Al Hanbali, Ahmad
March 30, 2009 16:44 Geophysical and Astrophysical Fluid Dynamics gafdbo09 Geophysical (geophysical) fluid models: two-dimensional vortical systems in a generalized streamfunction-vorticity rep
Russell, Lynn
Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect Corporation for Atmospheric Research, Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, USA V. Ramaswamy, Paul A. Ginoux, and Larry W. Horowitz Geophysical Fluid Dynamics Laboratory, Princeton, New
PETER LEE OLSON Present Position: Professor of Geophysical Fluid Dynamics
Olson, Peter L.
Power Plant Siting Program Scientific Steering Panel, NASA GRM mission University Corporation of California, Berkeley, California M.A. Geophysics, June 1974, University of California, Berkeley, California B of California, Berkeley (1980) Assistant Professor of Geophysical Fluid Dynamics, Johns Hopkins University
PETER LEE OLSON Present Position: Professor of Geophysical Fluid Dynamics
Olson, Peter L.
Union, Tectonophysics Section Scientific Advisory Board, Maryland Power Plant Siting Program Scientific of California, Berkeley, California M.A. Geophysics, June 1974, University of California, Berkeley, California B of California, Berkeley (1980) Assistant Professor of Geophysical Fluid Dynamics, Johns Hopkins University
Geophysical and Astrophysical Fluid Dynamics, Vol. 101, Nos. 56, OctoberDecember 2007, 469487
Lathrop, Daniel P.
Geophysical and Astrophysical Fluid Dynamics, Vol. 101, Nos. 56, OctoberDecember 2007, 469, USA zInstitute of Geophysics, University of Go¨ ttingen, Friedrich-Hund-Platz 1, D-37077 Go¨ ttingen (though later work by Banka and *Corresponding author. Email: dpl@complex.umd.edu Geophysical
PETER LEE OLSON Present Position: Professor of Geophysical Fluid Dynamics
Olson, Peter L.
Union, Tectonophysics Section Scientific Advisory Board, Maryland Power Plant Siting Program Scientific Dynamics EDUCATION: Ph.D. Geophysics, June 1977, University of California, Berkeley, California M.A. Geophysics, June 1974, University of California, Berkeley, California B.A. Geology, June 1972, University
Some Mathematical and Numerical Issues in Geophysical Fluid Dynamics and Climate Dynamics
Jianping Li; Shouhong Wang
2007-11-12T23:59:59.000Z
In this article, we address both recent advances and open questions in some mathematical and computational issues in geophysical fluid dynamics (GFD) and climate dynamics. The main focus is on 1) the primitive equations (PEs) models and their related mathematical and computational issues, 2) climate variability, predictability and successive bifurcation, and 3) a new dynamical systems theory and its applications to GFD and climate dynamics.
Parcel EulerianLagrangian fluid dynamics of rotating geophysical flows
Oliver, Marcel
, Gottwald, and Reich (2002) and Frank and Reich (2003, 2004) introduced a Hamiltonian Particle Mesh (HPM integra- tion scheme is used. The HPM method is a parcel EulerianLagrangian method: the fluid particles on the advection time scale. The conservation of mass and circulation in the HPM numerical model is shown
Parcel EulerianLagrangian fluid dynamics of rotating geophysical flows
Al Hanbali, Ahmad
of dynamics used in Hamiltonian particle mesh method (HPM) of Frank and Reich (2003, 2004): dX dt = U Hs = U;' & $ % · HPM: potential energy calculated on Eulerian mesh; Lagrangian evolution particles. · ODE's per parcel
A Contribution to the Encyclopedia of Climate and Weather Yi Ming NOAA/Geophysical Fluid Dynamics eruptions) and from human activities involving burning of fossil fuels and vegetation. Visible forms, the concerns over public health prompted researchers to study the fallout (radioactive dust) from nuclear
2 Geophysical Aspects of Non-Newtonian Fluid Mechanics
Balmforth, Neil
2 Geophysical Aspects of Non-Newtonian Fluid Mechanics N.J. Balmforth1 and R.V. Craster2 1 research, both for industrial fluid prob- lems and for applications elsewhere, notably geophysically and where this theory might be used in the geophysical contexts. 2.2 Microstructure and Macroscopic Fluid
Flow networks: A characterization of geophysical fluid transport
Enrico Ser-Giacomi; Vincent Rossi; Cristobal Lopez; Emilio Hernandez-Garcia
2015-03-05T23:59:59.000Z
We represent transport between different regions of a fluid domain by flow networks, constructed from the discrete representation of the Perron-Frobenius or transfer operator associated to the fluid advection dynamics. The procedure is useful to analyze fluid dynamics in geophysical contexts, as illustrated by the construction of a flow network associated to the surface circulation in the Mediterranean sea. We use network-theory tools to analyze the flow network and gain insights into transport processes. In particular we quantitatively relate dispersion and mixing characteristics, classically quantified by Lyapunov exponents, to the degree of the network nodes. A family of network entropies is defined from the network adjacency matrix, and related to the statistics of stretching in the fluid, in particular to the Lyapunov exponent field. Finally we use a network community detection algorithm, Infomap, to partition the Mediterranean network into coherent regions, i.e. areas internally well mixed, but with little fluid interchange between them.
MODELING COUPLED FLUID FLOW AND GEOMECHANICAL AND GEOPHYSICAL PHENOMENA WITHIN
MODELING COUPLED FLUID FLOW AND GEOMECHANICAL AND GEOPHYSICAL PHENOMENA WITHIN A FINITE ELEMENT for the modeling of geomechanical effects induced by reservoir production/injection and the cyclic dependence
Geophysical Fluid Dynamics Laboratory Review
;4 · When internal diffusion is low, winds end up being dominant source of energy Toggweiler et al, 1993 #12;5 · When internal diffusion is low, winds end up being dominant source of energy · Shifts in winds in Brazil BasinWhile ocean is turbulent both horizontally and vertically.... Diffusivities associated
Geophysical Fluid Dynamics Laboratory Review
ice from continent out to open ocean to melt Avoids coldfresh bias around Antarctica (led to excess seaice) · Lagrangian model of icebergs · Exporting fresh cap beyond shelf edge increases is most useful for ocean climate? Some issues affecting zcoords also affect hybrid coords if coordinate
CSE Master Specialization Fluid Dynamics
Lang, Annika
CSE Master Specialization Fluid Dynamics Course Semester Fluid Dynamics II HS Quantitative Flow Energie- und Verfahrenstechnik FS Biofluiddynamics FS #12;CSE in Fluid Dynamics: Very large high in Fluid Dynamics: Physiology of the inner ear MicroCT imaging Multilayer MFS for Stokes flow simulations
-water' balance in a homogeneous fluid. The MASS conservation equation for a constant density fluid implies.1-7.6 (began last week), 10.4 (Kelvin waves) (similar material in Vallis Â§Â§ 2.8, 3.1, 3.6-3.8 Bretherton than a fraction of a wavelength. This is implicit in a scale analysis of the governing equation
6. Fluid mechanics: fluid statics; fluid dynamics
Zevenhoven, Ron
Figure Pressure (a scalar!) is defined as surface force / area, for example pb = Fb / (d·w) = p @ z = z1 Picture: KJ05 Fluid volume h·d·w with density and mass m = h·d·w· z = z1 In engineering forces Fn+ Fs = 0 or - py·h·w + py·h·w = 0 py = 0 Similarly Fw+ Fe= 0 gives px = 0, There are three
Fluid Dynamics Seminar Fluid Dynamics Research Centre
Davies, Christopher
France) 8th Nov. Future Trends in Condition Monitoring of Rotating Machines Using System Identification Simulation of the Cooling of a Simplified Brake Disc Dr. Thorsten J. Möller, (Institute for Fluid Mechanics
Fluid Dynamics Seminar Fluid Dynamics Research Centre
Thomas, Peter J.
France) 8 th Nov. Future Trends in Condition Monitoring of Rotating Machines Using System Identification Simulation of the Cooling of a Simplified Brake Disc Dr. Thorsten J. Möller, (Institute for Fluid Mechanics
A. K. Chaudhuri
2007-03-12T23:59:59.000Z
We briefly discuss the phenomenological theory of dissipative fluid. We also present some numerical results for hydrodynamic evolution of QGP fluid with dissipation due to shear viscosity only. Its effect on particle production is also studied.
Barran, Brian Arthur
2006-08-16T23:59:59.000Z
, are modified to support a nonuniform simulation grid. In addition, infinite fluid boundary conditions are introduced that allow fluid to flow freely into or out of the simulation domain to achieve the effect of large, boundary free bodies of fluid. Finally, a...
Computational fluid dynamic applications
Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.
2000-04-03T23:59:59.000Z
The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.
Wang, Xiaoming
The general area of geophysical fluid mechanics is truly interdisciplinary. Ideas from statistical and oceans. In this book, the basic ideas of geophysics, probability theory, information theory, nonlinear Spot. The various competing approaches of equilibrium statistical mechanics for geophysical flows
SUMMER PROGRAM IN GEOPHYSICAL FLUID DYNAMICS
Morrison, Philip J.,
JUNE 20-AUGUST 26, 2011 Norman Lebovitz and Phil Morrison, codirectors #12;ii Preface The theme, Keiji Kimura, Norman Lebovitz (standing) Third row (left to right): Ed Spiegel (standing), Karl Helfrich, Unknown, Stefan LlewellynSmith, Philip Hall, Greg Chini, Jan Feys, Andrew Crosby, John Gibson
Ultrarelativistic fluid dynamics
David W. Neilsen; Matthew W. Choptuik
1999-04-20T23:59:59.000Z
This is the first of two papers examining the critical collapse of spherically symmetric perfect fluids with the equation of state P = (Gamma -1)rho. Here we present the equations of motion and describe a computer code capable of simulating the extremely relativistic flows encountered in critical solutions for Gamma <= 2. The fluid equations are solved using a high-resolution shock-capturing scheme based on a linearized Riemann solver.
Zevenhoven, Ron
Introduction to Computational Fluid Dynamics 424512 E #1 - rz Introduction to Computational Fluid Dynamics (iCFD) 424512.0 E, 5 sp / 3 sw 1. Introduction; Fluid dynamics (lecture 1 of 5) Ron Zevenhoven Ã?bo to Computational Fluid Dynamics 424512 E #1 - rz april 2013 Ã?bo Akademi Univ - Thermal and Flow Engineering
Geophysical Fluid Dynamics What does the Geophysical Fluid Dynamics Laboratory do for the Nation?
) 2015 President's budget request for modeling system for predictions and projections on time scales from days to decades. The Fiscal Year (FY
Metaphoric optical computing of fluid dynamics
Tsang, M; Tsang, Mankei; Psaltis, Demetri
2006-01-01T23:59:59.000Z
We present theoretical and numerical evidence to show that self-defocusing nonlinear optical propagation can be used to compute Euler fluid dynamics and possibly Navier-Stokes fluid dynamics. In particular, the formation of twin vortices and the K\\'arm\\'an vortex street behind an obstacle, two well-known viscous fluid phenomena, is numerically demonstrated using the nonlinear Schr\\"odinger equation.
ITP Chemicals: Technology Roadmap for Computational Fluid Dynamics...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Fluid Dynamics, January 1999 ITP Chemicals: Technology Roadmap for Computational Fluid Dynamics, January 1999 cfdroadmap.pdf More Documents & Publications A Workshop to Identify...
Dynamical instability of collapsing radiating fluid
Sharif, M., E-mail: msharif.math@pu.edu.pk; Azam, M., E-mail: azammath@gmail.com [University of the Punjab, Department of Mathematics (Pakistan)
2013-06-15T23:59:59.000Z
We take the collapsing radiative fluid to investigate the dynamical instability with cylindrical symmetry. We match the interior and exterior cylindrical geometries. Dynamical instability is explored at radiative and non-radiative perturbations. We conclude that the dynamical instability of the collapsing cylinder depends on the critical value {gamma} < 1 for both radiative and nonradiative perturbations.
Use of Geophysical Techniques to Characterize Fluid Flow in a Geothermal Reservoir
Broader source: Energy.gov [DOE]
Project objectives: Joint inversion of geophysical data for ground water flow imaging; Reduced the cost in geothermal exploration and monitoring; & Combined passive and active geophysical methods.
Simulation of Complex Fluids using Dissipative Particle Dynamics
Title: Simulation of Complex Fluids using Dissipative Particle Dynamics Abstract: Dissipative Particle Dynamics (DPD) is a relatively new mesoscopic method ...
Fluid Dynamics in Sucker Rod Pumps
Cutler, R.P.; Mansure, A.J.
1999-01-14T23:59:59.000Z
Sucker rod pumps are installed in approximately 90% of all oil wells in the U.S. Although they have been widely used for decades, there are many issues regarding the fluid dynamics of the pump that have not been fully investigated. A project was conducted at Sandia National Laboratories to develop unimproved understanding of the fluid dynamics inside a sucker rod pump. A mathematical flow model was developed to predict pressures in any pump component or an entire pump under single-phase fluid and pumping conditions. Laboratory flow tests were conducted on instrumented individual pump components and on a complete pump to verify and refine the model. The mathematical model was then converted to a Visual Basic program to allow easy input of fluid, geometry and pump parameters and to generate output plots. Examples of issues affecting pump performance investigated with the model include the effects of viscosity, surface roughness, valve design details, plunger and valve pressure differentials, and pumping rate.
Adolphs, Ralph
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 97, NO. E8, PAGES 13,643-13,665 AUGUST 25, 1992 FluidDivisionofGeologicalandPlanetarySciences,California Instituteof Technology,Pasadena. Copyright1992bytheAmericanGeophysicalUnion. PaperNumber9ZIE00981 0148
Hag, M.A.
1982-08-01T23:59:59.000Z
A study was conducted to investigate the effects of fluid properties on the hydrodynamics of sieve tray columns. The study showed that changes in liquid viscosity influenced froth height, while changes in liquid surface tension and density influenced total pressure drop across the trays. Liquid holdup was independent of these solution properties. The liquid systems used for the study were: water/glycerol for viscosity, water/ethanol for surface tension and methanol/chloroform for density.
Geophysical Fluid Dynamics Laboratory Review June 30 -July 2, 2009
in extreme weather events? We are making rapid progress on the effects of warming on tropical cyclones. How prediction system (coupled, multiple mesh) C180 global model C90 global model C360/720 track of different versions of the modelControl ITCZ The response of tropical rainfall to high latitude heating/cooling
Geophysical Fluid Dynamics Laboratory Review June 30 -July 2, 2009
from forest to grassland leads to: Leads to cooling Typically leads to warming Increased snow to cooling Typically leads to warming #12;4 Preanthropogenic land cover distribution Tropical deforestation discussed in Findell et al. (2006, 2007, 2009) #12;5 Strong local response, weak remote responseStrong local
Geophysical and Astrophysical Fluid Dynamics Vol. ??, No. ?, ???, 200?, pp. 117
Priest, Eric
is discussed. Keywords: Solar corona; Magnetic field; Topology 1. INTRODUCTION The magnetic energy in the solar TOPOLOGIES IN THE SOLAR CORONA DUE TO FOUR DISCRETE PHOTOSPHERIC FLUX REGIONS C. BEVERIDGE*, E.R. PRIEST and D.S. BROWN Mathematical Institute, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK
Parcel EulerianLagrangian fluid dynamics of rotating geophysical flows
Al Hanbali, Ahmad
in Hamiltonian particle mesh method (HPM) of Frank and Reich (2003, 2004): dX dt = U Hs = U , (3a) dU dt = -f U? · X and U Lagrangian horizontal position and velocity. 4 #12;' & $ % · HPM: potential energy
Thermo-fluid Dynamics of Flash Atomizing Sprays and Single Droplet Impacts
Vu, Henry
2010-01-01T23:59:59.000Z
OF CALIFORNIA RIVERSIDE Thermo-fluid Dynamics of FlashABSTRACT OF THE DISSERTATION Thermo-fluid Dynamics of Flash
Internal geophysics (Physics of Earth's interior) Jump conditions and dynamic surface tension of momentum across the interface, a possibly anisotropic surface tension and terms including an inter- face equals the jump of pressure; and in the presence of surface tension defined as a capillary action due
Sandia Energy - Computational Fluid Dynamics & Large-Scale Uncertainty...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
& Large-Scale Uncertainty Quantification for Wind Energy Home Highlights - HPC Computational Fluid Dynamics & Large-Scale Uncertainty Quantification for Wind Energy Previous Next...
ASTROPHYSICAL FLUID DYNAMICS VIA DIRECT STATISTICAL SIMULATION
Tobias, S. M. [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom); Dagon, K.; Marston, J. B., E-mail: smt@maths.leeds.ac.uk [Department of Physics, Brown University, Providence, RI 02912-1843 (United States)
2011-02-01T23:59:59.000Z
In this paper, we introduce the concept of direct statistical simulation for astrophysical flows. This technique may be appropriate for problems in astrophysical fluids where the instantaneous dynamics of the flows are of secondary importance to their statistical properties. We give examples of such problems including mixing and transport in planets, stars, and disks. The method is described for a general set of evolution equations, before we consider the specific case of a spectral method optimized for problems on a spherical surface. The method is illustrated for the simplest non-trivial example of hydrodynamics and magnetohydrodynamics on a rotating spherical surface. We then discuss possible extensions of the method both in terms of computational methods and the range of astrophysical problems that are of interest.
antonio fluid dynamics: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
antonio fluid dynamics First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 39th AIAA Fluid Dynamics...
Ris-P.-715(EN) Optics and Fluid Dynamics
Risø-P.-715(EN) Optics and Fluid Dynamics Department Annual Progress Report for 1993 Edited by S Research in the Optics and Fluid Dynamics Department is performed within the following two programme areas: optics and continuum physics. In optics the activities are within (a) optical materials, (b) quasi
Ris-R-1314(EN) Optics and Fluid Dynamics
Risø-R-1314(EN) Optics and Fluid Dynamics Department Annual Progress Report for 2001 Edited by H March 2002 #12;Abstract The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics
Optics and Fluid Dynamics ^>*myft Annual Progress Report
Optics and Fluid Dynamics ^>*myft Department Annual Progress Report 1 January - 31 December 1991;Abstract Research in the Optics and Fluid Dynamics Department covers quasi-elas.ic light scattering, optic association. A ? .mmary of activities in 1991 ii presented. Optical diagnostic methods based on quasi
Ris-R-1453(EN) Optics and Fluid Dynamics
Risø-R-1453(EN) Optics and Fluid Dynamics Department Annual Progress Report for 2003 Edited by H May 2004 #12;Abstract The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics
Ris-R-1399(EN) Optics and Fluid Dynamics
Risø-R-1399(EN) Optics and Fluid Dynamics Department Annual Progress Report for 2002 Edited by H May 2003 #12;Abstract The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) laser systems and optical materials, (2) optical diagnostics
Optics and Fluid Dynamics Department Intellectual Capital Accounts 1998
Optics and Fluid Dynamics Department Intellectual Capital Accounts 1998 Resources, production and results RISØ-R-1108(EN) Risø National Laboratory Optics and Fluid Dynamics Department Building 128 P for optical information storage, · novel schemes for spatial cryptography, and · new models for surface
Computational Fluid Dynamics of rising droplets
Wagner, Matthew [Lake Superior State University; Francois, Marianne M. [Los Alamos National Laboratory
2012-09-05T23:59:59.000Z
The main goal of this study is to perform simulations of droplet dynamics using Truchas, a LANL-developed computational fluid dynamics (CFD) software, and compare them to a computational study of Hysing et al.[IJNMF, 2009, 60:1259]. Understanding droplet dynamics is of fundamental importance in liquid-liquid extraction, a process used in the nuclear fuel cycle to separate various components. Simulations of a single droplet rising by buoyancy are conducted in two-dimensions. Multiple parametric studies are carried out to ensure the problem set-up is optimized. An Interface Smoothing Length (ISL) study and mesh resolution study are performed to verify convergence of the calculations. ISL is a parameter for the interface curvature calculation. Further, wall effects are investigated and checked against existing correlations. The ISL study found that the optimal ISL value is 2.5{Delta}x, with {Delta}x being the mesh cell spacing. The mesh resolution study found that the optimal mesh resolution is d/h=40, for d=drop diameter and h={Delta}x. In order for wall effects on terminal velocity to be insignificant, a conservative wall width of 9d or a nonconservative wall width of 7d can be used. The percentage difference between Hysing et al.[IJNMF, 2009, 60:1259] and Truchas for the velocity profiles vary from 7.9% to 9.9%. The computed droplet velocity and interface profiles are found in agreement with the study. The CFD calculations are performed on multiple cores, using LANL's Institutional High Performance Computing.
Fluid dynamic issues in continuous wave short wavelength chemical lasers
Mikatarian, R.R.; Jumper, E.J.; Woolhiser, C.
1988-01-01T23:59:59.000Z
This paper addresses fluid dynamic issues of concern in the design and development of Continuous Wave (CW) Short Wavelength Chemical Lasers (SWCLs). Short Wavelength Chemical Laser technology is in its research stage and SWCL concepts are in their evolving mode. Researchers are presently addressing candidate chemical systems and activation concepts. Since these lasers will be flowing systems, it is necessary to discuss both the probable fluid dynamics issues, because of the inherent complexities fluid dynamicist can support this activity. In addition to addressing the SWCL fluid dynamic issues, this paper will review past fluid dynamic activities in high energy lasers and discuss additional research still required. This paper will also address the various levels of fluid dynamic modeling and how these models can be applied in studying the fluid dynamics of Short Wavelength Chemical Lasers. Where it is felt that specific fluid methodologies are not available, but are required in order to conduct specific analyses, they will be defined. 34 refs., 6 figs., 1 tab.
Title of dissertation: MODELING, SIMULATING, AND CONTROLLING THE FLUID DYNAMICS
Shapiro, Benjamin
ABSTRACT Title of dissertation: MODELING, SIMULATING, AND CONTROLLING THE FLUID DYNAMICS OF ELECTRO an algorithm to steer indi- vidual particles inside the EWOD system by control of actuators already present number of actuators available in the EWOD system. #12;MODELING, SIMULATING, AND CONTROLLING THE FLUID
Approximate Dynamic Programming for Networks: Fluid Models and Constraint Reduction
Veatch, Michael H.
of approximating functions for the differential cost. The first contribution of this paper is identifying new or piece-wise quadratic. Fluid cost has been used to initialize the value iteration algorithm [5Approximate Dynamic Programming for Networks: Fluid Models and Constraint Reduction Michael H
Computational Fluid Dynamics Study of Aerosol Transport and Deposition Mechanisms
Tang, Yingjie
2012-07-16T23:59:59.000Z
In this work, various aerosol particle transport and deposition mechanisms were studied through the computational fluid dynamics (CFD) modeling, including inertial impaction, gravitational effect, lift force, interception, and turbophoresis, within...
Application of computational fluid dynamics to aerosol sampling and concentration
Hu, Shishan
2009-05-15T23:59:59.000Z
An understanding of gas-liquid two-phase interactions, aerosol particle deposition, and heat transfer is needed. Computational Fluid Dynamics (CFD) is becoming a powerful tool to predict aerosol behavior for related design work. In this study...
V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010
Berning, Torsten
V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010 J. C. F. Pereira and A, increase the mixing of fuel and oxidant, control formation of harmful emissions, and increase the life
Continuum limit of lattice gas fluid dynamics
Teixeira, C.M.
1992-01-01T23:59:59.000Z
The general theory for multiple-speed lattice gas algorithm (LGAs) is developed where previously only a single-speed theory existed. A series of microdynamical multiple-speed models are developed that effectively erase the underlying lattice from the macroscopic dynamics allowing the LGA to reproduce the results of continuum hydrodynamics exactly. The underlying lattice is the 4D FCHC lattice. This lattice: (1) Permits all integral energies, (2) Has sufficient symmetry to allow for an isotropic stress tensor for each energy individually, (3) Allows interaction amongst all energies, and (4) Has discrete microscopic Galilean invariance, all of which allows the extension of the model to higher-speeds. This lattice is the only regular lattice with these remarkable properties, all of which are required to show that the discreteness artifacts completely disappear from the LGA in the limit of infinite speeds, so that correct continuum hydrodynamic behavior results. The author verifies the removal of the discreteness artifacts from the momentum equation using a decaying shear wave experiment and shows they are still invisible for Mach numbers up to M [approximately].4 beyond the theoretical limit. Flow between flat plates replicated the expected parabolic profile of Poiseuille flow in the mean when started from rest. Two separate measurements of the kinematic viscosity of the fluid (normal pressure drop and the microscopic particle force at the wall) agreed with each other and with the shear wave viscosity to better than 1%. Cylinder flow simulations accurately reproduced drag coefficients and eddy-length to diameter ratios for Re[le]45 to within the error of experimental observation. At higher Reynolds number, Re [approx equal] 65, vortex shedding was observed to occur. CFD results for flow past cylinders at similar Reynolds numbers produce either erroneous results or rely on artificially perturbing the flow to cause phenomena that does not occur naturally in the method.
Ullmer, Brygg
PREDICTION OF CUTTINGS BED HEIGHT WITH COMPUTATIONAL FLUID DYNAMICS IN DRILLING HORIZONTAL parameters such as wellbore geometry, pump rate, drilling fluid rheology and density, and maximum drilling Computational Fluid Dynamics methods. Movement, concentration and accumulation of drilled cuttings in non
Hard Sphere Dynamics for Normal and Granular Fluids
James W. Dufty; Aparna Baskaran
2005-03-08T23:59:59.000Z
A fluid of N smooth, hard spheres is considered as a model for normal (elastic collisions) and granular (inelastic collisions) fluids. The potential energy is discontinuous for hard spheres so the pairwise forces are singular and the usual forms of Newtonian and Hamiltonian mechanics do not apply. Nevertheless, particle trajectories in the N particle phase space are well defined and the generators for these trajectories can be identified. The first part of this presentation is a review of the generators for the dynamics of observables and probability densities. The new results presented in the second part refer to applications of these generators to the Liouville dynamics for granular fluids. A set of eigenvalues and eigenfunctions of the generator for this Liouville dynamics is identified in a special "stationary representation". This provides a class of exact solutions to the Liouville equation that are closely related to hydrodynamics for granular fluids.
Variational Methods for Computational Fluid Dynamics
Alouges, François
.2.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.2 Going back-structure interactions 35 4.1 A non deformable solid in a fluid . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6 Stokes equations 49 6.1 Mixed finite
Dynamics of fluid-conveying Timoshenko pipes
Petrus, Ryan Curtis
2006-08-16T23:59:59.000Z
that satisfy the ?non-fluid? essential and natural boundary conditions, and determine the non-dimensional critical velocities at which the system goes unstable. Once the critical velocities are ascertained, the second half will begin with a time... and polynomial functions. The trigonometric\\hyperbolic functions are exact solutions to (4.16) subject to cantilevered boundary conditions (4.17)-(4.20). The th non dimensional natural frequency of the non-fluid beam is given by 2 sinh sin cosh cos 0...
Viscous fluid dynamics in Au+Au collisions at RHIC
A. K. Chaudhuri
2008-06-18T23:59:59.000Z
We have studied the space-time evolution of minimally viscous ($\\frac{\\eta}{s}$=0.08) QGP fluid, undergoing boost-invariant longitudinal motion and arbitrary transverse expansion. Relaxation equations for the shear stress tensor components, derived from the phenomenological Israel-Stewart's theory of dissipative relativistic fluid, are solved simultaneously with the energy-momentum conservation equations. Comparison of evolution of ideal and viscous fluid, both initialized under the similar conditions, e.g. same equilibration time, energy density and velocity profile, indicate that in viscous fluid, energy density or temperature of the fluid evolve slowly than in an ideal fluid. Transverse expansion is also more in viscous evolution. We have also studied particle production in viscous dynamics. Compared to ideal dynamics, in viscous dynamics, particle yield at high $p_T$ is increased. Elliptic flow on the other hand decreases. Minimally viscous QGP fluid, initialized at entropy density $s_{ini}$=110 $fm^{-3}$ at the initial time $\\tau_i$=0.6 fm, if freeze-out at temperature $T_F$=130 MeV, explains the centrality dependence of $p_T$ spectra of identified particles. Experimental $p_T$ spectra of $\\pi^-$, $K^+$ and protons in 0-5%, 5-10%, 10-20%, 20-30%, 30-40% and 40-50% Au+Au collisions are well reproduced through out the experimental $p_T$ range. This is in contrast to ideal dynamics, where, the spectra are reproduced only up to $p_T\\approx$1.5 GeV. Minimally viscous QGP fluid, also explain the elliptic flow in mid-central (10-20%, 16-23%, 20-30%) collisions. The minimum bias elliptic flow is also explained. However, the model under-predict/over-predict the elliptic flow in very central/peripheral collisions.
Local structure and dynamics in colloidal fluids and gels
Takehiro Ohtsuka; C. Patrick Royall; Hajime Tanaka
2009-04-17T23:59:59.000Z
Gels in soft-matter systems are an important nonergodic state of matter. We study a colloid-polymer mixture which is quenched by increasing the polymer concentration, from a fluid to a gel. Using confocal microscopy, we study both the static structure and dynamics in three dimensions (3D). Between the dynamically arrested gel and ergodic fluid comprised of isolated particles we find an intermediate 'cluster fluid' state, where the 'bonds' between the colloidal particles have a finite lifetime. The local dynamics are reminiscent of a fluid, while the local structure is almost identical to that of the gel. Simultaneous real-time local structural analysis and particle tracking in 3D at the single-particle level yields the following interesting information. Particles in the clusters move in a highly correlated manner, but, at the same time, exhibit significant dynamical heterogeneity, reflecting the enhanced mobility near the free surface. Deeper quenching eventually leads to a gel state where the 'bond' lifetime exceeds that of the experiment, although the local structure is almost identical to that of the 'cluster fluid'.
Green Algae as Model Organisms for Biological Fluid Dynamics
Goldstein, Raymond E
2014-01-01T23:59:59.000Z
In the past decade the volvocine green algae, spanning from the unicellular $Chlamydomonas$ to multicellular $Volvox$, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 $\\mu$m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these re...
Green Algae as Model Organisms for Biological Fluid Dynamics
Raymond E. Goldstein
2014-09-08T23:59:59.000Z
In the past decade the volvocine green algae, spanning from the unicellular $Chlamydomonas$ to multicellular $Volvox$, have emerged as model organisms for a number of problems in biological fluid dynamics. These include flagellar propulsion, nutrient uptake by swimming organisms, hydrodynamic interactions mediated by walls, collective dynamics and transport within suspensions of microswimmers, the mechanism of phototaxis, and the stochastic dynamics of flagellar synchronization. Green algae are well suited to the study of such problems because of their range of sizes (from 10 $\\mu$m to several millimetres), their geometric regularity, the ease with which they can be cultured and the availability of many mutants that allow for connections between molecular details and organism-level behavior. This review summarizes these recent developments and highlights promising future directions in the study of biological fluid dynamics, especially in the context of evolutionary biology, that can take advantage of these remarkable organisms.
Surface accumulation of spermatozoa: a fluid dynamic phenomenon
David J. Smith; John R. Blake
2010-07-13T23:59:59.000Z
Recent mathematical fluid dynamics models have shed light into an outstanding problem in reproductive biology: why do spermatozoa cells show a 'preference' for swimming near to surfaces? In this paper we review quantitative approaches to the problem, originating with the classic paper of Lord Rothschild in 1963. A recent 'boundary integral/slender body theory' mathematical model for the fluid dynamics is described, and we discuss how it gives insight into the mechanisms that may be responsible for the surface accumulation behaviour. We use the simulation model to explore these mechanisms in more detail, and discuss whether simplified models can capture the behaviour of sperm cells. The far-field decay of the fluid flow around the cell is calculated, and compared with a stresslet model. Finally we present some new findings showing how, despite having a relatively small hydrodynamic drag, the sperm cell 'head' has very significant effects on surface accumulation and trajectory.
aiaa fluid dynamics: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
aiaa fluid dynamics First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 AIAA Plasmadynamics and Lasers...
Long-wave models of thin film fluid dynamics
A. J. Roberts
1994-11-04T23:59:59.000Z
Centre manifold techniques are used to derive rationally a description of the dynamics of thin films of fluid. The derived model is based on the free-surface $\\eta(x,t)$ and the vertically averaged horizontal velocity $\\avu(x,t)$. The approach appears to converge well and has significant differences from conventional depth-averaged models.
COMPUTATIONAL FLUID DYNAMICS MODELING OF SOLID OXIDE FUEL CELLS
COMPUTATIONAL FLUID DYNAMICS MODELING OF SOLID OXIDE FUEL CELLS Ugur Pasaogullari and Chao-dimensional model has been developed to simulate solid oxide fuel cells (SOFC). The model fully couples current density operation. INTRODUCTION Solid oxide fuel cells (SOFC) are among possible candidates
Texas Fluid Dynamics Meeting, 2013 STABILITY OF ROTOR WAKES.
Tinney, Charles E.
to the presence of multiple helical fila- ments. Wakes of helicopter rotors, wind turbines and ma- rine propellers% confidence interval at wake ages, : 10 - 80. Dashed lines are separated by r /r = 3 in the wake of windTexas Fluid Dynamics Meeting, 2013 STABILITY OF ROTOR WAKES. Swathi M. Mula & Charles. E. Tinney
Air Ingress Benchmarking with Computational Fluid Dynamics Analysis
1 Air Ingress Benchmarking with Computational Fluid Dynamics Analysis Tieliang Zhai Professor by the US Nuclear Regulatory Commission #12;2 Air Ingress Accident Objectives and Overall Strategy: Depresurization Pure Diffusion Natural Convection Challenging: Natural convection Multi-component Diffusion (air
Air Ingress Benchmarking with Computational Fluid Dynamics Analysis
Air Ingress Benchmarking with Computational Fluid Dynamics Analysis Andrew C. Kadak Department District Beijing, China September 22-24, 2004 Abstract Air ingress accident is a complicated accident scenario is compounded by multiple physical phenomena that are involved in the air ingress event
Dynamic Phase Boundaries for Compressible Fluids , Z. L. Xu
New York at Stoney Brook, State University of
discontinuity. The emphasis here is on the coupling of the phase transition process to acoustic waves, whichDynamic Phase Boundaries for Compressible Fluids T. Lu Â§ , Z. L. Xu Â§ , R. SamulyakÂ§ , J. Glimm algorithm is verified by application to various physical regimes. 1 Introduction The coupling
ARBITRARY LAGRANGIAN-EULERIAN (ALE) METHODS IN COMPRESSIBLE FLUID DYNAMICS
Kurien, Susan
· . Scalar quantities (density , pressure p, specific internal energy and temperature T) are approximated Lagrangian system is numerically treated by compatible method [8, 9] conserving total energy. Several types Lagrangian-Eulerian (ALE [1]) code for simulation of problems in compressible fluid dynamics and plasma
Dynamic Particle Coupling for GPU-based Fluid Simulation
Blanz, Volker
-vi ¯j 2 W( Pi -Pj ,h). Here pj = k( ¯j - 0) is the pressure with gas constant k and rest density 0 for modeling dynamic particle coupling solely based on individual particle contributions. This technique does and µ is the fluid viscosity constant. To model the surface tension, M¨uller et.al. [MCG03] use the so
Simulations of Particle Dynamics in Magnetorheological Fluids
. Reitich 2 , M.R. Jolly 3 , H.T. Banks 1 , Kazi Ito 1 Abstract We present particle dynamics simulations transformed from a liquid state to that of a Bingham solid upon application of a magnetic (resp., electric as these present a number of advantages over their electric counterparts. These include higher achievable yield
Marcello Sega; Mauro Sbragaglia; Sofia Sergeevna Kantorovich; Alexey Olegovich Ivanov
2014-02-19T23:59:59.000Z
Complex fluid-fluid interfaces featuring mesoscale structures with adsorbed particles are key components of newly designed materials which are continuously enriching the field of soft matter. Simulation tools which are able to cope with the different scales characterizing these systems are fundamental requirements for efficient theoretical investigations. In this paper we present a novel simulation method, based on the approach of Ahlrichs and D\\"unweg [Ahlrichs and D\\"unweg, Int. J. Mod. Phys. C, 1998, 9, 1429], that couples the "Shan-Chen" multicomponent Lattice Boltzmann technique to off-lattice molecular dynamics to simulate efficiently complex fluid-fluid interfaces. We demonstrate how this approach can be used to study a wide class of challenging problems. Several examples are given, with an accent on bicontinuous phases formation in polyelectrolyte solutions and ferrofluid emulsions. We also show that the introduction of solvation free energies in the particle-fluid interaction unveils the hidden, multiscale nature of the particle-fluid coupling, allowing to treat symmetrically (and interchangeably) the on-lattice and off-lattice components of the system.
fjYTiYTvl/f^ Ris-R-674(EN) Optics and Fluid Dynamics
fjYTiYTvl/f^ Risø-R-674(EN) Optics and Fluid Dynamics Department Annual Progress Report for 1992 #12;Optics and Fluid Dynamics Department AnnualProgressReport for1992 Edited by L. Lading, JJ. Lynov in the Optics and Fluid Dynamics Department is performed within two sections- The Optics Section has activities
Gregg, Patricia Michelle Marie
2008-01-01T23:59:59.000Z
Segmentation and crustal accretion at oceanic transform fault systems are investigated through a combination of geophysical data analysis and geodynamical and geochemical modeling. Chapter 1 examines the effect of fault ...
DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto
Boyer, Edmond
DRILL-STRING NONLINEAR DYNAMICS ACCOUNTING FOR DRILLING FLUID T. G. Ritto R. Sampaio thiagoritto Descartes, 77454 Marne-la-VallÃ©e, France Abstract. The influence of the drilling fluid (or mud) on the drill in the analysis of the nonlinear dynamics of a drill-string. The aim of this paper is to investigate how the fluid
Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed
Zhongyi Deng; Rui Xiao; Baosheng Jin; He Huang; Laihong Shen; Qilei Song; Qianjun Li [Southeast University, Nanjing (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education
2008-05-15T23:59:59.000Z
Computational fluid dynamics (CFD) modeling, which has recently proven to be an effective means of analysis and optimization of energy-conversion processes, has been extended to coal gasification in this paper. A 3D mathematical model has been developed to simulate the coal gasification process in a pressurized spout-fluid bed. This CFD model is composed of gas-solid hydrodynamics, coal pyrolysis, char gasification, and gas phase reaction submodels. The rates of heterogeneous reactions are determined by combining Arrhenius rate and diffusion rate. The homogeneous reactions of gas phase can be treated as secondary reactions. A comparison of the calculated and experimental data shows that most gasification performance parameters can be predicted accurately. This good agreement indicates that CFD modeling can be used for complex fluidized beds coal gasification processes. 37 refs., 7 figs., 5 tabs.
The stochastic dynamics of tethered microcantilevers in a viscous fluid
Robbins, Brian A.; Paul, Mark R. [Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Radiom, Milad; Ducker, William A. [Department of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Walz, John Y. [Department of Chemical Engineering, University of Kentucky, Lexington, Kentucky 40506 (United States)
2014-10-28T23:59:59.000Z
We explore and quantify the coupled dynamics of a pair of micron scale cantilevers immersed in a viscous fluid that are also directly tethered to one another at their tips by a spring force. The spring force, for example, could represent the molecular stiffness or elasticity of a biomolecule or material tethered between the cantilevers. We use deterministic numerical simulations with the fluctuation-dissipation theorem to compute the stochastic dynamics of the cantilever pair for the conditions of experiment when driven only by Brownian motion. We validate our approach by comparing directly with experimental measurements in the absence of the tether which shows excellent agreement. Using numerical simulations, we quantify the correlated dynamics of the cantilever pair over a range of tether stiffness. Our results quantify the sensitivity of the auto- and cross-correlations of equilibrium fluctuations in cantilever displacement to the stiffness of the tether. We show that the tether affects the magnitude of the correlations which can be used in a measurement to probe the properties of an attached tethering substance. For the configurations of current interest using micron scale cantilevers in water, we show that the magnitude of the fluid coupling between the cantilevers is sufficiently small such that the influence of the tether can be significant. Our results show that the cross-correlation is more sensitive to tether stiffness than the auto-correlation indicating that a two-cantilever measurement has improved sensitivity when compared with a measurement using a single cantilever.
On preparation of viscous pore fluids for dynamic centrifuge modelling
Adamidis, O.; Madabhushi, S. P. G.
2014-11-21T23:59:59.000Z
dynamic cen- trifuge tests, the use of water as pore fluid can limit the generation of excess pore pressures in sand formations below gravel embankments, lowering the recorded crest settlement signif- icantly. Chian and Madabhushi [2010] exam- ined... with changing 4 1.2 1.6 2 2.4 2.8 3.2 0 40 80 120 160 200 Concentration [%] V is co si ty [m P a · s] measurements at 20?C best fit (8th order) best fit (power law) Stewart et al. [1998] Figure 2: Viscosity change with concentration 1.2 1.6 2 2.4 2.8 3.2 1...
Computational Fluid Dynamics Simulation of Fluidized Bed Polymerization Reactors
Rong Fan
2006-08-09T23:59:59.000Z
Fluidized beds (FB) reactors are widely used in the polymerization industry due to their superior heat- and mass-transfer characteristics. Nevertheless, problems associated with local overheating of polymer particles and excessive agglomeration leading to FB reactors defluidization still persist and limit the range of operating temperatures that can be safely achieved in plant-scale reactors. Many people have been worked on the modeling of FB polymerization reactors, and quite a few models are available in the open literature, such as the well-mixed model developed by McAuley, Talbot, and Harris (1994), the constant bubble size model (Choi and Ray, 1985) and the heterogeneous three phase model (Fernandes and Lona, 2002). Most these research works focus on the kinetic aspects, but from industrial viewpoint, the behavior of FB reactors should be modeled by considering the particle and fluid dynamics in the reactor. Computational fluid dynamics (CFD) is a powerful tool for understanding the effect of fluid dynamics on chemical reactor performance. For single-phase flows, CFD models for turbulent reacting flows are now well understood and routinely applied to investigate complex flows with detailed chemistry. For multiphase flows, the state-of-the-art in CFD models is changing rapidly and it is now possible to predict reasonably well the flow characteristics of gas-solid FB reactors with mono-dispersed, non-cohesive solids. This thesis is organized into seven chapters. In Chapter 2, an overview of fluidized bed polymerization reactors is given, and a simplified two-site kinetic mechanism are discussed. Some basic theories used in our work are given in detail in Chapter 3. First, the governing equations and other constitutive equations for the multi-fluid model are summarized, and the kinetic theory for describing the solid stress tensor is discussed. The detailed derivation of DQMOM for the population balance equation is given as the second section. In this section, monovariate population balance, bivariate population balance, aggregation and breakage equation and DQMOM-Multi-Fluid model are described. In the last section of Chapter 3, numerical methods involved in the multi-fluid model and time-splitting method are presented. Chapter 4 is based on a paper about application of DQMOM to polydisperse gas-solid fluidized beds. Results for a constant aggregation and breakage kernel and a kernel developed from kinetic theory are shown. The effect of the aggregation success factor and the fragment distribution function are investigated. Chapter 5 shows the work on validation of mixing and segregation phenomena in gas-solid fluidized beds with a binary mixture or a continuous size distribution. The simulation results are compared with available experiment data and discrete-particle simulation. Chapter 6 presents the project with Univation Technologies on CFD simulation of a Polyethylene pilot-scale FB reactor, The fluid dynamics, mass/heat transfer and particle size distribution are investigated through CFD simulation and validated with available experimental data. The conclusions of this study and future work are discussed in Chapter 7.
Battiste, Richard L
2013-12-31T23:59:59.000Z
Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into th emold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with a fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a termperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into th emold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.
Battiste, Richard L. (Oak Ridge, TN)
2007-12-25T23:59:59.000Z
Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into the mold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with the fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a temperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into the mold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.
Applying uncertainty quantification to multiphase flow computational fluid dynamics
Gel, A.; Garg, R.; Tong, C.; Shahnam, M.; Guenther, C.
2013-07-01T23:59:59.000Z
Multiphase computational fluid dynamics plays a major role in design and optimization of fossil fuel based reactors. There is a growing interest in accounting for the influence of uncertainties associated with physical systems to increase the reliability of computational simulation based engineering analysis. The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has recently undertaken an initiative to characterize uncertainties associated with computer simulation of reacting multiphase flows encountered in energy producing systems such as a coal gasifier. The current work presents the preliminary results in applying non-intrusive parametric uncertainty quantification and propagation techniques with NETL's open-source multiphase computational fluid dynamics software MFIX. For this purpose an open-source uncertainty quantification toolkit, PSUADE developed at the Lawrence Livermore National Laboratory (LLNL) has been interfaced with MFIX software. In this study, the sources of uncertainty associated with numerical approximation and model form have been neglected, and only the model input parametric uncertainty with forward propagation has been investigated by constructing a surrogate model based on data-fitted response surface for a multiphase flow demonstration problem. Monte Carlo simulation was employed for forward propagation of the aleatory type input uncertainties. Several insights gained based on the outcome of these simulations are presented such as how inadequate characterization of uncertainties can affect the reliability of the prediction results. Also a global sensitivity study using Sobol' indices was performed to better understand the contribution of input parameters to the variability observed in response variable.
A Mechanical Fluid-Dynamical Model For Ground Movements At Campi...
to increasing pressure within a shallow magma chamber; the second involves the fluid-dynamics of shallow aquifers in response to increasing pressure andor temperature at depth....
Computational fluid dynamic modeling of fluidized-bed polymerization reactors
Rokkam, Ram [Ames Laboratory
2012-11-02T23:59:59.000Z
Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.
Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers
Garcia, Julio Enrique
2003-12-18T23:59:59.000Z
Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO{sub 2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO{sub 2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO{sub 2}-H{sub 2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO{sub 2}. The basic problem of CO{sub 2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO{sub 2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO{sub 2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO{sub 2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous phase by a factor of 15. Because of the lower viscosity, the CO{sub 2} displacement front will have a tendency towards instability. Preliminary simulation results show good agreement between classical instability solutions and numerical predictions of finger growth and spacing obtained using different gas/liquid viscosity ratios, relative permeability and capillary pressure models. Further studies are recommended to validate these results over a broader range of conditions.
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 97, NO. B6, PAGES 9003-9014, JUNE 10, 1992 Effectsof-pressure/high-temperatureexperimentswith basalt-olivine mixtures [Waft and Bulau, 1982]. The Copyright1992by theAmericanGeophysical
Climate dynamics and fluid mechanics: Natural variability and related uncertainties
Michael Ghil; Mickaël D. Chekroun; Eric Simonnet
2010-06-15T23:59:59.000Z
The purpose of this review-and-research paper is twofold: (i) to review the role played in climate dynamics by fluid-dynamical models; and (ii) to contribute to the understanding and reduction of the uncertainties in future climate-change projections. To illustrate the first point, we focus on the large-scale, wind-driven flow of the mid-latitude oceans which contribute in a crucial way to Earth's climate, and to changes therein. We study the low-frequency variability (LFV) of the wind-driven, double-gyre circulation in mid-latitude ocean basins, via the bifurcation sequence that leads from steady states through periodic solutions and on to the chaotic, irregular flows documented in the observations. This sequence involves local, pitchfork and Hopf bifurcations, as well as global, homoclinic ones. The natural climate variability induced by the LFV of the ocean circulation is but one of the causes of uncertainties in climate projections. Another major cause of such uncertainties could reside in the structural instability in the topological sense, of the equations governing climate dynamics, including but not restricted to those of atmospheric and ocean dynamics. We propose a novel approach to understand, and possibly reduce, these uncertainties, based on the concepts and methods of random dynamical systems theory. As a very first step, we study the effect of noise on the topological classes of the Arnol'd family of circle maps, a paradigmatic model of frequency locking as occurring in the nonlinear interactions between the El Nino-Southern Oscillations (ENSO) and the seasonal cycle. It is shown that the maps' fine-grained resonant landscape is smoothed by the noise, thus permitting their coarse-grained classification. This result is consistent with stabilizing effects of stochastic parametrization obtained in modeling of ENSO phenomenon via some general circulation models.
On the role of wind driven ocean dynamics in tropical Atlantic variability
Da Silva, Meyre Pereira
2006-08-16T23:59:59.000Z
The response of the tropical Atlantic Ocean to wind stress forcing on seasonal and interannual time scales is examined using an ocean data assimilation product from the Geophysical Fluid Dynamics Laboratory (GFDL), and an ocean general circulation...
Computational fluid dynamics for the CFBR : challenges that lie ahead /
Kashiwa, B. A.; Yang, Wen-ching,
2001-01-01T23:59:59.000Z
The potential of Computational Fluid Dynamics as a tool for design and analysis of the Circulating Fluidized Bed Reactor is considered. The ruminations are largely philosophical in nature, and are based mainly on experience. An assessment of where CFD may, or may not, be a helpful tool for developing the needed understanding, is furnished. To motivate this assessment, a clarification of what composes a CFD analysis is provided. Status of CFD usage in CFBR problems is summarized briefly. Some successes and failures of CFD in CFBR analysis are also discussed; this suggests a practical way to proceed toward the goal of adding CFD as a useful tool, to be used in combination with well-defined experiments, for CFBR needs. The conclusion is that there remains substantial hope that CFD could be very useful in this application. In order to make the hope a reality, nontrivial, and achievable, advances in multiphase flow theory must be made.
A Simple Interface to Computational Fluid Dynamics Programs for Building Environment Simulations
Chen, Qingyan "Yan"
A Simple Interface to Computational Fluid Dynamics Programs for Building Environment Simulations for architects and HVAC engineers to simulate airflows in and around buildings by Computational Fluid Dynamics Charles R. Broderick III Qingyan Chen Building Technology Program Massachusetts Institute of Technology
Optics and Fluid Dynamics Ris-R-1157(EN) Annual Progress Report for 1999
Optics and Fluid Dynamics Risø-R-1157(EN) Department Annual Progress Report for 1999 Edited by S;2 Risø-R-1157(EN) Abstract The Optics and Fluid Dynamics Department performs basic and applied research within the three programmes: (1) optical materials, (2) optical diagnostics and information processing
Optics and Fluid Dynamics Ris-R-1227(EN) Annual Progress Report for 2000
Optics and Fluid Dynamics Risø-R-1227(EN) Department Annual Progress Report for 2000 Edited by S;2 Risø-R-1227(EN) Abstract The Optics and Fluid Dynamics Department performs basic and applied research within three scientific programmes: (1) optical materials, (2) optical diagnostics and information
Optics and Fluid Dynamics Ris-R-1100(EN) Annual Progress Report for 1998
Optics and Fluid Dynamics Risø-R-1100(EN) Department Annual Progress Report for 1998 Edited by S May 1999 #12;2 Risø-R-1100(EN) Abstract Research in the Optics and Fluid Dynamics Department has been performed within the following three programme areas: (1) optical materials, (2) optical diagnostics
Geophysical Research Abstracts Vol. 12, EGU2010-233, 2010
Mohaghegh, Shahab
Geophysical Research Abstracts Vol. 12, EGU2010-233, 2010 EGU General Assembly 2010 © Author with the best available petrophysical and geophysical information at the time of development. Engineering fluid
GEOPHYSICAL FLUID DYNAMICS -1 OC512/AS509 2009 LECTURE 1 Mon 5 i 2009
global warming, yet extends much more widely. There is human impact on wetlands, air quality, coastal and black carbon, the pattern-structure of global warming is very rich: global average SAT (surface air
Paparella, Francesco
convection are found in the Earth's oceans, most notably, below the polar ice caps. There melting ice
Goddard III, William A.
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. B7, PAGES 15,005-15,023, JULY 10, 1999 Dynamics by the American GeophysicalUnion. Paper number 1999JB900065. 0148-0227/ 99/ 1999JB900065509.00 The large
HYDRA, A finite element computational fluid dynamics code: User manual
Christon, M.A.
1995-06-01T23:59:59.000Z
HYDRA is a finite element code which has been developed specifically to attack the class of transient, incompressible, viscous, computational fluid dynamics problems which are predominant in the world which surrounds us. The goal for HYDRA has been to achieve high performance across a spectrum of supercomputer architectures without sacrificing any of the aspects of the finite element method which make it so flexible and permit application to a broad class of problems. As supercomputer algorithms evolve, the continuing development of HYDRA will strive to achieve optimal mappings of the most advanced flow solution algorithms onto supercomputer architectures. HYDRA has drawn upon the many years of finite element expertise constituted by DYNA3D and NIKE3D Certain key architectural ideas from both DYNA3D and NIKE3D have been adopted and further improved to fit the advanced dynamic memory management and data structures implemented in HYDRA. The philosophy for HYDRA is to focus on mapping flow algorithms to computer architectures to try and achieve a high level of performance, rather than just performing a port.
Code Verification of the HIGRAD Computational Fluid Dynamics Solver
Van Buren, Kendra L. [Los Alamos National Laboratory; Canfield, Jesse M. [Los Alamos National Laboratory; Hemez, Francois M. [Los Alamos National Laboratory; Sauer, Jeremy A. [Los Alamos National Laboratory
2012-05-04T23:59:59.000Z
The purpose of this report is to outline code and solution verification activities applied to HIGRAD, a Computational Fluid Dynamics (CFD) solver of the compressible Navier-Stokes equations developed at the Los Alamos National Laboratory, and used to simulate various phenomena such as the propagation of wildfires and atmospheric hydrodynamics. Code verification efforts, as described in this report, are an important first step to establish the credibility of numerical simulations. They provide evidence that the mathematical formulation is properly implemented without significant mistakes that would adversely impact the application of interest. Highly accurate analytical solutions are derived for four code verification test problems that exercise different aspects of the code. These test problems are referred to as: (i) the quiet start, (ii) the passive advection, (iii) the passive diffusion, and (iv) the piston-like problem. These problems are simulated using HIGRAD with different levels of mesh discretization and the numerical solutions are compared to their analytical counterparts. In addition, the rates of convergence are estimated to verify the numerical performance of the solver. The first three test problems produce numerical approximations as expected. The fourth test problem (piston-like) indicates the extent to which the code is able to simulate a 'mild' discontinuity, which is a condition that would typically be better handled by a Lagrangian formulation. The current investigation concludes that the numerical implementation of the solver performs as expected. The quality of solutions is sufficient to provide credible simulations of fluid flows around wind turbines. The main caveat associated to these findings is the low coverage provided by these four problems, and somewhat limited verification activities. A more comprehensive evaluation of HIGRAD may be beneficial for future studies.
Structure and dynamics of mangetorheological fluids confined in microfluidic devices
Haghgooie, Ramin
2006-01-01T23:59:59.000Z
Microfluidic devices and magnetorheological (MR) fluids have been two areas of intense research for several years. Traditionally, these two fields have remained separated from one another by scale. MR fluids are best known ...
Collett Jr., Jeffrey L.
(Navier-Stokes), Mass Conservation, Equation of State, Thermodynamic Equation Energy Budget Hydrostatic., and J.-M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics, 2nd Ed., Internation Geophysics://www.catalog.colostate.edu/FrontPDF/1.6POLICIES1112f.pdf) and the Student Conduct Code (http://www.conflictresolution.colostate.edu/conduct-code
(Navier-Stokes), Mass Conservation, Equation of State, Thermodynamic Equation Energy Budget Hydrostatic to Geophysical Fluid Dynamics, 2nd Ed., Internation Geophysics Series, Academic Press James, I. N., 1994.6POLICIES1112f.pdf) and the Student Conduct Code (http://www.conflictresolution.colostate.edu/conduct-code
Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design
Beach, R.; Prahl, D.; Lange, R.
2013-12-01T23:59:59.000Z
IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.
Computational Fluid Dynamics Framework for Turbine Biological Performance Assessment
Richmond, Marshall C.; Serkowski, John A.; Carlson, Thomas J.; Ebner, Laurie L.; Sick, Mirjam; Cada, G. F.
2011-05-04T23:59:59.000Z
In this paper, a method for turbine biological performance assessment is introduced to bridge the gap between field and laboratory studies on fish injury and turbine design. Using this method, a suite of biological performance indicators is computed based on simulated data from a computational fluid dynamics (CFD) model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. If the relationship between the dose of an injury mechanism and frequency of injury (dose-response) is known from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from various turbine designs, the engineer can identify the more-promising designs. Discussion here is focused on Kaplan-type turbines, although the method could be extended to other designs. Following the description of the general methodology, we will present sample risk assessment calculations based on CFD data from a model of the John Day Dam on the Columbia River in the USA.
Fluid Dynamics Research 33 (2003) 333356 Leapfrogging vortex rings: Hamiltonian structure, geometric
Shashikanth, Banavara N.
2003-01-01T23:59:59.000Z
Fluid Dynamics Research 33 (2003) 333356 Leapfrogging vortex rings: Hamiltonian structure that if the rings are modeled as coaxial circular ÿlaments, their dynamics and Hamil- tonian structure is derivable of Mechanical Engineering, New Mexico State University, Las Cruces, NM 88003, USA b Control and Dynamical
Paden, Brad
levitated centrifugal blood pump intended to deliver 0.31.5 l/min of support to neo- nates and infants computational fluid dy- namics (CFD) analysis of impeller refinements, we found that sec- ondary blades located by exten- sive in vitro model testing. Computational fluid dynamics (CFD) has been widely used
Computational Fluids Dynamics and its Application to Multiphase Flows (3 credits)
Chen, Zheng
Computational Fluids Dynamics and its Application to Multiphase Flows (3 credits) Instructor Eric CLIMENT, Dept. of Fluids Mechanics, INP-ENSEEIHT / IMFT (eric.climent@imft.fr) Synopsis Multiphase flows will be introduced, together with their applications to multiphase flows (dispersion, two-way coupling, modelling
AN INVESTIGATION OF THE FLUID DYNAMICS ASPECTS OF THIN LIQUID FILM PROTECTION
California at San Diego, University of
AN INVESTIGATION OF THE FLUID DYNAMICS ASPECTS OF THIN LIQUID FILM PROTECTION SCHEMES FOR INERTIAL Accepted for Publication October 7, 2003 Experimental and numerical studies of the fluid dy- namics of thin- ploding fuel pellets consists of energetic neutrons, pho- tons, and charged particles that eventually
FLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED OIL RECOVERY
Daripa, Prabir
FLUID DYNAMICAL AND MODELING ISSUES OF CHEMICAL FLOODING FOR ENHANCED OIL RECOVERY Prabir Daripa developed flows in enhanced oil recovery (EOR). In a recent exhaustive study [Transport in Porous Media, 93 fluid flows that occur in porous media during tertiary dis- placement process of chemical enhanced oil
Infiltration Heat Recovery in Building Walls: Computational Fluid Dynamics Investigations Results
LBNL-51324 Infiltration Heat Recovery in Building Walls: Computational Fluid Dynamics leading to partial recovery of heat conducted through the wall. The Infiltration Heat Recovery (IHR) factor was introduced to quantify the heat recovery and correct the conventional calculations
Fairman, Randall S. (Randall Scott), 1967-
2002-01-01T23:59:59.000Z
An analysis of current computational fluid dynamics capabilities in predicting mean lift forces for two dimensional foils is conducted. It is shown that both integral boundary layer theory and Reynolds Averaged Navier ...
Gao, Yang, 1974-
2002-01-01T23:59:59.000Z
Current design of building indoor environment comprises macroscopIC approaches, such as CONT AM multizone airflow analysis tool, and microscopic approaches that apply Computational Fluid Dynamics (CFD). Each has certain ...
Vortex in a relativistic perfect isentropic fluid and Nambu Goto dynamics
B. Boisseau
1999-11-26T23:59:59.000Z
By a weak deformation of the cylindrical symmetry of the potential vortex in a relativistic perfect isentropic fluid, we study the possible dynamics of the central line of this vortex. In "stiff" material the Nanbu-Goto equations are obtained
Zhai, Zhiqiang, 1971-
2003-01-01T23:59:59.000Z
Building energy simulation (ES) and computational fluid dynamics (CFD) can play important roles in building design by providing essential information to help design energy-efficient, thermally comfortable and healthy ...
Using the FLUENT computational fluid dynamics code to model the NACOK corrosion test
Parks, Benjamin T
2004-01-01T23:59:59.000Z
As a part of advancing nuclear technology, computational fluid dynamics (CFD) analysis offers safer and lower-cost results relative to experimental work. Its use as a safety analysis tool is gaining much broader acceptance ...
Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization
Broader source: Energy.gov [DOE]
DOE Geothermal Peer Review 2010 - Presentation. This project aims to develop improved geophysical imaging method for characterizing subsurface structure, identify fluid locations, and characterize fractures.
Isomorphic classical molecular dynamics model for an excess electronin a supercritical fluid
Miller III, Thomas F.
2008-08-04T23:59:59.000Z
Ring polymer molecular dynamics (RPMD) is used to directly simulate the dynamics of an excess electron in a supercritical fluid over a broad range of densities. The accuracy of the RPMD model is tested against numerically exact path integral statistics through the use of analytical continuation techniques. At low fluid densities, the RPMD model substantially underestimates the contribution of delocalized states to the dynamics of the excess electron. However, with increasing solvent density, the RPMD model improves, nearly satisfying analytical continuation constraints at densities approaching those of typical liquids. In the high density regime, quantum dispersion substantially decreases the self-diffusion of the solvated electron. In this regime where the dynamics of the electron is strongly coupled to the dynamics of the atoms in the fluid, trajectories that can reveal diffusive motion of the electron are long in comparison to {beta}{h_bar}.
Improvements of Fast Fluid Dynamics for Simulating Airflow in Mingang Jin1
Chen, Qingyan "Yan"
in buildings," Numerical Heat Transfer, Part B: Fundamentals, 62(6), 419-438. #12;2 density kinetic viscosity-765-494-0539 Abstract Fast Fluid Dynamics (FFD) could be potentially used for real-time indoor airflow simulations Dynamics (3D FFD).The implementation of boundary conditions at outlet was improved with local mass
D)TT(^!rf5\\\\ "bKtSOOO&i. Ris-R-793(EN) Optics and Fluid Dynamics
D)TT(^!rf5\\\\ "bKtSOOO&i. Risø-R-793(EN) Optics and Fluid Dynamics Department Annual Progress Report, Denmark January 1995 #12;Optics and Fluid Dynamics Department Annual Progress Report for 1994 Edited by S;Abstract Research in the Optics and Fiuid Dynamics Department is performed within the following two
Dynamics of filaments and membranes in a viscous fluid
Thomas R. Powers
2009-12-08T23:59:59.000Z
Motivated by the motion of biopolymers and membranes in solution, this article presents a formulation of the equations of motion for curves and surfaces in a viscous fluid. We focus on geometrical aspects and simple variational methods for calculating internal stresses and forces, and we derive the full nonlinear equations of motion. In the case of membranes, we pay particular attention to the formulation of the equations of hydrodynamics on a curved, deforming surface. The formalism is illustrated by two simple case studies: (1) the twirling instability of straight elastic rod rotating in a viscous fluid, and (2) the pearling and buckling instabilities of a tubular liposome or polymersome.
of an Annual Mean Diffusive Energy Balance Model With an Ice Sheet KENNETH P. BOWMAN GeophysicalFluid Dynamics averaged energy balance models have received muchattentionsincethey were introducedby Budyko[1969. For a review of energy balance models and a discussionof albedo feedback, see North et al. [1981]. Models have
R. James Kirkpatrick; Andrey G. Kalinichev
2008-11-25T23:59:59.000Z
Research supported by this grant focuses on molecular scale understanding of central issues related to the structure and dynamics of geochemically important fluids, fluid-mineral interfaces, and confined fluids using computational modeling and experimental methods. Molecular scale knowledge about fluid structure and dynamics, how these are affected by mineral surfaces and molecular-scale (nano-) confinement, and how water molecules and dissolved species interact with surfaces is essential to understanding the fundamental chemistry of a wide range of low-temperature geochemical processes, including sorption and geochemical transport. Our principal efforts are devoted to continued development of relevant computational approaches, application of these approaches to important geochemical questions, relevant NMR and other experimental studies, and application of computational modeling methods to understanding the experimental results. The combination of computational modeling and experimental approaches is proving highly effective in addressing otherwise intractable problems. In 2006-2007 we have significantly advanced in new, highly promising research directions along with completion of on-going projects and final publication of work completed in previous years. New computational directions are focusing on modeling proton exchange reactions in aqueous solutions using ab initio molecular dynamics (AIMD), metadynamics (MTD), and empirical valence bond (EVB) approaches. Proton exchange is critical to understanding the structure, dynamics, and reactivity at mineral-water interfaces and for oxy-ions in solution, but has traditionally been difficult to model with molecular dynamics (MD). Our ultimate objective is to develop this capability, because MD is much less computationally demanding than quantum-chemical approaches. We have also extended our previous MD simulations of metal binding to natural organic matter (NOM) to a much longer time scale (up to 10 ns) for significantly larger systems. These calculations have allowed us, for the first time, to study the effects of metal cations with different charges and charge density on the NOM aggregation in aqueous solutions. Other computational work has looked at the longer-time-scale dynamical behavior of aqueous species at mineral-water interfaces investigated simultaneously by NMR spectroscopy. Our experimental NMR studies have focused on understanding the structure and dynamics of water and dissolved species at mineral-water interfaces and in two-dimensional nano-confinement within clay interlayers. Combined NMR and MD study of H2O, Na+, and Cl- interactions with the surface of quartz has direct implications regarding interpretation of sum frequency vibrational spectroscopic experiments for this phase and will be an important reference for future studies. We also used NMR to examine the behavior of K+ and H2O in the interlayer and at the surfaces of the clay minerals hectorite and illite-rich illite-smectite. This the first time K+ dynamics has been characterized spectroscopically in geochemical systems. Preliminary experiments were also performed to evaluate the potential of 75As NMR as a probe of arsenic geochemical behavior. The 75As NMR study used advanced signal enhancement methods, introduced a new data acquisition approach to minimize the time investment in ultra-wide-line NMR experiments, and provides the first evidence of a strong relationship between the chemical shift and structural parameters for this experimentally challenging nucleus. We have also initiated a series of inelastic and quasi-elastic neutron scattering measurements of water dynamics in the interlayers of clays and layered double hydroxides. The objective of these experiments is to probe the correlations of water molecular motions in confined spaces over the scale of times and distances most directly comparable to our MD simulations and on a time scale different than that probed by NMR. This work is being done in collaboration with Drs. C.-K. Loong, N. de Souza, and A.I. Kolesnikov at the Intense Pulsed
2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 Molecular dynamics methods in
Maruyama, Shigeo
2.13 HEAT TRANSFER & FLUID FLOW IN MICROCHANNELS 2.13.7-1 2.13.7 Molecular dynamics methods in microscale heat transfer Shigeo Maruyama A. Introduction In normal heat transfer and fluid flow calculations of molecules. This situation is approached in microscale heat transfer and fluid flow. Molecular level
Multi-Particle Collision Dynamics Algorithm for Nematic Fluids
Tyler N. Shendruk; Julia M. Yeomans
2015-04-18T23:59:59.000Z
Research on transport, self-assembly and defect dynamics within confined, flowing liquid crystals requires versatile and computationally efficient mesoscopic algorithms to account for fluctuating nematohydrodynamic interactions. We present a multi-particle collision dynamics (MPCD) based algorithm to simulate liquid-crystal hydrodynamic and director fields in two and three dimensions. The nematic-MPCD method is shown to successfully reproduce the features of a nematic liquid crystal, including a nematic-isotropic phase transition with hysteresis in 3D, defect dynamics, isotropic Frank elastic coefficients, tumbling and shear alignment regimes and boundary condition dependent order parameter fields.
Progress in Computational Fluid Dynamics, Volume 2, Nos. 2/3/4, 2002144 A numerical investigation of
Zhao, Tianshou
Progress in Computational Fluid Dynamics, Volume 2, Nos. 2/3/4, 2002144 A numerical investigation.16 mm, under both cooling and heating conditions, with and without gravity, were obtained. It is shown', Progress in Computational fluid Dynamics, Vol. 2, Nos. 2/3/4, pp. 144152. NOMENCLATURE A tube cross
Dynamics of a confined dusty fluid in a sheared ion flow
Laishram, Modhuchandra; Sharma, Devendra; Kaw, Predhiman K. [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2014-07-15T23:59:59.000Z
Dynamics of an isothermally driven dust fluid is analyzed which is confined in an azimuthally symmetric cylindrical setup by an effective potential and is in equilibrium with an unconfined sheared flow of a streaming plasma. Cases are analyzed where the confining potential constitutes a barrier for the driven fluid, limiting its spatial extension and boundary velocity. The boundary effects entering the formulation are characterized by applying the appropriate boundary conditions and a range of solutions exhibiting single and multiple vortex are obtained. The equilibrium solutions considered in the cylindrical setup feature a transition from single to multiple vortex state of the driven flow. Effects of (i) the variation in dust viscosity, (ii) coupling between the driving and the driven fluid, and (iii) a friction determining the equilibrium dynamics of the driven system are characterized.
Collective dynamics of molecular motors pulling on fluid membranes
O. Campas; Y. Kafri; K. B. Zeldovich; J. Casademunt; J. -F. Joanny
2005-12-08T23:59:59.000Z
The collective dynamics of $N$ weakly coupled processive molecular motors are considered theoretically. We show, using a discrete lattice model, that the velocity-force curves strongly depend on the effective dynamic interactions between motors and differ significantly from a simple mean field prediction. They become essentially independent of $N$ if it is large enough. For strongly biased motors such as kinesin this occurs if $N\\gtrsim 5$. The study of a two-state model shows that the existence of internal states can induce effective interactions.
Computational fluid dynamic simulations of chemical looping fuel reactors utilizing gaseous fuels
Mahalatkar, K.; Kuhlman, J.; Huckaby, E.D.; O'Brien, T.
2011-01-01T23:59:59.000Z
A computational fluid dynamic(CFD) model for the fuel reactor of chemical looping combustion technology has been developed,withspecialfocusonaccuratelyrepresentingtheheterogeneous chemicalreactions.Acontinuumtwo-fluidmodelwasusedtodescribeboththegasandsolidphases. Detailedsub-modelstoaccountforfluid–particleandparticle–particleinteractionforceswerealso incorporated.Twoexperimentalcaseswereanalyzedinthisstudy(Son andKim,2006; Mattisonetal., 2001). SimulationswerecarriedouttotestthecapabilityoftheCFDmodeltocapturechangesinoutletgas concentrationswithchangesinnumberofparameterssuchassuperficialvelocity,metaloxide concentration,reactortemperature,etc.Fortheexperimentsof Mattissonetal.(2001), detailedtime varyingoutletconcentrationvalueswerecompared,anditwasfoundthatCFDsimulationsprovideda reasonablematchwiththisdata.
Simulating Buoyancy-Driven Airflow in Buildings by1 Coarse-Grid Fast Fluid Dynamics2
Chen, Qingyan "Yan"
1 Simulating Buoyancy-Driven Airflow in Buildings by1 Coarse-Grid Fast Fluid Dynamics2 Mingang Jin1. Introduction33 Whole-building airflow simulations are required in applications such as natural ventilation34 design, coupled building airflow and energy simulation, smoke control, and air quality diagnosis35
On the Dynamics of Magnetic Fluids in Magnetic Resonance Padraig J. Cantillon-Murphy
in Magnetic Resonance Imaging by Padraig J. Cantillon-Murphy B.E., Electrical and Electronic EngineeringOn the Dynamics of Magnetic Fluids in Magnetic Resonance Imaging by Padraig J. Cantillon-Murphy Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment
Computational Fluid Dynamics Evaluation of Good Combustion Performance in Waste Incinerators
Kim, Yong Jung
-furnace destruction of pollutants are stated as: good combustion is achieved when 2-second gas residence time at 850 C1 Computational Fluid Dynamics Evaluation of Good Combustion Performance in Waste Incinerators waste incinerators, good combustion practices(GCP or GOP) have been established. These operating (and
Molecular to fluid dynamics: The consequences of stochastic molecular motion Stefan Heinz*
Heinz, Stefan
to derive a hierarchy of algebraic expressions for the molecular stress tensor and heat flux. A scaling of ordinary irreversible thermodynamics [3]) transport equations for the molecular stress tensor and heat flux equations. The stochastic model is used to derive fluid dynamic equations where the molecular stress tensor
Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow
Wang, Chao-Yang
Computational Fluid Dynamics Modeling of a Lithium/Thionyl Chloride Battery with Electrolyte Flow W-dimensional model is developed to simulate discharge of a primary lithium/thionyl chloride battery. The model to the first task with important examples of lead-acid,1-3 nickel-metal hydride,4-8 and lithium-based batteries
SOLAR SUB-SURFACE FLUID DYNAMICS DESCRIPTORS DERIVED FROM GONG AND MDI DATA
Corbard, Thierry
SOLAR SUB-SURFACE FLUID DYNAMICS DESCRIPTORS DERIVED FROM GONG AND MDI DATA R. Komm National Solar Observatory 950 N. Cherry Ave., Tucson, AZ 85719 komm@noao.edu ABSTRACT We analyze GONG and MDI observations closer to the surface. GONG and MDI data show the same results. Di#11;erences occur mainly at high
Optimization of a high-efficiency jet ejector by computational fluid dynamic software
Watanawanavet, Somsak
2005-08-29T23:59:59.000Z
Computational Fluid Dynamics (CFD) software. A conventional finite-volume scheme was utilized to solve two-dimensional transport equations with the standard k-?? turbulence model (Kim et. al., 1999). In this study of a constant-area jet ejector, all parameters...
Fluxion: An Innovative Fluid Dynamics Game on Multi-Touch Handheld Device
Boyer, Edmond
)). For example, players can place a heater to turn water into gas or place a freezer to turn it into ice. hal) (b) (c) Fig. 3. (a) A heater turns water into gas. (b) Water is turned into an ice cube so simulation on iPhone to create an innovative game experience. Using fluid dynamics and water tri
Dynamics of Quasi-Geostrophic Fluid Motions with Rapidly Oscillating Coriolis Force
is the viscosity, D9QUR is the Ekman dissipation constant, GHÂ¡!Â£Â¦Â¥3Â§ is the wind forcing, and VÂ¡XWYÂ¥3`IT6 WI5a and time almost periodic wind forcing, respectively. We assume that fluctuating Coriolis force term )1Dynamics of Quasi-Geostrophic Fluid Motions with Rapidly Oscillating Coriolis Force Hongjun Gao
Environmental Fluid Mechanics (2005) 5: 109134 Mass Conservation and Atmospheric Dynamics in
Moorcroft, Paul R.
2005-01-01T23:59:59.000Z
Environmental Fluid Mechanics (2005) 5: 109134 Mass Conservation and Atmospheric Dynamics Divinity Ave, Cambridge, MA 02138-2094, U.S.A.; bDepartment of Civil and Environmental Engineering, Edmund native formulation, RAMS exhibits a significant degree of mass non-conservation. Domain-wide rates of non
Chen, Qingyan "Yan"
1 Experimental Validation of a Computational Fluid Dynamics Model for IAQ applications in Ice Rink, USA, Fax: 617-432-4122, Abstract Many ice rink arenas have ice resurfacing equipment that uses fossil temperature distributions in ice rinks. The numerical results agree reasonably with the corresponding
Off-fault plasticity and earthquake rupture dynamics: 2. Effects of fluid saturation
Off-fault plasticity and earthquake rupture dynamics: 2. Effects of fluid saturation Robert C slip-weakening behavior is specified, and the off-fault material is described using an elastic-plastic poroelastoplastic materials with and without plastic dilation. During nondilatant undrained response near
A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic simulations Characterizing and optimizing overall performance of wind plants composed of large numbers at the National Renewable Energy Laboratory (NREL) are coupling physical models of the atmosphere and wind
V European Conference on Computational Fluid Dynamics ECCOMAS CFD 2010
Nicoud, Franck
for the optimisation of the energy consumption (heating or cooling); it is then necessary to develop accurate LES. Sequeira (Eds) Lisbon, Portugal,14-17 June 2010 IS THE DYNAMIC PROCEDURE APPROPRIATE FOR ALL SGS MODELS ? H, Subgrid- scale model Abstract. The rapid growth of supercomputers will probably make the use of Large eddy
Fluids migration and dynamics of a blocks-and-faults system
1910-70-11T23:59:59.000Z
79 bldg.2, Warshavskoe ave., 117556 Moscow, Russian Federation. 5Geophysical ... 1, Michurinsky ave., 119899 Moscow, Russian Federation. 7International ...
Hazen, Terry
Proceedings Dynamics of Fluids in Fractured Rocks. LBNL-42718, Berkeley, CA February 1999 169 in monitoring wells near the injection point. #12;Proceedings Dynamics of Fluids in Fractured Rocks. LBNL-42718
Direct control of the small-scale energy balance in 2D fluid dynamics
Frank, Jason; Myerscough, Keith
2014-01-01T23:59:59.000Z
We explore the direct modification of the pseudo-spectral truncation of 2D, incompressible fluid dynamics to maintain a prescribed kinetic energy spectrum. The method provides a means of simulating fluid states with defined spectral properties, for the purpose of matching simulation statistics to given information, arising from observations, theoretical prediction or high fidelity simulation. In the scheme outlined here, Nos\\'e-Hoover thermostats, commonly used in molecular dynamics, are introduced as feedback controls applied to energy shells of the Fourier-discretized Navier-Stokes equations. As we demonstrate in numerical experiments, the dynamical properties (quantified using autocorrelation functions) are only modestly perturbed by our device, while ensemble dispersion is significantly enhanced in comparison with simulations of a corresponding truncation incorporating hyperviscosity.
Global dynamics and asymptotics for monomial scalar field potentials and perfect fluids
Alho, Artur; Uggla, Claes
2015-01-01T23:59:59.000Z
We consider a minimally coupled scalar field with a monomial potential and a perfect fluid in flat FLRW cosmology. We apply local and global dynamical systems techniques to a new three-dimensional dynamical systems reformulation of the field equations on a compact state space. This leads to a visual global description of the solution space and asymptotic behavior. At late times we employ averaging techniques to prove statements about how the relationship between the equation of state of the fluid and the monomial exponent of the scalar field affects asymptotic source dominance and asymptotic manifest self-similarity breaking. We also situate the `attractor' solution in the three-dimensional state space and show that it corresponds to the one-dimensional unstable center manifold of a de Sitter fixed point, located on an unphysical boundary associated with the dynamics at early times. By deriving a center manifold expansion we obtain approximate expressions for the attractor solution. We subsequently improve th...
Correa Castro, Juan
2011-08-08T23:59:59.000Z
EVALUATION AND EFFECT OF FRACTURING FLUIDS ON FRACTURE CONDUCTIVITY IN TIGHT GAS RESERVOIRS USING DYNAMIC FRACTURE CONDUCTIVITY TEST A Thesis by JUAN CARLOS CORREA CASTRO Submitted to the Office of Graduate Studies of Texas A... in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test Copyright 2011 Juan Carlos Correa Castro EVALUATION AND EFFECT OF FRACTURING FLUIDS ON FRACTURE CONDUCTIVITY IN TIGHT GAS RESERVOIRS USING DYNAMIC FRACTURE CONDUCTIVITY TEST A...
GEOPHYSICAL APPLICATIONS OF SQUIDS
Goubau, W.M.
2013-01-01T23:59:59.000Z
W. M. , and Clarke, J. : Geophysics Zimmerman, J. : Second1976). Sims, W. K. :, Geophysics E. , physics~. and Ketchen,Geo- and Clarke, J. : Geophysics Gamble, T. D. , Goubau, W.
Dynamic mesoscale model of dipolar fluids via fluctuating hydrodynamics
Persson, Rasmus A. X.; Chu, Jhih-Wei, E-mail: jwchu@nctu.edu.tw [Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Department of Biological Science and Technology, National Chiao Tung University, Hsinchu 30068, Taiwan (China); Voulgarakis, Nikolaos K. [Department of Mathematics, Washington State University, Richland, Washington 99372 (United States)
2014-11-07T23:59:59.000Z
Fluctuating hydrodynamics (FHD) is a general framework of mesoscopic modeling and simulation based on conservational laws and constitutive equations of linear and nonlinear responses. However, explicit representation of electrical forces in FHD has yet to appear. In this work, we devised an Ansatz for the dynamics of dipole moment densities that is linked with the Poisson equation of the electrical potential ? in coupling to the other equations of FHD. The resulting ?-FHD equations then serve as a platform for integrating the essential forces, including electrostatics in addition to hydrodynamics, pressure-volume equation of state, surface tension, and solvent-particle interactions that govern the emergent behaviors of molecular systems at an intermediate scale. This unique merit of ?-FHD is illustrated by showing that the water dielectric function and ion hydration free energies in homogeneous and heterogenous systems can be captured accurately via the mesoscopic simulation. Furthermore, we show that the field variables of ?-FHD can be mapped from the trajectory of an all-atom molecular dynamics simulation such that model development and parametrization can be based on the information obtained at a finer-grained scale. With the aforementioned multiscale capabilities and a spatial resolution as high as 5 Å, the ?-FHD equations represent a useful semi-explicit solvent model for the modeling and simulation of complex systems, such as biomolecular machines and nanofluidics.
Off-fault plasticity and earthquake rupture dynamics: 1. Dry materials or neglect of fluid pressure an explicit dynamic finite element procedure. A Mohr-Coulomb type elastic-plastic description describes-fault plasticity during dynamic rupture. Those include the angle with the fault of the maximum compressive
Rodriguez, E.; Rasmussen, B.
2015-01-01T23:59:59.000Z
1Supplemental Simulation Case Studies of Dynamic Evaporator Modeling Paradigms with Variable Fluid Phases Erik Rodriguez1, Bryan Rasmussen2 The purpose of this document is to present a multitude of case studies comparing evaporator modeling... which uses two-phase region density to trigger mass conservative switching. Nine case studies are performed through a combination of three different refrigerants, three different physical system parameters, and three different operating conditions...
MR-driven Computational Fluid Dynamics J-F. Nielsen1
Southern California, University of
MR-driven Computational Fluid Dynamics J-F. Nielsen1 , and K. S. Nayak2 1 Biomedical Engineering-encoding gradient pulse (VENC=1.6 m/s) was placed on the x, y, or z-gradient axis, or was turned off. MR-driven CFD component (vertical in Fig. 1) was incorporated into the MR-driven CFD solver. Hence, vx and vy were
National Ignition Facility computational fluid dynamics modeling and light fixture case studies
Martin, R.; Bernardin, J.; Parietti, L.; Dennison, B.
1998-02-01T23:59:59.000Z
This report serves as a guide to the use of computational fluid dynamics (CFD) as a design tool for the National Ignition Facility (NIF) program Title I and Title II design phases at Lawrence Livermore National Laboratory. In particular, this report provides general guidelines on the technical approach to performing and interpreting any and all CFD calculations. In addition, a complete CFD analysis is presented to illustrate these guidelines on a NIF-related thermal problem.
Williams, P.T.
1993-09-01T23:59:59.000Z
As the field of computational fluid dynamics (CFD) continues to mature, algorithms are required to exploit the most recent advances in approximation theory, numerical mathematics, computing architectures, and hardware. Meeting this requirement is particularly challenging in incompressible fluid mechanics, where primitive-variable CFD formulations that are robust, while also accurate and efficient in three dimensions, remain an elusive goal. This dissertation asserts that one key to accomplishing this goal is recognition of the dual role assumed by the pressure, i.e., a mechanism for instantaneously enforcing conservation of mass and a force in the mechanical balance law for conservation of momentum. Proving this assertion has motivated the development of a new, primitive-variable, incompressible, CFD algorithm called the Continuity Constraint Method (CCM). The theoretical basis for the CCM consists of a finite-element spatial semi-discretization of a Galerkin weak statement, equal-order interpolation for all state-variables, a 0-implicit time-integration scheme, and a quasi-Newton iterative procedure extended by a Taylor Weak Statement (TWS) formulation for dispersion error control. Original contributions to algorithmic theory include: (a) formulation of the unsteady evolution of the divergence error, (b) investigation of the role of non-smoothness in the discretized continuity-constraint function, (c) development of a uniformly H{sup 1} Galerkin weak statement for the Reynolds-averaged Navier-Stokes pressure Poisson equation, (d) derivation of physically and numerically well-posed boundary conditions, and (e) investigation of sparse data structures and iterative methods for solving the matrix algebra statements generated by the algorithm.
Approved Module Information for ME4501, 2014/5 Module Title/Name: Computational Fluid Dynamics and
Neirotti, Juan Pablo
and Applications Module Code: ME4501 School: Engineering and Applied Science Module Type: Standard Module New-requisites: Thermodynamics and Fluids (ME3011). Engineering Mathematics 2 (AM21EM). Co-requisites: None Specified ModuleApproved Module Information for ME4501, 2014/5 Module Title/Name: Computational Fluid Dynamics
Price, James F.
This collection of three essays was developed from the author's experience teaching Fluid Dynamics of the Atmosphere and Ocean, 12.800, offered to graduate students entering the MIT/WHOI Joint Program in Oceanography. The ...
Dynamically orthogonal field equations for stochastic fluid flows and particle dynamics
Sapsis, Themistoklis P
2011-01-01T23:59:59.000Z
In the past decades an increasing number of problems in continuum theory have been treated using stochastic dynamical theories. This is because dynamical systems governing real processes always contain some elements ...
INTRODUCTION APPLIED GEOPHYSICS
Merriam, James
GEOL 384.3 INTRODUCTION TO APPLIED GEOPHYSICS OUTLINE INTRODUCTION TO APPLIED GEOPHYSICS GEOL 384 unknowns; the ones we don't know we don't know. And if one looks throughout the history of geophysics he didn't really say geophysics. He said, " ... our country and other free countries ...". But I am
Nanoscopic Dynamics of Phospholipid in Unilamellar Vesicles: Effect of Gel to Fluid Phase Transition
Sharma, Veerendra K [ORNL; Mamontov, Eugene [ORNL; Anunciado, Divina B [ORNL; O'Neill, Hugh Michael [ORNL; Urban, Volker S [ORNL
2015-01-01T23:59:59.000Z
Dynamics of phospholipids in unilamellar vesicles (ULV) is of interest in biology, medical, and food sciences since these molecules are widely used as biocompatible agents and a mimic of cell membrane systems. We have investigated the nanoscopic dynamics of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) phospholipid in ULV as a function of temperature using elastic and quasielastic neutron scattering (QENS). The dependence of the signal on the scattering momentum transfer, which is a critical advantage of neutron scattering techniques, allows the detailed analysis of the lipid motions that cannot be carried out by other means. In agreement with a differential scanning calorimetry measurement, a sharp rise in the elastic scattering intensity below ca. 296 K indicates a phase transition from the high-temperature fluid phase to the low-temperature solid gel phase. The microscopic lipid dynamics exhibits qualitative differences between the solid gel phase (in a measurement at 280 K) and the fluid phase (in a measurement at a physiological temperature of 310 K). The data analysis invariably shows the presence of two distinct motions: the whole lipid molecule motion within a monolayer, or lateral diffusion, and the relatively faster internal motion of the DMPC molecule. The lateral diffusion of the whole lipid molecule is found to be Fickian in character, whereas the internal lipid motions are of localized character, consistent with the structure of the vesicles. The lateral motion slows down by an order of magnitude in the solid gel phase, whereas for the internal motion not only the time scale, but also the character of the motion changes upon the phase transition. In the solid gel phase, the lipids are more ordered and undergo uniaxial rotational motion. However, in the fluid phase, the hydrogen atoms of the lipid tails undergo confined translation diffusion rather than uniaxial rotational diffusion. The localized translational diffusion of the hydrogen atoms of the lipid tails is a manifestation of the flexibility of the chains acquired in the fluid phase. Because of this flexibility, both the local diffusivity and the confinement volume for the hydrogen atoms increase linearly from near the lipid s polar head group to the end of its hydrophobic tail. Our results present a quantitative and detailed picture of the effect of the gel-fluid phase transition on the nanoscopic lipid dynamics in ULV. The data analysis approach developed here has a potential for probing the dynamic response of lipids to the presence of additional cell membrane components.
Faybishenko, B. (ed.)
1999-02-01T23:59:59.000Z
This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.
Computational Fluid Dynamic Analysis of the VHTR Lower Plenum Standard Problem
Richard W. Johnson; Richard R. Schultz
2009-07-01T23:59:59.000Z
The United States Department of Energy is promoting the resurgence of nuclear power in the U. S. for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The DOE project is called the next generation nuclear plant (NGNP) and is based on a Generation IV reactor concept called the very high temperature reactor (VHTR), which will use helium as the coolant at temperatures ranging from 450 ºC to perhaps 1000 ºC. While computational fluid dynamics (CFD) has not been used for past safety analysis for nuclear reactors in the U. S., it is being considered for safety analysis for existing and future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal and accident operational situations. To this end, experimental data have been obtained in a scaled model of a narrow slice of the lower plenum of a prismatic VHTR. The present report presents results of CFD examinations of these data to explore potential issues with the geometry, the initial conditions, the flow dynamics and the data needed to fully specify the inlet and boundary conditions; results for several turbulence models are examined. Issues are addressed and recommendations about the data are made.
On the application of computational fluid dynamics codes for liquefied natural gas dispersion.
Luketa-Hanlin, Anay Josephine; Koopman, Ronald P. (Lawrence Livermore National Laboratory, Livermore, CA); Ermak, Donald (Lawrence Livermore National Laboratory, Livermore, CA)
2006-02-01T23:59:59.000Z
Computational fluid dynamics (CFD) codes are increasingly being used in the liquefied natural gas (LNG) industry to predict natural gas dispersion distances. This paper addresses several issues regarding the use of CFD for LNG dispersion such as specification of the domain, grid, boundary and initial conditions. A description of the k-{var_epsilon} model is presented, along with modifications required for atmospheric flows. Validation issues pertaining to the experimental data from the Burro, Coyote, and Falcon series of LNG dispersion experiments are also discussed. A description of the atmosphere is provided as well as discussion on the inclusion of the Coriolis force to model very large LNG spills.
JACKSON VL
2011-08-31T23:59:59.000Z
The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.
A covariant action principle for dissipative fluid dynamics: From formalism to fundamental physics
N. Andersson; G. L. Comer
2015-05-18T23:59:59.000Z
We present a new variational framework for dissipative general relativistic fluid dynamics. The model extends the convective variational principle for multi-fluid systems to account for a range of dissipation channels. The key ingredients in the construction are i) the use of a lower dimensional matter space for each fluid component, and ii) an extended functional dependence for the associated volume forms. In an effort to make the concepts clear, the formalism is developed in steps with the model example of matter coupled to heat considered at each level. Thus we discuss a model for heat flow, derive the relativistic Navier-Stokes equations and discuss why the individual dissipative stress tensors need not be spacetime symmetric. We argue that the new formalism, which notably does not involve an expansion away from an assumed equilibrium state, provides a conceptual breakthrough in this area of research and provide an ambitious list of directions in which one may want to extend it in the future. This involves an exciting set of problems, relating to both applications and foundational issues.
Sructure and dynamics of fluids in micropous and mesoporous earth and engineered materials
Cole, David R [ORNL; Mamontov, Eugene [ORNL; Rother, Gernot [ORNL
2009-01-01T23:59:59.000Z
The behavior of liquids in confined geometries (pores, fractures) typically differs, due to the effects of large internal surfaces and geometri-cal confinement, from their bulk behavior in many ways. Phase transitions (i.e., freezing and capillary condensation), sorption and wetting, and dy-namical properties, including diffusion and relaxation, may be modified, with the strongest changes observed for pores ranging in size from <2 nm to 50 nm the micro- and mesoporous regimes. Important factors influ-encing the structure and dynamics of confined liquids include the average pore size and pore size distribution, the degree of pore interconnection, and the character of the liquid-surface interaction. While confinement of liq-uids in hydrophobic matrices, such as carbon nanotubes, or near the sur-faces of mixed character, such as many proteins, has also been an area of rapidly growing interest, the confining matrices of interest to earth and ma-terials sciences usually contain oxide structural units and thus are hydro-philic. The pore size distribution and the degree of porosity and inter-connection vary greatly amongst porous matrices. Vycor, xerogels, aerogels, and rocks possess irregular porous structures, whereas mesopor-ous silicas (e.g., SBA-15, MCM-41, MCM-48), zeolites, and layered sys-tems, for instance clays, have high degrees of internal order. The pore type and size may be tailored by means of adjusting the synthesis regimen. In clays, the interlayer distance may depend on the level of hydration. Al-though studied less frequently, matrices such as artificial opals and chry-sotile asbestos represent other interesting examples of ordered porous structures. The properties of neutrons make them an ideal probe for com-paring the properties of bulk fluids with those in confined geometries. In this chapter, we provide a brief review of research performed on liquids confined in materials of interest to the earth and material sciences (silicas, aluminas, zeolites, clays, rocks, etc.), emphasizing those neutron scattering techniques which assess both structural modification and dynamical behav-ior. Quantitative understanding of the complex solid-fluid interactions under different thermodynamic situations will impact both the design of bet-ter substrates for technological applications (e.g., chromatography, fluid capture, storage and release, and heterogeneous catalysis) as well as our fundamental understanding of processes encountered in the environment (i.e., fluid and waste mitigation, carbon sequestration, etc.).
Paris-Sud XI, Université de
HESSD 3, 14071417, 2006 Modeling geophysical complexity: geometric determinism C. E. Puente and B System Sciences Modeling geophysical complexity: a case for geometric determinism C. E. Puente and B (cepuente@ucdavis.edu) 1407 #12;HESSD 3, 14071417, 2006 Modeling geophysical complexity: geometric
Oldenburg, Douglas W.
UBC Geophysical InversionFacility Modelling and Inversion of EMI data collected over magnetic soils of EMI data acquired at sites with magnetic soils Â· Geophysical Proveouts Â· Geonics EM63 Data Â· First model parameters: Â· Location Â· Orientation Â· Polarizabilities 4 #12;UBC Geophysical Inversion Facility
Prerna Sharma; P. Aswathi; Anit Sane; Shankar Ghosh; S. Bhattacharya
2011-03-22T23:59:59.000Z
Two-fluid interfaces in porous media, an example of driven disordered systems, were studied by a real time three-dimensional imaging technique with pore scale resolution for a less viscous fluid displacing a more viscous one. With increasing flow rate the interface transforms from flat to fingers and thence to droplets for both drainage and imbibition. The results compare and contrast the effects of randomness, both physical (geometry of the pore space) and chemical (wettability of the fluids), on the dynamical instability and identify the origin of the pore-scale processes that govern them.
Inverse patchy colloids with small patches: fluid structure and dynamical slowing down
Silvano Ferrari; Emanuela Bianchi; Yura V. Kalyuzhnyi; Gerhard Kahl
2014-12-11T23:59:59.000Z
Inverse Patchy Colloids (IPCs) differ from conventional patchy particles because their patches repel (rather than attract) each other and attract (rather than repel) the part of the colloidal surface that is free of patches. These particular features occur, .e.g., in heterogeneously charged colloidal systems. Here we consider overall neutral IPCs carrying two, relatively small, polar patches. Previous studies of the same model under planar confinement have evidenced the formation of branched, disordered aggregates composed of ring-like structures. We investigate here the bulk behavior of the system via molecular dynamics simulations, focusing on both the structure and the dynamics of the fluid phase in a wide region of the phase diagram. Additionally, the simulation results for the static observables are compared to the Associative Percus Yevick solution of an integral equation approach based on the multi-density Ornstein-Zernike theory. A good agreement between theoretical and numerical quantities is observed even in the region of the phase diagram where the slowing down of the dynamics occurs.
Fabrizio Clarelli; Cristiana Di Russo; Roberto Natalini; Magali Ribot
2014-08-09T23:59:59.000Z
In this article, we study in details the fluid dynamics system proposed in Clarelli et al (2013) to model the formation of cyanobacteria biofilms. After analyzing the linear stability of the unique non trivial equilibrium of the system, we introduce in the model the influence of light and temperature, which are two important factors for the development of cyanobacteria biofilm. Since the values of the coefficients we use for our simulations are estimated through information found in the literature, some sensitivity and robustness analyses on these parameters are performed. All these elements enable us to control and to validate the model we have already derived and to present some numerical simulations in the 2D and the 3D cases.
Technical Review of the CENWP Computational Fluid Dynamics Model of the John Day Dam Forebay
Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.
2010-12-01T23:59:59.000Z
The US Army Corps of Engineers Portland District (CENWP) has developed a computational fluid dynamics (CFD) model of the John Day forebay on the Columbia River to aid in the development and design of alternatives to improve juvenile salmon passage at the John Day Project. At the request of CENWP, Pacific Northwest National Laboratory (PNNL) Hydrology Group has conducted a technical review of CENWP's CFD model run in CFD solver software, STAR-CD. PNNL has extensive experience developing and applying 3D CFD models run in STAR-CD for Columbia River hydroelectric projects. The John Day forebay model developed by CENWP is adequately configured and validated. The model is ready for use simulating forebay hydraulics for structural and operational alternatives. The approach and method are sound, however CENWP has identified some improvements that need to be made for future models and for modifications to this existing model.
Oelfke, John Barry; Torczynski, John Robert; O'Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish (; ); Trujillo, Steven Mathew
2006-08-01T23:59:59.000Z
An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.
Dr. Chenn Zhou
2008-10-15T23:59:59.000Z
Pulverized coal injection (PCI) into the blast furnace (BF) has been recognized as an effective way to decrease the coke and total energy consumption along with minimization of environmental impacts. However, increasing the amount of coal injected into the BF is currently limited by the lack of knowledge of some issues related to the process. It is therefore important to understand the complex physical and chemical phenomena in the PCI process. Due to the difficulty in attaining trus BF measurements, Computational fluid dynamics (CFD) modeling has been identified as a useful technology to provide such knowledge. CFD simulation is powerful for providing detailed information on flow properties and performing parametric studies for process design and optimization. In this project, comprehensive 3-D CFD models have been developed to simulate the PCI process under actual furnace conditions. These models provide raceway size and flow property distributions. The results have provided guidance for optimizing the PCI process.
A numerical study of longtime dynamics and ergodic-nonergodic transitions in dense simple fluids
David D. McCowan
2014-11-04T23:59:59.000Z
For over 30 years, mode-coupling theory (MCT) has been the de facto theoretic description of dense fluids and the liquid-glass transition. MCT, however, is limited by its ad hoc construction and lacks a mechanism to institute corrections. We use recent results from a new theoretical framework--developed from first principles via a self-consistent perturbation expansion in terms of an effective two-body potential--to numerically explore the kinetics of systems of classical particles, specifically hard spheres obeying Smoluchowski dynamics. We present here a full solution to the kinetic equation governing the density-density time correlation function and show that the function exhibits the characteristic two-step decay of supercooled fluids and an ergodic-nonergodic transition to a dynamically-arrested state. Unlike many previous numerical studies and experiments, we have access to the full time and wavenumber range of the correlation function and can track the solution unprecedentedly close to the transition, covering nearly 15 decades of time. Using asymptotic approximation techniques developed for MCT, we fit the solution to predicted forms and extract critical parameters. Our solution shows a transition at packing fraction $\\eta^*=0.60149761(10)$--consistent with previous static solutions under this theory and with comparable colloidal suspension experiments--and the behavior in the $\\beta$-relaxation regime is fit to power-law decays with critical exponents $a=0.375(3)$ and $b=0.8887(4)$, and with $\\lambda=0.5587(18)$. For the $\\alpha$-relaxation of the ergodic phase, we find a power-law divergence of the time scale $\\tau_{\\alpha}$ as we approach the transition. Through these results, we establish that this new theory is able to reproduce the salient features of MCT, but has the advantages of a first principles derivation and a clear mechanism for making systematic improvements.
Under consideration for publication in J. Fluid Mech. 1 Tear Film Dynamics on an Eye-shaped
Bacuta, Constantin
Under consideration for publication in J. Fluid Mech. 1 Tear Film Dynamics on an Eye-shaped Domain of vision and in the health of the eye; when functioning properly, it maintains a critical balance between or deficiency of tear film is recognized to be dry eye syndrome (Lemp (2007)); symptoms of dry eye include
Chen, Qingyan "Yan"
Fast and Informative Flow Simulations in a Building by Using Fast Fluid Dynamics Model on Graphics solve Navier-Stokes equations and other transportation equations for energy and species at a speed of 50 it in parallel on a Graphics Processing Unit (GPU). This study validated the FFD on the GPU by simulating
New York at Stoney Brook, State University of
discontinuity. The emphasis here is on the coupling of the phase transition process to acoustic waves, whichDynamic Phase Boundaries for Compressible Fluids T. Lu Â§ , Z. L. Xu Â§+ , R. Samulyak Â§ , J. Glimm algorithm is verified by application to various physical regimes. 1 Introduction The coupling
Combes, Stacey A.
Swimming and flying animals generate fluid-dynamic forces by flapping flexible appendages such as wings or fins. The stresses generated by motions of these structures can be resolved into vertical aerial and aquatic animals that propel themselves with wing-like appendages generate these vertical
Expedited Site Characterization Geophysics: Geophysical Methods and Tools for Site Characterization
Goldstein, N.E.
2009-01-01T23:59:59.000Z
Site Characterization Geophysics CONTENTS INTRODUCTIONSite Characterization Geophysics SELF-POTENTIAL Referencesand Environmental Geophysics, S. H. Ward, ed. (Soc. Expl.
Marine Geophysics: A Navy Symposium
Shor, Elizabeth N; Ebrahimi, Carolyn L
1987-01-01T23:59:59.000Z
electrical polarization. Geophysics 22:660-687. Vacquier,Raitt, R. W. 1964. Geophysics of the South Pacific.Research in Geophysics 2:223-241. Francis, T. J. G. , and R.
Tsang, C.F.
2010-01-01T23:59:59.000Z
properties of rock and geochemical properties of rock andDynamic Elastic Properties of Sedimentary Rocks, Geophysics,since the elastic properties of rock are not affected
, of molecules in an ideal gas (more exactly, KE of molecules= 3/2 kT, k being Boltzmann's constant: these are not individual eddies. The entire surface is rotating. A drogue placed anywhere in the region would have the same
A transient study on the dynamic coupling of a fluid-tank system
Lui, Pui Chun
1980-01-01T23:59:59.000Z
. Model for Rolling '. Iotion 16 19 Figure 4 Oscillatory Type of Motion, wfluid/w ank = 1. 11. Figure 5 Oscillatory Type of Motion, fluid tank Figure 6 Free Roll Oscillation of a Ship, 28 Figure 7 Figure 8 T . /T . = 0. 22. fluid ship Free... Roll Oscillation of a Ship, T . /T . = 0. 94. fluid ship Fluid-Tank System Subjected to a Constant Bral'e Force 29 29 30 Figure 9 Forced Roll Oscillation of a Ship, Figure 10 Figure 11 Figure 12 Figure 13 fluid ship I-orced Roll Oscillation...
B. D. Nichols; C. Müller; G. A. Necker; J. R. Travis; J. W. Spore; K. L. Lam; P. Royl; T. L. Wilson
1998-10-01T23:59:59.000Z
Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK.
C. Müller; E. D. Hughes; G. F. Niederauer; H. Wilkening; J. R. Travis; J. W. Spore; P. Royl; W. Baumann
1998-10-01T23:59:59.000Z
Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best- estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK
Computational Fluid Dynamics Analyses on Very High Temperature Reactor Air Ingress
Chang H Oh; Eung S. Kim; Richard Schultz; David Petti; Hyung S. Kang
2009-07-01T23:59:59.000Z
A preliminary computational fluid dynamics (CFD) analysis was performed to understand density-gradient-induced stratified flow in a Very High Temperature Reactor (VHTR) air-ingress accident. Various parameters were taken into consideration, including turbulence model, core temperature, initial air mole-fraction, and flow resistance in the core. The gas turbine modular helium reactor (GT-MHR) 600 MWt was selected as the reference reactor and it was simplified to be 2-D geometry in modeling. The core and the lower plenum were assumed to be porous bodies. Following the preliminary CFD results, the analysis of the air-ingress accident has been performed by two different codes: GAMMA code (system analysis code, Oh et al. 2006) and FLUENT CFD code (Fluent 2007). Eventually, the analysis results showed that the actual onset time of natural convection (~160 sec) would be significantly earlier than the previous predictions (~150 hours) calculated based on the molecular diffusion air-ingress mechanism. This leads to the conclusion that the consequences of this accident will be much more serious than previously expected.
Rakowski, Cynthia L.; Richmond, Marshall C.; Serkowski, John A.
2006-12-01T23:59:59.000Z
A computational fluid dynamics (CFD) model was used in an investigation into the suppression of a surface vortex that forms and the south-most spilling bay at The Dalles Project. The CFD work complemented work at the prototype and the reduced-scale physical models. The CFD model was based on a model developed for other work in the forebay but had additional resolution added near the spillway. Vortex suppression devices (VSDs) were to placed between pier noses and/or in the bulkhead slot of the spillway bays. The simulations in this study showed that placing VSD structures or a combination of structures to suppress the vortex would still result in near-surface flows to be entrained in a vortex near the downstream spillwall. These results were supported by physical model and prototype studies. However, there was a consensus of the fish biologists at the physical model that the fish would most likely move north and if the fish went under the VSD it would immediately exit the forebay through the tainter gate and not get trapped between VSDs or the VSDs and the tainter gate if the VSDs were deep enough.
Wind Turbine Modeling for Computational Fluid Dynamics: December 2010 - December 2012
Tossas, L. A. M.; Leonardi, S.
2013-07-01T23:59:59.000Z
With the shortage of fossil fuel and the increasing environmental awareness, wind energy is becoming more and more important. As the market for wind energy grows, wind turbines and wind farms are becoming larger. Current utility-scale turbines extend a significant distance into the atmospheric boundary layer. Therefore, the interaction between the atmospheric boundary layer and the turbines and their wakes needs to be better understood. The turbulent wakes of upstream turbines affect the flow field of the turbines behind them, decreasing power production and increasing mechanical loading. With a better understanding of this type of flow, wind farm developers could plan better-performing, less maintenance-intensive wind farms. Simulating this flow using computational fluid dynamics is one important way to gain a better understanding of wind farm flows. In this study, we compare the performance of actuator disc and actuator line models in producing wind turbine wakes and the wake-turbine interaction between multiple turbines. We also examine parameters that affect the performance of these models, such as grid resolution, the use of a tip-loss correction, and the way in which the turbine force is projected onto the flow field.
Simulation of spray drying in superheated steam using computational fluid dynamics
Frydman, A.; Vasseur, J.; Ducept, F.; Sionneau, M.; Moureh, J.
1999-09-01T23:59:59.000Z
This paper presents a numerical simulation and experimental validation of a spray dryer using superheated steam instead of air as drying medium, modeled with a computational fluid dynamics (CFD) code. The model describes momentum, heat and mass transfer between two phases--a discrete phase of droplets, and a continuous gas phase--through a finite volume method. For the simulation, droplet size distribution is represented by 6 discrete classes of diameter, fitting to the experimental distribution injected from the nozzle orifice, taking into account their peculiar shrinkage during drying. This model is able to predict the most important features of the dryer: fields of gas temperature and gas velocity inside the chamber, droplets trajectories and eventual deposits on to the wall. The results of simulation are compared to a pilot scale dryer, using water. In the absence of risk of power ignition in steam, the authors have tested rather high steam inlet temperature (973K), thus obtaining a high volumic efficiency. The model is validated by comparison between experimental and predicted values of temperature inside the chamber, verifying the coupling between the 3 different types of transfer without adjustment. This type of model can be used for chamber design, or scale up. Using superheated steam instead of air in a spray dryer can allow a high volumic evaporation rate (20 k.h.m{sup 3}), high energy recovery and better environment control.
Zuo, Wangda; Chen, Qingyan
2011-06-01T23:59:59.000Z
To design a healthy indoor environment, it is important to study airborne particle distribution indoors. As an intermediate model between multizone models and computational fluid dynamics (CFD), a fast fluid dynamics (FFD) model can be used to provide temporal and spatial information of particle dispersion in real time. This study evaluated the accuracy of the FFD for predicting transportation of particles with low Stokes number in a duct and in a room with mixed convection. The evaluation was to compare the numerical results calculated by the FFD with the corresponding experimental data and the results obtained by the CFD. The comparison showed that the FFD could capture major pattern of particle dispersion, which is missed in models with well-mixed assumptions. Although the FFD was less accurate than the CFD partially due to its simplification in numeric schemes, it was 53 times faster than the CFD.
Angelo Frisani; Yassin A. Hassan; Victor M. Ugaz
2010-11-02T23:59:59.000Z
The design of passive heat removal systems is one of the main concerns for the modular very high temperature gas-cooled reactors (VHTR) vessel cavity. The reactor cavity cooling system (RCCS) is a key heat removal system during normal and off-normal conditions. The design and validation of the RCCS is necessary to demonstrate that VHTRs can survive to the postulated accidents. The computational fluid dynamics (CFD) STAR-CCM+/V3.06.006 code was used for three-dimensional system modeling and analysis of the RCCS. A CFD model was developed to analyze heat exchange in the RCCS. The model incorporates a 180-deg section resembling the VHTR RCCS experimentally reproduced in a laboratory-scale test facility at Texas A&M University. All the key features of the experimental facility were taken into account during the numerical simulations. The objective of the present work was to benchmark CFD tools against experimental data addressing the behavior of the RCCS following accident conditions. Two cooling fluids (i.e., water and air) were considered to test the capability of maintaining the RCCS concrete walls' temperature below design limits. Different temperature profiles at the reactor pressure vessel (RPV) wall obtained from the experimental facility were used as boundary conditions in the numerical analyses to simulate VHTR transient evolution during accident scenarios. Mesh convergence was achieved with an intensive parametric study of the two different cooling configurations and selected boundary conditions. To test the effect of turbulence modeling on the RCCS heat exchange, predictions using several different turbulence models and near-wall treatments were evaluated and compared. The comparison among the different turbulence models analyzed showed satisfactory agreement for the temperature distribution inside the RCCS cavity medium and at the standpipes walls. For such a complicated geometry and flow conditions, the tested turbulence models demonstrated that the realizable k-epsilon model with two-layer all y+ wall treatment performs better than the other k-epsilon and k-omega turbulence models when compared to the experimental results and the Reynolds stress transport turbulence model results. A scaling analysis was developed to address the distortions introduced by the CFD model in simulating the physical phenomena inside the RCCS system with respect to the full plant configuration. The scaling analysis demonstrated that both the experimental facility and the CFD model achieve a satisfactory resemblance of the main flow characteristics inside the RCCS cavity region, and convection and radiation heat exchange phenomena are properly scaled from the actual plant.
Soto, Enrique
2013-01-01T23:59:59.000Z
This fluid dynamics video is an entry for the Gallery of Fluid Motion for the 66th Annual Meeting of the Fluid Dynamics Division of the American Physical Society. We show the curious behaviour of a light ball interacting with a liquid jet. For certain conditions, a ball can be suspended into a slightly inclined liquid jet. We studied this phenomenon using a high speed camera. The visualizations show that the object can be `juggled' for a variety of flow conditions. A simple calculation showed that the ball remains at a stable position due to a Bernoulli-like effect. The phenomenon is very stable and easy to reproduce.
Gable, Carl W.
From: Numerical Grid Generation in Computational Fluid Dynamics and Related Fields, ed. B. K. Soni. Press, 1996. 3-Dimensional Wells and Tunnels for Finite Element Grids 1 3-Dimensional Wells and Tunnels for Finite Element Grids Terry A. Cherry1 Carl W. Gable1 Harold Trease2 ABSTRACT Modeling fluid, vapor
SAGE, Summer of Applied Geophysical Experience
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of Applied Geophysical Experience (SAGE) is a unique program designated to introduce geophysics students to geophysical exploration and research. SAGE's purpose is to enhance a...
Geophysical Institute biennial report 1995--1996
NONE
1998-06-01T23:59:59.000Z
The mission of the Geophysical Institute is to understand the basic physical processes governing Earth, especially as they occur in, or are relevant to the Arctic; to train graduate and undergraduate students to play leading roles in tomorrow`s society; to solve applied geophysical problems and develop resource-oriented technology of importance to the state and the nation; and to satisfy the intellectual and technological needs of fellow Alaskans through public service. The variety of subjects studied by the faculty, research staff members, and graduate students at the Geophysical Institute include auroral physics and chemistry, arctic haze, ice fog, atmospheric dynamics, ozone, Alaska weather patterns, regional meteorology and climatology, global climate change, cloud physics and radiation, permafrost, glaciers, sea ice, remote sensing, geothermal energy, tectonics, volcanoes and earthquakes. Summaries are presented of the projects undertaken by the Institute in these fields.
Fiber optic geophysical sensors
Homuth, E.F.
1991-03-19T23:59:59.000Z
A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.
Course: Numerical Simulation in Applied Geophysics. From the Mesoscale to the Macroscale
Santos, Juan
Course: Numerical Simulation in Applied Geophysics. From the Mesoscale to the Macroscale Professor variations in the fluid and solid matrix properties, fine layering, frac- tures and craks at the mesoscale
Numerical schemes for dynamically orthogonal equations of stochastic fluid and ocean flows
Ueckermann, M.P., E-mail: mpuecker@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, MA 02139 (United States); Lermusiaux, P.F.J., E-mail: pierrel@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, MA 02139 (United States)] [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, MA 02139 (United States); Sapsis, T.P., E-mail: sapsis@mit.edu [Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Mass. Avenue, Cambridge, MA 02139 (United States)
2013-01-15T23:59:59.000Z
The quantification of uncertainties is critical when systems are nonlinear and have uncertain terms in their governing equations or are constrained by limited knowledge of initial and boundary conditions. Such situations are common in multiscale, intermittent and non-homogeneous fluid and ocean flows. The dynamically orthogonal (DO) field equations provide an adaptive methodology to predict the probability density functions of such flows. The present work derives efficient computational schemes for the DO methodology applied to unsteady stochastic Navier-Stokes and Boussinesq equations, and illustrates and studies the numerical aspects of these schemes. Semi-implicit projection methods are developed for the mean and for the DO modes, and time-marching schemes of first to fourth order are used for the stochastic coefficients. Conservative second-order finite-volumes are employed in physical space with new advection schemes based on total variation diminishing methods. Other results include: (i) the definition of pseudo-stochastic pressures to obtain a number of pressure equations that is linear in the subspace size instead of quadratic; (ii) symmetric advection schemes for the stochastic velocities; (iii) the use of generalized inversion to deal with singular subspace covariances or deterministic modes; and (iv) schemes to maintain orthonormal modes at the numerical level. To verify our implementation and study the properties of our schemes and their variations, a set of stochastic flow benchmarks are defined including asymmetric Dirac and symmetric lock-exchange flows, lid-driven cavity flows, and flows past objects in a confined channel. Different Reynolds number and Grashof number regimes are employed to illustrate robustness. Optimal convergence under both time and space refinements is shown as well as the convergence of the probability density functions with the number of stochastic realizations.
Rakowski, Cynthia L.; Richmond, Marshall C.; Serkowski, John A.; Johnson, Gary E.
2005-03-10T23:59:59.000Z
Computational fluid dynamics (CFD) models were developed to support the siting and design of a behavioral guidance system (BGS) structure in The Dalles Dam (TDA) forebay on the Columbia River. The work was conducted by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District (CENWP). The CFD results were an invaluable tool for the analysis, both from a Regional and Agency perspective (for the fish passage evaluation) and a CENWP perspective (supporting the BGS design and location). The new CFD model (TDA forebay model) included the latest bathymetry (surveyed in 1999) and a detailed representation of the engineered structures (spillway, powerhouse main, fish, and service units). The TDA forebay model was designed and developed in a way that future studies could easily modify or, to a large extent, reuse large portions of the existing mesh. This study resulted in these key findings: (1) The TDA forebay model matched well with field-measured velocity data. (2) The TDA forebay model matched observations made at the 1:80 general physical model of the TDA forebay. (3) During the course of this study, the methodology typically used by CENWP to contour topographic data was shown to be inaccurate when applied to widely-spaced transect data. Contouring methodologies need to be revisited--especially before such things as modifying the bathymetry in the 1:80 general physical model are undertaken. Future alignments can be evaluated with the model staying largely intact. The next round of analysis will need to address fish passage demands and navigation concerns. CFD models can be used to identify the most promising locations and to provide quantified metrics for biological, hydraulic, and navigation criteria. The most promising locations should then be further evaluated in the 1:80 general physical model.
Collapse dynamics and runout of dense granular materials in a fluid V. Topina,b
Paris-Sud XI, UniversitÃ© de
is another example of the in- tricate grain/fluid mixing process in extreme conditions, which remains a real and enhance the flow by lubrication during spread. Hence, the runout distance in a fluid may be below or equal- port of a powder or a collection of aggregates in a liquid which plays the role of lubricant or binder
Geophysical Exploration (Montana)
Broader source: Energy.gov [DOE]
An exploration permit is required for any entity conducting geophysical exploration within the state of Montana. Such entities are also required to follow rules adopted by the Board of Oil and Gas...
Dynamics and microstructure of colloidal complex fluids: a lattice Boltzmann study
Kim, Eunhye
2009-01-01T23:59:59.000Z
The lattice Boltzmann (LB) method is a versatile way to model complex fluids with hydrodynamic interactions through solving the Navier-Stokes equations. It is well-known that the role of hydrodynamic interactions is ...
Transient Temperature Modeling For Wellbore Fluid Under Static and Dynamic Conditions
Ali, Muhammad
2014-04-22T23:59:59.000Z
during the test necessitates that effects of unsteady temperature changes are taken into account for accurate calculation of downhole pressure. The single rate injection model predicts transient temperature of wellbore fluids during injection operations...
Characterization of Filter Cake Buildup and Cleanup under Dynamic Fluid Loss Conditions
Yango, Takwe
2011-10-21T23:59:59.000Z
. The fracturing fluid gets dehydrated under pressure leaving behind a highly concentrated unbroken residue called filter cake which causes permeability impairment in the proppant pack, resulting in low fracture conductivity and decreased effective fracture length...
Characterization of Filter Cake Buildup and Cleanup under Dynamic Fluid Loss Conditions
Yango, Takwe
2011-10-21T23:59:59.000Z
. The fracturing fluid gets dehydrated under pressure leaving behind a highly concentrated unbroken residue called filter cake which causes permeability impairment in the proppant pack, resulting in low fracture conductivity and decreased effective fracture length...
Fluid Dynamics Models for Low Rank Discriminant Analysis Yung-Kyun Noh1,2
and velocity flow fields. We show how to apply the Gauss principle of least con- straint in fluids to obtain., 2000). Projection pursuit is a canonical approach to find a low dimen- sional subspace where
Computational Fluid Dynamics Best Practice Guidelines in the Analysis of Storage Dry Cask
Zigh, A.; Solis, J. [US Nuclear Regulatory Commission, Rockville, MD MS (United States)
2008-07-01T23:59:59.000Z
Computational fluid dynamics (CFD) methods are used to evaluate the thermal performance of a dry cask under long term storage conditions in accordance with NUREG-1536 [NUREG-1536, 1997]. A three-dimensional CFD model was developed and validated using data for a ventilated storage cask (VSC-17) collected by Idaho National Laboratory (INL). The developed Fluent CFD model was validated to minimize the modeling and application uncertainties. To address modeling uncertainties, the paper focused on turbulence modeling of buoyancy driven air flow. Similarly, in the application uncertainties, the pressure boundary conditions used to model the air inlet and outlet vents were investigated and validated. Different turbulence models were used to reduce the modeling uncertainty in the CFD simulation of the air flow through the annular gap between the overpack and the multi-assembly sealed basket (MSB). Among the chosen turbulence models, the validation showed that the low Reynolds k-{epsilon} and the transitional k-{omega} turbulence models predicted the measured temperatures closely. To assess the impact of pressure boundary conditions used at the air inlet and outlet channels on the application uncertainties, a sensitivity analysis of operating density was undertaken. For convergence purposes, all available commercial CFD codes include the operating density in the pressure gradient term of the momentum equation. The validation showed that the correct operating density corresponds to the density evaluated at the air inlet condition of pressure and temperature. Next, the validated CFD method was used to predict the thermal performance of an existing dry cask storage system. The evaluation uses two distinct models: a three-dimensional and an axisymmetrical representation of the cask. In the 3-D model, porous media was used to model only the volume occupied by the rodded region that is surrounded by the BWR channel box. In the axisymmetric model, porous media was used to model the entire region that encompasses the fuel assemblies as well as the gaps in between. Consequently, a larger volume is represented by porous media in the second model; hence, a higher frictional flow resistance is introduced in the momentum equations. The conservatism and the safety margins of these models were compared to assess the applicability and the realism of these two models. The three-dimensional model included fewer geometry simplifications and is recommended as it predicted less conservative fuel cladding temperature values, while still assuring the existence of adequate safety margins. (authors)
Department of Geophysics Colorado School of Mines
Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: May 11 (Geophysics) On Original Copies Dr. Terence K. Young Professor and Head Department of Geophysics Approved
Coupled computational fluid dynamics and heat transfer analysis of the VHTR lower plenum.
El-Genk, Mohamed S. (University of New Mexico, Albuquerque, NM); Rodriguez, Salvador B.
2010-12-01T23:59:59.000Z
The very high temperature reactor (VHTR) concept is being developed by the US Department of Energy (DOE) and other groups around the world for the future generation of electricity at high thermal efficiency (> 48%) and co-generation of hydrogen and process heat. This Generation-IV reactor would operate at elevated exit temperatures of 1,000-1,273 K, and the fueled core would be cooled by forced convection helium gas. For the prismatic-core VHTR, which is the focus of this analysis, the velocity of the hot helium flow exiting the core into the lower plenum (LP) could be 35-70 m/s. The impingement of the resulting gas jets onto the adiabatic plate at the bottom of the LP could develop hot spots and thermal stratification and inadequate mixing of the gas exiting the vessel to the turbo-machinery for energy conversion. The complex flow field in the LP is further complicated by the presence of large cylindrical graphite posts that support the massive core and inner and outer graphite reflectors. Because there are approximately 276 channels in the VHTR core from which helium exits into the LP and a total of 155 support posts, the flow field in the LP includes cross flow, multiple jet flow interaction, flow stagnation zones, vortex interaction, vortex shedding, entrainment, large variation in Reynolds number (Re), recirculation, and mixing enhancement and suppression regions. For such a complex flow field, experimental results at operating conditions are not currently available. Instead, the objective of this paper is to numerically simulate the flow field in the LP of a prismatic core VHTR using the Sandia National Laboratories Fuego, which is a 3D, massively parallel generalized computational fluid dynamics (CFD) code with numerous turbulence and buoyancy models and simulation capabilities for complex gas flow fields, with and without thermal effects. The code predictions for simpler flow fields of single and swirling gas jets, with and without a cross flow, are validated using reported experimental data and theory. The key processes in the LP are identified using phenomena identification and ranking table (PIRT). It may be argued that a CFD code that accurately simulates simplified, single-effect flow fields with increasing complexity is likely to adequately model the complex flow field in the VHTR LP, subject to a future experimental validation. The PIRT process and spatial and temporal discretizations implemented in the present analysis using Fuego established confidence in the validation and verification (V and V) calculations and in the conclusions reached based on the simulation results. The performed calculations included the helicoid vortex swirl model, the dynamic Smagorinsky large eddy simulation (LES) turbulence model, participating media radiation (PMR), and 1D conjugate heat transfer (CHT). The full-scale, half-symmetry LP mesh used in the LP simulation included unstructured hexahedral elements and accounted for the graphite posts, the helium jets, the exterior walls, and the bottom plate with an adiabatic outer surface. Results indicated significant enhancements in heat transfer, flow mixing, and entrainment in the VHTR LP when using swirling inserts at the exit of the helium flow channels into the LP. The impact of using various swirl angles on the flow mixing and heat transfer in the LP is qualified, including the formation of the central recirculation zone (CRZ), and the effect of LP height. Results also showed that in addition to the enhanced mixing, the swirling inserts result in negligible additional pressure losses and are likely to eliminate the formation of hot spots.
Physics and Astronomy Geophysics Concentration
Thaxton, Christopher S.
Physics and Astronomy Geophysics Concentration Strongly recommended courses Credits Term Dept. to Geophysics 3 PHY 3230 Thermal Physics 3 CHE 1101 Introductory Chemistry - I 3 CHE 1110 Introductory Chemistry
Fabio Leoni; Giancarlo Franzese
2014-06-08T23:59:59.000Z
Confinement can modify the dynamics, the thermodynamics and the structural properties of liquid water, the prototypical anomalous liquid. By considering a general anomalous liquid, suitable for globular proteins, colloids or liquid metals, we study by molecular dynamics simulations the effect of a solvophilic structured and a solvophobic unstructured wall on the phases, the crystal nucleation and the dynamics of the fluid. We find that at low temperatures the large density of the solvophilic wall induces a high-density, high-energy structure in the first layer ("tempting" effect). In turn, the first layer induces a "molding" effect on the second layer determining a structure with reduced energy and density, closer to the average density of the system. This low-density, low-energy structure propagates further through the layers by templating effect and can involve all the existing layers at the lowest temperatures investigated. Therefore, although the high-density, high-energy structure does not self-reproduce further than the first layer, the structured wall can have a long-range effect thanks to a sequence of templating, molding and templating effects through the layers. We find dynamical slowing down of the solvent near the solvophilic wall but with largely heterogeneous dynamics near the wall due to superdiffusive liquid veins within a frozen matrix of solvent. Hence, the partial freezing of the first hydration layer does not correspond necessarily to an effective reduction of the channel section in terms of transport properties.
Content Dynamics in P2P Networks from Queueing and Fluid Perspectives.
Paganini Universidad ORT Uruguay, Montevideo, Uruguay Abstract--In this paper we analyze the dynamics of P2
2, 637671, 2005 Geophysics and
Paris-Sud XI, Université de
BGD 2, 637671, 2005 Geophysics and geochemistry of seafloor brines S. B. Joye et al. Title Page Discussions is the access reviewed discussion forum of Biogeosciences Geophysical and geochemical signatures under a Creative Commons License. 637 #12;BGD 2, 637671, 2005 Geophysics and geochemistry of seafloor
Murdoch, Naomi; Schwartz, Stephen R; Miyamoto, Hideaki
2015-01-01T23:59:59.000Z
The regolith-covered surfaces of asteroids preserve records of geophysical processes that have occurred both at their surfaces and sometimes also in their interiors. As a result of the unique micro-gravity environment that these bodies posses, a complex and varied geophysics has given birth to fascinating features that we are just now beginning to understand. The processes that formed such features were first hypothesised through detailed spacecraft observations and have been further studied using theoretical, numerical and experimental methods that often combine several scientific disciplines. These multiple approaches are now merging towards a further understanding of the geophysical states of the surfaces of asteroids. In this chapter we provide a concise summary of what the scientific community has learned so far about the surfaces of these small planetary bodies and the processes that have shaped them. We also discuss the state of the art in terms of experimental techniques and numerical simulations that...
Z .Dynamics of Atmospheres and Oceans 28 1998 93105 Fluid transport by dipolar vortices
Flór, Jan-Bert
with a model based on characterising the flow around the dipole as irrotational flow past a rigid cylinder on hydrodynamics. Proc. Cambridge Philos. Soc., 49, 342354 , namely that the vortex will displace a volume C VV experience a drag force essentially because they Ztransport fluid forward as they rise, distorting isopycnal
Navon, Michael
and the Oceans Page: 377 377Â434 Data Assimilation for Geophysical Fluids Jacques Blum Laboratoire Jean of a flow. In the first part, the mathematical models governing geophysical flows are presented together of information on geophysical flows is provided by satellites displaying images of their evolution
ESTIMATING UNCERTAINTIES FOR GEOPHYSICAL
Kreinovich, Vladik
to directly measure the amount of oil in an area is to drill several wells, but drilling is a very expensive. These techniques are applied to the inversion of traveltime data collected in a cross well seismic experiment procedure, and the whole idea of geophysics is to predict the amount of oil without drilling in all possible
Effects of drilling fluid properties and shear rate on dynamic filtration
McCarty, Robert Andrew
1990-01-01T23:59:59.000Z
be used to eliminate the residual fines left behind from the previous mud run. 2. Synthetic cores should be used to increase reproducibility and homogeneity. This will further separate core properties from mud filter cake properties allowing a more... are subjected to a differential pressure across porous and permeable formations. Differential pressure causes solids in drilling fluids to be filtered out and deposited as a cake on the wellbore wall as the liquid phase (mud filtrate) invades the formation...
Department of Geophysics Colorado School of Mines
Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics;#12;Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics of the requirements for the degree of Master of Science (Geophysics). Golden, Colorado Date: April 14, 2005 Signed
Department of Geophysics Colorado School of Mines
Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: May 10 (Geophysics). Golden, Colorado Date May 15, 2006 Signed: on original copy Jeongmin Lee Signed: on original
Department of Geophysics Colorado School of Mines
Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: September fulfillment of the requirements for the degree of Master of Science (Geophysics). Golden, Colorado Date
Leoni, Fabio; Franzese, Giancarlo [Departament de Fisica Fonamental, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona (Spain)
2014-11-07T23:59:59.000Z
Confinement can modify the dynamics, the thermodynamics, and the structural properties of liquid water, the prototypical anomalous liquid. By considering a generic model for anomalous liquids, suitable for describing solutions of globular proteins, colloids, or liquid metals, we study by molecular dynamics simulations the effect that an attractive wall with structure and a repulsive wall without structure have on the phases, the crystal nucleation, and the dynamics of the fluid. We find that at low temperatures the large density of the attractive wall induces a high-density, high-energy structure in the first layer (“templating” effect). In turn, the first layer induces a “molding” effect on the second layer determining a structure with reduced energy and density, closer to the average density of the system. This low-density, low-energy structure propagates further through the layers by templating effect and can involve all the existing layers at the lowest temperatures investigated. Therefore, although the high-density, high-energy structure does not self-reproduce further than the first layer, the structured wall can have a long-range influence thanks to a sequence of templating, molding, and templating effects through the layers. We find that the walls also have an influence on the dynamics of the liquid, with a stronger effect near the attractive wall. In particular, we observe that the dynamics is largely heterogeneous (i) among the layers, as a consequence of the sequence of structures caused by the walls presence, and (ii) within the same layer, due to superdiffusive liquid veins within a frozen matrix of particles near the walls at low temperature and high density. Hence, the partial freezing of the first layer does not correspond necessarily to an effective reduction of the channel's section in terms of transport properties, as suggested by other authors.
Analogies of Ocean/Atmosphere Rotating Fluid Dynamics with Gyroscopes: Teaching Opportunities
Haine, Thomas W. N.
The dynamics of the rotating shallow-water (RSW) system include geostrophic f low and inertial oscillation. These classes of motion are ubiquitous in the ocean and atmosphere. They are often surprising to people at first ...
Stokesian dynamic simulations and analyses of interfacial and bulk colloidal fluids
Anekal, Samartha Guha
2006-10-30T23:59:59.000Z
, and hydrodynamic forces to model dynamics of colloidal dispersions. In addition, we develop theoretical expressions for quantifying self-diffusion in colloids interacting via different particle-particle and particle-wall potentials. Specifically, we have used...
A transient study on the dynamic coupling of a fluid-tank system
Lui, Pui Chun
1980-01-01T23:59:59.000Z
of the liquid has an alarming propensity to undergo relatively large excursions for even very small motions of the container. This is particularly true for tank trucks on highways, tank cars on railroads, and sloshing of liquid cargo in ocean-going vessels... system and the equivalent non-shifting cargo system. Figures 4 and 5 show the responses of the fluid-tank system and the equivalent rigid-cargo system which undergo an oscilla- tory type of motion. It is noticed from the response curves tha...
Lawson, M. J.; Li, Y.; Sale, D. C.
2011-10-01T23:59:59.000Z
This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.
Rahatgaonkar, P. S.; Datta, D.; Malhotra, P. K.; Ghadge, S. G. [Nuclear Power Corporation of India Ltd., R-2, Ent. Block, Nabhikiya Urja Bhavan, Anushakti Nagar, Mumbai - 400 094 (India)
2012-07-01T23:59:59.000Z
Prediction of groundwater movement and contaminant transport in soil is an important problem in many branches of science and engineering. This includes groundwater hydrology, environmental engineering, soil science, agricultural engineering and also nuclear engineering. Specifically, in nuclear engineering it is applicable in the design of spent fuel storage pools and waste management sites in the nuclear power plants. Ground water modeling involves the simulation of flow and contaminant transport by groundwater flow. In the context of contaminated soil and groundwater system, numerical simulations are typically used to demonstrate compliance with regulatory standard. A one-dimensional Computational Fluid Dynamics code GFLOW had been developed based on the Finite Difference Method for simulating groundwater flow and contaminant transport through saturated and unsaturated soil. The code is validated with the analytical model and the benchmarking cases available in the literature. (authors)
Hiroyuki Sato; Richard Johnson; Richard Schultz
2009-09-01T23:59:59.000Z
Three dimensional computational fluid dynamic (CFD) calculations of a typical prismatic very high temperature gas-cooled reactor (VHTR) were conducted to investigate the influence of gap geometry on flow and temperature distributions in the reactor core using commercial CFD code FLUENT. Parametric calculations changing the gap width in a whole core length model of fuel and reflector columns were performed. The simulations show the effects of core by-pass flows in the heated core region by comparing results for several gap widths including zero gap width. The calculation results underline the importance of considering inter-column gap width for the evaluation of maximum fuel temperatures and temperature gradients in fuel blocks. In addition, it is shown that temperatures of core outlet flow from gaps and channels are strongly affected by the gap width of by-pass flow in the reactor core.
Carlisle, Bruce Scott
1994-01-01T23:59:59.000Z
AN EVAI. UATION OF THE NEUTRON RADIOGRAPHY FACILITY AT THE NUCLEAR SCIENCF- CENTER FOR DYNAMIC IMAGING OF TWO-PHASE HYDROGENOUS FLUIDS A Thesis By BRUCE SCOTT CARLlSLE Submitted to the Office of Graduate Studies of Texas Ag-M University... in partiat fulfillment of the requirements for the degree of MASTER OF SCPENCF. August 1994 Major Subject: Nuclear Engineering AN EVALUATION OF THE NEUTRON RADIOGRAPHY FACILITY AT THE NUCLEAR SCIENCE CENTFR FOR THE DYNAMIC IMAGING OF TWO...
Ghobadi, Ahmadreza F.; Elliott, J. Richard, E-mail: elliot1@uakron.edu [Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325 (United States)
2013-12-21T23:59:59.000Z
In this work, we aim to develop a version of the Statistical Associating Fluid Theory (SAFT)-? equation of state (EOS) that is compatible with united-atom force fields, rather than experimental data. We rely on the accuracy of the force fields to provide the relation to experimental data. Although, our objective is a transferable theory of interfacial properties for soft and fused heteronuclear chains, we first clarify the details of the SAFT-? approach in terms of site-based simulations for homogeneous fluids. We show that a direct comparison of Helmholtz free energy to molecular simulation, in the framework of a third order Weeks-Chandler-Andersen perturbation theory, leads to an EOS that takes force field parameters as input and reproduces simulation results for Vapor-Liquid Equilibria (VLE) calculations. For example, saturated liquid density and vapor pressure of n-alkanes ranging from methane to dodecane deviate from those of the Transferable Potential for Phase Equilibria (TraPPE) force field by about 0.8% and 4%, respectively. Similar agreement between simulation and theory is obtained for critical properties and second virial coefficient. The EOS also reproduces simulation data of mixtures with about 5% deviation in bubble point pressure. Extension to inhomogeneous systems and united-atom site types beyond those used in description of n-alkanes will be addressed in succeeding papers.
Relaxation dynamics in a transient network fluid with competing gel and glass phases
Pinaki Chaudhuri; Pablo I. Hurtado; Ludovic Berthier; Walter Kob
2015-02-01T23:59:59.000Z
We use computer simulations to study the relaxation dynamics of a model for oil-in-water microemulsion droplets linked with telechelic polymers. This system exhibits both gel and glass phases and we show that the competition between these two arrest mechanisms can result in a complex, three-step decay of the time correlation functions, controlled by two different localization lengthscales. For certain combinations of the parameters, this competition gives rise to an anomalous logarithmic decay of the correlation functions and a subdiffusive particle motion, which can be understood as a simple crossover effect between the two relaxation processes. We establish a simple criterion for this logarithmic decay to be observed. We also find a further logarithmically slow relaxation related to the relaxation of floppy clusters of particles in a crowded environment, in agreement with recent findings in other models for dense chemical gels. Finally, we characterize how the competition of gel and glass arrest mechanisms affects the dynamical heterogeneities and show that for certain combination of parameters these heterogeneities can be unusually large. By measuring the four-point dynamical susceptibility, we probe the cooperativity of the motion and find that with increasing coupling this cooperativity shows a maximum before it decreases again, indicating the change in the nature of the relaxation dynamics. Our results suggest that compressing gels to large densities produces novel arrested phases that have a new and complex dynamics.
Understanding biogeobatteries: Where geophysics meets microbiology
Revil, A.
2010-01-01T23:59:59.000Z
duckling of environmental geophysics, Leading Edge, 21(5),Pure and Applied Geophysics, 157, 357-382. Pinder, G.F. ,sulfide self-potentials, Geophysics, 25, 226–249. Sauck, W.
Geophysical Monitoring of Hydrological and Biogeochemical
Hubbard, Susan
Geophysical Monitoring of Hydrological and Biogeochemical Transformations Associated with Cr explored the use of geophysical approaches for monitoring the spatiotemporal distribution of hydrological first integrated hydrological wellbore and geophysical tomographic data sets to estimate hydrological
Paris-Sud XI, Université de
THIESEL 2010 Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines Influence of Nozzle Geometry on Spray Shape, Particle Size, Spray Velocity and Air Entrainment of High Pressure Diesel Abstract. Air/fuel mixing process in the combustion chamber of Diesel engines plays an important role
Gable, Carl W.
, J. F. Thompson, H. Hausser and P. R. Eiseman, Engineering Research Center, Mississippi State Univ. K. Soni, J. F. Thompson, H. Hausser and P. R. Eiseman, Engineering Research Center, Mississippi Generation in Computational Fluid Dynamics and Related Fields, ed. B. K. Soni, J. F. Thompson, H. Hausser
Davis, Michael A.
2011-10-21T23:59:59.000Z
the static pressure drop as air passed through the unit over the full operating range of the FPTU. Computational fluid dynamics (CFD) models of typical a FPTU were developed and used to investigate opportunities for optimizing the design of FPTUs. The CFD...
Fluid Dynamics Seminar Fluid Dynamics Research Centre
Davies, Christopher
(Department of Engineering, University of Liverpool) 24 th May Cavitation, a Possible Cause of Damage to Three Gorge Turbines? Prof. Shengcai C. Li. (Professor of Hydraulic Machinery, based at the School
Fluid Dynamics Seminar Fluid Dynamics Research Centre
Davies, Christopher
(Department of Engineering, University of Liverpool) 24th May Cavitation, a Possible Cause of Damage to Three Gorge Turbines? Prof. Shengcai C. Li. (Professor of Hydraulic Machinery, based at the School
Physics-Based Low Order Galerkin Models in Fluid Dynamics & Flow Control
Gorban, Alexander N.
(Berlin Institute of Technology MB1, Germany) Marek Morzynski (Poznan University of Technology, Poland models of energy supply and consumption. Yet a third principle is the realization that governing flow to time-averaged energy dynamics of Galerkin modes, and gives rise to physically based, nonlinear sub
Recent progress and challenges in exploiting graphics processors in computational fluid dynamics
Niemeyer, Kyle E
2014-01-01T23:59:59.000Z
The progress made in accelerating simulations of fluid flow using GPUs, and the challenges that remain, are surveyed. The review first provides an introduction to GPU computing and programming, and discusses various considerations for improved performance. Case studies comparing the performance of CPU- and GPU- based solvers for the Laplace and incompressible Navier-Stokes equations are performed in order to demonstrate the potential improvement even with simple codes. Recent efforts to accelerate CFD simulations using GPUs are reviewed for laminar, turbulent, and reactive flow solvers. Also, GPU implementations of the lattice Boltzmann method are reviewed. Finally, recommendations for implementing CFD codes on GPUs are given and remaining challenges are discussed, such as the need to develop new strategies and redesign algorithms to enable GPU acceleration.
L-H transition dynamics in fluid turbulence simulations with neoclassical force balance
Chôné, L. [Aix–Marseille Université, CNRS, PIIM UMR 7345, 13397 Marseille Cedex 20 (France); CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France); Beyer, P.; Fuhr, G.; Benkadda, S. [Aix–Marseille Université, CNRS, PIIM UMR 7345, 13397 Marseille Cedex 20 (France); Sarazin, Y.; Bourdelle, C. [CEA, IRFM, F-13108 Saint-Paul-lez-Durance (France)
2014-07-15T23:59:59.000Z
Spontaneous transport barrier generation at the edge of a magnetically confined plasma is reproduced in flux-driven three-dimensional fluid simulations of electrostatic turbulence. Here, the role on the radial electric field of collisional friction between trapped and passing particles is shown to be the key ingredient. Especially, accounting for the self-consistent and precise dependence of the friction term on the actual plasma temperature allows for the triggering of a transport barrier, provided that the input power exceeds some threshold. In addition, the barrier is found to experience quasi-periodic relaxation events, reminiscent of edge localised modes. These results put forward a possible key player, namely, neoclassical physics via radial force balance, for the low- to high-confinement regime transition observed in most of controlled fusion devices.
Fisher, Andrew
records of formation properties The addition of logging while drilling technology where logging tools to exciting scientific discoveries through ocean drilling Essentially all studies of fluid flow within for new approaches or techniques The following highlights selected from recent studies of seafloor fluids
Crump Geyser: High Precision Geophysics & Detailed Structural...
Broader source: Energy.gov (indexed) [DOE]
Crump Geyser: High Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling Crump Geyser: High Precision Geophysics & Detailed Structural Exploration & Slim Well...
Under consideration for publication in J. Fluid Mech. 1 Three-dimensional vortex dynamics in
Pawlak, Geno
, the boundary layer can become centrifugally unstable (Honji 1981), leading to well-developed G¨ortler vortices dissipation and boundary layer dynamics. It is widely accepted that vortex shedding is a dominant pr in oscillatory flow separation M I G U E L C A N A L S AND G E N O P A W L A K Department of Ocean and Resources
Lecture Notes on Fluid Dynamics (1.63J/2.21J)
Entekhabi, Dara
Dynamics of Coastal Region [Ref]: Joan Brown and six others (Open Univeristy course team on oceanography.2.1) In particular, let A = ei, i = 1, 2, 3 be a base vector of unit length in the rotating frame of reference, A = ei then dei dt I = × ei. (7.2.2) #12;3 7.2.2 A vector of variable magnitude Let B = Bi ei be any non
The potential energy landscape and inherent dynamics of a hard-sphere fluid
Qingqing Ma; Richard M. Stratt
2014-08-13T23:59:59.000Z
Hard-sphere models exhibit many of the same kinds of supercooled-liquid behavior as more realistic models of liquids, but the highly non-analytic character of their potentials makes it a challenge to think of that behavior in potential-energy-landscape terms. We show here that it is possible to calculate an important topological property of hard-sphere landscapes, the geodesic pathways through those landscapes, and to do so without artificially coarse-graining or softening the potential. We show, moreover, that the rapid growth of the lengths of those pathways with increasing packing fraction quantitatively predicts the precipitous decline in diffusion constants in a glass-forming hard-sphere mixture model. The geodesic paths themselves can be considered as defining the intrinsic dynamics of hard spheres, so it is also revealing to find that they (and therefore the features of the underlying potential-energy landscape) correctly predict the occurrence of dynamic heterogeneity and non-zero values of the non-Gaussian parameter. The success of these landscape predictions for the dynamics of such a singular model emphasizes that there is more to potential energy landscapes than is revealed by looking at the minima and saddle points.
DEPARTMENT OF GEOLOGY & GEOPHYSICS UNDERGRADUATE
DEPARTMENT OF GEOLOGY & GEOPHYSICS UNDERGRADUATE SURVIVAL MANUAL 2013-2014 SCHOOL OF OCEAN & EARTH SCIENCE & TECHNOLOGY UNIVERSITY OF HAWAI`I AT MNOA Updated July 2013 #12;CONTENTS INTRODUCTION 1 Geology and Geophysics 1 Job Opportunities 1 Prepare Educationally 1 Challenges and Rewards 1 THE DEPARTMENT OF GEOLOGY
Gustavsen, Arlid; Kohler, Christian; Dalehaug, Arvid; Arasteh, Dariush
2008-12-01T23:59:59.000Z
This paper assesses the accuracy of the simplified frame cavity conduction/convection and radiation models presented in ISO 15099 and used in software for rating and labeling window products. Temperatures and U-factors for typical horizontal window frames with internal cavities are compared; results from Computational Fluid Dynamics (CFD) simulations with detailed radiation modeling are used as a reference. Four different frames were studied. Two were made of polyvinyl chloride (PVC) and two of aluminum. For each frame, six different simulations were performed, two with a CFD code and four with a building-component thermal-simulation tool using the Finite Element Method (FEM). This FEM tool addresses convection using correlations from ISO 15099; it addressed radiation with either correlations from ISO 15099 or with a detailed, view-factor-based radiation model. Calculations were performed using the CFD code with and without fluid flow in the window frame cavities; the calculations without fluid flow were performed to verify that the CFD code and the building-component thermal-simulation tool produced consistent results. With the FEM-code, the practice of subdividing small frame cavities was examined, in some cases not subdividing, in some cases subdividing cavities with interconnections smaller than five millimeters (mm) (ISO 15099) and in some cases subdividing cavities with interconnections smaller than seven mm (a breakpoint that has been suggested in other studies). For the various frames, the calculated U-factors were found to be quite comparable (the maximum difference between the reference CFD simulation and the other simulations was found to be 13.2 percent). A maximum difference of 8.5 percent was found between the CFD simulation and the FEM simulation using ISO 15099 procedures. The ISO 15099 correlation works best for frames with high U-factors. For more efficient frames, the relative differences among various simulations are larger. Temperature was also compared, at selected locations on the frames. Small differences was found in the results from model to model. Finally, the effectiveness of the ISO cavity radiation algorithms was examined by comparing results from these algorithms to detailed radiation calculations (from both programs). Our results suggest that improvements in cavity heat transfer calculations can be obtained by using detailed radiation modeling (i.e. view-factor or ray-tracing models), and that incorporation of these strategies may be more important for improving the accuracy of results than the use of CFD modeling for horizontal cavities.
Thrust 1: Structure and Dynamics of Simple Fluid-Solid Interfaces (Peter T. Cumm
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program The NIF andPointsThrust 1: Structure and Dynamics of
Surface OceanLower Atmosphere Processes Geophysical Research Series 187
Kohfeld, Karen
, British Columbia, Canada Andy Ridgwell Bristol Research Initiative for the Dynamic Global Environment251 Surface OceanLower Atmosphere Processes Geophysical Research Series 187 Copyright 2009, and processes have been identified that have improved our understanding of the modern and future carbon cycle
INVERSION FOR APPLIED GEOPHYSICS: A TUTORIAL
Oldenburg, Douglas W.
INVERSION FOR APPLIED GEOPHYSICS: A TUTORIAL Douglas W. Oldenburg* and Yaoguo Li** * UBC-Geophysical, V6T 1Z4 ** Department of Geophysics, Colorado School of Mines, Golden, Colorado, 80401 INTRODUCTION Throughout this book there are numerous cases where geophysics has been used to help solve practical
Department of Geophysics Colorado School of Mines
Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics Colorado School of Mines CGEM Dongjie Cheng #12;#12;Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: December 2003 Advisor: Dr. Yaoguo Li (GP
Department of Geophysics Colorado School of Mines
Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics Colorado School of Mines CGEM Alisa Marie Green #12;Department of Geophysics Colorado School of Mines Golden, CO 80401 http://www.geophysics.mines.edu/cgem Defended: November 06, 2003 Advisor: Dr. Yaoguo Li
SAGE, Summer of Applied Geophysical Experience
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
program . Description teaches modern geophysical exploration techniques: seismic reflection and refraction, gravity and magnetics, electromagnetics (including...
Schmidt, W; Niemeyer, J C
2006-01-01T23:59:59.000Z
We present a one-equation subgrid scale model that evolves the turbulence energy corresponding to unresolved velocity fluctuations in large eddy simulations. The model is derived in the context of the Germano consistent decomposition of the hydrodynamical equations. The eddy-viscosity closure for the rate of energy transfer from resolved toward subgrid scales is localised by means of a dynamical procedure for the computation of the closure parameter. Therefore, the subgrid scale model applies to arbitrary flow geometry and evolution. For the treatment of microscopic viscous dissipation a semi-statistical approach is used, and the gradient-diffusion hypothesis is adopted for turbulent transport. A priori tests of the localised eddy-viscosity closure and the gradient-diffusion closure are made by analysing data from direct numerical simulations. As an a posteriori testing case, the large eddy simulation of thermonuclear combustion in forced isotropic turbulence is discussed. We intend the formulation of the sub...
2010-01-01T23:59:59.000Z
three-dimensional (3D) boundary-layer flows has been focused on the disk; very little had been published © 2010 The Japan Society of Fluid Mechanics and IOP Publishing Ltd Printed in the UK 0169 implications for the fuel efficiency through increased noise and energy dissipation, and for projectile
Sayag, Roiy
using elastic models included only the floating shelves, clamped at a fixed GL over a stiff bed (stiff-fixed the dynamics of ice, bed, and ocean in a new elastic model for the tidal-timescale migration of grounding lines with fixed grounding lines were found to be inconsistent, suggesting an elasticity of ice that varies
Baosheng Jin; Rui Xiao; Zhongyi Deng; Qilei Song [Southeast University (China). Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education
2009-07-01T23:59:59.000Z
To concentrate CO{sub 2} in combustion processes by efficient and energy-saving ways is a first and very important step for its sequestration. Chemical looping combustion (CLC) could easily achieve this goal. A chemical-looping combustion system consists of a fuel reactor and an air reactor. Two reactors in the form of interconnected fluidized beds are used in the process: (1) a fuel reactor where the oxygen carrier is reduced by reaction with the fuel, and (2) an air reactor where the reduced oxygen carrier from the fuel reactor is oxidized with air. The outlet gas from the fuel reactor consists of CO{sub 2} and H{sub 2}O, while the outlet gas stream from the air reactor contains only N{sub 2} and some unused O{sub 2}. The water in combustion products can be easily removed by condensation and pure carbon dioxide is obtained without any loss of energy for separation. Until now, there is little literature about mathematical modeling of chemical-looping combustion using the computational fluid dynamics (CFD) approach. In this work, the reaction kinetic model of the fuel reactor (CaSO{sub 4}+ H{sub 2}) is developed by means of the commercial code FLUENT and the effects of partial pressure of H{sub 2} (concentration of H{sub 2}) on chemical looping combustion performance are also studied. The results show that the concentration of H{sub 2} could enhance the CLC performance.
W. Schmidt; J. C. Niemeyer; W. Hillebrandt
2006-01-23T23:59:59.000Z
We present a one-equation subgrid scale model that evolves the turbulence energy corresponding to unresolved velocity fluctuations in large eddy simulations. The model is derived in the context of the Germano consistent decomposition of the hydrodynamical equations. The eddy-viscosity closure for the rate of energy transfer from resolved toward subgrid scales is localised by means of a dynamical procedure for the computation of the closure parameter. Therefore, the subgrid scale model applies to arbitrary flow geometry and evolution. For the treatment of microscopic viscous dissipation a semi-statistical approach is used, and the gradient-diffusion hypothesis is adopted for turbulent transport. A priori tests of the localised eddy-viscosity closure and the gradient-diffusion closure are made by analysing data from direct numerical simulations. As an a posteriori testing case, the large eddy simulation of thermonuclear combustion in forced isotropic turbulence is discussed. We intend the formulation of the subgrid scale model in this paper as a basis for more advanced applications in numerical simulations of complex astrophysical phenomena involving turbulence.
APPLICATION OF BOREHOLE GEOPHYSICS AT AN EXPERIMENTAL WASTE STORAGE SITE
Nelson, P.H.
2014-01-01T23:59:59.000Z
letal Ore Deposits, 11 in Geophysics and Geochemistry in the11 Applications of Borehole Geophysics to Water-ResourcesAPPLICATION OF BOREHOLE GEOPHYSICS AT AN EXPERIMENTAL WASTE
Lunar geophysics: The Moon's fundamental shape and paleomagnetism studies
Perera, Viranga
2014-01-01T23:59:59.000Z
Tectonics. Reviews of Geophysics and Space Physics SANTA CRUZ Lunar geophysics: The Moon’s fundamental shapeViranga Perera Lunar geophysics: The Moon’s fundamental
Apte, Sourabh V.
Open Journal of Fluid Dynamics, 2012, 2, 35-43 doi:10.4236/ojfd.2012.22004 Published Online June; accepted May 25, 2012 ABSTRACT In many applications, a moving fluid carries a suspension of droplets of a second phase which may change in size due to evaporation or condensation. Examples include liquid fuel
Paris-Sud XI, UniversitÃ© de
spaced, vertical glass plates. Such a "rivulet" is bounded by two liquid/solid and two mobile liquid/gas interfaces, posing fluid dynamic problems of direct relevance to local fluid flow in liquid foams/liquid or liquid/gas interfaces, as found in foams and emulsions, which respond to flow by adjusting their shape
Geological and geophysical studies of a geothermal area in the...
rocks; clasts; composition; conglomerate; economic geology; electrical methods; evolution; exploration; faults; folds; geophysical methods; geophysical surveys; geothermal...
ERNEST LUTHER MAJER Ph.D., June 1978 Geophysics, University of California, Berkeley
Ajo-Franklin, Jonathan
responsibilities were to provide research oversight and direction for a group of seven professionals, five faculty, and for tracking fluid injection fronts. Staff Scientist, Group Leader Geophysics/Geomechanics Group Earth Sciences data acquisition and processing systems for crosswell and single well systems. Group leader
Geophysical Prospecting, 2004, 52, 183195 Effective elastic properties of randomly fractured soils
Santos, Juan
relationships be- tween pore structure and elastic properties of porous rocks is an ongoing problem and fluids, and how they control rock properties is cru- cial to a better understanding of acousticGeophysical Prospecting, 2004, 52, 183195 Effective elastic properties of randomly fractured soils
GEOPHYSICS, VOL. 66, NO. 1 (JANUARY-FEBRUARY 2001); P. 2530 Reservoir geophysics
GEOPHYSICS, VOL. 66, NO. 1 (JANUARY-FEBRUARY 2001); P. 2530 Reservoir geophysics Wayne D. Pennington INTRODUCTION The concept of petroleum reservoir geophysics is relatively new. In the past, the role of geophysics was largely confined to exploration and, to a lesser degree, the development
Bianco, Ronald
2013-12-02T23:59:59.000Z
have an increased localization toward the boundaries of the gouge layer (type III), and no occurrence of distributed (type I) shear. Systems with lower N and k show liquefaction events. Liquefaction events originate from increases in fluid pressure...
Haghshenas, Arash
2013-04-24T23:59:59.000Z
The worst scenario of drilling operation is blowout which is uncontrolled flow of formation fluid into the wellbore. Blowouts result in environmental damage with potential risk of injuries and fatalities. Although not all ...
Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.; Perkins, William A.
2010-12-01T23:59:59.000Z
In 2003, an extension of the existing ice and trash sluiceway was added at Bonneville Powerhouse 2 (B2). This extension started at the existing corner collector for the ice and trash sluiceway adjacent to Bonneville Powerhouse 2 and the new sluiceway was extended to the downstream end of Cascade Island. The sluiceway was designed to improve juvenile salmon survival by bypassing turbine passage at B2, and placing these smolt in downstream flowing water minimizing their exposure to fish and avian predators. In this study, a previously developed computational fluid dynamics model was modified and used to characterized tailrace hydraulics and sluiceway egress conditions for low total river flows and low levels of spillway flow. STAR-CD v4.10 was used for seven scenarios of low total river flow and low spill discharges. The simulation results were specifically examined to look at tailrace hydraulics at 5 ft below the tailwater elevation, and streamlines used to compare streamline pathways for streamlines originating in the corner collector outfall and adjacent to the outfall. These streamlines indicated that for all higher spill percentage cases (25% and greater) that streamlines from the corner collector did not approach the shoreline at the downstream end of Bradford Island. For the cases with much larger spill percentages, the streamlines from the corner collector were mid-channel or closer to the Washington shore as they moved downstream. Although at 25% spill at 75 kcfs total river, the total spill volume was sufficient to "cushion" the flow from the corner collector from the Bradford Island shore, areas of recirculation were modeled in the spillway tailrace. However, at the lowest flows and spill percentages, the streamlines from the B2 corner collector pass very close to the Bradford Island shore. In addition, the very flow velocity flows and large areas of recirculation greatly increase potential predator exposure of the spillway passed smolt. If there is concern for egress issues for smolt passing through the spillway, the spill pattern and volume need to be revisited.
Slow dynamics and anomalous nonlinear fast dynamics in diverse solids
Slow dynamics and anomalous nonlinear fast dynamics in diverse solids Paul Johnsona) Geophysics study of anomalous nonlinear fast dynamics and slow dynamics in a number of solids. Observations are presented from seven diverse materials showing that anomalous nonlinear fast dynamics ANFD and slow dynamics
Edison, John R.; Monson, Peter A. [Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9303 (United States)
2014-07-14T23:59:59.000Z
Recently we have developed a dynamic mean field theory (DMFT) for lattice gas models of fluids in porous materials [P. A. Monson, J. Chem. Phys. 128(8), 084701 (2008)]. The theory can be used to describe the relaxation processes in the approach to equilibrium or metastable states for fluids in pores and is especially useful for studying system exhibiting adsorption/desorption hysteresis. In this paper we discuss the extension of the theory to higher order by means of the path probability method (PPM) of Kikuchi and co-workers. We show that this leads to a treatment of the dynamics that is consistent with thermodynamics coming from the Bethe-Peierls or Quasi-Chemical approximation for the equilibrium or metastable equilibrium states of the lattice model. We compare the results from the PPM with those from DMFT and from dynamic Monte Carlo simulations. We find that the predictions from PPM are qualitatively similar to those from DMFT but give somewhat improved quantitative accuracy, in part due to the superior treatment of the underlying thermodynamics. This comes at the cost of greater computational expense associated with the larger number of equations that must be solved.
Geophysical Institute. Biennial report, 1993-1994
NONE
1996-01-01T23:59:59.000Z
The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.
INSTITUTE OF GEOPHYSICS AND PLANETARY PHYSICS (IGPP)
INSTITUTE OF GEOPHYSICS AND PLANETARY PHYSICS (IGPP) LOS ALAMOS NATIONAL LABORATORY (LANL) FY11, 2010 1. INTRODUCTION The Institute of Geophysics and Planetary Physics (IGPP) at Los Alamos National of California's Systemwide Institute of Geophysics and Planetary Physics. Its science mission is to promote
2010 Western Pacific Geophysics Search Results
Ng, Chung-Sang
2010 Western Pacific Geophysics Meeting Search Results Cite abstracts as Author(s) (2010), Title: Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, United States AU: Ragunathan, S EM: srivatta@gi.alaska.edu AF: Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, United
Geophysical Institute. Biennial report, 1993-1994
NONE
1996-01-01T23:59:59.000Z
The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: scientific predictions, space physics, atmospheric sciences, snow, ice and permafrost, tectonics and sedimentation, seismology, volcanology, remote sensing, and other projects.
Advances in borehole geophysics for hydrology
Nelson, P.H.
1982-01-01T23:59:59.000Z
Borehole geophysical methods provide vital subsurface information on rock properties, fluid movement, and the condition of engineered borehole structures. Within the first category, salient advances include the continuing improvement of the borehole televiewer, refinement of the electrical conductivity dipmeter for fracture characterization, and the development of a gigahertz-frequency electromagnetic propagation tool for water saturation measurements. The exploration of the rock mass between boreholes remains a challenging problem with high potential; promising methods are now incorporating high-density spatial sampling and sophisticated data processing. Flow-rate measurement methods appear adequate for all but low-flow situations. At low rates the tagging method seems the most attractive. The current exploitation of neutron-activation techniques for tagging means that the wellbore fluid itself is tagged, thereby eliminating the mixing of an alien fluid into the wellbore. Another method uses the acoustic noise generated by flow through constrictions and in and behind casing to detect and locate flaws in the production system. With the advent of field-recorded digital data, the interpretation of logs from sedimentary sequences is now reaching a sophisticated level with the aid of computer processing and the application of statistical methods. Lagging behind are interpretive schemes for the low-porosity, fracture-controlled igneous and metamorphic rocks encountered in the geothermal reservoirs and in potential waste-storage sites. Progress is being made on the general problem of fracture detection by use of electrical and acoustical techniques, but the reliable definition of permeability continues to be an elusive goal.
Granular Dynamics in Pebble Bed Reactor Cores
Laufer, Michael Robert
2013-01-01T23:59:59.000Z
a simulant fluid to match the dynamics of fuel pebbles andfuel pebbles through reactor cores with and without coupled fluid
Wu, Y.; Ajo-Franklin, J.B.; Spycher, N.; Hubbard, S.S.; Zhang, G.; Williams, K.H.; Taylor, J.; Fujita, Y.; Smith, R.
2011-07-15T23:59:59.000Z
Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH{sub 4}{sup +} production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface.
Ghobadi, Ahmadreza F.; Elliott, J. Richard, E-mail: elliot1@uakron.edu [Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325 (United States)
2014-07-14T23:59:59.000Z
In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-? WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-? refers to the particular form of “statistical associating fluid theory” that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH{sub 2} and CH{sub 3} and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ?2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ?1% from simulation data while the theory reproduces the excess accumulation of ethane at the interface.
Fluid&ParticulateSystems 424514/2010
Zevenhoven, Ron
cake solids mass/m2, w 3. Ruth equation using dw = (1-)solid dx fluidL p Ku solidK )1( 1 resistance, , with cake porosity : velocity, u layer thickness, L pressure drop, p dynamic viscosity, fluid Finland februari 2014 Unit w: kg/m2 Fluid&ParticulateSystems 424514/2010 Fluid&ParticulateSystems ÅA424514
Earth materials and earth dynamics
Bennett, K; Shankland, T. [and others
2000-11-01T23:59:59.000Z
In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).
alamos dynamic radiation: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
of radiation, its energy. Ultimately, the energy carried Massey, Thomas N. 2 The Dynamics of Tectonic Tremor Throughout the Seismic Cycle 1. Geophysics Group, Los Alamos...
Environmental geophysics - fad or future?
Romig, P.R. [Colorado School of Mines, Golden, CO (United States)
1994-12-31T23:59:59.000Z
For ten years, the oil industry has suffered cycles of downsizing, out-sourcing, and reorganization. As layoffs and early retirement have become widespread, an increasing number of geophysicists have seen the environmental business as an opportunity to stay in their chosen professions. There have been predictions that the use of geophysics for environmental mapping and characterization could spawn an industry larger than oil exploration. These predictions have come from serious financial analysts as well as from hopeful geophysicists, so they cannot be ignored. There also are reputable professionals who believe that environmentalism is a fad which will die out as soon as the next oil shortage occurs. They point to recent publicity about excessive expenditures for waste remediation as a signal of the beginning of the end. These conflicting views raise serious questions about the form and function of, and the future for, environmental geophysics. This paper reviews these views.
Research review Geophysical subsurface imaging for ecological applications
Jackson, Robert B.
Research review Geophysical subsurface imaging for ecological applications Author resistivity imaging, geophysical imaging, ground-penetrating radar, plantsoil interactions, soil be costly, time consuming, andinfeasible, especially if the spatial scales involved are large. Geophysical
Towards Real Earth Models --Computational Geophysics on Unstructured Tetrahedral Meshes?
Farquharson, Colin G.
Towards Real Earth Models -- Computational Geophysics on Unstructured Tetrahedral Meshes? Colin tetrahedral meshes. EM geophysics on unstructured tetrahedral meshes. Disadvantages, difficulties, challenges. Conclusions. #12;Outline: Geological models! Advantages of unstructured tetrahedral meshes. EM geophysics
Howard A. Zebker Professor of Geophysics and Electrical Engineering
Zebker, Howard
Howard A. Zebker Professor of Geophysics and Electrical Engineering Stanford University, Stanford, Departments of Geophysics and Electrical Engineering (joint appt.), Stanford University, Stanford, CA. 1995-2006 Associate Professor, Departments of Geophysics and Electrical Engineering (joint appt.), Stanford University
BASIC GEOPHYSICAL FLUID Lecture 3: Gradient winds, pressure
Read, Peter L.
cyclostrophic balance. 2 #12;Example of gradient-wind balance: Hurricane Andrew 3 #12;Examples of cyclostrophic
Use of Geophysical Techniques to Characterize Fluid Flow in a...
Broader source: Energy.gov (indexed) [DOE]
modeling with TOUGH and eTOUGH * Stochastic and deterministic joint inversion - Use seismic to provide the architecture of the system plus wells, - Use EMresistivity,...
Quantifying the stimuli of photorheological fluids
Bates, Sarah Woodring
2010-01-01T23:59:59.000Z
We develop a model to predict the dynamics of photorheological fluids and, more generally, photoresponsive fluids for monochromatic and polychromatic light sources. Derived from first principles, the model relates the ...
An Investigation of Surface and Crown Fire Dynamics in Shrub Fuels
Lozano, Jesse Sandoval
2011-01-01T23:59:59.000Z
fluid dynamic environment between two adjacent crown fuels andadjacent crown fuel matrices and to study any fluid dynamicbetween crown fuel matrices, and to study any fluid dynamic
Unstructured grid modelling to create 3-D Earth models that unify geological and geophysical
Farquharson, Colin G.
Unstructured grid modelling to create 3-D Earth models that unify geological and geophysical Conclusion The common Earth model Geophysical inversion Geological and geophysical models Instructured meshes Geophysical inversion Geological and geophysical models Instructured meshes Motivation: The common Earth model
The Dynamic Compressive Response of an Open-Cell Foam Impregnated With a Non-Newtonian Fluid
Dawson, Matthew A.
The response of a reticulated, elastomeric foam filled with colloidal silica under dynamic compression is studied. Under compression beyond local strain rates on the order of 1 s[superscript ?1], the non-Newtonian, colloidal ...
Crump Geyser: High Precision Geophysics & Detailed Structural...
Broader source: Energy.gov (indexed) [DOE]
Crump Geyser: High Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling John Casteel Nevada Geothermal Power Co. Validation of Innovative Exploration...
Regional geophysics, Cenozoic tectonics and geologic resources...
geophysics, Cenozoic tectonics and geologic resources of the Basin and Range Province and adjoining regions Jump to: navigation, search OpenEI Reference LibraryAdd to library...
On the Quantum Aspects of Geophysics
F. Darabi
2004-10-10T23:59:59.000Z
We introduce a simple quantum mechanical justification for the formation of folded mountains. It is very appealing to develop this idea to a theory of {\\it Quantum Geophysics}
Integrated Surface Geophysical Methods for Characterization of...
LibraryAdd to library Web Site: Integrated Surface Geophysical Methods for Characterization of the Naval Air Warfare Center, New Jersey Author USGS Published Publisher Not...
Benitz, M. A.; Schmidt, D. P.; Lackner, M. A.; Stewart, G. M.; Jonkman, J.; Robertson, A.
2014-09-01T23:59:59.000Z
Hydrodynamic loads on the platforms of floating offshore wind turbines are often predicted with computer-aided engineering tools that employ Morison's equation and/or potential-flow theory. This work compares results from one such tool, FAST, NREL's wind turbine computer-aided engineering tool, and the computational fluid dynamics package, OpenFOAM, for the OC4-DeepCwind semi-submersible analyzed in the International Energy Agency Wind Task 30 project. Load predictions from HydroDyn, the offshore hydrodynamics module of FAST, are compared with high-fidelity results from OpenFOAM. HydroDyn uses a combination of Morison's equations and potential flow to predict the hydrodynamic forces on the structure. The implications of the assumptions in HydroDyn are evaluated based on this code-to-code comparison.
Barney, G.S.
1996-09-27T23:59:59.000Z
This report presents an in-depth review of the potential for nuclear criticality to occur in Hanford defense waste tanks during past, current and future safe storage and maintenance operations. The report also briefly discusses the potential impacts of proposed retrieval activities, although retrieval was not a main focus of scope. After thorough review of fluid dynamic aspects that focus on particle segregation, chemical aspects that focus on solubility and adsorption processes that might concentrate plutonium and/or separate plutonium from the neutron absorbers in the tank waste, and ore-body formation and mining operations, the interdisciplinary team has come to the conclusion that there is negligible risk of nuclear critically under existing storage conditions in Hanford site underground waste storage tanks. Further, for the accident scenarios considered an accidental criticality is incredible.
Merging high resolution geophysical and geochemical surveys to...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
high resolution geophysical and geochemical surveys to reduce exploration risk at Glass Buttes, Oregon Merging high resolution geophysical and geochemical surveys to reduce...
Advanced 3D Geophysical Imaging Technologies for Geothermal Resource...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization Advanced 3D...
Geophysical investigations of certain Montana geothermal areas
Wideman, C.J. (Montana Bureau of Mines and Geology, Butte); Dye, L.; Halvorson, J.; McRae, M.; Ruscetta, C.A.; Foley, D. (eds.)
1981-05-01T23:59:59.000Z
Selected hot springs areas of Montana have been investigated by a variety of geophysical techniques. Resistivity, gravity, seismic, and magnetic methods have been applied during investigations near the hot springs. Because the geology is extremely varied at the locations of the investigations, several geophysical techniques have usually been applied at each site.
APPLIED GEOPHYSICS FIELD CLASS GEOLOGY 437
Nickrent, Daniel L.
APPLIED GEOPHYSICS FIELD CLASS GEOLOGY 437 SPRING 2014 OF NATURAL RESOURCES INCLUDING OIL, COAL, MINERALS AND GROUNDWATER. OTHER APPLICATIONS OF GEOPHYSICS MAY, IF AVAILABLE, WE WILL VISIT AN OIL DRILLING RIG IN OPERATION. DATES FOR FIELD TRIPS WILL DEPEND ON THE WEATHER
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. , XXXX, DOI:10.1029/, Magnetic Flux Emergence in the Sun
Sengun, Mehmet Haluk
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. , XXXX, DOI:10.1029/, Magnetic Flux Emergence in the Sun VÂdimensional evolution of solar eruptions as they leave the Sun and move into the interplanetary space. One of the most important processes, responsible for many dynamical phenomena obÂ served in the Sun, is the emergence
FRACTURING FLUID CHARACTERIZATION FACILITY
Subhash Shah
2000-08-01T23:59:59.000Z
Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.
W. Schmidt; J. C. Niemeyer; W. Hillebrandt; F. K. Roepke
2006-01-23T23:59:59.000Z
The dynamics of the explosive burning process is highly sensitive to the flame speed model in numerical simulations of type Ia supernovae. Based upon the hypothesis that the effective flame speed is determined by the unresolved turbulent velocity fluctuations, we employ a new subgrid scale model which includes a localised treatment of the energy transfer through the turbulence cascade in combination with semi-statistical closures for the dissipation and non-local transport of turbulence energy. In addition, subgrid scale buoyancy effects are included. In the limit of negligible energy transfer and transport, the dynamical model reduces to the Sharp-Wheeler relation. According to our findings, the Sharp-Wheeler relation is insuffcient to account for the complicated turbulent dynamics of flames in thermonuclear supernovae. The application of a co-moving grid technique enables us to achieve very high spatial resolution in the burning region. Turbulence is produced mostly at the flame surface and in the interior ash regions. Consequently, there is a pronounced anisotropy in the vicinity of the flame fronts. The localised subgrid scale model predicts significantly enhanced energy generation and less unburnt carbon and oxygen at low velocities compared to earlier simulations.
Characterizing Microbial Community and Geochemical Dynamics at...
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Microbial Community and Geochemical Dynamics at Hydrothermal Vents Using Osmotically Driven Continuous Fluid Characterizing Microbial Community and Geochemical Dynamics at...
Electrical Impedance Tomography in geophysics, application of EIDORS
Adler, Andy
Electrical Impedance Tomography in geophysics, application of EIDORS Lesparre N., Adler A., Gibert to adapt EIDORS for applications in geophysics. In geophysics, we apply EIT in order to image inner. The spatial resolution of the method in geophysics is of the order of meters and the penetration depth can
Bachelor of Science, Geophysics, 2013-2014 Name ID# Date
Barrash, Warren
Bachelor of Science, Geophysics, 2013-2014 Name ID# Date General Degree Requirements Residency with Lab 4 COMPSCI 115 Introduction to C 2 GEOPH 201 Seeing the Unseen: an Introduction to Geophysics 4 GEOPH 300 Physics of the Earth 3 GEOPH 305 Applied Geophysics 3 GEOPH 420 Geophysical Applications
SURFACE GEOPHYSICAL EXPLORATION - COMPENDIUM DOCUMENT
RUCKER DF; MYERS DA
2011-10-04T23:59:59.000Z
This report documents the evolution of the surface geophysical exploration (SGE) program and highlights some of the most recent successes in imaging conductive targets related to past leaks within and around Hanford's tank farms. While it is noted that the SGE program consists of multiple geophysical techniques designed to (1) locate near surface infrastructure that may interfere with (2) subsurface plume mapping, the report will focus primarily on electrical resistivity acquisition and processing for plume mapping. Due to the interferences from the near surface piping network, tanks, fences, wells, etc., the results of the three-dimensional (3D) reconstruction of electrical resistivity was more representative of metal than the high ionic strength plumes. Since the first deployment, the focus of the SGE program has been to acquire and model the best electrical resistivity data that minimizes the influence of buried metal objects. Toward that goal, two significant advances have occurred: (1) using the infrastructure directly in the acquisition campaign and (2) placement of electrodes beneath the infrastructure. The direct use of infrastructure was successfully demonstrated at T farm by using wells as long electrodes (Rucker et al., 2010, 'Electrical-Resistivity Characterization of an Industrial Site Using Long Electrodes'). While the method was capable of finding targets related to past releases, a loss of vertical resolution was the trade-off. The burying of electrodes below the infrastructure helped to increase the vertical resolution, as long as a sufficient number of electrodes are available for the acquisition campaign.
Goel, Piyush
2010-10-12T23:59:59.000Z
tra c shares all of the leftover bandwidth from Class-1 tra c. Hence, for example, if there are n1 Class-1 and n2 Class-2 requests being served by the system, all of the Class-1 requests would be allocated bandwidth b each, whereas the Class-2 request... of Technology, Bombay Chair of Advisory Committee: Dr. Natarajan Gautam A Web-server farm is a specialized facility designed speci cally for housing Web servers catering to one or more Internet facing Web sites. In this dissertation, sto- chastic dynamic...
PhD in Cryosphere Geophysics The Cryosphere Geophysics and Remote Sensing group (CryoGARs) at Boise
Barrash, Warren
PhD in Cryosphere Geophysics The Cryosphere Geophysics and Remote Sensing group (CryoGARs) at Boise on the GrIS. A solid background in field geophysics is preferred. The successful applicant will join the CryoGars group and Center for Geophysical Investigation of the Shallow Subsurface (CGISS) at Boise
Rangarajan, Govindan
Preface Fractals in geophysics Geophysical phenomena of interest to geoscientists include both-fractal type. Recently, there has been much interdisciplinary interest in the application of geophysical of the spatio-temporal organization of geophysical phenomena from micro to macro levels [1Â6]. Wider application
?nite-element formulation (Smith. I975). handle any kind of waves in complex media but are limited mainly because nu- merical dispersion prevents them from
Kelley, N.D.
1993-11-01T23:59:59.000Z
We have recently shown that the alternating load fatigue distributions measured at several locations on a wind turbine operating in a turbulent flow can be described by a mixture of at least three parametric statistical models. The rainflow cycle counting of the horizontal and vertical inflow components results in a similar mixture describing the cyclic content of the wind. We believe such a description highlights the degree of non-Gaussian characteristics of the flow. We present evidence that the severity of the low-cycle, high-amplitude alternating stress loads seen by wind turbine components are a direct consequence of the degree of departure from normality in the inflow. We have examined the details of the turbulent inflow associated with series large loading events that took place on two adjacent wind turbines installed in a large wind park in San Gorgonio Pass, California. In this paper, we describe what we believe to be the agents in the flow that induced such events. We also discuss the atmospheric mechanisms that influence the low-cycle, high-amplitude range loading seen by a number of critical wind turbine components. We further present results that can be used to scale the specific distribution shape as functions of measured inflow fluid dynamics parameters.
Robust processing of optical flow of fluids Ashish Doshi and Adrian G. Bors, Senior Member, IEEE
Bors, Adrian
the computational fluid dynamics (CFD). Navier-Stokes equations have been extensively studied in fluid mechanics Terms--Optical flow of fluids, computational fluid dy- namics, diffusion, vortex detection I displaying fluid movement. Velocity fields, characterizing the motion of fluids can be modelled using
Non-Seismic Geophysical Approaches to Monitoring
Hoversten, G.M.; Gasperikova, Erika
2004-09-01T23:59:59.000Z
This chapter considers the application of a number of different geophysical techniques for monitoring geologic sequestration of CO2. The relative merits of the seismic, gravity, electromagnetic (EM) and streaming potential (SP) geophysical techniques as monitoring tools are examined. An example of tilt measurements illustrates another potential monitoring technique, although it has not been studied to the extent of other techniques in this chapter. This work does not represent an exhaustive study, but rather demonstrates the capabilities of a number of geophysical techniques on two synthetic modeling scenarios. The first scenario represents combined CO2 enhance oil recovery (EOR) and sequestration in a producing oil field, the Schrader Bluff field on the north slope of Alaska, USA. The second scenario is of a pilot DOE CO2 sequestration experiment scheduled for summer 2004 in the Frio Brine Formation in South Texas, USA. Numerical flow simulations of the CO2 injection process for each case were converted to geophysical models using petrophysical models developed from well log data. These coupled flow simulation geophysical models allow comparrison of the performance of monitoring techniques over time on realistic 3D models by generating simulated responses at different times during the CO2 injection process. These time-lapse measurements are used to produce time-lapse changes in geophysical measurements that can be related to the movement of CO2 within the injection interval.
Deterministic treatment of model error in geophysical data assimilation
Carrassi, Alberto
2015-01-01T23:59:59.000Z
This chapter describes a novel approach for the treatment of model error in geophysical data assimilation. In this method, model error is treated as a deterministic process fully correlated in time. This allows for the derivation of the evolution equations for the relevant moments of the model error statistics required in data assimilation procedures, along with an approximation suitable for application to large numerical models typical of environmental science. In this contribution we first derive the equations for the model error dynamics in the general case, and then for the particular situation of parametric error. We show how this deterministic description of the model error can be incorporated in sequential and variational data assimilation procedures. A numerical comparison with standard methods is given using low-order dynamical systems, prototypes of atmospheric circulation, and a realistic soil model. The deterministic approach proves to be very competitive with only minor additional computational c...
of scarce resources. Causes of climate change Natural variations in global climate arise from phenomena) that the global pattern of warming during the past half century can be explained without external forcing of phenomena like tropical storms to a warming climate. SC 2010-G01744 Simulation of global hurricane
Expedited Site Characterization Geophysics: Geophysical Methods and Tools for Site Characterization
Goldstein, N.E.
2009-01-01T23:59:59.000Z
battery belt, 4 batteries, 2 chargers ) IO0 ,,L t ,, , i l,, E__d CharacterizationCharacterization Geophysics SPECIFICATIONS: TEMI3 MAGNETIC ANTENNA General Power: Two 9V alkaline batteries BatteryCharacterization Geophysics RESISTIVITY/ INDUCED POLARIZATION (_nt'd/ For the standard resistivit 7 technique, a battery-
Leishear, Robert A.; Lee, Si Y.; Poirier, Michael R.; Steeper, Timothy J.; Ervin, Robert C.; Giddings, Billy J.; Stefanko, David B.; Harp, Keith D.; Fowley, Mark D.; Van Pelt, William B.
2012-10-07T23:59:59.000Z
Computational fluid dynamics (CFD) is recognized as a powerful engineering tool. That is, CFD has advanced over the years to the point where it can now give us deep insight into the analysis of very complex processes. There is a danger, though, that an engineer can place too much confidence in a simulation. If a user is not careful, it is easy to believe that if you plug in the numbers, the answer comes out, and you are done. This assumption can lead to significant errors. As we discovered in the course of a study on behalf of the Department of Energy's Savannah River Site in South Carolina, CFD models fail to capture some of the large variations inherent in complex processes. These variations, or scatter, in experimental data emerge from physical tests and are inadequately captured or expressed by calculated mean values for a process. This anomaly between experiment and theory can lead to serious errors in engineering analysis and design unless a correction factor, or safety factor, is experimentally validated. For this study, blending times for the mixing of salt solutions in large storage tanks were the process of concern under investigation. This study focused on the blending processes needed to mix salt solutions to ensure homogeneity within waste tanks, where homogeneity is required to control radioactivity levels during subsequent processing. Two of the requirements for this task were to determine the minimum number of submerged, centrifugal pumps required to blend the salt mixtures in a full-scale tank in half a day or less, and to recommend reasonable blending times to achieve nearly homogeneous salt mixtures. A full-scale, low-flow pump with a total discharge flow rate of 500 to 800 gpm was recommended with two opposing 2.27-inch diameter nozzles. To make this recommendation, both experimental and CFD modeling were performed. Lab researchers found that, although CFD provided good estimates of an average blending time, experimental blending times varied significantly from the average.
Parcel and Particle EulerianLagrangian Methods for Geophysical Flows
Al Hanbali, Ahmad
-preserving numerical EL schemes. 3. Hamiltonian Particle-Mesh Method (HPM) ·· Relevance to NWP and climiate simulations? 4. Discussion: HPM for forced-dissipative climate simulations? 3 #12;' & $ % · Why in Wye? · Curiosity. · Understanding link between numerics HPM and continuum geometric fluid dynamics. · Easiest proof
Investigation of novel geophysical techniques for monitoring CO2 movement during sequestration
Hoversten, G. Michael; Gasperikova, Erika
2003-10-31T23:59:59.000Z
Cost effective monitoring of reservoir fluid movement during CO{sub 2} sequestration is a necessary part of a practical geologic sequestration strategy. Current petroleum industry seismic techniques are well developed for monitoring production in petroleum reservoirs. The cost of time-lapse seismic monitoring can be born because the cost to benefit ratio is small in the production of profit making hydrocarbon. However, the cost of seismic monitoring techniques is more difficult to justify in an environment of sequestration where the process produces no direct profit. For this reasons other geophysical techniques, which might provide sufficient monitoring resolution at a significantly lower cost, need to be considered. In order to evaluate alternative geophysical monitoring techniques we have undertaken a series of numerical simulations of CO{sub 2} sequestration scenarios. These scenarios have included existing projects (Sleipner in the North Sea), future planned projects (GeoSeq Liberty test in South Texas and Schrader Bluff in Alaska) as well as hypothetical models based on generic geologic settings potentially attractive for CO{sub 2} sequestration. In addition, we have done considerable work on geophysical monitoring of CO{sub 2} injection into existing oil and gas fields, including a model study of the Weyburn CO{sub 2} project in Canada and the Chevron Lost Hills CO{sub 2} pilot in Southern California (Hoversten et al. 2003). Although we are specifically interested in considering ''novel'' geophysical techniques for monitoring we have chosen to include more traditional seismic techniques as a bench mark so that any quantitative results derived for non-seismic techniques can be directly compared to the industry standard seismic results. This approach will put all of our finding for ''novel'' techniques in the context of the seismic method and allow a quantitative analysis of the cost/benefit ratios of the newly considered methods compared to the traditional, more expensive, seismic technique. The Schrader Bluff model was chosen as a numerical test bed for quantitative comparison of the spatial resolution of various geophysical techniques being considered for CO{sub 2} sequestration monitoring. We began with a three dimensional flow simulation model provided by BP Alaska of the reservoir and developed a detailed rock-properties model from log data that provides the link between the reservoir parameters (porosity, pressure, saturations, etc.) and the geophysical parameters (velocity, density, electrical resistivity). The rock properties model was used to produce geophysical models from the flow simulations.
Numerical Simulation in Applied Geophysics. From the Mesoscale to ...
Seismic wave propagation is a common technique used in hydrocarbon exploration geophysics, mining and reservoir characterization and production.
MULTIFRACTALS, GENERALIZED SCALE INVARIANCE AND COMPLEXITY IN GEOPHYSICS
Lovejoy, Shaun
MULTIFRACTALS, GENERALIZED SCALE INVARIANCE AND COMPLEXITY IN GEOPHYSICS DANIEL SCHERTZER LEESU, Que. H3A 2T8, Canada lovejoy@physics.mcgill.ca Received The complexity of geophysics has been with anisotropy, which is rather ubiquitous in geophysics. Keywrods: multifractals, generalized scale invariance
Geophysical Research Abstracts Vol. 12, EGU2010-8384, 2010
Paris-Sud XI, Université de
Geophysical Research Abstracts Vol. 12, EGU2010-8384, 2010 EGU General Assembly 2010 © Author are known to be highly dependent on local site characteristics. Therefore combining geophysical meth- ods. In order to calibrate geophysical measurements, obser- vations of 130 boreholes (4 meters deep) were made
Geophysical detection and structural characterization of discontinuities in rock
Paris-Sud XI, Université de
Geophysical detection and structural characterization of discontinuities in rock slopes (J. Deparis geophysical methods (seismic, electric and electromagnetic) are available to address this problem, differing and geophysical methods for characterizing the rock mass. Section 2 is dedicated to a review of the main
Geophysical Research Abstracts Vol. 12, EGU2010-4993, 2010
Paris-Sud XI, Université de
Geophysical Research Abstracts Vol. 12, EGU2010-4993, 2010 EGU General Assembly 2010 © Author(s) 2010 Geophysical observations at cavity collapse Philippe Jousset, Behrooz Bazargan-Sabet, François relate the variations of the brine pumping rate with the evolutions of the induced geophysical signals
GEOPHYSICAL DETECTION OF UNDERGROUND CAVITIES DRIAD-LEBEAU1
Boyer, Edmond
GEOPHYSICAL DETECTION OF UNDERGROUND CAVITIES DRIAD-LEBEAU1 Lynda, PIWAKOWSKI2 Bogdan, STYLES3 & Environmental Geophysics Research Group, School of Physical and Geographical Sciences, Keele University, UK; p.lataste@ghymac.u- bordeaux1.fr ABSTRACT: In this paper, we present a synthesis of the geophysical investigations conducted
Syllabus: Applied Environmental Geophysics MGG 525 Fall 2011, 3 credits
Miami, University of
1 Syllabus: Applied Environmental Geophysics MGG 525 Fall 2011, 3 credits (Version 110824e) Instructor: Mark Grasmueck, Associate Professor Marine Geology and Geophysics RSMAS University of Miami Tel: The purpose of this course is to familiarize you with the fundamentals of near-surface geophysical site
Uncertainty and Predictability in Geophysics: Chaos and Multifractal Insights
Lovejoy, Shaun
Uncertainty and Predictability in Geophysics: Chaos and Multifractal Insights Daniel Schertzer Department, McGill University, Montreal, Canada Uncertainty and error growth are crosscutting geophysical extremes. The focus is now on time-space geophysical scaling behavior: their multifractality. It is found
Scale, scaling and multifractals in geophysics: twenty Shaun Lovejoy1
Lovejoy, Shaun
Scale, scaling and multifractals in geophysics: twenty years on Shaun Lovejoy1 and Daniel Schertzer number of degrees of freedom approaches to nonlin- ear geophysics: a) the transition from fractal are generally necessary for geophysical applications. We illustrate these ideas with data analyses from both
Geophysical Research Abstracts Vol. 12, EGU2010-4885, 2010
Paris-Sud XI, Université de
Geophysical Research Abstracts Vol. 12, EGU2010-4885, 2010 EGU General Assembly 2010 © Author(s) 2010 The DIGISOIL multi-sensor system: from geophysical measurements to soil properties. Gilles geophysical technologies for answering this societal demand. To this aim, DIGISOIL addresses four issues
Nathan L. B. Bangs ADDRESS Institute for Geophysics
Yang, Zong-Liang
Nathan L. B. Bangs ADDRESS Institute for Geophysics The University of Texas Pickle Research Campus@utig.ig.utexas.edu EDUCATION B.A. Williams College, 1983, Geology and Physics M.A. Columbia University, 1986, Marine Geophysics M. Phil. Columbia University, 1987, Marine Geophysics Ph.D. Columbia University, 1991, Marine
DEPARTMENT OF GEOLOGY & GEOPHYSICS School of Ocean & Earth Science & Technology
DEPARTMENT OF GEOLOGY & GEOPHYSICS School of Ocean & Earth Science & Technology University of Hawaii at Manoa REQUIREMENTS FOR A MINOR IN GEOLOGY & GEOPHYSICS The minor requires GG 101 (or 103) & 101L or GG 170, 200, and 11 credits hours of non-introductory Geology and Geophysics courses at the 300
Einat, Aharonov
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, The long runout of the Heart, Palisades, NY, USA. D R A F T June 30, 2010, 6:44pm D R A F T #12;X - 2 GOREN ET AL.: HEART MOUNTAIN LANDSLIDE DYNAMICS Abstract. The Heart Mountain landslide of northwestern Wyoming is the largest subaerial
Nonlinear Processes in Geophysics (2005) 12: 311320 SRef-ID: 1607-7946/npg/2005-12-311
Paris-Sud XI, Université de
2005-01-01T23:59:59.000Z
Processes in Geophysics Forced versus coupled dynamics in Earth system modelling and prediction B. Knopf1, H, a crucial element of Earth System modelling. Since the cur- rently preferred strategy for simulating. Such a simplifying tech- nique is often employed in Earth System models in order to save computing resources
Anastasia Gribik; Doona Guillen, PhD; Daniel Ginosar, PhD
2008-09-01T23:59:59.000Z
Currently multi-tubular fixed bed reactors, fluidized bed reactors, and slurry bubble column reactors (SBCRs) are used in commercial Fischer Tropsch (FT) synthesis. There are a number of advantages of the SBCR compared to fixed and fluidized bed reactors. The main advantage of the SBCR is that temperature control and heat recovery are more easily achieved. The SBCR is a multiphase chemical reactor where a synthesis gas, comprised mainly of H2 and CO, is bubbled through a liquid hydrocarbon wax containing solid catalyst particles to produce specialty chemicals, lubricants, or fuels. The FT synthesis reaction is the polymerization of methylene groups [-(CH2)-] forming mainly linear alkanes and alkenes, ranging from methane to high molecular weight waxes. The Idaho National Laboratory is developing a computational multiphase fluid dynamics (CMFD) model of the FT process in a SBCR. This paper discusses the incorporation of absorption and reaction kinetics into the current hydrodynamic model. A phased approach for incorporation of the reaction kinetics into a CMFD model is presented here. Initially, a simple kinetic model is coupled to the hydrodynamic model, with increasing levels of complexity added in stages. The first phase of the model includes incorporation of the absorption of gas species from both large and small bubbles into the bulk liquid phase. The driving force for the gas across the gas liquid interface into the bulk liquid is dependent upon the interfacial gas concentration in both small and large bubbles. However, because it is difficult to measure the concentration at the gas-liquid interface, coefficients for convective mass transfer have been developed for the overall driving force between the bulk concentrations in the gas and liquid phases. It is assumed that there are no temperature effects from mass transfer of the gas phases to the bulk liquid phase, since there are only small amounts of dissolved gas in the liquid phase. The product from the incorporation of absorption is the steady state concentration profile of the absorbed gas species in the bulk liquid phase. The second phase of the model incorporates a simplified macrokinetic model to the mass balance equation in the CMFD code. Initially, the model assumes that the catalyst particles are sufficiently small such that external and internal mass and heat transfer are not rate limiting. The model is developed utilizing the macrokinetic rate expression developed by Yates and Satterfield (1991). Initially, the model assumes that the only species formed other than water in the FT reaction is C27H56. Change in moles of the reacting species and the resulting temperature of the catalyst and fluid phases is solved simultaneously. The macrokinetic model is solved in conjunction with the species transport equations in a separate module which is incorporated into the CMFD code.
Tingley, Joseph V.
GEOPHYSICAL RESEARCH LETTERS, VOL. 27, NO. 22, PAGES 2615-3618, NOVEMBER 15, 2000 3615 Geodetic network optimization for geophysical parameters Geoffrey Blewitt Nevada Bureau of Mines and Geology is gener- alized here, to seek the network configuration that optimizes the precision of geophysical
Vasilyev, Oleg V.
GEOPHYSICAL RESEARCH LETTERS, VOL. 24, NO. 23, PAGES 3097-3100, DECEMBER 1, 1997 Applicability of wavelet algorithm for geophysical viscoelastic flow Oleg V. Vasilyev,1 David A. Yuen,2 and Yuri Yu. Podladchikov3 Abstract. This paper introduces a newly developed wavelet technique for modeling of geophysical
Johnson, Cari
Geology and Geophysics at the University of Utah Advisors for Undergraduate Geology & Geophysics Students (2014-15 academic year): General Academic Advising for Geology & Geophysics Majors Ms. Judy for Geology Emphasis, Geoscience Major Prof. Brenda Bowen (email: brenda.bowen@ utah.edu, office: 341 FASB
Review of geophysical characterization methods used at the Hanford Site
GV Last; DG Horton
2000-03-23T23:59:59.000Z
This paper presents a review of geophysical methods used at Hanford in two parts: (1) shallow surface-based geophysical methods and (2) borehole geophysical methods. This review was not intended to be ``all encompassing'' but should represent the vast majority (>90% complete) of geophysical work conducted onsite and aimed at hazardous waste investigations in the vadose zone and/or uppermost groundwater aquifers. This review did not cover geophysical methods aimed at large-scale geologic structures or seismicity and, in particular, did not include those efforts conducted in support of the Basalt Waste Isolation Program. This review focused primarily on the more recent efforts.
Simulating Fluids Exhibiting Microstructure
Title: Simulating Fluids Exhibiting Microstructure Speaker: Noel J. Walkington, ... fluids containing elastic particles, and polymer fluids, all exhibit non-trivial ...
INTEGRATING GEOLOGIC AND GEOPHYSICAL DATA THROUGH
Oldenburg, Douglas W.
INTEGRATING GEOLOGIC AND GEOPHYSICAL DATA THROUGH ADVANCED CONSTRAINED INVERSIONS by Peter George framework (i.e. minimization of an objective function). I developed several methods to reach this goal constraints to the inverse problem. Lastly, I developed an iterative procedure for cooperatively inverting
DECOUPLED TIME STEPPING METHODS FOR FLUID-FLUID INTERACTION
Kasman, Alex
-fluid interaction, atmosphere-ocean, implicit-explicit method. 1. Introduction. The dynamic core in atmosphere-ocean to the coupled system using only (uncoupled) atmosphere and ocean solves, (see e.g. [4, 6, 17, 18, 19 their shared interface I by a rigid-lid coupling condition, i.e. no penetration and a slip with friction
amniotic fluid levels: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
Validation of a Computational Fluid Dynamics Model for IAQ applications in Ice Rink Arenas Engineering Websites Summary: . A major source of air pollution is the...
Sandstone cementation and fluids in hydrocarbon basins R.S. Haszeldinea,*, C.I. Macaulaya
Haszeldine, Stuart
of Geology and Geophysics, University of Edinburgh Edinburgh, EH9 3JW, UK b Isotope Geology Unit, SUERC, East illite that can date oil charge. 2000 Elsevier Science B.V. All rights reserved. Keywords: diagenesis, fluid flows and oil charge timing. Micro-analytical technology enables the analysis of isotopic sub
Mechanical Engineering ME 3720 FLUID MECHANICS
Panchagnula, Mahesh
. Fundamentals of fluid flow; fluid statics; systems, and control volumes; continuity, momentum and energy physical model results to prototype 10. Use Moody chart to calculate friction losses in pipe flows 11 equations; dynamic similitude; One-dimensional compressible flow. The objective(s) of this course is (are
College of Natural Science and Mathematics Department of Geology and Geophysics
Hartman, Chris
gEophySicS College of Natural Science and Mathematics Department of Geology and Geophysics 907 credits The geophysics program at UAF specializes in several broad areas of re- search and is closely connected with the Geophysical Institute. Although much of the research conducted by geophysics faculty
Wai, Chien M. (Moscow, ID); Laintz, Kenneth E. (Los Alamos, NM)
1999-01-01T23:59:59.000Z
A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.
Faybishenko, B.; Doughty, C.; Geller, J. [and others
1998-07-01T23:59:59.000Z
Understanding subsurface flow and transport processes is critical for effective assessment, decision-making, and remediation activities for contaminated sites. However, for fluid flow and contaminant transport through fractured vadose zones, traditional hydrogeological approaches are often found to be inadequate. In this project, the authors examine flow and transport through a fractured vadose zone as a deterministic chaotic dynamical process, and develop a model of it in these terms. Initially, the authors examine separately the geometric model of fractured rock and the flow dynamics model needed to describe chaotic behavior. Ultimately they will put the geometry and flow dynamics together to develop a chaotic-dynamical model of flow and transport in a fractured vadose zone. They investigate water flow and contaminant transport on several scales, ranging from small-scale laboratory experiments in fracture replicas and fractured cores, to field experiments conducted in a single exposed fracture at a basalt outcrop, and finally to a ponded infiltration test using a pond of 7 by 8 m. In the field experiments, they measure the time-variation of water flux, moisture content, and hydraulic head at various locations, as well as the total inflow rate to the subsurface. Such variations reflect the changes in the geometry and physics of water flow that display chaotic behavior, which they try to reconstruct using the data obtained. In the analysis of experimental data, a chaotic model can be used to predict the long-term bounds on fluid flow and transport behavior, known as the attractor of the system, and to examine the limits of short-term predictability within these bounds. This approach is especially well suited to the need for short-term predictions to support remediation decisions and long-term bounding studies. View-graphs from ten presentations made at the annual meeting held December 3--4, 1997 are included in an appendix to this report.
MIDDLE ATMOSPHERE DYNAMICS AT707 (3 credits)
., Holton, J. R., Leovy, C. B., Academic Press, 489 pp. Â· Atmospheric and Oceanic Fluid Dynamics, 2006 Review Articles: Â· Haynes, P. H., 2005: Stratospheric Dynamics. Annu. Rev. Fluid Mech., 37, 263Â 293
Farquharson, Colin G.
Unified geophysical and geological 3-D Earth models Colin Farquharson, Peter Leli`evre, and Charles and geophysics. Outline Geological models Geophysical models and numerical modelling Rectilinear grids vs triangles. Can capture arbitrarily complicated subsurface contacts. #12;Geophysical models: rectilinear
Spinning Fluids: A Group Theoretical Approach
Dario Capasso; Debajyoti Sarkar
2014-04-07T23:59:59.000Z
We extend the Lagrangian formulation of relativistic non-abelian fluids in group theory language. We propose a Mathisson-Papapetrou equation for spinning fluids in terms of the reduction limit of de Sitter group. The equation we find correctly boils down to the one for non-spinning fluids. We study the application of our results for an FRW cosmological background for fluids with no vorticity and for dusts in the vicinity of a Kerr black hole. We also explore two alternative approaches based on a group theoretical formulation of particles dynamics.
Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael
2009-09-01T23:59:59.000Z
This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.
Geophysical Prospecting 31,265-292, 1983. REFLECTION OF ELASTIC WAVES FROM
Santos, Juan
Geophysical Prospecting 31,265-292, 1983. REFLECTION OF ELASTIC WAVES FROM PERIODICALLY STRATIFIED from Periodically Stratified Media with Interfacial Slip, Geophysical Prospecting 31 phase propagation in some other direction. INTRODUCTION Geophysical media often exhibit anisotropic
Applying petroleum geophysics to astrophysics: Quantitative 4D seismic study of the solar interior
Crawford, Ian
Applying petroleum geophysics to astrophysics: Quantitative 4D seismic study, is to a significant extent based on tomographic methods developed in geophysics. The proposed time-lapse seismic methods developed in petroleum geophysics offer the next
Highlights of the 2009 SEG summer research workshop on "CO2 Sequestration Geophysics"
Lumley, D.
2010-01-01T23:59:59.000Z
on “CO 2 Sequestration Geophysics” David Lumley (U. W.on “CO 2 Sequestration Geophysics” was held August 23-27,sequestration: Model Studies: Geophysics, 73, WA105-WA112.
Geophysical constraints on contaminant transport modeling in a heterogeneous fluvial aquifer
Zheng, Chunmiao
Geophysical constraints on contaminant transport modeling in a heterogeneous fluvial aquifer Jerry the geophysically derived hydraulic conductivity representation in numerical simulations of the natural the effectiveness of geophysically derived and flowmeter based representations of the hydraulic conductivity field
Geophysical investigation, Salmon Site, Lamar County, Mississippi
NONE
1995-02-01T23:59:59.000Z
Geophysical surveys were conducted in 1992 and 1993 on 21 sites at the Salmon Site (SS) located in Lamar County, Mississippi. The studies are part of the Remedial Investigation/Feasibility Study (RI/FS) being conducted by IT Corporation for the U.S. Department of Energy (DOE). During the 1960s, two nuclear devices and two chemical tests were detonated 826 meters (in) (2710 feet [ft]) below the ground surface in the salt dome underlying the SS. These tests were part of the Vela Uniform Program conducted to improve the United States capability to detect, identify, and locate underground nuclear detonations. The RI/FS is being conducted to determine if any contamination is migrating from the underground shot cavity in the salt dome and if there is any residual contamination in the near surface mud and debris disposal pits used during the testing activities. The objective of the surface geophysical surveys was to locate buried debris, disposal pits, and abandoned mud pits that may be present at the site. This information will then be used to identify the locations for test pits, cone penetrometer tests, and drill hole/monitor well installation. The disposal pits were used during the operation of the test site in the 1960s. Vertical magnetic gradient (magnetic gradient), electromagnetic (EM) conductivity, and ground-penetrating radar (GPR) surveys were used to accomplish these objectives. A description of the equipment used and a theoretical discussion of the geophysical methods are presented Appendix A. Because of the large number of figures relative to the number of pages of text, the geophysical grid-location maps, the contour maps of the magnetic-gradient data, the contour maps of the EM conductivity data, and the GPR traverse location maps are located in Appendix B, Tabs I through 22. In addition, selected GPR records are located in Appendix C.
Paris-Sud XI, Université de
2014-01-01T23:59:59.000Z
Treatise on Geophysics, 2nd Edition 00 (2014) 141 To appear in Treatise on Geophysics, 2nd Edition Author manuscript, published in "Treatise on Geophysics, 2nd edition, G. Schubert, T. Spohn (Ed.) (2014) in press" #12;T. Guillot & D. Gautier / Treatise on Geophysics, 2nd Edition 00 (2014) 141 2 Contents 1
Euler's fluid equations: Optimal Control vs Optimization
Darryl D. Holm
2009-09-28T23:59:59.000Z
An optimization method used in image-processing (metamorphosis) is found to imply Euler's equations for incompressible flow of an inviscid fluid, without requiring that the Lagrangian particle labels exactly follow the flow lines of the Eulerian velocity vector field. Thus, an optimal control problem and an optimization problem for incompressible ideal fluid flow both yield the \\emph {same} Euler fluid equations, although their Lagrangian parcel dynamics are \\emph{different}. This is a result of the \\emph{gauge freedom} in the definition of the fluid pressure for an incompressible flow, in combination with the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates. Similar ideas are also illustrated for SO(N) rigid body motion.
NMSLO Application for Permit to Conduct Geophysical Exploration...
Reference LibraryAdd to library Legal Document- OtherOther: NMSLO Application for Permit to Conduct Geophysical Exploration on Unleased State LandsLegal Published NA Year...
Advanced 3D Geophysical Imaging Technologies for Geothermal Resource Characterization
Zhang, Haijiang
2012-01-01T23:59:59.000Z
We describe the ongoing development of joint geophysical imaging methodologies for geothermal site characterization and demonstrate their potential in two regions: Krafla volcano and associated geothermal fields in ...
Merging High Resolution Geophysical and Geochemical Surveys to...
Buttes, Oregon Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Merging High Resolution Geophysical and Geochemical Surveys to Reduce...
An Initial Value of Information (VOI) Framework for Geophysical...
of Geothermal Energy Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: An Initial Value of Information (VOI) Framework for Geophysical...
Geophysical Investigation and Assessment of the Rye Patch Known...
Area, Rye Patch, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Dissertation: Geophysical Investigation and Assessment of the Rye Patch Known...
A Conceptual Model Approach to the Geophysical Exploration of...
approach is particularly effective in geothermal exploration because it promotes the interpretation of geophysics in the context of this wider range of geoscience information....
advanced borehole geophysical: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
approach to formation evaluation using borehole geophysical measurements and 3D seismic data Fossil Fuels Websites Summary: and depth of penetration). Techniques used for...
Merging high resolution geophysical and geochemical surveys to...
Broader source: Energy.gov (indexed) [DOE]
Merging high resolution geophysical and geochemical surveys to reduce exploration risk at Glass Buttes, Oregon Patrick Walsh Ormat Nevada Inc. Innovative technologies May 19, 2010...
Viscosity of a nucleonic fluid
Aram Z. Mekjian
2012-03-21T23:59:59.000Z
The viscosity of nucleonic matter is studied both classically and in a quantum mechanical description. The collisions between particles are modeled as hard sphere scattering as a baseline for comparison and as scattering from an attractive square well potential. Properties associated with the unitary limit are developed which are shown to be approximately realized for a system of neutrons. The issue of near perfect fluid behavior of neutron matter is remarked on. Using some results from hard sphere molecular dynamics studies near perfect fluid behavior is discussed further.
Demouchy, Sylvie
Marine Geophysical Researches 20: 403423, 1998. © 1998 Kluwer Academic Publishers. Printed Abstract Recent multibeam bathymetric and geophysical data recorded in the West Philippine Basin, east
© 2013 American Geophysical Union. All Rights Reserved. High resolution imaging of the melt;© 2013 American Geophysical Union. All Rights Reserved. Abstract We determine the 3-D melt geometry
Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii
Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2011 1 (2011). Lunar swirls: Examining crustal magnetic anomalies and space weathering trends. J. Geophysics
Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii
Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2000 1 Sensing Volcanism, Remote Sensing of Active Volcanism, AGU Geophysical Monograph Series 116, Mouginis
Harinarayana, T.
. 13. Open session · Venue:: National Geophysical Research Institute (An ISO 9001 Organisation in different sectors of the Himalaya. #12;· Venue:: National Geophysical Research Institute (An ISO 9001
Time-lapse Joint Inversion of Geophysical Data and its Applications...
Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site
Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal Prospecting Time-lapse Joint Inversion of Geophysical Data and its Applications to Geothermal...
Brownstone, Rob
DALHOUSIE UNIVERSITY, DEPARTMENT OF EARTH SCIENCES Assistant Professor - Geophysics, Sedimentology position in Geophysics, Sedimentology, or Geochemistry. The appointment is probationary tenure
DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]
Dilley, Lorie
Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.
Dilley, Lorie
2013-01-01T23:59:59.000Z
Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.
Geology and Geophysics College of Science code-BS
Kihara, Daisuke
Geology and Geophysics College of Science code-BS Code-GEOP 120 Credits "C-"or better required Geology Field Experience (summer) (3) Science/Engineering Elective (2xxxx or above) (3) Science ******************************************************************************************************************************** (effective Fall 2013) #12;Geology and Geophysics http
Geology and Geophysics College of Science code-BS
Kihara, Daisuke
Geology and Geophysics College of Science code-BS Code-GEOP 120 Credits "C-"or better required Professional Elective (3xxxx and above) (6) EAPS 49000 Geology Field Experience (summer) (3) Science ******************************************************************************************************************************** (effective Fall 2013) #12;Geology and Geophysics Fall 2014 Department of Earth, Atmospheric, and Planetary
Numerical Simulation in Applied Geophysics. From the Mesoscale to the
Santos, Juan
Numerical Simulation in Applied Geophysics. From the Mesoscale to the Macroscale Juan E. Santos Numerical Simulation in Applied Geophysics. From the Mesoscale to the Macroscale p. #12;Introduction. I layering, fractures and craks at the mesoscale (on the order of centimeters) are common in the earth
Office of Legacy Management (LM)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradleyTableSelling7111AWell: Gas productionDynamic , and Static ,
Large natural geophysical events: planetary planning
Knox, J.B.; Smith, J.V.
1984-09-01T23:59:59.000Z
Geological and geophysical data suggest that during the evolution of the earth and its species, that there have been many mass extinctions due to large impacts from comets and large asteroids, and major volcanic events. Today, technology has developed to the stage where we can begin to consider protective measures for the planet. Evidence of the ecological disruption and frequency of these major events is presented. Surveillance and warning systems are most critical to develop wherein sufficient lead times for warnings exist so that appropriate interventions could be designed. The long term research undergirding these warning systems, implementation, and proof testing is rich in opportunities for collaboration for peace.
Sedimentary basin geochemistry and fluid/rock interactions workshop
NONE
1991-12-31T23:59:59.000Z
Fundamental research related to organic geochemistry, fluid-rock interactions, and the processes by which fluids migrate through basins has long been a part of the U.S. Department of Energy Geosciences program. Objectives of this program were to emphasize those principles and processes which would be applicable to a wide range of problems associated with petroleum discovery, occurrence and extraction, waste disposal of all kinds, and environmental management. To gain a better understanding of the progress being made in understanding basinal fluids, their geochemistry and movement, and related research, and to enhance communication and interaction between principal investigators and DOE and other Federal program managers interested in this topic, this workshop was organized by the School of Geology and Geophysics and held in Norman, Oklahoma in November, 1991.
BDGEOS :The geophysical data base at SHOM (Service Hydrographiqueet OcCanographique
Brest, Université de
BDGEOS :The geophysical data base at SHOM (Service Hydrographiqueet OcCanographique -dela Marine) M-mail :ribaud@ysecafr Abstract - A Geophysical Data Base (BDGEOS) has been developped at EPSHOM to come up~esand from geophysical surveys or are interpreted and modelled data bases wati0d Geophysical ~ ~ t a values
CURRICULUM VITAE TARJE NISSEN-MEYER address: ETH Zurich, Institute of Geophysics
Nissen-Meyer, Tarje
CURRICULUM VITAE TARJE NISSEN-MEYER address: ETH Zurich, Institute of Geophysics Sonneggstrasse 5: ++41 (0) 44 633 3154 fax: ++41 (0) 44 633 1065 AUGUST 5, 2010 Education 2007 Ph.D. Geophysics in field geology, mathematics, seismology, geodynamics, geophysics 2001 Diplom Geophysics (M
New perspectives on superparameterization for geophysical turbulence
Majda, Andrew J. [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States); Center for Prototype Climate Modelling, NYU Abu Dhabi, Abu Dhabi (United Arab Emirates); Grooms, Ian, E-mail: grooms@cims.nyu.edu [Center for Atmosphere Ocean Science, Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 (United States)
2014-08-15T23:59:59.000Z
This is a research expository paper regarding superparameterization, a class of multi-scale numerical methods designed to cope with the intermittent multi-scale effects of inhomogeneous geophysical turbulence where energy often inverse-cascades from the unresolved scales to the large scales through the effects of waves, jets, vortices, and latent heat release from moist processes. Original as well as sparse space–time superparameterization algorithms are discussed for the important case of moist atmospheric convection including the role of multi-scale asymptotic methods in providing self-consistent constraints on superparameterization algorithms and related deterministic and stochastic multi-cloud parameterizations. Test models for the statistical numerical analysis of superparameterization algorithms are discussed both to elucidate the performance of the basic algorithms and to test their potential role in efficient multi-scale data assimilation. The very recent development of grid-free seamless stochastic superparameterization methods for geophysical turbulence appropriate for “eddy-permitting” mesoscale ocean turbulence is presented here including a general formulation and illustrative applications to two-layer quasigeostrophic turbulence, and another difficult test case involving one-dimensional models of dispersive wave turbulence. This last test case has randomly generated solitons as coherent structures which collapse and radiate wave energy back to the larger scales, resulting in strong direct and inverse turbulent energy cascades.
Theory of locomotion through complex fluids
Gwynn Elfring; Eric Lauga
2014-10-16T23:59:59.000Z
Microorganisms such as bacteria often swim in fluid environments that cannot be classified as Newtonian. Many biological fluids contain polymers or other heterogeneities which may yield complex rheology. For a given set of boundary conditions on a moving organism, flows can be substantially different in complex fluids, while non-Newtonian stresses can alter the gait of the microorganisms themselves. Heterogeneities in the fluid may also be characterized by length scales on the order of the organism itself leading to additional dynamic complexity. In this chapter we present a theoretical overview of small-scale locomotion in complex fluids with a focus on recent efforts quantifying the impact of non-Newtonian rheology on swimming microorganisms.
Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Franke, Rudiger
2010-01-01T23:59:59.000Z
Thermo-Fluid Systems, Modelica 2003 Conference, Linköping,H. Tummescheit: The Modelica Fluid and Media Library forThermo-Fluid Pipe Networks, Modelica 2006 Conference, Vi-
An Integrated Geophysical Analysis Of The Upper Crust Of The...
Of The Upper Crust Of The Southern Kenya Rift Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: An Integrated Geophysical Analysis Of The Upper...
Reconnaissance geophysical studies of the geothermal system in...
Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson and C.W. Published Journal Geophysics, 1211978 DOI Not Provided Check for DOI availability: http:crossref.org Citation...
airborne geophysical survey: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
V; Vaalsta, Timo P; Li, Ju; Blair, David G 2011-01-01 12 A Virtual Excavation: Combining 3D Immersive Virtual Reality and Geophysical Surveying Computer Technologies and...
airborne geophysical surveys: Topics by E-print Network
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
V; Vaalsta, Timo P; Li, Ju; Blair, David G 2011-01-01 12 A Virtual Excavation: Combining 3D Immersive Virtual Reality and Geophysical Surveying Computer Technologies and...
A Geothermal Field Model Based On Geophysical And Thermal Prospectings...
Model Based On Geophysical And Thermal Prospectings In Nea Kessani (Ne Greece) Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Geothermal...
Dozier, Jeff
REVIEWSOF GEOPHYSICS,VOL. 25, NO. 2, PAGES153-161, MARCH1987 U.S. NATIONAL REPORT TO INTERNATIONAL UNION OF GEODESY AND GEOPHYSICS 1983-1986 RecentResearchin SnowHydrology JEFF DOZIER Centerfor Remote thespectraldistri- butionof the incomingsolardirectanddiffuseirradianceand thespectralalbedo: Copyfight1987bytheAmericanGeophysical
Johnston, Roger G. (Los Alamos, NM); Garcia, Anthony R. E. (Espanola, NM); Martinez, Ronald K. (Santa Cruz, NM)
2001-09-25T23:59:59.000Z
The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.
Lenert, Andrej
2012-01-01T23:59:59.000Z
The choice of heat transfer fluids has significant effects on the performance, cost, and reliability of solar thermal systems. In this chapter, we evaluate existing heat transfer fluids such as oils and molten salts based ...
Standardization of Thermo-Fluid Modeling in Modelica.Fluid
Franke, Rudiger
2010-01-01T23:59:59.000Z
Ob- ject-Oriented Modeling of Thermo-Fluid Systems, Modelicable and Compressible Thermo-Fluid Pipe Networks, ModelicaStandardization of Thermo-Fluid Modeling in Modelica.Fluid
Engineering Fluid Dynamics Research of the Group Engineering Fluid
Twente, Universiteit
are conducted. Thin-film flows The flow in narrow domains under extreme conditions between deforming surfaces is studied theoretically and experimentally. A typical example is the lubricant film in roller bearings (Elasto- Hydrodynamic Lubrication). The theoretical research involves modelling, development of efficient
Chen, Jinsong
Joint stochastic inversion of geophysical data for reservoir parameter estimation Jinsong Chen the stochastic framework, both reservoir parameters and geophysical attributes at unsampled locations. Introduction Conventional methods for reservoir parameter estimation using multiple sources of geophysical data
Paris-Sud XI, Université de
GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS, VOL. ???, XXXX, DOI:10.1029/, The influence of non, Institute of Geophysics, ETH Zurich, Sonneggstrasse 5, Zurich, Switzerland. T. Nissen-Meyer, Institute of Geophysics, ETH Zurich, Sonneggstrasse 5, Zurich, Switzerland. Olaf Schenk, Institute of Computational
Entropy production at freeze-out from dissipative fluids
E. Molnar
2007-09-17T23:59:59.000Z
Entropy production due to shear viscosity during the continuous freeze-out of a longitudinally expanding dissipative fluid is addressed. Assuming the validity of the fluid dynamical description during the continuous removal of interacting matter we estimated a small entropy production as function of the freeze-out duration and the ratio of dissipative to non-dissipative quantities in case of a relativistic massless pion fluid.
A thin film model for corotational Jeffreys fluids under strong slip
A. Münch; B. Wagner; M. Rauscher; R. Blossey
2006-05-14T23:59:59.000Z
We derive a thin film model for viscoelastic liquids under strong slip which obey the stress tensor dynamics of corotational Jeffreys fluids.
The influence of pore fluids on the frictional properties of quartzose sandstone
Blackwell, Michael Lloyd
1973-01-01T23:59:59.000Z
THE INFLUENCE OF PORE FLUIDS ON THE FRICTIONAL PROPERTIES OF QUARTZOSE SANDSTONE A Thesis by MICHAEL LLOYD BLACKWELL Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE May 1973 Ma)or Sub)ect: Geophysics THE INFLUENCE OF PORE FLUIDS ON THE FRICTIONAL PROPERTIES OF QUARTZOSE SANDSTONE A Thesis by MICHAEL LLOYD BLACKHELL Approved as to style and content by: (Chai of Committee) (Head of De rtment) (Member...
Carbon-bearing fluids at nanoscale interfaces
Cole, David [Ohio State University; Ok, Salim [Ohio State University, Columbus; Phan, A [Ohio State University, Columbus; Rother, Gernot [ORNL; Striolo, Alberto [Oklahoma University; Vlcek, Lukas [ORNL
2013-01-01T23:59:59.000Z
The behaviour of fluids at mineral surfaces or in confined geometries (pores, fractures) typically differs from their bulk behaviour in many ways due to the effects of large internal surfaces and geometrical confinement. We summarize research performed on C-O-H fluids at nanoscale interfaces in materials of interest to the earth and material sciences (e.g., silica, alumina, zeolites, clays, rocks, etc.), emphasizing those techniques that assess microstructural modification and/or dynamical behaviour such as gravimetric analysis, small-angle (SANS) neutron scattering, and nuclear magnetic resonance (NMR). Molecular dynamics (MD) simulations will be described that provide atomistic characterization of interfacial and confined fluid behaviour as well as aid in the interpretation of the neutron scattering results.
2.25 Advanced Fluid Mechanics, Fall 2002
Sonin, A. A.
Survey of principal concepts and methods of fluid dynamics. Mass conservation, momentum, and energy equations for continua. Navier-Stokes equation for viscous flows. Similarity and dimensional analysis. Lubrication theory. ...
Cohen, Ronald C.
© 2013 American Geophysical Union. All Rights Reserved. The 2010 California Research at the Nexus.50331 AcceptedArticle #12;© 2013 American Geophysical Union. All Rights Reserved. Abstract
22 nd International Geophysical Conference and Exhibition, 26-29 February 2012 - Brisbane meaningful lithologic information directly from geophysical data. Here, we describe a multi-faceted approach
Geophysical logs from water wells in the Yakima area, Washington
Biggane, J.H.
1983-01-01T23:59:59.000Z
The logs include: natural gamma, gamma gamma, neutron neutron, neutron gamma, caliper, fluid temperature, fluid resistivity, wall resistivity, spontaneous potential, and flow meter.
Miller, Jan D; Hupka, Jan; Aranowski, Robert
2012-11-20T23:59:59.000Z
A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.
Understanding biogeobatteries: Where geophysics meets microbiology
Revil, A.; Mendonca, C.A.; Atekwana, E.A.; Kulessa, B.; Hubbard, S.S.; Bohlen, K.
2009-08-15T23:59:59.000Z
Although recent research suggests that contaminant plumes behave as geobatteries that produce an electrical current in the ground, no associated model exists that honors both geophysical and biogeochemical constraints. Here, we develop such a model to explain the two main electrochemical contributions to self-potential signals in contaminated areas. Both contributions are associated with the gradient of the activity of two types of charge carriers, ions and electrons. In the case of electrons, bacteria act as catalysts for reducing the activation energy needed to exchange the electrons between electron donor and electron acceptor. Possible mechanisms that facilitate electron migration include iron oxides, clays, and conductive biological materials, such as bacterial conductive pili or other conductive extracellular polymeric substances. Because we explicitly consider the role of biotic processes in the geobattery model, we coined the term 'biogeobattery'. After theoretical development of the biogeobattery model, we compare model predictions with self-potential responses associated with laboratory and field-scale conducted in contaminated environments. We demonstrate that the amplitude and polarity of large (>100 mV) self-potential signatures requires the presence of an electronic conductor to serve as a bridge between electron donors and acceptors. Small self-potential anomalies imply that electron donors and electron acceptors are not directly interconnected, but instead result simply from the gradient of the activity of the ionic species that are present in the system.
Hipolito-Ricaldi, W. S. [Universidade Federal do Espirito Santo, Departamento de Ciencias Matematicas e Naturais, CEUNES, Rodovia BR 101 Norte, km. 60, CEP 29932-540, Sao Mateus, Espirito Santo (Brazil); Velten, H. E. S.; Zimdahl, W. [Universidade Federal do Espirito Santo, Departamento de Fisica, Av. Fernando Ferrari, 514, Campus de Goiabeiras, CEP 29075-910, Vitoria, Espirito Santo (Brazil)
2010-09-15T23:59:59.000Z
We investigate the cosmological perturbation dynamics for a universe consisting of pressureless baryonic matter and a viscous fluid, the latter representing a unified model of the dark sector. In the homogeneous and isotropic background the total energy density of this mixture behaves as a generalized Chaplygin gas. The perturbations of this energy density are intrinsically nonadiabatic and source relative entropy perturbations. The resulting baryonic matter power spectrum is shown to be compatible with the 2dFGRS and SDSS (DR7) data. A joint statistical analysis, using also Hubble-function and supernovae Ia data, shows that, different from other studies, there exists a maximum in the probability distribution for a negative present value q{sub 0{approx_equal}}-0.53 of the deceleration parameter. Moreover, while previous descriptions on the basis of generalized Chaplygin-gas models were incompatible with the matter power-spectrum data since they required a much too large amount of pressureless matter, the unified model presented here favors a matter content that is of the order of the baryonic matter abundance suggested by big-bang nucleosynthesis.
Williams, Kenneth H.; Kemna, Andreas; Wilkins, Michael J.; Druhan, Jennifer L.; Arntzen, Evan V.; N'Guessan, A. Lucie; Long, Philip E.; Hubbard, Susan S.; Banfield, Jillian F.
2009-08-05T23:59:59.000Z
Understanding how microorganisms alter their physical and chemical environment during bioremediation is hindered by our inability to resolve subsurface microbial activity with high spatial resolution. Here we demonstrate the use of a minimally invasive geophysical technique to monitor stimulated microbial activity during acetate amendment in an aquifer near Rifle, Colorado. During electrical induced polarization (IP) measurements, spatiotemporal variations in the phase response between imposed electric current and the resultant electric field correlated with changes in groundwater geochemistry accompanying stimulated iron and sulfate reduction and sulfide mineral precipitation. The magnitude of the phase response varied with measurement frequency (0.125 and 1 Hz) andwasdependent upon the dominant metabolic process. The spectral effect was corroborated using a biostimulated column experiment containing Rifle sediments and groundwater. Fluids and sediments recovered from regions exhibiting an anomalous phase response were enriched in Fe(II), dissolved sulfide, and cell-associated FeS nanoparticles. The accumulation of mineral precipitates and electroactive ions altered the ability of pore fluids to conduct electrical charge, accounting for the anomalous IP response and revealing the usefulness of multifrequency IP measurements for monitoring mineralogical and geochemical changes accompanying stimulated subsurface bioremediation.
Mojahedi, Mohammad
Smithsonian/NASA ADS Physics/Geophysics Abstract Service · Find Similar Abstracts (with default | Query Form | Preferences | HELP | FAQ Physics/Geophysics arXiv e-prints Send Query Reset #12;
Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii
Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2003 1 volcanic collapse formation, Geochemistry, Geophysics, Geosystems, 4 (9), 1077, doi:10.1029/2002GC000483
Geophysical Research Abstracts Vol. 12, EGU2010-4777-1, 2010
Boyer, Edmond
Geophysical Research Abstracts Vol. 12, EGU2010-4777-1, 2010 EGU General Assembly 2010 © Author" River and the damage caused can create routes for floods. Geophysical methods such as Multi
Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii
Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2005 1. 2 craters. Journal of Geophysical Research 110, E10001, doi: 10.1029/2004JE002338, 2005. 7. Blewett, D. T
Reactive Transport Modeling and Geophysical Monitoring of Bioclogging at Reservoir Scale
Hubbard, Susan
Reactive Transport Modeling and Geophysical Monitoring of Bioclogging at Reservoir Scale Vikranth scale using a combination of reactive transport modeling and geophysical imaging tools (EM & seismic Sacramento basin, California; the model well (Citizen Green #1) was characterized using sonic, electrical
A NEW PETROLOGICAL AND GEOPHYSICAL INVESTIGATION OF THE PRESENT-DAY PLUMBING
Paris-Sud XI, Université de
A NEW PETROLOGICAL AND GEOPHYSICAL INVESTIGATION OF THE PRESENT-DAY PLUMBING SYSTEM OF MT. VESUVIUS, on geophysical information, in particular, magnetotelluric (MT) data, and on petrological and geochemical
J. Marvin Herndon
2013-12-31T23:59:59.000Z
The background, basis, feasibility, structure, evidence, and geophysical implications of a naturally occurring Terracentric nuclear fission georeactor are reviewed. For a nuclear fission reactor to exist at the center of the Earth, all of the following conditions must be met: (1) There must originally have been a substantial quantity of uranium within Earth's core; (2) There must be a natural mechanism for concentrating the uranium; (3) The isotopic composition of the uranium at the onset of fission must be appropriate to sustain a nuclear fission chain reaction; (4) The reactor must be able to breed a sufficient quantity of fissile nuclides to permit operation over the lifetime of Earth to the present; (5) There must be a natural mechanism for the removal of fission products; (6) There must be a natural mechanism for removing heat from the reactor; (7) There must be a natural mechanism to regulate reactor power level, and; (8) The location of the reactor or must be such as to provide containment and prevent meltdown. Herndon's georeactor alone is shown to meet those conditions. Georeactor existence evidence based upon helium measurements and upon antineutrino measurements is described. Geophysical implications discussed include georeactor origin of the geomagnetic field, geomagnetic reversals from intense solar outbursts and severe Earth trauma, as well as georeactor heat contributions to global dynamics.
Potential-field geophysical programs for VAX 7xx computers; documentation
Not Available
1989-01-01T23:59:59.000Z
A U.S. Geological Survey report is presented documenting potential-field geophysical programs for VAX 7xx computers.
Stillman, David E.
C41A-0429 Integrated Geophysical Examination of the CRREL Permafrost Tunnel's Fairbanks Silt Units report on a recent geophysical survey of the U.S. Army Corps of Engineers' Cold Region Research geophysical signatures of permanently frozen loess and massive wedge ice. We exploited the increasing path
GEON: Geophysical data add the 3rd dimension in geospatial studies
Kreinovich, Vladik
GEON: Geophysical data add the 3rd dimension in geospatial studies Aldouri, R.; Keller, G. R of subsurface information to provide a 3-D perspective on data. Geophysical data provide information about projects has required the development of many sophisticated tools to allow users to utilize geophysical
MonteCarloType Techniques for Processing Interval Uncertainty, and Their Geophysical and
Ward, Karen
MonteCarloType Techniques for Processing Interval Uncertainty, and Their Geophysical contact email vladik@cs.utep.edu Abstract To determine the geophysical structure of a region, we measure are independently normally distributed. Problem: the resulting accuracies are not in line with geophysical intuition
Analysis of Geophysical Time Series Using Discrete Wavelet Transforms: An Overview
Percival, Don
Analysis of Geophysical Time Series Using Discrete Wavelet Transforms: An Overview Donald B geophysical time series. The basic idea is to transform a time series into coefficients describing how in geophysical data analysis. The intent of this article is to give an overview of how DWTs can be used
Monte-Carlo-Type Techniques for Processing Interval Uncertainty, and Their Geophysical and
Ward, Karen
Monte-Carlo-Type Techniques for Processing Interval Uncertainty, and Their Geophysical contact email vladik@cs.utep.edu Abstract To determine the geophysical structure of a region, we measure are independently normally distributed. Problem: the resulting accuracies are not in line with geophysical intuition
Oldenburg, Douglas W.
Geophysical inversion in an integrated mineral exploration program: examples from the San NicolÂ´as deposit Nigel Phillips and Douglas W. Oldenburg, UBC-Geophysical Inversion Facility, University of British of the subsurface from surface geophysical data, coupled with an increasing need to explore for minerals
1340 The Leading Edge October 2008 SAGE celebrates 25 years of learning geophysics by
1340 The Leading Edge October 2008 SAGE celebrates 25 years of learning geophysics by doing geophysics The increasing world demand and record-high costs for energy and mineral resources, along and educators we must seriously ask if our geophysics pipeline can adequately address this crisis. One program
Riedi, Rudolf H.
Multifractals and Wavelets: A potential tool in Geophysics Rudolf H. Riedi, Rice University of pos- sible applications in geophysics. It is elaborated how a description of the well log measurement to the mentioned elds. This paper is written in the hope of achieving the same in the area of geophysics. The idea
GEOPHYSICAL INVERSION IN AN INTEGRATED EXPLORATION PROGRAM: EXAMPLES FROM THE SAN NICOL AS DEPOSIT
Oldenburg, Douglas W.
GEOPHYSICAL INVERSION IN AN INTEGRATED EXPLORATION PROGRAM: EXAMPLES FROM THE SAN NICOL Â´AS DEPOSIT information to the explorationist. This thesis examines the role geophysical inversion can assume in an integrated explo- ration program, and the impact it can have on the results. As an example, geophysical data
Northern Thailand Geophysics Field Camp: Overview of Activities Lee M. Liberty
Barrash, Warren
Northern Thailand Geophysics Field Camp: Overview of Activities Lee M. Liberty Boise State University conducted a geophysics field camp in northern Thailand in January, 2010 to train students and professionals in geophysical methods to address environmental and engineering challenges. Faculty, technicians
GEOPHYSICS?[The application of physics to problems in the Earth Sciences.
Merriam, James
W HAT IS GEOPHYSICS?[The application of physics to problems in the Earth Sciences.] In applied geophysics we inject a signal into the ground and record how the ground changes that signal as it passes://duke.usask.ca~merriam/geo_phys/ Rewarding careers are possible in exploration and environmental geophysics. Graduates of the U of S qualify
Geophysical Surveying with Marine Networked Mobile Robotic Systems: The WiMUST Project
Jesus, Sérgio M.
Geophysical Surveying with Marine Networked Mobile Robotic Systems: The WiMUST Project [Extended for geophysical surveying. This paper describes the main features of the envisaged developments, with a focus.00. Figure 1: Conventional geophysical surveying using long lines of towed streamers team. Such teams
Gilbes, Fernando
Dr. Benjamin R. Phillips Benjamin Phillips is a Program Director in Geophysics at the National for Geophysics at the University of Texas at Austin developing earthquake location techniques in support. Associate Program Director, Geophysics National Science Foundation 4201 Wilson Boulevard Arlington, VA 22230
Geophysical Prospecting 36,571-590,1988 ELASTIC WAVE PROPAGATION IN MEDIA WITH
Santos, Juan
Geophysical Prospecting 36,571-590,1988 ELASTIC WAVE PROPAGATION IN MEDIA WITH PARALLEL FRACTURES propagation in media with parallel frac- tures and aligned cracks. Geophysical Prospecting 36,571-590. A model,CT 06877-4108, USA. Institute for Earth Sciences, Department of Geophysics, PB 80021, 3508 TA Utrecht
Bachelor of Science, Geosciences, Geophysics Emphasis, 2014-2015 Name ID# Date
Barrash, Warren
Bachelor of Science, Geosciences, Geophysics Emphasis, 2014-2015 Name ID# Date General Degree General Chemistry II with Lab 4 GEOPH 201 Seeing the Unseen: an Introduction to Geophysics 4 GEOG 360 Physics I & II with Calculus & Labs Physics Option II: PHYS 111-112 General Physics 8-10 Geophysics
Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii
Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2002 1-scale multielement analysis of the lunar surface using iron, titanium, and thorium abundances, Journal of Geophysical distribution of lunar composition: New results from Lunar Prospector Journal of Geophysical Research, VOL. 107
Journal of Life Sciences 6 (2012) 335-341 The International Research Group in Geophysics Europe
Paris-Sud XI, Université de
2012-01-01T23:59:59.000Z
Journal of Life Sciences 6 (2012) 335-341 The International Research Group in Geophysics Europe to create the IRGGEA (International Group in Geophysics Europe Africa) in order to pursue the scientific: Scientific network, ethical rules, geophysics, sustainable research, Africa. 1. Introduction
Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii
Publications of the Hawaii Institute of Geophysics and Planetology University of Hawaii 2006 1 with an albedo feature near Airy crater in the lunar nearside highlands. Geophysical Research Letters. 9. Boyce viewed by the THEMIS instrument: Double-layered ejecta craters. J. Geophysical Research, 111, E10005, doi
Geophysical methods applied to characterize landfill covers with geocomposite F. Genelle1, 2
Paris-Sud XI, Université de
Geophysical methods applied to characterize landfill covers with geocomposite F. Genelle1, 2 , C attempt to characterize with geophysical methods the state of landfill covers to detect damages that can. The geophysical methods used were the Electrical Resistivity Tomography (ERT), cartography with an Automatic
Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are8COaBulkTransmissionSitingProcess.pdf Jump to:ar-80m.pdfFillmoreGabbs Valley Area (DOE
Ying, D.H.S.; Sivasubramanian, R.; Moujaes, S.F.; Givens, E.N.
1982-04-01T23:59:59.000Z
A commercial coal liquefaction plant will employ vertical tubular reactors feeding slurry and gas concurrently upward through these vessels. In the SRC-I plant design the reactor is essentially an empty vessel with only a distributor plate located near the inlet. Because the commercial plant represents a considerable scale-up over Wilsonville or any pilot plant, this program addressed the need for additional data on behavior of three phase systems in large vessels. Parameters that were investigated in this program were studied at conditions that relate directly to projected plant operating conditions. The fluid dynamic behavior of the three-phase upflow system was studied by measuring gas and slurry holdup, liquid dispersion, solids suspension and solids accumulation. The dependent parameters are gas and liquid velocities, solid particle size, solids concentration, liquid viscosity, liquid surface tension and inlet distributor. Within the range of liquid superficial velocity from 0.0 to 0.5 ft/sec, gas holdup is found to be independent of liquid flow which agrees with other investigators. The results also confirm our previous finding that gas holdup is independent of column diameter when the column diameter is 5 inches or larger. The gas holdup depends strongly on gas flow rate; gas holdup increases with increasing gas velocity. The effect of solids particles on gas holdup depends on the gas flow rate. Increasing liquid viscosity and surface tension reduce gas holdup which agrees with other investigators. Because of the complexity of the system, we could not find a single correlation to best fit all the data. The degree of liquid backmixing markedly affects chemical changes occurring in the dissolver, such as sulfur removal, and oil and distillate formation.
American Institute of Aeronautics and Astronautics Coupled Level-Set/Volume-of-Fluid Method for the
Sussman, Mark
utilizing a coupled level-set/volume-of-fluid method to simulate liquid fuel atomization. The coupledAmerican Institute of Aeronautics and Astronautics 1 Coupled Level-Set/Volume-of-Fluid Method, Canoga Park, Calif. 91309 This paper presents results of a multiphase computational fluid dynamics code
Bryson, W.R.
1983-06-01T23:59:59.000Z
Prior to 1974 the disposal of drilling fluids was not considered to be much of an environmental problem. In the past, disposal of drilling fluids was accomplished in various ways such as spreading on oil field lease roads to stabilize the road surface and control dust, spreading in the base of depressions of sandy land areas to increase water retention, and leaving the fluid in the reserve pit to be covered on closure of the pit. In recent years, some states have become concerned over the indescriminate dumping of drilling fluids into pits or unauthorized locations and have developed specific regulations to alleviate the perceived deterioration of environmental and groundwater quality from uncontrolled disposal practices. The disposal of drilling fluids in Kansas is discussed along with a newer method or treatment in drilling fluid disposal.
Angel, S.M.
1987-02-27T23:59:59.000Z
Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.
Geophysical Investigations of Archaeological Resources in Southern Idaho
Brenda Ringe Pace; Gail Heath; Clark Scott; Carlan McDaniel
2005-10-01T23:59:59.000Z
At the Idaho National Laboratory and other locations across southern Idaho, geophysical tools are being used to discover, map, and evaluate archaeological sites. A variety of settings are being explored to expand the library of geophysical signatures relevant to archaeology in the region. Current targets of interest include: prehistoric archaeological features in open areas as well as lava tube caves, historical structures and activity areas, and emigrant travel paths. We draw from a comprehensive, state of the art geophysical instrumentation pool to support this work. Equipment and facilities include ground penetrating radar, electromagnetic and magnetic sensors, multiple resistivity instruments, advanced positioning instrumentation, state of the art processing and data analysis software, and laboratory facilities for controlled experiments.
Well casing-based geophysical sensor apparatus, system and method
Daily, William D. (Livermore, CA)
2010-03-09T23:59:59.000Z
A geophysical sensor apparatus, system, and method for use in, for example, oil well operations, and in particular using a network of sensors emplaced along and outside oil well casings to monitor critical parameters in an oil reservoir and provide geophysical data remote from the wells. Centralizers are affixed to the well casings and the sensors are located in the protective spheres afforded by the centralizers to keep from being damaged during casing emplacement. In this manner, geophysical data may be detected of a sub-surface volume, e.g. an oil reservoir, and transmitted for analysis. Preferably, data from multiple sensor types, such as ERT and seismic data are combined to provide real time knowledge of the reservoir and processes such as primary and secondary oil recovery.
Metalworking and machining fluids
Erdemir, Ali (Naperville, IL); Sykora, Frank (Caledon, ON, CA); Dorbeck, Mark (Brighton, MI)
2010-10-12T23:59:59.000Z
Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.
Adsorption Kinetics of Surfactants at Fluid-Fluid Interfaces
Andelman, David
Adsorption Kinetics of Surfactants at Fluid-Fluid Interfaces Haim Diamant and David Andelman School-Fluid Interfaces, Adsorption, Adsorption Kinetics, Interfacial Tension. 1 #12;Abstract We review a new theoretical approach to the kinetics of surfactant adsorption at fluid-fluid interfaces. It yields a more complete
Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis
Morris, J P; Johnson, S M
2008-03-26T23:59:59.000Z
An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDEC now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.
Zheng, Chunmiao
Three-Year Non-Tenure Track Visiting Assistant Professor Position Geophysics - The University of Alabama invites applications for a three-year, non-tenure track visiting faculty position in geophysics geophysical sub-disciplines, preference will be given to candidates who will enhance our existing geophysics
Mechanism of destruction of transport barriers in geophysical jets with Rossby waves
Uleysky, M Yu; Prants, S V; 10.1103/PhysRevE.81.017202
2012-01-01T23:59:59.000Z
The mechanism of destruction of a central transport barrier in a dynamical model of a geophysical zonal jet current in the ocean or the atmosphere with two propagating Rossby waves is studied. We develop a method for computing a central invariant curve which is an indicator of existence of the barrier. Breakdown of this curve under a variation of the Rossby wave amplitudes and onset of chaotic cross-jet transport happen due to specific resonances producing stochastic layers in the central jet. The main result is that there are resonances breaking the transport barrier at unexpectedly small values of the amplitudes that may have serious impact on mixing and transport in the ocean and the atmosphere. The effect can be found in laboratory experiments with azimuthal jets and Rossby waves in rotating tanks under specific values of the wave numbers that are predicted in the theory.
Yield stresses in electrorheological fluids R. T. Bonnecazea) and J. F. Brady
previously for the dynamic simulation of an ER fluid. The static yield stress is determined from nonlinear;Gast & Zukoski, 1989; Klingenberg, 1990) and dynamic simulations (Klingenberg, 1990; Bonnecaze & Brady, dominates the rheology of the ER fluid at large electric field strengths. At the sametime the electrostatic
Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad
2006-06-06T23:59:59.000Z
A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.
Distributed computational fluid dynamics Karl Jenkins
de Gispert, AdriÃ
of large and complex datasets. Thus, remote access to this information is an integral part of the CFD turbulent combustion pro- cesses is a strong coupling between turbulence, chemical kinetics and heat release provides a route around the departmental firewalls. The clusters run Globus and Condor for remote job
Fluid Dynamics IB Dr Natalia Berloff
, say, w = where the dot denotes the time derivative, and likewise in the second tube, where w = 2 2 of the jet problem.) Â§3.4.4 Bubbles and cavities: oscillations and collapse This is another
Eggers, Jens
to the large scale distribution of matter in the universe. For most of the 20th century, it has been of propane coming out of a gold nozzle 6 nm in diameter, from Moseler and Landman, Science 289, 1165 (2000). There are about 2 × 105 propane molecules in this simulation. On the left, one sees the formation of the jet
OpenFOAM: Computational Fluid Dynamics
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpenâ†’ global â†’ local andOpenEI
OpenFOAM: Computational Fluid Dynamics
Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)
AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeeding accessSpeedingOctoberResearchOpenâ†’ global â†’ local
Jakaboski, Juan-Carlos (Albuquerque, NM); Hughs, Chance G. (Albuquerque, NM); Todd, Steven N. (Rio Rancho, NM)
2012-01-10T23:59:59.000Z
A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.
A two-fluid model for relativistic heat conduction
López-Monsalvo, César S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (Mexico)
2014-01-14T23:59:59.000Z
Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.
EOS, TRANSACTIONS, AMERICAN GEOPHYSICAL UNION Geomagnetic data provided by different
Michigan, University of
(from measurements to modeling) in Encyclopedia of Geomagnetism and Paleomagnetism [Gub- bins geomagnetic variations over a long time and at a given location. Currently, more than 70 countries oper- ateEOS, TRANSACTIONS, AMERICAN GEOPHYSICAL UNION Geomagnetic data provided by different platforms
Hydrogeological-Geophysical Methods for Subsurface Site Characterization - Final Report
Rubin, Yoram
2001-01-01T23:59:59.000Z
The goal of this research project is to increase water savings and show better ecological control of natural vegetation by developing hydrogeological-geophysical methods for characterizing the permeability and content of water in soil. The ground penetrating radar (GPR) tool was developed and used as the surface geophysical method for monitoring water content. Initial results using the tool suggest that surface GPR is a viable technique for obtaining precision volumetric water content profile estimates, and that laboratory-derived petrophysical relationships could be applied to field-scale GPR data. A field-scale bacterial transport study was conducted within an uncontaminated sandy Pleistocene aquifer to evaluate the importance of heterogeneity in controlling the transport of bacteria. Geochemical, hydrological, geological, and geophysical data were collected to characterize the site prior to and after chemical and bacterial injection experiments. Study results shows that, even within the fairly uniform shallow marine deposits of the narrow channel focus area, heterogeneity existed that influenced the chemical tracer transport over lateral distances of a few meters and vertical distances of less than a half meter. The interpretation of data suggest that the incorporation of geophysical data with limited hydrological data may provide valuable information about the stratigraphy, log conductivity values, and the spatial correlation structure of log conductivity, which have traditionally been obtainable only by performing extensive and intrusive hydrological sampling.
Deborah K. Smith Department of Geology and Geophysics, MS 22
Smith, Deborah K.
Deborah K. Smith Department of Geology and Geophysics, MS 22 Woods Hole Oceanographic Institution: Jordan, T. H., H. W. Menard, and D.K. Smith, Density and size distribution of seamounts in the eastern. Smith, H. W. Menard, J. A. Orcutt and T. H. Jordan, Seismic reflection site survey: correlation
JournalofGeophysicalResearch: EarthSurface RESEARCH ARTICLE
Small, Eric
surface, referred to as "bed topography." Observations show that bed topography affects erosion. HereJournalofGeophysicalResearch: EarthSurface RESEARCH ARTICLE 10.1002/2013JF002872 Key Points topography yields orders of magnitude increase in erosion rates · With bed topography, greatest ero- sion
ADVANCES IN GEOPHYSICS, VOL. 39 LOCAL TSUNAMIS AND EARTHQUAKE
equations describe the evolution of tsunamis during run-up in such a way that the shoreline is fixed in (ADVANCES IN GEOPHYSICS, VOL. 39 LOCAL TSUNAMIS AND EARTHQUAKE SOURCE PARAMETERS ERIC L. GEIST u in estimating the severity of local tsunamis gener- ated by earthquakes is explaining the great event
Geophysical phenomena during an ionospheric modication experiment at Troms, Norway
Paris-Sud XI, UniversitÃ© de
Geophysical phenomena during an ionospheric modiÂ®cation experiment at TromsÃ¹, Norway N. F-9037, TromsÃ¹, and The University Courses of Svalbard, Svalbard, Norway 3 EISCAT, N-9027 RamfjÃ¹rdbotn, Norway Received: 13 October 1997 / Revised: 11 May 1998 / Accepted: 26 May 1998 Abstract. We present
Nonlinear Processes in Geophysics (2002) 9: 7578 Nonlinear Processes
Paris-Sud XI, UniversitÃ© de
Geophysical Society 2002 A universal mirror wave-mode threshold condition for non-thermal space plasma plasmas. As a result, the transition from two temperature Maxwellians to realistic non-thermal features type modes downstream of the Earth's bow shock were reported (Hubert et al., 1989). The dispersion
Nonlinear Processes in Geophysics (2001) 8: 201209 Nonlinear Processes
Paris-Sud XI, UniversitÃ© de
of prediction of climate changes due to hu- man activity. All anthropogenic actions on the climate sys- tem Geophysical Society 2001 Climate model attractors: chaos, quasi-regularity and sensitivity to small, Russia Received: 6 July 2000 Â Revised: 25 October 2000 Â Accepted: 28 November 2000 Abstract
Hengill geothermal volcanic complex (Iceland) characterized by integrated geophysical observations
Paris-Sud XI, Université de
Hengill geothermal volcanic complex (Iceland) characterized by integrated geophysical observations be used to infer the location of magma chambers or productive geothermal areas. The Hengill volcanic triple-junction complex has a well-developed geothermal system, which is being exploited to extract hot
JournalofGeophysicalResearch: SpacePhysics RESEARCH ARTICLE
Usoskin, Ilya G.
of the high-energy solar particles in interplanetary space. The method includes the determination , and I. G. Usoskin1,3 1 SodankylÃ¤ Geophysical Observatory (Oulu Unit), University of Oulu, Oulu, Finland, 2 Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria
Nonlinear Processes in Geophysics (2001) 8: 429438 Nonlinear Processes
Boyer, Edmond
2001-01-01T23:59:59.000Z
Geophysical Society 2001 Mesoscale predictability under various synoptic regimes W. A. Nuss and D. K. Miller slightly ro- tated terrain are compared to gauge the sentivity of mesoscale forecasts to small forecast errors on the mesoscale in both wind and precipitation. The largest mesoscale errors occur when
Geophysical Research Abstracts Vol. 12, EGU2010-PREVIEW, 2010
Boyer, Edmond
(s) 2010 Overview of seismic imagery techniques applied to landslides characterization. Gilles Grandjean, geophysical methods based on seismic surveying appear to be well-adapted to investigate the morpho and non-intrusive measurements of acoustic (Vp) or shear (Vs) wave velocity, two important physical
Seismic petrophysics: An applied science for reservoir geophysics
Seismic petrophysics: An applied science for reservoir geophysics WAYNE D. PENNINGTON, Michigan a number of seismic attributes, using either prestack or poststack data, or even both in combination's intuition and, per- haps, wishful thinking, as a guide. This short paper introduces a new term "seismic
Martel, S.J.; Peterson, J.E. Jr. (Lawrence Berkeley Lab., CA (USA))
1990-05-01T23:59:59.000Z
Fracture systems form the primary fluid flow paths in a number of rock types, including some of those being considered for high level nuclear waste repositories. In some cases, flow along fractures must be modeled explicitly as part of a site characterization effort. Fractures commonly are concentrated in fracture zones, and even where fractures are seemingly ubiquitous, the hydrology of a site can be dominated by a few discrete fracture zones. We have implemented a site characterization methodology that combines information gained from geophysical and geologic investigations. The general philosophy is to identify and locate the major fracture zones, and then to characterize their systematics. Characterizing the systematics means establishing the essential and recurring patterns in which fractures are organized within the zones. We make a concerted effort to use information on the systematics of the fracture systems to link the site-specific geologic, borehole and geophysical information. This report illustrates how geologic and geophysical information on geologic heterogeneities can be integrated to guide the development of hydrologic models. The report focuses on fractures, a particularly common type of geologic heterogeneity. However, many aspects of the methodology we present can be applied to other geologic heterogeneities as well. 57 refs., 40 figs., 1 tab.
JournalofGeophysicalResearch: Planets RESEARCH ARTICLE
Spiga, Aymeric
without this implementation. However, a lack of water vapor in the tropics after Ls = 180 is persistent: · Radiatively active clouds impact atmospheric water vapor and ice in a GCM · Cloud microphysics with dynamic cli- mate modeling of the Martian water cycle with improved microphysics and radiatively active water
Iske, Armin
in Computational Fluid Dynamic Models L. Bonaventura , A. Iske, E. Miglio MOX Modellistica e Calcolo Scientifico challenging problems of high- dimensional approximation. Correspondence to: MOX Modellistica e Calcolo
Multiphase fluid characterization system
Sinha, Dipen N.
2014-09-02T23:59:59.000Z
A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.
Supercritical fluid extraction
Wai, Chien M. (Moscow, ID); Laintz, Kenneth (Pullman, WA)
1994-01-01T23:59:59.000Z
A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.
Semans, Joseph P. (Uniontown, PA); Johnson, Peter G. (Pittsburgh, PA); LeBoeuf, Jr., Robert F. (Clairton, PA); Kromka, Joseph A. (Idaho Falls, ID); Goron, Ronald H. (Connellsville, PA); Hay, George D. (Venetia, PA)
1993-01-01T23:59:59.000Z
A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.
Semans, J.P.; Johnson, P.G.; LeBoeuf, R.F. Jr.; Kromka, J.A.; Goron, R.H.; Hay, G.D.
1991-04-30T23:59:59.000Z
This invention, a trainer mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.
Circulating Fluid Bed Combustor
Fraley, L. D.; Do, L. N.; Hsiao, K. H.
1982-01-01T23:59:59.000Z
The circulating bed combustor represents an alternative concept of burning coal in fluid bed technology, which offers distinct advantages over both the current conventional fluidized bed combustion system and the pulverized coal boilers equipped...
Brenner, Howard
This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise ...
West, Phillip B. (Idaho Falls, ID)
2006-01-17T23:59:59.000Z
A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.
Molecular Dynamics Simulations of Heat Transfer In Nanoscale Liquid Films
Kim, Bo Hung
2010-07-14T23:59:59.000Z
Molecular Dynamics (MD) simulations of nano-scale flows typically utilize fixed lattice crystal interactions between the fluid and stationary wall molecules. This approach cannot properly model thermal interactions at the wall-fluid interface...
13.811 Advanced Structural Dynamics and Acoustics, Spring 2004
Schmidt, Henrik
Foundations of 3D elasticity. Fluid and elastic wave equations. Elastic and plastic waves in rods and beams. Waves in plates. Interaction with an acoustic fluid. Dynamics and acoustics of cylindrical shells. Radiation and ...
Oborny, Michael C. (Albuquerque, NM); Paul, Phillip H. (Livermore, CA); Hencken, Kenneth R. (Pleasanton, CA); Frye-Mason, Gregory C. (Cedar Crest, NM); Manginell, Ronald P. (Albuquerque, NM)
2001-01-01T23:59:59.000Z
A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.
Characterization of fracture networks for fluid flow analysis
Long, J.C.S.; Billaux, D.; Hestir, K.; Majer, E.L.; Peterson, J.; Karasaki, K.; Nihei, K.; Gentier, S.; Cox, L.
1989-06-01T23:59:59.000Z
The analysis of fluid flow through fractured rocks is difficult because the only way to assign hydraulic parameters to fractures is to perform hydraulic tests. However, the interpretation of such tests, or ''inversion'' of the data, requires at least that we know the geometric pattern formed by the fractures. Combining a statistical approach with geophysical data may be extremely helpful in defining the fracture geometry. Cross-hole geophysics, either seismic or radar, can provide tomograms which are pixel maps of the velocity or attenuation anomalies in the rock. These anomalies are often due to fracture zones. Therefore, tomograms can be used to identify fracture zones and provide information about the structure within the fracture zones. This structural information can be used as the basis for simulating the degree of fracturing within the zones. Well tests can then be used to further refine the model. Because the fracture network is only partially connected, the resulting geometry of the flow paths may have fractal properties. We are studying the behavior of well tests under such geometry. Through understanding of this behavior, it may be possible to use inverse techniques to refine the a priori assignment of fractures and their conductances such that we obtain the best fit to a series of well test results simultaneously. The methodology described here is under development and currently being applied to several field sites. 4 refs., 14 figs.
Tactic behaviors in bacterial dynamics
Sekora, Michael David
2005-01-01T23:59:59.000Z
The locomotion of a wide class of motile bacteria can be mathematically described as a biased random walk in three-dimensional space. Fluid mechanics and probability theory are invoked to model the dynamics of bacteria ...
Fluorescent fluid interface position sensor
Weiss, Jonathan D.
2004-02-17T23:59:59.000Z
A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.
Hinnell, A.C.; Ferre, T.P.A.; Vrugt, J.A.; Huisman, J.A.; Moysey, S.; Rings, J.; Kowalsky, M.B.
2009-11-01T23:59:59.000Z
There is increasing interest in the use of multiple measurement types, including indirect (geophysical) methods, to constrain hydrologic interpretations. To date, most examples integrating geophysical measurements in hydrology have followed a three-step, uncoupled inverse approach. This approach begins with independent geophysical inversion to infer the spatial and/or temporal distribution of a geophysical property (e.g. electrical conductivity). The geophysical property is then converted to a hydrologic property (e.g. water content) through a petrophysical relation. The inferred hydrologic property is then used either independently or together with direct hydrologic observations to constrain a hydrologic inversion. We present an alternative approach, coupled inversion, which relies on direct coupling of hydrologic models and geophysical models during inversion. We compare the abilities of coupled and uncoupled inversion using a synthetic example where surface-based electrical conductivity surveys are used to monitor one-dimensional infiltration and redistribution.