Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geophysical Techniques | Open Energy Information  

Open Energy Info (EERE)

Geophysical Techniques Geophysical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geophysical Techniques Details Activities (2) Areas (1) Regions (0) NEPA(4) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: may be inferred Stratigraphic/Structural: may be inferred Hydrological: may be inferred Thermal: may be inferred Dictionary.png Geophysical Techniques: Geophysics is the study of the structure and composition of the earth's interior. Other definitions:Wikipedia Reegle Introduction Geophysical techniques measure physical phenomena of the earth such as gravity, magnetism, elastic waves, electrical and electromagnetic waves.

2

Definition: Geophysical Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Geophysical Techniques Jump to: navigation, search Dictionary.png Geophysical Techniques Geophysics is the study of the structure and composition of the earth's interior.[1] View on Wikipedia Wikipedia Definition Exploration geophysics is the applied branch of geophysics which uses surface methods to measure the physical properties of the subsurface Earth, along with the anomalies in these properties, in order to detect or infer the presence and position of ore minerals, hydrocarbons, geothermal reservoirs, groundwater reservoirs, and other geological structures. Exploration geophysics is the practical application of physical methods (such as seismic, gravitational, magnetic, electrical and electromagnetic)

3

New Geophysical Technique for Mineral Exploration and Mineral Discrimination Based on Electromagnetic Methods  

SciTech Connect (OSTI)

The research during the first two years of the project was focused on developing the foundations of a new geophysical technique for mineral exploration and mineral discrimination, based on electromagnetic (EM) methods. The developed new technique is based on examining the spectral induced polarization effects in electromagnetic data using effective-medium theory and advanced methods of 3-D modeling and inversion. The analysis of IP phenomena is usually based on models with frequency dependent complex conductivity distribution. In this project, we have developed a rigorous physical/mathematical model of heterogeneous conductive media based on the effective-medium approach. The new generalized effective-medium theory of IP effect (GEMTIP) provides a unified mathematical method to study heterogeneity, multi-phase structure, and polarizability of rocks. The geoelectrical parameters of a new composite conductivity model are determined by the intrinsic petrophysical and geometrical characteristics of composite media: mineralization and/or fluid content of rocks, matrix composition, porosity, anisotropy, and polarizability of formations. The new GEMTIP model of multi-phase conductive media provides a quantitative tool for evaluation of the type of mineralization, and the volume content of different minerals using electromagnetic data. We have developed a 3-D EM-IP modeling algorithm using the integral equation (IE) method. Our IE forward modeling software is based on the contraction IE method, which improves the convergence rate of the iterative solvers. This code can handle various types of sources and receivers to compute the effect of a complex resistivity model. We have demonstrated that the generalized effective-medium theory of induced polarization (GEMTIP) in combination with the IE forward modeling method can be used for rock-scale forward modeling from grain-scale parameters. The numerical modeling study clearly demonstrates how the various complex resistivity models manifest differently in the observed EM data. These modeling studies lay a background for future development of the IP inversion method, directed at determining the electrical conductivity and the intrinsic chargeability distributions, as well as the other parameters of the relaxation model simultaneously. The new technology introduced in this project can be used for the discrimination between uneconomic mineral deposits and the location of zones of economic mineralization and geothermal resources.

Michael S. Zhdanov

2009-03-09T23:59:59.000Z

4

Category:Geophysical Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geophysical Techniques page? For detailed information on Geophysical Techniques as exploration techniques, click here. Category:Geophysical Techniques Add.png Add a new Geophysical Techniques Technique Subcategories This category has the following 4 subcategories, out of 4 total. E [+] Electrical Techniques‎ (2 categories) 5 pages G [×] Gravity Techniques‎ 3 pages M [×] Magnetic Techniques‎ 3 pages S [+] Seismic Techniques‎ (2 categories) 2 pages Pages in category "Geophysical Techniques" The following 5 pages are in this category, out of 5 total. D DC Resistivity Survey (Mise-Á-La-Masse) E Electrical Techniques G Gravity Techniques M Magnetic Techniques

5

SURFACE GEOPHYSICAL EXPLORATION - COMPENDIUM DOCUMENT  

SciTech Connect (OSTI)

This report documents the evolution of the surface geophysical exploration (SGE) program and highlights some of the most recent successes in imaging conductive targets related to past leaks within and around Hanford's tank farms. While it is noted that the SGE program consists of multiple geophysical techniques designed to (1) locate near surface infrastructure that may interfere with (2) subsurface plume mapping, the report will focus primarily on electrical resistivity acquisition and processing for plume mapping. Due to the interferences from the near surface piping network, tanks, fences, wells, etc., the results of the three-dimensional (3D) reconstruction of electrical resistivity was more representative of metal than the high ionic strength plumes. Since the first deployment, the focus of the SGE program has been to acquire and model the best electrical resistivity data that minimizes the influence of buried metal objects. Toward that goal, two significant advances have occurred: (1) using the infrastructure directly in the acquisition campaign and (2) placement of electrodes beneath the infrastructure. The direct use of infrastructure was successfully demonstrated at T farm by using wells as long electrodes (Rucker et al., 2010, 'Electrical-Resistivity Characterization of an Industrial Site Using Long Electrodes'). While the method was capable of finding targets related to past releases, a loss of vertical resolution was the trade-off. The burying of electrodes below the infrastructure helped to increase the vertical resolution, as long as a sufficient number of electrodes are available for the acquisition campaign.

RUCKER DF; MYERS DA

2011-10-04T23:59:59.000Z

6

Geophysical Exploration (Montana) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geophysical Exploration (Montana) Geophysical Exploration (Montana) Geophysical Exploration (Montana) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Institutional Fuel Distributor Savings Category Buying & Making Electricity Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Natural Resources and Conservation An exploration permit is required for any entity conducting geophysical exploration within the state of Montana. Such entities are also required to follow rules adopted by the Board of Oil and Gas Conservation, including those pertaining to: (a) Adequate identification of seismic exploration crews operating in this

7

Leasing and Exploration * Seismic geophysical surveys  

E-Print Network [OSTI]

#12;Leasing and Exploration * Seismic geophysical surveys * Exploratory drilling using various.S. citizens engaged in a specific activity (other than commercial fishing) in a specified geographical region

8

Geophysical Exploration Technologies | Open Energy Information  

Open Energy Info (EERE)

Geophysical Exploration Technologies Geophysical Exploration Technologies Jump to: navigation, search Geothermal ARRA Funded Projects for Geophysical Exploration Technologies Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

9

Category:Exploration Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geothermal Exploration page? For detailed information on Geothermal Exploration, click here. Category:Exploration Techniques Add.png Add a new Exploration Technique Subcategories This category has the following 9 subcategories, out of 9 total. D [+] Data and Modeling Techniques‎ (2 categories) 2 pages [+] Downhole Techniques‎ (5 categories) 10 pages [+] Drilling Techniques‎ (2 categories) 4 pages F [+] Field Methods‎ (1 categories) [+] Field Techniques‎ (2 categories) 4 pages G [+] Geochemical Techniques‎ (1 categories) 1 pages G cont. [+] Geophysical Techniques‎ (4 categories) 5 pages L [+] Lab Analysis Techniques‎ (2 categories) 4 pages R [+] Remote Sensing Techniques‎ (2 categories) 2 pages

10

Merging high resolution geophysical and geochemical surveys to reduce exploration risk at Glass Buttes, Oregon  

Broader source: Energy.gov [DOE]

DOE Geothermal Technologies Peer Review - 2010. The primary objective of this project is to combine a suite of high resolution geophysical and geochemical techniques to reduce exploration risk by characterizing hydrothermal alteration, fault geometries and relationships.

11

Geological and geophysical analysis of Coso Geothermal Exploration Hole No.  

Open Energy Info (EERE)

and geophysical analysis of Coso Geothermal Exploration Hole No. and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Details Activities (5) Areas (1) Regions (0) Abstract: The Coso Geothermal Exploration Hole number one (CGEH-1) was drilled in the Coso Hot Springs KGRA, California, from September 2 to December 2, 1977. Chip samples were collected at ten foot intervals and extensive geophysical logging surveys were conducted to document the geologic character of the geothermal system as penetrated by CGEH-1. The major rock units encountered include a mafic metamorphic sequence and a

12

Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot  

Open Energy Info (EERE)

Geophysical Exploration of a Known Geothermal Resource: Neal Hot Geophysical Exploration of a Known Geothermal Resource: Neal Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot Springs Abstract We present integrated geophysical data to characterize a geothermal system at Neal Hot Springs in eastern Oregon. This system is currently being developed for geothermal energy production. The hot springs are in a region of complex and intersecting fault trends associated with two major extensional events, the Oregon-Idaho Graben and the Western Snake River Plain. The intersection of these two fault systems, coupled with high geothermal gradients from thin continental crust produces pathways for surface water and deep geothermal water interactions at Neal Hot Springs.

13

Geophysical Methods | Open Energy Information  

Open Energy Info (EERE)

Geophysical Methods Geophysical Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geophysical Methods Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Geophysical Techniques Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Geophysical Methods: Methods used to measure the physical properties of the earth Other definitions:Wikipedia Reegle Introduction There are five main types of geophysical methods used for geothermal resource discovery: Seismic Methods (active and passive) Electrical Methods Magnetic Methods Gravity Methods Radiometric Methods Seismic methods dominates oil and gas exploration, and probably accounts

14

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Broader source: Energy.gov (indexed) [DOE]

to Geothermal Prospecting Joint inversion of electrical and seismic data for Fracture char. and Imaging of Fluid Flow in Geothermal Systems Use of Geophysical Techniques...

15

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Broader source: Energy.gov (indexed) [DOE]

and test combined geophysical techniques to characterize fluid flow, in relation to fracture orientations and fault distributions in a geothermal system. Average Overall Score:...

16

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Broader source: Energy.gov (indexed) [DOE]

or otherwise restricted information. Self-potential 2 | US DOE Geothermal Program eere.energy.gov * Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal...

17

High Precision Geophysics & Detailed Structural Exploration & Slim Well  

Open Energy Info (EERE)

Precision Geophysics & Detailed Structural Exploration & Slim Well Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Existing geologic data show that the basalt has been broken by complex intersecting fault zones at the hot springs. Natural state hot water flow patterns in the fracture network will be interpreted from temperature gradient wells and then tested with moderate depth core holes. Production and injection well tests of the core holes will be monitored with an innovative combination of Flowing Differential Self-Potential (FDSP) and resistivity tomography surveys. The cointerpretation of all these highly detailed geophysical methods sensitive to fracture permeability patterns and water flow during the well tests will provide unprecedented details on the structures and flow in a shallow geothermal aquifer and support effective development of the low temperature reservoir and identification of deep up flow targets.

18

Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal Reservoir  

Broader source: Energy.gov [DOE]

Project objectives: Joint inversion of geophysical data for ground water flow imaging; Reduced the cost in geothermal exploration and monitoring; & Combined passive and active geophysical methods.

19

GRR/Section 4-AK-b - Geophysical Exploration Permit | Open Energy  

Open Energy Info (EERE)

4-AK-b - Geophysical Exploration Permit 4-AK-b - Geophysical Exploration Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-AK-b - Geophysical Exploration Permit 04AKBGeophysicalExplorationPermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 04AKBGeophysicalExplorationPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A Geophysical Exploration Permit is necessary for conducting seismic

20

Template:ExplorationTechnique | Open Energy Information  

Open Energy Info (EERE)

'ExplorationTechnique' template. To define a new Exploration 'ExplorationTechnique' template. To define a new Exploration Technique, please use the Exploration Technique Form. Parameters Definition - A link to the OpenEI definition of the technique (optional) ExplorationGroup - ExplorationSubGroup - ParentExplorationTechnique - parent technique for relationship tree LithologyInfo - the type of lithology information this technique could provide StratInfo - the type of stratigraphic and/or structural information this technique could provide HydroInfo - the type of hydrogeology information this technique could provide ThermalInfo - the type of temperature information this technique could provide EstimatedCostLowUSD - the estimated value only of the low end of the cost range (units described in CostUnit) EstimatedCostMedianUSD - the estimated value only of the median cost

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Property:ExplorationTechnique | Open Energy Information  

Open Energy Info (EERE)

ExplorationTechnique ExplorationTechnique Jump to: navigation, search Property Name ExplorationTechnique Property Type Page Description The ExplorationTechnique used in the Exploration Activity. Use the form ExplorationTechnique to create new exploration technique pages. Subproperties This property has the following 1 subproperty: A Aeromagnetic Survey At Crump's Hot Springs Area (DOE GTP) Pages using the property "ExplorationTechnique" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe At Alum Area (Kratt, Et Al., 2010) + 2-M Probe Survey + 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) + 2-M Probe Survey + 2-M Probe At Black Warrior Area (DOE GTP) + 2-M Probe Survey + 2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) + 2-M Probe Survey +

22

Property:ExplorationGroup | Open Energy Information  

Open Energy Info (EERE)

ExplorationGroup ExplorationGroup Jump to: navigation, search Property Name ExplorationGroup Property Type Page Description Exploration Group for Exploration Activities Pages using the property "ExplorationGroup" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe Survey + Field Techniques + A Acoustic Logs + Downhole Techniques + Active Seismic Methods + Geophysical Techniques + Active Seismic Techniques + Geophysical Techniques + Active Sensors + Remote Sensing Techniques +, Remote Sensing Techniques + Aerial Photography + Remote Sensing Techniques + Aeromagnetic Survey + Geophysical Techniques + Airborne Electromagnetic Survey + Geophysical Techniques + Airborne Gravity Survey + Geophysical Techniques + Analytical Modeling + Data and Modeling Techniques +

23

Geophysics  

Science Journals Connector (OSTI)

... illustration of its phenomena is rarely possible. The inclusion of this book in a handbook of experimental ... of experimental physics is therefore slightly anomalous, but the volume is none the less welcome. Geophysics is ...

1929-05-18T23:59:59.000Z

24

Crump Geyser: High Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Discover new 260F and 300F geothermal reservoirs in Oregon. To demonstrate the application of high precision geophysics for well targeting. Demonstrate a combined testing approach to Flowing Differential Self Potential (FDSP) and electrical tomography resistivity as a guide to exploration and development. Demonstrate utility and benefits of sump-less drilling for a low environmental impact. Create both short and long term employment through exploration, accelerated development timeline and operation.

25

Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt & Subtle Volcanic Systems, Hawaii & Maui  

Broader source: Energy.gov [DOE]

DOE Geothermal Technologies Peer Review 2010 - Presentation. Project Objective: To use a combination of traditional geophysical and geochemical tools with exploration suites not typically used in geothermal exploration.

26

Assessment of various geophysical techniques for Plains Indian archaeological site investigations  

E-Print Network [OSTI]

of various geophysical techniques for non-intrusive location of Plains Indian archaeological features. Plains Indian cultural resources are being lost because of the rapidly eroding shorelines and the lack of a quick and cost-effective method for locating...

Klaff, Tamir Lee

2012-06-07T23:59:59.000Z

27

Geophysical exploration:  

Science Journals Connector (OSTI)

...combustion of fossil fuels produces carbon dioxide, the main greenhouse gas that produces global warming. As a result the development...and wind are more amenable to fixed uses such as heating and lighting. Transportation, on the other hand, requires a fuel that...

Enders A. Robinson

28

Numerical Simulation in Applied Geophysics. From the Mesoscale to ...  

E-Print Network [OSTI]

Instituto del Gas y del Petrleo, Facultad de Ingenie? a UBA ... Seismic wave propagation is a common technique used in hydrocarbon exploration geophysics

29

Investigation of novel geophysical techniques for monitoring CO2 movement during sequestration  

SciTech Connect (OSTI)

Cost effective monitoring of reservoir fluid movement during CO{sub 2} sequestration is a necessary part of a practical geologic sequestration strategy. Current petroleum industry seismic techniques are well developed for monitoring production in petroleum reservoirs. The cost of time-lapse seismic monitoring can be born because the cost to benefit ratio is small in the production of profit making hydrocarbon. However, the cost of seismic monitoring techniques is more difficult to justify in an environment of sequestration where the process produces no direct profit. For this reasons other geophysical techniques, which might provide sufficient monitoring resolution at a significantly lower cost, need to be considered. In order to evaluate alternative geophysical monitoring techniques we have undertaken a series of numerical simulations of CO{sub 2} sequestration scenarios. These scenarios have included existing projects (Sleipner in the North Sea), future planned projects (GeoSeq Liberty test in South Texas and Schrader Bluff in Alaska) as well as hypothetical models based on generic geologic settings potentially attractive for CO{sub 2} sequestration. In addition, we have done considerable work on geophysical monitoring of CO{sub 2} injection into existing oil and gas fields, including a model study of the Weyburn CO{sub 2} project in Canada and the Chevron Lost Hills CO{sub 2} pilot in Southern California (Hoversten et al. 2003). Although we are specifically interested in considering ''novel'' geophysical techniques for monitoring we have chosen to include more traditional seismic techniques as a bench mark so that any quantitative results derived for non-seismic techniques can be directly compared to the industry standard seismic results. This approach will put all of our finding for ''novel'' techniques in the context of the seismic method and allow a quantitative analysis of the cost/benefit ratios of the newly considered methods compared to the traditional, more expensive, seismic technique. The Schrader Bluff model was chosen as a numerical test bed for quantitative comparison of the spatial resolution of various geophysical techniques being considered for CO{sub 2} sequestration monitoring. We began with a three dimensional flow simulation model provided by BP Alaska of the reservoir and developed a detailed rock-properties model from log data that provides the link between the reservoir parameters (porosity, pressure, saturations, etc.) and the geophysical parameters (velocity, density, electrical resistivity). The rock properties model was used to produce geophysical models from the flow simulations.

Hoversten, G. Michael; Gasperikova, Erika

2003-10-31T23:59:59.000Z

30

Property:ExplorationParentTechnique | Open Energy Information  

Open Energy Info (EERE)

orationParentTechnique Property Type Page Description parent technique for organization tree Retrieved from "http:en.openei.orgwindex.php?titleProperty:ExplorationParentTechni...

31

Geophysical Method At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Geophysical Method At Raft River Geothermal Area (1977) Geophysical Method At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geophysical Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Borehole geophysics were completed at the Raft River valley, Idaho. References Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. (1 February 1977) Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Geophysical_Method_At_Raft_River_Geothermal_Area_(1977)&oldid=594349" Category: Exploration Activities

32

Innovative Exploration Techniques for Geothermal Assessment at...  

Open Energy Info (EERE)

determine the fracture surface area, heat content and heat transfer, flow rates, and chemistry of the geothermal fluids encountered by the exploration wells. - Write final report...

33

Three-Dimensional Surface Geophysical Exploration of the 200-Series Tanks at the 241-C Tank Farm  

SciTech Connect (OSTI)

A surface geophysical exploration (SGE) survey using direct current electrical resistivity was conducted within the C Tank Farm in the vicinity of the 200-Series tanks at the Hanford Site near Richland, Washington. This survey was the second successful SGE survey to utilize the Geotection(TM)-180 Resistivity Monitoring System which facilitated a much larger survey size and faster data acquisition rate. The primary objective of the C Tank Farm SGE survey was to provide geophysical data and subsurface imaging results to support the Phase 2 RCRA Facility Investigation, as outlined in the Phase 2 RCRA Facility Investigation / Corrective Measures work plan RPP-PLAN-39114.

Crook, N. [HydroGEOPHYSICS, Inc., Tuscon, AZ (United States); McNeill, M. [HydroGEOPHYSICS, Inc., Tuscon, AZ (United States); Dunham, Ralph [Columbia Energy and Environmental Services, Inc. (United States); Glaser, Danney R. [Washington River Protection Solutions, LLC (United States)

2014-02-26T23:59:59.000Z

34

Neutron Imaging Explored as Complementary Technique for Improving...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neutron Imaging Explored as Complementary Technique for Improving Cancer Detection August 05, 2013 Researcher Maria Cekanova analyzes the neutron radiographs of a canine breast...

35

Geothermal Exploration Techniques a Case Study. Final Report...  

Open Energy Info (EERE)

to library Report: Geothermal Exploration Techniques a Case Study. Final Report Abstract The objective of this project was to review and perform a critical evaluation of...

36

Electrical Techniques | Open Energy Information  

Open Energy Info (EERE)

Electrical Techniques Electrical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electrical Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Electrical Techniques: Electrical techniques aim to image the electrical resistivity of the

37

Geophysical exploration in the Lautertal at the Combat Maneuver Training Center, Hohenfels, Germany  

SciTech Connect (OSTI)

Geophysical exploration was conducted in the Lautertal at the Combat Maneuver Training Center, Hohenfels, Germany, to determine the shallow geological framework of a typical dry valley in this karstic environment. The complementary methods of electromagnetic surveying, vertical electrical soundings, and seismic refraction profiling were successful in determining the depth and configuration of the bedrock surface, the character of the unconsolidated deposits resting on the bedrock surface, and the nature of the bedrock surface. Channels and other depressions in the bedrock surface are aligned with structurally induced fractures in the bedrock. The unconsolidated deposits consist of coarse alluvium and colluvium, which are confined to these channels and other depressions, and fine-grained loam and loess, which cover most of the Lautertal. Wide ranges in the electrical and elastic parameters of the bedrock surface are indicative of carbonate rock that is highly fractured and dissolved at some locations and competent at others. Most local groundwater recharge occurs in the uplands where the Middle Kimmeridge (Delta) Member of the Maim Formation (Jurassic) is widely exposed. These carbonate rocks are known to be susceptible to dissolution along the fractures and joints; thus, they offer meteoric waters ready access to the main shallow aquifers lower in the Malm Formation. These same rocks also form the bedrock surface below many of the dry valleys, but in the Lautertal, the infiltration of meteoric waters into the subsurface is generally impeded by the surficial layer of fine-grained loam and loess, which have low hydraulic conductivity. Further, the rocks of the Middle Kimmeridge Member appear to be closely associated with the localized occurrence of turbidity in such perennial streams as the Lauterach.

Heigold, P.C.; Thompson, M.D.; Borden, H.M.

1994-10-01T23:59:59.000Z

38

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques |  

Open Energy Info (EERE)

Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Evaluation of the Mercury Soil Mapping Geothermal Exploration Techniques Abstract In order to evaluate the suitability of the soil mercury geochemical survey as a geothermal exploration technique, soil concentrates of mercy are compared to the distribution of measured geothermal gradients at Dixie Valley, Nevada; Roosevelt Hot Springs, Utah; and Nova, Japan. Zones containing high mercury values are found to closely correspond to high geothermal gradient zones in all three areas. Moreover, the highest mercury values within the anomalies are found near the wells with the highest geothermal gradient. Such close correspondence between soil concentrations

39

Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Seismic Techniques Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(10) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

40

Neutron Imaging Explored as Complementary Technique for Improving Cancer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Neutron Imaging Explored as Complementary Technique for Improving Cancer Neutron Imaging Explored as Complementary Technique for Improving Cancer Detection August 05, 2013 Researcher Maria Cekanova analyzes the neutron radiographs of a canine breast tumor (black color in top image of monitor screen) using the software to visualize in color the various intensities of neutron transmissions through the breast tissue. ORNL and University of Tennessee collaboration now analyzing first results from neutron radiographs of cancerous tissue samples Today's range of techniques for detection of breast and other cancers include mammography, computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, positron emission tomography (PET), and optical imaging. Each technology has advantages and disadvantages, with limitations either

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Exploration and Development Techniques for Basin and Range Geothermal  

Open Energy Info (EERE)

Techniques for Basin and Range Geothermal Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Exploration and Development Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Abstract Abstract unavailable. Authors David D. Blackwell, Mark Leidig, Richard P. Smith, Stuart D. Johnson and Kenneth W. Wisian Conference GRC Annual Meeting; Reno, NV; 2002/09/22 Published Geothermal Resources Council, 2002 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Exploration and Development Techniques for Basin and Range Geothermal Systems: Examples from Dixie Valley, Nevada Citation David D. Blackwell,Mark Leidig,Richard P. Smith,Stuart D. Johnson,Kenneth

42

Innovative Exploration Techniques for Geothermal Assessment at Jemez  

Open Energy Info (EERE)

Exploration Techniques for Geothermal Assessment at Jemez Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This collaborative project will perform the following tasks to fully define the nature and extent of the geothermal reservoir underlying the Jemez Reservation: - Conduct 1-6,000-scale geologic mapping of 6 mi2 surrounding the Indian Springs area. - Using the detailed geologic map, locate one N-S and two E-W seismic lines and run a seismic survey of 4 mi2; reduce and analyze seismic data using innovative high-resolution seismic migration imaging techniques developed by LANL, and integrate with 3-D audio-frequency MT/MT data acquired at the same area for fault and subsurface structure imaging and resource assessment.

43

Geophysical Method At Raft River Geothermal Area (1975) | Open Energy  

Open Energy Info (EERE)

Method At Raft River Geothermal Area (1975) Method At Raft River Geothermal Area (1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geophysical Techniques Activity Date 1975 Usefulness not indicated DOE-funding Unknown Notes Geologic and geophysics studies were completed at the Raft River valley. References Williams, P.L.; Mabey, D.R.; Pierce, K.L.; Zohdy, A.A.R.; Ackermann, H.; Hoover, D.B. (1 May 1975) Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Geophysical_Method_At_Raft_River_Geothermal_Area_(1975)&oldid=59434

44

Preliminary Characterization of a NAPL-Contaminated Site using Borehole Geophysical Techniques  

E-Print Network [OSTI]

preliminary results from an on-going geophysical investigation of the former DOE Pinel- las site, a site and side-effects from previous remediation activities. Continuing research at the Pinellas site will focus presents preliminary results from our on-going geophysical investigation of a former U.S. Department

Ajo-Franklin, Jonathan

45

MAGNETOTELLURICS -APPLICATION TO RESOURCE EXPLORATION, STUDIES OF CRUST/LITHOSPHERE,  

E-Print Network [OSTI]

OF TECHNIQUES OF DATA ACQUISITION AND INTERPRETATION NATIONAL GEOPHYSICAL RESEARCH INSTITUTE (COUNCILMAGNETOTELLURICS - APPLICATION TO RESOURCE EXPLORATION, STUDIES OF CRUST/LITHOSPHERE, IMPROVEMENT: NGRI-2009-EXP- MAGNETOTELLURICS ­ APPLICATION TO RESOURCE EXPLORATION, STUDIES OF CRUST / LITHOSPHERE

Harinarayana, T.

46

Magnetotelluric Techniques | Open Energy Information  

Open Energy Info (EERE)

Magnetotelluric Techniques Magnetotelluric Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetotelluric Techniques Details Activities (0) Areas (0) Regions (0) NEPA(2) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Sounding Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png Magnetotelluric Techniques:

47

A field test of electromagnetic geophysical techniques for locating simulated in situ mining leach solution  

SciTech Connect (OSTI)

The US Bureau of Mines, The University of Arizona, Sandia National Laboratories, and Zonge Engineering and Research Organization, Inc., conducted cooperative field tests of six electromagnetic (EM) geophysical methods to compare their effectiveness in locating a brine solution simulating in situ leach solution or a high-conductivity plume of contamination. The brine was approximately 160 m below the surface. The testsite was the University's San Xavier experimental mine near Tucson, AZ. Geophysical surveys using surface and surface-borehole, time-domain electromagnetic (TEM) induction; surface controlled-source audiofrequency magnetotellurics (CSAMT); surface-borehole, frequency-domain electromagnetic (FEM) induction; crosshole FEM; and surface magnetic field ellipticity were conducted before and during brine injection. The surface TEM data showed a broad decrease in resistivity. CSAMT measurements with the conventional orientation did not detect the brine, but measurements with another orientation indicated some decrease in resistivity. The surface-borehole and crosshole methods located a known fracture and other fracture zones inferred from borehole induction logs. Surface magnetic field ellipticity data showed a broad decrease in resistivity at depth following brine injection.

Tweeton, D.R.; Hanson, J.C.; Friedel, M.J.; Sternberg, B.K.; Dahl, L.J.

1994-01-01T23:59:59.000Z

48

The Mississippian Leadville Limestone Exploration Play, Utah and Colorado-Exploration Techniques and Studies for Independents  

SciTech Connect (OSTI)

The Mississippian (late Kinderhookian to early Meramecian) Leadville Limestone is a shallow, open-marine, carbonate-shelf deposit. The Leadville has produced over 53 million barrels (8.4 million m{sup 3}) of oil/condensate from seven fields in the Paradox fold and fault belt of the Paradox Basin, Utah and Colorado. The environmentally sensitive, 7500-square-mile (19,400 km{sup 2}) area that makes up the fold and fault belt is relatively unexplored. Only independent producers operate and continue to hunt for Leadville oil targets in the region. The overall goal of this study is to assist these independents by (1) developing and demonstrating techniques and exploration methods never tried on the Leadville Limestone, (2) targeting areas for exploration, (3) increasing deliverability from new and old Leadville fields through detailed reservoir characterization, (4) reducing exploration costs and risk especially in environmentally sensitive areas, and (5) adding new oil discoveries and reserves. The final results will hopefully reduce exploration costs and risks, especially in environmentally sensitive areas, and add new oil discoveries and reserves. The study consists of three sections: (1) description of lithofacies and diagenetic history of the Leadville at Lisbon field, San Juan County, Utah, (2) methodology and results of a surface geochemical survey conducted over the Lisbon and Lightning Draw Southeast fields (and areas in between) and identification of oil-prone areas using epifluorescence in well cuttings from regional wells, and (3) determination of regional lithofacies, description of modern and outcrop depositional analogs, and estimation of potential oil migration directions (evaluating the middle Paleozoic hydrodynamic pressure regime and water chemistry). Leadville lithofacies at Libon field include open marine (crinoidal banks or shoals and Waulsortian-type buildups), oolitic and peloid shoals, and middle shelf. Rock units with open-marine and restricted-marine facies constitute a significant reservoir potential, having both effective porosity and permeability when dissolution of skeletal grains, followed by dolomitization, has occurred. Two major types of diagenetic dolomite are observed in the Leadville Limestone at Lisbon field: (1) tight 'early' dolomite consisting of very fine grained (<5 {micro}m), interlocking crystals that faithfully preserve depositional fabrics; and (2) porous, coarser (>100-250 {micro}m), rhombic and saddle crystals that discordantly replace limestone and earlier very fine grained dolomite. Predating or concomitant with late dolomite formation are pervasive leaching episodes that produced vugs and extensive microporosity. Most reservoir rocks within Lisbon field appear to be associated with the second, late type of dolomitization and associated leaching events. Other diagenetic products include pyrobitumen, syntaxial cement, sulfide minerals, anhydrite cement and replacement, and late macrocalcite. Fracturing (solution enlarged) and brecciation (autobrecciation) caused by hydrofracturing are widespread within Lisbon field. Sediment-filled cavities, related to karstification of the exposed Leadville, are present in the upper third of the formation. Pyrobitumen and sulfide minerals appear to coat most crystal faces of the rhombic and saddle dolomites. The fluid inclusion and mineral relationships suggest the following sequence of events: (1) dolomite precipitation, (2) anhydrite deposition, (3) anhydrite dissolution and quartz precipitation, (4) dolomite dissolution and late calcite precipitation, (5) trapping of a mobile oil phase, and (6) formation of bitumen. Fluid inclusions in calcite and dolomite display variable liquid to vapor ratios suggesting reequilibration at elevated temperatures (50 C). Fluid salinities exceed 10 weight percent NaCl equivalent. Low ice melting temperatures of quartz- and calcite-hosted inclusions suggest chemically complex Ca-Mg-bearing brines associated with evaporite deposits were responsible for mineral deposition. The overall conclusion from th

Thomas Chidsey

2008-09-30T23:59:59.000Z

49

Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico  

Broader source: Energy.gov [DOE]

Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico presentation at the April 2013 peer review meeting held in Denver, Colorado.

50

Definition: Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search Dictionary.png Electromagnetic Profiling Techniques Electromagnetic profiling techniques map lateral variations in subsurface resistivity.[1] View on Wikipedia Wikipedia Definition Exploration geophysics is the applied branch of geophysics which uses surface methods to measure the physical properties of the subsurface Earth, along with the anomalies in these properties, in order to detect or infer the presence and position of ore minerals, hydrocarbons, geothermal reservoirs, groundwater reservoirs, and other geological structures. Exploration geophysics is the practical application of physical methods (such as seismic, gravitational, magnetic, electrical and electromagnetic) to measure the physical properties of rocks, and in particular, to detect

51

Magnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Magnetic Techniques Magnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Magnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Magnetic Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Presence of magnetic minerals such as magnetite. Stratigraphic/Structural: Mapping of basement structures, horst blocks, fault systems, fracture zones, dykes and intrusions. Hydrological: The circulation of hydrothermal fluid may impact the magnetic susceptibility of rocks. Thermal: Rocks lose their magnetic properties at the Curie temperature (580° C for magnetite) [1] and, upon cooling, remagnetize in the present magnetic field orientation. The Curie point depth in the subsurface may be determined in a magnetic survey to provide information about hydrothermal activity in a region.

52

Gravity Techniques | Open Energy Information  

Open Energy Info (EERE)

Gravity Techniques Gravity Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Gravity Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Gravity Techniques Parent Exploration Technique: Geophysical Techniques Information Provided by Technique Lithology: Distribution of density in the subsurface enables inference of rock type. Stratigraphic/Structural: Delineation of steeply dipping formations, geological discontinuities and faults, intrusions and the deposition of silicates due to hydrothermal activity. Hydrological: Density of sedimentary rocks are strongly influenced by fluid contained within pore space. Dry bulk density refers to the rock with no moisture, while the wet bulk density accounts for water saturation; fluid content may alter density by up to 30%.(Sharma, 1997)

53

Merging high resolution geophysical and geochemical surveys to...  

Broader source: Energy.gov (indexed) [DOE]

high resolution geophysical and geochemical surveys to reduce exploration risk at Glass Buttes, Oregon Merging high resolution geophysical and geochemical surveys to reduce...

54

Directional drilling techniques for exploration in-advance of mining  

SciTech Connect (OSTI)

In-seam directionally drilled horizontal boreholes have provided effective solutions in underground coal mines for methane and water drainage and inherently provide an excellent tool for coalbed exploration. Directionally drilled methane drainage boreholes have identified rapid changes in coalbed elevation, coalbed thickness and faults. Specific directional drilling and coring procedures for exploration in-advance of mining are reviewed in this paper, and also other directional drilling applications including in-mine horizontal gob ventilation boreholes, identification of abandoned workings, and water drainage boreholes.

Kravits, S.J.; Schwoebel, J.J. (REI Underground Exploration Inc., Salt Lake City, UT (United States))

1994-01-01T23:59:59.000Z

55

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques (Redirected from Ground Electromagnetic Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

56

Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Sounding Techniques Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

57

Electromagnetic Sounding Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Sounding Techniques Electromagnetic Sounding Techniques (Redirected from Electromagnetic Sounding Methods) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Sounding Techniques Details Activities (1) Areas (1) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

58

Active Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Active Seismic Techniques Active Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Active Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

59

Electromagnetic Profiling Techniques | Open Energy Information  

Open Energy Info (EERE)

Electromagnetic Profiling Techniques Electromagnetic Profiling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Profiling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Ground Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature

60

Ground Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

Ground Electromagnetic Techniques Ground Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Ground Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electromagnetic Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water Thermal: Resistivity influenced by temperature Dictionary.png

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Passive Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Passive Seismic Techniques Passive Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Passive Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(4) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Seismic Techniques Parent Exploration Technique: Seismic Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities. Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc. Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation. Thermal: High temperatures and pressure impact the compressional and shear wave velocities.

62

An Exploration of Multi-touch Interaction Techniques  

E-Print Network [OSTI]

) or not (uncaptured). . . . . . . . . . . . . . . . . . . . . . 12 2.4 Kruger et al. [63] present a single touch technique for integrated ro- tation and translation. Touches in the circle perform only translation. 14 2.5 ?Bumptop?, a physically based desktop....3 Components of the prototype: (a)index slider to perform adjustment of the parameter (b) finger pad to alter the selection of parameters (c) palm support to avoid erroneous touches, and (d) visual feedback of the currently selected parameters (parameter...

Damaraju Sriranga, Sashikanth Raju

2013-08-16T23:59:59.000Z

63

Advanced InSAR Techniques for Geothermal Exploration and Production | Open  

Open Energy Info (EERE)

Advanced InSAR Techniques for Geothermal Exploration and Production Advanced InSAR Techniques for Geothermal Exploration and Production Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Advanced InSAR Techniques for Geothermal Exploration and Production Abstract InSAR is a remote sensing tool that has applications in both geothermal exploration and in the management of producing fields. The technique has developed rapidly in recent years and the most evolved algorithms, now capable of providing precise ground movement measurements with unprecedented spatial density over large areas, allow, among other things, the monitoring of the effects of fluid injection and extraction on surface deformation and the detection of active faults. Multi-interferogram approaches have been used at several geothermal sites in the US and abroad.

64

Guided Exploration: an Inductive Minimalist Approach for Teaching Tool-related Concepts and Techniques  

Science Journals Connector (OSTI)

In this paper we introduce Guided Exploration as an inductive teaching approach. It is based on Minimalism and makes use of the pattern format. Guided Exploration addresses a couple of problems when teaching tool-related concepts and techniques, like ... Keywords: Educational Patterns, Inductive Teaching, Learning Styles

Christian Kppe; Rick Rodin

2013-04-01T23:59:59.000Z

65

Blind Geothermal System Exploration in Active Volcanic Environments;  

Open Energy Info (EERE)

System Exploration in Active Volcanic Environments; System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawaii and Maui Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawai'i and Maui Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The project will perform a suite of stepped geophysical and geochemical surveys and syntheses at both a known, active volcanic system at Puna, Hawai'i and a blind geothermal system in Maui, Hawai'i. Established geophysical and geochemical techniques for geothermal exploration including gravity, major cations/anions and gas analysis will be combined with atypical implementations of additional geophysics (aeromagnetics) and geochemistry (CO2 flux, 14C measurements, helium isotopes and imaging spectroscopy). Importantly, the combination of detailed CO2 flux, 14C measurements and helium isotopes will provide the ability to directly map geothermal fluid upflow as expressed at the surface. Advantageously, the similar though active volcanic and hydrothermal systems on the east flanks of Kilauea have historically been the subject of both proposed geophysical surveys and some geochemistry; the Puna Geothermal Field (Puna) (operated by Puna Geothermal Venture [PGV], an Ormat subsidiary) will be used as a standard by which to compare both geophysical and geochemical results.

66

Electromagnetic Techniques | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Electromagnetic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Electromagnetic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(5) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Electrical Techniques Parent Exploration Technique: Electrical Techniques Information Provided by Technique Lithology: Rock composition, mineral and clay content Stratigraphic/Structural: Detection of permeable pathways, fracture zones, faults Hydrological: Resistivity influenced by porosity, grain size distribution, permeability, fluid saturation, fluid type and phase state of the pore water

67

Results of Tank-Leak Detection Demonstration Using Geophysical Techniques at the Hanford Mock Tank Site-Fiscal Year 2001  

SciTech Connect (OSTI)

During July and August of 2001, Pacific Northwest National Laboratory (PNNL), hosted researchers from Lawrence Livermore and Lawrence Berkeley National laboratories, and a private contractor, HydroGEOPHYSICS, Inc., for deployment of the following five geophysical leak-detection technologies at the Hanford Site Mock Tank in a Tank Leak Detection Demonstration (TLDD): (1) Electrical Resistivity Tomography (ERT); (2) Cross-Borehole Electromagnetic Induction (CEMI); (3) High-Resolution Resistivity (HRR); (4) Cross-Borehole Radar (XBR); and (5) Cross-Borehole Seismic Tomography (XBS). Under a ''Tri-party Agreement'' with Federal and state regulators, the U.S. Department of Energy will remove wastes from single-shell tanks (SSTs) and other miscellaneous underground tanks for storage in the double-shell tank system. Waste retrieval methods are being considered that use very little, if any, liquid to dislodge, mobilize, and remove the wastes. As additional assurance of protection of the vadose zone beneath the SSTs, tank wastes and tank conditions may be aggressively monitored during retrieval operations by methods that are deployed outside the SSTs in the vadose zone.

Barnett, D BRENT.; Gee, Glendon W.; Sweeney, Mark D.

2002-03-01T23:59:59.000Z

68

Snake River Geothermal Project- Innovative Approaches to Geothermal Exploration  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objective: To Implement and Test Geological and Geophysical Techniques for Geothermal Exploration. Project seeks to lower the cost of geothermal energy development by identifying which surface and borehole techniques are most efficient at identifying hidden resources.

69

Course MA59800: Numerical Simulation in Applied Geophysics. From the Mesoscale to the Macroscale.  

E-Print Network [OSTI]

Description Wave propagation is a common technique used in hydrocarbon exploration geophysics, mining and reservoir characterization and production, among other fields. Local variations in the fluid and solid gradients via a slow-wave diffusion process that can be analyzed using numerical experiments. Numerical rock

Santos, Juan

70

Reconnaissance geothermal exploration at Raft River, Idaho from...  

Open Energy Info (EERE)

DISTRIBUTION; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Authors Watson and K. Published Journal Geophysics, 411976 DOI Not Provided Check for...

71

Merging high resolution geophysical and geochemical surveys to...  

Broader source: Energy.gov (indexed) [DOE]

high resolution geophysical and geochemical surveys to reduce exploration risk at Glass Buttes, Oregon Patrick Walsh Ormat Nevada Inc. Innovative technologies May 19, 2010...

72

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Exploration Methods for Engineered Geothermal Systems Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Project Type / Topic 1 Recovery Act: Enhanced Geothermal Systems Component Research and Development/Analysis Project Type / Topic 2 Geophysical Exploration Technologies Project Description A comprehensive, interdisciplinary approach is proposed using existing geophysical exploration technology coupled with new seismic techniques and subject matter experts to determine the combination of geoscience data that demonstrates the greatest potential for identifying EGS drilling targets using non-invasive techniques. This proposed exploration methodology is expected to increase spatial resolution and reduce the non-uniqueness that is inherent in geological data, thereby reducing the uncertainty in the primary selection criteria for identifying EGS drilling targets. These criteria are, in order of importance: (1) temperatures greater than 200-250°C at 1-5 km depth; (2) rock type at the depth of interest, and; (3) stress regime.

73

Explorations of Space-Charge Limits in Parallel-Plate Diodes and Associated Techniques for Automation  

E-Print Network [OSTI]

and Associated Techniques for Automation by Benjamin Ragan-and Associated Techniques for Automation Copyright 2013 byand Associated Techniques for Automation by Benjamin Ragan-

Ragan-Kelley, Benjamin

2013-01-01T23:59:59.000Z

74

Borehole geophysics evaluation of the Raft River geothermal reservoir,  

Open Energy Info (EERE)

reservoir, reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; GEOPHYSICAL SURVEYS; RAFT RIVER VALLEY; GEOTHERMAL EXPLORATION; BOREHOLES; EVALUATION; HOT-WATER SYSTEMS; IDAHO; MATHEMATICAL MODELS; WELL LOGGING; CAVITIES; EXPLORATION; GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. Published: Geophysics, 2/1/1977 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Geophysical Method At Raft River Geothermal Area (1977) Raft River Geothermal Area

75

Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project Summary: Locate and drill two exploration wells that will be used to define the nature and extent of the geothermal resources on Jemez Pueblo in the Indian Springs area.

76

Non-Seismic Geophysical Approaches to Monitoring  

SciTech Connect (OSTI)

This chapter considers the application of a number of different geophysical techniques for monitoring geologic sequestration of CO2. The relative merits of the seismic, gravity, electromagnetic (EM) and streaming potential (SP) geophysical techniques as monitoring tools are examined. An example of tilt measurements illustrates another potential monitoring technique, although it has not been studied to the extent of other techniques in this chapter. This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques on two synthetic modeling scenarios. The first scenario represents combined CO2 enhance oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. The second scenario is of a pilot DOE CO2 sequestration experiment scheduled for summer 2004 in the Frio Brine Formation in South Texas, USA. Numerical flow simulations of the CO2 injection process for each case were converted to geophysical models using petrophysical models developed from well log data. These coupled flow simulation geophysical models allow comparrison of the performance of monitoring techniques over time on realistic 3D models by generating simulated responses at different times during the CO2 injection process. These time-lapse measurements are used to produce time-lapse changes in geophysical measurements that can be related to the movement of CO2 within the injection interval.

Hoversten, G.M.; Gasperikova, Erika

2004-09-01T23:59:59.000Z

77

CubeExplorer: An Evaluation of Interaction Techniques in Architectural Education  

E-Print Network [OSTI]

comparing CubeExplorer and SketchUp in a similar building task. Keywords: Education, 3D modeling, pen, requiring students to focus on constructability. CAD tools such as AutoCAD [1], SketchUp [3], or FormZ [2

Keinan, Alon

78

BSU Geophysics Field Camp Report 2012 | Open Energy Information  

Open Energy Info (EERE)

BSU Geophysics Field Camp Report 2012 BSU Geophysics Field Camp Report 2012 Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BSU Geophysics Field Camp Report 2012 Abstract Neal Hot Springs (NHS) is an active geothermal site and home to a new binary power plant built by U.S. Geothermal and funded through the Department of Energy. Power production is scheduled to begin in late 2012 and is proposed to generate 25 mega-watts of power to its customer Idaho Power. The project has also served Boise State University as an ideal location for geophysical exploration and research. Research began in spring of 2011 during BSU's annual geophysics field camp. Students and faculty conducted various geophysical surveys to gain insight into the controlling geological structure of the area. Studies of the site continued into 2012

79

CUORE and beyond: bolometric techniques to explore inverted neutrino mass hierarchy  

E-Print Network [OSTI]

The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of $^{130}$Te. With 741 kg of TeO$_2$ crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is $1.6\\times 10^{26}$ y at $1\\sigma$ ($9.5\\times10^{25}$ y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40--100 meV (50--130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with $^{130}$Te and possibly other double beta decay candidate nuclei.

D. R. Artusa; F. T. Avignone III; O. Azzolini; M. Balata; T. I. Banks; G. Bari; J. Beeman; F. Bellini; A. Bersani; M. Biassoni; C. Brofferio; C. Bucci; X. Z. Cai; A. Camacho; L. Canonica; X. G. Cao; S. Capelli; L. Carbone; L. Cardani; M. Carrettoni; N. Casali; D. Chiesa; N. Chott; M. Clemenza; S. Copello; C. Cosmelli; O. Cremonesi; R. J. Creswick; I. Dafinei; A. Dally; V. Datskov; A. De Biasi; M. M. Deninno; S. Di Domizio; M. L. di Vacri; L. Ejzak; D. Q. Fang; H. A. Farach; M. Faverzani; G. Fernandes; E. Ferri; F. Ferroni; E. Fiorini; M. A. Franceschi; S. J. Freedman; B. K. Fujikawa; A. Giachero; L. Gironi; A. Giuliani; J. Goett; P. Gorla; C. Gotti; T. D. Gutierrez; E. E. Haller; K. Han; K. M. Heeger; R. Hennings-Yeomans; H. Z. Huang; R. Kadel; K. Kazkaz; G. Keppel; Yu. G. Kolomensky; Y. L. Li; C. Ligi; X. Liu; Y. G. Ma; C. Maiano; M. Maino; M. Martinez; R. H. Maruyama; Y. Mei; N. Moggi; S. Morganti; T. Napolitano; S. Nisi; C. Nones; E. B. Norman; A. Nucciotti; T. O'Donnell; F. Orio; D. Orlandi; J. L. Ouellet; M. Pallavicini; V. Palmieri; L. Pattavina; M. Pavan; M. Pedretti; G. Pessina; V. Pettinacci; G. Piperno; C. Pira; S. Pirro; E. Previtali; V. Rampazzo; C. Rosenfeld; C. Rusconi; E. Sala; S. Sangiorgio; N. D. Scielzo; M. Sisti; A. R. Smith; L. Taffarello; M. Tenconi; F. Terranova; W. D. Tian; C. Tomei; S. Trentalange; G. Ventura; M. Vignati; B. S. Wang; H. W. Wang; L. Wielgus; J. Wilson; L. A. Winslow; T. Wise; A. Woodcraft; L. Zanotti; C. Zarra; B. X. Zhu; S. Zucchelli

2014-07-04T23:59:59.000Z

80

CUORE and beyond: bolometric techniques to explore inverted neutrino mass hierarchy  

E-Print Network [OSTI]

The CUORE (Cryogenic Underground Observatory for Rare Events) experiment will search for neutrinoless double beta decay of $^{130}$Te. With 741 kg of TeO$_2$ crystals and an excellent energy resolution of 5 keV (0.2%) at the region of interest, CUORE will be one of the most competitive neutrinoless double beta decay experiments on the horizon. With five years of live time, CUORE projected neutrinoless double beta decay half-life sensitivity is $1.6\\times 10^{26}$ y at $1\\sigma$ ($9.5\\times10^{25}$ y at the 90% confidence level), which corresponds to an upper limit on the effective Majorana mass in the range 40--100 meV (50--130 meV). Further background rejection with auxiliary light detector can significantly improve the search sensitivity and competitiveness of bolometric detectors to fully explore the inverted neutrino mass hierarchy with $^{130}$Te and possibly other double beta decay candidate nuclei.

Artusa, D R; Azzolini, O; Balata, M; Banks, T I; Bari, G; Beeman, J; Bellini, F; Bersani, A; Biassoni, M; Brofferio, C; Bucci, C; Cai, X Z; Camacho, A; Canonica, L; Cao, X G; Capelli, S; Carbone, L; Cardani, L; Carrettoni, M; Casali, N; Chiesa, D; Chott, N; Clemenza, M; Copello, S; Cosmelli, C; Cremonesi, O; Creswick, R J; Dafinei, I; Dally, A; Datskov, V; De Biasi, A; Deninno, M M; Di Domizio, S; di Vacri, M L; Ejzak, L; Fang, D Q; Farach, H A; Faverzani, M; Fernandes, G; Ferri, E; Ferroni, F; Fiorini, E; Franceschi, M A; Freedman, S J; Fujikawa, B K; Giachero, A; Gironi, L; Giuliani, A; Goett, J; Gorla, P; Gotti, C; Gutierrez, T D; Haller, E E; Han, K; Heeger, K M; Hennings-Yeomans, R; Huang, H Z; Kadel, R; Kazkaz, K; Keppel, G; Kolomensky, Yu G; Li, Y L; Ligi, C; Liu, X; Ma, Y G; Maiano, C; Maino, M; Martinez, M; Maruyama, R H; Mei, Y; Moggi, N; Morganti, S; Napolitano, T; Nisi, S; Nones, C; Norman, E B; Nucciotti, A; O'Donnell, T; Orio, F; Orlandi, D; Ouellet, J L; Pallavicini, M; Palmieri, V; Pattavina, L; Pavan, M; Pedretti, M; Pessina, G; Pettinacci, V; Piperno, G; Pira, C; Pirro, S; Previtali, E; Rampazzo, V; Rosenfeld, C; Rusconi, C; Sala, E; Sangiorgio, S; Scielzo, N D; Sisti, M; Smith, A R; Taffarello, L; Tenconi, M; Terranova, F; Tian, W D; Tomei, C; Trentalange, S; Ventura, G; Vignati, M; Wang, B S; Wang, H W; Wielgus, L; Wilson, J; Winslow, L A; Wise, T; Woodcraft, A; Zanotti, L; Zarra, C; Zhu, B X; Zucchelli, S

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Numerical Simulation in Applied Geophysics. From the Mesoscale to ...  

E-Print Network [OSTI]

Instead of solving the global problem associated with the above model, we obtained the solution using a parallel FE ... Black-Oil simulator. .... used in hydrocarbon exploration geophysics, mining and reservoir characterization and production.

82

LANL | Solid Earth Geophysics | EES-17  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LANL : Earth & Environmental Sciences : Solid Earth Geophysics (EES-17) LANL : Earth & Environmental Sciences : Solid Earth Geophysics (EES-17) Home Publications Collaboration & Links Staff Research Highlights Ground-Based Nuclear Explosion Monitoring Geodynamics & National Security Nonlinear Elasticity Time Reversal Los Alamos Seismic Network Stimulated Porous Fluid Flow Resource Recovery Seismic & Acoustic Imaging Exploration Geophysics Induced Seismicity Volcanoes & Earthquakes Other Research CONTACTS Group Leader Ken Rehfeldt Administrative Contacts Jody Benson Cecilia Gonzales Geophysics (EES-17) The Geophysics Group supports the national security mission of Los Alamos National Laboratory by providing technical expertise to monitor movement of Earth's crust while predicting the effects of these events on the environment. Though our focus is on seismic monitoring, we also apply electric, magnetic, radionuclide, and acoustic technologies to monitor underground explosions, maintain our ability to conduct tests, and develop the Yucca Mountain Project. In addition, we study the nonlinear properties of earth materials, imaging with seismic waves, how seismic waves affect the interaction of porous rocks and fluids, use of seismic waves to characterize underground oil reservoirs, volcanology and volcanic seismicity, advanced computational physics of earth materials, and using drilling technology to study the crust of the earth. These tasks are complemented by our extensive background in both conventional and hot dry rock geothermal energy development and geophysical support of the Nevada Test Site.

83

Geophysical Monitoring of Hydrological and Biogeochemical  

E-Print Network [OSTI]

explored the use of geophysical approaches for monitoring the spatiotemporal distribution of hydrological and biogeochemical transformations associated with a Cr(VI) bioremediation experiment performed at Hanford, WA. We: the spatial distribution of injected electron donor; the evolution of gas bubbles; variations in total

Hubbard, Susan

84

Fiber optic geophysical sensors  

DOE Patents [OSTI]

A fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects.

Homuth, Emil F. (Los Alamos, NM)

1991-01-01T23:59:59.000Z

85

High Precision Geophysics & Detailed Structural Exploration ...  

Open Energy Info (EERE)

fault zones at the hot springs. Natural state hot water flow patterns in the fracture network will be interpreted from temperature gradient wells and then tested with...

86

Rules and Regulations Governing Geophysical, Seismic or Other Type  

Broader source: Energy.gov (indexed) [DOE]

Rules and Regulations Governing Geophysical, Seismic or Other Type Rules and Regulations Governing Geophysical, Seismic or Other Type Exploration on State-Owned Lands Other Than State-Owned Marine Waters (Mississippi) Rules and Regulations Governing Geophysical, Seismic or Other Type Exploration on State-Owned Lands Other Than State-Owned Marine Waters (Mississippi) < Back Eligibility Commercial Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Mississippi Development Authority The Rules and Regulations Governing Geophysical, seismic or Other Type Exploration on State-Owned Lands Other than State-Owned Marine Waters is applicable to the Natural Gas Sector and the Coal with CCS Sector. This law

87

Some Aspects Of Exploration In Non-Volcanic Areas | Open Energy Information  

Open Energy Info (EERE)

Some Aspects Of Exploration In Non-Volcanic Areas Some Aspects Of Exploration In Non-Volcanic Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Some Aspects Of Exploration In Non-Volcanic Areas Details Activities (5) Areas (1) Regions (0) Abstract: Geothermal exploration in non-volcanic areas must above all rely on geophysical techniques to identify the reservoir, as it is unable to resort to volcanological methodologies. A brief description is therefore given of the contribution that can be obtained from certain types of geophysical prospectings. Author(s): Raffaello Nannini Published: Geothermics, 1986 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Aerial Photography (Nannini, 1986) Aeromagnetic Survey (Nannini, 1986) Ground Gravity Survey (Nannini, 1986)

88

Geological and geophysical studies of a geothermal area in the southern  

Open Energy Info (EERE)

Geological and geophysical studies of a geothermal area in the southern Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: areal geology; Cassia County Idaho; Cenozoic; clastic rocks; clasts; composition; conglomerate; economic geology; electrical methods; evolution; exploration; faults; folds; geophysical methods; geophysical surveys; geothermal energy; gravity methods; Idaho; igneous rocks; lithostratigraphy; magnetic methods; pyroclastics; Raft River Valley; resources; sedimentary rocks; seismic methods; stratigraphy; structural geology; structure; surveys; tectonics; United States; volcanic rocks

89

Fiber optic geophysical sensors  

DOE Patents [OSTI]

A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

Homuth, E.F.

1991-03-19T23:59:59.000Z

90

Geophysics and the Internet  

Science Journals Connector (OSTI)

...Article Special Section: New technology/vendor spotlight Geophysics...com Mercury International Technology, Tulsa, Oklahoma, U.S...highlights to the company intranet, and stockholders can get...However, Mercury International Technology is betting that that there...

Ralph Gobeli

91

Advances in borehole geophysics for hydrology  

SciTech Connect (OSTI)

Borehole geophysical methods provide vital subsurface information on rock properties, fluid movement, and the condition of engineered borehole structures. Within the first category, salient advances include the continuing improvement of the borehole televiewer, refinement of the electrical conductivity dipmeter for fracture characterization, and the development of a gigahertz-frequency electromagnetic propagation tool for water saturation measurements. The exploration of the rock mass between boreholes remains a challenging problem with high potential; promising methods are now incorporating high-density spatial sampling and sophisticated data processing. Flow-rate measurement methods appear adequate for all but low-flow situations. At low rates the tagging method seems the most attractive. The current exploitation of neutron-activation techniques for tagging means that the wellbore fluid itself is tagged, thereby eliminating the mixing of an alien fluid into the wellbore. Another method uses the acoustic noise generated by flow through constrictions and in and behind casing to detect and locate flaws in the production system. With the advent of field-recorded digital data, the interpretation of logs from sedimentary sequences is now reaching a sophisticated level with the aid of computer processing and the application of statistical methods. Lagging behind are interpretive schemes for the low-porosity, fracture-controlled igneous and metamorphic rocks encountered in the geothermal reservoirs and in potential waste-storage sites. Progress is being made on the general problem of fracture detection by use of electrical and acoustical techniques, but the reliable definition of permeability continues to be an elusive goal.

Nelson, P.H.

1982-01-01T23:59:59.000Z

92

Chapter 6 - Seismic Inversion Techniques  

Science Journals Connector (OSTI)

Abstract Seismic inversion techniques were developed as a discipline at the same time that seismic technologies were widely applied in oil exploration and development starting in the 1980s. Except for basic theories and principles, seismic inversion techniques are different from traditional seismic exploration methods in geological tasks, involving basic information as well as study approaches. In the early stages of exploration, the geological task of seismic exploration was to find structures and identify traps, and seismic exploration techniques always focused on the ups and downs of reflection interfaces. They mainly relied on the travel time for structural interpretation. The main work of reservoir geophysics is to study the heterogeneity of a reservoir, and the main geological task is to make predictions on the reservoir parameters. Scientists focus on the lateral variation of reservoir characteristics and conduct seismic interpretation based on the information extracted from the results of reservoir seismic inversion. Seismic inversion has developed rapidly in recent years, including recursive inversion, log-constrained inversion, and multiparameter lithological seismic inversion. We choose different methods according to the geological characteristics and specific problems of the study area.

Ming Li; Yimin Zhao

2014-01-01T23:59:59.000Z

93

ESTIMATING UNCERTAINTIES FOR GEOPHYSICAL  

E-Print Network [OSTI]

to directly measure the amount of oil in an area is to drill several wells, but drilling is a very expensive procedure, and the whole idea of geophysics is to predict the amount of oil without drilling in all possible are: to locate minerals (oil, gas, fresh and saline water, etc); to locate and predict earthquakes

Kreinovich, Vladik

94

Near-surface geophysics:  

Science Journals Connector (OSTI)

...plants, chemical plants, refineries, and waste-disposal...vulnerable to noise from power lines, pipelines, electrical...the variations in the electric field. Among these is...GPS-determined locations, demands information about soil...Schlumberger and Wenner sounding curves by Zohdy (Geophysics...

Don W. Steeples

95

Initial Report on the Development of a Monte Carlo-Markov Chain Joint Inversion Approach for Geothermal Exploration  

SciTech Connect (OSTI)

Geothermal exploration and subsequent characterization of potential resources typically employ a variety of geophysical, geologic and geochemical techniques. However, since the data collected by each technique provide information directly on only one or a very limited set of the many physical parameters that characterize a geothermal system, no single method can be used to describe the system in its entirety. Presently, the usual approach to analyzing disparate data streams for geothermal applications is to invert (or forward model) each data set separately and then combine or compare the resulting models, for the most part in a more or less ad hoc manner. However, while each inversion may yield a model that fits the individual data set, the models are usually inconsistent with each other to some degree. This reflects uncertainties arising from the inevitable fact that geophysical and other exploration data in general are to some extent noisy, incomplete, and of limited sensitivity and resolution, and so yield non-unique results. The purpose of the project described here is to integrate the different model constraints provided by disparate geophysical, geological and geochemical data in a rigorous and consistent manner by formal joint inversion. The objective is to improve the fidelity of exploration results and reservoir characterization, thus addressing the goal of the DOE Geothermal Program to improve success in exploration for economically viable resources by better defining drilling targets, reducing risk, and improving exploration/drilling success rates.

Foxall, W; Ramirez, A; Carlson, S; Dyer, K; Sun, Y

2007-04-25T23:59:59.000Z

96

Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Exploration Drilling Details Activities (0) Areas (0) Regions (0) NEPA(15) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: Exploration Drilling‎ Parent Exploration Technique: Drilling Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates Thermal: -Temperatures can be measured within the hole

97

Merging High Resolution Geophysical and Geochemical Surveys to Reduce  

Open Energy Info (EERE)

Merging High Resolution Geophysical and Geochemical Surveys to Reduce Merging High Resolution Geophysical and Geochemical Surveys to Reduce Exploration Risk at Glass Buttes, Oregon Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Merging High Resolution Geophysical and Geochemical Surveys to Reduce Exploration Risk at Glass Buttes, Oregon Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This program will combine detailed gravity, high resolution aeromagnetic, and LIDAR data, all of which will be combined for structural modeling, with hyperspectral data, which will identify and map specific minerals and mineral assemblages that may point to upflow zones. The collection of these surveys and analyses of the merged data and model will be used to site deeper slim holes. Slim holes will be flow tested to determine whether or not Ormat can move forward with developing this resource. An innovative combination of geophysical and geochemical tools will significantly reduce risk in exploring this area, and the results will help to evaluate the value of these tools independently and in combination when exploring for blind resources where structure, permeability, and temperature are the most pressing questions. The slim holes will allow testing of models and validation of methods, and the surveys within the wellbores will be used to revise the models and site production wells if their drilling is warranted.

98

Numerical Simulation in Applied Geophysics. From the Mesoscale to ...  

E-Print Network [OSTI]

Instituto del Gas y del Petroleo, Facultad de Ingenier?a UBA. ,. Facultad de ... hydrocarbon exploration geophysics, mining and reservoir characterization and production. Local variations in the fluid ... physical process of wave propagation can be inspected during the experiment. ..... Black-Oil simulator. CO2 saturation...

2013-07-05T23:59:59.000Z

99

History of geophysical studies at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico  

SciTech Connect (OSTI)

A variety of geophysical methods including the spectrum of seismic, electrical, electromagnetic and potential field techniques have supported characterization, monitoring and experimental studies at the Waste Isolation Pilot Plant (WIPP). The geophysical studies have provided significant understanding of the nature of site deformation, tectonics and stability. Geophysical methods have delineated possible brine reservoirs beneath the underground facility and have defined the disturbed rock zone that forms around underground excavations. The role of geophysics in the WIPP project has evolved with the project. The early uses were for site characterization to satisfy site selection criteria or factors. As the regulatory framework for WIPP grew since 1980, the geophysics program supported experimental and field programs such as Salado hydrogeology and underground room systems and excavations. In summary, the major types of issues that geophysical studies addressed for WIPP are: Site Characterization; Castile Brine Reservoirs; Rustler/Dewey Lake Hydrogeology; Salado Hydrogeology; and Excavation Effects. The nature of geophysics programs for WIPP has been to support investigation rather than being the principal investigation itself. The geophysics program has been used to define conceptual models (e.g., the Disturbed Rock Zone-DRZ) or to test conceptual models (e.g., high transmissivity zones in the Rustler Formation). The geophysics program primarily supported larger characterization and experimental programs. Funding was not available for the complete documentation and interpretation. Therefore, a great deal of the geophysics survey information resides in contractor reports.

Borns, D.J. [Sandia National Labs., Albuquerque, NM (United States). Geophysics Dept.

1997-03-05T23:59:59.000Z

100

Astronomy, geophysics and the media  

Science Journals Connector (OSTI)

......August-September 1997 research-article Features Astronomy, geophysics and the media Jacqueline...message from the RAS Discussion Meeting on Astronomy and Geophysics in the Media, held on...She is often asked why there are so few astronomy documentaries. It's not for want of......

Jacqueline Mitton; Peter Bond

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Physics and Astronomy Geophysics Concentration  

E-Print Network [OSTI]

Physics and Astronomy Geophysics Concentration Strongly recommended courses Credits Term Dept. to Geophysics 3 PHY 3230 Thermal Physics 3 CHE 1101 Introductory Chemistry - I 3 CHE 1110 Introductory Chemistry Laboratory - I 1 GLY 1101 Intro. to Physical Geology 4 GLY 2250 Evolution of the Earth 4 GLY 4705 Adv

Thaxton, Christopher S.

102

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Development of Exploration Methods for Engineered Geothermal Systems Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation Abstract N/A Author U.S. Department of Energy Published Publisher Not Provided, Date Not Provided DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation Citation U.S. Department of Energy. Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and

103

The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study  

SciTech Connect (OSTI)

This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of resources.

None

1982-07-01T23:59:59.000Z

104

Laboratory Measurement of Geophysical Properties for Monitoring of CO2 Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Laboratory Measurement of Geophysical Properties for Monitoring of Laboratory Measurement of Geophysical Properties for Monitoring of CO 2 Sequestration Larry R. Myer (LRMyer@lbl.gov; 510/486-6456) Lawrence Berkeley National Laboratory Earth Science Division One Cyclotron Road, MS 90-1116 Berkeley, CA 94720 Introduction Geophysical techniques will be used in monitoring of geologic sequestration projects. Seismic and electrical geophysical techniques will be used to map the movement of CO 2 in the subsurface and to establish that the storage volume is being efficiently utilized and the CO 2 is being safely contained within a known region. Rock physics measurements are required for interpretation of the geophysical surveys. Seismic surveys map the subsurface velocities and attenuation while electrical surveys map the conductivity. Laboratory measurements are required to convert field

105

A Geothermal Field Model Based On Geophysical And Thermal Prospectings In  

Open Energy Info (EERE)

Model Based On Geophysical And Thermal Prospectings In Model Based On Geophysical And Thermal Prospectings In Nea Kessani (Ne Greece) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Geothermal Field Model Based On Geophysical And Thermal Prospectings In Nea Kessani (Ne Greece) Details Activities (0) Areas (0) Regions (0) Abstract: The present study completes a study by Thanassoulas et al. (1986) Geophys. Prosp.34, 83-97 and deals with geophysical exploration for geothermal resources in Nea Kessani area, NE Greece. The results of some deep electrical soundings (AB = 6000 m) with the interpretation of a gravity profile crossing the investigated area are considered together with thermal investigations. All subsequent information, along with the conclusions of an earlier paper dealing with a reconnaissance geophysical

106

Alum Innovative Exploration Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Innovative Exploration Project Geothermal Project Innovative Exploration Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Alum Innovative Exploration Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Phase 1 exploration will consist of two parts: 1) surface and near surface investigations and 2) subsurface geophysical surveys and modeling. The first part of Phase 1 includes: a hyperspectral imaging survey (to map thermal anomalies and geothermal indicator minerals), shallow (6 ft) temperature probe measurements, and drilling of temperature gradient wells to depths of 1000 feet. In the second part of Phase 1, 2D & 3D geophysical modeling and inversion of gravity, magnetic, and magnetotelluric datasets will be used to image the subsurface. This effort will result in the creation of a 3D model composed of structural, geological, and resistivity components. The 3D model will then be combined with the temperature and seismic data to create an integrated model that will be used to prioritize drill target locations. Four geothermal wells will be drilled and geologically characterized in Phase 2. The project will use a coiled-tube rig to test this drilling technology at a geothermal field for the first time. Two slimwells and two production wells will be drilled with core collected and characterized in the target sections of each well. In Phase 3, extended flow tests will be conducted on the producible wells to confirm the geothermal resource followed by an overall assessment of the productivity of the Alum geothermal area. Finally, Phase 3 will evaluate the relative contribution of each exploration technique in reducing risk during the early stages of the geothermal project.

107

Contribution of Geophysical Prospecting to Geohazard Evaluation  

SciTech Connect (OSTI)

The physical properties of the subsoil are studied using geophysical methods. These studies are always indirect, such as gravimetric, magnetometric, magnetotelluric or reflection-refraction seismic surveys and are often combined to obtain more accurate and reliable results. With these tools the oil industry commonly investigates the sedimentary basins to localize structures that may favor the accumulation of hydrocarbons. Above all, seismic prospecting allow the understanding of the underground geology, defining boundaries of the geological formations as well as mechanical and physical properties of the rocks. New cutting-edge techniques allow high quality data to be obtained in almost all geological contexts and make reflection seismic the most powerful tool in subsurface observations. The seismic method was utilized in geothermal resources investigation, research of water strategic resources, volcanic risks assessment, etc. The refraction method was the first to be used in the exploration of oil reservoirs. At present the industry employs mainly refraction seismics to study shallow formations. Conversely, university researchers have applied wide-angle reflection-refraction surveys to localize deep crustal interfaces analyzing the high amplitudes of the wide-angle reflections and the velocities obtained from the refracted signals. Moho discontinuity and velocity distribution within the crust were mapped out, indicating thickness and boundary conditions in different geological settings. The maps have been used in the analysis of geodynamical behavior and of active movements within the crust, useful for seismotectonic investigations. The further addition of the seismic reflection imaging, with deep penetration and long transects, completed multidisciplinary programs to unravel the structure of the crust with clear seismic images and models. High-resolution application of seismic has a central role in the identification and characterization of seismotectonic and seismogenetic zones and of the related capable faults. The earthquakes represent an important external risk for key constructions and nuclear power plants and capable faults cause near-surface displacements being considered to be the more critical for site safety. A close cooperation among geophysicists, geologists and seismologists is recommended in the hazards evaluation, alike in macrozoning for location of seismic sources and in microzoning for the measure of terrains mechanical properties and dynamic responses. Here I present and discuss the results of integrated multidisciplinary studies to unravel the peculiarity of the crustal structures and seismicity in Southern Tuscany, Italy.

Nicolich, Rinaldo [Department of Civil Engineering, University of Trieste, via Valerio 10, I-34127 Trieste (Italy)

2006-03-23T23:59:59.000Z

108

Geophysical imaging methods for analysis of the Krafla Geothermal Field, NE Iceland  

E-Print Network [OSTI]

Joint geophysical imaging techniques have the potential to be reliable methods for characterizing geothermal sites and reservoirs while reducing drilling and production risks. In this study, we applied a finite difference ...

Parker, Beatrice Smith

2012-01-01T23:59:59.000Z

109

Available Energy of Geophysical Systems  

Science Journals Connector (OSTI)

An alternative derivation of the available energy for a geophysical fluid system is presented. It is shown that determination of the equilibrium temperature of the system by the minimization of an energy availability function is equivalent to that ...

Peter R. Bannon

2013-08-01T23:59:59.000Z

110

General overview of geophysical studies at Cerro Prieto  

SciTech Connect (OSTI)

Geophysical investigations by the CFE in the Mexicali Valley near the Cerro Prieto volcano began nearly 20 years ago. Initially, gravity and seismic refraction methods were used for structural information related to faults and basement configuration. Supplemented by ground magnetic and gravity measurements, the resistivity data are being interpreted to yield a detailed picture of the structure concealed by valley fill and to identify promising areas for future exploration. 18 refs.

Goldstein, N.E.; Razo, A.M.

1980-01-01T23:59:59.000Z

111

Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA  

SciTech Connect (OSTI)

Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as they are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.

Martini, B; Silver, E; Pickles, W; Cocks, P

2004-03-25T23:59:59.000Z

112

Hyperspectral Mineral Mapping in Support of Geothermal Exploration: Examples from Long Valley Caldera, CA and Dixie Valley, NV, USA  

SciTech Connect (OSTI)

Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic processing techniques, and the genesis of modern multi-dimensional fluid flow and structural modeling algorithms, just to name a few. One of the newest techniques on the scene, is hyperspectral imaging. Really an optical analytical geochemical tool, hyperspectral imagers (or imaging spectrometers as they are also called), are generally flown at medium to high altitudes aboard mid-sized aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a continuous spectral record of reflected sunlight or emitted thermal radiation. This high fidelity, uninterrupted spatial and spectral record allows for accurate material distribution mapping and quantitative identification at the pixel to sub-pixel level. In volcanic/geothermal regions, this capability translates to synoptic, high spatial resolution, large-area mineral maps generated at time scales conducive to both the faster pace of the exploration and drilling managers, as well as to the slower pace of geologists and other researchers trying to understand the geothermal system over the long run.

Pickles, W L; Martini, B A; Silver, E A; Cocks, P A

2004-03-03T23:59:59.000Z

113

Geochemical Techniques | Open Energy Information  

Open Energy Info (EERE)

Geochemical Techniques Geochemical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geochemical Techniques Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geochemical Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Geochemical Techniques: No definition has been provided for this term. Add a Definition Related Techniques Geochemical Techniques Geochemical Data Analysis Geothermometry Gas Geothermometry Isotope Geothermometry Liquid Geothermometry Cation Geothermometers Multicomponent Geothermometers Silica Geothermometers Thermal Ion Dispersion

114

Geothermal Resources Exploration And Assessment Around The Cove  

Open Energy Info (EERE)

Geothermal Resources Exploration And Assessment Around The Cove Geothermal Resources Exploration And Assessment Around The Cove Fort-Sulphurdale Geothermal Field In Utah By Multiple Geophysical Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geothermal Resources Exploration And Assessment Around The Cove Fort-Sulphurdale Geothermal Field In Utah By Multiple Geophysical Imaging Details Activities (4) Areas (1) Regions (0) Abstract: The Cove Fort-Sulphurdale geothermal area is located in the transition zone between the Basin and Range to the west and the Colorado Plateau to the east. We have collected various geophysical data around the geothermal field, including heat flow, gravity, MT, seismic surface wave phase and group velocity maps, seismic body wave travel time data and full seismic waveforms. All of these geophysical data sets have different

115

Reconnaissance geothermal exploration at Raft River, Idaho from thermal  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geothermal exploration at Raft River, Idaho from thermal infrared scanning Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; INFRARED SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; TEMPERATURE DISTRIBUTION; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Watson, K. Published: Geophysics, 4/1/1976

116

Downhole Techniques | Open Energy Information  

Open Energy Info (EERE)

Downhole Techniques Downhole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Downhole Techniques Details Activities (0) Areas (0) Regions (0) NEPA(7) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Determination of lithology, grain size Stratigraphic/Structural: Thickness and geometry of rock strata, fracture identification Hydrological: Porosity, permeability, water saturation Thermal: Formation temperature with depth Dictionary.png Downhole Techniques: Downhole techniques are measurements collected from a borehole environment which provide information regarding the character of formations and fluids

117

History of geophysical studies at the Waste Isolation Pilot Plant (WIPP), southeastern New Mexico  

SciTech Connect (OSTI)

A variety of geophysical methods including the spectrum of seismic, electrical, electromagnetic and potential field techniques have used support characterization, monitoring and experimental studies at the Waste Isolation Pilot Plant (WIPP). The geophysical studies have provided significant understanding of the nature of site deformation, tectonics and stability. Geophysical methods have delineated possible brine reservoirs beneath the underground facility and have defined the disturbed rock zone that forms around underground excavations. The role of geophysics in the WIPP project has evolved with the project. The early uses were for site characterization to satisfy site selection criteria or factors. As the regulatory framework for WIPP grew since 1980, the geophysics program was focused on support of experimental and field programs such as Salado hydrogeology and underground room systems and excavations. In summary, the major types of issues that geophysical studies addressed for WIPP are: Issue 1: Site Characterization; Issue 2: Castile Brine Reservoirs; Issue 3: Rustler /Dewey Lake Hydrogeology; Issue 4: Salado Hydrogeology; and Issue 5: Excavation Effects. The nature of geophysics program for WIPP has been to support investigation rather than being the principal investigation itself. The geophysics program has been used to define conceptual models (e.g., the Disturbed Rock Zone-DRZ) or to test conceptual models (e.g., high transmissivity zones in the Rustler Formation). An effect of being a support program is that as new project priorities arose the funding for the geophysics program was limited and withdrawn. An outcome is that much of the geophysics survey information resides in contractor reports since final interpretation reports were not funded.

Borns, D.J. [Sandia National Labs., Albuquerque, NM (United States)

1997-10-01T23:59:59.000Z

118

Data Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Data Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Data Techniques Parent Exploration Technique: Data and Modeling Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Data Techniques: The collection, processing, and interpretation of data from various methods so accurate interpretations can be made about the subject matter. Other definitions:Wikipedia Reegle Introduction Data techniques are any technique where data is collected and organized in a manner so that the information is useful for geothermal purposes. The

119

Formation Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Formation Testing Techniques Formation Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Formation Testing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Formation Testing Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Formation Testing Techniques: No definition has been provided for this term. Add a Definition References No exploration activities found. Print PDF Retrieved from "http://en.openei.org/w/index.php?title=Formation_Testing_Techniques&oldid=601973" Categories: Downhole Techniques Exploration Techniques

120

A Conceptual Model Approach to the Geophysical Exploration of...  

Open Energy Info (EERE)

a hot spring are far more diagnostic than a shallow well or an oil seep would be in a petroleum context. A conceptual model approach is particularly effective in geothermal...

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Exploring the geophysical signatures of microbial processes in the earth  

E-Print Network [OSTI]

Arctic Natural Sciences, Antarctic Earth Sciences, Antarcticof Microbial Processes in the Earth Lee Slater 1 , Estellaa rapidly evolving Earth science discipline that integrates

Slater, L.

2009-01-01T23:59:59.000Z

122

Integrated Geophysical Exploration of a Known Geothermal Resource...  

Open Energy Info (EERE)

in eastern Oregon. This system is currently being developed for geothermal energy production. The hot springs are in a region of complex and intersecting fault trends...

123

Geophysical Exploration Linking Deep Earth and Backyard Geology  

Science Journals Connector (OSTI)

...the cryptically elevated Colorado Plateau, or any number of...drip" helping unloose the Colorado Plateau, these deep features...Batholith and the Columbia River flood basalt, suggesting a connection...drips off the bottom of the Colorado Plateau have helped let it...

Richard A. Kerr

2013-06-14T23:59:59.000Z

124

Geological and geophysical analysis of Coso Geothermal Exploration...  

Open Energy Info (EERE)

and that the drillhole itself was strongly influenced by structural zones. Water chemistry indicates that this geothermal resource is a hot-water rather than a vapor-dominated...

125

A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration  

Open Energy Info (EERE)

Evaluation Of Electromagnetic Methods In Geothermal Exploration Evaluation Of Electromagnetic Methods In Geothermal Exploration - L Pellerin, J M Johnston & G W Hohmann, Geophysics, 61(1), 1996, Pp 121-130 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration - L Pellerin, J M Johnston & G W Hohmann, Geophysics, 61(1), 1996, Pp 121-130 Details Activities (0) Areas (0) Regions (0) Abstract: Unavailable Author(s): Unknown Published: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1996 Document Number: Unavailable DOI: 10.1016/S0148-9062(97)87449-9 Source: View Original Journal Article Retrieved from "http://en.openei.org/w/index.php?title=A_Numerical_Evaluation_Of_Electromagnetic_Methods_In_Geothermal_Exploration_-_L_Pellerin,_J_M_Johnston_%26_G_W_Hohmann,_Geophysics,_61(1),_1996,_Pp_121-130&oldid=3883

126

Development of Exploration Methods for Engineered Geothermal Systems  

Open Energy Info (EERE)

Exploration Methods for Engineered Geothermal Systems Exploration Methods for Engineered Geothermal Systems Through Integrated Geophysical, Geologic and Geochemical Interpretation the Seismic Analysis Component Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Development of Exploration Methods for Engineered Geothermal Systems Through Integrated Geophysical, Geologic and Geochemical Interpretation the Seismic Analysis Component Authors Ileana M. Tibuleac, Joe Iovenitti, David von Seggern, Jon Sainsbury, Glenn Biasi and John G. Anderson Conference Stanford Geothermal Conference; Stanford University; 2013 Published PROCEEDINGS, Thirty-Eighth Workshop on Geothermal Reservoir Engineering Stanford University;, 2013 DOI Not Provided Check for DOI availability: http://crossref.org

127

Course: Numerical Simulation in Applied Geophysics. From the Mesoscale to the Macroscale  

E-Print Network [OSTI]

exploration geophysics, mining and reservoir characterization and production, among other fields. Local of wave-induced fluid pressure gradients via a slow-wave diffusion process that can be analyzed using inexpensive and informative, allowing to inspect the physical process of wave propagation using alternative

Santos, Juan

128

Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

Modeling Techniques Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Modeling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Modeling Techniques Parent Exploration Technique: Data and Modeling Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Stress fields and magnitudes, location and shape of permeable and non-permeable structures, faults, fracture patterns Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids, hydrothermal fluid flow characteristics, up-flow patterns

129

Regional geophysics, Cenozoic tectonics and geologic resources...  

Open Energy Info (EERE)

and adjoining regions Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Regional geophysics, Cenozoic tectonics and geologic resources of...

130

LANL Institutes - Institute of Geophysics and Planetary Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geophysics Geophysics Focus Leader: Scott Baldridge sbaldridge@lanl.gov This focus supports a breadth of basic research concerning planetary surfaces and interiors, including numerical, experimental, and field studies of the structure, properties, processes, and dynamics of terrestrial and giant planets. It is strongly recommended that proposals exploit unique LANL resources (e.g., LANL high-performance computing resources; the Los Alamos Neutron Science Center (LANSCE); geochemical analyses facilities resident in EES and C divisions; and/or sensor technology capabilities resident in C, EES, ISR, and N divisions). We are particularly interested in innovative research projects in areas of current, strong international scientific interest such as the following: New techniques in passive (imaging) or active (e.g., lidar, radar)

131

Borehole geophysics evaluation of the Raft River geothermal reservoir |  

Open Energy Info (EERE)

reservoir reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Borehole geophysics evaluation of the Raft River geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Borehole geophysics techniques were used in evaluating the Raft River geothermal reservoir to establish a viable model for the system. The assumed model for the hot water (145/sup 0/C) reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. It was believed that the long term contact with the hot water would cause alteration producing these effects. With this model in mind, cross-plots of the above parameters were made to attempt to delineate the reservoir. It appears that the most meaningful data include smoothed and

132

Drilling Techniques | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Drilling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Drilling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(20) Exploration Technique Information Exploration Group: Drilling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Identify lithology and mineralization, provide core samples and rock cuttings Stratigraphic/Structural: Retrieved samples can be used to identify stratigraphy and structural features such as fracture networks or faults Hydrological: -Water samples can be used for geochemical analysis -Fluid pressures can be used to estimate flow rates

133

Geochemical and Geophysical Changes during Ammonia Gas Treatment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geophysical Changes during Ammonia Gas Treatment of Vadose Zone Sediments for Uranium Remediation. Geochemical and Geophysical Changes during Ammonia Gas Treatment of Vadose Zone...

134

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced...

135

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...  

Broader source: Energy.gov (indexed) [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization DOE...

136

Student-based archaeological geophysics in northern Thailand Emily A. Hinz*, Lee M. Liberty, and Spencer H. Wood, Boise State University, Fongsaward Singharajawarapan  

E-Print Network [OSTI]

Student-based archaeological geophysics in northern Thailand Emily A. Hinz*, Lee M. Liberty participants to evaluate the practicality and effectiveness of various geophysical techniques: seismic methods including refraction and reflection (not discussed here), ground- penetrating-radar (GPR), DC resistivity

Barrash, Warren

137

Astronomy and geophysics in the secondary curriculum  

Science Journals Connector (OSTI)

......December 2006 research-article Education Astronomy and geophysics in the secondary curriculum...Committee, examines the ways in which astronomy and geophysics figure in secondary-school...Committee, Principal Moderator for GCSE Astronomy with Edexcel and Head of Science at Helena......

Julien King

2006-12-01T23:59:59.000Z

138

Geophysical muon imaging: feasibility and limits  

Science Journals Connector (OSTI)

......Gaussian with mean N and standard deviation N. However...interval is obtained through standard procedure and we have...made very constructive reviews of a former version of...2010. Muon tomography: plans for observations in the...measurements with application in mining geophysics, Geophysics......

N. Lesparre; D. Gibert; J. Marteau; Y. Dclais; D. Carbone; E. Galichet

2010-12-01T23:59:59.000Z

139

Definition: Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Exploration Drilling Exploration Drilling Jump to: navigation, search Dictionary.png Exploration Drilling Exploratory drilling is the Initial phase of drilling for the purpose of determining the physical properties and boundaries of a reservoir. View on Wikipedia Wikipedia Definition Geothermal Exploration is the exploration of the subsurface in search of viable active geothermal regions with the goal of building a geothermal power plant, where hot fluids drive turbines to create electricity. Exploration methods include a broad range of disciplines including geology, geophysics, geochemistry and engineering. Geothermal regions with adequate heat flow to fuel power plants are found in rift zones, subduction zones and mantle plumes. Hot spots are characterized by four geothermal elements. An active region will have: Heat Source - Shallow

140

GEOPHYSICS  

E-Print Network [OSTI]

?nite-element formulation (Smith. I975). handle any kind of waves in complex media but are limited mainly because nu- merical dispersion prevents them from

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Property:ExplorationSubGroup | Open Energy Information  

Open Energy Info (EERE)

ExplorationSubGroup ExplorationSubGroup Jump to: navigation, search Property Name ExplorationSubGroup Property Type Page Description Exploration sub groups for exploration activities Pages using the property "ExplorationSubGroup" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe Survey + Data Collection and Mapping + A Acoustic Logs + Well Log Techniques + Active Seismic Methods + Seismic Techniques + Active Seismic Techniques + Seismic Techniques + Active Sensors + Active Sensors + Aerial Photography + Passive Sensors + Aeromagnetic Survey + Magnetic Techniques + Airborne Electromagnetic Survey + Electrical Techniques + Airborne Gravity Survey + Gravity Techniques + Analytical Modeling + Modeling Techniques + Audio-Magnetotellurics + Electrical Techniques +

142

Remote Sensing Techniques | Open Energy Information  

Open Energy Info (EERE)

Remote Sensing Techniques Remote Sensing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Remote Sensing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Remote Sensing Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Remote Sensing Techniques: Remote sensing utilizes satellite and/or airborne based sensors to collect information about a given object or area. Remote sensing data collection methods can be passive or active. Passive sensors (e.g., spectral imagers) detect natural radiation that is emitted or reflected by the object or area

143

Institute of Geophysics, Planetary Physics, and Signatures  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Opportunities » Opportunities » Institute of Geophysics, Planetary Physics, and Signatures Institute of Geophysics, Planetary Physics, and Signatures Promoting and supporting high-quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. Contact Director Harald Dogliani (505) 663-5309 Email Deputy and Signatures Jon Schoonover (505) 665-0772 Email Professional Staff Assistant Georgia Sanchez (505) 663-5291 Email Astophysics and Cosmology Ed Fenimore (505) 667-7371 Email Climate Manvendra K. Dubey (505) 665-3128 Email Geophysics Scott Baldridge (505) 667-4338 Email Space Physics Josef Koller (505) 665-7395 Email Expanding the frontiers of astrophysical, space, earth, and climate sciences and their signatures The Institute of Geophysics, Planetary Physics, and Signatures at Los

144

Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical  

Open Energy Info (EERE)

Geochemical, Groundwater Geochemical, And Radiometric Geophysical Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal Prospects In Northern Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal Prospects In Northern Nevada Details Activities (14) Areas (3) Regions (0) Abstract: Ground water sampling, desorbed mercury soil geochemical surveys and a radiometric geophysical survey was conducted in conjunction with geological mapping at three geothermal prospects in northern Nevada. Orientation sample lines from 610 m (2000 ft.) to 4575 m (15,000 ft.) in length were surveyed at right angles to known and suspected faults. Scintillometer readings (gamma radiation - total counts / second) were also

145

Geophysical Fluid Dynamics Laboratory Presented by  

E-Print Network [OSTI]

Dynamics Laboratory Outline: · Introduction · Software Infrastructure Projects: Completed Current consortium for climate-weather community 3 #12;Geophysical Fluid Dynamics Laboratory Software Infrastructure Projects ­ Completed: · Flexible Modeling System (FMS) · FMS Model: Hybrid programming model Memory

146

Engineering and environmental geophysics at the millennium  

Science Journals Connector (OSTI)

...locations such as power plants, chemical plants, refineries, and waste-disposal...variations in the electric field. Among these...GPS-determined locations, demands information about...and Wenner sounding curves: Geophysics, 54...

Don W. Steeples

147

Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Log Techniques Well Log Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Log Techniques Details Activities (4) Areas (4) Regions (1) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Log Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: depth and thickness of formations; lithology and porosity can be inferred Stratigraphic/Structural: reservoir thickness, reservoir geometry, borehole geometry Hydrological: permeability and fluid composition can be inferred Thermal: direct temperature measurements; thermal conductivity and heat capacity Dictionary.png Well Log Techniques: Well logging is the measurement of formation properties versus depth in a

148

Use of Geophysical Techniques to Characterize Fluid Flow in a...  

Broader source: Energy.gov (indexed) [DOE]

Geothermal Technology Program Peer Review Report Tracer Methods for Characterizing Fracture Stimulation in Enhanced Geothermal Systems (EGS); 2010 Geothermal Technology Program...

149

Geophysical Monitoring Techniques for Underwater Landslide in 1g Models  

Science Journals Connector (OSTI)

...landslides may result in the costly repair of damages to pipelines, telecommunication cables...part is a 9.5-mm diameter patch at the end of the sensor. The...vertical stress increases on the patch, the electrical resistance decreases...

Q. Hung Truong; Changho Lee; Gye-Chun Cho; Jong-Sub Lee

150

Data and Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

and Modeling Techniques and Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Data and Modeling Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Rock types, rock chemistry, stratigraphic layer organization Stratigraphic/Structural: Stress fields and magnitudes, location and shape of permeable and non-permeable structures, faults, and fracture patterns Hydrological: Visualization and prediction of the flow patterns and characteristics of geothermal fluids, hydrothermal fluid flow characteristics, up-flow patterns

151

Bulgarian Geophysical Journal, 2006, Vol. 32 Geophysical Institute, Bulgarian Academy of Sciences  

E-Print Network [OSTI]

Geophysical Journal, 2006, Vol. 32 Thermal water is a source of renewable energy and its utilization distribution maps at three depth levels below the surface - 50, 100 and 150m and geothermal gradient map have been prepared and analyzed together with existing geophysical results of gravity, magnetic, electric

Harinarayana, T.

152

Underground Exploration  

E-Print Network [OSTI]

Underground Exploration and Testing A Report to Congress and the Secretary of Energy Nuclear Waste Technical Review Board October 1993 Yucca Mountain at #12;Nuclear Waste Technical Review Board Dr. John E and Testing #12;Executive Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . v Introduction

153

Hyperspectral Mineral Mapping In Support Of Geothermal Exploration-  

Open Energy Info (EERE)

Mineral Mapping In Support Of Geothermal Exploration- Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Hyperspectral Mineral Mapping In Support Of Geothermal Exploration- Examples From Long Valley Caldera, Ca And Dixie Valley, Nv, Usa Details Activities (2) Areas (2) Regions (0) Abstract: Growing interest and exploration dollars within the geothermal sector have paved the way for increasingly sophisticated suites of geophysical and geochemical tools and methodologies. The efforts to characterize and assess known geothermal fields and find new, previously unknown resources has been aided by the advent of higher spatial resolution airborne geophysics (e.g. aeromagnetics), development of new seismic

154

Template:ExplorationGroup | Open Energy Information  

Open Energy Info (EERE)

ExplorationGroup ExplorationGroup Jump to: navigation, search This is the 'ExplorationGroup' template. To define a new Exploration Technique, please use the Exploration Group Form. Parameters Definition - A link to the OpenEI definition of the technique (optional) ExplorationGroup - ExplorationSubGroup - LithologyInfo - the type of lithology information this technique could provide StratInfo - the type of stratigraphic and/or structural information this technique could provide HydroInfo - the type of hydrogeology information this technique could provide ThermalInfo - the type of temperature information this technique could provide EstimatedCostLowUSD - the estimated value only of the low end of the cost range (units described in CostUnit) EstimatedCostMedianUSD - the estimated value only of the median cost

155

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

156

Well Testing Techniques | Open Energy Information  

Open Energy Info (EERE)

Well Testing Techniques Well Testing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Well Testing Techniques Details Activities (0) Areas (0) Regions (0) NEPA(17) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Well Testing Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Enable estimation of in-situ reservoir elastic parameters Stratigraphic/Structural: Fracture distribution, formation permeability, and ambient tectonic stresses Hydrological: provides information on permeability, location of permeable zones recharge rates, flow rates, fluid flow direction, hydrologic connections, storativity, reservoir pressures, fluid chemistry, and scaling.

157

Borehole Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Borehole Seismic Techniques Borehole Seismic Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Borehole Seismic Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Downhole Techniques Exploration Sub Group: Borehole Seismic Techniques Parent Exploration Technique: Downhole Techniques Information Provided by Technique Lithology: Rock unit density influences elastic wave velocities Stratigraphic/Structural: Structural geology- faults, folds, grabens, horst blocks, sedimentary layering, discontinuities, etc Hydrological: Combining compressional and shear wave results can indicate the presence of fluid saturation in the formation Thermal: High temperatures and pressure impact the compressional and shear wave velocities

158

Category:Data Techniques | Open Energy Information  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Data Techniques page? For detailed information on Data Techniques as exploration techniques,...

159

Spatial correlation structure estimation using geophysical and hydrogeological data  

E-Print Network [OSTI]

Spatial correlation structure estimation using geophysical and hydrogeological data Susan S investigate the use of tomographic geophysical data in combination with hydrogeological data in the spatial of data having different support scales and spatial sampling windows was facilitated. Comparison

Hubbard, Susan

160

Field Techniques | Open Energy Information  

Open Energy Info (EERE)

Field Techniques Field Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Field Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Map surface geology and hydrothermal alteration. Rock samples are used to define lithology. Field and lab analyses can be used to measure the chemical and isotopic constituents of rock samples. Bulk and trace element analysis of rocks, minerals, and sediments. Identify and document surface geology and mineralogy. Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Locates active faults in the area of interest. Map fault and fracture patterns, kinematic information. Can reveal relatively high permeability zones. Provides information about the time and environment which formed a particular geologic unit. Microscopic rock textures can be used to estimate the history of stress and strain, and/or faulting.

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Definition: Magnetotelluric Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Magnetotelluric Techniques Jump to: navigation, search Dictionary.png Magnetotelluric Techniques Magnetotellurics is an electromagnetic geophysical method used to image the electrical resistivity structure of the subsurface through the measurement of electrical and magnetic fields at the earth's surface.[1] View on Wikipedia Wikipedia Definition Magnetotellurics (MT) is an electromagnetic geophysical method of imaging the earth's subsurface by measuring natural variations of electrical and magnetic fields at the Earth's surface. Investigation depth ranges from 300m below ground by recording higher frequencies down to 10,000m or deeper with long-period soundings. Developed in Russia and

162

Statistical Analysis of EXTREMES in GEOPHYSICS  

E-Print Network [OSTI]

Statistical Analysis of EXTREMES in GEOPHYSICS Zwiers FW and Kharin VV. 1998. Changes in the extremes of the climate simulated by CCC GCM2 under CO2 dou- bling. J. Climate 11:2200­2222. http://www.ral.ucar.edu/staff/ericg/readinggroup.html #12;Outline · Some background on Extreme Value Statistics ­ Extremal Types Theorem ­ Max

Gilleland, Eric

163

Development of Exploration Methods for Engineered Geothermal...  

Open Energy Info (EERE)

non-invasive techniques. This proposed exploration methodology is expected to increase spatial resolution and reduce the non-uniqueness that is inherent in geological data,...

164

Geophysical modeling of two willemite deposits, Vazante (Brazil) and Beltana (Australia) Richard A. Krahenbuhl* and Murray Hitzman  

E-Print Network [OSTI]

of ore bodies or through imaging of associated hydrothermal alteration. Introduction Due to recent technological advances in developing solvent-extraction and electro-winning processes for treatment of zinc by conventional processing techniques and geophysical inversion. Vazante deposit in Brazil The Vazante willemite

165

Geothermal Exploration Cost and Time  

SciTech Connect (OSTI)

The Department of Energys Geothermal Technology Office (GTO) provides RD&D funding for geothermal exploration technologies with the goal of lowering the risks and costs of geothermal development and exploration. The National Renewable Energy Laboratory (NREL) was tasked with developing a metric in 2012 to measure the impacts of this RD&D funding on the cost and time required for exploration activities. The development of this cost and time metric included collecting cost and time data for exploration techniques, creating a baseline suite of exploration techniques to which future exploration cost and time improvements can be compared, and developing an online tool for graphically showing potential project impacts (all available at http://en.openei.org/wiki/Gateway: Geothermal). This paper describes the methodology used to define the baseline exploration suite of techniques (baseline), as well as the approach that was used to create the cost and time data set that populates the baseline. The resulting product, an online tool for measuring impact, and the aggregated cost and time data are available on the Open Energy Information website (OpenEI, http://en.openei.org) for public access. - Published 01/01/2013 by US National Renewable Energy Laboratory NREL.

Scott Jenne

2013-02-13T23:59:59.000Z

166

EXPLORATION ACTIVITY WORKSHEET MAJOR & CAREER EXPLORATION  

E-Print Network [OSTI]

of activity or process you should explore to bring you closer to your academic goals. NameEXPLORATION ACTIVITY WORKSHEET MAJOR & CAREER EXPLORATION Purpose: The exploration activity is designed for students to "explore" opportunities at UM as they relate to student success, majors, careers

Milchberg, Howard

167

Geophysical investigation, Salmon Site, Lamar County, Mississippi  

SciTech Connect (OSTI)

Geophysical surveys were conducted in 1992 and 1993 on 21 sites at the Salmon Site (SS) located in Lamar County, Mississippi. The studies are part of the Remedial Investigation/Feasibility Study (RI/FS) being conducted by IT Corporation for the U.S. Department of Energy (DOE). During the 1960s, two nuclear devices and two chemical tests were detonated 826 meters (in) (2710 feet [ft]) below the ground surface in the salt dome underlying the SS. These tests were part of the Vela Uniform Program conducted to improve the United States capability to detect, identify, and locate underground nuclear detonations. The RI/FS is being conducted to determine if any contamination is migrating from the underground shot cavity in the salt dome and if there is any residual contamination in the near surface mud and debris disposal pits used during the testing activities. The objective of the surface geophysical surveys was to locate buried debris, disposal pits, and abandoned mud pits that may be present at the site. This information will then be used to identify the locations for test pits, cone penetrometer tests, and drill hole/monitor well installation. The disposal pits were used during the operation of the test site in the 1960s. Vertical magnetic gradient (magnetic gradient), electromagnetic (EM) conductivity, and ground-penetrating radar (GPR) surveys were used to accomplish these objectives. A description of the equipment used and a theoretical discussion of the geophysical methods are presented Appendix A. Because of the large number of figures relative to the number of pages of text, the geophysical grid-location maps, the contour maps of the magnetic-gradient data, the contour maps of the EM conductivity data, and the GPR traverse location maps are located in Appendix B, Tabs I through 22. In addition, selected GPR records are located in Appendix C.

NONE

1995-02-01T23:59:59.000Z

168

Template:ExplorationActivity | Open Energy Information  

Open Energy Info (EERE)

ExplorationActivity ExplorationActivity Jump to: navigation, search This is the 'ExplorationActivity' template. To define a new Exploration Activity, please use the Exploration Activity Form. Parameters Name - The name of the activity (typically a combination of the techniques and location, ex. Water Sampling at McCredie Hot Springs) Technique - The exploration technique used in this activity SpectralSensor - The spectral imaging sensor used in this activity Place - The name of the exploration field or location of the activity Notes - General notes about the activity (optional) Outcome - A short description of the benefit or usefulness of the activity Reference_material - The reference material documenting the activity ExpActivityDate - Date or year activity started ExpActivityDateEnd - Date or year activity ended

169

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal(Redirected from Exploration Techniques) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs

170

Silver Peak Innovative Exploration Project  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. Project objectives: Reduce the high level of risk during the early stages of geothermal project development by conducting a multi-faceted and innovative exploration and drilling program at Silver Peak. Determine the combination of techniques that are most useful and cost-effective in identifying the geothermal resource through a detailed, post-project evaluation of the exploration and drilling program.

171

Clean enough for industry? An airborne geophysical case study  

SciTech Connect (OSTI)

Data from two airborne geophysical surveys of the Department of Energy`s Oak Ridge Reservation (ORR) were extremely valuable in deciding whether a 1000-acre (400 hectare) parcel of the ORR should be released to the City of Oak Ridge for industrial development. Our findings, based on electromagnetic and magnetic data, were incorporated in the federally mandated Environmental Assessment Statement (EAS), and in general supported claims that this land was never used as a hazardous waste disposal site. We estimated the amount of iron required to produce each anomaly using a simple dipole model. All anomalies with equivalent sources greater than approximately 1000 kg of iron were checked in the field, and the source of all but one identified as either a bridge, reinforced concrete debris, or a similarly benign object. Additionally, some smaller anomalies (equivalent sources of roughly 500 kg) have been checked; thus far, these also have innocuous sources. Airborne video proved invaluable in identifying logging equipment as the source of some of these anomalies. Geologic noise may account for some of the remaining anomalies. Naturally occurring accumulations of magnetic minerals in the soil on the ORR have been shown to produce anomalies which, at a sensor height of 30 m, are comparable to the anomaly produced by about 500 kg of iron. By comparison, the electronic noise of the magnetic gradiometer, 0.01--0.02 nT/m, is equivalent to only about 50--100 kg of iron at a 30 m sensor height. The electromagnetic data, combined with field mapping of karst structures, provided evidence of a northeast-southwest striking conduit spanning the parcel. The possible existence of a karst conduit led the EAS authors to conclude that this is a ``sensitive hydrologic setting.`` We conclude that aerial geophysics is an extremely cost-effective, and efficient technique for screening large tracts of land for environmental characterization.

Nyquist, J.E.; Beard, L.P.

1996-02-01T23:59:59.000Z

172

Variability of geophysical log data and the signature of crustal heterogeneities at the KTB  

Science Journals Connector (OSTI)

......variations in geophysical borehole data reflect geological...Continental Deep Drilling Program (KTB...heterogeneities. borehole geophysics|crustal...Introduction The large-scale structure...several geo-physical borehole data from the German Continental Deep Drilling Program (KTB......

Sabrina Leonardi; Hans-Joachim Kmpel

1998-12-01T23:59:59.000Z

173

Ch. VI, The geophysical environment around Waunita Hot Springs...  

Open Energy Info (EERE)

Ch. VI, The geophysical environment around Waunita Hot Springs Author A. L. Lange Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation with the U.S....

174

Course: Numerical Simulation in Applied Geophysics. From the ...  

E-Print Network [OSTI]

ration geophysics, mining and reservoir characterization and production. ... [5] T. Bourbie and O. Coussy and B. Zinszner, Acoustics of Porous Media, Editions ... [

2013-10-09T23:59:59.000Z

175

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

E-Print Network [OSTI]

We describe the ongoing development of joint geophysical imaging methodologies for geothermal site characterization and demonstrate their potential in two regions: Krafla volcano and associated geothermal fields in ...

Zhang, Haijiang

2012-01-01T23:59:59.000Z

176

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

Broader source: Energy.gov [DOE]

DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop improved geophysical imaging method for characterizing subsurface structure, identify fluid locations, and characterize fractures.

177

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization  

Broader source: Energy.gov [DOE]

Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization presentation at the April 2013 peer review meeting held in Denver, Colorado.

178

Crustal Geophysics and Geochemistry Science Center | Open Energy...  

Open Energy Info (EERE)

Science Center Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Crustal Geophysics and Geochemistry Science Center Author USGS Published...

179

Data Exploration at NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploration Data Exploration energy16gunther.jpg Highly interactive data exploration is a key component of scientific analytics, often combining multiple analytics technologies,...

180

Exploring the Raft River geothermal area, Idaho, with the dc resistivity  

Open Energy Info (EERE)

Exploring the Raft River geothermal area, Idaho, with the dc resistivity Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Exploring the Raft River geothermal area, Idaho, with the dc resistivity method (Abstract) Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; ELECTRICAL SURVEYS; IDAHO; GEOTHERMAL EXPLORATION; RAFT RIVER VALLEY; ELECTRIC CONDUCTIVITY; GEOTHERMAL WELLS; KGRA; TEMPERATURE MEASUREMENT; ELECTRICAL PROPERTIES; EXPLORATION; GEOPHYSICAL SURVEYS; NORTH AMERICA; PACIFIC NORTHWEST REGION; PHYSICAL PROPERTIES; USA; WELLS Author(s): Zohdy, A.A.R.; Jackson, D.B.; Bisdorf, R.J. Published: Geophysics, 10/12/1975 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Northern Nevada Geothermal Exploration Strategy Analysis | Open Energy  

Open Energy Info (EERE)

Nevada Geothermal Exploration Strategy Analysis Nevada Geothermal Exploration Strategy Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Northern Nevada Geothermal Exploration Strategy Analysis Details Activities (1) Areas (1) Regions (0) Abstract: The results of exploration techniques applied to geothermal resource investigations in northern Nevada were evaluated and rated by seven investigators involved in the work. A quantitative rating scheme was used to obtain estimates of technique effectiveness. From survey cost information we also obtained and compared cost-effectiveness estimates for the various techniques. Effectiveness estimates were used to develop an exploration strategy for the area. However, because no deep confirmatory drilling has been done yet, the technique evaluations and exploration

182

Application of a New Structural Model and Exploration Technologies to  

Open Energy Info (EERE)

New Structural Model and Exploration Technologies to New Structural Model and Exploration Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid-Drilling for Geothermal Exploration: McCoy, Churchill County, NV Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Application of a New Structural Model and Exploration Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid-Drilling for Geothermal Exploration: McCoy, Churchill County, NV Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The structural model is based on the role of subsurface igneous dikes providing a buttressing effect in a regional strain field such that permeability is greatly enhanced. The basic thermal anomaly at McCoy was defined by substantial U.S. Department of Energy-funded temperature gradient drilling and geophysical studies conducted during the period 1978 to 1982. This database will be augmented with modern magnetotelluric, controlled-source audio-magnetotelluric, and 2D/3D reflection seismic surveys to define likely fluid up-flow plumes that will be drilled with slant-hole technology. Two sites for production-capable wells will be drilled in geothermally prospective areas identified in this manner. The uniqueness of this proposal lies in the use of a full suite of modern geophysical tools, use of slant-hole drilling, and the extensive technical database from previous DOE funding.

183

Silver Peak Innovative Exploration Project Geothermal Project | Open Energy  

Open Energy Info (EERE)

Innovative Exploration Project Geothermal Project Innovative Exploration Project Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Silver Peak Innovative Exploration Project Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The scope of this three phase project includes tasks to validate a variety of innovative exploration and drilling technologies which aim to accurately characterize the geothermal site and thereby reduce project risk. Phase 1 exploration will consist of two parts: 1) surface and near surface investigations and 2) subsurface geophysical surveys and modeling. The first part of Phase 1 includes: a hyperspectral imaging survey (to map thermal anomalies and geothermal indicator minerals), shallow temperature probe measurements, and drilling of temperature gradient wells to depths of 1000 feet. In the second part of Phase 1, 2D & 3D geophysical modeling and inversion of gravity, magnetic, and magnetotelluric datasets will be used to image the subsurface. This effort will result in the creation of a 3D model composed of structural, geological, and resistivity components. The 3D model will then be combined with the temperature data to create an integrated model that will be used to prioritize drill target locations.

184

Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

Geothermal/Exploration Geothermal/Exploration < Geothermal Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Land Use Leasing Exploration Well Field Power Plant Transmission Environment Water Use Print PDF Geothermal Exploration General Techniques Tree Techniques Table Regulatory Roadmap NEPA (120) Geothermal springs along Yellowstone National Park's Firehole River in the cool air of autumn. The world's most environmentally sensitive geothermal features are protected by law. Geothermal Exploration searches the earth's subsurface for geothermal resources that can be extracted for the purpose of electricity generation. A geothermal resource is as commonly a volume of hot rock and water, but in the case of EGS, is simply hot rock. Geothermal exploration programs utilize a variety of techniques to identify geothermal reservoirs as well

185

DEVELOPING GIS VISUALIZATION WEB SERVICES FOR GEOPHYSICAL APPLICATIONS  

E-Print Network [OSTI]

DEVELOPING GIS VISUALIZATION WEB SERVICES FOR GEOPHYSICAL APPLICATIONS A. Sayar a,b. *, M. Pierce Commission II, WG II/2 KEY WORDS: GIS, Geophysics, Visualization, Internet/Web, Interoperability, Networks Information System (GIS) community. In this paper we will describe our group's efforts to implement GIS

186

An introduction to electrical resistivity in geophysics | Open Energy  

Open Energy Info (EERE)

An introduction to electrical resistivity in geophysics An introduction to electrical resistivity in geophysics Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: An introduction to electrical resistivity in geophysics Abstract Physicists are finding that the skills they have learned in their training may be applied to areas beyond traditional physics topics. One such field is that of geophysics. This paper presents the electrical resistivity component of an undergraduate geophysics course at Radford University. It is taught from a physics perspective, yet the application of the theory to the real world is the overriding goal. The concepts involved in electrical resistivity studies are first discussed in a general sense, and then they are studied through the application of the relevant electromagnetic theory.

187

Integrated Surface Geophysical Methods for Characterization of the Naval  

Open Energy Info (EERE)

Integrated Surface Geophysical Methods for Characterization of the Naval Integrated Surface Geophysical Methods for Characterization of the Naval Air Warfare Center, New Jersey Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Integrated Surface Geophysical Methods for Characterization of the Naval Air Warfare Center, New Jersey Author USGS Published Publisher Not Provided, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Integrated Surface Geophysical Methods for Characterization of the Naval Air Warfare Center, New Jersey Citation USGS. Integrated Surface Geophysical Methods for Characterization of the Naval Air Warfare Center, New Jersey [Internet]. 2013. [updated 2013/01/03;cited 2013/11/22]. Available from: http://water.usgs.gov/ogw/bgas/toxics/NAWC-surface.html

188

are exploring planet Earth is the part of earth science dealing with the physical processes and  

E-Print Network [OSTI]

GeoKids are exploring planet Earth Geophysics is the part of earth science dealing with the physical processes and characteristics of the Earth and its environment. Volcanism, earthquakes of earth processes. Children are fully involved in measuring processes, data collection, analysis

Brückl, Ewald

189

Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2014-15 academic year)  

E-Print Network [OSTI]

Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Martinez (email: judy.martinez@utah.edu, office: 383 FASB, phone: 801-581-6553) Faculty Advisors-581-7250) Faculty Advisor for Environmental Science Emphasis, Geoscience Major ­ Prof. Dave Dinter (email: david

Johnson, Cari

190

Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2013-14 academic year)  

E-Print Network [OSTI]

Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Martinez (email: judy.martinez@utah.edu, office: 383 FASB, phone: 801-581-6553) Faculty Advisors Advisor for Environmental Science Emphasis, Geoscience Major ­ Prof. Dave Dinter (email: david

Johnson, Cari

191

Highlights of the 2009 SEG summer research workshop on"CO2 Sequestration Geophysics"  

SciTech Connect (OSTI)

The 2009 SEG Summer Research Workshop on CO2 Sequestration Geophysics was held August 23-27, 2009 in Banff, Canada. The event was attended by over 100 scientists from around the world, which proved to be a remarkably successful turnout in the midst of the current global financial crisis and severe corporate travel restrictions. Attendees included SEG President Larry Lines (U. Calgary), and CSEG President John Downton (CGG Veritas), who joined SRW Chairman David Lumley (UWA) in giving the opening welcome remarks at the Sunday Icebreaker. The workshop was organized by an expert technical committee (see side bar) representing a good mix of industry, academic, and government research organizations. The format consisted of four days of technical sessions with over 60 talks and posters, plus an optional pre-workshop field trip to the Columbia Ice Fields to view firsthand the effects of global warming on the Athabasca glacier (Figures 1-2). Group technical discussion was encouraged by requiring each presenter to limit themselves to 15 minutes of presentation followed by a 15 minute open discussion period. Technical contributions focused on the current and future role of geophysics in CO2 sequestration, highlighting new research and field-test results with regard to site selection and characterization, monitoring and surveillance, using a wide array of geophysical techniques. While there are too many excellent contributions to mention all individually here, in this paper we summarize some of the key workshop highlights in order to propagate new developments to the SEG community at large.

Lumley, D.; Sherlock, D.; Daley, T.; Huang, L.; Lawton, D.; Masters, R.; Verliac, M.; White, D.

2010-01-15T23:59:59.000Z

192

A Coordinated Exploration Program for Geothermal Sources on the Island of  

Open Energy Info (EERE)

Exploration Program for Geothermal Sources on the Island of Exploration Program for Geothermal Sources on the Island of Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: A Coordinated Exploration Program for Geothermal Sources on the Island of Hawaii Abstract Staff members of the Hawaii Institute of Geophysics carried out an exploration program for geothermal sources on the island of Hawaii by using all relevant geophysical and geochemical methods. Infrared scanning aerial surveys followed by reconnaissance-type electrical surveys and group noise surveys narrowed down the promising area to the east rift of Kilauea. The surveys carried out over the east rift included magnetic, gravity, and electrical surveys by various methods: microearthquake, surveillance, temperature profiling of wells, and chemical analysis of water samples.

193

History and Results of Surface Exploration in the Kilauea East Rift Zone |  

Open Energy Info (EERE)

History and Results of Surface Exploration in the Kilauea East Rift Zone History and Results of Surface Exploration in the Kilauea East Rift Zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: History and Results of Surface Exploration in the Kilauea East Rift Zone Abstract Government-funded surveys of the Kilauea East Rift Zone have resulted in a wealth of geophysical and geochemical data from an active volcanic area. All data are clearly of academic interest; Hawaii was used as a testing ground for various geophysical methods in the early days of geothermal exploration. Some surveys, such as gravity and magnetic, are useful a regional perspective for determining broad structural trends and grossly identifying magmatic intrusions. Seismic data are currently being used for a more sitespecific purpose: to determine fault locations and geometries.

194

Geothermal exploration program, Hill Air Force Base, Davis and Weber Counties, Utah  

SciTech Connect (OSTI)

Results obtained from a program designed to locate a low- or moderate-temperature geothermal resource that might exist beneath Hill Air Force Base (AFB), Ogden, Utah are discussed. A phased exploration program was conducted at Hill AFB. Published geological, geochemical, and geophysical reports on the area were examined, regional exploration was conducted, and two thermal gradient holes were drilled. This program demonstrated that thermal waters are not present in the shallow subsurface at this site. (MHR)

Glenn, W.E.; Chapman, D.S.; Foley, D.; Capuano, R.M.; Cole, D.; Sibbett, B.; Ward, S.H.

1980-03-01T23:59:59.000Z

195

The Portland Hills Fault: uncovering a hidden fault in Portland, Oregon using high-resolution geophysical methods  

Science Journals Connector (OSTI)

The Portland metropolitan area historically is the most seismically active region in Oregon. At least three potentially active faults are located in the immediate vicinity of downtown Portland, with the Portland Hills Fault (PHF) extending directly beneath downtown Portland. The faults are poorly understood, and the surface geologic record does not provide the information required to assess the seismic hazards associated with them. The limited geologic information stems from a surface topography that has not maintained a cumulative geologic record of faulting, in part, due to rapid erosion and deposition from late Pleistocene catastrophic flood events and a possible strike-slip component of the faults. We integrated multiple high-resolution geophysical techniques, including seismic reflection, ground penetrating radar (GPR), and magnetic methods, with regional geological and geophysical surveys to determine that the Portland Hills Fault is presently active with a zone of deformation that extends at least 400 m. The style of deformation is consistent with at least two major earthquakes in the last 1215 ka, as confirmed by a sidehill excavation trench. High-resolution geophysical methods provide detailed images of the upper 100 m across the active fault zone. The geophysical images are critical to characterizing the structural style within the zone of deformation, and when integrated with a paleoseismic trench, can accurately record the seismic history of a region with little surface geologic exposure.

Lee M. Liberty; Mark A. Hemphill-Haley; Ian P. Madin

2003-01-01T23:59:59.000Z

196

File:04AKBGeophysicalExplorationPermit.pdf | Open Energy Information  

Open Energy Info (EERE)

AKBGeophysicalExplorationPermit.pdf AKBGeophysicalExplorationPermit.pdf Jump to: navigation, search File File history File usage File:04AKBGeophysicalExplorationPermit.pdf Size of this preview: 463 × 599 pixels. Other resolution: 464 × 600 pixels. Full resolution ‎(1,275 × 1,650 pixels, file size: 62 KB, MIME type: application/pdf) File history Click on a date/time to view the file as it appeared at that time. Date/Time Thumbnail Dimensions User Comment current 11:38, 6 August 2012 Thumbnail for version as of 11:38, 6 August 2012 1,275 × 1,650 (62 KB) Jnorris (Talk | contribs) You cannot overwrite this file. Edit this file using an external application (See the setup instructions for more information) File usage The following 2 pages link to this file: GRR/Flowcharts GRR/Section 4-AK-b - Geophysical Exploration Permit

197

Oil and Gas Exploration (Connecticut) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Exploration (Connecticut) Exploration (Connecticut) Oil and Gas Exploration (Connecticut) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Connecticut Program Type Siting and Permitting These regulations apply to activities conducted for the purpose of obtaining geological, geophysical, or geochemical information about oil or gas including seismic activities but excluding exploratory well drilling or aerial surveys. Such exploration for oil or gas must be registered with the

198

Rock Mechanics and Enhanced Geothermal Systems: A DOE-sponsored Workshop to Explore Research Needs  

SciTech Connect (OSTI)

This workshop on rock mechanics and enhanced geothermal systems (EGS) was held in Cambridge, Mass., on June 20-21 2003, before the Soil and Rock America 2003 International Conference at MIT. Its purpose was to bring together experts in the field of rock mechanics and geothermal systems to encourage innovative thinking, explore new ideas, and identify research needs in the areas of rock mechanics and rock engineering applied to enhanced geothermal systems. The agenda is shown in Appendix A. The workshop included experts in the fields of rock mechanics and engineering, geological engineering, geophysics, drilling, the geothermal energy production from industry, universities and government agencies, and laboratories. The list of participants is shown is Appendix B. The first day consisted of formal presentations. These are summarized in Chapter 1 of the report. By the end of the first day, two broad topic areas were defined: reservoir characterization and reservoir performance. Working groups were formed for each topic. They met and reported in plenary on the second day. The working group summaries are described in Chapter 2. The final session of the workshop was devoted to reaching consensus recommendations. These recommendations are given in Chapter 3. That objective was achieved. All the working group recommendations were considered and, in order to arrive at a practical research agenda usable by the workshop sponsors, workshop recommendations were reduced to a total of seven topics. These topics were divided in three priority groups, as follows. First-priority research topics (2): {sm_bullet} Define the pre-existing and time-dependent geometry and physical characteristics of the reservoir and its fracture network. That includes the identification of hydraulically controlling fractures. {sm_bullet} Characterize the physical and chemical processes affecting the reservoir geophysical parameters and influencing the transport properties of fractures. Incorporate those processes in reservoir simulators. Second-priority research topics (4): {sm_bullet} Implement and proof-test enhanced fracture detection geophysical methods, such as 3-D surface seismics, borehole seismics, and imaging using earthquake data. {sm_bullet} Implement and proof-test enhanced stress measurement techniques, such as borehole breakout analysis, tilt-meters, and earthquake focal mechanism analysis. {sm_bullet} Implement and proof-test high-temperature down-hole tools for short-term and long-term diagnostics, such as borehole imaging, geophone arrays, packers, and electrical tools.

Francois Heuze; Peter Smeallie; Derek Elsworth; Joel L. Renner

2003-10-01T23:59:59.000Z

199

Lab Analysis Techniques | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Lab Analysis Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Lab Analysis Techniques Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: Water rock interaction; Rapid and unambiguous identification of unknown minerals; Bulk and trace element analysis of rocks, minerals, and sediments; Obtain detailed information about rock composition and morphology; Determine detailed information about rock composition and morphology; Cuttings are used to define lithology; Core analysis is done to define lithology

200

Crump Geyser: High Precision Geophysics & Detailed Structural...  

Broader source: Energy.gov (indexed) [DOE]

testing approach to Flowing Differential Self Potential (FDSP) and electrical tomography resistivity as a guide to exploration and development. - Demonstrate utility and...

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Crump Geyser: High Precision Geophysics & Detailed Structural...  

Broader source: Energy.gov (indexed) [DOE]

testing approach to Flowing Differential Self Potential (FDSP) and electrical tomography resistivity as a guide to exploration and development. Demonstrate utility and...

202

Geology and geophysics of the Beata Ridge - Caribbean  

E-Print Network [OSTI]

GEOLOGY AND GEOPHYSICS OF THE BEATA RIDGE - CARIBBEAN A Thesis by LANAR BURTON ROEMER Submitted to the Graduate College of Texas Ak? University in partial fu1fillment of the requirement for the degree of MASTER OF SCIENCE August 1973 Ma...)or Subject: Oceanography GEOLOGY AND GEOPHYSICS OF THE BEATA RIDGE ? CARIBBEAN A Thesis by LAMAR BURTON ROEMER Approved as to style and content by: o-Chairman o C it ee -Car f o ee ea o Dep r e Member August 1973 ABSTRACT Geology and Geophysics...

Roemer, Lamar Burton

1973-01-01T23:59:59.000Z

203

Monitoring Vadose Zone Desiccation with Geophysical Methods  

SciTech Connect (OSTI)

Soil desiccation was recently field tested as a potential vadose zone remediation technology. Desiccation removes water from the vadose zone and significantly decreases the aqueous-phase permeability of the desiccated zone, thereby decreasing movement of moisture and contaminants. The 2-D and 3-D distribution of moisture content reduction over time provides valuable information for desiccation operations and for determining when treatment goals have been reached. This type of information can be obtained through use of geophysical methods. Neutron moisture logging, cross-hole electrical resistivity tomography, and cross-hole ground penetrating radar approaches were evaluated with respect to their ability to provide effective spatial and temporal monitoring of desiccation during a treatability study conducted in the vadose zone of the DOE Hanford Site in WA.

Truex, Michael J.; Johnson, Timothy C.; Strickland, Christopher E.; Peterson, John E.; Hubbard, Susan S.

2013-05-01T23:59:59.000Z

204

Property:ExplorationBasis | Open Energy Information  

Open Energy Info (EERE)

ExplorationBasis ExplorationBasis Jump to: navigation, search Property Name ExplorationBasis Property Type Text Description Exploration Basis Why was exploration work conducted in this area (e.g., USGS report of a geothermal resource, hot springs with geothemmetry indicating electrical generation capacity, etc.) Subproperties This property has the following 1 subproperty: M Mercury Vapor At Salt Wells Area (Henkle, Et Al., 2005) Pages using the property "ExplorationBasis" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe Survey At Coso Geothermal Area (1977) + Compare directly shallow temperature results with standard geothermal exploration techniques. 2-M Probe Survey At Coso Geothermal Area (1979) + Correct previously analyzed 2-m probe data

205

Accepted to the Journal Geophysical Research Laboratory measurements of electrical  

E-Print Network [OSTI]

1 Accepted to the Journal Geophysical Research Laboratory measurements of electrical conductivities measurements of electrical conductivities of natural magma compositions. The electrical conductivities of three. The electrical conductivity increases with temperature and is higher in the order tephrite, phonotephrite

Paris-Sud XI, Université de

206

Geophysical review of Trans-Pecos area of west Texas  

SciTech Connect (OSTI)

The Trans-Pecos has intrigued and baffled the oil industry, and all exploratory efforts so far have remained fruitless. Our geophysical findings along with other geologic information allow us to analyze the overall hydrocarbon potential for this area. Gravity and magnetic data were helpful in regional mapping but were unreliable for localized information owing to numerous extrusive and intrusive rocks. Seismic mapping shows many undrilled structures. However, the success ratio for the structures already drilled is disappointing (e.g., on the Diablo platform, out of 22 structural leads, 11 have been drilled and all were dry, and in the Marfa basin 17 out of 41 leads were drilled without success). Results were similar in Salt-Flat graben. Many of these wells had good hydrocarbon shows and almost all yielded fresh water. Tectonically the area has undergone several periods of orogeny, the result of the latest being numerous Basin and Range faults. The area is still seismically active and shows appreciable geodetic movement. It is suggested that the traps were destroyed with subsequent leakage of hydrocarbon and repeated induction of fresh water. Trap destruction is apparently beyond the scope of seismic detection. The Chihuahua trough (US), in spite of many discouraging facts, such as high heat flow, thermal waters, etc, shows some promise because seismic data reveal large thrust anticlines in the lower Paleozoic rocks (approximately 15,000 ft) that are yet to be adequately tested. Other small undamaged stratigraphic traps (reefs, truncations, pinch-outs, etc) are possibly present and could be targets for future exploration.

Addy, S.K.; DeJong, H.W.; Whitney, G.W.; Worthington, R.E.

1985-02-01T23:59:59.000Z

207

Tracers and Exploration Technologies  

Broader source: Energy.gov [DOE]

Below are the project presentations and respective peer review results for Tracers and Exploration Technologies.

208

Offshore Application of Self-potential Prospecting  

E-Print Network [OSTI]

Geophysical Techniques in Geothernal Exploration, in United Nations Symposium on the Development and USi l i zatlon of Geothermal Resources,

Corwin, Robert Frederic

1973-01-01T23:59:59.000Z

209

CANADIAN JOURNAL OF EXPLORATION GEOPHYSICS VOL. 29, NO. 1 (JUNE 1993), P. 227-235  

E-Print Network [OSTI]

types of hexagonal anisotropic symmetry, with perpendicular axes, leads to orthorhombic symmetry. It can be caused either by aligned grains such as shales (Kaarsberg, 1968; Robertson and Corrigan, 1983

Edinburgh, University of

210

CANADIAN JOURNAL OF EXPLORATION GEOPHYSICS VOL. 29, NO. 1 (JUNE 1993), P. 189-215  

E-Print Network [OSTI]

reservoirs (Crampin, 1987; Lewis et al., 1991). Higher oil production in fractured reservoirs is often associ correlate with fracture density and related oil production in the sur- vey area. The three lines, 1 and 2 to the absence of commercial oil production nearby. There is a trend of increasing time delays between split

Edinburgh, University of

211

United States Department Of The Navy Geothermal Exploration Leading To  

Open Energy Info (EERE)

Department Of The Navy Geothermal Exploration Leading To Department Of The Navy Geothermal Exploration Leading To Shallow And Intermediate-Deep Drilling At Hawthorne Ammunition Depot, Hawthorne, Nv Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: United States Department Of The Navy Geothermal Exploration Leading To Shallow And Intermediate-Deep Drilling At Hawthorne Ammunition Depot, Hawthorne, Nv Details Activities (6) Areas (1) Regions (0) Abstract: Results of geological, geochemical, and geophysical studies performed by personnel from the Geothermal Program Office (GPO) strongly suggested that there is a geothermal resource beneath lands controlled by the Hawthorne Ammunition Depot. The geothermal fluid is thought to be convecting meteoric water that is derived from precipitation within the

212

Understanding biogeobatteries: Where geophysics meets microbiology  

SciTech Connect (OSTI)

Although recent research suggests that contaminant plumes behave as geobatteries that produce an electrical current in the ground, no associated model exists that honors both geophysical and biogeochemical constraints. Here, we develop such a model to explain the two main electrochemical contributions to self-potential signals in contaminated areas. Both contributions are associated with the gradient of the activity of two types of charge carriers, ions and electrons. In the case of electrons, bacteria act as catalysts for reducing the activation energy needed to exchange the electrons between electron donor and electron acceptor. Possible mechanisms that facilitate electron migration include iron oxides, clays, and conductive biological materials, such as bacterial conductive pili or other conductive extracellular polymeric substances. Because we explicitly consider the role of biotic processes in the geobattery model, we coined the term 'biogeobattery'. After theoretical development of the biogeobattery model, we compare model predictions with self-potential responses associated with laboratory and field-scale conducted in contaminated environments. We demonstrate that the amplitude and polarity of large (>100 mV) self-potential signatures requires the presence of an electronic conductor to serve as a bridge between electron donors and acceptors. Small self-potential anomalies imply that electron donors and electron acceptors are not directly interconnected, but instead result simply from the gradient of the activity of the ionic species that are present in the system.

Revil, A.; Mendonca, C.A.; Atekwana, E.A.; Kulessa, B.; Hubbard, S.S.; Bohlen, K.

2009-08-15T23:59:59.000Z

213

Oil and Gas Exploration  

E-Print Network [OSTI]

Metals Industrial Minerals Oil and Gas Geothermal Exploration Development Mining Processing Nevada, oil and gas, and geothermal activities and accomplishments in Nevada: production statistics, exploration and development including drilling for petroleum and geothermal resources, discoveries of ore

Tingley, Joseph V.

214

A Feasibility Study of Non-Seismic Geophysical Methods forMonitoring Geologic CO2 Sequestration  

SciTech Connect (OSTI)

Because of their wide application within the petroleumindustry it is natural to consider geophysical techniques for monitoringof CO2 movement within hydrocarbon reservoirs, whether the CO2 isintroduced for enhanced oil/gas recovery or for geologic sequestration.Among the available approaches to monitoring, seismic methods are by farthe most highly developed and applied. Due to cost considerations, lessexpensive techniques have recently been considered. In this article, therelative merits of gravity and electromagnetic (EM) methods as monitoringtools for geological CO2 sequestration are examined for two syntheticmodeling scenarios. The first scenario represents combined CO2 enhancedoil recovery (EOR) and sequestration in a producing oil field, theSchrader Bluff field on the north slope of Alaska, USA. The secondscenario is a simplified model of a brine formation at a depth of 1,900m.

Gasperikova, Erika; Hoversten, G. Michael

2006-07-01T23:59:59.000Z

215

Airborne electromagnetic surveys as a reconnaissance technique...  

Open Energy Info (EERE)

Airborne electromagnetic surveys as a reconnaissance technique for geothermal exploration Abstract INPUT airborne electromagnetic (AEM) surveys were conducted during 1979 in five...

216

NATIONAL GEOPHYSICAL RESEARCH INSTITUTE, HYDERABAD, INDIA. Induction Workshop: (18 -23 October, 2004)  

E-Print Network [OSTI]

. 13. Open session · Venue:: National Geophysical Research Institute (An ISO 9001 Organisation in different sectors of the Himalaya. #12;· Venue:: National Geophysical Research Institute (An ISO 9001

Harinarayana, T.

217

Geophysical Journal International Geophys. J. Int. (2013) doi: 10.1093/gji/ggt482  

E-Print Network [OSTI]

Kalscheuer2 and Jasper A. Vrugt3,4 1Applied and Environmental Geophysics Group, Faculty of Geosciences

Vrugt, Jasper A.

218

Time-lapse Joint Inversion of Geophysical Data and its Applications...  

Broader source: Energy.gov (indexed) [DOE]

Objectives of the project * Forward modeling geophysical response with fluid flowheat modeling * Joint inversion (stochasticdeterministic) for ground water flow imaging *...

219

Geophysical monitoring of foam used to deliver remediation treatments within the vadose zone  

E-Print Network [OSTI]

relationships observed for unconsolidated sediments. Wateron unsaturated, unconsolidated sands. Geophysics 69:762-771.saturated and unsaturated unconsolidated samples (Vanhala

Wu, Y.

2013-01-01T23:59:59.000Z

220

Characterization Of Geothermal Resources Using New Geophysical Technology |  

Open Energy Info (EERE)

Using New Geophysical Technology Using New Geophysical Technology Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Characterization Of Geothermal Resources Using New Geophysical Technology Details Activities (2) Areas (2) Regions (0) Abstract: This paper presents a geothermal case history using a relatively new but proven technology that can accurately map groundwater at significant depths (up to 1,000 meters) over large areas (square kilometers) in short periods of time (weeks). Understanding the location and extent of groundwater resources is very important to the geothermal industry for obvious reasons. It is crucial to have a cost-effective method of understanding where concentrations of geothermal water are located as well as the preferential flow paths of the water in the subsurface. Such

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Reconnaissance geophysical studies of the geothermal system in southern  

Open Energy Info (EERE)

geophysical studies of the geothermal system in southern geophysical studies of the geothermal system in southern Raft River Valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Details Activities (4) Areas (1) Regions (0) Abstract: Gravity, aeromagnetic, and telluric current surveys in the southern Raft River have been used to infer the structure and the general lithology underlying the valley. The gravity data indicate the approximate thickness of the Cenozoic rocks and location of the larger normal faults, and the aeromagnetic data indicate the extent of the major Cenozoic volcanic units. The relative ellipse area contour map compiled from the telluric current survey generally conforms to the gravity map except for

222

Well casing-based geophysical sensor apparatus, system and method  

DOE Patents [OSTI]

A geophysical sensor apparatus, system, and method for use in, for example, oil well operations, and in particular using a network of sensors emplaced along and outside oil well casings to monitor critical parameters in an oil reservoir and provide geophysical data remote from the wells. Centralizers are affixed to the well casings and the sensors are located in the protective spheres afforded by the centralizers to keep from being damaged during casing emplacement. In this manner, geophysical data may be detected of a sub-surface volume, e.g. an oil reservoir, and transmitted for analysis. Preferably, data from multiple sensor types, such as ERT and seismic data are combined to provide real time knowledge of the reservoir and processes such as primary and secondary oil recovery.

Daily, William D. (Livermore, CA)

2010-03-09T23:59:59.000Z

223

CURRICULUM VITAE TARJE NISSEN-MEYER address: ETH Zurich, Institute of Geophysics  

E-Print Network [OSTI]

CURRICULUM VITAE TARJE NISSEN-MEYER address: ETH Zurich, Institute of Geophysics Sonneggstrasse 5 of Geophysics, ETH Zurich, Switzerland 2008 - 2010 Postdoctoral Research Associate, Dept. of Geosciences, Institute of Geophysics, ETH Zurich 2008 ­ 2010 Ph.D. student co-superviser: Andrea Colombi, Percy Galvez

Nissen-Meyer, Tarje

224

Exploration Best Practices  

Broader source: Energy.gov (indexed) [DOE]

Farm 1 | US DOE Geothermal Program eere.energy.gov Geothermal Technologies Program 2010 Peer Review Exploration Best Practices and Success Rates PI: Katherine Young Presented by:...

225

Spatial data analysis for exploration of regional scale geothermal resources  

Science Journals Connector (OSTI)

Abstract Defining a comprehensive conceptual model of the resources sought is one of the most important steps in geothermal potential mapping. In this study, Fry analysis as a spatial distribution method and 5% well existence, distance distribution, weights of evidence (WofE), and evidential belief function (EBFs) methods as spatial association methods were applied comparatively to known geothermal occurrences, and to publicly-available regional-scale geoscience data in Akita and Iwate provinces within the Tohoku volcanic arc, in northern Japan. Fry analysis and rose diagrams revealed similar directional patterns of geothermal wells and volcanoes, NNW-, NNE-, NE-trending faults, hotsprings and fumaroles. Among the spatial association methods, WofE defined a conceptual model correspondent with the real world situations, approved with the aid of expert opinion. The results of the spatial association analyses quantitatively indicated that the known geothermal occurrences are strongly spatially-associated with geological features such as volcanoes, craters, NNW-, NNE-, NE-direction faults and geochemical features such as hotsprings, hydrothermal alteration zones and fumaroles. Geophysical data contains temperature gradients over 100C/km and heat flow over 100mW/m2. In general, geochemical and geophysical data were better evidence layers than geological data for exploring geothermal resources. The spatial analyses of the case study area suggested that quantitative knowledge from hydrothermal geothermal resources was significantly useful for further exploration and for geothermal potential mapping in the case study region. The results can also be extended to the regions with nearly similar characteristics.

Majid Kiavarz Moghaddam; Younes Noorollahi; Farhad Samadzadegan; Mohammad Ali Sharifi; Ryuichi Itoi

2013-01-01T23:59:59.000Z

226

Seismic petrophysics: An applied science for reservoir geophysics  

E-Print Network [OSTI]

Seismic petrophysics: An applied science for reservoir geophysics WAYNE D. PENNINGTON, Michigan a number of seismic attributes, using either prestack or poststack data, or even both in combination's intuition and, per- haps, wishful thinking, as a guide. This short paper introduces a new term "seismic

227

Deborah K. Smith Department of Geology and Geophysics, MS 22  

E-Print Network [OSTI]

Deborah K. Smith Department of Geology and Geophysics, MS 22 Woods Hole Oceanographic Institution: Jordan, T. H., H. W. Menard, and D.K. Smith, Density and size distribution of seamounts in the eastern. Smith, H. W. Menard, J. A. Orcutt and T. H. Jordan, Seismic reflection site survey: correlation

Smith, Deborah K.

228

Geophysical Research Abstracts Vol. 12, EGU2010-11992, 2010  

E-Print Network [OSTI]

, geological maps were focussed on solid geology. Present societal needs increasingly require knowledge of regolith properties: superficial studies combining geology, geochemistry and geophysics become essential km. This method provides maps of potassium (K), uranium (U) and thorium (Th) which are the only

Paris-Sud XI, Université de

229

Aerial remote sensing surveys, geophysical characterization. Final report  

SciTech Connect (OSTI)

The application of helicopter electromagnetic (HEM) and magnetic methods to the requirements of the environmental restoration of the Oak Ridge Reservation (ORR) demand the use of advanced, nontraditional methods of data acquisition, processing and interpretation. The cooperative study by the U.S. Geological Survey (USGS), Oak Ridge National Laboratory (ORNL), and University of California (UCB) has resulted in the planning and supervision of data acquisition, the development of tools for data processing and interpretation, and an intensive application of the methods developed. This final report consists of a series of publications which the USGS collaborated with the ORNL technical staff. These reports represent the full scope of the USGS assistance. Copies of the reports and papers are included in the Appendix. The primary goals of this effort were to quantify the effectiveness of the geophysical methods applied in the survey of the ORR for the identification of buried waste, hydrogeologic pathways by which contamination could migrate through or off the site, and for the more accurate geologic mapping of the ORR. The objectives in buried waste identification are the accurate description of the source of the geophysical anomaly and the determination of the limits of resolution of the geophysical methods to acknowledge what we might have missed. The study of hydrogeologic pathways concentrated on the identification of karst features in the limestone underlying much of the ORR. Work in this study has indicated to the ORNL staff that these karst features can be located from the airborne geophysics. The defining characteristic of this helicopter geophysical study is the collaborative nature of the effort. Each task in which the USGS was involved has included a designated staff member from the Oak Ridge National Laboratory.

Labson, V.F.; Pellerin, L.; Anderson, W.L.

1998-06-01T23:59:59.000Z

230

GRR/Section 4-TX-a - State Exploration Process | Open Energy Information  

Open Energy Info (EERE)

4-TX-a - State Exploration Process 4-TX-a - State Exploration Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-TX-a - State Exploration Process 04TXAStateExplorationProcess.pdf Click to View Fullscreen Contact Agencies Texas General Land Office Railroad Commission of Texas Texas Parks and Wildlife Department Regulations & Policies 16 TAC 3.5: Application to Drill, Deepen, Reenter, or Plug Back 16 TAC 3.7: Strata to Be Sealed Off 16 TAC 3.79: Definitions 16 TAC 3.100: Seismic Holes and Core Holes 31 TAC 10.2: Prospect Permits on State Lands 31 TAC 155.40: Definitions 31 TAC 155.42: Mining Leases on Properties Subject to Prospect 31 TAC 9.11: Geophysical and Geochemical Exploration Permits Triggers None specified

231

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6 1/8-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently planning to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Depending on the results of these logs, an acidizing or re-drill program will be planned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-09-29T23:59:59.000Z

232

Use of Cutting-Edge Horizontal and Underbalanced Drilling Technologies and Subsurface Seismic Techniques to Explore, Drill and Produce Reservoired Oil and Gas from the Fractured Monterey Below 10,000 ft in the Santa Maria Basin of California  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6{Delta}-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 and 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor attempted in July, 2006, to re-enter and clean out the well and run an Array Induction log (primarily for resistivity and correlation purposes), and an FMI log (for fracture detection). Application of surfactant in the length of the horizontal hole, and acid over the fracture zone at 10,236 was also planned. This attempt was not successful in that the clean out tools became stuck and had to be abandoned.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2006-06-30T23:59:59.000Z

233

USE OF CUTTING-EDGE HORIZONTAL AND UNDERBALANCED DRILLING TECHNOLOGIES AND SUBSURFACE SEISMIC TECHNIQUES TO EXPLORE, DRILL AND PRODUCE RESERVOIRED OIL AND GAS FROM THE FRACTURED MONTEREY BELOW 10,000 FT IN THE SANTA MARIA BASIN OF CALIFORNIA  

SciTech Connect (OSTI)

This project was undertaken to demonstrate that oil and gas can be drilled and produced safely and economically from a fractured Monterey reservoir in the Santa Maria Basin of California by employing horizontal wellbores and underbalanced drilling technologies. Two vertical wells were previously drilled in this area by Temblor Petroleum with heavy mud and conventional completions; neither was commercially productive. A new well was drilled by the project team in 2004 with the objective of accessing an extended length of oil-bearing, high-resistivity Monterey shale via a horizontal wellbore, while implementing managed-pressure drilling (MPD) techniques to avoid formation damage. Initial project meetings were conducted in October 2003. The team confirmed that the demonstration well would be completed open-hole to minimize productivity impairment. Following an overview of the geologic setting and local field experience, critical aspects of the application were identified. At the pre-spud meeting in January 2004, the final well design was confirmed and the well programming/service company requirements assigned. Various design elements were reduced in scope due to significant budgetary constraints. Major alterations to the original plan included: (1) a VSP seismic survey was delayed to a later phase; (2) a new (larger) surface hole would be drilled rather than re-enter an existing well; (3) a 7-in. liner would be placed into the top of the Monterey target as quickly as possible to avoid problems with hole stability; (4) evaluation activities were reduced in scope; (5) geosteering observations for fracture access would be deduced from penetration rate, cuttings description and hydrocarbon in-flow; and (6) rather than use nitrogen, a novel air-injection MPD system was to be implemented. Drilling operations, delayed from the original schedule by capital constraints and lack of rig availability, were conducted from September 12 to November 11, 2004. The vertical and upper curved sections were drilled and lined through the problematic shale member without major stability problems. The top of the targeted Monterey was thought to be seen at the expected TVD of 10,000 ft where the 7-in. liner was set at a 60{sup o} hole angle. Significant oil and gas shows suggested the fractured interval anticipated at the heel location had been penetrated. A total of 2572 ft of 6.-in. near-horizontal interval was placed in the shale section, extending planned well length by approximately 470 ft. Very little hydrocarbon in-flow was observed from fractures along the productive interval. This may be a result of the well trajectory falling underneath the Monterey fractured zone. Hydrocarbon observations, cuttings analysis and gamma-ray response indicated additional fractured intervals were accessed along the last {+-}900 ft of well length. The well was completed with a 2 7/8-in. tubing string set in a production packer in preparation for flow and swab tests to be conducted later by a service rig. The planned well time was estimated as 39 days and overall cost as $2.4 million. The actual results are 66 days at a total cost of $3.4 million. Well productivity responses during subsequent flow and swabbing tests were negative. The well failed to inflow and only minor amounts (a few barrels) of light oil were recovered. The lack of production may suggest that actual sustainable reservoir pressure is far less than anticipated. Temblor is currently investigating the costs and operational viability of re-entering the well and conducting an FMI (fracture detection) log and/or an acid stimulation. No final decision or detailed plans have been made regarding these potential interventions at this time.

George Witter; Robert Knoll; William Rehm; Thomas Williams

2005-02-01T23:59:59.000Z

234

Miniaturization Techniques for Accelerators  

SciTech Connect (OSTI)

The possibility of laser driven accelerators [1] suggests the need for new structures based on micromachining and integrated circuit technology because of the comparable scales. Thus, we are exploring fully integrated structures including sources, optics (for both light and particle) and acceleration in a common format--an accelerator-on-chip (AOC). Tests suggest a number of preferred materials and techniques but no technical or fundamental roadblocks at scales of order 1 {micro}m or larger.

Spencer, James E.

2003-05-27T23:59:59.000Z

235

Seismic exploration for shallow magma bodies in the vicinity of Socorro, New Mexico. Final report, January 1, 1977-December 31, 1977  

SciTech Connect (OSTI)

This report contains the following articles: Characteristics of Rio Grande rift in vicinity of Socorro, New Mexico, from geophysical studies; Exploration framework of the Socorro Geothermal Area, New Mexico; a study of Poisson's ratio in the upper crust in the Socorro, New Mexico, Area; and Microearthquake frequency attenuation of S phases in the Rio Grande rift near Socorro. (ACR)

Sanford, A.R.; Schlue, J.

1980-11-01T23:59:59.000Z

236

Exploration Best Practices  

Broader source: Energy.gov [DOE]

The purpose of this project is to provide an overview of currentt geoth thermall explloratiti on bbestt practi tices andd a baseline values for exploration (both non-drilling and drilling) success rates in the U.S.

237

Dismantling techniques  

SciTech Connect (OSTI)

Most of the dismantling techniques used in a Decontamination and Dismantlement (D and D) project are taken from conventional demolition practices. Some modifications to the techniques are made to limit exposure to the workers or to lessen the spread of contamination to the work area. When working on a D and D project, it is best to keep the dismantling techniques and tools as simple as possible. The workers will be more efficient and safer using techniques that are familiar to them. Prior experience with the technique or use of mock-ups is the best way to keep workers safe and to keep the project on schedule.

Wiese, E.

1998-03-13T23:59:59.000Z

238

New River Geothermal Exploration (Ram Power Inc.)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

Clay Miller

239

New River Geothermal Exploration (Ram Power Inc.)  

SciTech Connect (OSTI)

The New River Geothermal Exploration (DOE Award No. EE0002843) is located approximately 25km south of the Salton Sea, near town of Brawley in Imperial County and approximately 150km east of San Diego, California. A total of 182 MT Logger sites were completed covering the two separate Mesquite and New River grids. The data was collected over a frequency range of 320Hz to 0.001Hz with variable site spacing. A number of different inversion algorithms in 1D, 2D and 3D were used to produce resistivity-depth profiles and maps of subsurface resistivity variations over the survey area. For 2D inversions, a total of eighteen lines were constructed in east-west and north-south orientations crossing the entire survey area. For MT 3D inversion, the New River property was divided in two sub-grids, Mesquite and New River areas. The report comprises of two parts. For the first part, inversions and geophysical interpretation results are presented with some recommendations of the potential targets for future follow up on the property. The second part of the report describes logistics of the survey, survey parameters, methodology and the survey results (data) in digital documents. The report reviews a Spartan MT survey carried out by Quantec Geoscience Limited over the New River Project in California, USA on behalf of Ram Power Inc. Data was acquired over a period of 29 days from 2010/06/26 to 2010/07/24.

Clay Miller

2013-11-15T23:59:59.000Z

240

Geophysical Characterization of a Geothermal System Neal Hot Springs,  

Open Energy Info (EERE)

Characterization of a Geothermal System Neal Hot Springs, Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Abstract Neal Hot Springs is an active geothermal area that is also the proposed location of a binary power plant, which is being developed by US Geothermal Inc. To date, two production wells have been drilled and an injection well is in the process of being completed. The primary goal of this field camp was to provide a learning experience for students studying geophysics, but a secondary goal was to characterize the Neal Hot Springs area to provide valuable information on the flow of geothermal fluids through the subsurface. This characterization was completed using a variety of

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

LANL Institutes - Institute of Geophysics and Planetary Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summer of Applied Geophysical Experience (SAGE) Summer of Applied Geophysical Experience (SAGE) Application Form A complete application includes: An on-line application Letter of Interest two (2) references (download reference form in PDF or Word format). Referee must submit by email to georgia@lanl.gov or fax to: 505-663-5225 proof of health insurance complete transcripts (unofficial is acceptable) Foreign students, please contact Georgia Sanchez at georgia@lanl.gov regarding your application. Cost is $500, $100.00 is due with the application. Please mail deposit with a copy of your application to: SAGE IGPPS, MS-T001 Los Alamos National Laboratory Los Alamos, NM 87545 USA Email: georgia@lanl.gov Voice: 505-663-5291 Note: Course credit may be possible by prior arrangement with your university (please check with your advisor) but cannot be awarded directly

242

Geophysics-based method of locating a stationary earth object  

DOE Patents [OSTI]

A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

Daily, Michael R. (Albuquerque, NM); Rohde, Steven B. (Corrales, NM); Novak, James L. (Albuquerque, NM)

2008-05-20T23:59:59.000Z

243

An Integrated Model For The Geothermal Field Of Milos From Geophysical  

Open Energy Info (EERE)

Milos From Geophysical Milos From Geophysical Experiments Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Integrated Model For The Geothermal Field Of Milos From Geophysical Experiments Details Activities (0) Areas (0) Regions (0) Abstract: The results of geophysical experiments carried out by eight teams on the island of Milos as part of an integrated project under the European Commission's geothermal R & D programme are considered. The combination of these data with earlier studies on the geology and geophysics of Milos allow the compilation of a possible model of the geothermal reservoir and its surroundings in the central eastern part of the island. The reservoir is fed by convection of hot fluids from a depth of several kilometres, but the geophysical data provide no strong support for the earlier hypothesis

244

Geophysical Fluid Dynamics Laboratory Portal | Data.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geophysical Fluid Dynamics Laboratory Portal Geophysical Fluid Dynamics Laboratory Portal Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Geophysical Fluid Dynamics Laboratory Portal Dataset Summary Description Output and documentation from a set of multi-century experiments performed using NOAA/GFDL's climate models. Users can download files, display data file attributes, and graphically display the data. Data sets include those from CM2.X experiments associated with the Intergovernmental Panel on Climate Change Assessment Report (IPCC) and the US Climate Change Science Program (US CCSP). Tags {climate,IPCC,CCSP,pressure,SLP," sea ice","upper-level winds",ozone,"meridional winds","zonal winds",u-wind,v-wind," carbon dioxide"," volcanic",aerosol,grids,"soil moisture"," IPCC",flux,"radiation flux",thickness,radiation,emissivity,longwave,sensible,"latent heat",downwelling,upwelling,temperature,convective,runoff,"water vapor",humidity,cloudiness,transport,"geopotential height",assimilation,salinity,evaporation,freshwater}

245

Exploring Salvage Techniques for Multi-core Architectures Russ Joseph  

E-Print Network [OSTI]

-field threaten the functional life- time of computer hardware. Second, manufacturing defects will become or virtualizing functionality which cannot be supported by the hardware as a result of failure. 1 Introduction be swapped in to replace them. This however, can be rather hardware inefficient since the spare cores remain

Bustamante, Fabián E.

246

Exploring Written Communication Techniques for Complex Natural Resource Issues.  

E-Print Network [OSTI]

??Many natural resource issues are increasingly complex and multi-faceted, and solutions may not be readily apparent. Increasing public understanding and encouraging public involvement is assumed (more)

Oxarart, Annie

2008-01-01T23:59:59.000Z

247

Exploration and Development Techniques for Basin and Range Geothermal...  

Open Energy Info (EERE)

Abstract Abstract unavailable. Authors David D. Blackwell, Mark Leidig, Richard P. Smith, Stuart D. Johnson and Kenneth W. Wisian Conference GRC Annual Meeting; Reno, NV;...

248

Category:Electrical Techniques | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Electrical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Electrical Techniques page? For detailed information on Electrical Techniques as exploration techniques, click here. Category:Electrical Techniques Add.png Add a new Electrical Techniques Technique Subcategories This category has the following 2 subcategories, out of 2 total. D [+] Direct-Current Resistivity Survey‎ (2 categories) 3 pages E [+] Electromagnetic Techniques‎ (1 categories) 2 pages Pages in category "Electrical Techniques"

249

Advances In Geothermal Resource Exploration Circa 2007 | Open Energy  

Open Energy Info (EERE)

Exploration Circa 2007 Exploration Circa 2007 Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Advances In Geothermal Resource Exploration Circa 2007 Details Activities (8) Areas (1) Regions (0) Abstract: At the outset of the 21st centry, the geothermal community at-large is essentially attempting to use available exploration tools and techniques to find needles (geothermal occurrences) in very large haystacks (expanses of unexplored territory). Historically teh industry has relied on teh presence of surface manifestations of subsurface heat, such as hot springs, fumaroles, or geyers as a firt-order exploration tool., Regrettably, even when such surface manifestations are investigated more closely, there is no proven technique or techniques that can bve used with

250

A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And  

Open Energy Info (EERE)

Strategy For Geothermal Exploration With Emphasis On Gravity And Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Regional Strategy For Geothermal Exploration With Emphasis On Gravity And Magnetotellurics Details Activities (4) Areas (2) Regions (0) Abstract: As part of the resource evaluation and exploration program conducted by Los Alamos Scientific Laboratory for the national Hot Dry Rock (HDR) Geothermal Program, a regional magnetotelluric (MT) survey of New Mexico and Arizona is being performed. The MT lines are being located in areas where the results of analysis of residual gravity anomaly maps of Arizona and New Mexico, integrated with other geologic and geophysical studies indicate the greatest potential for HDR resources. The residual

251

Cooperative Exploration under Communication Constraints  

E-Print Network [OSTI]

process has not been fully characterized. Existing exploration algorithms do not realistically modelCooperative Exploration under Communication Constraints by Emily M. Craparo Submitted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . David Darmofal Chairman, Department Committee on Graduate Students #12;2 #12;Cooperative Exploration

How, Jonathan P.

252

A geophysical overview of the southern continental margin of North America in the Late Precambrian/Cambrian  

SciTech Connect (OSTI)

Recent geophysical studies have shed considerable light on the nature and extent of the southern Continental margin of North America which formed during the Late Precambrian/Cambrian. To the east between Arkansas and Alabama, the PASSCAL/Ouachita seismic experiment and older results in Mississippi indicate that this margin is largely preserved beneath allochthonous rocks emplaced during the Ouachita orogeny. Here the margin is fairly abrupt suggesting transtension was important in this origin. The Wiggins and Sabine blocks appear to be continental fragments which may have formed along this margin. In Texas, the margin extends around the Llano uplift in a sinuous fashion. In this area, Mesozoic extension clouds the picture considerably. However, structural complexities along this portion of he margin can be inferred form gravity data. In West Texas, the margin bends westward and then southward. A very deep oil exploration test which was recently drilled in this area provides valuable constraints for geophysical models of this portion of the margin. Recent results in Mexico allows the authors to trace this margin further south into the state of Chihuahua than previously possible.

Keller, G.R. (Univ. of Texas, El Paso, TX (United States). Dept. of Geological Sciences)

1993-02-01T23:59:59.000Z

253

Institute of Geophysics and Planetary Physics 1993 annual report, October 1, 1992--September 30, 1993  

SciTech Connect (OSTI)

This report contains brief papers on the research being conducted at the Institute of Geophysics and Planetary Physics in 1993 in Geosciences, High-Pressure sciences, and Astrophysics.

Ryerson, F.J.; Budwine, C.M. [eds.

1994-06-15T23:59:59.000Z

254

E-Print Network 3.0 - air force geophysics Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

(1,141) GEOCHEMISTRY & GEOPHYSICS (775... of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century Source: Jimenez, Jose-Luis -...

255

E-Print Network 3.0 - accurate world-wide geophysical Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of Edinburgh, EH9 3JW, UK Summary: the geophysical monitorability of injected supercritical CO2 stored in subsurface saline aquifers. We use... the information expected to be...

256

Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting  

Broader source: Energy.gov [DOE]

Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting presentation at the April 2013 peer review meeting held in Denver, Colorado.

257

Exploration Incentive Tax Credit (Montana)  

Broader source: Energy.gov [DOE]

The Mineral and Coal Exploration Incentive Tax Credit provides tax incentives to entities conducting exploration for minerals and coal. Expenditures related to the following activities are eligible...

258

Exploration for Uranium Ore (Virginia)  

Broader source: Energy.gov [DOE]

This legislation describes permitting procedures and requirements for exploration activities. For the purpose of this legislation, exploration is defined as the drilling of test holes or...

259

Investigation of novel geophysical techniques for monitoring CO2 movement during sequestration  

E-Print Network [OSTI]

seismic reflection method and by surface gravity measurements. Results for geology appropriate for south Texas (Liberty

Hoversten, G. Michael; Gasperikova, Erika

2003-01-01T23:59:59.000Z

260

Exploring Autodesk Navisworks 2014  

Science Journals Connector (OSTI)

Exploring Autodesk Navisworks 2014 is a comprehensive textbook that has been written to cater to the needs of the students and the professionals who are involved in the AEC profession. In this textbook, the author has emphasized on various hands on tools ...

Sham Tickoo / CADCIM Technologies

2013-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Exploring Civil and Environmental  

E-Print Network [OSTI]

Engineers % of Total Architectural, Engineering, and Related Services 135,000 53 Federal, State, and Local1 CEE 100 Exploring Civil and Environmental Engineering #12;CEE 100 Schedule--Winter 2010 https Geotechnical Engineering January 27 Steve Muench Construction Engineering February 3 Greg Miller Structural

262

Workshop: Teachers explore electronics  

Science Journals Connector (OSTI)

Workshop: Teachers explore electronics Conference: ASE conference hits Nottingham Teacher training: Videoconferencing discovers asteroids Lecture: Annual education talk gets interactive Award: Britton receives a New Year's honour Multimedia: Multimedia conference 2010 will be held in France Conference series: ICPE travels to Thailand in 2009 Filming: Sixth-formers take physics on location

263

Explorations Cathy Moulder  

E-Print Network [OSTI]

Explorations in Mapping Cathy Moulder Director of Library Services, Maps, Data & GIS Mc � "Professional mapping" � Geographic Information Systems (GIS) � Web 2.0 and NeoGeography � Role of traditional GIS... Neogeography is about people using and creating their own maps, on their own terms

Haykin, Simon

264

Exploring Functional Mellin Transforms  

E-Print Network [OSTI]

We define functional Mellin transforms within a scheme for functional integration proposed in [1]. Functional Mellin transforms can be used to define functional traces, logarithms, and determinants. The associated functional integrals are useful tools for probing function spaces in general and $C^\\ast$-algebras in particular. Several interesting aspects are explored.

J. LaChapelle

2015-01-08T23:59:59.000Z

265

Exploring Mars' Climate History  

E-Print Network [OSTI]

Exploring Mars' Climate History #12;2 Mars Reconnaissance Orbiter ESA Mars Express (NASA: MARSIS by studying the solar wind and other interactions with the Sun. #12;The solar wind is a high-speed stream of electrons and protons released from the Sun. #12;High-energy photons (light) stream constantly from the Sun

266

A Tool for Materials Exploration Dieter W. Heermann  

E-Print Network [OSTI]

into · preprocessing · simulation (production runs) · postprocessing Pre-processing prepA Tool for Materials Exploration Dieter W. Heermann Andreas Linke Christian Münkel Institut für) as well as visualisation techniques to explore materials. In this paper we describe the basic design

Heermann, Dieter W.

267

EUROGRAPHICS 2007 Cultural Heritage Papers An Interactive Exploration of the  

E-Print Network [OSTI]

reconstruction and access supplemental historical background material on demand. With the multimedia installation we present a new experience which empowers visitors of the museum to explore an historical site exploration techniques, however, come at the price of complex interac- tion paradigms and costly equipment

Blanz, Volker

268

RMOTC - Testing - Exploration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploration Helicopter flying over RMOTC testing facility for leak detection survey test Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC's extensive exploration-related data sets, including 3D and 2D seismic, wells and logging data, and cores - both physical core samples, stored in Casper, and core analysis data and reports - provide a great

269

An asteroseismology explorer  

SciTech Connect (OSTI)

In response to a NASA opportunity, a proposal has been made to study the concept of an Asteroseismology Explorer (ASE). The goal of the ASE would be to measure solar-like oscillations on many (perhaps hundreds) of stars during a 1-year mission, including many members of open clusters. We describe this proposal's observational goals, a strawman technical approach, and likely scientific rewards. 5 refs.

Brown, T.M.; Cox, A.N.

1986-08-11T23:59:59.000Z

270

Northern Thailand Geophysics Field Camp: Overview of Activities Lee M. Liberty  

E-Print Network [OSTI]

Northern Thailand Geophysics Field Camp: Overview of Activities Lee M. Liberty Boise State and industries with communities in need using applied geophysics projects as a means to benefit people and the environment around the world. Our GWB project was developed to educate and connect local geophysicists

Barrash, Warren

271

Leveraging the power of local spatial autocorrelation in geophysical interpolative clustering  

Science Journals Connector (OSTI)

Nowadays ubiquitous sensor stations are deployed worldwide, in order to measure several geophysical variables (e.g. temperature, humidity, light) for a growing number of ecological and industrial processes. Although these variables are, in general, measured ... Keywords: Clustering, Geophysical data stream, Inverse distance weighting, Spatial autocorrelation

Annalisa Appice; Donato Malerba

2014-09-01T23:59:59.000Z

272

GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS, VOL. ???, XXXX, DOI:10.1029/, The influence of non-uniform ambient noise on1  

E-Print Network [OSTI]

, Institute of Geophysics, ETH Zurich, Sonneggstrasse 5, Zurich, Switzerland. T. Nissen-Meyer, Institute of Geophysics, ETH Zurich, Sonneggstrasse 5, Zurich, Switzerland. Olaf Schenk, Institute of Computational of Geophysics, ETH Zurich, Sonneggstrasse 5, Zurich, Switzerland. 3 ISTEP, UMR 7193, UPMC Universite Paris 6

Paris-Sud XI, Université de

273

Geophysical logging case history of the Raft River geothermal system, Idaho  

Open Energy Info (EERE)

Geophysical logging case history of the Raft River geothermal system, Idaho Geophysical logging case history of the Raft River geothermal system, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geophysical logging case history of the Raft River geothermal system, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Drilling to evaluate the geothermal resource in the Raft River Valley began in 1974 and resulted in the discovery of a geothermal reservoir at a depth of approximately 1523 m (500 ft). Several organizations and companies have been involved in the geophysical logging program. There is no comprehensive report on the geophysical logging, nor has there been a complete interpretation. The objectives of this study are to make an integrated interpretation of the available data and compile a case history. Emphasis has been on developing a simple interpretation

274

Development and Demonstration of Mobile, Small Footprint Exploration and Development Well System for Arctic Unconventional Gas Resources (ARCGAS)  

SciTech Connect (OSTI)

Traditionally, oil and gas field technology development in Alaska has focused on the high-cost, high-productivity oil and gas fields of the North Slope and Cook Inlet, with little or no attention given to Alaska's numerous shallow, unconventional gas reservoirs (carbonaceous shales, coalbeds, tight gas sands). This is because the high costs associated with utilizing the existing conventional oil and gas infrastructure, combined with the typical remoteness and environmental sensitivity of many of Alaska's unconventional gas plays, renders the cost of exploring for and producing unconventional gas resources prohibitive. To address these operational challenges and promote the development of Alaska's large unconventional gas resource base, new low-cost methods of obtaining critical reservoir parameters prior to drilling and completing more costly production wells are required. Encouragingly, low-cost coring, logging, and in-situ testing technologies have already been developed by the hard rock mining industry in Alaska and worldwide, where an extensive service industry employs highly portable diamond-drilling rigs. From 1998 to 2000, Teck Cominco Alaska employed some of these technologies at their Red Dog Mine site in an effort to quantify a large unconventional gas resource in the vicinity of the mine. However, some of the methods employed were not fully developed and required additional refinement in order to be used in a cost effective manner for rural arctic exploration. In an effort to offset the high cost of developing a new, low-cost exploration methods, the US Department of Energy, National Petroleum Technology Office (DOE-NPTO), partnered with the Nana Regional Corporation and Teck Cominco on a technology development program beginning in 2001. Under this DOE-NPTO project, a team comprised of the NANA Regional Corporation (NANA), Teck Cominco Alaska and Advanced Resources International, Inc. (ARI) have been able to adapt drilling technology developed for the mineral industry for use in the exploration of unconventional gas in rural Alaska. These techniques have included the use of diamond drilling rigs that core small diameter (< 3.0-inch) holes coupled with wireline geophysical logging tools and pressure transient testing units capable of testing in these slimholes.

Paul Glavinovich

2002-11-01T23:59:59.000Z

275

Property:ExplorationTimePerMetric | Open Energy Information  

Open Energy Info (EERE)

ExplorationTimePerMetric ExplorationTimePerMetric Jump to: navigation, search Property Name ExplorationTimePerMetric Property Type String Description the unit ratio denominator for exploration time Allows Values job;10 mile;10 stn;100 mile;sq. mile;foot Subproperties This property has the following 121 subproperties: A Active Seismic Methods Active Seismic Techniques Active Sensors Analytical Modeling B Borehole Seismic Techniques C Cation Geothermometers Chemical Logging Compound and Elemental Analysis Conceptual Model Core Holes Cross-Dipole Acoustic Log D DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Mise-Á-La-Masse) DC Resistivity Survey (Pole-Dipole Array) DC Resistivity Survey (Schlumberger Array) DC Resistivity Survey (Wenner Array) Data Collection and Mapping Data Techniques

276

Switzerland exploration may resume  

SciTech Connect (OSTI)

Since 1912, 35 wells have been drilled for oil and gas, 19 of them in the last 38 years. Eighty percent of these 19 wells had oil and/or gas shows, but only one was placed on production. The only gas discovery, Entlebuch-1, produced about 2.6 bcf of a high quality gas in 10 years. It was abandoned in 1994. This paper discusses why exploration waned. A second look at the data suggests Switzerland has a high potential for gas production.

Lahusen, P.H. [SEAG, Geneva (Switzerland)

1997-06-23T23:59:59.000Z

277

A Five-Component Magneto-Telluric Method In Geothermal Exploration- The  

Open Energy Info (EERE)

Five-Component Magneto-Telluric Method In Geothermal Exploration- The Five-Component Magneto-Telluric Method In Geothermal Exploration- The Mt-5-Ex Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Five-Component Magneto-Telluric Method In Geothermal Exploration- The Mt-5-Ex Details Activities (1) Areas (1) Regions (0) Abstract: The present paper describes a new method designed both at recording and processing levels for a practical solution of the overall problem of the Earth electromagnetism, in geophysics. Up to now, the random character of the natural signals prevented any measurement of reliable values of the phase shift between the various electromagnetic components at a given place. Hence it is impossible numerically to solve the general linear relations binding these components simply by using the processes of

278

Coalbed methane exploration in the Lorraine Basin, France  

SciTech Connect (OSTI)

DuPont Conoco Hydrocarbures has been involved in a Coalbed Methane (CBM) project in France since 1991. Coalbed methane exploration differs noticeably in several aspects from conventional oil and gas exploration. This paper is divided in three parts and discusses some geological, reservoir and drilling considerations relevant to the exploration and appraisal of a coalbed methane prospect. The first part presents geological issues such as data collection and evaluation of its associated value, building expertise to create a geological and geophysical model integrating the work of a multidisciplinary team, and assessing uncertainties of the data interpretation. A short review of the basin activity, geological and tectonic setting, and environment aspects is presented in order to illustrate some CBM exploration issues. The second part describes a comprehensive coalbed methane reservoir data acquisition program incorporating coal sample optical and chemical analyses, gas sample chromatography, canister desorption, fracture density of coal cores, and measurement of in-situ coal permeability and bounding-strata stress. Field practical concerns are then discussed such as on-site and off-site canister desorption, gas sample collection, rapid estimation of gas content, ash content, total bed moisture, and finally well testing alternatives for permeability and rock stress determination. The third part reviews drilling issues such as drilling and coring options for core hole size and casing size, rig site equipment requirements for continuous coring operations, including mud treatment equipment, core handling material and core work stations, alliance of national and foreign drilling contractors to optimize equipment and experience, and finally overview of coring procedures to identify best practices for pending operations. The paper is derived from Conoco`s experience in CBM exploration in the Lorraine Basin, North East of France.

Michaud, B. [DuPont Conoco Hydrocarbures, Paris (France); Briens, F.; Girdler, D.

1995-08-01T23:59:59.000Z

279

Revisiting the Tradespace Exploration Paradigm: Structuring the Exploration Process  

E-Print Network [OSTI]

Revisiting the Tradespace Exploration Paradigm: Structuring the Exploration Process Adam M. Ross in Tradespace Exploration · Question-guided TSE· Question-guided TSE · Discussion · Conclusion seari.mit.edu © 2010 Massachusetts Institute of Technology 2 #12;Introduction · Early design process is high leverage

de Weck, Olivier L.

280

Relevance of Massively Distributed Explorations  

E-Print Network [OSTI]

that this exploration process gives a partial and biased view of the real topology, which leads to the idea links) and may be biased by the exploration process (some properties of the obtained map may be induced induced by the exploration process. In order to improve these maps, several re- searchers and groups now

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Relevance of Massively Distributed Explorations  

E-Print Network [OSTI]

that this exploration process gives a partial and biased view of the real topology, which leads to the idea links) and may be biased by the exploration process (some properties of the obtained map may be induced induced by the exploration process. In order to improve these maps, several re- searchers and groups no

Paris-Sud XI, Université de

282

Polar Explorer References Raold Amundsen  

E-Print Network [OSTI]

-15, 2003, 1 h 19 min. * National Geographic May 2009, concerning claims of Arctic Ocean oil and gasPolar Explorer References Raold Amundsen My Life as an Explorer, Raold Amundsen The Red Tent.L. Berens [This book includes other historic polar explorers] * National Geographic Jan. 2009 (2 articles

Fabrikant, Sara Irina

283

Category:Field Techniques | Open Energy Information  

Open Energy Info (EERE)

Field Techniques Field Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Field Techniques page? For detailed information on Field Techniques as exploration techniques, click here. Category:Field Techniques Add.png Add a new Field Techniques Technique Subcategories This category has the following 2 subcategories, out of 2 total. D [×] Data Collection and Mapping‎ 5 pages F [+] Field Sampling‎ (2 categories) 4 pages Pages in category "Field Techniques" The following 4 pages are in this category, out of 4 total. D Data Collection and Mapping F Field Sampling H Hand-held X-Ray Fluorescence (XRF) P Portable X-Ray Diffraction (XRD) Retrieved from "http://en.openei.org/w/index.php?title=Category:Field_Techniques&oldid=689815"

284

DOE Data Explorer  

Office of Scientific and Technical Information (OSTI)

DDE DDE Discovering data and non-text information in the Department of Energy DOE Data Explorer What's New About DDE DOE Data Centers OSTI's Data ID Service Featured Collection Featured Data Collection Visit CEDR View the archive Search Find Advanced Search Options × Full Text: Bibliographic Data: Creator/Author: Title: Subject: Identifier Numbers: Host Website: Research Org: Sponsor/Funding Org: Contributing Orgs: Type: Select Type Publication Date: from Date: to to Date: Sort: By Relevance By Title Limit to: Matches with DOI only Collections only (no DOIs) Clear Find Advanced Search Basic Search Browse DDE Content All Titles (alphabetically) Sponsor/Funding Organizations Types of Data and Non-text Other Related Organizations Subject Categories Some links on this page may take you to non-federal websites. Their

285

Success Stories: Carbon Explorer  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

LBNL Device Monitors Ocean Carbon LBNL Device Monitors Ocean Carbon Imagine waking up each morning and discovering that twenty percent of all plants in your garden had disappeared over night. They had been eaten. Equally astonishing would be the discovery in the afternoon that new plants had taken their place. This is the norm of life in the ocean. Without the ability to accurately observe these daily changes in ocean life cycles, over vast spatial scales, we lack the ability to predict how the ocean will respond to rising CO2 levels, crippling our ability to develop accurate models of global warming or devise strategies to prevent it. The Carbon Explorer, conceived by Berkeley Lab's James K. Bishop in collaboration with Scripps Institution of Oceanography (La Jolla, California) and WET labs, Inc. (Philomath, Oregon), bridges this

286

The Extreme Physics Explorer  

E-Print Network [OSTI]

Some tests of fundamental physics - the equation of state at supra-nuclear densities, the metric in strong gravity, the effect of magnetic fields above the quantum critical value - can only be measured using compact astrophysical objects: neutron stars and black holes. The Extreme Physics Explorer is a modest sized (~500 kg) mission that would carry a high resolution (R ~300) X-ray spectrometer and a sensitive X-ray polarimeter, both with high time resolution (~5 ?s) capability, at the focus of a large area (~5 sq.m), low resolution (HPD~1 arcmin) X-ray mirror. This instrumentation would enable new classes of tests of fundamental physics using neutron stars and black holes as cosmic laboratories.

Martin Elvis

2006-08-25T23:59:59.000Z

287

Geophysical investigation of burn pit, 128-H-1, 100-H Area  

SciTech Connect (OSTI)

The 128-H-1 burn pit is located in the northeast corner of 100-H Area. The objective of the survey was to delineate subsurface features in the 128-H-1 burn pit that may affect the emplacement of soil-gas probes. Ground-penetrating radar (GPR) and electromagnetic induction (EMI) were the two techniques used in the investigation. The methods were selected because they are non-intrusive, relatively fast, economical, and have been used successfully in other geophysical investigations on the Hanford Site. The GPR system used for this work utilized a 300-MHz antenna to transmit the Em energy into the ground. The transmitted energy is reflected back to a receiving antenna where variations in the return signal are recorded. Common reflectors include natural geologic conditions such as bedding, cementation, moisture, and clay, or man-made objects such as pipes, barrels, foundations, and buried wires. The studied depth, which varies from site to site, was 0--11 ft for this survey. The method is limited in depth by transmit power, receiver sensitivity, and attenuation of the transmitted energy. Depth of investigation is influenced by highly conductive material, such as metal drums, which reflect all the energy back to the receiver. Therefore, the method cannot ``see`` below such objects.

Szwartz, G.J.

1994-07-11T23:59:59.000Z

288

Summary-Invisible Networking: Techniques and Defenses  

E-Print Network [OSTI]

Summary-Invisible Networking: Techniques and Defenses Lei Wei, Michael K. Reiter, and Ketan Mayer explored. We investigate the combination of these ideas, which we term Summary-Invisible Networking (SIN #12;Summary-Invisible Networking: Techniques and Defenses 211 community of security analysts now holds

Reiter, Michael

289

Exploration geochemistry: The Los Alamos experience  

SciTech Connect (OSTI)

Los Alamos National Laboratory became actively involved in geochemical exploration in 1975 by conducting a reconnaissance-scale exploration program for uranium as part of the National Uranium Resource Evaluation program. Initially, only uranium and thorium were analyzed. By 1979 Los Alamos was analyzing a multielement suite. The data were presented in histograms and as black and white concentration plots for uranium and thorium only. Data for the remaining elements were presented as hard copy data listings in an appendix to the report. In 1983 Los Alamos began using exploration geochemistry for the purpose of finding economic mineral deposits to help stimulate the economies of underdeveloped countries. Stream-sediment samples were collected on the Caribbean island of St. Lucia and a geochemical atlas of that island was produced. The data were statistically smoothed and presented as computer-generated color plots of each element of the multielement suite. Studies for the US Bureau of Land Management in 1984 consisted of development of techniques for the integration of several large data sets, which could then be used for computer-assisted mineral resource assessments. A supervised classification technique was developed which compares the attributes of grid cells containing mines or mineral occurrences with attributes of unclassified cells not known to contain mines or occurrences. Color maps indicate how closely unclassified cells match in attributes the cells with mines or occurrences. 20 refs., 1 fig., 1 tab.

Maassen, L.W.; Bolivar, S.L.

1989-01-01T23:59:59.000Z

290

Geological and Geophysical Exploration for Uranium Mineralization on EI-Erediya Prospect Area, Central Eastern Desert, Egypt  

Science Journals Connector (OSTI)

Ground geologic, structural, radiometric, magnetic and horizontal-loop electromagnetic data (surface and mining) have been applied to follow the surface and downward extension of the uranium mineralizations showi...

S. I. Rabie; A. A. A. Meguid; A. S. Assran

1998-01-01T23:59:59.000Z

291

Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel  

Open Energy Info (EERE)

the Vicinity of Blue Mountain and Pumpernickel the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Abstract From May 2008 to September 2009, the U.S. Geological Survey (USGS) collected data from more than 660 gravity stations, 100 line-km of truck-towed magnetometer traverses, and 260 physical-property sites in the vicinity of Blue Mountain and Pumpernickel Valley, northern Nevada (fig. 1). Gravity, magnetic, and physical-property data were collected to study regional crustal structures as an aid to understanding the geologic framework of the Blue Mountain and Pumpernickel Valley areas, which in

292

LANL Institutes - Institute of Geophysics and Planetary Physics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Expanding the Frontiers of Astrophysical, Space, Earth, & Climate Sciences & Their Signatures The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. These subject areas are selected based on their breadth of scientific challenges facing the international scientific community, as well as relevance to the strategic objective to extend Laboratory scientific excellence. IGPPS/LANL makes a special effort to promote and support new research ideas, which can be further developed through seed funding into major programs supported by federal or other funding sources. IGPPS also supports

293

Geophysical investigation of concealed faults near Yucca Mountain, southwest Nevada  

SciTech Connect (OSTI)

Detailed gravity and ground magnetic data collected along surveyed traverses across Midway Valley, on the eastern flank of Yucca Mountain, Nevada reveal that these methods can be used to delineate concealed faults. These studies are part of an effort to evaluate faulting in the vicinity of the proposed surface facilities for a potential nuclear waste repository at Yucca Mountain. The largest gravity and magnetic anomaly in the vicinity of Midway Valley is associated with the Paintbrush fault on the west flank of Alice Ridge. Geophysical data infer a vertical offset of about 200 m (650 ft). Another prominent gravity and magnetic anomaly is associated with the Bow Ridge fault in the western part of Midway Valley.

Ponce, D.A. [Geological Survey, Menlo Park, CA (United States)

1993-12-31T23:59:59.000Z

294

Geophysical interpretation of the PASSCAL Ouachita experiment: southern part  

E-Print Network [OSTI]

'riends in this department for correcting my writting. TADLE OF' CONTENTS CIIAP'I'L'R Pnge I LNTRODUCTION ll ('L'OI. OCICAL SL'T'I'liVC III PREVIOUS STUDIES I V D A'I' f A C ( ) U I S I'I'10 N A N D P RO C E SS I iN G Dntn Acquisitioii Dntn Processing '. iIODI. 'I... the geophysical view point. The result is a two-dimensioanl velocity model that extends from the northern shot point 12 (lat. 33. 5'X. long. 93. 5"'Hr) to the southern shot point 19 (lat. 33'X, long. 93. 5" IF) and from sea level to a depth of about 34 km...

Wang, Wen-Kung

1989-01-01T23:59:59.000Z

295

As printed in IEEE Visualization 2000 A Spreadsheet Interface for Visualization Exploration  

E-Print Network [OSTI]

and interaction techniques that ex- pedite the process of exploring that data must receive new attention efforts have been devoted to storing and presenting the data exploration process itself. This information through a set of examples. During the data exploration process, a user attempts to discover a set

Jankun-Kelly, T. J.

296

Property:ExplorationCostPerMetric | Open Energy Information  

Open Energy Info (EERE)

ExplorationCostPerMetric ExplorationCostPerMetric Jump to: navigation, search Property Name ExplorationCostPerMetric Property Type String Description the unit ratio denominator for exploration cost Allows Values 100 feet cut;30 foot core;compound;day;element;foot;hour;mile;point;process;sample;sq. mile;station;Subject;well Subproperties This property has the following 107 subproperties: A Active Seismic Methods Active Seismic Techniques Active Sensors Analytical Modeling B Borehole Seismic Techniques C Cation Geothermometers Chemical Logging Conceptual Model Core Holes Cross-Dipole Acoustic Log D DC Resistivity Survey (Dipole-Dipole Array) DC Resistivity Survey (Mise-Á-La-Masse) DC Resistivity Survey (Pole-Dipole Array) DC Resistivity Survey (Schlumberger Array) DC Resistivity Survey (Wenner Array)

297

Role of borehole geophysics in defining the physical characteristics of the  

Open Energy Info (EERE)

Role of borehole geophysics in defining the physical characteristics of the Role of borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Role of borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Details Activities (4) Areas (1) Regions (0) Abstract: Numerous geophysical logs have been made in three deep wells and in several intermediate depth core holes in the Raft River geothermal reservoir, Idaho. Laboratory analyses of cores from the intermediate depth holes were used to provide a qualitative and quantitative basis for a detailed interpretation of logs from the shallow part of the reservoir. A less detailed interpretation of logs from the deeper part of the reservoir

298

Geologic And Geophysical Evidence For Intra-Basin And Footwall Faulting At  

Open Energy Info (EERE)

Geophysical Evidence For Intra-Basin And Footwall Faulting At Geophysical Evidence For Intra-Basin And Footwall Faulting At Dixie Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geologic And Geophysical Evidence For Intra-Basin And Footwall Faulting At Dixie Valley, Nevada Details Activities (1) Areas (1) Regions (0) Abstract: A 'nested graben' structural model, in which multiple faults successively displace rocks downward to the deepest part of the basin, is supported by recent field geologic analysis and correlation of results to geophysical data for Dixie Valley. Aerial photographic analysis and detailed field mapping provide strong evidence for a deep graben separated from the ranges to the east and west by multiple normal faults that affect the Tertiary/Quaternary basin-fill sediments. Correlation with seismic

299

Electromagnetic geophysics: Notes from the past and the road ahead | Open  

Open Energy Info (EERE)

Electromagnetic geophysics: Notes from the past and the road ahead Electromagnetic geophysics: Notes from the past and the road ahead Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electromagnetic geophysics: Notes from the past and the road ahead Abstract During the last century, electrical geophysics has been transformed from a simple resistivity method to a modern technology that uses complex data-acquisition systems and high-performance computers for enhanced data modeling and interpretation. Not only the methods and equipment have changed but also our ideas about the geoelectrical models used for interpretation have been modified tremendously. This paper describes the evolution of the conceptual and technical foundations of EM methods. Author Michael S. Zhdanov Published Journal

300

Applying petroleum geophysics to astrophysics: Quantitative 4D seismic study of the solar interior  

E-Print Network [OSTI]

Applying petroleum geophysics to astrophysics: Quantitative 4D seismic study of another new branch of seismology recently developed in petroleum reservoir seismology is commonly known in the petroleum industry, differs from earlier

Crawford, Ian

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

A GEOLOGICAL AND GEOPHYSICAL STUDY OF THE BACA GEOTHERMAL FIELD, VALLES CALDERA, NEW MEXICO  

E-Print Network [OSTI]

Rio Arriba Counties, New Mexico. Union Oil Internal ReportGoil Company of California, and Public Service Company of New Mexico,New Mexico. Private geophysical survey for Union Oil Co.

Wilt, M.

2011-01-01T23:59:59.000Z

302

Geophysical applications of nuclear resonant spectroscopy Wolfgang Sturhahn and Jennifer M. Jackson*  

E-Print Network [OSTI]

Geophysical applications of nuclear resonant spectroscopy Wolfgang Sturhahn and Jennifer M. Jackson* 17th August 2007 Advanced Photon Source, Argonne National Laboratory, 9700 South Cass Ave, Argonne summarize recent developments of nuclear resonant spectroscopy methods like nuclear resonant inelastic x

Jackson, Jennifer M.

303

Geophysical Surveying with Marine Networked Mobile Robotic Systems: The WiMUST Project  

E-Print Network [OSTI]

Underwa- ter Sonar Technology) has been favorably evaluated by the European Commission and the project a group of research institutions, geophysical surveying com- panies and SMEs with a well proven track

Jesus, Sérgio M.

304

A GEOLOGICAL AND GEOPHYSICAL STUDY OF THE BACA GEOTHERMAL FIELD, VALLES CALDERA, NEW MEXICO  

E-Print Network [OSTI]

oil Company of California, and Public Service Company of New Mexico,Rio Arriba Counties, New Mexico. Union Oil Internal ReportGNew Mexico. Private geophysical survey for Union Oil Co.

Wilt, M.

2011-01-01T23:59:59.000Z

305

Reduced rank filtering in chaotic systems with application in geophysical sciences  

E-Print Network [OSTI]

Recent technological advancements have enabled us to collect large volumes of geophysical noisy measurements that need to be combined with the model forecasts, which capture all of the known properties of the underlying ...

Ahanin, Adel, 1977-

2008-01-01T23:59:59.000Z

306

Electrical conductivity of continental lithospheric mantle from integrated geophysical and petrological modeling  

E-Print Network [OSTI]

Electrical conductivity of continental lithospheric mantle from integrated geophysical; published 11 October 2011. [1] The electrical conductivity of mantle minerals is highly sensitive, and compositional variations. The bulk electrical conductivity model has been integrated into the software package

Jones, Alan G.

307

Interactions between mantle plumes and mid-ocean ridges : constraints from geophysics, geochemistry, and geodynamical modeling  

E-Print Network [OSTI]

This thesis studies interactions between mid-ocean ridges and mantle plumes using geophysics, geochemistry, and geodynamical modeling. Chapter 1 investigates the effects of the Marion and Bouvet hotspots on the ultra-slow ...

Georgen, Jennifer E

2001-01-01T23:59:59.000Z

308

75Th Anniversary - The Historical Development Of The Magnetic...  

Open Energy Info (EERE)

of geophysical exploration techniques, blossomed after the advent of airborne surveys in World War II. With improvements in instrumentation, navigation, and platform compensation,...

309

Summary and evaluation of existing geological and geophysical data near prospective surface facilities in Midway Valley, Yucca Mountain Project, Nye County, Nevada; Yucca Mountain Site Characterization Project  

SciTech Connect (OSTI)

Midway Valley, located at the eastern base of the Yucca Mountain in southwestern Nevada, is the preferred location of the surface facilities for the potential high-level nuclear waste repository at Yucca Mountain. One goal in siting these surface facilities is to avoid faults that could produce relative displacements in excess of 5 cm in the foundations of the waste-handling buildings. This study reviews existing geologic and geophysical data that can be used to assess the potential for surface fault rupture within Midway Valley. Dominant tectonic features in Midway Valley are north-trending, westward-dipping normal faults along the margins of the valley: the Bow Ridge fault to the west and the Paintbrush Canyon fault to the east. Published estimates of average Quaternary slip rates for these faults are very low but the age of most recent displacement and the amount of displacement per event are largely unknown. Surface mapping and interpretive cross sections, based on limited drillhole and geophysical data, suggest that additional normal faults, including the postulated Midway Valley fault, may exist beneath the Quaternary/Tertiary fill within the valley. Existing data, however, are inadequate to determine the location, recency, and geometry of this faulting. To confidently assess the potential for significant Quaternary faulting in Midway Valley, additional data are needed that define the stratigraphy and structure of the strata beneath the valley, characterize the Quaternary soils and surfaces, and establish the age of faulting. The use of new and improved geophysical techniques, combined with a drilling program, offers the greatest potential for resolving subsurface structure in the valley. Mapping of surficial geologic units and logging of soil pits and trenches within these units must be completed, using accepted state-of-the-art practices supported by multiple quantitative numerical and relative age-dating techniques.

Gibson, J.D. [Sandia National Labs., Albuquerque, NM (United States); Swan, F.H.; Wesling, J.R.; Bullard, T.F.; Perman, R.C.; Angell, M.M.; DiSilvestro, L.A. [Geomatrix Consultants, Inc., San Francisco, CA (United States)

1992-01-01T23:59:59.000Z

310

Exploration Technologies Technology Needs Assessment  

Broader source: Energy.gov [DOE]

The Exploration Technologies Needs Assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the program's research and development.

311

Radioisotopes: Energy for Space Exploration  

SciTech Connect (OSTI)

Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration.

Carpenter, Bob; Green, James; Bechtel, Ryan

2011-01-01T23:59:59.000Z

312

Radioisotopes: Energy for Space Exploration  

ScienceCinema (OSTI)

Through a strong partnership between the Energy Department's office of Nuclear Energy and NASA, Radioisotope Power Systems have been providing the energy for deep space exploration.

Carpenter, Bob; Green, James; Bechtel, Ryan

2013-05-29T23:59:59.000Z

313

ADVANCED RADIOISOTOPE HEAT SOURCE AND PROPULSION SYSTEMS FOR PLANETARY EXPLORATION  

SciTech Connect (OSTI)

The exploration of planetary surfaces and atmospheres may be enhanced by increasing the range and mobility of a science platform. Fundamentally, power production and availability of resources are limiting factors that must be considered for all science and exploration missions. A novel power and propulsion system is considered and discussed with reference to a long-range Mars surface exploration mission with in-situ resource utilization. Significance to applications such as sample return missions is also considered. Key material selections for radioisotope encapsulation techniques are presented.

R. C. O'Brien; S. D. Howe; J. E. Werner

2010-09-01T23:59:59.000Z

314

Application of borehole geophysics to fracture identification and characterization in low porosity limestones and dolostones  

SciTech Connect (OSTI)

Geophysical logging was conducted in exploratory core holes drilled for geohydrological investigations at three sites used for waste disposal on the US Department of Energy's Oak Ridge Reservation. Geophysical log response was calibrated to borehole geology using the drill core. Subsequently, the logs were used to identify fractures and fractured zones and to characterize the hydrologic activity of such zones. Results of the study were used to identify zones of ground water movement and to select targets for subsequent piezometer and monitoring well installation. Neutron porosity, long- and short-normal resistivity, and density logs exhibit anomalies only adjacent to pervasively fractured zones and rarely exhibit anomalies adjacent to individual fractures, suggesting that such logs have insufficient resolution to detect individual fractures. Spontaneous potential, single point resistance, acoustic velocity, and acoustic variable density logs, however, typically exhibit anomalies adjacent to both individual fractures and fracture zones. Correlation is excellent between fracture density logs prepared from the examination of drill core and fractures identified by the analysis of a suite of geophysical logs that have differing spatial resolution characteristics. Results of the study demonstrate the importance of (1) calibrating geophysical log response to drill core from a site, and (2) running a comprehensive suite of geophysical logs that can evaluate both large- and small-scale rock features. Once geophysical log responses to site-specific geological features have been established, logs provide a means of identifying fracture zones and discriminating between hydrologically active and inactive fracture zones. 9 figs.

Haase, C.S.; King, H.L.

1986-01-01T23:59:59.000Z

315

Category:Geochemical Techniques | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Geochemical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geochemical Techniques page? For detailed information on exploration techniques, click here. Category:Geochemical Techniques Add.png Add a new Geochemical Techniques Technique Subcategories This category has only the following subcategory. G [×] Geochemical Data Analysis‎ 3 pages Pages in category "Geochemical Techniques" This category contains only the following page. G Geochemical Data Analysis Retrieved from "http://en.openei.org/w/index.php?title=Category:Geochemical_Techniques&oldid=689823"

316

An Initial Value of Information (VOI) Framework for Geophysical...  

Open Energy Info (EERE)

outcome, and can be used to justify the purchase of collecting the additional, proposed data. This has been demonstrated in the literature for oil exploration, but we apply it...

317

INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP  

E-Print Network [OSTI]

exploration coordination tool to enhance the implementation of the coordination process At the 1st ISECG1 INTERNATIONAL SPACE EXPLORATION COORDINATION GROUP WORKPLAN Update following 3rd ISECG Meeting broader future participation in the planning and coordination process; - assessment of the requirements

318

Revisiting the Tradespace Exploration Paradigm: Structuring the Exploration Process  

E-Print Network [OSTI]

A number of case applications of tradespace exploration have further extended the types of analyses and knowledge insights that can be gained about tradeoffs between design choices and perceived utility and cost of ...

Ross, Adam Michael

319

Case study of the Wendel-Amedee Exploration Drilling Project, Lassen County, California, User Coupled Confirmation Drilling Program  

SciTech Connect (OSTI)

The Wendel-Amedee KGRA is located in Honey Lake basin in Lassen County, California, on the boundary between the Modoc Plateau and the Basin and Range geologic provinces. A variety of geophysical surveys was performed over the project property. Geophysical data helped in establishing the regional structural framework, however, none of the geophysical data is sufficiently refined to be considered suitable for the purpose of siting an exploration drill hole. Drilling of reservoir confirmation well WEN-1 took place from August 1 to September 22, 1981. Pulse and long-term flow testing subjected the reservoir to a maximum flow of 680 gpm for 75 hours. At that rate, the well exhibited a productivity index of 21.6 gpm/psi; the reservoir transmissivity was 3.5 x 10/sup 6/ md-ft/cp. The maximum bottom-hole temperature recorded during testing was 251/sup 0/F. The conceptual model of the geothermal resource at Wendel Hot Springs calls on ground water, originating in the neighboring volcanic highlands, descending through jointed and otherwise permeable rocks into the granitic basement. Once in the basement, the fluid is heated as it continues its descent, and lateral movement as dictated by the hydrologic gradient. It then rises to the discharge point along transmissive faults. 45 refs., 28 figs., 3 tabs.

Zeisloft, J.; Sibbett, B.S.; Adams, M.C.

1984-09-01T23:59:59.000Z

320

Category:Downhole Techniques | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Category Edit History Facebook icon Twitter icon » Category:Downhole Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Downhole Techniques page? For detailed information on Downhole Techniques as exploration techniques, click here. Category:Downhole Techniques Add.png Add a new Downhole Techniques Technique Subcategories This category has the following 5 subcategories, out of 5 total. B [×] Borehole Seismic Techniques‎ 2 pages F [×] Formation Testing Techniques‎ O [×] Open-Hole Techniques‎ W [×] Well Log Techniques‎ 17 pages [×] Well Testing Techniques‎ 8 pages

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

SFU Library Ask. Explore. Discover.  

E-Print Network [OSTI]

SFU Library Ask. Explore. Discover. SFU Library Annual Report 2007-08 #12;SFU Library Annual Report..................................................................................................... 8 WAC BENNETT LIBRARY................................................................................... 9 SAMUEL AND FRANCES BELZBERG LIBRARY............................................... 10 FRASER

322

Laboratories to Explore, Explain VLBACHANDRA  

E-Print Network [OSTI]

Institute of Technology Idaho National Engineering Laboratory Lawrence Livermore National Laboratory, at least, be one that allows the scientific exploration of burning plasmas" and if Japan and Europe do

323

Geobotanical Remote Sensing For Geothermal Exploration | Open Energy  

Open Energy Info (EERE)

For Geothermal Exploration For Geothermal Exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Geobotanical Remote Sensing For Geothermal Exploration Details Activities (1) Areas (1) Regions (0) Abstract: This paper presents a plan for increasing the mapped resource base for geothermal exploration in the Western US. We plan to image large areas in the western US with recently developed high resolution hyperspectral geobotanical remote sensing tools. The proposed imaging systems have the ability to map visible faults, surface effluents, historical signatures, and discover subtle hidden faults and hidden thermal systems. Large regions can be imaged at reasonable costs. The technique of geobotanical remote sensing for geothermal signatures is based on recent successes in mapping faults and effluents the Long Valley Caldera and

324

The R/H SabvabaaA research hovercraft for marine geophysical work in the most inaccessible area of the Arctic Ocean  

Science Journals Connector (OSTI)

...research hovercraft for marine geophysical work in the...use of a hovercraft for marine geophysical, geological...installed, together with marine and aircraft VHF radios...water-cooled Deutz 440-hp diesel engine. About 40 of the power...

John K. Hall; Yngve Kristoffersen

325

Multi-geophysical Investigation of Geological Structures in a Pre-selected High-level Radioactive Waste Disposal Area in Northwestern China  

Science Journals Connector (OSTI)

...Science Foundation for funding support (no.-41104045...level radioactive waste disposal: Acta Geoscientica Sinica...geophysical studies at Yucca Mountain, Nevada and vicinity...potential radioactive waste disposal site: Geophysics, 65...

Zhiguo An; Qingyun Di; Ruo Wang; Miaoyue Wang

326

Geophysical Evidence through a CSAMT Survey of the Deep Geological Structure at a Potential Radioactive Waste Site at Beishan, Gansu, China  

Science Journals Connector (OSTI)

...Foundation for funding support (no...geophysical studies at Yucca Mountain, Nevada and vicinity...radioactive waste disposal site: Geophysics...waste (HLRW) disposal site in northwestern...models underground disposal waste disposal...

Zhiguo An; Qingyun Di; Changmin Fu; Cheng Xu; Bo Cheng

327

Handbook on research techniques  

Science Journals Connector (OSTI)

Handbook on research techniques ... A request for contributions to a handbook entitled "Handbook of Research Techniques" for gifted children. ...

William Marina

1972-01-01T23:59:59.000Z

328

A near-surface geophysical investigation of the effects of measured and repeated removal of overlying soil on instrument response  

E-Print Network [OSTI]

A geophysical survey presents many challenges. A scientist must be able to not only understand the theory and nature of the geophysics being applied but must also be able to identify features of interest in a dataset. It is also of extreme...

Long, Zachary Ryan

2005-11-01T23:59:59.000Z

329

EETD Researchers at the American Geophysical Union Meeting in San Francisco  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

EETD Researchers at the American Geophysical Union Meeting in San Francisco EETD Researchers at the American Geophysical Union Meeting in San Francisco December 9-13 December 2013 A number of scientists from the Environmental Energy Technologies Division are presenting papers and posters at the American Geophysical Union Meeting next week in San Francisco. Here are brief descriptions of one talk and two posters by EETD scientists and their colleagues. For more information, go to the AGU meeting site at the link below, where you can look up presentations by scientists from EETD and other divisions of Lawrence Berkeley National Laboratory. Energy-Water Integrated Assessment of the Sacramento Area and a Demonstration of WEAP-LEAP Capability Poster Monday, December 9, 2013, 8 AM - 12 PM Hall A-C Moscone South Researchers from EETD and partner institutions report on a new basin-scale

330

A Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles  

Open Energy Info (EERE)

Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles Caldera, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles Caldera, New Mexico Details Activities (10) Areas (2) Regions (0) Abstract: The Baca location #1 geothermal field is located in north-central New Mexico within the western half of the Plio-Pleistocene Valles Caldera. Steam and hot water are produced primarily from the northeast-trending Redondo Creek graben, where downhole temperatures exceed 260°C at depths of less than 2 km. Stratigraphically the reservoir region can be described as a five-layer sequence that includes Tertiary and Quaternary volcanic rocks, and Mesozoic and Tertiary sediments overlying Precambrian granitic

331

Inversion of the amplitude of the two-dimensional analytic signal of the magnetic anomaly by the particle swarm optimization technique  

Science Journals Connector (OSTI)

......programme. In oil exploration, for example...first-order basin-exploration parameters (Li...structures for oil exploration. Several automated...reasonable time and cost. These techniques...commonly used as benchmark functions, namely......

Shalivahan Srivastava; B. N. P. Agarwal

2010-08-01T23:59:59.000Z

332

Category:Data and Modeling Techniques | Open Energy Information  

Open Energy Info (EERE)

and Modeling Techniques and Modeling Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Data and Modeling Techniques page? For detailed information on Data and Modeling Techniques as exploration techniques, click here. Category:Data and Modeling Techniques Add.png Add a new Data and Modeling Techniques Technique Subcategories This category has the following 2 subcategories, out of 2 total. D [×] Data Techniques‎ 3 pages M [×] Modeling Techniques‎ 5 pages Pages in category "Data and Modeling Techniques" The following 2 pages are in this category, out of 2 total. D Data Techniques M Modeling Techniques Retrieved from "http://en.openei.org/w/index.php?title=Category:Data_and_Modeling_Techniques&oldid=689801"

333

Genability Explorer | Open Energy Information  

Open Energy Info (EERE)

Genability Explorer Genability Explorer Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Genability Explorer Agency/Company /Organization: Genability Sector: Energy Focus Area: Energy Efficiency Resource Type: Software/modeling tools User Interface: Website Website: www.genability.com Country: United States Web Application Link: explorer.genability.com/explorer/index.jsp Cost: Paid OpenEI Keyword(s): Green Button Apps Northern America Coordinates: 37.790383°, -122.393054° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.790383,"lon":-122.393054,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

Evaluation of three geophysical methods to locate undocumented landfills  

E-Print Network [OSTI]

is to investigate the ability of these two techniques and ground penetrating radar to define undocumented landfill boundaries. Terrain conductivity senses the contrast in the electrical conductivity between filled and undisturbed areas. A proton precession... operating continuously for 20 years determined that electrical conductivity techniques work well in thick deposits of area fill and poorly or not at all on thin trench fill areas. Furthermore, length of burial time does not correlate with strength...

Brand, Stephen Gardner

2012-06-07T23:59:59.000Z

335

Swarming Behavior Using Probabilistic Roadmap Techniques  

E-Print Network [OSTI]

Swarming Behavior Using Probabilistic Roadmap Techniques O. Bur¸chan Bayazit1 , Jyh-Ming Lien2 behaviors: homing, exploring (covering and goal searching), passing through narrow areas and shepherding. We consider several different behaviors: homing, goal searching, covering, passing through narrow passages

Lien, Jyh-Ming

336

Exploring the magnetic topologies of cool stars  

E-Print Network [OSTI]

Magnetic fields of cool stars can be directly investigated through the study of the Zeeman effect on photospheric spectral lines using several approaches. With spectroscopic measurement in unpolarised light, the total magnetic flux averaged over the stellar disc can be derived but very little information on the field geometry is available. Spectropolarimetry provides a complementary information on the large-scale component of the magnetic topology. With Zeeman-Doppler Imaging (ZDI), this information can be retrieved to produce a map of the vector magnetic field at the surface of the star, and in particular to assess the relative importance of the poloidal and toroidal components as well as the degree of axisymmetry of the field distribution. The development of high-performance spectropolarimeters associated with multi-lines techniques and ZDI allows us to explore magnetic topologies throughout the Hertzsprung-Russel diagram, on stars spanning a wide range of mass, age and rotation period. These observations b...

Morin, J; Petit, P; Albert, L; Auriere, M; Cabanac, R; Catala, C; Delfosse, X; Dintrans, B; Fares, R; Forveille, T; Gastine, T; Jardine, M; Konstantinova-Antova, R; Lanoux, J; Lignieres, F; Morgenthaler, A; Paletou, F; Velez, J C Ramirez; Solanki, S K; Theado, S; Van Grootel, V

2010-01-01T23:59:59.000Z

337

Surface space : digital manufacturing techniques and emergent building material  

E-Print Network [OSTI]

This thesis explores tectonic possibilities of new material and forming techniques. The design process is catalyzed by experimenting different configurations of the material.This project attempts to develop inventive ways ...

Ho, Joseph Chi-Chen, 1975-

2002-01-01T23:59:59.000Z

338

Robust techniques for developing empirical models of fluidized bed combustors  

E-Print Network [OSTI]

This report is designed to provide a review of those data analysis techniques that are most useful for fitting m-dimensional empirical surfaces to very large sets of data. One issue explored is the improvement

Gruhl, Jim

339

Atomic-scale dynamics inside living cells explored by neutron scattering  

Science Journals Connector (OSTI)

...inside living cells explored by neutron scattering Marion Jasnin * * jasnin...specific usefulness of the neutron scattering technique to get insight into...cell types and organelles. neutron scattering|living cell|molecular dynamics...

2009-01-01T23:59:59.000Z

340

Transitioning the Transportation Sector: Exploring the Intersection...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

the Transportation Sector: Exploring the Intersection of Hydrogen Fuel Cell and Natural Gas Vehicles Transitioning the Transportation Sector: Exploring the Intersection...

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geothermal Exploration Best Practices Webinar Presentation Now...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exploration Best Practices Webinar Presentation Now Available Geothermal Exploration Best Practices Webinar Presentation Now Available April 12, 2012 - 3:08pm Addthis Presentation...

342

Edinburgh Research Explorer Money Cycles  

E-Print Network [OSTI]

Edinburgh Research Explorer Money Cycles Citation for published version: Clausen, A & Strub, C 2014 'Money Cycles' Edinburgh School of Economics Discussion Paper Series. Link: Link to publication record date: 11. Dec. 2014 #12;Edinburgh School of Economics Discussion Paper Series Number 249 Money Cycles

Millar, Andrew J.

343

RISK REDUCTION WITH A FUZZY EXPERT EXPLORATION TOOL  

SciTech Connect (OSTI)

Incomplete or sparse information on geologic or formation characteristics introduces a high level of risk for oil exploration and development projects. Expert systems have been developed and used in several disciplines and industries, including medical diagnostics, with favorable results. A state-of-the-art exploration ''expert'' tool, relying on a computerized data base and computer maps generated by neural networks, is proposed through the use of ''fuzzy'' logic, a relatively new mathematical treatment of imprecise or non-explicit parameters and values. This project will develop an Artificial Intelligence system that will draw upon a wide variety of information to provide realistic estimates of risk. ''Fuzzy logic,'' a system of integrating large amounts of inexact, incomplete information with modern computational methods to derive usable conclusions, has been demonstrated as a cost-effective computational technology in many industrial applications. During project year 1, 90% of geologic, geophysical, production and price data were assimilated for installation into the database. Logs provided geologic data consisting of formation tops of the Brushy Canyon, Lower Brushy Canyon, and Bone Springs zones of 700 wells used to construct regional cross sections. Regional structure and isopach maps were constructed using kriging to interpolate between the measured points. One of the structure derivative maps (azimuth of curvature) visually correlates with Brushy Canyon fields on the maximum change contours. Derivatives of the regional geophysical data also visually correlate with the location of the fields. The azimuth of maximum dip approximately locates fields on the maximum change contours. In a similar manner the second derivative in the x-direction of the gravity map visually correlates with the alignment of the known fields. The visual correlations strongly suggest that neural network architectures will be found to correlate regional attributes with individual well production. On a local scale, given open-hole log information, a neural network was trained to predict the product of porosity and oil saturation as reported in whole core analysis. Thus a direct indicator of an oil show is available from log information. This is important in the thin-bedded Delaware sand reservoirs. Fuzzy ranking was used to prioritize 3D seismic attributes that were then correlated to formation depth with a neural network. The results were superior to those obtained using linear interpolation or low order polynomial interpolation as time-to-depth conversion tools. A radial basis function neural network was developed and used as a log evaluation tool. This new technology gives an additional tool to the more commonly used multilayer perceptron (MLP) neural network. An interactive web based MLP, PredictOnline, was coded in Java and made available to consortium members for beta testing. PredictOnline demonstrates the power of Java programming language for web-based applications. A draft design of the Fuzzy Expert Exploration (FEE) Tool system based on readily available software was completed. The recent development of a Java Expert System Shell, JESS, facilitates expert rule development.

William W. Weiss

2000-06-30T23:59:59.000Z

344

Charles A. Stock Research Oceanographer, NOAA/Geophysical Fluid Dynamics Laboratory  

E-Print Network [OSTI]

Change Impacts on Living Marine Resources", 2012 Ocean Sciences Meeting, Salt Lake City 2012-13 MemberCharles A. Stock Research Oceanographer, NOAA/Geophysical Fluid Dynamics Laboratory Princeton-mail: Charles.Stock@noaa.gov Education 2005 Ph.D., Woods Hole Oceanographic Institution/MIT Joint Program Civil

345

GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, A bootstrap algorithm for deriving the1  

E-Print Network [OSTI]

-squares method combined13 with a bootstrap algorithm. Given a particular set of archeomagnetic data14 associated;X - 4 THEBAULT AND GALLET: A BOOTSTRAP ALGORITHM 2. Fundamentals We have a discrete set of data fGEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, A bootstrap algorithm for deriving the1

Thébault, Erwan

346

Carbon Sequestration and Its Role in the Global Carbon Cycle Geophysical Monograph Series 183  

E-Print Network [OSTI]

73 Carbon Sequestration and Its Role in the Global Carbon Cycle Geophysical Monograph Series 183. Blaine Metting2 The purpose of this chapter is to review terrestrial biological carbon sequestration Northwest National Laboratory, Richland, Washington, USA. #12;74 TERRESTRIAL BIOLOGICAL CARBON SEqUESTRATION

Pennycook, Steve

347

In this article, I suggest a new style of geophysics as a critical system, which  

E-Print Network [OSTI]

geophysics for the oil industry is that the high-resolution details of fluid-sat- urated reservoirs and rocks effects. Those proven to date include: (1) oil production that has been shown by Heffer et al the virtual reality!). We extract oil from an integrated crack-critical rock mass. Future advances depend

348

GEOPHYSICS & GEODYNAMICS D. McKenzie, J.A. Jackson, R.S. White, A. Deuss,  

E-Print Network [OSTI]

models based on land-, marine- and space-based observations. Theoretical and geophysical analyses. The COMET project on modelling and observation of earthquakes and tectonics has developed further our strong to regional investigations of large continental areas. This effort is coordinated within the COMET group (http://comet

Cambridge, University of

349

Major results of geophysical investigations at Yucca Mountain and vicinity, southern Nevada  

SciTech Connect (OSTI)

In the consideration of Yucca Mountain as a possible site for storing high level nuclear waste, a number of geologic concerns have been suggested for study by the National Academy of Sciences which include: (1) natural geologic and geochemical barriers, (2) possible future fluctuations in the water table that might flood a mined underground repository, (3) tectonic stability, and (4) considerations of shaking such as might be caused by nearby earthquakes or possible volcanic eruptions. This volume represents the third part of an overall plan of geophysical investigation of Yucca Mountain, preceded by the Site Characterization Plan (SCP; dated 1988) and the report referred to as the Geophysical White Paper, Phase 1, entitled Status of Data, Major Results, and Plans for Geophysical Activities, Yucca Mountain Project (Oliver and others, 1990). The SCP necessarily contained uncertainty about applicability and accuracy of methods then untried in the Yucca Mountain volcano-tectonic setting, and the White Paper, Phase 1, focused on summarization of survey coverage, data quality, and applicability of results. For the most part, it did not present data or interpretation. The important distinction of the current volume lies in presentation of data, results, and interpretations of selected geophysical methods used in characterization activities at Yucca Mountain. Chapters are included on the following: gravity investigations; magnetic investigations; regional magnetotelluric investigations; seismic refraction investigations; seismic reflection investigations; teleseismic investigations; regional thermal setting; stress measurements; and integration of methods and conclusions. 8 refs., 60 figs., 2 tabs.

Oliver, H.W.; Ponce, D.A. [eds.] [Geological Survey, Menlo Park, CA (United States); Hunter, W.C. [ed.] [Geological Survey, Denver, CO (United States). Yucca Mountain Project Branch

1995-12-31T23:59:59.000Z

350

Internal geophysics (Physics of Earth's interior) Jump conditions and dynamic surface tension at permeable  

E-Print Network [OSTI]

Internal geophysics (Physics of Earth's interior) Jump conditions and dynamic surface tension of momentum across the interface, a possibly anisotropic surface tension and terms including an inter- face equals the jump of pressure; and in the presence of surface tension defined as a capillary action due

351

American Geophysical Union Fall Meeting, San Francisco, 12/14/07 Analyzing Regional Climate Experiments  

E-Print Network [OSTI]

of future climate and produce high resolution climate change projections using multiple GCM/RCM simulations for weight- ing models and improved projections of regional climate and climate change. · RecognizingAmerican Geophysical Union Fall Meeting, San Francisco, 12/14/07 Analyzing Regional Climate

Sain, Steve

352

An edited version of this paper was published by AGU. Copyright 2005 American Geophysical Union.  

E-Print Network [OSTI]

Atlantic Ocean- Atmosphere Interaction, Geophysical Research Letters 32, L24619, doi: 10.1029/2005GL024871 et al., 2005 1 Observations of SST, Heat Flux and North Atlantic Ocean-Atmosphere Interaction# Na Wen is generated largely by the surface heat flux, and then forces the early winter atmosphere through the release

Wisconsin at Madison, University of

353

Global Land Ice Measurements from Space Publisher: Springer Praxis Books, Subseries: Geophysical Sciences  

E-Print Network [OSTI]

Global Land Ice Measurements from Space Publisher: Springer Praxis Books, Subseries: Geophysical perceptions about the importance of fluctuations of glaciers and ice sheets (Jeffrey S. Kargel) 1.1Early.2.2. Modern impacts of changing glaciers and ice sheets on people 0.2.3. Recent public perceptions about

354

Optimisation of seismic network design: Application to a geophysical international lunar network  

E-Print Network [OSTI]

Optimisation of seismic network design: Application to a geophysical international lunar network. Informations about lunar seismicity and seismic subsurface models from the Apollo missions are used as a priori information in this study to optimise the geometry of future lunar seismic networks in order to best resolve

Sambridge, Malcolm

355

Geophysical Monitoring of Foam used to Deliver Remediation1 Treatments within the Vadose Zone2  

E-Print Network [OSTI]

for transport of pollutants from the ground surface37 to ground water. Contaminants in the vadose zone1 Geophysical Monitoring of Foam used to Deliver Remediation1 Treatments within the Vadose Zone2 3 amendments into the vadose zone for in situ11 remediation; it is an approach being considered for in situ

Hubbard, Susan

356

Geophysical constraints on contaminant transport modeling in a heterogeneous fluvial aquifer  

E-Print Network [OSTI]

of Geological Sciences, University of Alabama, Box 870338, Tuscaloosa, AL 35487, USA b Institute of Marine log­log relationship. Application of this relationship, using site-specific empirical constants supplemented with geophysical data at least as well as previous models of the site using purely hydrologic data

Zheng, Chunmiao

357

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. , XXXX, DOI:10.1029/, Magnetic Flux Emergence in the Sun  

E-Print Network [OSTI]

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. , XXXX, DOI:10.1029/, Magnetic Flux Emergence in the Sun V­dimensional evolution of solar eruptions as they leave the Sun and move into the interplanetary space. One of the most important processes, responsible for many dynamical phenomena ob­ served in the Sun, is the emergence

Sengun, Mehmet Haluk

358

GEON: Geophysical data add the 3rd dimension in geospatial studies  

E-Print Network [OSTI]

in the search for natural resources (water, oil, gas, minerals, geothermal energy). Such studies provide of Texas at El Paso, GEON and PACES Research Teams Abstract A major trend in GIS is the addition projects has required the development of many sophisticated tools to allow users to utilize geophysical

Kreinovich, Vladik

359

September 2006 FORENSIC TECHNIQUES  

E-Print Network [OSTI]

September 2006 FORENSIC TECHNIQUES: HELPING ORGANIZATIONS IMPROVE THEIR RESPONSES TO INFORMATION SECURITY INCIDENTS FORENSIC TECHNIQUES: HELPING ORGANIZATIONS IMPROVE THEIR RESPONSES TO INFORMATION and Technology National Institute of Standards and Technology Digital forensic techniques involve the application

360

Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa | Open  

Open Energy Info (EERE)

In A Blind Geothermal Area Near Marysville, Montana, Usa In A Blind Geothermal Area Near Marysville, Montana, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Details Activities (7) Areas (1) Regions (0) Abstract: Extensive geological and geophysical studies were carried out during the summer of 1973 in a blind geothermal area near Marysville, Montana. Earlier studies of regional heat flow resulted in the discovery of the area (BLACKWELL 1969; BLACKWELL, BAAG 1973). The area is blind in the sense that there are no surface manifestations of high heat flow (recent volcanics, hot springs, etc.) within the area. The country rocks are Precambrian sedimentary rocks and Mesozoic and Tertiary intrusive rocks. The most recent Tertiary igneous event took place approximately 37 M.Y.

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

7 Efficient Exploration 7.1 Overview  

E-Print Network [OSTI]

Methods: Here a more global view of the process is taken, and the schemes are directly designed to explore7 Efficient Exploration 7.1 Overview Efficient exploration of the action and state space is a crucial factor in the convergence rate of a learning scheme. An early survey of early exploration methods

Shimkin, Nahum

362

Draft Innovative Exploration Technologies Needs Assessment  

Broader source: Energy.gov [DOE]

A draft needs assessment for the Geothermal Technologies Programs Innovative Exploration Technologies Subprogram.

363

DEVELOPMENT OF A VIRTUAL INTELLIGENCE TECHNIQUE FOR THE UPSTREAM OIL INDUSTRY  

SciTech Connect (OSTI)

The objective of the research and development work reported in this document was to develop a Virtual Intelligence Technique for optimization of the Preferred Upstream Management Practices (PUMP) for the upstream oil industry. The work included the development of a software tool for identification and optimization of the most influential parameters in upstream common practices as well as geological, geophysical and reservoir engineering studies. The work was performed in cooperation with three independent producing companies--Newfield Exploration, Chesapeake Energy, and Triad Energy--operating in the Golden Trend, Oklahoma. In order to protect data confidentiality, these companies are referred to as Company One, Two, Three in a randomly selected order. These producing companies provided geological, completion, and production data on 320 wells and participated in frequent technical discussions throughout the project. Research and development work was performed by Gas Technology Institute (GTI), West Virginia University (WVU), and Intelligent Solutions Inc. (ISI). Oklahoma Independent Petroleum Association (OIPA) participated in technology transfer and data acquisition efforts. Deliverables from the project are the present final report and a user-friendly software package (Appendix D) with two distinct functions: a characterization tool that identifies the most influential parameters in the upstream operations, and an optimization tool that seeks optimization by varying a number of influential parameters and investigating the coupled effects of these variations. The electronic version of this report is also included in Appendix D. The Golden Trend data were used for the first cut optimization of completion procedures. In the subsequent step, results from soft computing runs were used as the guide for detailed geophysical and reservoir engineering studies that characterize the cause-and-effect relationships between various parameters. The general workflow and the main performing units were as follows: (1) Data acquisition. (GTI, OIPA, Participating producers.) (2) Development of the virtual intelligence software. (WVU, ISI); (3) Application of the software on the acquired data. (GTI, ISI); (4) Detailed production analysis using conventional engineering techniques and the DECICE neural network software. (GTI) and (5) Detailed seismic analysis using Inspect spectral decomposition package and Hapmson-Russell's EMERGE inversion package. (GTI) Technology transfer took place through several workshops held at offices of the participating companies, at OIPA offices, and presentations at the SPE panel on soft computing applications and at the 2003 annual meeting of Texas Independent Producers and Royalty Owners Association (TIPRO). In addition, results were exhibited at the SPE annual meeting, published in GasTips, and placed on the GTI web page. Results from the research and development work were presented to the producing companies as a list of recommended recompletion wells and the corresponding optimized operations parameters. By the end of the project, 16 of the recommendations have been implemented the majority of which resulted in increased production rates to several folds. This constituted a comprehensive field demonstration with positive results.

Iraj A. Salehi; Shahab D. Mohaghegh; Samuel Ameri

2004-09-01T23:59:59.000Z

364

Tunisia's production peaks, exploration busy  

SciTech Connect (OSTI)

This paper reports on the oil and gas exploration industry in Tunisia which is continuing to experience an almost unprecedented boom as the effects of the favorable fiscal and legislative regime work through the recent discoveries come on stream. Perhaps the most significant of the new discoveries is 1 Belli on Cap Bon, which Marathon tested at a rate of 6,800 b/d of oil with reported potential of as much as 15,000 b/d.

Mrad, R.; M'Rabet, A.; Chine, N. (Enterprise Tunisienne d'Activites Petrolieres (TN)); Davies, W.C.

1991-12-23T23:59:59.000Z

365

A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home GEOTHERMAL ENERGYGeothermal Home Journal Article: A Numerical Evaluation Of Electromagnetic Methods In Geothermal Exploration Details Activities (0) Areas (0) Regions (0) Abstract: The size and low resistivity of the clay cap associated with a geothermal system create a target well suited for electromagnetic (EM) methods and also make electrical detection of the underlying geothermal reservoir a challenge. Using 3-D numerical models, we evaluate four EM techniques for use in geothermal exploration: magnetotellurics (MT), controlled-source audio magnetotellurics (CSAMT), long-offset time-domain EM (LOTEM), and short-offset time-domain EM (TEM). Our results show that all of these techniques can delineate the clay cap, but none can be said to unequivocally detect the reservoir. We do find, however, that the EM

366

Category:Borehole Seismic Techniques | Open Energy Information  

Open Energy Info (EERE)

Borehole Seismic Techniques page? Borehole Seismic Techniques page? For detailed information on Borehole Seismic Techniques as exploration techniques, click here. Category:Borehole Seismic Techniques Add.png Add a new Borehole Seismic Techniques Technique Pages in category "Borehole Seismic Techniques" The following 2 pages are in this category, out of 2 total. S Single-Well And Cross-Well Seismic V Vertical Seismic Profiling Retrieved from "http://en.openei.org/w/index.php?title=Category:Borehole_Seismic_Techniques&oldid=601962" Category: Downhole Techniques What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data Developer services OpenEI partners with a broad range of international organizations to grow

367

Borehole Logging Methods for Exploration and Evaluation of Uranium Deposits (1967)  

Broader source: Energy.gov (indexed) [DOE]

Borehole logging methods for exploration Borehole logging methods for exploration and evaluation o f uranium deposits . Philip H. O d d , Robert F. Bmullad and Carl P. Lathan rej~rinkttl fnlm Mining and Groundwater Geophysiall967 Borehole logging methods for exploration and evaluation of uranium deposits Philip H. Dodd, Robert F. Droullard and Carl P. Lathan US. Atomic Energy Commhwn GmrPd Jtinct&n, Colorado Abstract, M o l e 1 - i s thc geophysical methad mast exten&@ w r t i n the Udtrrd States for exploratio~ md edwtim of wanhi &pod&. dammow lop, C o r n r n d j suppkrnentd with a singbz-pobt msfstailee log, m t l y supply about 80 percent of the bask data for om regerve c W t i o R a d mu& of the w ~ k r 6 . p ~ &ngk inf~nnatio~ Tmck-mounted 'rotmy eqnipmcnt i s EMhmody emphy&& holes usually hwre a nominai b

368

Hyperspectral Mineral Mapping In Support Of Geothermal Exploration...  

Open Energy Info (EERE)

aircraft and much in the same way more familiar geophysics are flown. The hyperspectral data records a continuous spatial record of the earth's surface, as well as measuring a...

369

Exploring Venus by solar airplane  

Science Journals Connector (OSTI)

A solar-powered airplane is proposed to explore the atmospheric environment of Venus. Venus has several advantages for a solar airplane. At the top of the cloud level the solar intensity is comparable to or greater than terrestrial solar intensities. The Earthlike atmospheric pressure means that the power required for flight is lower for Venus than that of Mars and the slow rotation of Venus allows an airplane to be designed for continuous sunlight with no energy storage needed for night-time flight. These factors mean that Venus is perhaps the easiest planet in the solar system for flight of a long-duration solar airplane.

Geoffrey A. Landis

2001-01-01T23:59:59.000Z

370

Airborne electromagnetic surveys as a reconnaissance technique for  

Open Energy Info (EERE)

electromagnetic surveys as a reconnaissance technique for electromagnetic surveys as a reconnaissance technique for geothermal exploration Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Airborne electromagnetic surveys as a reconnaissance technique for geothermal exploration Details Activities (1) Areas (1) Regions (0) Abstract: INPUT airborne electromagnetic (AEM) surveys were conducted during 1979 in five Known Geothermal Resource Areas (KGRA's). AEM work has not been significantly utilized in the past for geothermal purposes because it was thought that a shallow exploration technique would not be effective. Extensive audio-magnetotelluric (AMT) work by the USGS in KGRA's showed that many geothermal systems do have a near-surface electrical signature which should be detectable by an AEM system. INPUT responses in the form of

371

EXPLORATION ACTIVITY WORKSHEET Purpose: The exploration activity is designed for students to "explore" opportunities at UM as they  

E-Print Network [OSTI]

EXPLORATION ACTIVITY WORKSHEET Purpose: The exploration activity is designed for students to "explore" opportunities at UM as they relate to student success, majors, careers of interest and other of their academic development and thus, you and your advisor will determine what type of activity or process you

Hill, Wendell T.

372

Category:Remote Sensing Techniques | Open Energy Information  

Open Energy Info (EERE)

Remote Sensing Techniques Remote Sensing Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Remote Sensing Techniques page? For detailed information on remote sensing techniques used as a geothermal exploration technique, click here. Category: Remote Sensing Techniques Add.png Add a new Remote Sensing Technique Subcategories This category has the following 2 subcategories, out of 2 total. A [+] Active Sensors‎ (1 categories) 2 pages P [×] Passive Sensors‎ 13 pages Pages in category "Remote Sensing Techniques" The following 2 pages are in this category, out of 2 total. A Active Sensors L Long-Wave Infrared Retrieved from "http://en.openei.org/w/index.php?title=Category:Remote_Sensing_Techniques&oldid=594055"

373

Application of the Earth's Natural Electromagnetic Noise to Geophysical Prospecting and Seraching for Oil  

E-Print Network [OSTI]

When applying the Earth's natural pulse electromagnetic fields to geophysical prospecting one should take into account characteristics of their spatial and temporal variations. ENPEMF is known to include both pulses attributed to atmospheric thunderstorms and pulses generated in the lithosphere by mechanic-to-electric energy conversion in rocks. It is evident that the most valuable information on the geophysical structure of a certain area is obviously contained in pulses originated from this area. This article covers a method of recording spatial variations of the Earth's natural pulse electromagnetic fields which is able to take due account of spatial and temporal variations of EM fields and suits to reveal crustal structural and lithologic heterogeneities including hydrocarbon pools. We use a system of several stations recording the ENPEMF concurrently to erase the temporal variations from ENPEMF records and to sort out the pulses of local and remote origin. Some stations are fixed (reference) and record o...

Malyshkov, Sergey Yu; Gordeev, Vasily F; Shtalin, Sergey G; Polivach, Vitaly I; Bazhanov, Yury Yu; Hauan, Terje

2011-01-01T23:59:59.000Z

374

Interpretive geophysical fault map across the central block of Yucca Mountain, Nevada  

SciTech Connect (OSTI)

Geophysical data collected along 29 traverses across the central block of Yucca Mountain in southwest Nevada reveal anomalies associated with known fault sand indicate a number of possible concealed faults beneath the eastern flank of Yucca Mountain. Geophysical interpretations indicate that Midway Valley is characterized by several known and previously unknown faults, that the existence of the Yucca Wash fault is equivocal, and that the central part of the eastern flank of Yucca Mountain is characterized by numerous low-amplitude anomalies that probably reflect numerous small-scale faults. Gravity and magnetic data also reveal several large-amplitude anomalies that reflect larger-scale faulting along the margins of the central block.

Ponce, D.A.

1996-12-31T23:59:59.000Z

375

Application of high-resolution geophysical methods in submarine pipeline inspection  

Science Journals Connector (OSTI)

High-resolution marine geophysical equipment employed includes single beam echo sounder (SBES), multi-beam echo sounder (MBES), sub-bottom profiler (SBP) and side scan sonar (SSS). By employing SBES, the reflection curve in shallow water reveals the real condition of pipeline; while in deep water, the reflection or diffraction curve can't reveal the real condition. Compared with SBES, MBES is characterised by intuition, efficiency and high resolution. But the same as SBES, the beam angle affects its detecting ability seriously. As for the SBP, system employing Chirp technology can detect the buried conditions of pipelines. Ship speed and water depth can affect the detection. The SSS can detect the plane position, exposed height, spanning state and pipeline trench, but buried pipelines. In order to understand the whole in-situ conditions of submarine pipeline, multiple geophysical methods should be employed.

Lai Xianghua; Ye Yincan; Pan Guofu; Li Dong

2011-01-01T23:59:59.000Z

376

Program Description  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Description Program Description SAGE, the Summer of Applied Geophysical Experience, is a unique educational program designed to introduce students in geophysics and related fields to "hands on" geophysical exploration and research. The program emphasizes both teaching of field methods and research related to basic science and a variety of applied problems. SAGE is hosted by the National Security Education Center and the Earth and Environmental Sciences Division of the Los Alamos National Laboratory. * teaches modern geophysical exploration techniques: seismic reflection and refraction, gravity and magnetics, electromagnetics (including magnetotellurics), and electrical resistivity * involves extensive hands-on field experience * integrates geophysical methods to solve real

377

Oil exploration and production in Scotland  

Science Journals Connector (OSTI)

...production, 34 oil production platforms are in operation...FARROW FIG. 4. The semi-submersible exploration rig...EXPLORATION AND PRODUCTION 559 3 E Area shows...through four steel production platforms, in a water depth...

D. Hallett; G. P. Durant; G. E. Farrow

378

Assessor Training Assessment Techniques  

E-Print Network [OSTI]

NVLAP Assessor Training Assessment Techniques: Communication Skills and Conducting an Assessment listener ·Knowledgeable Assessor Training 2009: Assessment Techniques: Communication Skills & Conducting, truthful, sincere, discrete · Diplomatic · Decisive · Selfreliant Assessor Training 2009: Assessment

379

Object Exploration By Purposive, Dynamic Viewpoint Adjustment  

E-Print Network [OSTI]

. Unlike previous approaches where exploration is cast as a discrete process (i.e., asking where to look on the object surface that are occluded when the exploration process is initiated. Our goal is to designObject Exploration By Purposive, Dynamic Viewpoint Adjustment Kiriakos N. Kutulakos Charles R. Dyer

Dyer, Charles R.

380

Power options for lunar exploration  

SciTech Connect (OSTI)

This paper presents an overview of the types of power systems available for providing power on the moon. Lunar missions of exploration, in situ resource utilization, and colonization will be constrained by availability of adequate power. The length of the lunar night places severe limitations on solar power system designs, because a large portion of the system mass is devoted to energy storage. The selection of the ideal power source hardware will require compatibility with not only the lunar base power requirements and environment, but also with the conversion, storage, and transmission equipment. In addition, further analysis to determine the optimum operating parameters for a given power system should be conducted so that critical technologies can be identified in the early stages of base development. This paper describes the various concepts proposed for providing power on the lunar surface and compare their ranges of applicability. The importance of a systems approach to the integration of these components will also be discussed.

Bamberger, J.A.; Gaustad, K.L.

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Large Scale Computing Requirements for Basic Energy Sciences (An BES / ASCR / NERSC Workshop) Hilton Washington DC/Rockville Meeting Center, Rockville MD 3D Geophysical Imaging  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Requirements Requirements for Basic Energy Sciences (An BES / ASCR / NERSC Workshop) Hilton Washington DC/Rockville Meeting Center, Rockville MD 3D Geophysical Modeling and Imaging G. A. Newman Lawrence Berkeley National Laboratory February 9 - 10 , 2010 Talk Outline * SEAM Geophysical Modeling Project - Its Really Big! * Geophysical Imaging (Seismic & EM) - Its 10 to 100x Bigger! - Reverse Time Migration - Full Waveform Inversion - 3D Imaging & Large Scale Considerations - Offshore Brazil Imaging Example (EM Data Set) * Computational Bottlenecks * Computing Alternatives - GPU's & FPGA's - Issues Why ? So that the resource industry can tackle grand geophysical challenges (Subsalt imaging, land acquisition, 4-D, CO2, carbonates ......) SEAM Mission Advance the science and technology of applied

382

Well Log Techniques At Snake River Plain Region (DOE GTP) | Open Energy  

Open Energy Info (EERE)

Well Log Techniques At Snake River Plain Region (DOE GTP) Well Log Techniques At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Techniques At Snake River Plain Region (DOE GTP) Exploration Activity Details Location Snake River Plain Geothermal Region Exploration Technique Well Log Techniques Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Well_Log_Techniques_At_Snake_River_Plain_Region_(DOE_GTP)&oldid=600470" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

383

Category:Well Log Techniques | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Well Log Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Well Log Techniques page? For detailed information on Well Log Techniques as exploration techniques, click here. Category:Well Log Techniques Add.png Add a new Well Log Techniques Technique Pages in category "Well Log Techniques" The following 17 pages are in this category, out of 17 total. A Acoustic Logs C Caliper Log Cement Bond Log Chemical Logging Cross-Dipole Acoustic Log D Density Log F FMI Log G Gamma Log I Image Logs M Mud Logging N Neutron Log P Pressure Temperature Log R Resistivity Log Resistivity Tomography S Single-Well and Cross-Well Resistivity Spontaneous Potential Well Log Stoneley Analysis

384

CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION  

SciTech Connect (OSTI)

Private- and public-sector stakeholders formed the new ''Trenton-Black River Appalachian Basin Exploration Consortium'' and began a two-year research effort that will lead to a play book for Trenton-Black River exploration throughout the Appalachian basin. The final membership of the Consortium includes 17 gas exploration companies and 6 research team members, including the state geological surveys in Kentucky, Ohio, Pennsylvania and West Virginia, the New York State Museum Institute and West Virginia University. Seven integrated research tasks are being conducted by basin-wide research teams organized from this large pool of experienced professionals. More than 3400 miles of Appalachian basin digital seismic data have been quality checked. In addition, inquiries have been made regarding the availability of additional seismic data from government and industry partners in the consortium. Interpretations of the seismic data have begun. Error checking is being performed by mapping the time to various prominent reflecting horizons, and analyzing for any anomalies. A regional geological velocity model is being created to make time-to-depth conversions. Members of the stratigraphy task team compiled a generalized, basin-wide correlation chart, began the process of scanning geophysical logs and laid out lines for 16 regional cross sections. Two preliminary cross sections were constructed, a database of all available Trenton-Black River cores was created, and a basin-wide map showing these core locations was produced. Two cores were examined, described and photographed in detail, and were correlated to the network of geophysical logs. Members of the petrology team began the process of determining the original distribution of porous and permeable facies within a sequence stratigraphic framework. A detailed sedimentologic and petrographic study of the Union Furnace road cut in central Pennsylvania was completed. This effort will facilitate the calibration of subsurface core and log data. A core-sampling plan was developed cooperatively with members of the isotope geochemistry and fluid inclusion task team. One hundred thirty (130) samples were prepared for trace element and stable isotope analysis, and six samples were submitted for strontium isotope analysis. It was learned that there is a good possibility that carbon isotope stratigraphy may be a useful tool to locate the top of the Black River Formation in state-to-state correlations. Gas samples were collected from wells in Kentucky, New York and West Virginia. These were sent to a laboratory for compositional, stable isotope and hydrogen and radiogenic helium isotope analysis. Decisions concerning necessary project hardware, software and configuration of the website and database were made by the data, GIS and website task team. A file transfer protocol server was established for project use. The project website is being upgraded in terms of security.

Douglas G. Patchen; James Drahovzal; Larry Wickstrom; Taury Smith; Chris Laughery; Katharine Lee Avary

2004-04-01T23:59:59.000Z

385

Applied Science/Techniques  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied Science/Techniques Applied Science/Techniques Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous calibration and testing provided by beamlines and equipment from the ALS's Optical Metrology Lab and Berkeley Lab's Center for X-Ray Optics. New and/or continuously improved experimental techniques are also a crucial element of a thriving scientific facility. At the ALS, examples of such "technique" highlights include developments in lensless imaging, soft x-ray tomography, high-throughput protein analysis, and high-power coherent terahertz radiation.

386

Well Log Techniques At Coso Geothermal Area (1985) | Open Energy  

Open Energy Info (EERE)

Coso Geothermal Area (1985) Coso Geothermal Area (1985) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Well Log Techniques Activity Date 1985 Usefulness not indicated DOE-funding Unknown Exploration Basis Impact of long term testing on the well pressure Notes The downhole pressure monitoring equipment for each well included a stainless steel pressure chamber attached to a 0.25 inch stainless steel capillary tubing. The surface end of the capillary tubing was connected to a Paroscientific quartz pressure trandsducer. References Sanyal, S.; Menzies, A.; Granados, E.; Sugine, S.; Gentner, R. (20 January 1987) Long-Term Testing of Geothermal Wells in the Coso Hot Springs KGRA Retrieved from "http://en.openei.org/w/index.php?title=Well_Log_Techniques_At_Coso_Geothermal_Area_(1985)&oldid=600462

387

RAPID/Geothermal/Exploration/Utah | Open Energy Information  

Open Energy Info (EERE)

to encourage maximum economic recovery. 1 Exploration Notes: ContactsAgencies: State Exploration Process not available Local Exploration Process not available Policies &...

388

RAPID/Overview/Geothermal/Exploration/Utah | Open Energy Information  

Open Energy Info (EERE)

Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationUtah) Redirect page Jump to: navigation, search REDIRECT RAPIDGeothermalExploration...

389

Final Scientific - Technical Report, Geothermal Resource Exploration  

Open Energy Info (EERE)

Scientific - Technical Report, Geothermal Resource Exploration Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Final Scientific - Technical Report, Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Details Activities (5) Areas (1) Regions (0) Abstract: With financial support from the U.S. Department of Energy (DOE), Layman Energy Associates, Inc. (LEA) has completed a program of geothermal exploration at the Truckhaven area in Imperial County, California. The exploratory work conducted by LEA included the following activities: compilation of public domain resource data (wells, seismic data, geologic maps); detailed field geologic mapping at the project site; acquisition and

390

Draft Needs Assessment for Innovative Exploration Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

efforts to spur the U.S. geothermal industry to seek green field resources by lowering exploration risks and costs through research, development and demonstration. The...

391

Hydrothermal Exploration Data Gap Analysis Update  

Broader source: Energy.gov [DOE]

Hydrothermal Exploration Data Gap Analysis presentation by Kate Young, Dan Getman, and Ariel Esposito at the 2012 Peer Review Meeting on May 10, 2012

392

Category:Exploration Drilling | Open Energy Information  

Open Energy Info (EERE)

Category Edit History Facebook icon Twitter icon Category:Exploration Drilling Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the...

393

Geothermal Exploration Policy Mechanisms | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

focuses on five of the policy types that are most relevant to the U.S. market and political context for the exploration and confirmation of conventional hydrothermal...

394

RAPID/Geothermal/Exploration | Open Energy Information  

Open Energy Info (EERE)

in Federal Bureau of Land Management, United States Forest Service Notice of Intent to Conduct Geothermal Resource Exploration Operations (Form 3200-009) Bureau of Land...

395

Hydrothermal Exploration Data Gap Analysis Update  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

term using rapid reconnaissance surveys, surface exploration, stress measurements, fracture mapping, temperature gradient drilling. Accelerate near-term hydrothermal growth by:...

396

New Geothermal Exploration and Management Tools | Department...  

Energy Savers [EERE]

Brine Brings Low-Cost Power with Big Potential Readily Available Data Help to Overcome Geothermal Deployment Barriers Project Overview Positive Impact To accelerate exploration...

397

Final Scientific - Technical Report, Geothermal Resource Exploration...  

Open Energy Info (EERE)

Geothermal Resource Exploration Program, Truckhaven Area, Imperial County, California Abstract With financial support from the U.S. Department of Energy (DOE), Layman Energy...

398

Offshore hydraulic fracturing technique  

SciTech Connect (OSTI)

This paper describes the frac-and-pack completion technique currently being used in the Gulf of Mexico, and elsewhere, for stimulation and sand control. The paper describes process applications and concerns that arise during implementation of the technique and discusses the completion procedure, treatment design, and execution.

Meese, C.A. (Marathon Oil Co., Houston, TX (United States)); Mullen, M.E. (Marathon Oil Co., Lafayette, LA (United States)); Barree, R.D. (Marathon Oil Co., Littleton, CO (United States))

1994-03-01T23:59:59.000Z

399

Analog signal isolation techniques  

SciTech Connect (OSTI)

This paper discusses several techniques for isolating analog signals in an accelerator environment. The techniques presented here encompass isolation amplifiers, voltage-to-frequency converters (VIFCs), transformers, optocouplers, discrete fiber optics, and commercial fiber optic links. Included within the presentation of each method are the design issues that must be considered when selecting the isolation method for a specific application.

Beadle, E.R.

1992-01-01T23:59:59.000Z

400

Analog signal isolation techniques  

SciTech Connect (OSTI)

This paper discusses several techniques for isolating analog signals in an accelerator environment. The techniques presented here encompass isolation amplifiers, voltage-to-frequency converters (VIFCs), transformers, optocouplers, discrete fiber optics, and commercial fiber optic links. Included within the presentation of each method are the design issues that must be considered when selecting the isolation method for a specific application.

Beadle, E.R.

1992-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical  

Open Energy Info (EERE)

Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Inverse Modeling Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Inverse Modeling Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Fluid Imaging Project Description EGS has been defined as enhanced reservoirs that have been created to extract economical amounts of heat from low permeability and/or porosity geothermal resources. Critical to the success of EGS is the successful manipulation of fluids in the subsurface to enhance permeability. Knowledge in the change in volume and location of fluids in the rocks and fractures (both natural and induced) will be needed to manage injection strategies such as the number and location of step out wells, in-fill wells and the ratio of injection to production wells. The key difficulty in manipulating fluids has been our inability to reliably predict their locations, movements and concentrations. We believe combining data from MEQ and electrical surveys has the potential to overcome these problems and can meet many of the above needs, economically. Induced seismicity is currently viewed as one of the essential methods for inferring the success of creating fracture permeability and fluid paths during large scale EGS injections. Fluids are obviously playing a critical role in inducing the seismicity, however, other effects such as thermal, geochemical and stress redistribution, etc. may also play a role.

402

Applied Science/Techniques  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Applied Science/Techniques Print Applied Science/Techniques Print The ALS is an excellent incubator of new scientific techniques and instrumentation. Many of the technical advances that make the ALS a world-class soft x-ray facility are developed at the ALS itself. The optical components in use at the ALS-mirrors and lenses optimized for x-ray wavelengths-require incredibly high-precision surfaces and patterns (often formed through extreme ultraviolet lithography at the ALS) and must undergo rigorous calibration and testing provided by beamlines and equipment from the ALS's Optical Metrology Lab and Berkeley Lab's Center for X-Ray Optics. New and/or continuously improved experimental techniques are also a crucial element of a thriving scientific facility. At the ALS, examples of such "technique" highlights include developments in lensless imaging, soft x-ray tomography, high-throughput protein analysis, and high-power coherent terahertz radiation.

403

Well Log Techniques At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Well Log Techniques At Raft River Geothermal Area Well Log Techniques At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Well Log Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Exploration Basis Characterize the rock using well log data. Notes Information is given on the following logs: dual-induction focused log, including resistivity, sp, and conductivity; acoustic log; compensated neutron; compensated densilog; and caliper. Lithologic breaks for a drill core to a depth of 2840 ft are illustrated. References Covington, H.R. (1 January 1978) Deep drilling data, Raft River geothermal area, Idaho Raft River geothermal exploration well No. 4 Retrieved from "http://en.openei.org/w/index.php?title=Well_Log_Techniques_At_Raft_River_Geothermal_Area_(1977)&oldid=6004

404

Southeast Asia applied geophysics workshop: Geoscientists without borders Lee M. Liberty*, Spencer H. Wood, Emily A. Hinz, and Dylan Mikesell, Boise State University, Fongsaward  

E-Print Network [OSTI]

Southeast Asia applied geophysics workshop: Geoscientists without borders Lee M. Liberty*, Spencer in need using applied geophysics projects as a means to benefit people and the environment around the world. Our project was developed to educate and connect local geophysicists and students in Southeast

Barrash, Warren

405

Geological and geophysical investigation of the Mid-Cayman Spreading Centre: seismic velocity measurements and implications for the constitution of layer 3  

Science Journals Connector (OSTI)

......Geophysics of the Pacific Ocean Basin and its Margin, eds Sutton...velocities of rocks from the Ming's Bight-Betts Cove Ophiolite Complex...spreading rates, in marginal basins, at different distances from...Geophysics of the Pacific Ocean Basin and its Margin, eds Sutton......

J. A. Karson; P. J. Fox

1986-04-01T23:59:59.000Z

406

Averaging over fast gravity waves for geophysical flows with arbitrary potential vorticity  

SciTech Connect (OSTI)

Here a mathematically rigorous framework is developed for deriving new reduced simplified dynamical equations for geophysical flows with arbitrary potential vorticity interacting with fast gravity waves. The examples include the rotating Boussinesq and rotating shallow water equations in the quasigeostrophic limit with vanishing Rossby number. For the spatial periodic case the theory implies that the quasi-geostrophic equations are valid limiting equations in the weak topology for arbitrary initial data. Furthermore, simplified reduced equations are developed for the fashion in which the vortical waves influence the gravity waves through averaging over specific gravity wave/vortical resonances. 18 refs.

Embid, P.F. [Princeton Univ., NJ (United States); Majda, A.J. [New York Univ., New York, NY (United States)

1996-12-31T23:59:59.000Z

407

Automated Architectural Exploration for Signal Processing Algorithms  

E-Print Network [OSTI]

Automated Architectural Exploration for Signal Processing Algorithms Ramsey Hourani, Ravi Jenkal, W processing algorithms. The goal of our framework is to improve hardware architectural exploration by guiding Property (IP) cores for system level signal processing algorithms. We present our view of a framework

Davis, Rhett

408

Edinburgh Research Explorer Probabilistic Programming Process Algebra  

E-Print Network [OSTI]

Edinburgh Research Explorer Probabilistic Programming Process Algebra Citation for published version: Georgoulas, A, Hillston, J, Milios, D & Sanguinetti, G 2014, 'Probabilistic Programming Process.1007/978-3-319-10696-0_21 Link: Link to publication record in Edinburgh Research Explorer Document Version: Preprint (usually

Millar, Andrew J.

409

Aluminum: Principled Scenario Exploration through Minimality  

E-Print Network [OSTI]

Aluminum: Principled Scenario Exploration through Minimality Tim Nelson1, Salman Saghafi1, Daniel J. We present Aluminum, a modification of Alloy that presents only minimal scenarios: those that contain no more than is necessary. Aluminum lets users explore the scenario space by adding to scenarios

Dougherty, Daniel J.

410

Aluminum: Principled Scenario Exploration through Minimality  

E-Print Network [OSTI]

Aluminum: Principled Scenario Exploration through Minimality Tim Nelson1, Salman Saghafi1, Daniel J Aluminum, a modification of Alloy that presents only minimal scenarios: those that contain no more than is necessary. Aluminum lets users explore the scenario space by adding to scenarios and backtracking. It also

Krishnamurthi, Shriram

411

Nuclear Engineering Division Think, explore, discover, innovate  

E-Print Network [OSTI]

Nuclear Engineering Division Think, explore, discover, innovate Never miss important updates managed by UChicago Argonne, LLC 1 Nuclear Engineering Division: Awards Listing (1980 ­ present) Web: http Division of Educational Programs J.C. Braun L.W. Deitrich #12;Nuclear Engineering Division Think, explore

Kemner, Ken

412

Property:ExplorationOutcome | Open Energy Information  

Open Energy Info (EERE)

ExplorationOutcome ExplorationOutcome Jump to: navigation, search Property Name ExplorationOutcome Property Type String Description The outcome of an Exploration Activity. Allows Values could be useful with more improvements;useful;not indicated;not useful;useful regional reconnaissance Pages using the property "ExplorationOutcome" Showing 25 pages using this property. (previous 25) (next 25) 2 2-M Probe At Alum Area (Kratt, Et Al., 2010) + useful + 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) + useful + 2-M Probe At Black Warrior Area (DOE GTP) + not indicated + 2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) + useful + 2-M Probe At Dead Horse Wells Area (Kratt, Et Al., 2010) + useful + 2-M Probe At Desert Peak Area (Sladek, Et Al., 2007) + useful +

413

RAPID/Overview/Geothermal/Exploration/Idaho | Open Energy Information  

Open Energy Info (EERE)

< RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationIdaho) Redirect page Jump to: navigation, search REDIRECT RAPID...

414

RAPID/Overview/Geothermal/Exploration/Oregon | Open Energy Information  

Open Energy Info (EERE)

Oregon < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationOregon) Redirect page Jump to: navigation, search REDIRECT...

415

RAPID/Overview/Geothermal/Exploration/Colorado | Open Energy...  

Open Energy Info (EERE)

Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationColorado) Redirect page Jump to: navigation, search REDIRECT RAPIDGeothermal...

416

RAPID/Overview/Geothermal/Exploration/Nevada | Open Energy Information  

Open Energy Info (EERE)

< RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationNevada) Redirect page Jump to: navigation, search REDIRECT RAPID...

417

RAPID/Overview/Geothermal/Exploration/Texas | Open Energy Information  

Open Energy Info (EERE)

< RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationTexas) Redirect page Jump to: navigation, search REDIRECT RAPID...

418

RAPID/Overview/Geothermal/Exploration/Montana | Open Energy Informatio...  

Open Energy Info (EERE)

Montana < RAPID | Overview | Geothermal | Exploration(Redirected from RAPIDAtlasGeothermalExplorationMontana) Redirect page Jump to: navigation, search REDIRECT...

419

Child Guidance Techniques.  

E-Print Network [OSTI]

TDOC Z TA24S.7 8873 NO.1314 Child Guidance Techniques The Texas MM University System ~ Texas Agricultural Extension Service DMia! C. Pfannstiel . Director College Station B-1314 ... 2 Contents Helpful Guidance T echniques...

Fraiser, Roberta C.

1982-01-01T23:59:59.000Z

420

Environmental geophysics at Kings Creek Disposal Site and 30th Street Landfill, Aberdeen Proving Ground, Maryland  

SciTech Connect (OSTI)

Geophysical studies on the Bush River Peninsula in the Edgewood Area of Aberdeen Proving Ground, Maryland, delineate landfill areas and provide diagnostic signatures of the hydrogeologic framework and possible contaminant pathways. These studies indicate that, during the Pleistocene Epoch, alternating stands of high and low seal levels resulted in a complex pattern of shallow channel-fill deposits in the Kings Creek area. Ground-penetrating radar studies reveal a paleochannel greater than 50 ft deep, with a thalweg trending offshore in a southwest direction into Kings Creek. Onshore, the ground-penetrating radar data indicate a 35-ft-deep branch to the main channel, trending to the north-northwest directly beneath the 30th Street Landfill. Other branches are suspected to meet the offshore paleochannel in the wetlands south and east of the 30th Street Landfill. This paleochannel depositional system is environmentally significant because it may control the shallow groundwater flow regime beneath the site. Electromagnetic surveys have delineated the pre-fill lowland area currently occupied by the 30th Street Landfill. Magnetic and conductive anomalies outline surficial and buried debris throughout the study area. On the basis of geophysical data, large-scale dumping has not occurred north of the Kings Creek Disposal Site or east of the 30th Street Landfill.

Davies, B.E.; Miller, S.F.; McGinnis, L.D.; Daudt, C.R.; Thompson, M.D.; Stefanov, J.E.; Benson, M.A.; Padar, C.A.

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Exploring a new technique to determine the optimal real estate portfolio allocation  

E-Print Network [OSTI]

Modern Portfolio Theory has been developed over the last fifty years, and there are several studies linking Modern Portfolio Theory with the allocation of real estate property in multi-asset portfolios. However, in reality, ...

Fu, Tingting

2014-01-01T23:59:59.000Z

422

Split-Step Eigenvector-Following Technique for Exploring Enthalpy Landscapes at Absolute Zero  

Science Journals Connector (OSTI)

John C. Mauro * ... We have implemented this algorithm and tested it for a 64-atom selenium system with periodic boundary conditions using the ab initio potentials of Mauro and Varshneya. ... (14)?Mauro, J. C.; Loucks, R. J.; Balakrishnan, J. J. Phys. ...

John C. Mauro; Roger J. Loucks; Jitendra Balakrishnan

2006-02-22T23:59:59.000Z

423

Exploration of volcanic geothermal energy resources based on rheological techniques. Final report  

SciTech Connect (OSTI)

Tidal strain and tilt field observations were carried out during the period February 1978 to December 1979 at the Klamath Graben and Newberry Caldera in Oregon and at Krafla in Northern Iceland. Moreover, tilt observations were made at Mt. St. Helens, Washington, during the summer of 1980. Two strainmeters of the same type as now in use by the US Geological Survey were applied in the strain work. Tilts were measured by two Kinemetrics model TM-1B biaxial tilt meters. The instruments were placed at depths of approximately one to two meters below the ground surface. Both strain and tilt fields turn out to be heavily contaminated by noise that is mostly of thermoelastic origin. In spite of considerable efforts, it has not been possible to process the strain field data to obtain sufficiently clear tidal signals. The tilt data are less contaminated and rather clear tidal signals were observed at Newberry in Oregon and Krafla in Iceland. A local magnification by a factor of about 3 of the EW component of the theoretical solid earth and ocean load tilt was observed at one station at Krafla. Moreover, the tidal tilt component across the ring fault at Newberry appears to be magnified by a factor of 1.4 to 1.9. The phenomena at the Krafla may possibly be due to a local magma chamber. These results are a clear indication of a tilt field modification by local structure and indicate the possibility of using tilt data to locate subsurface magma bodies.

Bodvarsson, G.; Axelsson, G.; Johnson, A.

1980-01-01T23:59:59.000Z

424

Explorations of Space-Charge Limits in Parallel-Plate Diodes and Associated Techniques for Automation  

E-Print Network [OSTI]

satisfying PCE emission scheme. . . . . . . . . . . . . . .charge weighted to nodes with PCE for linear Q(x). . . . .4.1 DCE and PCE emission on the Yee mesh, showing the di?

Ragan-Kelley, Benjamin

2013-01-01T23:59:59.000Z

425

National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment  

SciTech Connect (OSTI)

The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

1982-03-31T23:59:59.000Z

426

Geophysical Fluid Dynamics I P.B. Rhines Notes on the Boussinesq Approximation -I. 27 ii 2004  

E-Print Network [OSTI]

Geophysical Fluid Dynamics ­ I P.B. Rhines Notes on the Boussinesq Approximation - I. 27 ii 2004 compare with the full equations for a compressible fluid in Gill section 6.4. The Boussinesq approximation to the depth of the fluid layer. The Boussinesq equations most often used in the literature are accurate only

427

GEOPHYSICS, VOL. 62, NO. 4 (JULY-AUGUST 1997); P. 12921309, 6 FIGS. Anisotropic parameters and P-wave  

E-Print Network [OSTI]

GEOPHYSICS, VOL. 62, NO. 4 (JULY-AUGUST 1997); P. 1292­1309, 6 FIGS. Anisotropic parameters and P models. By design, this notation provides a uniform description of anisotropic media with both or- thorhombic and TI symmetry. The dimensionless anisotropic parameters introduced here preserve all attractive

Tsvankin, Ilya

428

Long-period fading in atmospherics during severe meteorological activity and associated solar geophysical phenomena at low latitudes  

E-Print Network [OSTI]

Long-period fading in atmospherics during severe meteorological activity and associated solar activity with the solar geophysical phenomena was studied. The results are indicative of an interesting sequence of solar- terrestrial events. A tentative conclusion is reached, suggesting an origin

Boyer, Edmond

429

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Climate Impacts of Cirrus Ice Nucleation1  

E-Print Network [OSTI]

in the climate system. Ice clouds reflect solar radiation23 back to space, cooling the planet. However, cold ice finely balanced between warming and cooling, with warming thought to be slightly larger.27 Changes to iceJOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Climate Impacts of Cirrus Ice

Gettelman, Andrew

430

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Energy Transfer and Flow in the Solar1  

E-Print Network [OSTI]

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Energy Transfer and Flow TENFJORD AND ?STGAARD: ENERGY TRANSFER AND FLOW Abstract. In this paper we describe and quantify the energy data. We employ what we consider to be the best es-6 timates for energy sinks, and relate

?stgaard, Nikolai

431

Environmental geophysics deals with issues ranging from local-scale fluid-rock changes to large-scale climatic  

E-Print Network [OSTI]

Environmental geophysics deals with issues ranging from local-scale fluid-rock changes to large and quarries, military bases, oil and gas fields, petroleum refineries, etc. Many derelict sites such as crankcase oils), mine spoils, and other inorganic pollutants. Accidental spills or poor disposal practice

Meju, Max

432

GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 3, PAGES 377-380, FEBRUARY 1, 2000 Anomalous scaling of mesoscale tropospheric humidity  

E-Print Network [OSTI]

GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 3, PAGES 377-380, FEBRUARY 1, 2000 Anomalous scaling will take up to 20 s to respond. In this paper we report the first sci- entific results using the full 20-Hz on the idea of chaotic isentropic lateral mixing [e.g., Emanuel and Pierrehumbert, 1996]. Our present study

Cho, John Y. N.

433

GEOPHYSICS, VOL. 64, NO. 1 (JANUARY-FEBRUARY 1999); P. 3347, 17 FIGS. Simultaneous reconstruction of 1-D susceptibility  

E-Print Network [OSTI]

; revised manuscript received June 16, 1998. Formerly UBC-Geophysical Inversion Facility, 2219 Main Mall, Vancouver, BC, Canada V6T 1Z4; currently Western Atlas Logging Services, 10201 Westheimer, Houston, TX 77042 Facility, 2219 Main Mall, Vancouver, BC, Canada V6T 1Z4; E-mail: doug@geop.ubc.ca. c 1999 Society

Oldenburg, Douglas W.

434

GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Global energy conversion rate from geostrophic flows into  

E-Print Network [OSTI]

GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Global energy conversion rate from estimate of the energy conversion rate from geostrophic flows into internal lee waves in the ocean that linear lee wave theory gives a good prediction of the energy conversion rate at sub-critical and critical

Ferrari, Raffaele

435

Nonlinear Processes in Geophysics (2005) 12: 311320 SRef-ID: 1607-7946/npg/2005-12-311  

E-Print Network [OSTI]

Processes in Geophysics Forced versus coupled dynamics in Earth system modelling and prediction B. Knopf1, H, a crucial element of Earth System modelling. Since the cur- rently preferred strategy for simulating. Such a simplifying tech- nique is often employed in Earth System models in order to save computing resources

Paris-Sud XI, Université de

436

GEOPHYSICAL RESEARCH LETTERS, VOL. 0, NO. 0, PAGES 0-0, M 0, 2001 On the Pacific Ocean regime shift  

E-Print Network [OSTI]

GEOPHYSICAL RESEARCH LETTERS, VOL. 0, NO. 0, PAGES 0-0, M 0, 2001 On the Pacific Ocean regime shift variability of Pacific Ocean upper ocean heat content is examined for the 1948-1998 period using gridded-wide phenomenon affecting the thermal structure from 60 S to 70 N. EOF analysis of the Pacific Ocean heat content

437

GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 15, PAGES 22452248, AUGUST 1, 2000 Subsurface nuclear tests monitoring through the  

E-Print Network [OSTI]

nuclear tests down to 1 kiloton (kt) TNT equivalent anywhere on the planet. The IMS is based upon four waves will help check for underground, under­water and atmospheric nuclear tests. The fourth networkGEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 15, PAGES 2245­2248, AUGUST 1, 2000 Sub­surface nuclear

Hourdin, Chez Frédéric

438

GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Interactions between the Hadley cell and the1  

E-Print Network [OSTI]

GEOPHYSICAL RESEARCH LETTERS, VOL. ???, XXXX, DOI:10.1029/, Interactions between the Hadley cell - 2 P. PAGA AND J. KIDSTON: HADLEY CELL AND LATITUDE OF WESTLIES The correlation between unforced variability in the latitude of the edge of6 the Hadley cell (Hadley) and latitude of the surface westerlies

Kidston, Joseph

439

Experiment Explores Elusive Properties of Symmetry Energy  

E-Print Network [OSTI]

of nuclear sys- tems. The technique is made possible by the work of NSCL theorist Pawel Danielewicz, who

440

E-Print Network 3.0 - advanced testing techniques Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Engineering 15 Power-Aware Test Planning in the Early System-on-Chip Design Exploration Process Summary: a technique for modular core-based SoCs where test design is...

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Toward Systems Biology in Brown Algae to Explore Acclimation and Adaptation to the Shore Environment  

E-Print Network [OSTI]

Toward Systems Biology in Brown Algae to Explore Acclimation and Adaptation to the Shore,2 Catherine Boyen,1,2 and Anne Siegel4,5 Abstract Brown algae belong to a phylogenetic lineage distantly siliculosus as a model organism for brown algae has represented a framework in which several omics techniques

Paris-Sud XI, Université de

442

Exploring Dependence with Data on Spatial Mark S. Kaiser and Petruta C. Caragea  

E-Print Network [OSTI]

Exploring Dependence with Data on Spatial Lattices Mark S. Kaiser and Petrut¸a C. Caragea field models to problems involving spatial data on lattice systems requires decisions regarding a number of important aspects of model structure. Existing exploratory techniques appropriate for spatial data do

443

From Analysis to Interactive Exploration: Building Visual Hierarchies from OLAP Cubes  

E-Print Network [OSTI]

-users. The explorative framework of our proposed interface consists of the nav- igation structure, a selection of hierarchical visualization techniques, and a set of interaction features. The navigation interface allows users the nodes display the specified subset of measures, either as plain numbers or as an embedded chart

Reiterer, Harald

444

Category:Exploration Activities | Open Energy Information  

Open Energy Info (EERE)

Activities Activities Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Category:Exploration Activities Geothermalpower.jpg Looking for the Exploration Activities page? For detailed information on Exploration Activities, click here. Contents: Top - 0-9 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z Pages in category "Exploration Activities" The following 200 pages are in this category, out of 1,574 total. (previous 200) (next 200) 2 2-M Probe At Alum Area (Kratt, Et Al., 2010) 2-M Probe At Astor Pass Area (Kratt, Et Al., 2010) 2-M Probe At Black Warrior Area (DOE GTP) 2-M Probe At Columbus Salt Marsh Area (Kratt, Et Al., 2010) 2-M Probe At Dead Horse Wells Area (Kratt, Et Al., 2010) 2-M Probe At Desert Peak Area (Sladek, Et Al., 2007) 2-M Probe At Flint Geothermal Area (DOE GTP)

445

Oil exploration and production in Scotland  

Science Journals Connector (OSTI)

...high return on investment, the additional...oil production platforms are in operation...FIG. 4. The semi-submersible exploration rig...API 38.5 4 platforms 154 wells 10000...return on their investment is very limited...

D. Hallett; G. P. Durant; G. E. Farrow

446

Explore Water Power Careers | Department of Energy  

Energy Savers [EERE]

Water Power Careers Explore Water Power Careers America's oldest and largest source of renewable power is water. To this end, the Water Power Program, part of the Wind and Water...

447

NASA spurs plans for exploration of Mars  

Science Journals Connector (OSTI)

NASA spurs plans for exploration of Mars ... In place of such high-cost missions carrying many instruments and requiring years of preparation, NASA has initiated a "smaller, faster, cheaper" approach. ...

RICHARD SELTZER

1996-08-26T23:59:59.000Z

448

Cognitive Medium Access: Exploration, Exploitation and Competition  

E-Print Network [OSTI]

1 Cognitive Medium Access: Exploration, Exploitation and Competition Lifeng Lai, Hesham El Gamal, Hai Jiang and H. Vincent Poor Abstract-- This paper establishes the equivalence between cognitive cognitive user wishes to opportunistically exploit the availability of empty fre- quency bands

El-Gamal, Hesham

449

HOW GREEN IS JUDAISM? EXPLORING JEWISH ENVIRONMENTAL  

E-Print Network [OSTI]

HOW GREEN IS JUDAISM? EXPLORING JEWISH ENVIRONMENTAL ETHICS David Vogel Haas School of Business "green" and "non-green' elements. It is both inappropriate to over-emphasize the former, as have some and social values. The tea

Kammen, Daniel M.

450

Oil exploration and production in Scotland  

Science Journals Connector (OSTI)

...34 oil production platforms are in operation, and...onto a broad Palaeozoic platform. Further north a complex...FARROW FIG. 4. The semi-submersible exploration rig Bendoran...four steel production platforms, in a water depth of...

D. Hallett; G. P. Durant; G. E. Farrow

451

Multi-dimensional Exploration of API Usage  

E-Print Network [OSTI]

AbstractThis paper is concerned with understanding API usage in a systematic, explorative manner for the benefit of both API developers and API users. There exist complementary, less explorative methods, e.g., based on code search, code completion, or API documentation. In contrast, our approach is highly interactive and can be seen as an extension of what IDEs readily provide today. Exploration is based on multiple dimensions: i) the hierarchically organized scopes of projects and APIs; ii) metrics of API usage (e.g., number of project classes extending API classes); iii) metadata for APIs; iv) project- versus API-centric views. We also provide the QUAATLAS corpus of Java projects which enhances the existing QUALITAS corpus to enable APIusage analysis. We implemented the exploration approach in an

Coen De Roover; Ralf Lmmel; Ekaterina Pek

452

Edinburgh Research Explorer Flights of Fancy  

E-Print Network [OSTI]

of this data were explored through processes of 3D printing and 2D pattern making and digital video Messenger (2012) installation at Tatton Park Biennial, 2012 The production of miniature 3D prints

Millar, Andrew J.

453

Caldwell Ranch: Innovative Exploration Technologies Yield Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of a ranch in the mountains. As part of a geothermal exploration effort to search for geothermal resources nationwide, a 5 million U.S. Department of Energy investment to...

454

Northern California: Innovative Exploration Technologies Yield...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

22, 2013 - 12:00am Addthis As part of a geothermal exploration effort to search for geothermal resources nationwide, a 5 million U.S. Department of Energy investment to...

455

Exploration of Climate Data Using Interactive Visualization  

Science Journals Connector (OSTI)

In atmospheric and climate research, the increasing amount of data available from climate models and observations provides new challenges for data analysis. The authors present interactive visual exploration as an innovative approach to handle ...

Florian Ladstdter; Andrea K. Steiner; Bettina C. Lackner; Barbara Pirscher; Gottfried Kirchengast; Johannes Kehrer; Helwig Hauser; Philipp Muigg; Helmut Doleisch

2010-04-01T23:59:59.000Z

456

Terrain identification methods for planetary exploration rovers  

E-Print Network [OSTI]

Autonomous mobility in rough terrain is becoming increasingly important for planetary exploration rovers. Increased knowledge of local terrain properties is critical to ensure a rover's safety, especially when driving on ...

Brooks, Christopher Allen, 1978-

2004-01-01T23:59:59.000Z

457

The Mission of the Mars Exploration Rovers  

ScienceCinema (OSTI)

The Mars Exploration Rover mission was expected to last 3 months, but has continued for more than 4 years. The major science results from both rovers will be summarized.

John Grant

2010-01-08T23:59:59.000Z

458

Design exploration through bidirectional modeling of constraints  

E-Print Network [OSTI]

Today digital models for design exploration are not used to their full potential. The research efforts in the past decades have placed geometric design representations firmly at the center of digital design environments. ...

Kilian, Axel, 1971-

2006-01-01T23:59:59.000Z

459

Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation  

SciTech Connect (OSTI)

Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH{sub 4}{sup +} production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface.

Wu, Y.; Ajo-Franklin, J.B.; Spycher, N.; Hubbard, S.S.; Zhang, G.; Williams, K.H.; Taylor, J.; Fujita, Y.; Smith, R.

2011-07-15T23:59:59.000Z

460

Connection between the pinch technique and the background field method  

Science Journals Connector (OSTI)

The connection between the pinch technique and the background field method is further explored. We show by explicit calculations that the application of the pinch technique in the framework of the background field method gives rise to exactly the same results as in the linear renormalizable gauges. The general method for extending the pinch technique to the case of Greens functions with off-shell fermions as incoming particles is presented. As an example, the one-loop gauge-independent quark self-energy is constructed. We briefly discuss the possibility that the gluonic Greens functions, obtained by either method, correspond to physical quantities.

Joannis Papavassiliou

1995-01-15T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Bibliography of the geological and geophysical aspects of hot dry rock geothermal resources  

SciTech Connect (OSTI)

This is the first issue of an annual compilation of references that are useful to the exploration, understanding and development of the hot dry rock geothermal resource.

Heiken, G.; Sayer, S.

1980-02-01T23:59:59.000Z

462

Infrared Inspection Techniques  

E-Print Network [OSTI]

. By means of a TV monitor tube, a thermal picture is formed where lighter parts represent areas with higher temperatures. Absolute temperature levels of objects can be measured with this technique from -300C to +20000C. A conventional camera is attached...

Hill, A. B.; Bevers, D. V.

1979-01-01T23:59:59.000Z

463

GARDIENNAGE Help Desk technique  

E-Print Network [OSTI]

--> Relais vers Garde GTPW ASCENSEURS 1ère impulsion Dispatching UCL (Système EBI Honeywell GTPW) Dispatching UCL --> SECURITAS LEW ALARMES CDC (Système EBI -Enterprise Building Integrator -Honeywell GTPW téléphonique ) TECHNIQUES CDC (Système EBI Honeywell GTPW) GTPW (Heures ouvrables) CDC (En dehors des heures

Nesterov, Yurii

464

Chapter 7 - Horizontally Integrated Remote Measurements of Ocean Currents Using Acoustic Tomography Techniques  

Science Journals Connector (OSTI)

Abstract This chapter begins with a discussion of the comparative difficulty of measuring horizontally integrated subsurface oceanic current and vorticity measurements. This is followed by a discussion of computer-assisted tomography techniques used in the medical, geophysical, and seismic branches of science and their adaptation and extension to acoustic tomography for subsurface oceanographic investigations. In particular, the following aspects pertaining to the application of acoustic methods for probing the oceans interior water temperature and current structure, as well as their adaptations for measuring horizontally averaged water currents from straits, coastal water bodies, estuaries, and rivers, are addressed: (1) one-way tomography, (2) two-way tomography (reciprocal tomography), (3) acoustic tomographic measurements from straits, (4) coastal acoustic tomography (CAT), (5) river acoustic tomography (RAT), (6) acoustic tomographic measurements of vorticity, and (7) horizontally integrated current measurements using space-time acoustic scintillation analysis technique.

Antony Joseph

2014-01-01T23:59:59.000Z

465

EXPLORING FOR SUBTLE MISSION CANYON STRATIGRAPHIC TRAPS WITH ELASTIC WAVEFIELD SEISMIC TECHNOLOGY  

SciTech Connect (OSTI)

A source-receiver geometry was designed for a 9C3D seismic survey in Montrail County, North Dakota, that will involve the largest number of active 3-component stations (1,800 to 2,100) ever attempted in an onshore U.S. multicomponent seismic survey. To achieve the data-acquisition objectives, 3-component geophone strings will be provided by the Bureau of Economic Geology, Dawson Geophysical, and Vecta Technology. Data acquisition will commence in late October 2003. The general objective of this study is to demonstrate the value of multicomponent seismic technology for exploring for subtle oolitic-bank reservoirs in the Mission Canyon Formation of the Williston Basin. The work tasks done during this report period concentrated on developing an optimal design for the seismic survey. This first semiannual report defines the geographical location and geometrical shape of the survey and documents the key acquisition parameters that will be implemented to yield high-fold, high-resolution 9-component seismic data.

John Beecherl

2003-10-01T23:59:59.000Z

466

Geophysical Study of Basin-Range Structure Dixie Valley Region, Nevada |  

Open Energy Info (EERE)

of Basin-Range Structure Dixie Valley Region, Nevada of Basin-Range Structure Dixie Valley Region, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Study of Basin-Range Structure Dixie Valley Region, Nevada Abstract The study aims to determine the subsurface structure and origin ofa tectonically active part of the Basin and Range province, which hasstructural similarities to the ocean ridge system and to continental blockfaultstructure such_;s the Rift Valleys of East Africa. A variety oftechniques was utilized, including seismic refraction, gravity measurements,magnetic measurements, photogeologic mapping, strain analysis of existinggeodetic data, and elevation measurements on shorelines of ancient lakes.Dixie Valley contains more than 10,000 feet of Cenozoic deposits andis underlain by a complex fault trough concealed within the

467

An Integrated Geophysical Study Of The Geothermal Field Of Tule Chek, Bc,  

Open Energy Info (EERE)

Tule Chek, Bc, Tule Chek, Bc, Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Integrated Geophysical Study Of The Geothermal Field Of Tule Chek, Bc, Mexico Details Activities (0) Areas (0) Regions (0) Abstract: A method is described to determine bounds characterizing axisymmetric bodies from a set of gravity data. Bounds on the density contrast as a function of depth to the top and thickness of the anomalous source are obtained by using Parker's ideal body theory and linear programming algorithms. Such bounds are given in terms of trade-off diagrams, where regions of feasible solutions compatible with the observed data can be assured. Gravity data from the Tule Chek, B.C., Mexico, geothermal area were used to compute such trade-off diagrams. Seismic

468

An Integrated Geophysical Study Of The Northern Kenya Rift | Open Energy  

Open Energy Info (EERE)

Kenya Rift Kenya Rift Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Integrated Geophysical Study Of The Northern Kenya Rift Details Activities (0) Areas (0) Regions (0) Abstract: The Kenyan part of the East African rift is among the most studied rift zones in the world. It is characterized by: (1) a classic rift valley, (2) sheer escarpments along the faulted borders of the rift valley, (3) voluminous volcanics that flowed from faults and fissures along the rift, and (4) axial and flank volcanoes where magma flow was most intense. In northern Kenya, the rift faults formed in an area where the lithosphere was weakened and stretched by Cretaceous-Paleogene extension, and in central and southern Kenya, it formed along old zones of weakness at the

469

An Integrated Geophysical Analysis Of The Upper Crust Of The Southern Kenya  

Open Energy Info (EERE)

Upper Crust Of The Southern Kenya Upper Crust Of The Southern Kenya Rift Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Integrated Geophysical Analysis Of The Upper Crust Of The Southern Kenya Rift Details Activities (0) Areas (0) Regions (0) Abstract: Previous interpretations of seismic data collected by the Kenya Rift International Seismic Project (KRISP) experiments indicate the presence of crustal thickening within the rift valley area beneath the Kenya dome, an uplift centred on the southern part of the Kenya rift. North of the dome, these interpretations show thinning of the crust and an increase in crustal extension. To the south near the Kenya/Tanzania border, crustal thinning associated with the rift is modest. Our study was aimed at further investigating crustal structure from this dome southwards via a

470

Geophysical Setting of the Blue Mountain Geothermal Area, North-Central  

Open Energy Info (EERE)

Setting of the Blue Mountain Geothermal Area, North-Central Setting of the Blue Mountain Geothermal Area, North-Central Nevada and Its Relationship to a Crustal-Scale Fracture Associated with the Inception of the Yellowstone Hotspot Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geophysical Setting of the Blue Mountain Geothermal Area, North-Central Nevada and Its Relationship to a Crustal-Scale Fracture Associated with the Inception of the Yellowstone Hotspot Abstract The Blue Mountain geothermal field, located about 35 km northwest of Winnemucca, Nevada, is situated along a prominent crustal-scale fracture interpreted from total intensity aeromagnetic and gravity data. Aeromagnetic data indicate that this feature is related to the intrusion of mafic dikes, similar to the Northern Nevada Rift (Zoback et al.,1994), and

471

Stratified Rotating Boussinesq Equations in Geophysical Fluid Dynamics: Dynamic Bifurcation and Periodic Solutions  

E-Print Network [OSTI]

The main objective of this article is to study the dynamics of the stratified rotating Boussinesq equations, which are a basic model in geophysical fluid dynamics. First, for the case where the Prandtl number is greater than one, a complete stability and bifurcation analysis near the first critical Rayleigh number is carried out. Second, for the case where the Prandtl number is smaller than one, the onset of the Hopf bifurcation near the first critical Rayleigh number is established, leading to the existence of nontrivial periodic solutions. The analysis is based on a newly developed bifurcation and stability theory for nonlinear dynamical systems (both finite and infinite dimensional) by two of the authors [16].

Chun-Hsiung Hsia; Tian Ma; Shouhong Wang

2006-10-31T23:59:59.000Z

472

Institute of Geophysics and Planetary Physics at Lawrence Livermore National Laboratory: 1986 annual report  

SciTech Connect (OSTI)

The purpose of the Institute of Geophysics and Planetary Physics (IGPP) at LLNL is to enrich the opportunities of University of California campus researchers by making available to them some of the Laboratory's unique facilities and expertise, and to broaden the scientific horizon of LLNL researchers by encouraging collaborative or interdisciplinary work with other UC scientists. The IGPP continues to emphasize three fields of research - geoscience, astrophysics, and high-pressure physics - each administered by a corresponding IGPP Research Center. Each Research Center coordinates the mini-grant work in its field, and also works with the appropriate LLNL programs and departments, which frequently can provide supplementary funding and facilities for IGPP projects. 62 refs., 18 figs., 2 tabs.

Max, C.E. (ed.)

1987-07-01T23:59:59.000Z

473

Advanced forecast of coal seam thickness variation by integrated geophysical method in the laneway  

Science Journals Connector (OSTI)

Coal seam thickness variation has a direct relationship with coal mine design and mining, and the mutation locations of the thickness are generally the gas accumulation area. In order to justify the feasibility and validity of advanced forecast about the thickness change, we carried out geophysical numerical simulation. Utilizing generalized Radon transform migration, coal-rock interface can be identified with an error of less than 2%. By the calculation of 2.5D finite difference method, transient electric magnetic response characteristics of the thickness variation is conspicuous. In a coal mine the case study indicated that: the reflected wave energy anomaly offer interface information of the thickness change point; the apparent resistivity provide the physical index of the thick or thin coal seam area; synthesizing two kinds of information can predict the thickness variation tendency ahead of the driving face, which can ensure the safety of driving efficiency.

Wang Bo; Liu Sheng-dong; Jiang Zhi-hai; Huang Lan-ying

2011-01-01T23:59:59.000Z

474

GEOPHYSICAL INVESTIGATIONS OF THE ARCHAEOLOGICAL RESOURCES AT THE POWELL STAGE STATION  

SciTech Connect (OSTI)

Within the boundaries of the Idaho National Laboratory, an ongoing archaeological investigation of a late 19th century stage station was expanded with the use of Electro-Magnetic and Magnetic geophysical surveying. The station known as the Powell Stage Station was a primary transportation hub on the Snake River Plain, bridging the gap between railroad supply depots in Blackfoot, Idaho and booming mining camps throughout Central Idaho. Initial investigations have shown a strong magnetic signature from a buried road and previously unknown features that were not detected by visual surface surveys. Data gained from this project aids in federally directed cultural resource and land management and use requirements and has contributed additional information for archeological interpretation and cultural resource preservation.

Hollie K. Gilbert; Julie B. Braun; Brenda R. Pace; Gail Heath; Clark Scott

2009-04-01T23:59:59.000Z

475

Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources |  

Open Energy Info (EERE)

Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Poster: Hyperspectral Remote Sensing Techniques For Locating Geothermal Resources Abstract Demonstrating the effectiveness of hyperspectral sensors to explore for geothermal resources will be critical to our nation's energy security plans. Discovering new geothermal resources will contribute to established renewable energy capacity and lower our dependence upon fuels that contribute to green house gas emissions. The use of hyperspectral data and derived imagery products is currently helping exploration managers gain greater efficiencies and drilling success. However, more work is needed as geologists continue to learn about hyperspectral imaging and, conversely,

476

Identification of potential groundwater flow paths using geological and geophysical data  

SciTech Connect (OSTI)

This project represents the first phase in the development of a methodology for generating three-dimensional equiprobable maps of hydraulic conductivity for the Nevada Test Site (NTS). In this study, potential groundwater flow paths were investigated for subsurface tuffs at Yucca Flat by studying how these units are connected. The virtual absence of site-specific hydraulic conductivity data dictates that as a first step a surrogate attribute (geophysical logs) be utilized. In this first phase, the connectivity patterns of densely welded ash-flow tuffs were studied because these tuffs are the most likely to form zones of high hydraulic conductivity. Densely welded tuffs were identified based on the response shown on resistivity logs and this information was transformed into binary indicator values. The spatial correlation of the indicator data was estimated through geostatistical methods. Equiprobable three-dimensional maps of the distribution of the densely-welded and nonwelded tuffs (i.e., subsurface heterogeneity) were then produced using a multiple indicator simulation formalism. The simulations demonstrate that resistivity logs are effective as soft data for indicating densely welded tuffs. The simulated welded tuffs reproduce the stratigraphic relationships of the welded tuffs observed in hydrogeologic cross sections, while incorporating the heterogeneity and anisotropy that is expected in this subsurface setting. Three-dimensional connectivity of the densely welded tuffs suggests potential groundwater flow paths with lengths easily over 1 km. The next phase of this investigation should incorporate other geophysical logs (e.g., gamma-gamma logs) and then calibrate the resulting soft data maps with available hard hydraulic conductivity data. The soft data maps can then augment the hard data to produce the final maps of the spatial distribution of hydraulic conductivity that can be used as input for numerical solution of groundwater flow and transport.

Pohlmann, K.; Andricevic, R.

1994-09-01T23:59:59.000Z

477

Query Optimization Techniques Class Hierarchies  

E-Print Network [OSTI]

Query Optimization Techniques Exploiting Class Hierarchies Sophie Cluet 1 Guido Moerkotte 2 1 INRIA Since the introduction of object base management systems (OBMS), many query optimization techniques tailored for object query languages have been proposed. They adapt known optimization techniques

Mannheim, Universität

478

Technique Subgroupings Spectroscopy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and NSLS-II beamlines according to DOE Technique Scheme and NSLS-II beamlines according to DOE Technique Scheme Technique Subgroupings Spectroscopy 01 - Low Energy Spectroscopy Infrared Photoemission U12IR, U4IR / MET* U5UA, U13 / ESM 02 - Soft X-Ray Spectroscopy Soft X-ray Spectroscopy Tender XAS U4B, U7A, X24A / SST, SSS* X15B, X19A / TES* 03 - Hard X-ray Spectroscopy EXAFS X3A, X3B, X11A, X11B, X18A, X18B, X23A2 / ISS, BMM, QAS*, XAS* 04 - Optics/Calibration/Metrology U3C,X8A/ OFT,MID Scattering 05 X-ray Diffraction X-Ray Powder Diffraction Extreme Conditions Energy Dispersive Micro-Beam Diffraction X7B,X10B,X14A,X16C,X17A / XPD,IXD* X17B2,X17B3,X17C / XPD, TEC*, 4DE* X17B1, X17B2 / NA X13B / MXD* 06 MX, footprinting Protein Crystallography X-ray footprinting X4A, X4C, X6A, X12B, X12C, X25, X29 / FMX, AMX, NYX;

479

COST ACTON A22: Exploring New Ways to Explore the Future www.costa22.org COST Action A22  

E-Print Network [OSTI]

COST ACTON A22: Exploring New Ways to Explore the Future www.costa22.org COST Action A22 Exploring Development, Brussels, 19 September, 2005 Kristian Borch (Coordinator) & Ted Fuller (Chair) #12;COST ACTON A22;COST ACTON A22: Exploring New Ways to Explore the Future www.costa22.org United Kingdom 06/08/2003Malta

480

Alum Innovative Exploration | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

program at Alum. Determine the combination of techniques that are most useful and cost-effective in identifying the geothermal resource through a detailed, post-project...

Note: This page contains sample records for the topic "geophysical techniques exploration" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Practical exploration model for Smackover Formation  

SciTech Connect (OSTI)

The Smackover Formation has been an important exploration target for many years, with production coming from a variety of structural, stratigraphic, diagenetic, and combination traps. The Smackover is also one of the most studied of Gulf Coast formations. The resulting exploration models have either been rigid in their applications, or have been based on core and thin-section analysis not readily available to the prospect-generating geologist. A proposed model looks at the Smackover as a lithology rather than a time unit. The model uses primarily subsurface logs, and can be applied either to wildcat or exploitation drilling. The Smackover is a mature exploration target, but with enhanced understanding it is still an economically attractive objective.

Lieber, R.B. (First Energy Corp., Houston, TX (USA))

1989-09-01T23:59:59.000Z

482

Geologic, geophysical, and geochemical aspects of site-specific studies of the geopressured-geothermal energy resource of southern Louisiana. Final report  

SciTech Connect (OSTI)

The report consists of four sections dealing with progress in evaluating geologic, geochemical, and geophysical aspects of geopressured-geothermal energy resources in Louisiana. Separate abstracts have been prepared for the individual sections. (ACR)

Pilger, R.H. Jr. (ed.)

1985-01-01T23:59:59.000Z

483

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 94, NO. D13, PAGES 16,417-16,421,NOVEMBER 20, 1989 Greenhouse Effect of Chlorofluorocarbons and Other Trace Gases  

E-Print Network [OSTI]

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 94, NO. D13, PAGES 16,417-16,421,NOVEMBER 20, 1989 Greenhouse Effect of Chlorofluorocarbons and Other Trace Gases JAMESHANSEN,ANDREW LACIS,AND MICHAEL PRATHER NASA

Fridlind, Ann

484

MATHEMATICS AND COMPUTER SCIENCE: EXPLORING A SYMBIOTIC RELATIONSHIP  

E-Print Network [OSTI]

MATHEMATICS AND COMPUTER SCIENCE: EXPLORING A SYMBIOTIC RELATIONSHIP Authors: Ralph Bravaco Shai, Fractals, Chaos, Number Theory and Cryptography, Problem Solving, Other #12;Mathematics and Computer Science: Exploring a Symbiotic Relationship 1 MATHEMATICS AND COMPUTER SCIENCE: EXPLORING A SYMBIOTIC

Simonson, Shai

485

STATEMENT OF CONSIDERATIONS REQUEST BY TEXACO EXPLORATION AND PRODUCTION INC.  

Broader source: Energy.gov (indexed) [DOE]

86 - 86 - W(A)-94-001, CH-0823 The Petitioner, Texaco, was awarded this Cooperative Agree- ment in response to its proposal to a PON under the Class II Oil Program: Near-term Activities, as authorized by the Energy Policy Act of 1992 (P.L. 102-486). This Cooperative Agreement is to demonstrate the feasibility of carbon dioxide injection and soak techniques (CO 2 huff and puff) in shallow shelf carbonates. The project will include reservoir characterizations, process simulations, and actual demonstrations. The field demonstrations will be conducted in Lea county, New Mexico. Texaco has requested a waiver of domestic and foreign rights for all subject inventions under this Agreement. By letters dated 15 February 1994, the request is clarified to include the inventions of the subcontractor, Texaco Inc's Exploration and

486

Exploring Ways to Standardize Federal Energy Contracts  

Broader source: Energy.gov (indexed) [DOE]

Exploring Ways to Standardize Exploring Ways to Standardize Federal Energy Contracts May 23, 2013 Chandra Shah for Tracy J. Logan Program Analyst Federal Energy Management Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Energy Lawyers and Contracting Officers Working Group 2 Vision Evolution toward standardization of cross-sector and cross-project terms, conditions, reporting methodologies, financial calculations and contract structure to improve transparency and replicability of performance contracts. * Adoption of the Federal Uniform Performance Contract increases transparency and reduces transaction costs. * Technical and financial data and specifications are presented in a clear, predictable manner from contract to contract. * Federal Contracting Officers

487

Accelerated weight histogram method for exploring free energy landscapes  

Science Journals Connector (OSTI)

Calculating free energies is an important and notoriously difficult task for molecular simulations. The rapid increase in computational power has made it possible to probe increasingly complex systems yet extracting accurate free energies from these simulations remains a major challenge. Fully exploring the free energy landscape of say a biological macromolecule typically requires sampling large conformational changes and slow transitions. Often the only feasible way to study such a system is to simulate it using an enhanced sampling method. The accelerated weight histogram (AWH) method is a new efficient extended ensemble sampling technique which adaptively biases the simulation to promote exploration of the free energy landscape. The AWH method uses a probability weight histogram which allows for efficient free energy updates and results in an easy discretization procedure. A major advantage of the method is its general formulation making it a powerful platform for developing further extensions and analyzing its relation to already existing methods. Here we demonstrate its efficiency and general applicability by calculating the potential of mean force along a reaction coordinate for both a single dimension and multiple dimensions. We make use of a non-uniform free energy dependent target distribution in reaction coordinate space so that computational efforts are not wasted on physically irrelevant regions. We present numerical results for molecular dynamics simulations of lithium acetate in solution and chignolin a 10-residue long peptide that folds into a ?-hairpin. We further present practical guidelines for setting up and running an AWH simulation.

2014-01-01T23:59:59.000Z

488

Prof. Harinarayana, NGRI was felicitated by Andhra University, Visakhapatnam  

E-Print Network [OSTI]

and Bulgarian scientists under Indo-Bulgarian scientific co-operation to develop geothermal resources. Based in introducing a new geophysical technique ­ marine magnetotellurics - in India for oil exploration in Gulf, Hyderabad On the occasion of Diamond Jubilee celebrations (1949-2009) by the Department of Geophysics

Harinarayana, T.

489

Microearthquake surveys of Snake River plain and Northwest Basin...  

Open Energy Info (EERE)

Black Rock Desert; Cassia County Idaho; earthquakes; economic geology; exploration; fracture zones; geophysical methods; geophysical surveys; geothermal energy; Humboldt County...

490

RAPID/Geothermal/Exploration/California | Open Energy Information  

Open Energy Info (EERE)

permittee has a preferential right to a geothermal lease. 2 ContactsAgencies: State Exploration Process not available Local Exploration Process not available Policies &...

491

RAPID/Overview/Geothermal/Exploration/Nevada | Open Energy Information  

Open Energy Info (EERE)

Nevada Pe mitting at a Glance State: Nevada Exploration Permit Agency (Pre-drilling): Nevada Division of Minerals Exploration Permit (Pre-drilling): On Nevada state...

492

RAPID/Overview/Geothermal/Exploration/Colorado | Open Energy...  

Open Energy Info (EERE)

Colorado Pe mitting at a Glance State: Colorado Exploration Permit Agency (Pre-drilling): Colorado Division of Water Resources Exploration Permit (Pre-drilling): Before any...

493

RAPID/Overview/Geothermal/Exploration/Idaho | Open Energy Information  

Open Energy Info (EERE)

Idaho Pe mitting at a Glance State: Idaho Exploration Permit Agency (Pre-drilling): Idaho Department of Water Resources Exploration Permit (Pre-drilling): In Idaho, no...

494

T-526: Microsoft Internet Explorer 'ReleaseInterface()' Remote...  

Broader source: Energy.gov (indexed) [DOE]

26: Microsoft Internet Explorer 'ReleaseInterface()' Remote Code Execution Vulnerability T-526: Microsoft Internet Explorer 'ReleaseInterface()' Remote Code Execution Vulnerability...

495

Petroleum Exploration Enhancement Program (Newfoundland and Labrador, Canada)  

Broader source: Energy.gov [DOE]

The Provincial Energy Plan, released in September 2007, introduced a policy action to encourage and promote exploration activity in Western Newfoundland known as the Petroleum Exploration...

496

Building America Expert Meeting: Exploring the Disconnect Between...  

Energy Savers [EERE]

Exploring the Disconnect Between Rated and Field Performance of Water Heating Systems Building America Expert Meeting: Exploring the Disconnect Between Rated and Field Performance...

497

2014 call for the NERSC Initiative for Scientific Exploration...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the NERSC Initiative for Scientific Exploration (NISE) program 2014 Call for NERSC Initiative for Scientific Exploration (NISE) Program Due December 8 November 18, 2013 by...

498

An Exploration of Wind Energy & Wind Turbines | Department of...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

An Exploration of Wind Energy & Wind Turbines An Exploration of Wind Energy & Wind Turbines Below is information about the student activitylesson plan from your search. Grades...

499

Exploring the interaction between lithium ion and defective graphene...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Exploring the interaction between lithium ion and defective graphene surface using dispersion corrected DFT studies. Exploring the interaction between lithium ion and defective...

500

Exploring Hydrogen Generation from Biomass-Derived Sugar and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Exploring Hydrogen Generation from Biomass-Derived Sugar and Sugar Alcohols to Reduce Costs Exploring Hydrogen Generation from Biomass-Derived Sugar and Sugar Alcohols to Reduce...