (OSTI)

    Noyes, H.P.; Gefwert, C.; Manthey, M.J.

    1983-06-01

    We argue that the discretization of physics which has occurred thanks to the advent of quantum mechanics has replaced the continuum standards of time, length and mass which brought physics to maturity by counting. The (arbitrary in the sense of conventional dimensional analysis) standards have been replaced by three dimensional constants: the limiting velocity c, the unit of action h, and either a reference mass (eg m/sub p/) or a coupling constant (eg G related to the mass scale by hc/(2..pi..Gm/sub p//sup 2/) approx. = 1.7 x 10/sup 38/). Once these physical and experimental reference standards are accepted, the conventional approach is to connect physics to mathematics by means of dimensionless ratios. But these standards now rest on counting rather than ratios, and allow us to think of a fourth dimensionless mathematical concept, which is counting integers. According to constructive mathematics, counting has to be understood before engaging in the practice of mathematics in order to avoid redundancy. In its strict form constructive mathematics allows no completed infinities, and must provide finite algorithms for the computation of any acceptable concept. This finite requirement in constructive mathematics is in keeping with the practice of physics when that practice is restricted to hypotheses which are testable in a finite time. In this paper we attempt to outline a program for physics which will meet these rigid criteria while preserving, in so far as possible, the successes that conventional physics has already achieved.

  14. ChemCam contributions to the Lunar and Planetary Science Conference...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: Earth Sciences; Engineering(42); Geosciences(58); Inorganic, Organic, Physical, & Analytical Chemistry(37) Word ...

  15. Precipitation characteristics of CAM5 physics at mesoscale resolution...

    Office of Scientific and Technical Information (OSTI)

    during the Midlatitude Continental Convective Clouds ... behavior at 32 km grid spacing to better ... ISSN 1942-2466 Publisher: American Geophysical Union (AGU) ...

  16. Courses on Beam Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a foundation course on accelerator physics and associated technologies. The US-CERN-Japan-Russia Joint Accelerator School The purpose of the US-CERN-Japan-Russia joint school...

  17. Physical Protection Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-12-23

    Establishes Department of Energy management objectives, requirements and responsibilities for the physical protection of safeguards and security interests. Cancels DOE 5632.1C. Canceled by DOE O 470.4.

  18. UNIRIB: Physics Topics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Topics Research Capitalizing on the strengths of nine collaborating research universities and the world-class equipment available at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory (ORNL), the University Radioactive Ion Beam (UNIRIB) consortium is conducting research at the forefront of nuclear physics. UNIRIB, a division of the Oak Ridge Institute for Science and Education (ORISE), brings together researchers from around the world to study the

  19. Nuclear Physics: Experiment Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Colloquium Experiment Research User/Researcher Information print version Research Highlights Public Interest Nuclear Physics Accelerator Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Additional Information Computing at JLab Operations Logbook Accelerator and Experimental Schedule Memos & Information Short Term Schedule (MCC Whiteboard) Nominal Dates for Bi-annual Beam Time Requests Forms for Beam Time Requests and Experiment

  20. LANSCE Weapons Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 LANSCE Weapons Physics Fortune 500 companies and weapons designers alike rely on our internationally recognized nuclear physics and materials science expertise as well as our one-of-a-kind experimental tools. Contact Us Group Leader Gus Sinnis Email Deputy Group Leader Fredrik Tovesson Email Deputy Group Leader and Experimental Area Manager Charles Kelsey Email Group Office (505) 665-5390 Time Projection Chamber at LANSCE Researcher making measurements of fission cross sections on the Time

  1. Neutrino Oscillation Physics

    SciTech Connect (OSTI)

    Kayser, Boris

    2012-06-01

    To complement the neutrino-physics lectures given at the 2011 International School on Astro Particle Physics devoted to Neutrino Physics and Astrophysics (ISAPP 2011; Varenna, Italy), at the 2011 European School of High Energy Physics (ESHEP 2011; Cheila Gradistei, Romania), and, in modified form, at other summer schools, we present here a written description of the physics of neutrino oscillation. This description is centered on a new way of deriving the oscillation probability. We also provide a brief guide to references relevant to topics other than neutrino oscillation that were covered in the lectures. Neutrinos and photons are by far the most abundant elementary particles in the universe. Thus, if we would like to comprehend the universe, we must understand the neutrinos. Of course, studying the neutrinos is challenging, since the only known forces through which these electrically-neutral leptons interact are the weak force and gravity. Consequently, interactions of neutrinos in a detector are very rare events, so that very large detectors and intense neutrino sources are needed to make experiments feasible. Nevertheless, we have confirmed that the weak interactions of neutrinos are correctly described by the Standard Model (SM) of elementary particle physics. Moreover, in the last 14 years, we have discovered that neutrinos have nonzero masses, and that leptons mix. These discoveries have been based on the observation that neutrinos can change from one 'flavor' to another - the phenomenon known as neutrino oscillation. We shall explain the physics of neutrino oscillation, deriving the probability of oscillation in a new way. We shall also provide a very brief guide to references that can be used to study some major neutrino-physics topics other than neutrino oscillation.

  2. Palm Physics Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Palm Physics Page ** We no longer support this website. This is a preliminary group of Palm applications/databases that are intended to serve the interests of atomic, nuclear and particle physics. Applications Periodic Table: Shareware version of the periodic table with basic chemical properties of the elements.(Download) Particle Data Book: From the Particle Data Group at LBL. (Download) Heavy Ion Fusion Calculator: Compute available energy, Coulomb energy, maximum angular momentum for compound

  3. Computational Physics and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 Computational Physics and Methods Performing innovative simulations of physics phenomena on tomorrow's scientific computing platforms Growth and emissivity of young galaxy hosting a supermassive black hole as calculated in cosmological code ENZO and post-processed with radiative transfer code AURORA. image showing detailed turbulence simulation, Rayleigh-Taylor Turbulence imaging: the largest turbulence simulations to date Advanced multi-scale modeling Turbulence datasets Density iso-surfaces

  4. American Physical Society

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos scientists honored by American Physical Society November 12, 2015 LOS ALAMOS, N.M., Nov. 12, 2015-Ten Los Alamos National Laboratory scientists are new Fellows of the American Physical Society. Tariq Aslam, Steven Batha, Eric Bauer, Hou-Tong Chen, Diego Alejandro Dalvit, Dinh Nguyen, Alan Perelson, Filip Ronning, Alexander Saunders and Glen Wurden were named this week by the national organization. "We're extremely pleased that the technical accomplishments of our talented staff

  5. PLANETARY AND OTHER SHORT BINARY MICROLENSING EVENTS FROM THE MOA SHORT-EVENT ANALYSIS

    SciTech Connect (OSTI)

    Bennett, D. P.; Sumi, T.; Bond, I. A.; Ling, C. H.; Kamiya, K.; Abe, F.; Fukui, A.; Furusawa, K.; Itow, Y.; Masuda, K.; Matsubara, Y.; Miyake, N.; Muraki, Y.; Botzler, C. S.; Rattenbury, N. J.; Korpela, A. V.; Sullivan, D. J.; Kilmartin, P. M.; Ohnishi, K.; Saito, To.; Collaboration: MOA Collaboration; and others

    2012-10-01

    We present the analysis of four candidate short-duration binary microlensing events from the 2006-2007 MOA Project short-event analysis. These events were discovered as a by-product of an analysis designed to find short-timescale single-lens events that may be due to free-floating planets. Three of these events are determined to be microlensing events, while the fourth is most likely caused by stellar variability. For each of the three microlensing events, the signal is almost entirely due to a brief caustic feature with little or no lensing attributable mainly to the lens primary. One of these events, MOA-bin-1, is due to a planet, and it is the first example of a planetary event in which the stellar host is only detected through binary microlensing effects. The mass ratio and separation are q (4.9 {+-} 1.4) Multiplication-Sign 10{sup -3} and s = 2.10 {+-} 0.05, respectively. A Bayesian analysis based on a standard Galactic model indicates that the planet, MOA-bin-1Lb, has a mass of m{sub p} = 3.7 {+-} 2.1 M{sub Jup} and orbits a star of M{sub *} = 0.75{sub -0.41}{sup +}0{sup .33} M{sub Sun} at a semimajor axis of a = 8.3{sub -2.7}{sup +4.5} AU. This is one of the most massive and widest separation planets found by microlensing. The scarcity of such wide-separation planets also has implications for interpretation of the isolated planetary mass objects found by this analysis. If we assume that we have been able to detect wide-separation planets with an efficiency at least as high as that for isolated planets, then we can set limits on the distribution of planets in wide orbits. In particular, if the entire isolated planet sample found by Sumi et al. consists of planets bound in wide orbits around stars, we find that it is likely that the median orbital semimajor axis is >30 AU.

  6. Physics Topics - Rotating Wall Machine - UW Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Topics UW Madison Line Tied Reconnection Experiment Physics Topics LTRX HomeResearch MissionLTRX DevicePhysics TopicsDiagnosticsLTRX GalleryLTRX People CPLA Home Directory ...

  7. Compact planetary systems perturbed by an inclined companion. I. Vectorial representation of the secular model

    SciTech Connect (OSTI)

    Bou, Gwenal; Fabrycky, Daniel C.

    2014-07-10

    The non-resonant secular dynamics of compact planetary systems are modeled by a perturbing function that is usually expanded in eccentricity and absolute inclination with respect to the invariant plane. Here, the expressions are given in a vectorial form which naturally leads to an expansion in eccentricity and mutual inclination. The two approaches are equivalent in most cases, but the vectorial one is specially designed for those cases where an entire quasi-coplanar system tilts to a large degree. Moreover, the vectorial expressions of the Hamiltonian and of the equations of motion are slightly simpler than those given in terms of the usual elliptical elements. We also provide the secular perturbing function in vectorial form expanded in semi-major axis ratio allowing for arbitrary eccentricities and inclinations. The interaction between the equatorial bulge of a central star and its planets is also provided, as is the relativistic periapse precession of any planet induced by the central star. We illustrate the use of this representation to follow the secular oscillations of the terrestrial planets of the solar system and for Kozai cycles which may take place in exoplanetary systems.

  8. A micro seismometer based on molecular electronic transducer technology for planetary exploration

    SciTech Connect (OSTI)

    Huang, Hai; Tang, Rui; Carande, Bryce; Oiler, Jonathan; Zaitsev, Dmitri; Agafonov, Vadim; Yu, Hongyu; School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287

    2013-05-13

    This letter describes an implementation of micromachined seismometer based on molecular electronic transducer (MET) technology. As opposed to a solid inertial mass, MET seismometer senses the movement of liquid electrolyte relative to fixed electrodes. The employment of micro-electro-mechanical systems techniques reduces the internal size of the sensing cell to 1{mu}m and improves the reproducibility of the device. For operating bias of 600 mV, a sensitivity of 809 V/(m/s{sup 2}) was measured under acceleration of 400{mu}g(g{identical_to}9.81m/s{sup 2}) at 0.32 Hz. A -115 dB (relative to (m/s{sup 2})/{radical}(Hz)) noise level at 1 Hz was achieved. This work develops an alternative paradigm of seismic sensing device with small size, high sensitivity, low noise floor, high shock tolerance, and independence of installation angle, which is promising for next generation seismometers for planetary exploration.

  9. PLASMA PHYSICS AND FUSION TECHNOLOGY; GRAPHITE; CREEP; PHYSICAL...

    Office of Scientific and Technical Information (OSTI)

    creep of graphite) Kennedy, C.R. 36 MATERIALS SCIENCE; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; GRAPHITE; CREEP; PHYSICAL RADIATION EFFECTS; JAPAN; MEETINGS; TRAVEL; ASIA; CARBON;...

  10. QUANTUM MECHANICS, GENERAL PHYSICS; 74 ATOMIC AND MOLECULAR PHYSICS...

    Office of Scientific and Technical Information (OSTI)

    of model atoms in fields Milonni, P.W. 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; 74 ATOMIC AND MOLECULAR PHYSICS; ATOMS; OPTICAL MODELS; QUANTUM MECHANICS;...

  11. Gogny, D; Schunck, N 73 NUCLEAR PHYSICS AND RADIATION PHYSICS...

    Office of Scientific and Technical Information (OSTI)

    of low energy fission: fragment properties Younes, W; Gogny, D; Schunck, N 73 NUCLEAR PHYSICS AND RADIATION PHYSICS Abstract not provided Lawrence Livermore National Laboratory...

  12. QCD and Hadron Physics

    SciTech Connect (OSTI)

    Brodsky, Stanley J.; Deshpande, Abhay L.; Gao, Haiyan; McKeown, Robert D.; Meyer, Curtis A.; Meziani, Zein-Eddine; Milner, Richard G.; Qiu, Jianwei; Richards, David G.; Roberts, Craig D.

    2015-02-26

    This White Paper presents the recommendations and scientific conclusions from the Town Meeting on QCD and Hadronic Physics that took place in the period 13-15 September 2014 at Temple University as part of the NSAC 2014 Long Range Planning process. The meeting was held in coordination with the Town Meeting on Phases of QCD and included a full day of joint plenary sessions of the two meetings. The goals of the meeting were to report and highlight progress in hadron physics in the seven years since the 2007 Long Range Plan (LRP07), and present a vision for the future by identifying the key questions and plausible paths to solutions which should define the next decade. The introductory summary details the recommendations and their supporting rationales, as determined at the Town Meeting on QCD and Hadron Physics, and the endorsements that were voted upon. The larger document is organized as follows. Section 2 highlights major progress since the 2007 LRP. It is followed, in Section 3, by a brief overview of the physics program planned for the immediate future. Finally, Section 4 provides an overview of the physics motivations and goals associated with the next QCD frontier: the Electron-Ion-Collider.

  13. Particle physics and cosmology

    SciTech Connect (OSTI)

    Kolb, E.W.

    1986-10-01

    This series of lectures is about the role of particle physics in physical processes that occurred in the very early stages of the bug gang. Of particular interest is the role of particle physics in determining the evolution of the early Universe, and the effect of particle physics on the present structure of the Universe. The use of the big bang as a laboratory for placing limits on new particle physics theories will also be discussed. Section 1 reviews the standard cosmology, including primordial nucleosynthesis. Section 2 reviews the decoupling of weakly interacting particles in the early Universe, and discusses neutrino cosmology and the resulting limits that may be placed on the mass and lifetime of massive neutrinos. Section 3 discusses the evolution of the vacuum through phase transitions in the early Universe and the formation of topological defects in the transitions. Section 4 covers recent work on the generation of the baryon asymmetry by baryon-number violating reactions in Grand Unified Theories, and mentions some recent work on baryon number violation effects at the electroweak transition. Section 5 is devoted to theories of cosmic inflation. Finally, Section 6 is a discussion of the role of extra spatial dimensions in the evolution of the early Universe. 78 refs., 32 figs., 6 tabs.

  14. FTP archives for physics

    SciTech Connect (OSTI)

    Trunec, D.; Brablec, A.; Kapicka, V.

    1995-12-31

    We have established archives for programs, data, papers etc. in physics (mainly for plasma physics). The archives are located at computer ftp.muni.cz in the directory pub/muni.cz/physics. These archives can be reached by anonymous FTP or by gopher server gopher.muni.cz (147.251.4.33). At the present time, programs for PC, cross sections for electrons, swarm parameters and rate constants stored are in the archives. We would like to collect the programs for calculations in physics (mainly for PC). We suppose that each program should have a testing example and some description. We would also like to collect physical constants and experimental or theoretical data (e.g. cross sections, swarm parameters and rate constants), which are important for other calculation or for comparison with the results of others studies. Interested scholars are invited to sent us their programs, data, preprints and reports for these archives. All files in the archives are in public domain and can be obtained using computer network Internet.

  15. Integration of geophysics within the Argonne expedited site characterization Program at a site in the southern High Plains

    SciTech Connect (OSTI)

    Hastings, B.; Hildebrandt, G.; Meyer, T.; Saunders, W.; Burton, J.C.

    1995-05-01

    An Argonne National Laboratory Expedited Site Characterization (ESC) program was carried out at a site in the central United States. The Argonne ESC process emphasizes an interdisciplinary approach in which all available information is integrated to produce as complete a picture as possible of the geologic and hydrologic controls on contaminant distribution and transport. As part of this process, all pertinent data that have been collected from previous investigations are thoroughly analyzed before a decision is made to collect additional information. A seismic reflection program recently concluded at the site had produced inconclusive results. Before we decided whether another acquisition program was warranted, we examined the existing data set to evaluate the quality of the raw data, the appropriateness of the processing sequence, and the integrity of the interpretation. We decided that the field data were of sufficient quality to warrant reprocessing and reinterpretation. The main thrust of the reprocessing effort was to enhance the continuity of a shallow, low-frequency reflection identified as a perching horizon within the Ogallala formation. The reinterpreted seismic data were used to locate the boundaries of the perched aquifer, which helped to guide the Argonne ESC drilling and sampling program. In addition, digitized geophysical well log data from previous drilling programs were reinterpreted and integrated into the geologic and hydrogeologic model.

  16. Environmental geophysics of the Pilot Plant on the west branch of Canal Creek, Aberdeen Proving Ground, Maryland

    SciTech Connect (OSTI)

    McGinnis, L.D.; Miller, S.F.; Daudt, C.R.; Thompson, M.D.; Borden, H.; Benson, M.; Wrobel, J.

    1994-05-01

    Plans to demolish and remediate the Pilot Plant complex in the Edgewood Area of Aberdeen Proving Ground have served to initiate a series of nonintrusive, environmental-geophysical studies. The studies are assisting in the location and identification of pipes, tanks, trenches, and liquid waste in the subsurface. Multiple databases have been integrated to provide support for detection of underground utilities and to determine the stratigraphy and lithology of the subsurface. The studies were conducted within the double security fence and exterior to the double fence, down gradient toward the west branch of Canal Creek. To determine if contaminants found in the creek were associated with the Pilot Plant, both the east and west banks were included in the study area. Magnetic, conductivity, inductive emf, and ground-penetrating-radar anomalies outline buried pipes, trenches, and various pieces of hardware associated with building activities. Ground-penetrating-radar imagery also defines a paleovalley cut 30 ft into Potomac Group sediments of Cretaceous age. The paleovalley crosses the site between Building E5654 and the Pilot Plant fence. The valley is environmentally significant because it may control the pathways of contaminants. The Pilot Plant complex was used to manufacture CC2 Impregnite and incapacitating agents; it also served as a production facility for nerve agents.

  17. Timeline | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Project Matterhorn's first linear device, L-1, begins operation for the study of basic plasma physics. 1959 The first Princeton doctoral degree in plasma physics is awarded. Since ...

  18. Neutrino Physics AAPT Strand Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics AAPT Strand Day NSTA Regional, 2005 Jocelyn Monroe, Columbia University 1. What Is ... quark (FNAL) The Standard Model New Physics (Relatively Speaking) 1900s: e discovered ...

  19. Nuclear Physics: Archived Talks - Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks ... Additional Information Computing at JLab Operations Logbook Physics Topics: Archived Talks ...

  20. Physics and Chemistry of Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Physics and Chemistry of Materials Developing new science and technologies needed for ... Fundamental and applied theoretical research on the physics and chemistry of materials The ...

  1. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support ...

  2. Physics Beyond the Standard Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Beyond the Standard Model 1663 Los Alamos science and technology magazine Latest Issue:October 2015 past issues All Issues submit Physics Beyond the Standard Model...

  3. J. Plasma Physics:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics: page 1 of 18. c Cambridge University Press 2015 doi:10.1017/S0022377815000471 1 Prospects for observing the magnetorotational instability in the plasma Couette experiment K. Flanagan 1 †, M. Clark 1 , C. Collins 1,2 , C. M. Cooper 1 , I. V. Khalzov 1,3 , J. Wallace 1 and C. B. Forest 1 1 Department of Physics, University of Wisconsin, Madison, WI 53706, USA 2 University of California Irvine, Irvine, CA 92697, USA 3 National Research Centre 'Kurchatov Institute', Moscow, 123182,

  4. PHYSICAL REVIEW E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHYSICAL REVIEW E 85, 066315 (2012) Role of large-scale velocity fluctuations in a two-vortex kinematic dynamo E. J. Kaplan, 1,2,* B. P. Brown, 1,2 K. Rahbarnia, 1,2 and C. B. Forest 1,2 1 Department of Physics, University of Wisconsin-Madison, 1150 University Avenue, Madison, Wisconsin 53706, USA 2 Center for Magnetic-Self Organization in Laboratory and Astrophysical Plasmas, University of Wisconsin-Madison, 21 North Park Street, Madison, Wisconsin 53715, USA (Received 10 April 2012; revised

  5. Princeton Plasma Physics Laboratory

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This report discusses the following topics: principal parameters achieved in experimental devices fiscal year 1990; tokamak fusion test reactor; compact ignition tokamak; Princeton beta experiment- modification; current drive experiment-upgrade; international collaboration; x-ray laser studies; spacecraft glow experiment; plasma processing: deposition and etching of thin films; theoretical studies; tokamak modeling; international thermonuclear experimental reactor; engineering department; project planning and safety office; quality assurance and reliability; technology transfer; administrative operations; PPPL patent invention disclosures for fiscal year 1990; graduate education; plasma physics; graduate education: plasma science and technology; science education program; and Princeton Plasma Physics Laboratory reports fiscal year 1990.

  6. Microsoft Word - NRAP-TRS-III-00X-2016_Coupled Inversion of Hydrological and Geophysical Data for Improved Prediction of Subsur

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coupled Inversion of Hydrological and Geophysical Data for Improved Prediction of Subsurface CO 2 Migration 28 January 2016 Office of Fossil Energy NRAP-TRS-III-004-2016 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

  7. Use of integrated geologic and geophysical information for characterizing the structure of fracture systems at the US/BK Site, Grimsel Laboratory, Switzerland

    SciTech Connect (OSTI)

    Martel, S.J.; Peterson, J.E. Jr. )

    1990-05-01

    Fracture systems form the primary fluid flow paths in a number of rock types, including some of those being considered for high level nuclear waste repositories. In some cases, flow along fractures must be modeled explicitly as part of a site characterization effort. Fractures commonly are concentrated in fracture zones, and even where fractures are seemingly ubiquitous, the hydrology of a site can be dominated by a few discrete fracture zones. We have implemented a site characterization methodology that combines information gained from geophysical and geologic investigations. The general philosophy is to identify and locate the major fracture zones, and then to characterize their systematics. Characterizing the systematics means establishing the essential and recurring patterns in which fractures are organized within the zones. We make a concerted effort to use information on the systematics of the fracture systems to link the site-specific geologic, borehole and geophysical information. This report illustrates how geologic and geophysical information on geologic heterogeneities can be integrated to guide the development of hydrologic models. The report focuses on fractures, a particularly common type of geologic heterogeneity. However, many aspects of the methodology we present can be applied to other geologic heterogeneities as well. 57 refs., 40 figs., 1 tab.

  8. Operational health physics training

    SciTech Connect (OSTI)

    1992-06-01

    The initial four sections treat basic information concerning atomic structure and other useful physical quantities, natural radioactivity, the properties of {alpha}, {beta}, {gamma}, x rays and neutrons, and the concepts and units of radiation dosimetry (including SI units). Section 5 deals with biological effects and the risks associated with radiation exposure. Background radiation and man-made sources are discussed next. The basic recommendations of the ICRP concerning dose limitations: justification, optimization (ALARA concepts and applications) and dose limits are covered in Section seven. Section eight is an expanded version of shielding, and the internal dosimetry discussion has been extensively revised to reflect the concepts contained in the MIRD methodology and ICRP 30. The remaining sections discuss the operational health physics approach to monitoring radiation. Individual sections include radiation detection principles, instrument operation and counting statistics, health physics instruments and personnel monitoring devices. The last five sections deal with the nature of, operation principles of, health physics aspects of, and monitoring approaches to air sampling, reactors, nuclear safety, gloveboxes and hot cells, accelerators and x ray sources. Decontamination, waste disposal and transportation of radionuclides are added topics. Several appendices containing constants, symbols, selected mathematical topics, and the Chart of the Nuclides, and an index have been included.

  9. High energy physics

    SciTech Connect (OSTI)

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  10. Physics overview of AVLIS

    SciTech Connect (OSTI)

    Solarz, R.W.

    1985-02-01

    Atomic vapor laser isotope separation (AVLIS) represents the largest-scale potential application of tunable lasers that has received serious attention within the chemical physics community. For over a decade the US Department of Energy has funded an aggressive program in AVLIS at Lawrence Livermore National Laboratory. After extensive research, the underlying physical principles have been identified and optimized, the major technology components have been developed, and the integrated enrichment performance of the process has been tested under realistic conditions. The central physical processes are outlined, progress to date on the technology elements is reviewed, and scaling laws that can be used to scope out new applications are fomulated. The two primary applications of major interest to the Department of Energy are the production of light-water reactor fuel and the conversion of fuel-grade plutonium to weapons-grade material. In FY 1984 the total AVLIS funding level for these two missions was approximately $150M. In addition to these primary missions, a variety of applications exist that all potentially use a common base of AVLIS technology. These include missions such as the enrichment of mercury isotopes to improve fluorescent lamp efficiency, the enrichment of iodine isotopes for medical isotope use, and the cleanup of strontium from defense waste for recovering strontium isotopes for radio-thermal mechanical generators. We will see that the ability to rapidly assess the economic and technical feasibility of each mission is derived from the general applicability of AVLIS physics and AVLIS technology.

  11. Physics Teachers Workshop

    ScienceCinema (OSTI)

    Huggins, DaNel; Calhoun, John; Palmer, Alyson; Thorpe, Steve; Vanderveen, Anne;

    2013-05-28

    INL is looking for the nation's top high school physics teachers to attend our July workshop in Idaho Falls. Participants get to learn from nuclear researchers, tour facilities including a research reactor and interact with peers from across the country. You can learn more about INL projects at http://www.facebook.com/idahonationallaboratory

  12. RESEARCH IN PARTICLE PHYSICS

    SciTech Connect (OSTI)

    Kearns, Edward

    2013-07-12

    This is the final report for the Department of Energy Grant to Principal Investigators in Experimental and Theoretical Particle Physics at Boston University. The research performed was in the Energy Frontier at the LHC, the Intensity Frontier at Super-Kamiokande and T2K, the Cosmic Frontier and detector R&D in dark matter detector development, and in particle theory.

  13. FSU High Energy Physics

    SciTech Connect (OSTI)

    Prosper, Harrison B.; Adams, Todd; Askew, Andrew; Berg, Bernd; Blessing, Susan K.; Okui, Takemichi; Owens, Joseph F.; Reina, Laura; Wahl, Horst D.

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the non-zero neutrino masses or the overwhelming astrophysical evidence for an invisible form of matter, called dark matter, that has had a marked effect on the evolution of structure in the universe. The report highlights the main, recent, experimental achievements of the experimental group, which include the investigation of properties of the W and Z bosons; the search for new heavy stable charged particles and the search for a proposed property of nature called supersymmetry in proton-proton collisions that yield high energy photons. In addition, we report a few results from a more general search for supersymmetry at the LHC, initiated by the group. The report also highlights the group's significant contributions, both theoretical and experimental, to the 2012 discovery of the Higgs boson and the measurement of its properties.

  14. CAN THE MASSES OF ISOLATED PLANETARY-MASS GRAVITATIONAL LENSES BE MEASURED BY TERRESTRIAL PARALLAX?

    SciTech Connect (OSTI)

    Freeman, M.; Botzler, C. S.; Bray, J. C.; Cherrie, J. M.; Rattenbury, N. J.; Philpott, L. C.; Abe, F.; Muraki, Y.; Albrow, M. D.; Bennett, D. P.; Bond, I. A.; Christie, G. W.; Natusch, T.; Dionnet, Z.; Gould, A.; Han, C.; Heyrovský, D.; McCormick, J. M.; Skowron, J.; and others

    2015-02-01

    Recently Sumi et al. reported evidence for a large population of planetary-mass objects (PMOs) that are either unbound or orbit host stars in orbits ≥10 AU. Their result was deduced from the statistical distribution of durations of gravitational microlensing events observed by the MOA collaboration during 2006 and 2007. Here we study the feasibility of measuring the mass of an individual PMO through microlensing by examining a particular event, MOA-2011-BLG-274. This event was unusual as the duration was short, the magnification high, the source-size effect large, and the angular Einstein radius small. Also, it was intensively monitored from widely separated locations under clear skies at low air masses. Choi et al. concluded that the lens of the event may have been a PMO but they did not attempt a measurement of its mass. We report here a re-analysis of the event using re-reduced data. We confirm the results of Choi et al. and attempt a measurement of the mass and distance of the lens using the terrestrial parallax effect. Evidence for terrestrial parallax is found at a 3σ level of confidence. The best fit to the data yields the mass and distance of the lens as 0.80 ± 0.30 M {sub J} and 0.80 ± 0.25 kpc respectively. We exclude a host star to the lens out to a separation ∼40 AU. Drawing on our analysis of MOA-2011-BLG-274 we propose observational strategies for future microlensing surveys to yield sharper results on PMOs including those down to super-Earth mass.

  15. Physics Division annual report - 1998

    SciTech Connect (OSTI)

    1999-09-07

    Summaries are given of progress accomplished for the year in the following areas: (1) Heavy-Ion Nuclear Physics Research; (2) Operation and Development of Atlas; (3) Medium-Energy Nuclear Physics Research; (4) Theoretical Physics Research; and (5) Atomic and Molecular Physics Research.

  16. CSES Mission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CSES CSES Mission Statement High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. Contact Director Reiner Friedel (505) 665-1936 Email Professional Staff Assistant Georgia D. Sanchez (505) 665-0855 Email Science Discipline Leaders Astrophysics & Cosmology Hui Li (505) 665-3131 Email Climate Keeley Costigan (505) 665-4788 Email Geophysics David Coblentz (505) 667-2781 Email Space Physics Geoffrey Reeves (505) 665-3877

  17. LHC forward physics

    SciTech Connect (OSTI)

    Cartiglia, N.; Royon, C.

    2015-10-02

    The goal of this report is to give a comprehensive overview of the rich field of forward physics, with a special attention to the topics that can be studied at the LHC. The report starts presenting a selection of the Monte Carlo simulation tools currently available, chapter 2, then enters the rich phenomenology of QCD at low, chapter 3, and high, chapter 4, momentum transfer, while the unique scattering conditions of central exclusive production are analyzed in chapter 5. The last two experimental topics, Cosmic Ray and Heavy Ion physics are presented in the chapter 6 and 7 respectively. Chapter 8 is dedicated to the BFKL dynamics, multiparton interactions, and saturation. The report ends with an overview of the forward detectors at LHC. Each chapter is correlated with a comprehensive bibliography, attempting to provide to the interested reader with a wide opportunity for further studies.

  18. Nuclear Physics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Scientists from across the country and around the world use the Thomas Jefferson National Accelerator Facility to advance mankind's understanding of the atom's nucleus. To probe nuclei, scientists use continuous beams of high-energy electrons from the lab's Continuous Electron Beam Accelerator Facility, or CEBAF, and the advanced particle-detection and ultra-high-speed data acquisition equipment in CEBAF's four experimental halls. Jefferson Lab has both theoretical and

  19. Princeton Plasma Physics Laboratory:

    SciTech Connect (OSTI)

    Phillips, C.A.

    1986-01-01

    This paper discusses progress on experiments at the Princeton Plasma Physics Laboratory. The projects and areas discussed are: Principal Parameters Achieved in Experimental Devices, Tokamak Fusion Test Reactor, Princeton Large Torus, Princeton Beta Experiment, S-1 Spheromak, Current-Drive Experiment, X-ray Laser Studies, Theoretical Division, Tokamak Modeling, Spacecraft Glow Experiment, Compact Ignition Tokamak, Engineering Department, Project Planning and Safety Office, Quality Assurance and Reliability, and Administrative Operations.

  20. Nuclear Physics Review

    SciTech Connect (OSTI)

    Walker-Loud, Andre

    2014-11-01

    Anchoring low-energy nuclear physics to the fundamental theory of strong interactions remains an outstanding challenge. I review the current progress and challenges of the endeavor to use lattice QCD to bridge this connection. This is a particularly exciting time for this line of research as demonstrated by the spike in the number of different collaborative efforts focussed on this problem and presented at this conference. I first digress and discuss the 2013 Ken Wilson Award.

  1. Emergency Response Health Physics

    SciTech Connect (OSTI)

    Mena, RaJah; Pemberton, Wendy; Beal, William

    2012-05-01

    Health physics is an important discipline with regard to understanding the effects of radiation on human health; however, there are major differences between health physics for research or occupational safety and health physics during a large-scale radiological emergency. The deployment of a U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) monitoring and assessment team to Japan in the wake of the March 2011 accident at Fukushima Daiichi Nuclear Power Plant yielded a wealth of lessons on these difference. Critical teams (CMOC (Consequence Management Outside the Continental U.S.) and CMHT (Consequence Management Home Team) ) worked together to collect, compile, review, and analyze radiological data from Japan to support the response needs of and answer questions from the Government of Japan, the U.S. military in Japan, the U.S. Embassy and U.S. citizens in Japan, and U.S. citizens in America. This paper addresses the unique challenges presented to the health physicist or analyst of radiological data in a large-scale emergency. A key lesson learned was that public perception and the availability of technology with social media requires a diligent effort to keep the public informed of the science behind the decisions in a manner that is meaningful to them.

  2. Summaries of physical research in the geosciences

    SciTech Connect (OSTI)

    Not Available

    1986-09-01

    The summaries in this document describe the scope of the individual programs and detail the research performed during 1984-1985. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas.

  3. at American Geophysical Union

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the area "Marias Pass," where a lower geological unit contacts an overlying one. ... identification of drilled rock-powder samples analyzed by the Chemistry and Mineralogy ...

  4. Emergency Response Health Physics

    SciTech Connect (OSTI)

    Mena, R., Pemberton, W., Beal, W.

    2012-05-01

    Health physics is an important discipline with regard to understanding the effects of radiation on human health. Topics of discussion included in this manuscript are related to responding to a radiation emergency, and the necessary balance between desired high accuracy laboratory results and rapid turnaround requirements. Considerations are addressed for methodology with which to provide the most competent solutions despite challenges presented from incomplete datasets and, at times, limited methodology. An emphasis is placed on error and uncertainty of sample analysis results, how error affects products, and what is communicated in the final product.

  5. INSTITUTE OF PHYSICS PUBLISHING

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 (2004) 162-171 PII: S0029-5515(04)72612-5 Equilibrium reconstruction in the Madison Symmetric Torus reversed field pinch J.K. Anderson, C.B. Forest, T.M. Biewer a , J.S. Sarff and J.C. Wright b Department of Physics, University of Wisconsin, Madison, WI 53706, USA Received 21 December 2002, accepted for publication 18 November 2003 Published 17 December 2003 Online at stacks.iop.org/NF/44/162 (DOI: 10.1088/0029-5515/44/1/018) Abstract A non-linear Grad-Shafranov toroidal equilibrium

  6. Theoretical High Energy Physics

    SciTech Connect (OSTI)

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  7. Argonne Physics Division - ATLAS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Experiment Safety Considerations at ATLAS For onsite emergencies, call 911 on the internal phones (or 252-1911 on cell phones) Equipment Safety Reviews are required whenever new equipment is brought in for an experiment. The review is conducted by the Physics Division safety committee. If you plan to bring in your own detectors or other equipment for an experiment, it will need to reviewed. If a safety review is required for your equipment, you will need to fill out a Hazard Analysis form. Forms

  8. Renormalization and plasma physics

    SciTech Connect (OSTI)

    Krommes, J.A.

    1980-02-01

    A review is given of modern theories of statistical dynamics as applied to problems in plasma physics. The derivation of consistent renormalized kinetic equations is discussed, first heuristically, later in terms of powerful functional techniques. The equations are illustrated with models of various degrees of idealization, including the exactly soluble stochastic oscillator, a prototype for several important applications. The direct-interaction approximation is described in detail. Applications discussed include test particle diffusion and the justification of quasilinear theory, convective cells, E vector x B vector turbulence, the renormalized dielectric function, phase space granulation, and stochastic magnetic fields.

  9. Neutrino Physics at Fermilab

    ScienceCinema (OSTI)

    Saoulidou, Niki

    2010-01-08

    Neutrino oscillations provide the first evidence for physics beyond the Standard Model. I will briefly overview the neutrino "hi-story", describing key discoveries over the past decades that shaped our understanding of neutrinos and their behavior. Fermilab was, is and hopefully will be at the forefront of the accelerator neutrino experiments.  NuMI, the most powerful accelerator neutrino beam in the world has ushered us into the era of precise measurements. Its further upgrades may give a chance to tackle the remaining mysteries of the neutrino mass hierarchy and possible CP violation.

  10. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You Wrote: One day I was sitting in my living room, reading a book on physics, an idea ... This is, specifically, a question about dimensional physics (that's probably not the real ...

  11. Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada; Yucca Mountain Site Characterization Project

    SciTech Connect (OSTI)

    Gibson, J.D.; Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A.

    1992-01-01

    Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques.

  12. DETECTION OF HISTORICAL PIPELINE LEAK PLUMES USING NON-INTRUSIVE SURFACE-BASED GEOPHYSICAL TECHNIQUES AT THE HANFORD NUCLEAR SITE WASHINGTON USA

    SciTech Connect (OSTI)

    SKORSKA MB; FINK JB; RUCKER DF; LEVITT MT

    2010-12-02

    Historical records from the Department of Energy Hanford Nuclear Reservation (in eastern WA) indicate that ruptures in buried waste transfer pipelines were common between the 1940s and 1980s, which resulted in unplanned releases (UPRs) of tank: waste at numerous locations. A number of methods are commercially available for the detection of active or recent leaks, however, there are no methods available for the detection of leaks that occurred many years ago. Over the decades, leaks from the Hanford pipelines were detected by visual observation of fluid on the surface, mass balance calculations (where flow volumes were monitored), and incidental encounters with waste during excavation or drilling. Since these detection methods for historic leaks are so limited in resolution and effectiveness, it is likely that a significant number of pipeline leaks have not been detected. Therefore, a technology was needed to detect the specific location of unknown pipeline leaks so that characterization technologies can be used to identify any risks to groundwater caused by waste released into the vadose zone. A proof-of-concept electromagnetic geophysical survey was conducted at an UPR in order to image a historical leak from a waste transfer pipeline. The survey was designed to test an innovative electromagnetic geophysical technique that could be used to rapidly map the extent of historical leaks from pipelines within the Hanford Site complex. This proof-of-concept test included comprehensive testing and analysis of the transient electromagnetic method (TEM) and made use of supporting and confirmatory geophysical methods including ground penetrating radar, magnetics, and electrical resistivity characterization (ERC). The results for this initial proof-of-concept test were successful and greatly exceeded the expectations of the project team by providing excellent discrimination of soils contaminated with leaked waste despite the interference from an electrically conductive pipe.

  13. Princeton Plasma Physics Laboratory News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    archive Princeton Plasma Physics Laboratory news feed en PPPL physicists simulate innovative method for starting up tokamaks without...

  14. Combined Effects of Gravity, Bending Moment, Bearing Clearance, and Input Torque on Wind Turbine Planetary Gear Load Sharing: Preprint

    SciTech Connect (OSTI)

    Guo, Y.; Keller, J.; LaCava, W.

    2012-09-01

    This computational work investigates planetary gear load sharing of three-mount suspension wind turbine gearboxes. A three dimensional multibody dynamic model is established, including gravity, bending moments, fluctuating mesh stiffness, nonlinear tooth contact, and bearing clearance. A flexible main shaft, planetary carrier, housing, and gear shafts are modeled using reduced degrees-of-freedom through modal compensation. This drivetrain model is validated against the experimental data of Gearbox Reliability Collaborative for gearbox internal loads. Planet load sharing is a combined effect of gravity, bending moment, bearing clearance, and input torque. Influences of each of these parameters and their combined effects on the resulting planet load sharing are investigated. Bending moments and gravity induce fundamental excitations in the rotating carrier frame, which can increase gearbox internal loads and disturb load sharing. Clearance in carrier bearings reduces the bearing load carrying capacity and thus the bending moment from the rotor can be transmitted into gear meshes. With bearing clearance, the bending moment can cause tooth micropitting and can induce planet bearing fatigue, leading to reduced gearbox life. Planet bearings are susceptible to skidding at low input torque.

  15. Beowawe geothermal-resource assessment. Final report. Shallow-hole temperature survey geophysics and deep test hole Collins 76-17

    SciTech Connect (OSTI)

    Jones, N.O.

    1983-03-01

    Geothermal resource investigation field efforts in the Beowawe Geysers Area, Eureka County, Nevada are described. The objectives included acquisition of geotechnical data for understanding the nature and extent of the geothermal resource boundaries south of the known resource area. Fourteen shallow (<500 feet) temperature-gradient holes plus geophysics were used to select the site for a deep exploratory well, the Collins 76-17, which was completed to a total depth of 9005 feet. Maximum downhole recorded temperature was 311/sup 0/F, but no flow could be induced.

  16. SURFACE GEOPHYSICAL EXPLORATION OF B & BX & BY TANK FARMS AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH MAGNETICS AND ELECTROMAGNETICS

    SciTech Connect (OSTI)

    MYERS DA

    2007-09-28

    This report documents the results of preliminary surface geophysical exploration activities performed between October and December 2006 at the B, BX, and BY tank farms (B Complex). The B Complex is located in the 200 East Area of the U. S. Department of Energy's Hanford Site in Washington State. The objective of the preliminary investigation was to collect background characterization information with magnetic gradiometry and electromagnetic induction to understand the spatial distribution of metallic objects that could potentially interfere with the results from high resolution resistivity survey. Results of the background characterization show there are several areas located around the site with large metallic subsurface debris or metallic infrastructure.

  17. Statistical physics ""Beyond equilibrium

    SciTech Connect (OSTI)

    Ecke, Robert E

    2009-01-01

    The scientific challenges of the 21st century will increasingly involve competing interactions, geometric frustration, spatial and temporal intrinsic inhomogeneity, nanoscale structures, and interactions spanning many scales. We will focus on a broad class of emerging problems that will require new tools in non-equilibrium statistical physics and that will find application in new material functionality, in predicting complex spatial dynamics, and in understanding novel states of matter. Our work will encompass materials under extreme conditions involving elastic/plastic deformation, competing interactions, intrinsic inhomogeneity, frustration in condensed matter systems, scaling phenomena in disordered materials from glasses to granular matter, quantum chemistry applied to nano-scale materials, soft-matter materials, and spatio-temporal properties of both ordinary and complex fluids.

  18. Physics Integration KErnels (PIKE)

    Energy Science and Technology Software Center (OSTI)

    2014-07-31

    Pike is a software library for coupling and solving multiphysics applications. It provides basic interfaces and utilities for performing code-to-code coupling. It provides simple “black-box” Picard iteration methods for solving the coupled system of equations including Jacobi and Gauss-Seidel solvers. Pike was developed originally to couple neutronics and thermal fluids codes to simulate a light water nuclear reactor for the Consortium for Simulation of Light-water Reactors (CASL) DOE Energy Innovation Hub. The Pike library containsmore » no physics and just provides interfaces and utilities for coupling codes. It will be released open source under a BSD license as part of the Trilinos solver framework (trilinos.org) which is also BSD. This code provides capabilities similar to other open source multiphysics coupling libraries such as LIME, AMP, and MOOSE.« less

  19. PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS

    SciTech Connect (OSTI)

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Tamura, Motohide

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (≳1 M {sub Jup}) around 122 newly identified nearby (≲40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M {sub ☉}) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M {sub Jup} at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M {sub Jup}; L0{sub −1}{sup +2}; 120 ± 20 AU), GJ 3629 B (64{sub −23}{sup +30} M {sub Jup}; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M {sub Jup}; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M {sub Jup}; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M {sub Jup} planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M {sub Jup} range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M {sub Jup}) companions to single M dwarfs between 10-100 AU is 2.8{sub −1.5}{sup +2.4}%. Altogether we find that giant planets, especially massive ones, are rare in the outskirts of M dwarf planetary systems. Although the first directly imaged planets were found around massive stars, there is currently no statistical evidence for a trend of giant planet frequency with stellar host mass at large separations as predicted by the disk instability model of giant planet formation.

  20. VLHC accelerator physics

    SciTech Connect (OSTI)

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  1. Research in Neutrino Physics

    SciTech Connect (OSTI)

    Busenitz, Jerome

    2014-09-30

    Research in Neutrino Physics We describe here the recent activities of our two groups over the first year of this award (effectively November 2010 through January 2012) and our proposed activities and associated budgets for the coming grant year. Both of our groups are collaborating on the Double Chooz reactor neutrino experiment and are playing major roles in calibration and analysis. A major milestone was reached recently: the collaboration obtained the first result on the search for 13 based on 100 days of data from the far detector. Our data indicates that 13 is not zero; specifically the best fit of the neutrino oscillation hypothesis to our data gives sin2 (2 13) = 0.086 ± 0.041 (stat) ± 0.030 (syst) The null oscillation hypothesis is excluded at the 94.6% C.L. This result1 has been submitted to Physical Review Letters. As we continue to take data with the far detector in the coming year, in parallel with completing the construction of the near lab and installing the near detector, we expect the precision of our measurement to improve as we gather significantly more statistics, gain better control of backgrounds through use of partial power data and improved event selection, and better understand the detector energy scale and detection efficiency from calibration data. With both detectors taking data starting in the second half of 2013, we expect to further drive down the uncertainty on our measurement of sin2 (2 13) to less than 0.02. Stancu’s group is also collaborating on the MiniBooNE experiment. Data taking is scheduled to continue through April, by which time 1.18 × 1021 POT is projected. The UA group is playing a leading role in the measurement of antineutrino cross sections, which should be the subject of a publication later this year as well as of Ranjan Dharmapalan’s Ph.D. thesis, which he is expected to defend by the end of this year. It is time to begin working on projects which will eventually succeed Double Chooz and MiniBooNE as the main foci of our efforts. The Stancu group plans to become re–involved in LBNE and possibly also to join NO A, and the Busenitz group has begun to explore joining a direct dark matter search.

  2. Experimental Particle Physics

    SciTech Connect (OSTI)

    Rosenfeld, Carl; Mishra, Sanjib R.; Petti, Roberto; Purohit, Milind V.

    2014-08-31

    The high energy physics group at the University of South Carolina, under the leadership of Profs. S.R. Mishra, R. Petti, M.V. Purohit, J.R. Wilson (co-PI's), and C. Rosenfeld (PI), engaged in studies in "Experimental Particle Physics." The group collaborated with similar groups at other universities and at national laboratories to conduct experimental studies of elementary particle properties. We utilized the particle accelerators at the Fermi National Accelerator Laboratory (Fermilab) in Illinois, the Stanford Linear Accelerator Center (SLAC) in California, and the European Center for Nuclear Research (CERN) in Switzerland. Mishra, Rosenfeld, and Petti worked predominantly on neutrino experiments. Experiments conducted in the last fifteen years that used cosmic rays and the core of the sun as a source of neutrinos showed conclusively that, contrary to the former conventional wisdom, the "flavor" of a neutrino is not immutable. A neutrino of flavor "e," "mu," or "tau," as determined from its provenance, may swap its identity with one of the other flavors -- in our jargon, they "oscillate." The oscillation phenomenon is extraordinarily difficult to study because neutrino interactions with our instruments are exceedingly rare -- they travel through the earth mostly unimpeded -- and because they must travel great distances before a substantial proportion have made the identity swap. Three of the experiments that we worked on, MINOS, NOvA, and LBNE utilize a beam of neutrinos from an accelerator at Fermilab to determine the parameters governing the oscillation. Two other experiments that we worked on, NOMAD and MIPP, provide measurements supportive of the oscillation experiments. Good measurements of the neutrino oscillation parameters may constitute a "low energy window" on related phenomena that are otherwise unobservable because they would occur only at energies way above the reach of conceivable accelerators. Purohit and Wilson participated in the BaBar experiment, which collected data at SLAC until 2008. They continued to analyze the voluminous BaBar data with an emphasis on precision tests of Quantum Chromodynamics and on properties of the "eta_B," a bottom quark paired in a meson with a strange quark. The ATLAS experiment became the principal research focus for Purohit. One of the world's largest pieces of scientific equipment, ATLAS observes particle collisions at the highest-energy particle accelerator ever built, the Large Hadron Collider (LHC) at CERN. Our efforts on ATLAS included participation in the commissioning, calibration, and installation of components called "CSCs". The unprecedented energy of 14 TeV enabled the ATLAS and CMS collaborations to declare discovery of the famous Higgs particle in 2012.

  3. Health Physics Support Assistant | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Saville Requisition Number: 1500691 POSITIONAL SUMMARY: To support the Health Physics Dosimeter program, records management (both archival and electronic) and to backup the ES&HS...

  4. Ultrabright x-ray laser scattering for dynamic warm dense matter physics

    SciTech Connect (OSTI)

    Fletcher, L. B.; Lee, H. J.; Doppner, T.; Galtier, E.; Nagler, B.; Heimann, P.; Fortmann, C.; Mao, T.; Millot, M.; Pak, A.; Turnbull, D.; Chapman, D. A.; Gericke, D. O.; Vorberger, J.; White, T.; Gregori, G.; Wei, M.; Barbrel, B.; Falcone, R. W.; Kao, C. -C.; Nuhn, H.; Welch, J.; Zastrau, U.; Neumayer, P.; Hastings, J. B.; Glenzer, S. H.

    2015-03-23

    In megabar shock waves, materials compress and undergo a phase transition to a dense charged-particle system that is dominated by strong correlations and quantum effects. This complex state, known as warm dense matter, exists in planetary interiors and many laboratory experiments (for example, during high-power laser interactions with solids or the compression phase of inertial confinement fusion implosions). Here, we apply record peak brightness X-rays at the Linac Coherent Light Source to resolve ionic interactions at atomic (ngstrm) scale lengths and to determine their physical properties. Our in situ measurements characterize the compressed lattice and resolve the transition to warm dense matter, demonstrating that short-range repulsion between ions must be accounted for to obtain accurate structure factor and equation of state data. Additionally, the unique properties of the X-ray laser provide plasmon spectra that yield the temperature and density with unprecedented precision at micrometre-scale resolution in dynamic compression experiments.

  5. Few-body physics

    SciTech Connect (OSTI)

    Briceno, Raul

    2015-05-01

    Few-body hadronic observables play an essential role in a wide number of processes relevant for both particle and nuclear physics. In order for Lattice QCD to offer insight into the interpretation of few-body states, a theoretical infrastructure must be developed to map Euclidean-time correlation functions to the desired Minkowski-time few-body observables. In this talk, I will first review the formal challenges associated with the studies of such systems via Lattice QCD, as first introduced by Maiani and Testa, and then review methodology to circumvent said limitations. The first main example of the latter is the formalism of Luscher to analyze elastic scattering and a second is the method of Lellouch & Luscher to analyze weak decays. I will then proceed to discus recent theoretical generalizations of these frameworks that allow for the determination of scattering amplitudes, resonances, transition and elastic form factors. Finally, I will outline outstanding problems, including those that are now beginning to be addressed.

  6. Particle physics---Experimental

    SciTech Connect (OSTI)

    Lord, J.J.; Boynton, P.E.; Burnett, T.H.; Wilkes, R.J.

    1991-08-21

    We are continuing a research program in particle astrophysics and high energy experimental particle physics. We have joined the DUMAND Collaboration, which is constructing a deep undersea astrophysical neutrino detector near Hawaii. Studies of high energy hadronic interactions using emulsion chamber techniques were also continued, using balloon flight exposures to ultra-high cosmic ray nuclei (JACEE) and accelerator beams. As members of the DUMAND Collaboration, we have responsibility for development a construction of critical components for the deep undersea neutrino detector facility. We have designed and developed the acoustical positioning system required to permit reconstruction of muon tracks with sufficient precision to meet the astrophysical goals of the experiment. In addition, we are making significant contributions to the design of the database and triggering system to be used. Work has been continuing in other aspects of the study of multiparticle production processes in nuclei. We are participants in a joint US/Japan program to study nuclear interactions at energies two orders of magnitude greater than those of existing accelerators, using balloon-borne emulsion chambers. On one of the flights we found two nuclear interactions of multiplicity over 1000 -- one with a multiplicity of over 2000 and pseudorapidity density {approximately} 800 in the central region. At the statistical level of the JACEE experiment, the frequency of occurrence of such events is orders of magnitude too large. We have continued our ongoing program to study hadronic interactions in emulsions exposed to high energy accelerator beams.

  7. High Energy Physics Division, ANL Lattice QCD

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Physics Division, ANL Lattice QCD in extreme environments D. K. Sinclair (HEP, Argonne) J. B. Kogut (Physics, Illinois) D. Toublan (Physics, Illinois) 1 Lattice QCD Quantum ...

  8. PHYSICAL INVENTORY LISTING | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHYSICAL INVENTORY LISTING PHYSICAL INVENTORY LISTING Form supports nuclear materials control and accountability. PDF icon PHYSICAL INVENTORY LISTING More Documents & Publications ...

  9. MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; SOLID STATE...

    Office of Scientific and Technical Information (OSTI)

    Open problems in condensed matter physics, 1987 Falicov, L.M. 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; SOLID STATE PHYSICS; RESEARCH PROGRAMS;...

  10. LDRD ER Final Report: Recreating Planetary Cores in the Laboratory: New Techniques to Extremely High Density States

    SciTech Connect (OSTI)

    Collins, G; Celliers, P; Hicks, D; Cauble, R; Bradley, D; MacKinnon, A; Moon, S; Young, D; Chau, R; Eggert, J; Willi, P; Pasley, J; Jeanloz, R; Lee, K; Bennedetti, R; Koenig, M; Benuzzi-Mounaix, A; Batani, D; Loubeyre, P; Hubbard, W

    2003-02-07

    An accurate equation of state (EOS) for planetary constituents at extreme conditions is the key to any credible model of planets or low mass stars. However, very few materials have their high pressure (>few Mbar) EOS experimentally validated, and even then, only on the principal Hugoniot. For planetary and stellar interiors, compression occurs from gravitational force so that material states follow a line of isotropic compression (ignoring phase separation) to ultra-high densities. An example of the hydrogen phase space composing Jupiter and one particular Brown Dwarf is shown. At extreme densities, material states are predicted to have quite unearthly properties such as high temperature superconductivity and low temperature fusion. High density experiments on Earth are achieved with either static compression techniques (i.e. diamond anvil cells) or dynamic compression techniques using large laser facilities, gas guns, or explosives. The ultimate goal of this multi-directorate and multi-institutional proposal was to develop techniques that will enable us to understand material states that previously only existed at the core of giant planets, stars, or speculative theories. Our effort was a complete success, meeting all of the objectives set out in our proposals. First we focused on developing accurate Hugoniot techniques to be used for constraining the equation of state at high pressure/temperature. We mapped out an accurate water EOS and measured that the ionic->electronic conduction transition occurs at lower pressures than models predict. These data and their impact are fully described in the first enclosed paper ''The Equation of State and Optical Properties of Water Compressed by Strong Shock Waves.'' Currently models used to construct planetary isentropes are constrained by only the planet radius, outer atmospheric spectroscopy, and space probe gravitational moment and magnetic field data. Thus these data, which provide rigid constraints to these models, will have a significant impact on a broad community of planetary and condensed matter scientists, as well as our fundamental understanding of the giant planets. We then developed and tested precompressed and multiple shock techniques on water. Scientists around the world have teamed with us to conduct these complex and seminal high density experiments which allow access to the extreme core states of giant plants. Double shock experiments using a variety of anvils to compress water to densities higher and temperatures lower than accessible by single shock Hugoniot techniques. First a clear determination of the EOS and optical properties of the anvils needed to be measured. These properties for LiF and A1203 are written up in the second attached article, ''Shock-Induced Transformation of Sapphire and Lithium Fluoride into Semiconducting Liquids.'' An example double shock data record for water is shown. This data is being written up for publication.

  11. Rossby-Khantadze electromagnetic planetary waves driven by sheared zonal winds in the E-layer ionosphere

    SciTech Connect (OSTI)

    Futatani, S.; Horton, W.; Kahlon, L. Z.; Kaladze, T. D.

    2015-01-15

    Nonlinear simulations of electromagnetic Rossby and Khantadze planetary waves in the presence of a shearless and sheared zonal flows in the weakly ionized ionospheric E-layer are carried out. The simulations show that the nonlinear action of the vortex structures keeps the solitary character in the presence of shearless zonal winds as well as the ideal solutions of solitary vortex in the absence of zonal winds. In the presence of sheared zonal winds, the zonal flows result in breaking into separate multiple smaller pieces. A passively convected scalar field is shown to clarify the transport associated with the vortices. The work shows that the zonal shear flows provide an energy source into the vortex structure according to the shear rate of the zonal winds.

  12. A search for planetary eclipses of white dwarfs in the Pan-STARRS1 medium-deep fields

    SciTech Connect (OSTI)

    Fulton, B. J.; Tonry, J. L.; Flewelling, H.; Burgett, W. S.; Chambers, K. C.; Hodapp, K. W.; Huber, M. E.; Kaiser, N.; Wainscoat, R. J.; Waters, C.

    2014-12-01

    We present a search for eclipses of ?1700 white dwarfs (WDs) in the Pan-STARRS1 medium-deep fields. Candidate eclipse events are selected by identifying low outliers in over 4.3 million light curve measurements. We find no short-duration eclipses consistent with being caused by a planetary size companion. This large data set enables us to place strong constraints on the close-in planet occurrence rates around WDs for planets as small as 2 R {sub ?}. Our results indicate that gas giant planets orbiting just outside the Roche limit are rare, occurring around less than 0.5% of WDs. Habitable-zone super-Earths and hot super-Earths are less abundant than similar classes of planets around main-sequence stars. These constraints provide important insight into the ultimate fate of the large population of exoplanets orbiting main-sequence stars.

  13. Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports NSTX-U Education Organization Contact Us Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports NSTX-U Research The U.S. Department of Energy's Princeton Plasma Physics Laboratory is dedicated to developing fusion as

  14. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    not depend on whether a particle travels from right to left or left to right, then the physics equations should reflect this mirror symmetry. Geometrical symmetries occur...

  15. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What is in the future for physics? You wrote: We are constantly preoccupied with the next steps in our sciences. I would be interested to know, in your opinion, what the next fifteen steps are likely to be in physics in the 21st Century. With thanks for your time Stephanie G. Dear Stephanie: Your question regarding the far distant goals/discoveries of physics is obviously very difficult to answer. In particular, physics is such a vast field that it is already difficult for me to do justice to

  16. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physical processes seem to look different in those different frames. Studying general relativity, however, Einstein realized that those frames are also equivalent if...

  17. Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Experimental Fusion Research Theoretical Fusion Research Basic Plasma Science Plasma Astrophysics Other Physics and Engineering Research PPPL Technical Reports NSTX-U ...

  18. Fermilab | Science | Particle Physics | Muons

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    muons to search for rare and hidden phenomena in the quantum realm. In recent years, particle physicists have increasingly turned their attention to finding evidence for physics...

  19. Brochures | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy's Princeton Plasma Physics Laboratory works with collaborators across the globe to develop fusion as an energy source for the world, and conducts research along the...

  20. Directory | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reset The DOE Princeton Plasma Physics Laboratory works with collaborators across the globe to develop fusion as an energy source for the world, and conducts research along the...

  1. Chemical Physics | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Scientific Personnel: Da-Jiang Liu, Michael Schmidt. The theoretical Chemical Physics ... of Basic Energy Sciences, Division of Chemical Sciences, Geosciences, and Biosciences ...

  2. Manhattan Project: Solvay Physics Conference

    Office of Scientific and Technical Information (OSTI)

    The Solvay Physics Conference, held in Brussels, Belgium, October 22-29, 1933. Attendees included two future key Manhattan Project scientists (Fermi and Lawrence), the future head ...

  3. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    your question. Sincerely, Judy Jackson, Fermilab Office of Public Affairs Hugh Montgomery, Fermilab D0 Experiment Back to Questions About Physics Main Page last modified 1...

  4. Review of physics results from the Tevatron: Heavy flavor physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Jonathan; van Kooten, Rick

    2015-02-28

    In this study, we present a review of heavy flavor physics results from the CDF and DØ Collaborations operating at the Fermilab Tevatron Collider. A summary of results from Run 1 is included, but we concentrate on legacy results of charm and b physics from Run 2, including results up to Summer 2014.

  5. Review of physics results from the Tevatron: Heavy flavor physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Jonathan; Van Kooten, Rick

    2015-02-28

    We present a review of heavy flavor physics results from the CDF and D0 Collaborations operating at the Fermilab Tevatron Collider. A summary of results from Run 1 is included, but we concentrate on legacy results of charm and b physics from Run 2, including results up to Summer 2014.

  6. Evaluation and Selection of CSES Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating, Selecting Proposals Evaluation and Selection of CSES Proposals High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. Contact Director Reiner Friedel (505) 665-1936 Email Professional Staff Assistant Georgia D. Sanchez (505) 665-0855 Email Geophysics W. Scott Baldridge (505) 667-4338 Email New student and postdoc proposals All new proposals undergo peer review by scientists in the broad research community who

  7. Research Subject Areas for CSES Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Subject Areas Research Subject Areas for CSES Proposals High quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. Contact Director Reiner Friedel (505) 665-1936 Email Professional Staff Assistant Georgia D. Sanchez (505) 665-0855 Email Science Discipline Leaders Astrophysics & Cosmology Hui Li (505) 665-3131 Email Climate Keeley Costigan (505) 665-4788 Email Geophysics David Coblentz (505) 667-2781 Email Space

  8. Analysis of impact melt and vapor production in CTH for planetary applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Quintana, S. N.; Crawford, D. A.; Schultz, P. H.

    2015-05-19

    This study explores impact melt and vapor generation for a variety of impact speeds and materials using the shock physics code CTH. The study first compares the results of two common methods of impact melt and vapor generation to demonstrate that both the peak pressure method and final temperature method are appropriate for high-speed impact models (speeds greater than 10 km/s). However, for low-speed impact models (speeds less than 10 km/s), only the final temperature method is consistent with laboratory analyses to yield melting and vaporization. Finally, a constitutive model for material strength is important for low-speed impacts because strengthmore » can cause an increase in melting and vaporization.« less

  9. Researcher, Los Alamos National Laboratory - Applied Physics...

    National Nuclear Security Administration (NNSA)

    Applied Physics Division | National Nuclear Security Administration Facebook Twitter ... Researcher, Los Alamos National Laboratory - Applied Physics Division Stephen Becker ...

  10. Interdisciplinary General Engineer/Physical Scientist (Facility...

    Office of Environmental Management (EM)

    Interdisciplinary General EngineerPhysical Scientist (Facility Representative) Interdisciplinary General EngineerPhysical Scientist (Facility Representative) Submitted by admin ...

  11. Physical unclonable functions: A primer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bauer, Todd; Hamlet, Jason

    2014-11-01

    Physical unclonable functions (PUFs) make use of the measurable intrinsic randomness of physical systems to establish signatures for those systems. Thus, PUFs provide a means to generate unique keys that don't need to be stored in nonvolatile memory, and they offer exciting opportunities for new authentication and supply chain security technologies.

  12. A hybrid hydrologic-geophysical inverse technique for the assessment and monitoring of leachates in the vadose zone. 1998 annual progress report

    SciTech Connect (OSTI)

    Alumbaugh, D.L.; Glass, R.J.; Yeh, T.C.; LaBrecque, D.

    1998-06-01

    'The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from electric resistivity tomography (ERT) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity of the vadose zone (from the ERT measurements) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related. As of the 21st month of a 36-month project, a three-dimensional stochastic hydrologic inverse model for heterogeneous vadose zones has been developed. This model employs pressure and moisture content measurements under both transient and steady flow conditions to estimate unsaturated hydraulic parameters. In this model, an innovative approach to sequentially condition the estimate using temporal measurements has been incorporated. This allows us to use vast amounts of pressure and moisture content information measured at different times while keeping the computational effort manageable. Using this model the authors have found that the relative importance of the pressure and moisture content measurements in defining the different vadose zone parameters depends on whether the soil is wet or dry. They have also learned that pressure and moisture content measurements collected during steady state flow provide the best characterization of heterogeneity compared to other types of hydrologic data. These findings provide important guidance to the design of sampling scheme of the field experiment described below.'

  13. The BABAR Physics Book: Physics at an Asymmetric B Factory

    SciTech Connect (OSTI)

    Harrison, P.F., ed.; Quinn, Helen R., ed.

    2010-05-27

    Results of a year-long workshop devoted to a review of the physics opportunities of the BABAR experiment at the PEP-II B Factory, at the Stanford Linear Accelerator Center laboratory are presented.

  14. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consequences of Superstring Theory Animesh writes: I am doing my B.Tech in electronics engineering ,with a minor in particle physics at IIT,KANPUR,INDIA. I would like to know the following: WHAT WILL BE THE CONSEQUENCE OF THE SUCCESS OF THE SUPER STRING THEORY? i.e,WHEN THE FUNDAMENTAL PHOMENON OF ALL THE FORCES WILL BE KNOWN,WILL PHYSICS BE EXHAUSTED? Thanking you, ANIMESH D., IIT,KANPUR. Hi ANIMESH, If the superstring theory is true, we have then a very fundemental theory of physics. We could

  15. Physics division annual report 2006.

    SciTech Connect (OSTI)

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  16. Big Bang Day : Physics Rocks

    ScienceCinema (OSTI)

    None

    2011-04-25

    Is particle physics the new rock 'n' roll? The fundamental questions about the nature of the universe that particle physics hopes to answer have attracted the attention of some very high profile and unusual fans. Alan Alda, Ben Miller, Eddie Izzard, Dara O'Briain and John Barrowman all have interests in this branch of physics. Brian Cox - CERN physicist, and former member of 90's band D:Ream, tracks down some very well known celebrity enthusiasts and takes a light-hearted look at why this subject can appeal to all of us.

  17. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will start seeing results from the new Tevatron run, and what can be expected. Major physics results tend to get presented at international conferences that take place in the...

  18. RESEARCH IN ELEMENTARY PARTICLE PHYSICS

    Office of Scientific and Technical Information (OSTI)

    ... which is tasked with bridging the gap between the computing and physics communities. ... manner as the lOkt ED TPC design, allowing us to practice resolving readout ambiguities. ...

  19. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mass by interacting with the Higgs field. But to answer your question, we need only general relativity. Since before most of modern particle physics (including the idea of a...

  20. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Special and general relativity Physics at the speed of light Quantum entanglement and Black holes ... "What happens if you take 2 quantum-entangled particles, and untangle them and...

  1. Princeton Plasma Physics Lab - ITER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rnard-named-communications-director-princeton-plasma-physics

  2. Quantum simulations of physics problems

    SciTech Connect (OSTI)

    Somma, R. D.; Ortiz, G.; Knill, E. H.; Gubernatis, J. E.

    2003-01-01

    If a large Quantum Computer (QC) existed today, what type of physical problems could we efficiently simulate on it that we could not efficiently simulate on a classical Turing machine? In this paper we argue that a QC could solve some relevant physical 'questions' more efficiently. The existence of one-to-one mappings between different algebras of observables or between different Hilbert spaces allow us to represent and imitate any physical system by any other one (e.g., a bosonic system by a spin-1/2 system). We explain how these mappings can be performed, and we show quantum networks useful for the efficient evaluation of some physical properties, such as correlation functions and energy spectra.

  3. Princeton Plasma Physics Lab - Nanotechnology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL), Adam Cohen has been named Deputy Under Secretary for Science and Energy in Washington D.C....

  4. Physical Protection of Classified Matter

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1988-02-03

    The order establishes policy and objectives for physical protection of classified matter. This directive does not cancel another directive. Chg 1, 7-30-93. Canceled by 5632.1C.

  5. About Nuclear Physics | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physics is an important pursuit because the study of the nucleus of the atom is at the heart of our ability to understand the universe. It provides answers and expands our...

  6. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proof of Kepler's law? You Wrote: I have this homework question, my physics teacher said that you can prove Kepler's second law with one quantity of measurement. He hinted us with...

  7. Physics of Dance | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Dance CANCELLED: March 4 Physics of Dance Lab Lecture Has Been Cancelled NEWPORT NEWS, Va., Feb. 12, 2008 - The Physics of Dance Science Series lecture that had been scheduled for March 4 has been cancelled. Please visit the Science Series webpage for a current listing of scheduled Spring Science Series lectures http://education.jlab.org/scienceseries/index.php Jefferson Lab is managed and operated for the U.S. Department of Energy's Office of Science by Jefferson Science Associates, LLC, a

  8. ORISE: Applied health physics projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Applied health physics projects The Oak Ridge Institute for Science and Education (ORISE) provides applied health physics services to government agencies needing technical support for decommissioning projects. Whether the need is assistance with the development of technical basis documents or advice on how to identify, measure and assess the presence of radiological materials, ORISE can help determine the best course for an environmental cleanup project. Our key areas of expertise include fuel

  9. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    General physics From very cold to very hot – and everything in between Negative pressure Some cubic thermodynamical equations of state predict negative pressures, have negative pressures any physical meaning? Could they be related to negative mass? Audio waves and radio waves What is the wave called when you combine an audio wave with a radio wave? Extremely Low Frequency system In Michigan, there is an ELF (extremely low frequency) underground cable. My students asked what it does. Can you

  10. Materials Physics | Materials Science | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics A photo of laser light rays going in various directions atop a corrugated metal substrate In materials physics, NREL focuses on realizing materials that transcend the present constraints of photovoltaic (PV) and solid-state lighting technologies. Through materials growth and characterization, coupled with theoretical modeling, we seek to understand and control fundamental electronic and optical processes in semiconductors. Capabilities Optimizing New Materials An illustration showing

  11. THE EVOLUTION OF SOLAR FLUX FROM 0.1 nm TO 160 {mu}m: QUANTITATIVE ESTIMATES FOR PLANETARY STUDIES

    SciTech Connect (OSTI)

    Claire, Mark W.; Sheets, John; Meadows, Victoria S.; Cohen, Martin; Ribas, Ignasi; Catling, David C.

    2012-09-20

    Understanding changes in the solar flux over geologic time is vital for understanding the evolution of planetary atmospheres because it affects atmospheric escape and chemistry, as well as climate. We describe a numerical parameterization for wavelength-dependent changes to the non-attenuated solar flux appropriate for most times and places in the solar system. We combine data from the Sun and solar analogs to estimate enhanced UV and X-ray fluxes for the young Sun and use standard solar models to estimate changing visible and infrared fluxes. The parameterization, a series of multipliers relative to the modern top of the atmosphere flux at Earth, is valid from 0.1 nm through the infrared, and from 0.6 Gyr through 6.7 Gyr, and is extended from the solar zero-age main sequence to 8.0 Gyr subject to additional uncertainties. The parameterization is applied to a representative modern day flux, providing quantitative estimates of the wavelength dependence of solar flux for paleodates relevant to the evolution of atmospheres in the solar system (or around other G-type stars). We validate the code by Monte Carlo analysis of uncertainties in stellar age and flux, and with comparisons to the solar proxies {kappa}{sup 1} Cet and EK Dra. The model is applied to the computation of photolysis rates on the Archean Earth.

  12. AN ENVELOPE DISRUPTED BY A QUADRUPOLAR OUTFLOW IN THE PRE-PLANETARY NEBULA IRAS 19475+3119

    SciTech Connect (OSTI)

    Hsu, Ming-Chien; Lee, Chin-Fei E-mail: cflee@asiaa.sinica.edu.tw

    2011-07-20

    IRAS 19475+3119 is a quadrupolar pre-planetary nebula (PPN), with two bipolar lobes, one in the east-west (E-W) direction and one in the southeast-northwest (SE-NW) direction. We have observed it in CO J = 2-1 with the Submillimeter Array at {approx}1'' resolution. The E-W bipolar lobe is known to trace a bipolar outflow and it is detected at high velocity. The SE-NW bipolar lobe appears at low velocity, and could trace a bipolar outflow moving in the plane of the sky. Two compact clumps are seen at low velocity around the common waist of the two bipolar lobes, spatially coincident with the two emission peaks in the NIR, tracing dense envelope material. They are found to trace the two limb-brightened edges of a slowly expanding torus-like circumstellar envelope produced in the late asymptotic giant branch phase. This torus-like envelope originally could be either a torus or a spherical shell, and it appears as it is now because of the two pairs of cavities along the two bipolar lobes. Thus, the envelope appears to be disrupted by the two bipolar outflows in the PPN phase.

  13. Summaries of physical research in the geosciences

    SciTech Connect (OSTI)

    Not Available

    1983-09-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries in the document describe the scope of the individual programs and detail the research performed during 1982 to 1983. The Geoscience Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's technological needs.

  14. Summaries of physical research in the geosciences

    SciTech Connect (OSTI)

    Not Available

    1987-09-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas that are germane to the Department of Energy's many missions. The summaries in this document, prepared by the investigators, describe the scope of the individual programs. The Geoscience Research Program includes research in geology, petrology, geophysics, geochemistry, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including their various subdivisions and interdisciplinary areas. All such research is related either directly or indirectly to the Department of Energy's technological needs.

  15. Summaries of physical research in the geosciences

    SciTech Connect (OSTI)

    Not Available

    1981-10-01

    The Department of Energy supports research in the geosciences in order to provide a sound foundation of fundamental knowledge in those areas of earth, atmospheric, and solar-terrestrial sciences that are germane to the Department of Energy's many missions. The summaries describe the scope of the individual programs and detail the research performed during 1980 to 1981. The Geosciences Research Program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology, and natural resource analysis, including the various subdivisions and interdisciplinary areas.

  16. Hydromechanical transmission with three simple planetary assemblies, one sun gear being mounted on the output shaft and the other two on a common shaft connected to an input-driven hydraulic module

    DOE Patents [OSTI]

    Orshansky, Jr., deceased, Elias; Weseloh, William E.

    1978-01-01

    A power transmission having three simple planetary assemblies, each having its own carrier and its own planet, sun, and ring gears. A speed-varying module is connected in driving relation to the input shaft and in driving relationship to the sun gears of the first two planetary assemblies, these two sun gears being connected together on a common shaft. The speed-varying means may comprise a pair of hydraulic units hydraulically interconnected so that one serves as a pump while the other serves as a motor and vice versa, one of the units having a variable stroke and being connected in driving relation to the input shaft, the other unit, which may have a fixed stroke, being connected in driving relation to the sun gears. The input shaft is also connected to drive the second ring gear and, furthermore is clutchable to the carrier of the third planetary assembly. A brake grounds the first carrier in the first range and in reverse and causes drive to be delivered to the output through the first ring gear in a hydrostatic mode. The carrier of the second planetary assembly drives the ring gear of the third planetary assembly, which is clutchable to the output shaft, and the sun gear of the third planetary assembly is mounted rigidly to the output shaft.

  17. INSTITUTE OF PHYSICS PUBLISHING PLASMA PHYSICS AND CONTROLLED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6 (2004) 145-161 PII: S0741-3335(04)64065-6 Current profile modification experiments in EXTRAP T2R M Cecconello 1 , J-A Malmberg 1 , G Spizzo 2 , B E Chapman 3 , R M Gravestjin 4 , P Franz 2,5 , P Piovesan 2 , P Martin 2 and J R Drake 1 1 Division of Fusion Plasma Physics (Association EURATOM/VR), Alfvén Laboratory, Royal Institute of Technology, SE 100 44, Stockholm, Sweden 2 Consorzio RFX, Associazione EURATOM-ENEA sulla Fusione, Padova, Italy 3 Department of Physics, University of

  18. Review of Physics Results from the Tevatron. Electroweak Physics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kotwal, Ashutosh V.; Schellman, Heidi; Sekaric, Jadranka

    2015-02-17

    We summarize an extensive Tevatron (1984–2011) electroweak physics program that involves a variety of W and Z boson precision measurements. The relevance of these studies using single and associated gauge boson production to our understanding of the electroweak sector, quantum chromodynamics and searches for new physics is emphasized. Furthermore,we discuss the importance of the W boson mass measurement, the W/Z boson distributions and asymmetries, and diboson studies. We also highlight the recent Tevatron measurements and prospects for the final Tevatron measurements.

  19. A research Program in Elementary Particle Physics

    SciTech Connect (OSTI)

    Sobel, Henry; Molzon, William; Lankford, Andrew; Taffard, Anyes; Whiteson, Daniel; Kirkby, David

    2013-07-25

    Work is reported in: Neutrino Physics, Cosmic Rays and Elementary Particles; Particle Physics and Charged Lepton Flavor Violation; Research in Collider Physics; Dark Energy Studies with BOSS and LSST.

  20. Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawai’i and Maui

    SciTech Connect (OSTI)

    Fercho, Steven; Owens, Lara; Walsh, Patrick; Drakos, Peter; Martini, Brigette; Lewicki, Jennifer L.; Kennedy, Burton M.

    2015-08-01

    Suites of new geophysical and geochemical exploration surveys were conducted to provide evidence for geothermal resource at the Haleakala Southwest Rift Zone (HSWRZ) on Maui Island, Hawai’i. Ground-based gravity (~400 stations) coupled with heli-bourne magnetics (~1500 line kilometers) define both deep and shallow fractures/faults, while also delineating potentially widespread subsurface hydrothermal alteration on the lower flanks (below approximately 1800 feet a.s.l.). Multi-level, upward continuation calculations and 2-D gravity and magnetic modeling provide information on source depths, but lack of lithologic information leaves ambiguity in the estimates. Additionally, several well-defined gravity lows (possibly vent zones) lie coincident with magnetic highs suggesting the presence of dike intrusions at depth which may represent a potentially young source of heat. Soil CO2 fluxes were measured along transects across geophysically-defined faults and fractures as well as young cinder cones along the HSWRZ. This survey generally did not detect CO2 levels above background, with the exception of a weak anomalous flux signal over one young cinder cone. The general lack of observed CO2 flux signals on the HSWRZ is likely due to a combination of lower magmatic CO2 fluxes and relatively high biogenic surface CO2 fluxes which mix with the magmatic signal. Similar surveys at the Puna geothermal field on the Kilauea Lower East Rift Zone (KLERZ) also showed a lack of surface CO2 flux signals, however aqueous geochemistry indicated contribution of magmatic CO2 and He to shallow groundwater here. As magma has been intercepted in geothermal drilling at the Puna field, the lack of measured surface CO2 flux indicative of upflow of magmatic fluids here is likely due to effective “scrubbing” by high groundwater and a mature hydrothermal system. Dissolved inorganic carbon (DIC) concentrations, δ13C compositions and 3He/4He values were sampled at Maui from several shallow groundwater samples indicating only minor additions of magmatic CO2 and He to the groundwater system, although much less than observed near Puna. The much reduced DIC and He abundances at Maui, along with a lack of hotsprings and hydrothermal alteration, as observed near Puna, does not strongly support a deeper hydrothermal system within the HSWRZ.

  1. Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group...

    Office of Scientific and Technical Information (OSTI)

    Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group Citation Details In-Document Search Title: Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group ...

  2. Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group...

    Office of Scientific and Technical Information (OSTI)

    Physics & Modeling, AFC R&D Nuclear Physics Working Group Citation Details In-Document Search Title: Nuclear Physics & Modeling, AFC R&D Nuclear Physics Working Group You are ...

  3. DOE Fundamentals Handbook: Classical Physics

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The Classical Physics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of physical forces and their properties. The handbook includes information on the units used to measure physical properties; vectors, and how they are used to show the net effect of various forces; Newton`s Laws of motion, and how to use these laws in force and motion applications; and the concepts of energy, work, and power, and how to measure and calculate the energy involved in various applications. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility systems and equipment.

  4. DOE Fundamentals Handbook: Classical Physics

    SciTech Connect (OSTI)

    Not Available

    1992-06-01

    The Classical Physics Fundamentals Handbook was developed to assist nuclear facility operating contractors provide operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of physical forces and their properties. The handbook includes information on the units used to measure physical properties; vectors, and how they are used to show the net effect of various forces; Newton's Laws of motion, and how to use these laws in force and motion applications; and the concepts of energy, work, and power, and how to measure and calculate the energy involved in various applications. This information will provide personnel with a foundation for understanding the basic operation of various types of DOE nuclear facility systems and equipment.

  5. Effects on the Physical Environment (Hydrodynamics, Sediment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sediment Transport, and Water Quality) Effects on the Physical Environment (Hydrodynamics, Sediment Transport, and Water Quality) Effects on the Physical Environment ...

  6. Princeton Plasma Physics Laboratory Honors Three Researchers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Laboratory Honors Three Researchers March 12, 2012 Tweet Widget ... the Kaul Prize for Excellence in Plasma Physics Research and Technology Development. ...

  7. Source Physics Experiment | National Nuclear Security Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Source Physics Experiment | National Nuclear Security Administration Facebook Twitter ... Apply for Our Jobs Our Jobs Working at NNSA Blog Home Source Physics Experiment Source ...

  8. Fermilab | Physics for Everyone | Lecture Series

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics for Everyone Navbar Toggle About Quick Info Science History Organization Photo and ... Undergraduates Media Science Particle Physics Neutrinos Fermilab and the LHC Dark ...

  9. Princeton Plasma Physics Laboratory Technology Marketing Summaries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Princeton Plasma Physics...

  10. Fermilab | Directorate | Fermilab Physics Advisory Committee...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab Physics Advisory Committee (PAC) PAC The Program Advisory Committee (PAC) consists of 14 distinguished members from the particle physics community appointed by the...

  11. MPA, Materials Physics and Applications (Technical Report) |...

    Office of Scientific and Technical Information (OSTI)

    MPA, Materials Physics and Applications Citation Details In-Document Search Title: MPA, Materials Physics and Applications Authors: Kippen, Karen Elizabeth 1 + Show Author...

  12. Jefferson Lab physics overview: Recent results (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Jefferson Lab physics overview: Recent results Citation Details In-Document Search Title: Jefferson Lab physics overview: Recent results I review highlights of the Jefferson Lab ...

  13. SHARP Physics Modules Updated | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Physics Modules Updated SHARP Physics Modules Updated January 29, 2013 - 12:37pm Addthis PROTEUS Development The SHARP neutronics module, PROTEUS, includes neutron and gamma ...

  14. Jefferson Lab physics overview: Recent results (Conference) ...

    Office of Scientific and Technical Information (OSTI)

    Jefferson Lab physics overview: Recent results Citation Details In-Document Search Title: Jefferson Lab physics overview: Recent results You are accessing a document from the ...

  15. Physical Protection - DOE Directives, Delegations, and Requirements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2A, Physical Protection by jcronin Functional areas: Security, This Manual establishes requirements for the physical protection of interests under the U.S. Department of Energys...

  16. Robert G Andre | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    G Andre Senior Computational Scientist Dr. Robert Andre is currently a member of the Computational Plasma Physics Group at the Princeton Plasma Physic Laboratory (PPPL) where he...

  17. Igor Kaganovich | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interests include: beam-plasma interaction, high energy density plasmas, nanotechnology, atomic physics, and physics of partially ionized plasmas. He is involved in...

  18. Charles A Gentile | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Gentile Engineering and Scientific Staff, Plasma Physics Laboratory. Contact Information Phone: 609-243-2139 Email: cgentile@pppl.gov Learn More Nanotechnology Plasma physics...

  19. Ronald C Davidson | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fusion Center from 1978 to 1988, and has written more than 450 journal articles and books. He has chaired the American Physical Society's Division of Plasma Physics and...

  20. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pure Antineutron Beams Hello, I am a physics student in Germany. I haven't had particle physics yet, so I'd be glad if you answered me one question: How do you create more or less pure anti-neutron beams in your accelerator?? I'm sure it's possible somehow but I just don't know the way to relize that. The "options" I got to know by now: collision of anti-protons with carbon nuclei can result in anti-neutrons decay of lambda-particles (how would you create them?) I guess the main

  1. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacuum You wrote: I'm Stephen and I moderate a theoretical physics forum at physicsforums.com. Is it possible to increase the probability that virtual particles will appear in a vacuum? I was posed this question from a member and i do not have a definite answer in my reference materials. I would greatly appreciate any response as to how/why if the question has a yes answer. Thank you for your time. Regards, Stephen J Hall, Theoretical Physics moderator PS. if you are ever browsing the net and

  2. Quest | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quest Subscribe to RSS - Quest Welcome to Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). We are pleased to provide this news of our strides in advancing research into fusion energy and plasma science-two topics of vital interest to the United States and the world. Image: Quest Quest Magazine Summer 2015 Welcome to the third issue of Quest, the annual magazine of the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL).

  3. Scott Runnels of Computational Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scott Runnels of Computational Physics to teach at West Point March 19, 2013 LOS ALAMOS, N. M., March 19, 2013- Under an agreement between Los Alamos National Laboratory and the U.S. Military Academy, Scott Runnels has been selected for a two-year faculty post in the Department of Physics and Nuclear Engineering at West Point. The teaching position is intended to strengthen the ties between the U.S. national laboratories and the U.S. military academies by bringing in a top scientist to teach at

  4. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kathrin Wimmer ATLAS User Workshop Two-neutron transfer reactions Tritium loaded titanium foil targets K. Wimmer et al., Phys. Rev. Lett. 105 252501 (2010) four experiments ...

  5. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL team wins 80 million processor hours on nation's fastest supercomputer Click on an image below to view the high resolution image. Then right click on the image and select "Save Image" or "Save Image As..." Model of colliding magnetic fields before magnetic reconnection. (Model by Will Fox courtesy of Physical Review Letters 113, 105003 2014

  6. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Q&A With the Director of the Princeton Plasma Physics Laboratory, Dr. Stewart Prager Click on an image below to view the high resolution image. Then right click on the image and select "Save Image" or "Save Image As..." Stewart Prager

  7. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    McComas named vice president for the Princeton Plasma Physics Laboratory Click on an image below to view the high resolution image. Then right click on the image and select "Save Image" or "Save Image As..." David McComas

  8. LHC Physics Potential versus Energy

    SciTech Connect (OSTI)

    Quigg, Chris; /Fermilab

    2009-08-01

    Parton luminosities are convenient for estimating how the physics potential of Large Hadron Collider experiments depends on the energy of the proton beams. I present parton luminosities, ratios of parton luminosities, and contours of fixed parton luminosity for gg, u{bar d}, and qq interactions over the energy range relevant to the Large Hadron Collider, along with example analyses for specific processes.

  9. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    SciTech Connect (OSTI)

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  10. Accelerator Physics Code Web Repository

    SciTech Connect (OSTI)

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  11. Cyber and physical infrastructure interdependencies.

    SciTech Connect (OSTI)

    Phillips, Laurence R.; Kelic, Andjelka; Warren, Drake E.

    2008-09-01

    The goal of the work discussed in this document is to understand the risk to the nation of cyber attacks on critical infrastructures. The large body of research results on cyber attacks against physical infrastructure vulnerabilities has not resulted in clear understanding of the cascading effects a cyber-caused disruption can have on critical national infrastructures and the ability of these affected infrastructures to deliver services. This document discusses current research and methodologies aimed at assessing the translation of a cyber-based effect into a physical disruption of infrastructure and thence into quantification of the economic consequences of the resultant disruption and damage. The document discusses the deficiencies of the existing methods in correlating cyber attacks with physical consequences. The document then outlines a research plan to correct those deficiencies. When completed, the research plan will result in a fully supported methodology to quantify the economic consequences of events that begin with cyber effects, cascade into other physical infrastructure impacts, and result in degradation of the critical infrastructure's ability to deliver services and products. This methodology enables quantification of the risks to national critical infrastructure of cyber threats. The work addresses the electric power sector as an example of how the methodology can be applied.

  12. Proton-antiproton collider physics

    SciTech Connect (OSTI)

    Shochet, M.J.

    1995-07-01

    The 9th {anti p}p Workshop was held in Tsukuba, Japan in October, 1993. A number of important issues remained after that meeting: Does QCD adequately describe the large cross section observed by CDF for {gamma} production below 30 GeV? Do the CDF and D0 b-production cross sections agree? Will the Tevatron live up to its billing as a world-class b-physics facility? How small will the uncertainty in the W mass be? Is there anything beyond the Minimal Standard Model? And finally, where is the top quark? Presentations at this workshop addressed all of these issues. Most of them are now resolved, but new questions have arisen. This summary focuses on the experimental results presented at the meeting by CDF and D0 physicists. Reviews of LEP and HERA results, future plans for hadron colliders and their experiments, as well as important theoretical presentations are summarized elsewhere in this volume. Section 1 reviews physics beyond the Minimal Standard Model. Issues in b and c physics are addressed in section 3. Section 4 focuses on the top quark. Electroweak physics is reviewed in section 5, followed by QCD studies in section 6. Conclusions are drawn in section 7.

  13. A staggered-grid finite-difference scheme optimized in the timespace domain for modeling scalar-wave propagation in geophysical problems

    SciTech Connect (OSTI)

    Tan, Sirui; Huang, Lianjie

    2014-11-01

    For modeling scalar-wave propagation in geophysical problems using finite-difference schemes, optimizing the coefficients of the finite-difference operators can reduce numerical dispersion. Most optimized finite-difference schemes for modeling seismic-wave propagation suppress only spatial but not temporal dispersion errors. We develop a novel optimized finite-difference scheme for numerical scalar-wave modeling to control dispersion errors not only in space but also in time. Our optimized scheme is based on a new stencil that contains a few more grid points than the standard stencil. We design an objective function for minimizing relative errors of phase velocities of waves propagating in all directions within a given range of wavenumbers. Dispersion analysis and numerical examples demonstrate that our optimized finite-difference scheme is computationally up to 2.5 times faster than the optimized schemes using the standard stencil to achieve the similar modeling accuracy for a given 2D or 3D problem. Compared with the high-order finite-difference scheme using the same new stencil, our optimized scheme reduces 50 percent of the computational cost to achieve the similar modeling accuracy. This new optimized finite-difference scheme is particularly useful for large-scale 3D scalar-wave modeling and inversion.

  14. USING 3D COMPUTER MODELING, BOREHOLE GEOPHYSICS, AND HIGH CAPACITY PUMPS TO RESTORE PRODUCTION TO MARGINAL WELLS IN THE EAST TEXAS FIELD

    SciTech Connect (OSTI)

    R.L. Bassett

    2003-06-09

    Methods for extending the productive life of marginal wells in the East Texas Field were investigated using advanced computer imaging technology, geophysical tools, and selective perforation of existing wells. Funding was provided by the Department of Energy, TENECO Energy and Schlumberger Wireline and Testing. Drillers' logs for more than 100 wells in proximity to the project lease were acquired, converted to digital format using a numerical scheme, and the data were used to create a 3 Dimensional geological image of the project site. Using the descriptive drillers' logs in numerical format yielded useful cross sections identifying the Woodbine Austin Chalk contact and continuity of sand zones between wells. The geological data provided information about reservoir continuity, but not the amount of remaining oil, this was obtained using selective modern logs. Schlumberger logged the wells through 2 3/8 inch tubing with a new slimhole Reservoir Saturation Tool (RST) which can measure the oil and water content of the existing porosity, using neutron scattering and a gamma ray spectrometer (GST). The tool provided direct measurements of elemental content yielding interpretations of porosity, lithology, and oil and water content, confirming that significant oil saturation still exists, up to 50% in the upper Woodbine sand. Well testing was then begun and at the end of the project new oil was being produced from zones abandoned or bypassed more than 25 years ago.

  15. Test Plan for the Demonstration of Geophysical Techniques for Single-Shell Tank Leak Detection at the Hanford Mock Tank Site: Fiscal Year 2001

    SciTech Connect (OSTI)

    Barnett, D. Brent; Gee, Glendon W.; Sweeney, Mark D.

    2001-07-31

    As part of the Leak Detection, Monitoring and Mitigation (LDMM) program conducted by CH2M HILL 105-A during FY 2001. These tests are being conducted to assess the applicability of these methods (Electrical Resistance Tomography [ERT], High Resolution Resistivity [HRR], Cross-Borehole Seismography [XBS], Cross-Borehole Radar [XBR], and Cross-Borehole Electromagnetic Induction [CEMI]) to the detection and measurement of Single Shell Tank (SST) leaks into the vadose zone during planned sluicing operations. The testing in FY 2001 will result in the selection of up to two methods for further testing in FY 2002. In parallel with the geophysical tests, a Partitioning Interwell Tracer Test (PITT) study will be conducted simultaneously at the Mock Tank to assess the effectiveness of this technology in detecting and quantifying tank leaks in the vadose zone. Preparatory and background work using Cone Penetrometer methods (CPT) will be conducted at the Mock Tank site and an adjacent test area to derive soil properties for groundtruthing purposes for all methods.

  16. Peter Damiano | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Damiano Associate Research Physicist, Plasma Physics Laboratory. Contact Information Phone: 609-243-2607 Email: pdamiano

  17. Jianying Lang | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jianying Lang Computational Scientist, Plasma Physics Laboratory. Contact Information Phone: 609-243-2207 Email: jlang

  18. Jin Chen | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jin Chen Computational Scientist, Plasma Physics Laboratory. Contact Information Phone: 609-243-3352 Email: jchen

  19. Physics at an upgraded Fermilab proton driver

    SciTech Connect (OSTI)

    Geer, S.; /Fermilab

    2005-07-01

    In 2004 the Fermilab Long Range Planning Committee identified a new high intensity Proton Driver as an attractive option for the future, primarily motivated by the recent exciting developments in neutrino physics. Over the last few months a physics study has developed the physics case for the Fermilab Proton Driver. The potential physics opportunities are discussed.

  20. PIA - WEB Physical Security Major Application | Department of...

    Energy Savers [EERE]

    PIA - WEB Physical Security Major Application PIA - WEB Physical Security Major Application PIA - WEB Physical Security Major Application PDF icon PIA - WEB Physical Security Major...

  1. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concept of ether in explaining forces You asked: Will there be any research carried out in the near or distant future to find a physical relationship between gravity, mass, light, matter/antimatter through something like the idea of ether hundred years ago? The concept of ether surfaced decades before scientists knew of quantum mechanics and some very fundamental symmetry principles of the microscopic world. Because of the huge change in knowledge, the historic word ether is not used anymore

  2. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Software Programming in Particle Detectors Question: Is it possible to use software programing in particle detectors to develop a program that can interpert data of passive radar? Answer: Thanks for sending your question. The answer greatly depends on the type of data the radar is creating and the signal you are looking for. The particle physics software is used to identify tracks of particles, that is, the imaginary lines that particles leave behind inside a set of detectors. Similar to bullets

  3. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What are the virtual particles? You Wrote: What are the virtual particles? What does it mean - "virtual"? Sincerely, Anthony Petrov. Hi, you ask another very good question. "Virtual particles" are real -- they exist in that they can be detected and can interact. But they are fleeting -- they are soon gone with no trace of their existence. This phenomenon is related to the Heisenberg uncertainty principle of quantum physics. Uncertainty in time multiplied by uncertainty in

  4. Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research The U.S. Department of Energy's Princeton Plasma Physics Laboratory is dedicated to developing fusion as a clean and abundant source of energy and to advancing the frontiers of plasma science. The Laboratory pursues these goals through experiments and computer simulations of the behavior of plasma, the hot electrically charged gas that fuels fusion reactions and has a wide range of practical applications. Experimental Fusion Research Fusion powers the sun and stars. The process takes

  5. Tours | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    History Fusion Basics DOE and Fusion Links Speakers Bureau Tours Virtual Tour 10 Facts About Fusion Energy Contract Documents News Events Research Education Organization Contact Us Overview Learn More Visiting PPPL History Fusion Basics DOE and Fusion Links Speakers Bureau Tours Virtual Tour 10 Facts About Fusion Energy Contract Documents Tours Tour Arrangements at the Princeton Plasma Physics Laboratory Come see first-hand the exciting world of fusion energy research at PPPL! Visiting the U.S.

  6. PARTICIPATION IN HIGH ENERGY PHYSICS

    SciTech Connect (OSTI)

    White, Christopher

    2012-12-20

    This grant funded experimental and theoretical activities in elementary particles physics at the Illinois Institute of Technology (IIT). The experiments in which IIT faculty collaborated included the Daya Bay Reactor Neutrino Experiment, the MINOS experiment, the Double Chooz experiment, and FNAL E871 - HyperCP experiment. Funds were used to support summer salary for faculty, salary for postdocs, and general support for graduate and undergraduate students. Funds were also used for travel expenses related to these projects and general supplies.

  7. Sandia National Laboratories: Careers: Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Water droplets photo Physicists from all research backgrounds are helping Sandia solve the world's toughest challenges. There is no "typical" career for a physicist at Sandia. Instead, Sandia offers physicists a multitude of opportunities to participate in multidisciplinary teams on projects ranging from groundbreaking fundamental research to influential national security applications. Whatever the project, physicists are making important contributions to Sandia's missions in

  8. Physical Chemistry and Applied Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PCS Physical Chemistry and Applied Spectroscopy We perform basic and applied research in support of the Laboratory's national security mission and serve a wide range of customers. Contact Us Group Leader Kirk Rector Deputy Group Leader Jeff Pietryga Group Office (505) 667-7121 Postdoctoral researcher Young-Shin Park characterizing emission spectra of LEDs in the Los Alamos National Laboratory optical laboratory. Postdoctoral researcher Young-Shin Park characterizing emission spectra of LEDs in

  9. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    graduate students help create Princeton University Art Museum exhibition exploring art and physics Click on an image below to view the high resolution image. Then right click on the image and select "Save Image" or "Save Image As..." Dunes, Oceano, Calif. Graduate Student Vinicius Njaim Duarte Veronica White, the Andrew W. Mellon Curatorial Assistant for Academic Programs

  10. Journal of Physical Chemistry A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physical Chemistry A - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  11. Accelerator physics and modeling: Proceedings

    SciTech Connect (OSTI)

    Parsa, Z.

    1991-12-31

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  12. Accelerator physics and modeling: Proceedings

    SciTech Connect (OSTI)

    Parsa, Z.

    1991-01-01

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  13. Purpose | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purpose This program enables PPPL to provide scientific outreach to a broad range of U.S. colleges and universities in various areas of plasma science and technology. It routinely supports approximately 25 U.S. colleges and universities every year. Our goal is to support as many projects as possible. As a DOE National Laboratory, the Princeton Plasma Physics Laboratory maintains an experienced staff of scientists, engineers, and technicians who are available to participate in the Off-Site

  14. Education | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Science Education Welcome to the Science Education Department at the Princeton Plasma Physics Laboratory (PPPL), where we combine the lab's core research activities with science education programs to create a center of excellence for students, teachers and the general public. We contribute to the training of the next generation of scientists and engineers, collaborate with K-12 teachers on ways to improve science teaching using an inquiry-based approach to learning, and improve the

  15. Applied Mathematics and Plasma Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Applied Mathematics and Plasma Physics Maintaining mathematic, theory, modeling, and simulation capabilities in a broad set of areas Leadership Group Leader Pieter Swart Email Deputy Group Leader (Acting) Luis Chacon Email Contact Us Administrator Charlotte Lehman Email Electron density simulation Electron density from an orbital-free quantum molecular dynamics simulation for a warm dense plasma of deuterium at density 10 g/cc and temperature 10 eV. Mathematical, theory, modeling, and

  16. Theoretical perspectives on strange physics

    SciTech Connect (OSTI)

    Ellis, J.

    1983-04-01

    Kaons are heavy enough to have an interesting range of decay modes available to them, and light enough to be produced in sufficient numbers to explore rare modes with satisfying statistics. Kaons and their decays have provided at least two major breakthroughs in our knowledge of fundamental physics. They have revealed to us CP violation, and their lack of flavor-changing neutral interactions warned us to expect charm. In addition, K/sup 0/-anti K/sup 0/ mixing has provided us with one of our most elegant and sensitive laboratories for testing quantum mechanics. There is every reason to expect that future generations of kaon experiments with intense sources would add further to our knowledge of fundamental physics. This talk attempts to set future kaon experiments in a general theoretical context, and indicate how they may bear upon fundamental theoretical issues. A survey of different experiments which would be done with an Intense Medium Energy Source of Strangeness, including rare K decays, probes of the nature of CP isolation, ..mu.. decays, hyperon decays and neutrino physics is given. (WHK)

  17. Finite groups and quantum physics

    SciTech Connect (OSTI)

    Kornyak, V. V.

    2013-02-15

    Concepts of quantum theory are considered from the constructive 'finite' point of view. The introduction of a continuum or other actual infinities in physics destroys constructiveness without any need for them in describing empirical observations. It is shown that quantum behavior is a natural consequence of symmetries of dynamical systems. The underlying reason is that it is impossible in principle to trace the identity of indistinguishable objects in their evolution-only information about invariant statements and values concerning such objects is available. General mathematical arguments indicate that any quantum dynamics is reducible to a sequence of permutations. Quantum phenomena, such as interference, arise in invariant subspaces of permutation representations of the symmetry group of a dynamical system. Observable quantities can be expressed in terms of permutation invariants. It is shown that nonconstructive number systems, such as complex numbers, are not needed for describing quantum phenomena. It is sufficient to employ cyclotomic numbers-a minimal extension of natural numbers that is appropriate for quantum mechanics. The use of finite groups in physics, which underlies the present approach, has an additional motivation. Numerous experiments and observations in the particle physics suggest the importance of finite groups of relatively small orders in some fundamental processes. The origin of these groups is unclear within the currently accepted theories-in particular, within the Standard Model.

  18. Compensation Techniques in Accelerator Physics

    SciTech Connect (OSTI)

    Hisham Kamal Sayed

    2011-05-31

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  19. INSTITUTE OF PHYSICS PUBLISHING PLASMA PHYSICS AND CONTROLLED

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 (2003) A457-A470 PII: S0741-3335(03)69356-5 Tokamak-like confinement at high beta and low field in the reversed field pinch J S Sarff 1 , J K Anderson 1 , T M Biewer 1 , D L Brower 2 , B E Chapman 1 , P K Chattopadhyay 1 , D Craig 1 , B Deng 2 , D J Den Hartog 1 , W X Ding 2 , G Fiksel 1 , C B Forest 1 , J A Goetz 1 , R O'Connell 1 , S C Prager 1 and M A Thomas 1 1 Department of Physics, University of Wisconsin, 1150 University Avenue, Madison, WI 53706, USA 2 Electrical Engineering

  20. Other Physics and Engineering Research | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Other Physics and Engineering Research United States DIII-D-PPPL scientists participate in experiments on the DIII-D tokamak, the largest U.S. fusion facility, which General Atomics operates in San Diego for the U.S. Department of Energy. Five PPPL researchers are currently assigned to the DIII-D on a year-round basis. Additional researchers travel there on a regular basis and support work is performed at PPPL. https://fusion.gat.com/global/DIII-D Alcator C-MOD-The MIT Plasma Science and Fusion

  1. Summaries of physical research in the geosciences

    SciTech Connect (OSTI)

    Not Available

    1980-08-01

    The Department of Energy supports research in the geosciences in order to provide a sound underlay of fundamental knowledge in those areas of the earth, atmospheric, and solar/terrestrial sciences that relate to the Department of Energy's many missions. The Division of Engineering, Mathematical and Geosciences, which is a part of the Office of Basic Energy Sciences and comes under the Director of Energy Research, supports under its Geosciences program major Department of Energy laboratories, industry, universities and other governmental agencies. The summaries in this document, prepared by the investigators, describe the overall scope of the individual programs and details of the research performed during 1979-1980. The Geoscience program includes research in geology, petrology, geophysics, geochemistry, hydrology, solar-terrestrial relationships, aeronomy, seismology and natural resource analysis, including the various subdivisions and interdisciplinary areas. All such research is related to the Department's technological needs, either directly or indirectly.

  2. Physics division annual report 2005.

    SciTech Connect (OSTI)

    Glover, J.; Physics

    2007-03-12

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were trapped in an atom trap for the first time, a major milestone in an innovative search for the violation of time-reversal symmetry. New results from HERMES establish that strange quarks carry little of the spin of the proton and precise results have been obtained at JLAB on the changes in quark distributions in light nuclei. New theoretical results reveal that the nature of the surfaces of strange quark stars. Green's function Monte Carlo techniques have been extended to scattering problems and show great promise for the accurate calculation, from first principles, of important astrophysical reactions. Flame propagation in type 1A supernova has been simulated, a numerical process that requires considering length scales that vary by factors of eight to twelve orders of magnitude. Argonne continues to lead in the development and exploitation of the new technical concepts that will truly make an advanced exotic beam facility, in the words of NSAC, 'the world-leading facility for research in nuclear structure and nuclear astrophysics'. Our science and our technology continue to point the way to this major advance. It is a tremendously exciting time in science for these new capabilities hold the keys to unlocking important secrets of nature. The great progress that has been made in meeting the exciting intellectual challenges of modern nuclear physics reflects the talents and dedication of the Physics Division staff and the visitors, guests and students who bring so much to the research.

  3. MICROBOONE PHYSICS Ben Carls Fermilab MicroBooNE Physics Outline

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PHYSICS Ben Carls Fermilab MicroBooNE Physics Outline * The detector and beam - MicroBooNE TPC - Booster and NuMI beams at Fermilab * Oscillation physics - Shed light on the ...

  4. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is Antineutron the Same as Neutron? You Wrote: My name is Killian Lobato. I am a year 13 IB student in St. Julians Portugal. I have come across in my physics book the idea of anti matter. Anti matter is the same as its opposing matter but has an opposite charge. Now as the nuetron has no charge what makes its anti particle different. The idea i have is that the Anti Neutron is the fussion of an anti proton and an anti electron (a positron, i do not know the anti particle of proton). Hello

  5. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You Wrote: Hi my question is what is the number of atoms in the world and why don't scientist agree on one number for them. Thank you. Hi, the answer to your question by its very nature can not be terribly accurate. However, when I pull down my copy of a college physics book, I find that it lists the mass of the earth as (6 x 10^24 kg). The mass of a proton or neutron is (1.67 x 10^-27 kg). Consequently, you can say to mediocre accuracy that the number of protons or neutrons in the earth is

  6. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Big Bang & Bosons Glenn, I guess what I want to ask you is a stupid question. But since I am a lay person with a lot of curiousity let me be bold enough to ask it. I understand the the standard particle theory says that large masses indicated by boson masses can only be created by lots power in accelerators. That is why the supercollider would have been great. But how does this relate if the Big Bang theory is correct? What does the current trend in elementary particle physics have to do to

  7. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rotation of Black Holes Hello Alyssa -- The questions you sent to Fermilab about physics didn't get lost, they just got routed to a couple of lazy postdocs. That's why it took so long to get back to you. Anyway, we thought that these were such good questions that _two_ of us decided to take a crack at answering them! Below are your questions and answers from me and from my colleague Andrew Sornborger. You'll notice that sometimes we say almost exactly the same thing, and sometimes we give

  8. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centripedal Forces Plus Relativity You wrote: Hello, I'm not sure if this address is the right one to write to asking a physics question. But I saw a list of questions and answers at the page with this address. Therefore, I would be very grateful if you could forward this question to someone who answers it. Question: I have some problems understanding centripetal and centrifugal force. As I see it, these are a result of a type of acceleration. I'm quite sure, in space these forces also

  9. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Centripetal or Centrifugal Force? You Wrote: A recent debate ended in a total draw. It was concverning centrifugal force, or its lack there of. Both sides of the argument stand for and against this common rule of physics. Centripital force was the only force affecting rotating objects, one litigator announced. My question for you is, is there such a thing as centrifugal force, or has it proven to be non-existent? Thank You very much A mediating Scientist Hi, thanks for your question, you are

  10. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electro-magnet Dear Sir, I have been set a physics assignment and I need to find out why the current effects the strength of an electro-magnet. If you know the answer I would really appreciate it if you could send it to me. That would be awesome. Thanks Luke Luke - Hello. I am a scientist here at Fermilab and your question got forwarded to me. In some sense it is a question with an easy answer, but like most science, you can keep probing the answer until you reach a question that can't be

  11. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feynman insists that ... Hello helpful physicist Since you seem to be a physics person I thought you could help me with a thing that bothered me for quite some time now. Nobody has been able to answer me yet. I read a series of lectures Feynman gave in New Zealand for the non-science student. In there he seems to insist that: 1) There is no need for an uncertainty principle 2) Photons can travel slower or faster than lightspeed (and indeed do) (I know they can go slower, but faster???) 3)

  12. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    High Frequency Beams Hi, I'm a physics student and I love the work you are doing at Fermilab. I've been watching closely your progress and I believe some of the best mind are working there. My question is about high frequency beams. I'd like to know what are the highest frequencies (in Hz) you have been using at Fermilab and in what kind of research. What is the theoretical limit for frequencies and how far are we from it? I'd really apreciate your answer. Thank you very much. Best regards,

  13. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Homemade Particle Accelerator You wrote: I wonder if I could ask physicists of the Fermilab if exist a simple particle accelerator that can be homemade. Well, I'm asking that because Prof. Dr. Michio Kaku, professor of physics at New York City College, said in his best-seller book "Hyperspace" that he built a particle accelerator in his garage when he was a teenager. I don't understand why Prof. Kaku would lie about such thing, so I thought it would be worthy seeking this simple model

  14. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How do you make protons and antiprotons? You Wrote: In my physical science class we watched a video about how they make quarks. Our teacher told us that for extra credit we could write to you and fund the answer to these two questions: 1. How do they make the protons and antiprotons that are used in quarks? 2. How do they make the electron scanning needle? If you could e-mail me back as soon as possible with the answers I would greatly appreciate it. This extra credit could help my grade a lot.

  15. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost of Operating Light Bulbs Dear Webmaster, My wife and I are having a friendly dispute over the cost of operating electric light bulbs and I am hoping that perhaps a physicist might settle things for us. It is not lightly that I turn to such a prestidigious resource, but all other sources (ie. Com Ed customer relations - local electricians) have all demonstrated the recent phenomenon of the dimming down of America. I am pretty sure that in my high school physics class we were taught that

  16. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    You Wrote: Magnets To All the Hardworking Scientists, Hi, I was wondering exactly how magnets are used at Fermilab? I understand that they are used in "detectors" and "particle accelerators", but I would like more specific information. Student of Physics, Ami Dear Ami: Yes, we use magnets both in our accelerators and in our detectors. Dipole magnets (one north pole, one south pole) are used to bend the path of an electrically charged particle. They are essential in building

  17. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scattering matrix You Wrote: Hello: I am a high school physics teacher with a problem! One of my students is very interested in superstring theories and often asks me to explain pieces of it to her. My background in this area is severely limited, but I do what I can and often we find some things out together. The problem I am having now though, is she is reading BEYOND EINSTEIN and has come across the term "S-matrix". The description in the book deals with the explanation of why the

  18. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particles from Batavia to Soudan Tom, You asked: I have been reading various pages on the Fermi website and I'm unclear how the particles to be tested get from Batavia to Soudan. Is there a physical connection like a pipeline or is this something that just happens through the earth? Sorry for what's probably a very basic question but I couldn't quite understand that point. Are there articles that explain how this happens? Thanks! Tom Hi Tom, I am a physicist working on the NuMI/MINOS project

  19. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waves or Particles? 1. Does an unobserved, unmeasured (i.e. wave-like) photon exist as an electro-magnetic wave, or as a 'wave-function', i.e. a probability wave? 2. Is the 'wave' nature of an electron the same as speaking of it's wave-function, in other words does an unmeasured electron exist everywhere in space as a purely mathematical probability? Does an unmeasured electron not have any physical meaning at all then? 3. When performing Young's double-slit experiment with photons and

  20. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Is a quark a sound particle? You Wrote: I am not a scientist; however, I have become curious about the quark. I'm sure you're extremely busy, but if you would placate me for a moment I would be most appreciative. My minuscule physics aptitude is limited to some vague experience that I recall dreading in high school for about 9 months everyday during third period. Therefore, if you opt to respond to my quest for knowledge please use only the most simple of lay terms. I do recall from my college

  1. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virtual Photon Question Brian, X-URL: http://www.fnal.gov/pub/hep_descript.html Dear Fermilab (or to whom this may be going to), Hi. I am 14 years old and I happen to be reading a physics book when I came across something called Virtual Photons and the uncertianty principle. The book does not explain what Virtual Photons are to well, and all I know about Photons is that they could be a wave or matter. If you could help me about what Virtual Photons are and Photons, that would be a great help.

  2. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Charged Objects and Virtual Photons Hello, I am fascinated by the universe of physics, and I have a few questions. Actually, I was wondering about photons. I have come to understand that photons are the force carrying particles for the electromagnetic force. I also understand that they have no mass and can therefore travel at the speed of light. What I was wondering was this: When two electrons come near, why are real photons said to be emitted, but virtual photons are said to be the actual

  3. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Top-5 Achievements at the Princeton Plasma Physics Laboratory in 2015 Click on an image below to view the high resolution image. Then right click on the image and select "Save Image" or "Save Image As..." From top left: 1.Magnetic island geometry revealing the mechanism for the density limit. (Reprinted with permission from Phys. Plasmas 22, 022514 2015); 2.Carlos Paz-Soldan and Raffi Nazikian advanced understanding of the control of heat bursts; 3.interior of the NSTX-U

  4. News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PPPL, Princeton University physicists join German Chancellor Angela Merkel at Wendelstein 7-X celebration Click on an image below to view the high resolution image. Then right click on the image and select "Save Image" or "Save Image As..." An image of the hydrogen plasma inside the Wendelstein 7-X. A.J. Stewart Smith, Princeton University vice president for the Princeton Plasma Physics Laboratory, and German Chancellor Angela Merkel shake hands in the Wendelstein 7-X control

  5. Neutrino Physics with Thermal Detectors

    SciTech Connect (OSTI)

    Nucciotti, A. [Dipartimento di Fisica, Universita di Milano Bicocca and INFN Sezione di Milano-Bicocca Piazza della Scienza, 3, 20126 Milano (Italy)

    2009-11-09

    The investigation of fundamental neutrino properties like its mass and its nature calls for the design of a new generation of experiments. High sensitivity, high energy resolution, and versatility together with the possibility of a simple multiplexing scheme are the key features of future detectors for these experiments. Thermal detectors can combine all these features. This paper reviews the status and the perspectives for what concerns the application of this type of detectors to neutrino physics, focusing on direct neutrino mass measurements and neutrinoless double beta decay searches.

  6. Laboratory I | Nuclear Physics Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CERN 73-11 Laboratory I | Nuclear Physics Division a 24 September 1973 ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE C E R N EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH HIGH-ACCURACY MEASUREMENTS OF THE CENTRE OF GRAVITY OF AVALANCHES IN PROPORTIONAL CHAMBERS G. Charpak, A. Jeavons, F. Sauli and R. Stubbs G E N E V A 1973 © Copyright CERN, Geneve, 1973 Propriety litteraire et scientiflque reservee pour tous les pays du monde Ce document ne peut etre reproduit ou traduit en tout ou en

  7. Physics of passive solar buildings

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1981-01-01

    Primary emphasis in the paper is on methods of characterizing and analyzing passive solar buildings. Simplifying assumptions are described which make this analysis tractable without compromising significant accuracy or loss of insight into the basic physics of the situation. The overall nature of the mathematical simulation approach is described. Validation procedures based on data from test rooms and monitored buildings are outlined. Issues of thermal comfort are discussed. Simplified methods of analysis based on correlation procedures are reported and the nature of the economic conservation-solar optimization process is explored. Future trends are predicted.

  8. Electroweak Physics at Jefferson Lab

    SciTech Connect (OSTI)

    R. D. McKeown

    2012-03-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) at the Thomas Jefferson National Accelerator Facility provides CW electron beams with high intensity, remarkable stability, and a high degree of polarization. These capabilities offer new and unique opportunities to search for novel particles and forces that would require extension of the standard model. CEBAF is presently undergoing an upgrade that includes doubling the energy of the electron beam to 12 GeV and enhancements to the experimental equipment. This upgraded facility will provide increased capability to address new physics beyond the standard model.

  9. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Particle theories Quantum fields, superstrings and all that Scattering matrix "Could you please help me by explaining what is actually meant by S-matrix?" Concept of ether in explaining forces? "Will there be any research carried out in the near or distant future to find a physical relationship between gravity, mass, light, matter/antimatter through something like the idea of ether hundred years ago?" Consequences of the success of superstring theory? "What will be the

  10. Inquiring Minds - Questions About Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics of the universe From the big bang to black holes, extra dimensions, space and time Centrifugal Force From smaller than atoms to larger than galaxies structures spin and in doing so the centrifugal force throws things outward. Might not the Universe as a whole be spinning on an axis and what we currently ascribe to a mysterious repulsive force be a centrifugal force throwing things outward? Thrown out rather than pushed or drawn? Motion in the Universe I have been attempting to calculate

  11. Tau physics at future facilities

    SciTech Connect (OSTI)

    Perl, M.L.

    1994-12-01

    This paper dicusses and projects the tau research which may be carried out at CESR, at BEPC, at the SLC, in the next few years at LEP I, at the asymmetric B-factories under construction in Japan and the United States and, if built, a tau-charm factory. As the size of tau data sets increases, there is an increasing need to reduce the effects of systematic errors on the precision and search range of experiments. In most areas of tau physics there is a large amount of progress to be made, but in a few areas it will be difficult to substantially improve the precision of present measurements.

  12. [Experimental nuclear physics]. Final report

    SciTech Connect (OSTI)

    1991-04-01

    This is the final report of the Nuclear Physics Laboratory of the University of Washington on work supported in part by US Department of Energy contract DE-AC06-81ER40048. It contains chapters on giant dipole resonances in excited nuclei, nucleus-nucleus reactions, astrophysics, polarization in nuclear reactions, fundamental symmetries and interactions, accelerator mass spectrometry (AMS), ultra-relativistic heavy ions, medium energy reactions, work by external users, instrumentation, accelerators and ion sources, and computer systems. An appendix lists Laboratory personnel, a Ph. D. degree granted in the 1990-1991 academic year, and publications. Refs., 41 figs., 7 tabs.

  13. Fermilab | Science | Particle Physics | Benefits of Particle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Benefits of Particle Physics photo Each generation of particle accelerators and detectors ... From the earliest days of high-energy physics in the 1930s to the latest 21st-century ...

  14. Nuclear Physics Long Range Plan | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Physics Long Range Plan June 26, 2014 For a couple of years now, we have been waiting to get started on the next nuclear physics long range plan (LRP). What does that mean? ...

  15. Nuclear Physics Technology Saves Lives | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Technology Saves Lives January 11, 2006 Listen to this story Ribbon With early ... Group, headed by Stan Majewski, is part of the Physics Division here at Jefferson Lab. ...

  16. Plasma astrophysics | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subscribe to RSS - Plasma astrophysics A field of physics that is growing in interest ... McComas named vice president for the Princeton Plasma Physics Laboratory David McComas, an ...

  17. CeramPhysics Inc | Open Energy Information

    Open Energy Info (EERE)

    Product: CeramPhysics is developing solid oxide fuel cells that use ceramic honeycomb membranes. References: CeramPhysics, Inc.1 This article is a stub. You can help OpenEI by...

  18. American Fusion News | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 5, 2013 Applying physics, teamwork to fusion energy science February 22, 2013 A Tour of Plasma Physics in Downtown Cambridge December 4, 2012 Placing Fusion Power on a ...

  19. Experiments in intermediate energy physics

    SciTech Connect (OSTI)

    Dehnhard, D.

    2003-02-28

    Research in experimental nuclear physics was done from 1979 to 2002 primarily at intermediate energy facilities that provide pion, proton, and kaon beams. Particularly successful has been the work at the Los Alamos Meson Physics Facility (LAMPF) on unraveling the neutron and proton contributions to nuclear ground state and transition densities. This work was done on a wide variety of nuclei and with great detail on the carbon, oxygen, and helium isotopes. Some of the investigations involved the use of polarized targets which allowed the extraction of information on the spin-dependent part of the triangle-nucleon interaction. At the Indiana University Cyclotron Facility (IUCF) we studied proton-induced charge exchange reactions with results of importance to astrophysics and the nuclear few-body problem. During the first few years, the analysis of heavy-ion nucleus scattering data that had been taken prior to 1979 was completed. During the last few years we created hypernuclei by use of a kaon beam at Brookhaven National Laboratory (BNL) and an electron beam at Jefferson Laboratory (JLab). The data taken at BNL for a study of the non-mesonic weak decay of the A particle in a nucleus are still under analysis by our collaborators. The work at JLab resulted in the best resolution hypernuclear spectra measured thus far with magnetic spectrometers.

  20. J.E. 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; DEFORMED NUCLEI...

    Office of Scientific and Technical Information (OSTI)

    years of nuclear fission: Nuclear data and measurements series Lynn, J.E. 73 NUCLEAR PHYSICS AND RADIATION PHYSICS; DEFORMED NUCLEI; FISSION BARRIER; FISSION; HISTORICAL ASPECTS;...