Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Geophysical Fluid Dynamics Laboratory Portal | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Geophysical Fluid Dynamics Laboratory Portal Geophysical Fluid Dynamics Laboratory Portal Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Geophysical Fluid Dynamics Laboratory Portal Dataset Summary Description Output and documentation from a set of multi-century experiments performed using NOAA/GFDL's climate models. Users can download files, display data file attributes, and graphically display the data. Data sets include those from CM2.X experiments associated with the Intergovernmental Panel on Climate Change Assessment Report (IPCC) and the US Climate Change Science Program (US CCSP). Tags {climate,IPCC,CCSP,pressure,SLP," sea ice","upper-level winds",ozone,"meridional winds","zonal winds",u-wind,v-wind," carbon dioxide"," volcanic",aerosol,grids,"soil moisture"," IPCC",flux,"radiation flux",thickness,radiation,emissivity,longwave,sensible,"latent heat",downwelling,upwelling,temperature,convective,runoff,"water vapor",humidity,cloudiness,transport,"geopotential height",assimilation,salinity,evaporation,freshwater}

2

Design and Construction of an Affordable Rotating Table for Classroom Demonstrations of Geophysical Fluid Dynamics Principles  

Science Conference Proceedings (OSTI)

Rotating tables have been in use for many years because of their ability to demonstrate fluid dynamical phenomena, shedding insight on the sometimes complicated or esoteric mathematics used to describe such processes. A small team of students at ...

Brian D. McNoldy; Anning Cheng; Zachary A. Eitzen; Richard W. Moore; John Persing; Kevin Schaefer; Wayne H. Schubert

2003-12-01T23:59:59.000Z

3

MAX Fluid Dynamics facility  

NLE Websites -- All DOE Office Websites (Extended Search)

MAX Fluid Dynamics facility MAX Fluid Dynamics facility Capabilities Engineering Experimentation Reactor Safety Testing and Analysis Overview Nuclear Reactor Severe Accident Experiments MAX NSTF SNAKE Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr MAX Fluid Dynamics facility Providing high resolution data for development of computational tools that model fluid flow and heat transfer within complex systems such as the core of a nuclear reactor. 1 2 3 4 5 Hot and cold air jets are mixed within a glass tank while laser-based anemometers and a high-speed infrared camera characterize fluid flow and heat transfer behavior. Click on image to view larger size image.

4

Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical  

Open Energy Info (EERE)

Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Inverse Modeling Geothermal Lab Call Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Fluid Imaging of Enhanced Geothermal Systems through Joint 3D Geophysical Inverse Modeling Project Type / Topic 1 Laboratory Call for Submission of Applications for Research, Development and Analysis of Geothermal Technologies Project Type / Topic 2 Fluid Imaging Project Description EGS has been defined as enhanced reservoirs that have been created to extract economical amounts of heat from low permeability and/or porosity geothermal resources. Critical to the success of EGS is the successful manipulation of fluids in the subsurface to enhance permeability. Knowledge in the change in volume and location of fluids in the rocks and fractures (both natural and induced) will be needed to manage injection strategies such as the number and location of step out wells, in-fill wells and the ratio of injection to production wells. The key difficulty in manipulating fluids has been our inability to reliably predict their locations, movements and concentrations. We believe combining data from MEQ and electrical surveys has the potential to overcome these problems and can meet many of the above needs, economically. Induced seismicity is currently viewed as one of the essential methods for inferring the success of creating fracture permeability and fluid paths during large scale EGS injections. Fluids are obviously playing a critical role in inducing the seismicity, however, other effects such as thermal, geochemical and stress redistribution, etc. may also play a role.

5

Nonlinear Fluid Dynamics from Gravity  

E-Print Network (OSTI)

Black branes in AdS5 appear in a four parameter family labeled by their velocity and temperature. Promoting these parameters to Goldstone modes or collective coordinate fields -- arbitrary functions of the coordinates on the boundary of AdS5 -- we use Einstein's equations together with regularity requirements and boundary conditions to determine their dynamics. The resultant equations turn out to be those of boundary fluid dynamics, with specific values for fluid parameters. Our analysis is perturbative in the boundary derivative expansion but is valid for arbitrary amplitudes. Our work may be regarded as a derivation of the nonlinear equations of boundary fluid dynamics from gravity. As a concrete application we find an explicit expression for the expansion of this fluid stress tensor including terms up to second order in the derivative expansion.

Sayantani Bhattacharyya; Veronika E Hubeny; Shiraz Minwalla; Mukund Rangamani

2007-12-14T23:59:59.000Z

6

Fluid dynamics of bacterial turbulence  

E-Print Network (OSTI)

Self-sustained turbulent structures have been observed in a wide range of living fluids, yet no quantitative theory exists to explain their properties. We report experiments on active turbulence in highly concentrated 3D suspensions of Bacillus subtilis and compare them with a minimal fourth-order vector-field theory for incompressible bacterial dynamics. Velocimetry of bacteria and surrounding fluid, determined by imaging cells and tracking colloidal tracers, yields consistent results for velocity statistics and correlations over two orders of magnitude in kinetic energy, revealing a decrease of fluid memory with increasing swimming activity and linear scaling between energy and enstrophy. The best-fit model parameters allow for quantitative agreement with experimental data.

Jrn Dunkel; Sebastian Heidenreich; Knut Drescher; Henricus H. Wensink; Markus Br; Raymond E. Goldstein

2013-02-21T23:59:59.000Z

7

Dynamical instability of collapsing radiating fluid  

SciTech Connect

We take the collapsing radiative fluid to investigate the dynamical instability with cylindrical symmetry. We match the interior and exterior cylindrical geometries. Dynamical instability is explored at radiative and non-radiative perturbations. We conclude that the dynamical instability of the collapsing cylinder depends on the critical value {gamma} < 1 for both radiative and nonradiative perturbations.

Sharif, M., E-mail: msharif.math@pu.edu.pk; Azam, M., E-mail: azammath@gmail.com [University of the Punjab, Department of Mathematics (Pakistan)

2013-06-15T23:59:59.000Z

8

Spinodal phase decomposition with dissipative fluid dynamics  

SciTech Connect

The spinodal amplification of density fluctuations is treated perturbatively within dissipative fluid dynamics including not only shear and bulk viscosity but also heat conduction, as well as a gradient term in the local pressure. The degree of spinodal amplification is calculated along specific dynamical phase trajectories and the results suggest that the effect can be greatly enhanced by tuning the collision energy so that maximum compression occurs inside the region of spinodal instability.

Randrup, J., E-mail: JRandrup@LBL.gov [Lawrence Berkeley Laboratory, Nuclear Science Division (United States)

2012-06-15T23:59:59.000Z

9

Petascale Adaptive Computational Fluid Dynamics | Argonne Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

Petascale Adaptive Computational Fluid Dynamics Petascale Adaptive Computational Fluid Dynamics PI Name: Kenneth Jansen PI Email: jansen@rpi.edu Institution: Rensselaer Polytechnic Institute The specific aim of this request for resources is to examine scalability and robustness of our code on BG/P. We have confirmed that, during the flow solve phase, our CFD flow solver does exhibit perfect strong scaling to the full 32k cores on our local machine (CCNI-BG/L at RPI) but this will be our first access to BG/P. We are also eager to study the performance of the adaptive phase of our code. Some aspects have scaled well on BG/L (e.g., refinement has produced adaptive meshes that take a 17 million element mesh and perform local adaptivity on 16k cores to match a requested size field to produce a mesh exceeding 1 billion elements) but other aspects (e.g.,

10

Fluid dynamics in group T-3 Los Alamos national laboratory  

Science Conference Proceedings (OSTI)

The development of computer fluid dynamics has been closely associated with the evolution of large high-speed computers. At first the principal incentive was to produce numerical techniques for solving problems related to national defense. Soon, however, ... Keywords: computational fluid dynamics, history of computing, incompressible flow, multi-field flow, relativistic fluids, strong distortions, turbulence

Francis H. Harlow

2004-04-01T23:59:59.000Z

11

Computational Fluid Dynamic Simulations of a Regenerative Process...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluid Dynamic Simulations of a Regenerative Process for Carbon Dioxide Capture in Advanced Gasification Based Power Systems Background The Department of Energy (DOE) National...

12

Demonstration of a Computational Fluid Dynamics (CFD) Tool Used...  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of a Computational Fluid Dynamics (CFD) Tool Used for Data Center Modeling, Thermal Analysis and Operational Management Speaker(s): Saket Karajgikar Date: November...

13

Two-Dimensional Computational Fluid Dynamics and Conduction Simulation...  

NLE Websites -- All DOE Office Websites (Extended Search)

Two-Dimensional Computational Fluid Dynamics and Conduction Simulations of Heat Transfer in Horizontal Window Frames with Internal Cavities Title Two-Dimensional Computational...

14

Molecular Dynamics Simulations of Microscale Fluid Transport  

E-Print Network (OSTI)

Recent advances in micro-science and technology, like Micro-ElectroMechanical Systems (MEMS), have generated a group of unique liquid flow problems that involve characteristic length scales of a micron. Also, in manufacturing processes such as coatings, current continuum models are unable to predict microscale physical phenomena that appear in these nonequilibrium systems. It is suspected that in these systems, molecular-level processes can control the interfacial energy and viscoelastic properties at the liquid/solid boundary. A massively parallel molecular dynamics (MD) code has been developed to better understand microscale transport mechanisms, fluid-structure interactions, and scale effects in micro-domains. Specifically, this MD code has been used to analyze liquid channel flow problems for a variety of channel widths, e.g. 0.005-0.05 microns. This report presents results from MD simulations of Poiseuille flow and Couette flow problems and address both scaling and modeling issues...

C. C. Wong; A. R. Lopez; M.J. Stevens; S. J. Plimpton; Category Uc; Like Micro-electro

1998-01-01T23:59:59.000Z

15

Three Important Theorems for Fluid Dynamics  

E-Print Network (OSTI)

The new proposed "energy gradient theory," which physically explains the phenomena of flow instability and turbulent transition in shear flows and has been shown to be valid for parallel flows, is extended to curved flows in this study. Then, three important theorems for fluid dynamics are deduced. These theorems are (1) Potential flow (inviscid and irrotational) is stable. (2) Inviscid rotational (vorticity is not zero) flow is unstable. (3) Velocity profile with an inflectional point is unstable when there is no work input or output to the system, for both inviscid and viscous flows. These theorems are, for the first time, deduced, and are of great significance for the understanding of generation of turbulence and the explanation of complex flows. From these results, it is concluded that the classical Rayleigh theorem (1880) on inflectional velocity instability of inviscid flows is incorrect which has last for more than a century. It is demonstrated that existence of inflection point on velocity profile is ...

Dou, H S

2006-01-01T23:59:59.000Z

16

Computational Fluid Dynamics of rising droplets  

SciTech Connect

The main goal of this study is to perform simulations of droplet dynamics using Truchas, a LANL-developed computational fluid dynamics (CFD) software, and compare them to a computational study of Hysing et al.[IJNMF, 2009, 60:1259]. Understanding droplet dynamics is of fundamental importance in liquid-liquid extraction, a process used in the nuclear fuel cycle to separate various components. Simulations of a single droplet rising by buoyancy are conducted in two-dimensions. Multiple parametric studies are carried out to ensure the problem set-up is optimized. An Interface Smoothing Length (ISL) study and mesh resolution study are performed to verify convergence of the calculations. ISL is a parameter for the interface curvature calculation. Further, wall effects are investigated and checked against existing correlations. The ISL study found that the optimal ISL value is 2.5{Delta}x, with {Delta}x being the mesh cell spacing. The mesh resolution study found that the optimal mesh resolution is d/h=40, for d=drop diameter and h={Delta}x. In order for wall effects on terminal velocity to be insignificant, a conservative wall width of 9d or a nonconservative wall width of 7d can be used. The percentage difference between Hysing et al.[IJNMF, 2009, 60:1259] and Truchas for the velocity profiles vary from 7.9% to 9.9%. The computed droplet velocity and interface profiles are found in agreement with the study. The CFD calculations are performed on multiple cores, using LANL's Institutional High Performance Computing.

Wagner, Matthew [Lake Superior State University; Francois, Marianne M. [Los Alamos National Laboratory

2012-09-05T23:59:59.000Z

17

The dynamics of oceanic transform faults : constraints from geophysical, geochemical, and geodynamical modeling  

E-Print Network (OSTI)

Segmentation and crustal accretion at oceanic transform fault systems are investigated through a combination of geophysical data analysis and geodynamical and geochemical modeling. Chapter 1 examines the effect of fault ...

Gregg, Patricia Michelle Marie

2008-01-01T23:59:59.000Z

18

COMPUTATIONAL FLUID DYNAMICS MODELING ANALYSIS OF COMBUSTORS  

DOE Green Energy (OSTI)

In the current fiscal year FY01, several CFD simulations were conducted to investigate the effects of moisture in biomass/coal, particle injection locations, and flow parameters on carbon burnout and NO{sub x} inside a 150 MW GEEZER industrial boiler. Various simulations were designed to predict the suitability of biomass cofiring in coal combustors, and to explore the possibility of using biomass as a reburning fuel to reduce NO{sub x}. Some additional CFD simulations were also conducted on CERF combustor to examine the combustion characteristics of pulverized coal in enriched O{sub 2}/CO{sub 2} environments. Most of the CFD models available in the literature treat particles to be point masses with uniform temperature inside the particles. This isothermal condition may not be suitable for larger biomass particles. To this end, a stand alone program was developed from the first principles to account for heat conduction from the surface of the particle to its center. It is envisaged that the recently developed non-isothermal stand alone module will be integrated with the Fluent solver during next fiscal year to accurately predict the carbon burnout from larger biomass particles. Anisotropy in heat transfer in radial and axial will be explored using different conductivities in radial and axial directions. The above models will be validated/tested on various fullscale industrial boilers. The current NO{sub x} modules will be modified to account for local CH, CH{sub 2}, and CH{sub 3} radicals chemistry, currently it is based on global chemistry. It may also be worth exploring the effect of enriched O{sub 2}/CO{sub 2} environment on carbon burnout and NO{sub x} concentration. The research objective of this study is to develop a 3-Dimensional Combustor Model for Biomass Co-firing and reburning applications using the Fluent Computational Fluid Dynamics Code.

Mathur, M.P.; Freeman, Mark (U.S. DOE National Energy Technology Laboratory); Gera, Dinesh (Fluent, Inc.)

2001-11-06T23:59:59.000Z

19

Applied Computation 274: Computational Fluid Dynamics Lecturer: David Knezevic  

E-Print Network (OSTI)

, nuclear reactor modeling and blood flow simulation. With major advances in CFD algorithms and computer: With Applications in Incompressible Fluid Dynamics, Oxford University Press, 2005. A. Ern, J.-L. Guermond, Theory

Chen, Yiling

20

Computational fluid dynamics applications to improve crop production systems  

Science Conference Proceedings (OSTI)

Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve ... Keywords: Decision support tools, Greenhouse, Harvesting machines, Sprayers, Tillage

T. Bartzanas; M. Kacira; H. Zhu; S. Karmakar; E. Tamimi; N. Katsoulas; In Bok Lee; C. Kittas

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Noncommutative fluid dynamics in the Khler parametrization  

E-Print Network (OSTI)

In this paper, we propose a first order action functional for a large class of systems that generalize the relativistic perfect fluids in the K\\"{a}hler parametrization to noncommutative spacetimes. We calculate the equations of motion for the fluid potentials and the energy-momentum tensor in the first order in the noncommutative parameter. The density current does not receive any noncommutative corrections and it is conserved under the action of the commutative generators $P_{\\mu}$ but the energy-momentum tensor is not. Therefore, we determine the set of constraints under which the energy-momentum tensor is divergenceless. Another set of constraints on the fluid potentials is obtained from the requirement of the invariance of the action under the generalization of the volume preserving transformations of the noncommutative spacetime. We show that the proposed action describes noncommutative fluid models by casting the energy-momentum tensor in the familiar fluid form and identifying the corresponding energy and momentum densities. In the commutative limit, they are identical to the corresponding quantities of the relativistic perfect fluids. The energy-momentum tensor contains a dissipative term that is due to the noncommutative spacetime and vanishes in the commutative limit. Finally, we particularize the theory to the case when the complex fluid potentials are characterized by a function $K(z,\\bar{z})$ that is a deformation of the complex plane and show that this model has important common features with the commutative fluid such as infinitely many conserved currents and a conserved axial current that in the commutative case is associated to the topologically conserved linking number.

L. Holender; M. A. Santos; M. T. D. Orlando; I. V. Vancea

2011-09-08T23:59:59.000Z

22

Hard Sphere Dynamics for Normal and Granular Fluids  

E-Print Network (OSTI)

A fluid of N smooth, hard spheres is considered as a model for normal (elastic collisions) and granular (inelastic collisions) fluids. The potential energy is discontinuous for hard spheres so the pairwise forces are singular and the usual forms of Newtonian and Hamiltonian mechanics do not apply. Nevertheless, particle trajectories in the N particle phase space are well defined and the generators for these trajectories can be identified. The first part of this presentation is a review of the generators for the dynamics of observables and probability densities. The new results presented in the second part refer to applications of these generators to the Liouville dynamics for granular fluids. A set of eigenvalues and eigenfunctions of the generator for this Liouville dynamics is identified in a special "stationary representation". This provides a class of exact solutions to the Liouville equation that are closely related to hydrodynamics for granular fluids.

James W. Dufty; Aparna Baskaran

2005-03-08T23:59:59.000Z

23

Static and dynamic response of a fluid-fluid interface to electric point and line charge  

SciTech Connect

We consider the behavior of a dielectric fluid-fluid interface in the presence of a strong electric field from a point charge and line charge, respectively, both statically and, in the latter case, dynamically. The fluid surface is elevated above its undisturbed level until balance is reached between the electromagnetic lifting force, gravity and surface tension. We derive ordinary differential equations for the shape of the fluid-fluid interface which are solved numerically with standard means, demonstrating how the elevation depends on field strength and surface tension coefficient. In the dynamic case of a moving line charge, the surface of an inviscid liquid-liquid interface is left to oscillate behind the moving charge after it has been lifted against the force of gravity. We show how the wavelength of the oscillations depends on the relative strength of the forces of gravity and inertia, whereas the amplitude of the oscillations is a nontrivial function of the velocity at which the line charge moves. - Highlights: Black-Right-Pointing-Pointer Fluid surface elevation analyzed near a static point and line charge. Black-Right-Pointing-Pointer Elevation determined by interaction of gravity, dielectric force and surface tension. Black-Right-Pointing-Pointer Dynamic equation of motion for the moving line charge is derived. Black-Right-Pointing-Pointer Surface waves behind moving charge calculated and analysed for different velocities.

Ellingsen, Simen A, E-mail: simen.a.ellingsen@ntnu.no; Brevik, Iver, E-mail: iver.h.brevik@ntnu.no

2012-12-15T23:59:59.000Z

24

Available Energy of Geophysical Systems  

Science Conference Proceedings (OSTI)

An alternative derivation of the available energy for a geophysical fluid system is presented. It is shown that determination of the equilibrium temperature of the system by the minimization of an energy availability function is equivalent to that ...

Peter R. Bannon

2013-08-01T23:59:59.000Z

25

Nonequilibrium chiral fluid dynamics including dissipation and noise  

E-Print Network (OSTI)

We present a consistent theoretical approach for the study of nonequilibrium effects in chiral fluid dynamics within the framework of the linear sigma model with constituent quarks. Treating the quarks as an equilibrated heat bath we use the influence functional formalism to obtain a Langevin equation for the sigma field. This allows us to calculate the explicit form of the damping coefficient and the noise correlators. For a selfconsistent derivation of both the dynamics of the sigma field and the quark fluid we have to employ the 2PI (two-particle irreducible) effective action formalism. The energy dissipation from the field to the fluid is treated in the exact formalism of the 2PI effective action where a conserved energy-momentum tensor can be constructed. We derive its form and comment on approximations generating additional terms in the energy-momentum balance of the entire system.

Marlene Nahrgang; Stefan Leupold; Christoph Herold; Marcus Bleicher

2011-05-03T23:59:59.000Z

26

Nonequilibrium chiral fluid dynamics including dissipation and noise  

E-Print Network (OSTI)

We present a consistent theoretical approach for the study of nonequilibrium effects in chiral fluid dynamics within the framework of the linear sigma model with constituent quarks. Treating the quarks as an equilibrated heat bath we use the influence functional formalism to obtain a Langevin equation for the sigma field. This allows us to calculate the explicit form of the damping coefficient and the noise correlators. For a selfconsistent derivation of both the dynamics of the sigma field and the quark fluid we have to employ the 2PI (two-particle irreducible) effective action formalism. The energy dissipation from the field to the fluid is treated in the exact formalism of the 2PI effective action where a conserved energy-momentum tensor can be constructed. We derive its form and comment on approximations generating additional terms in the energy-momentum balance of the entire system.

Nahrgang, Marlene; Herold, Christoph; Bleicher, Marcus

2011-01-01T23:59:59.000Z

27

Reduced-order, trajectory piecewise-linear models for nonlinear computational fluid dynamics  

E-Print Network (OSTI)

Computational fluid dynamics (CFD) is now widely used throughout the fluid dynamics community and yields accurate models for problems of interest. However, due to its high computational cost, CFD is limited for some ...

Gratton, David, 1979-

2004-01-01T23:59:59.000Z

28

Ten iterative steps for model development and evaluation applied to Computational Fluid Dynamics for Environmental Fluid Mechanics  

Science Conference Proceedings (OSTI)

Computational Fluid Dynamics (CFD) is increasingly used to study a wide variety of complex Environmental Fluid Mechanics (EFM) processes, such as water flow and turbulent mixing of contaminants in rivers and estuaries and wind flow and air pollution ... Keywords: Air and water quality, Building aerodynamics, Environmental Fluid Mechanics, River hydraulics, Transverse mixing, Wind flow

B. Blocken; C. Gualtieri

2012-07-01T23:59:59.000Z

29

Nek5000: Computational Fluid Dynamics Code | Argonne National Laboratory  

NLE Websites -- All DOE Office Websites (Extended Search)

Nek5000: Computational Fluid Dynamics Code Nek5000: Computational Fluid Dynamics Code Nuclear reactor simulation: An elevation plot of the highest energy neutron flux distributions from an axial slice of a nuclear reactor core is shown superimposed over the same slice of the underlying geometry. This figure shows the rapid spatial variation in the high energy neutron distribution between within each plate along with the more slowly varying, global distribution. The figure is significant since UNIC allows researchers to capture both of these effects simultaneously. Nuclear reactor simulation: An elevation plot of the highest energy neutron flux distributions from an axial slice of a nuclear reactor core is shown superimposed over the same slice of the underlying geometry. This figure shows the rapid spatial variation in the high energy neutron distribution

30

1.5 References Batzle, M. and Wang, Z., 1992, Seismic properties of pore fluids: Geophysics, Vol.  

E-Print Network (OSTI)

. 57, No. 11, p. 1396-1408. Batzle, M.L., Han, D., Wang, W., Wu, X., Ge, H., and Zhao, H., 1997, Fluid, USA, 348 pp. Chen, C.T., Chen, L.S., and Millero, F.J., 1978, Speed of sound in NaCl, MgCl2, Na2SO4-685. Hales, A.L., and Roberts, J.L., 1974, The Zoeppritz amplitude equations: more errors: Bulletin

31

Issues in computational fluid dynamics code verification and validation  

SciTech Connect

A broad range of mathematical modeling errors of fluid flow physics and numerical approximation errors are addressed in computational fluid dynamics (CFD). It is strongly believed that if CFD is to have a major impact on the design of engineering hardware and flight systems, the level of confidence in complex simulations must substantially improve. To better understand the present limitations of CFD simulations, a wide variety of physical modeling, discretization, and solution errors are identified and discussed. Here, discretization and solution errors refer to all errors caused by conversion of the original partial differential, or integral, conservation equations representing the physical process, to algebraic equations and their solution on a computer. The impact of boundary conditions on the solution of the partial differential equations and their discrete representation will also be discussed. Throughout the article, clear distinctions are made between the analytical mathematical models of fluid dynamics and the numerical models. Lax`s Equivalence Theorem and its frailties in practical CFD solutions are pointed out. Distinctions are also made between the existence and uniqueness of solutions to the partial differential equations as opposed to the discrete equations. Two techniques are briefly discussed for the detection and quantification of certain types of discretization and grid resolution errors.

Oberkampf, W.L.; Blottner, F.G.

1997-09-01T23:59:59.000Z

32

Mesoscale Structures at Complex Fluid-Fluid Interfaces: a Novel Lattice Boltzmann / Molecular Dynamics Coupling  

E-Print Network (OSTI)

Complex fluid-fluid interfaces featuring mesoscale structures with adsorbed particles are key components of newly designed materials which are continuously enriching the field of soft matter. Simulation tools which are able to cope with the different scales characterizing these systems are a fundamental requirement for efficient theoretical investigations. In this paper we present a novel simulation method, based on the approach of Ahlrichs and D\\"unweg [Ahlrichs and D\\"unweg, Int. J. Mod. Phys. C, 1998, 9, 1429], that couples the "Shan-Chen" multicomponent Lattice Boltzmann technique to off-lattice molecular dynamics. We demonstrate how this approach can be used to solve a wide class of challenging problems. Several examples are given, with an accent on bicontinuous phases formation in polyelectrolyte solutions and ferrofluid emulsions. We show also that the introduction of solvation free energies in the particle-fluid interaction unveils the hidden, multiscale nature of the particle-fluid coupling, allowing to treat symmetrically (and interchangeably) the on-lattice and off-lattice components of the system.

Marcello Sega; Mauro Sbragaglia; Sofia Sergeevna Kantorovich; Alexey Olegovich Ivanov

2013-06-04T23:59:59.000Z

33

A model for the ATW target region fluid dynamics  

SciTech Connect

In the Los Alamos National Laboratory's concept for the accelerator transmutation of waste (ATW), a lead-bismuth eutectic has been chosen as a spallation target for the proton beam. Because of the high local heat fluxes anticipated, the target is in liquid form to facilitate heat removal. The upper boundary of the target region is a hard vacuum. The primary purpose of the analysis is to determine the location of the flow boundary based on the target design parameters. This method of analysis should prove to be useful for performing preliminary scoping and design of the ATW target region's fluid dynamics. Eventually, this model should be tested against experimental data.

Rider, W.J.; Cappiello, M.W. (Los Alamos National Lab., NM (United States))

1991-01-01T23:59:59.000Z

34

Dynamic Multiscaling in Two-dimensional Fluid Turbulence  

E-Print Network (OSTI)

We obtain, by extensive direct numerical simulations, time-dependent and equal-time structure functions for the vorticity, in both quasi-Lagrangian and Eulerian frames, for the direct-cascade regime in two-dimensional fluid turbulence with air-drag-induced friction. We show that different ways of extracting time scales from these time-dependent structure functions lead to different dynamic-multiscaling exponents, which are related to equal-time multiscaling exponents by different classes of bridge relations; for a representative value of the friction we verify that, given our error bars, these bridge relations hold.

Ray, Samriddhi Sankar; Perlekar, Prasad; Pandit, Rahul

2011-01-01T23:59:59.000Z

35

Local Dynamics of Baroclinic Waves in the Martian Atmosphere  

Science Conference Proceedings (OSTI)

The paper investigates the processes that drive the spatiotemporal evolution of baroclinic transient waves in the Martian atmosphere by a simulation experiment with the Geophysical Fluid Dynamics Laboratory (GFDL) Mars General Circulation Model (...

Michael J. Kavulich Jr.; Istvan Szunyogh; Gyorgyi Gyarmati; R. John Wilson

36

Vorton dynamics: a case study of developing a fluid dynamics model for a vector processor  

Science Conference Proceedings (OSTI)

The raw performance of vector processors such as the CDC CYBER-205 has been well documented. The ability to apply this raw power to ever more complex algebraic algorithms has been reported in [9]. The final step in making computers of this class truly ... Keywords: CYBER-205, computational fluid dynamics, programming, vorton model

M. J. Kascic, Jr.

1984-08-01T23:59:59.000Z

37

Dissipative particle dynamics simulation of fluid motion through an unsaturated fracture and fracture junction  

Science Conference Proceedings (OSTI)

Multiphase fluid motion in unsaturated fractures and fracture networks involves complicated fluid dynamics, which is difficult to model using grid-based continuum methods. In this paper, the application of dissipative particle dynamics (DPD), a relatively ... Keywords: Dissipative particle dynamics (DPD), Fracture, Fracture flow, Smoothed particle hydrodynamics (SPH), Weight functions

Moubin Liu; Paul Meakin; Hai Huang

2007-03-01T23:59:59.000Z

38

Computational fluid dynamic modeling of fluidized-bed polymerization reactors  

SciTech Connect

Polyethylene is one of the most widely used plastics, and over 60 million tons are produced worldwide every year. Polyethylene is obtained by the catalytic polymerization of ethylene in gas and liquid phase reactors. The gas phase processes are more advantageous, and use fluidized-bed reactors for production of polyethylene. Since they operate so close to the melting point of the polymer, agglomeration is an operational concern in all slurry and gas polymerization processes. Electrostatics and hot spot formation are the main factors that contribute to agglomeration in gas-phase processes. Electrostatic charges in gas phase polymerization fluidized bed reactors are known to influence the bed hydrodynamics, particle elutriation, bubble size, bubble shape etc. Accumulation of electrostatic charges in the fluidized-bed can lead to operational issues. In this work a first-principles electrostatic model is developed and coupled with a multi-fluid computational fluid dynamic (CFD) model to understand the effect of electrostatics on the dynamics of a fluidized-bed. The multi-fluid CFD model for gas-particle flow is based on the kinetic theory of granular flows closures. The electrostatic model is developed based on a fixed, size-dependent charge for each type of particle (catalyst, polymer, polymer fines) phase. The combined CFD model is first verified using simple test cases, validated with experiments and applied to a pilot-scale polymerization fluidized-bed reactor. The CFD model reproduced qualitative trends in particle segregation and entrainment due to electrostatic charges observed in experiments. For the scale up of fluidized bed reactor, filtered models are developed and implemented on pilot scale reactor.

Rokkam, Ram [Ames Laboratory

2012-11-02T23:59:59.000Z

39

State-of-the-art review of computational fluid dynamics modeling for fluid-solids systems  

DOE Green Energy (OSTI)

As the result of 15 years of research (50 staff years of effort) Argonne National Laboratory (ANL), through its involvement in fluidized-bed combustion, magnetohydrodynamics, and a variety of environmental programs, has produced extensive computational fluid dynamics (CFD) software and models to predict the multiphase hydrodynamic and reactive behavior of fluid-solids motions and interactions in complex fluidized-bed reactors (FBRS) and slurry systems. This has resulted in the FLUFIX, IRF, and SLUFIX computer programs. These programs are based on fluid-solids hydrodynamic models and can predict information important to the designer of atmospheric or pressurized bubbling and circulating FBR, fluid catalytic cracking (FCC) and slurry units to guarantee optimum efficiency with minimum release of pollutants into the environment. This latter issue will become of paramount importance with the enactment of the Clean Air Act Amendment (CAAA) of 1995. Solids motion is also the key to understanding erosion processes. Erosion rates in FBRs and pneumatic and slurry components are computed by ANL`s EROSION code to predict the potential metal wastage of FBR walls, intervals, feed distributors, and cyclones. Only the FLUFIX and IRF codes will be reviewed in the paper together with highlights of the validations because of length limitations. It is envisioned that one day, these codes with user-friendly pre and post-processor software and tailored for massively parallel multiprocessor shared memory computational platforms will be used by industry and researchers to assist in reducing and/or eliminating the environmental and economic barriers which limit full consideration of coal, shale and biomass as energy sources, to retain energy security, and to remediate waste and ecological problems.

Lyczkowski, R.W.; Bouillard, J.X.; Ding, J.; Chang, S.L. [Argonne National Lab., IL (United States); Burge, S.W. [Babcock and Wilcox, Alliance, OH (United States). Alliance Research Center

1994-05-12T23:59:59.000Z

40

Apparatus for characterizing the temporo-spatial properties of a dynamic fluid front and method thereof  

SciTech Connect

Methods and apparatus are described for characterizing the temporal-spatial properties of a dynamic fluid front within a mold space while the mold space is being filled with fluid. A method includes providing a mold defining a mold space and having one or more openings into the mold space; heating a plurality of temperature sensors that extend into the mold space; injecting a fluid into th emold space through the openings, the fluid experiencing a dynamic fluid front while filling the mold space with a fluid; and characterizing temporal-spatial properties of the dynamic fluid front by monitoring a termperature of each of the plurality of heated temperature sensors while the mold space is being filled with the fluid. An apparatus includes a mold defining a mold space; one or more openings for introducing a fluid into th emold space and filling the mold space with the fluid, the fluid experiencing a dynamic fluid front while filling the mold space; a plurality of heated temperature sensors extending into the mold space; and a computer coupled to the plurality of heated temperature sensors for characterizing the temporal-spatial properties of the dynamic fluid front.

Battiste, Richard L

2013-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Computational Fluid Dynamics Modeling of Atmospheric Flow Applied to Wind Energy Research.  

E-Print Network (OSTI)

??High resolution atmospheric flow modeling using computational fluid dynamics (CFD) has many applications in the wind energy industry. A well designed model can accurately calculate (more)

Russell, Alan

2009-01-01T23:59:59.000Z

42

Fluid Dynamics of Carbon Dioxide Disposal into Saline Aquifers  

SciTech Connect

Injection of carbon dioxide (CO{sub 2}) into saline aquifers has been proposed as a means to reduce greenhouse gas emissions (geological carbon sequestration). Large-scale injection of CO{sub 2} will induce a variety of coupled physical and chemical processes, including multiphase fluid flow, fluid pressurization and changes in effective stress, solute transport, and chemical reactions between fluids and formation minerals. This work addresses some of these issues with special emphasis given to the physics of fluid flow in brine formations. An investigation of the thermophysical properties of pure carbon dioxide, water and aqueous solutions of CO{sub 2} and NaCl has been conducted. As a result, accurate representations and models for predicting the overall thermophysical behavior of the system CO{sub 2}-H{sub 2}O-NaCl are proposed and incorporated into the numerical simulator TOUGH2/ECO{sub 2}. The basic problem of CO{sub 2} injection into a radially symmetric brine aquifer is used to validate the results of TOUGH2/ECO2. The numerical simulator has been applied to more complex flow problem including the CO{sub 2} injection project at the Sleipner Vest Field in the Norwegian sector of the North Sea and the evaluation of fluid flow dynamics effects of CO{sub 2} injection into aquifers. Numerical simulation results show that the transport at Sleipner is dominated by buoyancy effects and that shale layers control vertical migration of CO{sub 2}. These results are in good qualitative agreement with time lapse surveys performed at the site. High-resolution numerical simulation experiments have been conducted to study the onset of instabilities (viscous fingering) during injection of CO{sub 2} into saline aquifers. The injection process can be classified as immiscible displacement of an aqueous phase by a less dense and less viscous gas phase. Under disposal conditions (supercritical CO{sub 2}) the viscosity of carbon dioxide can be less than the viscosity of the aqueous phase by a factor of 15. Because of the lower viscosity, the CO{sub 2} displacement front will have a tendency towards instability. Preliminary simulation results show good agreement between classical instability solutions and numerical predictions of finger growth and spacing obtained using different gas/liquid viscosity ratios, relative permeability and capillary pressure models. Further studies are recommended to validate these results over a broader range of conditions.

Garcia, Julio Enrique

2003-12-18T23:59:59.000Z

43

J. Fluid Mech. (2005), vol. 529, pp. 97116. c 2005 Cambridge University Press doi:10.1017/S0022112004003271 Printed in the United Kingdom  

E-Print Network (OSTI)

energy transfers. 1. Introduction It is well-established in the theory of geophysical fluid dynamics for this is the natural trend of two-dimensional dynamics to generate organized structures, namely coherent shears. & Lifshitz, E. 1971 M´ecanique des Fluides. ´Editions Mir. Lapeyre, G., Hua, B. L. & Klein, P. 2001 Dynamics

Dubos, Thomas

44

Simulation of Tailrace Hydrodynamics Using Computational Fluid Dynamics Models  

DOE Green Energy (OSTI)

This report investigates the feasibility of using computational fluid dynamics (CFD) tools to investigate hydrodynamic flow fields surrounding the tailrace zone below large hydraulic structures. Previous and ongoing studies using CFD tools to simulate gradually varied flow with multiple constituents and forebay/intake hydrodynamics have shown that CFD tools can provide valuable information for hydraulic and biological evaluation of fish passage near hydraulic structures. These studies however are incapable of simulating the rapidly varying flow fields that involving breakup of the free-surface, such as those through and below high flow outfalls and spillways. Although the use of CFD tools for these types of flow are still an active area of research, initial applications discussed in this report show that these tools are capable of simulating the primary features of these highly transient flow fields.

Cook, Chris B; Richmond, Marshall C

2001-05-01T23:59:59.000Z

45

Dynamic van der Waals Theory of Two-Phase Fluids in Heat Flow Akira Onuki  

E-Print Network (OSTI)

Dynamic van der Waals Theory of Two-Phase Fluids in Heat Flow Akira Onuki Department of Physics as a functional of the order parameter and the energy density. Let us consider one-component fluids, where-component fluids the effect is drastically altered due to latent heat generation or absorption at the interface [12

46

Dynamic Self-Consistent Field Theory for Unentangled Homopolymer Fluids  

E-Print Network (OSTI)

We present a lattice formulation of a dynamic self-consistent field (DSCF) theory that is capable of resolving interfacial structure, dynamics and rheology in inhomogeneous, compressible melts and blends of unentangled homopolymer chains. The joint probability distribution of all the Kuhn segments in the fluid, interacting with adjacent segments and walls, is approximated by a product of one-body probabilities for free segments interacting solely with an external potential field that is determined self-consistently. The effect of flow on ideal chain conformations is modeled with FENE-P dumbbells, and related to stepping probabilities in a random walk. Free segment and stepping probabilities generate statistical weights for chain conformations in a self-consistent field, and determine local volume fractions of chain segments. Flux balance across unit lattice cells yields mean-field transport equations for the evolution of free segment probabilities and of momentum densities on the Kuhn length scale. Diffusive and viscous contributions to the fluxes arise from segmental hops modeled as a Markov process, with transition rates reflecting changes in segmental interaction, kinetic energy, and entropic contributions to the free energy under flow.

Maja Mihajlovic; Tak Shing Lo; Yitzhak Shnidman

2004-11-10T23:59:59.000Z

47

Dynamic fluid loss in hydraulic fracturing under realistic shear conditions in high-permeability rocks  

SciTech Connect

A study of the dynamic fluid loss of hydraulic fracturing fluids under realistic shear conditions is presented. During a hydraulic fracturing treatment, a polymeric solution is pumped under pressure down the well to create and propagate a fracture. Part of the fluid leaks into the rock formation, leaving a skin layer of polymer or polymer filter cake, at the rock surface or in the pore space. This study focuses on the effects of shear rate and permeability on dynamic fluid-loss behavior of crosslinked and linear fracturing gels. Previous studies of dynamic fluid loss have mainly been with low-permeability cores and constant shear rates. Here, the effect of shear history and fluid-loss additive on the dynamic leakoff of high-permeability cores is examined.

Navarrete, R.C.; Cawiezel, K.E.; Constien, V.G. [Dowell Schlumberger, Tulsa, OK (United States)

1996-08-01T23:59:59.000Z

48

Review: Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: A review  

Science Conference Proceedings (OSTI)

The past decade has seen a rapid increase of numerical simulation studies on photobioreactors (PBRs). Developments in computational fluid dynamics (CFD) and the availability of more powerful computers have paved the way for the modeling and designing ... Keywords: Computational fluid dynamics (CFD), Computer simulation, Microalgae, Photobioreactors

J. P. Bitog; I. -B. Lee; C. -G. Lee; K. -S. Kim; H. -S. Hwang; S. -W. Hong; I. -H. Seo; K. -S. Kwon; E. Mostafa

2011-05-01T23:59:59.000Z

49

Molecular to fluid dynamics: The consequences of stochastic molecular motion Stefan Heinz*  

E-Print Network (OSTI)

Molecular to fluid dynamics: The consequences of stochastic molecular motion Stefan Heinz) The derivation of fluid dynamic equations from molecular equations is considered. This is done on the basis of a stochastic model for the molecular motion which can be obtained by a projection of underlying determin- istic

Heinz, Stefan

50

Dynamical Tropical Cyclone Track Forecast Errors. Part I: Tropical Region Error Sources  

Science Conference Proceedings (OSTI)

All highly erroneous (>300 n mi or 555 km at 72 h) Navy Operational Global Atmospheric Prediction System (NOGAPS) and U.S. Navy version of the Geophysical Fluid Dynamics Laboratory model (GFDN) tropical cyclone track forecasts in the western ...

Lester E. Carr III; Russell L. Elsberry

2000-12-01T23:59:59.000Z

51

Moist Dynamics of Severe Monsoons over South Asia: Role of the Tropical SST  

Science Conference Proceedings (OSTI)

Diagnostics from observations and multicentury integrations of a coupled model [Geophysical Fluid Dynamics Laboratory (GFDL) coupled model version 2.1 (CM2.1)] indicate that about 65% of the severe monsoons (rainfall > 1.5 standard deviations of ...

Prasanth A. Pillai; H. Annamalai

2012-01-01T23:59:59.000Z

52

An experimental and theoretical study of the dynamics of grounding lines  

E-Print Network (OSTI)

Under consideration for publication in J. Fluid Mech. 1 An experimental and theoretical study of the dynamics of grounding lines SAMUEL S. PEGLER AND M. GRAE WORSTER Institute of Theoretical Geophysics, Department of Applied Mathematics...

Pegler, Samuel S.; Worster, M. Grae

2013-07-01T23:59:59.000Z

53

Code Verification of the HIGRAD Computational Fluid Dynamics Solver  

DOE Green Energy (OSTI)

The purpose of this report is to outline code and solution verification activities applied to HIGRAD, a Computational Fluid Dynamics (CFD) solver of the compressible Navier-Stokes equations developed at the Los Alamos National Laboratory, and used to simulate various phenomena such as the propagation of wildfires and atmospheric hydrodynamics. Code verification efforts, as described in this report, are an important first step to establish the credibility of numerical simulations. They provide evidence that the mathematical formulation is properly implemented without significant mistakes that would adversely impact the application of interest. Highly accurate analytical solutions are derived for four code verification test problems that exercise different aspects of the code. These test problems are referred to as: (i) the quiet start, (ii) the passive advection, (iii) the passive diffusion, and (iv) the piston-like problem. These problems are simulated using HIGRAD with different levels of mesh discretization and the numerical solutions are compared to their analytical counterparts. In addition, the rates of convergence are estimated to verify the numerical performance of the solver. The first three test problems produce numerical approximations as expected. The fourth test problem (piston-like) indicates the extent to which the code is able to simulate a 'mild' discontinuity, which is a condition that would typically be better handled by a Lagrangian formulation. The current investigation concludes that the numerical implementation of the solver performs as expected. The quality of solutions is sufficient to provide credible simulations of fluid flows around wind turbines. The main caveat associated to these findings is the low coverage provided by these four problems, and somewhat limited verification activities. A more comprehensive evaluation of HIGRAD may be beneficial for future studies.

Van Buren, Kendra L. [Los Alamos National Laboratory; Canfield, Jesse M. [Los Alamos National Laboratory; Hemez, Francois M. [Los Alamos National Laboratory; Sauer, Jeremy A. [Los Alamos National Laboratory

2012-05-04T23:59:59.000Z

54

AIR INGRESS ANALYSIS: PART 2 COMPUTATIONAL FLUID DYNAMIC MODELS  

Science Conference Proceedings (OSTI)

The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is performing research and development that focuses on key phenomena important during potential scenarios that may occur in very high temperature reactors (VHTRs). Phenomena Identification and Ranking Studies to date have ranked an air ingress event, following on the heels of a VHTR depressurization, as important with regard to core safety. Consequently, the development of advanced air ingress-related models and verification and validation data are a very high priority. Following a loss of coolant and system depressurization incident, air will enter the core of the High Temperature Gas Cooled Reactor through the break, possibly causing oxidation of the in-the core and reflector graphite structure. Simple core and plant models indicate that, under certain circumstances, the oxidation may proceed at an elevated rate with additional heat generated from the oxidation reaction itself. Under postulated conditions of fluid flow and temperature, excessive degradation of the lower plenum graphite can lead to a loss of structural support. Excessive oxidation of core graphite can also lead to the release of fission products into the confinement, which could be detrimental to a reactor safety. Computational fluid dynamic model developed in this study will improve our understanding of this phenomenon. This paper presents two-dimensional and three-dimensional CFD results for the quantitative assessment of the air ingress phenomena. A portion of results of the density-driven stratified flow in the inlet pipe will be compared with results of the experimental results.

Chang H. Oh; Eung S. Kim; Richard Schultz; Hans Gougar; David Petti; Hyung S. Kang

2011-01-01T23:59:59.000Z

55

The Piecewise Parabolic Method for Multidimensional Relativistic Fluid Dynamics  

E-Print Network (OSTI)

We present an extension of the Piecewise Parabolic Method to special relativistic fluid dynamics in multidimensions. The scheme is conservative, dimensionally unsplit, and suitable for a general equation of state. Temporal evolution is second-order accurate and employs characteristic projection operators; spatial interpolation is piece-wise parabolic making the scheme third-order accurate in smooth regions of the flow away from discontinuities. The algorithm is written for a general system of orthogonal curvilinear coordinates and can be used for computations in non-cartesian geometries. A non-linear iterative Riemann solver based on the two-shock approximation is used in flux calculation. In this approximation, an initial discontinuity decays into a set of discontinuous waves only implying that, in particular, rarefaction waves are treated as flow discontinuities. We also present a new and simple equation of state which approximates the exact result for the relativistic perfect gas with high accuracy. The strength of the new method is demonstrated in a series of numerical tests and more complex simulations in one, two and three dimensions.

A. Mignone; T. Plewa; G. Bodo

2005-05-10T23:59:59.000Z

56

Computational Fluid Dynamics Framework for Turbine Biological Performance Assessment  

SciTech Connect

In this paper, a method for turbine biological performance assessment is introduced to bridge the gap between field and laboratory studies on fish injury and turbine design. Using this method, a suite of biological performance indicators is computed based on simulated data from a computational fluid dynamics (CFD) model of a proposed turbine design. Each performance indicator is a measure of the probability of exposure to a certain dose of an injury mechanism. If the relationship between the dose of an injury mechanism and frequency of injury (dose-response) is known from laboratory or field studies, the likelihood of fish injury for a turbine design can be computed from the performance indicator. By comparing the values of the indicators from various turbine designs, the engineer can identify the more-promising designs. Discussion here is focused on Kaplan-type turbines, although the method could be extended to other designs. Following the description of the general methodology, we will present sample risk assessment calculations based on CFD data from a model of the John Day Dam on the Columbia River in the USA.

Richmond, Marshall C.; Serkowski, John A.; Carlson, Thomas J.; Ebner, Laurie L.; Sick, Mirjam; Cada, G. F.

2011-05-04T23:59:59.000Z

57

The Spectral Element Atmosphere Model (SEAM): High-Resolution Parallel Computation and Localized Resolution of Regional Dynamics  

Science Conference Proceedings (OSTI)

Fast, accurate computation of geophysical fluid dynamics is often very challenging. This is due to the complexity of the PDEs themselves and their initial and boundary conditions. There are several practical advantages to using a relatively new ...

Aim Fournier; Mark A. Taylor; Joseph J. Tribbia

2004-03-01T23:59:59.000Z

58

Dynamics of Nanoparticle-Based Complex Fluids in Porous Media  

Science Conference Proceedings (OSTI)

Abstract Scope, Advances in the use of nanoparticle-based complex fluids are likely to transform exploration and production of oil and gas. The dependence of ...

59

A Mechanical Fluid-Dynamical Model For Ground Movements At Campi Flegrei  

Open Energy Info (EERE)

Mechanical Fluid-Dynamical Model For Ground Movements At Campi Flegrei Mechanical Fluid-Dynamical Model For Ground Movements At Campi Flegrei Caldera Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Mechanical Fluid-Dynamical Model For Ground Movements At Campi Flegrei Caldera Details Activities (0) Areas (0) Regions (0) Abstract: We present here a consistent model, which explains the mechanisms of unrest phenomena at Campi Flegrei (Italy), both at short-term (years) and at secular scales. The model consists basically of two effects: the first one is related to the elastic response of the shallow crust to increasing pressure within a shallow magma chamber; the second involves the fluid-dynamics of shallow aquifers in response to increasing pressure and/or temperature at depth. The most important roles in the proposed model

60

Developing an integrated building design tool by coupling building energy simulation and computational fluid dynamics programs  

E-Print Network (OSTI)

Building energy simulation (ES) and computational fluid dynamics (CFD) can play important roles in building design by providing essential information to help design energy-efficient, thermally comfortable and healthy ...

Zhai, Zhiqiang, 1971-

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Coupling of a multizone airflow simulation program with computational fluid dynamics for indoor environmental analysis  

E-Print Network (OSTI)

Current design of building indoor environment comprises macroscopIC approaches, such as CONT AM multizone airflow analysis tool, and microscopic approaches that apply Computational Fluid Dynamics (CFD). Each has certain ...

Gao, Yang, 1974-

2002-01-01T23:59:59.000Z

62

The role of computational fluid dynamics in the management of unruptured intracranial aneurysms: a clinicians' view  

Science Conference Proceedings (OSTI)

Objective. The importance of hemodynamics in the etiopathogenesis of intracranial aneurysms (IAs) is widely accepted. Computational fluid dynamics (CFD) is being used increasingly for hemodynamic predictions. However, alogn with the continuing development ...

Pankaj K. Singh; Alberto Marzo; Stuart C. Coley; Guntram Berti; Philippe Bijlenga; Patricia V. Lawford; Mari-Cruz Villa-Uriol; Daniel A. Rufenacht; Keith M. McCormack; Alejandro Frangi; Umang J. Patel; D. Rodney Hose

2009-01-01T23:59:59.000Z

63

Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines  

Science Conference Proceedings (OSTI)

This paper describes the application of high performance computing to accelerate the development of hypergolic propulsion systems for tactical missiles. Computational fluid dynamics is employed to model the chemically reacting flow within a system's ...

M. Nusca; C.-C. Chen; M. McQuaid

2007-06-01T23:59:59.000Z

64

Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines  

Science Conference Proceedings (OSTI)

This paper describes the development and application of high performance computing for the acceleration of tactical missile hypergolic propulsion system development. Computational fluid dynamics is employed to model the chemically reacting flow within ...

Michael J. Nusca; Michael J. McQuaid

2006-06-01T23:59:59.000Z

65

Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines  

Science Conference Proceedings (OSTI)

This paper describes the development and application of high performance computing for the acceleration of tactical missile hypergolic propulsion system development. Computational fluid dynamics (CFD) is employed to model the chemically reacting flow ...

Michael J. Nusca; Michael J. McQuaid

2005-06-01T23:59:59.000Z

66

Combustion Chamber Fluid Dynamics and Hypergolic Gel Propellant Chemistry Simulations for Selectable Thrust Rocket Engines  

Science Conference Proceedings (OSTI)

This paper describes the application of high performance computing to accelerate the development of hypergolic propulsion systems for tactical missiles. Computational fluid dynamics is employed to model the chemically reacting flow within a systems ...

Michael J. Nusca; Chiung-Chu Chen; Michael J. McQuaid

2008-07-01T23:59:59.000Z

67

Computational fluid dynamics modelling and experimental study on a single silica gel type B  

Science Conference Proceedings (OSTI)

The application of computational fluid dynamics (CFDs) in the area of porous media and adsorption cooling system is becoming more practical due to the significant improvement in computer power. The results from previous studies have shown that CFD can ...

John White

2012-01-01T23:59:59.000Z

68

Computational Fluid Dynamic Simulations of Plume Dispersion in Urban Oklahoma City  

Science Conference Proceedings (OSTI)

A 3D computational fluid dynamics study using Reynolds-averaged NavierStokes modeling was conducted and validated with field data from the Joint Urban 2003 dispersion study in Oklahoma City, Oklahoma. The modeled flow field indicated that the ...

Julia E. Flaherty; David Stock; Brian Lamb

2007-12-01T23:59:59.000Z

69

Computational fluid dynamic (CFD) optimization of microfluidic mixing in a MEMS steam generator  

E-Print Network (OSTI)

The challenge of achieving rapid mixing in microchannels is addressed through a computational fluid dynamics (CFD) study using the ADINA-F finite element program. The study is motivated by the need to design an adequate ...

Collins, Kimberlee C. (Kimberlee Chiyoko)

2008-01-01T23:59:59.000Z

70

Consequences of Urban Stability Conditions for Computational Fluid Dynamics Simulations of Urban Dispersion  

Science Conference Proceedings (OSTI)

The validity of omitting stability considerations when simulating transport and dispersion in the urban environment is explored using observations from the Joint Urban 2003 field experiment and computational fluid dynamics simulations of that ...

Julie K. Lundquist; Stevens T. Chan

2007-07-01T23:59:59.000Z

71

Noncommutative fluid dynamics in the K\\"{a}hler parametrization  

E-Print Network (OSTI)

In this paper, we propose a first order action functional for a large class of systems that generalize the relativistic perfect fluids in the K\\"{a}hler parametrization to noncommutative spacetimes. We calculate the equations of motion for the fluid potentials and the energy-momentum tensor in the first order in the noncommutative parameter. The density current does not receive any noncommutative corrections and it is conserved under the action of the commutative generators $P_{\\mu}$ but the energy-momentum tensor is not. Therefore, we determine the set of constraints under which the energy-momentum tensor is divergenceless. Another set of constraints on the fluid potentials is obtained from the requirement of the invariance of the action under the generalization of the volume preserving transformations of the noncommutative spacetime. We show that the proposed action describes noncommutative fluid models by casting the energy-momentum tensor in the familiar fluid form and identifying the corresponding energy...

Holender, L; Orlando, M T D; Vancea, I V

2011-01-01T23:59:59.000Z

72

Computational fluid dynamics modelling of sewage sludge mixing in an anaerobic digester  

Science Conference Proceedings (OSTI)

In this paper, the development of a computational fluid dynamics (CFD) model to simulate the mechanical mixing of sewage sludge at laboratory scale is reported. The paper recommends a strategy for modelling mechanically mixed sewage sludge at laboratory ... Keywords: Biogas, CFD, Digestion, Energy, Non-Newtonian fluid, Sewage sludge, Turbulence

J. Bridgeman

2012-02-01T23:59:59.000Z

73

The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3  

Science Conference Proceedings (OSTI)

The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosolcloud ...

Leo J. Donner; Bruce L. Wyman; Richard S. Hemler; Larry W. Horowitz; Yi Ming; Ming Zhao; Jean-Christophe Golaz; Paul Ginoux; S.-J. Lin; M. Daniel Schwarzkopf; John Austin; Ghassan Alaka; William F. Cooke; Thomas L. Delworth; Stuart M. Freidenreich; C. T. Gordon; Stephen M. Griffies; Isaac M. Held; William J. Hurlin; Stephen A. Klein; Thomas R. Knutson; Amy R. Langenhorst; Hyun-Chul Lee; Yanluan Lin; Brian I. Magi; Sergey L. Malyshev; P. C. D. Milly; Vaishali Naik; Mary J. Nath; Robert Pincus; Jeffrey J. Ploshay; V. Ramaswamy; Charles J. Seman; Elena Shevliakova; Joseph J. Sirutis; William F. Stern; Ronald J. Stouffer; R. John Wilson; Michael Winton; Andrew T. Wittenberg; Fanrong Zeng

2011-07-01T23:59:59.000Z

74

Investigation of combustive flows and dynamic meshing in computational fluid dynamics  

E-Print Network (OSTI)

Computational Fluid Dynamics (CFD) is a ?eld that is constantly advancing. Its advances in terms of capabilities are a result of new theories, faster computers, and new numerical methods. In this thesis, advances in the computational ?uid dynamic modeling of moving bodies and combustive ?ows are investigated. Thus, the basic theory behind CFD is being extended to solve a new class of problems that are generally more complex. The ?rst chapter that investigates some of the results, chapter IV, discusses a technique developed to model unsteady aerodynamics with moving boundaries such as ?apping winged ?ight. This will include mesh deformation and ?uid dynamics theory needed to solve such a complex system. Chapter V will examine the numerical modeling of a combustive ?ow. A three dimensional single vane burner combustion chamber is numerically modeled. Species balance equations along with rates of reactions are introduced when modeling combustive ?ows and these expressions are discussed. A reaction mechanism is validated for use with in situ reheat simulations. Chapter VI compares numerical results with a laminar methane ?ame experiment to further investigate the capabilities of CFD to simulate a combustive ?ow. A new method of examining a combustive ?ow is introduced by looking at the solutions ability to satisfy the second law of thermodynamics. All laminar ?ame simulations are found to be in violation of the entropy inequality.

Chambers, Steven B.

2004-12-01T23:59:59.000Z

75

Nonlinear dynamics of three dimensional fluid flow separation  

E-Print Network (OSTI)

Flow separation (the detachment of fluid from a no-slip boundary) is a major cause of performance loss in engineering devices, including diffusers, airfoils and jet engines. The systematic study of flow separation dates ...

Surana, Amit

2007-01-01T23:59:59.000Z

76

A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic simulations  

E-Print Network (OSTI)

A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic conditions with turbine models covering the range of scales important for wind plant dynamics to help address the impacts that upwind turbines have on turbines in their wake and give greater insight into overall wind

77

Opportunities in geophysics  

Science Conference Proceedings (OSTI)

What are the chances of a physicist finding an agreeable job in geophysics? The apparently poor prospects for jobs in academic physics led me to explore the possibilities in geophysics; this field

H. Richard Crane

1971-01-01T23:59:59.000Z

78

Dissipative Particle Dynamics Simulation of Pore-Scale Multiphase Fluid Flow  

Science Conference Proceedings (OSTI)

Multiphase fluid flow through porous media involves complex fluid dynamics, and it is difficult to model such complex behavior, on the pore scale, using grid-based continuum models. In this paper, the application of dissipative particle dynamics (DPD), a relatively new mesoscale method, to the simulation of pore-scale multiphase fluid flows under a variety of flow conditions is described. We demonstrate that the conventional DPD method using purely repulsive conservative (nondissipative) particle-particle interactions is capable of modeling single-phase flow fields in saturated porous media. In order to simulate unsaturated multiphase flow through porous media, we applied a modified model for the conservative particle-particle interactions that combines short-range repulsive and long-range attractive interactions. This form for the conservative particle-particle interactions allows the behavior of multiphase systems consisting of gases, liquids, and solids to be simulated. We also demonstrated that the flow of both wetting and nonwetting fluids through porous media can be simulated by controlling the ratios between the fluid-fluid and fluid-solid (fluid-wall) interparticle interaction strengths.

Paul Meakin; Hai Huang; Moubin Liu

2007-04-01T23:59:59.000Z

79

LANL | Solid Earth Geophysics | EES-17  

NLE Websites -- All DOE Office Websites (Extended Search)

LANL : Earth & Environmental Sciences : Solid Earth Geophysics (EES-17) LANL : Earth & Environmental Sciences : Solid Earth Geophysics (EES-17) Home Publications Collaboration & Links Staff Research Highlights Ground-Based Nuclear Explosion Monitoring Geodynamics & National Security Nonlinear Elasticity Time Reversal Los Alamos Seismic Network Stimulated Porous Fluid Flow Resource Recovery Seismic & Acoustic Imaging Exploration Geophysics Induced Seismicity Volcanoes & Earthquakes Other Research CONTACTS Group Leader Ken Rehfeldt Administrative Contacts Jody Benson Cecilia Gonzales Geophysics (EES-17) The Geophysics Group supports the national security mission of Los Alamos National Laboratory by providing technical expertise to monitor movement of Earth's crust while predicting the effects of these events on the environment. Though our focus is on seismic monitoring, we also apply electric, magnetic, radionuclide, and acoustic technologies to monitor underground explosions, maintain our ability to conduct tests, and develop the Yucca Mountain Project. In addition, we study the nonlinear properties of earth materials, imaging with seismic waves, how seismic waves affect the interaction of porous rocks and fluids, use of seismic waves to characterize underground oil reservoirs, volcanology and volcanic seismicity, advanced computational physics of earth materials, and using drilling technology to study the crust of the earth. These tasks are complemented by our extensive background in both conventional and hot dry rock geothermal energy development and geophysical support of the Nevada Test Site.

80

Convergence of a two-layer scheme for equations of gas dynamics in Eulerian variables with geo-physical applications  

Science Conference Proceedings (OSTI)

This paper deals with the convergence of a completely conservative, two-layer difference scheme for equations of gas dynamics in Eulerian variables. The convergence of the difference solution to the smooth solution of the original periodic Cauchy problem ... Keywords: Cauchy problem, Eulerian variables, difference scheme, partial differential equations, shallow water theory

F. Criado-Aldeanueva; F. Criado; G. Meladze

2009-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Stochastic Hard-Sphere Dynamics for Hydrodynamics of Non-Ideal Fluids  

SciTech Connect

A novel stochastic fluid model is proposed with a nonideal structure factor consistent with compressibility, and adjustable transport coefficients. This stochastic hard-sphere dynamics (SHSD) algorithm is a modification of the direct simulation Monte Carlo algorithm and has several computational advantages over event-driven hard-sphere molecular dynamics. Surprisingly, SHSD results in an equation of state and a pair correlation function identical to that of a deterministic Hamiltonian system of penetrable spheres interacting with linear core pair potentials. The fluctuating hydrodynamic behavior of the SHSD fluid is verified for the Brownian motion of a nanoparticle suspended in a compressible solvent.

Donev, A; Alder, B J; Garcia, A L

2008-02-26T23:59:59.000Z

82

Fluid Dynamics and Solid Mechanics, T-3: Theoretical, T: LANL Inside  

NLE Websites -- All DOE Office Websites (Extended Search)

Leader Leader Mark Schraad Deputy Group Leader Marianne Francois Administration Crystal Martinez Beverly Corrales Office Location MS B216 TA-3, Bldg 200, Rm 215 Fluid Dynamics and Solid Mechanics, T-3 Conducts basic and applied research in theoretical continuum dynamics, modern hydrodynamic theory, materials modeling, global climate modeling, numerical algorithm development, and large-scale computational simulations. There is an emphasis on developing advanced numerical methods for continuum dynamics at all flow velocities and strain rates, and coupling these methods to constitutive models for solid material response and other physical processes such as turbulence, chemical reactions, combustion, phase change, heat and mass transfer, and plasma behavior. The Fluid Dynamics Group's portfolio of research activities represents fundamental

83

Coupling remote sensing with computational fluid dynamics modelling to estimate lake chlorophyll-a concentration  

E-Print Network (OSTI)

Coupling remote sensing with computational fluid dynamics modelling to estimate lake chlorophyll form 17 October 2000; accepted 1 June 2001 Abstract A remotely sensed image of Loch Leven, a shallow in the remotely sensed image. It is proposed that CFD modelling benefits the interpretation of remotely sensed

84

Real-time motion effect enhancement based on fluid dynamics in figure animation  

Science Conference Proceedings (OSTI)

In fast figure animation, motion blur is often employed to generate fantastic effects of figure motion, for exaggerating the atmosphere one wants to convey. In the previous works for long time, the solution based on certain kind of image blending in ... Keywords: GPU geometric processing, fluid dynamics, motion blur, skeletal animation

Tian-Chen Xu; En-Hua Wu; Mo Chen; Ming Xie

2011-12-01T23:59:59.000Z

85

Particle Swarm Optimization of Ceramic Roller Kiln Temperature Field Uniformity Using Computational Fluid Dynamics Tools  

Science Conference Proceedings (OSTI)

In this paper ceramic roller kiln temperature field uniformity is mainly researched using computational fluid dynamics tools and particle swarm optimization (PSO). In consideration of burning and burning temperature control is key technique of burning ... Keywords: PSO, temperature field uniformity, multiple liner regression, uniform design, ceramic roller kiln design

Wenbi Rao; Peng Li

2009-06-01T23:59:59.000Z

86

A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic simulations  

E-Print Network (OSTI)

A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic of multi-megawatt turbines requires a new generation of modeling capability to assess individual turbine performance as well as detailed turbine- turbine and turbine-atmosphere interactions. Scientists

87

Computational Methods for Analyzing Fluid Flow Dynamics from Digital Imagery  

SciTech Connect

The main goal (long term) of this work is to perform computational dynamics analysis and quantify uncertainty from vector fields computed directly from measured data. Global analysis based on observed spatiotemporal evolution is performed by objective function based on expected physics and informed scientific priors, variational optimization to compute vector fields from measured data, and transport analysis proceeding with observations and priors. A mathematical formulation for computing flow fields is set up for computing the minimizer for the problem. An application to oceanic flow based on sea surface temperature is presented.

Luttman, A.

2012-03-30T23:59:59.000Z

88

Steam Generator Management Program: Thermal-Hydraulic Analysis of a Recirculating Steam Generator Using Commercial Computational Fluid Dynamics Software  

Science Conference Proceedings (OSTI)

The objective of this research was to demonstrate that a commercial computational fluid dynamics code can be set up to model the thermal-hydraulic physics that occur during the operation of a steam generator. Specific complexities in steam-generator thermal-hydraulic modeling include: phase change and two-phase fluid mechanics, hydrodynamic representation of the tube bundle, and thermal coupling between the primary and secondary sides. A commercial computational fluid dynamics code was used without any s...

2012-02-21T23:59:59.000Z

89

Fluid Dynamic and Performance Behavior of Multiphase Progressive Cavity Pumps  

E-Print Network (OSTI)

It is common for an oil well to produce a mixture of hydrocarbons that flash when exposed to atmospheric pressure. The separation of oil and gas mixtures on site may prove expensive and lead to higher infrastructure and maintenance costs as well. A multiphase pump offers a good alternative with a lower capital cost and increased overall production. A Progressive Cavity Pump (PCP) is a positive displacement pump type that can be used to pump a wide range of multiphase mixtures, including high viscosity fluids with entrained gas and solid particles in suspension. Despite its advantages, a PCP has a reduced ability to handle high gas-liquid ratios due to limitations of its elastomeric stator material required to overcome thermo and mechanical effects. Also the efficiency decreases significantly with increases in gas volume fractions and reduced differential pressures. The current study focuses on studying the behavior of this unique pump in a wide range of GVFs and studying the effect of this ratio on overall efficiency, temperature and pressure distribution on the stator. The pump exhibits vibration issues at specific differential pressures and they have been studied in this work. This can be of critical value as severe vibration issues can damage the pump components such as couplings and bearings leading to high maintenance costs. Another important issue addressed by this research is the behavior of this pump in transient conditions. Oil well production is highly unpredictable with unexpected rises and drops in GVFs. These transient conditions have been simulated by varying the GVF over wide ranges and studying the pump's behavior in terms of load, temperature rises and instantaneous pressure profiles on the pump stator. This thesis provides a comprehensive study of this pump, its operating ranges and behavior in off-design conditions to assist oil and gas exploration ventures in making an informed choice in pump selection for their applications based on field conditions.

Narayanan, Shankar Bhaskaran

2011-08-01T23:59:59.000Z

90

Impact of random obstacles on the dynamics of a dense colloidal fluid  

E-Print Network (OSTI)

Using molecular dynamics simulations we study the slow dynamics of a colloidal fluid annealed within a matrix of obstacles quenched from an equilibrated colloidal fluid. We choose all particles to be of the same size and to interact as hard spheres, thus retaining all features of the porous confinement while limiting the control parameters to the packing fraction of the matrix, {\\Phi}m, and that of the fluid, {\\Phi}f. We conduct detailed investigations on several dynamic properties, including the tagged-particle and collective intermediate scattering functions, the mean-squared displacement, and the van Hove function. We show the confining obstacles to profoundly impact the relaxation pattern of various quantifiers pertinent to the fluid. Varying the type of quantifier (tagged-particle or collective) as well as {\\Phi}m and {\\Phi}f, we unveil both discontinuous and continuous arrest scenarios. Furthermore, we discover subdiffusive behavior and demonstrate its close connection to the matrix structure. Our findings partly confirm the various predictions of a recent extension of mode-coupling theory to the quenched-annealed protocol.

Jan Kurzidim; Daniele Coslovich; Gerhard Kahl

2010-07-02T23:59:59.000Z

91

Liquid phase fluid dynamic (methanol) run in the LaPorte alternative fuels development unit  

DOE Green Energy (OSTI)

A fluid dynamic study was successfully completed in a bubble column at DOE's Alternative Fuels Development Unit (AFDU) in LaPorte, Texas. Significant fluid dynamic information was gathered at pilot scale during three weeks of Liquid Phase Methanol (LPMEOJP) operations in June 1995. In addition to the usual nuclear density and temperature measurements, unique differential pressure data were collected using Sandia's high-speed data acquisition system to gain insight on flow regime characteristics and bubble size distribution. Statistical analysis of the fluctuations in the pressure data suggests that the column was being operated in the churn turbulent regime at most of the velocities considered. Dynamic gas disengagement experiments showed a different behavior than seen in low-pressure, cold-flow work. Operation with a superficial gas velocity of 1.2 ft/sec was achieved during this run, with stable fluid dynamics and catalyst performance. Improvements included for catalyst activation in the design of the Clean Coal III LPMEOH{trademark} plant at Kingsport, Tennessee, were also confirmed. In addition, an alternate catalyst was demonstrated for LPMEOH{trademark}.

Bharat L. Bhatt

1997-05-01T23:59:59.000Z

92

Quantum-fluid-dynamics approach for strong-field processes: Application to the study of multiphoton ionization and high-order harmonic generation of He and Ne atoms  

E-Print Network (OSTI)

Wigner cor- relation energy functionals are used. QUANTUM-FLUID-DYNAMICS APPROACH FOR STRONGQuantum-fluid-dynamics approach for strong-field processes: Application to the study of multiphoton; published 18 March 2002 We explore the feasibility of extending the quantum-fluid dynamics QFD approach

Chu, Shih-I

93

Geophysics I. Seismic Methods  

SciTech Connect

During the past two decades, the technology of geophysics has exploded. At the same time, the petroleum industry has been forced to look for more and more subtle traps in more and more difficult terrain. The choice of papers in this geophysics reprint volume reflects this evolution. The papers were chosen to help geologists, not geophysicists, enhance their knowledge of geophysics. Math-intensive papers were excluded because those papers are relatively esoteric and have limited applicability for most geologists. This volume concentrates on different seismic survey methods. Each of the 38 papers were abstracted and indexed for the U.S. Department of Energy's Energy Data Base.

Beaumont, E.A.; Foster, N.H. (comps.)

1989-01-01T23:59:59.000Z

94

Fiber optic geophysical sensors  

DOE Patents (OSTI)

This invention is comprised of a fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figs.

Homuth, E.F.

1990-01-01T23:59:59.000Z

95

Fiber optic geophysical sensors  

DOE Patents (OSTI)

This invention is comprised of a fiber optic geophysical sensor in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figs.

Homuth, E.F.

1990-12-31T23:59:59.000Z

96

Demonstration of a Computational Fluid Dynamics (CFD) Tool Used for Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Demonstration of a Computational Fluid Dynamics (CFD) Tool Used for Data Demonstration of a Computational Fluid Dynamics (CFD) Tool Used for Data Center Modeling, Thermal Analysis and Operational Management Speaker(s): Saket Karajgikar Date: November 11, 2010 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Henry Coles Every Data Center built today is designed with a total capacity in mind, as well as a plan to grow into this final-day load. On a daily basis, Data Center Operations/Management professionals work toward keeping their Data Center as close to this plan as possible by concurrently managing the available power, space, cooling and airflow resources. Unfortunately, lack of communication and information, the pace of change and difficulty in coping with the ever growing power densities of IT equipment can prevent a

97

Relativistic Dynamics of Non-ideal Fluids: Viscous and heat-conducting fluids II. Transport properties and microscopic description of relativistic nuclear matter  

E-Print Network (OSTI)

In the causal theory of relativistic dissipative fluid dynamics, there are conditions on the equation of state and other thermodynamic properties such as the second-order coefficients of a fluid that need to be satisfied to guarantee that the fluid perturbations propagate causally and obey hyperbolic equations. The second-order coefficients in the causal theory, which are the relaxation times for the dissipative degrees of freedom and coupling constants between different forms of dissipation (relaxation lengths), are presented for partonic and hadronic systems. These coefficients involves relativistic thermodynamic integrals. The integrals are presented for general case and also for different regimes in the temperature--chemical potential plane. It is shown that for a given equation of state these second-order coefficients are not additional parameters but they are determined by the equation of state. We also present the prescription on the calculation of the freeze-out particle spectra from the dynamics of relativistic non-ideal fluids.

Azwinndini Muronga

2006-11-25T23:59:59.000Z

98

Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics, and Computational Fluid Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal-biomass Catalytic Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics, and Computational Fluid Dynamics Background The U.S. Department of Energy (DOE) supports research and development efforts targeted to improve efficiency and reduce the negative environmental effects of the use of fossil fuels. One way to achieve these goals is to combine coal with biomass to create synthesis gas (syngas) for use in turbines and refineries to produce energy, fuels,

99

Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls  

Science Conference Proceedings (OSTI)

As aggressive reductions in boiler emissions are mandated, the electric utility industry has been moving toward installation of improved methods of burner flow measurement and control to optimize combustion for reduced emissions. Development of cost effective controls requires an understanding of how variations in air and coal flows relate to emission rates. This project used computational fluid dynamic (CFD) modeling to quantify the impacts of variations of burner air and fuel flows on furnace operating...

2005-12-12T23:59:59.000Z

100

National Ignition Facility computational fluid dynamics modeling and light fixture case studies  

SciTech Connect

This report serves as a guide to the use of computational fluid dynamics (CFD) as a design tool for the National Ignition Facility (NIF) program Title I and Title II design phases at Lawrence Livermore National Laboratory. In particular, this report provides general guidelines on the technical approach to performing and interpreting any and all CFD calculations. In addition, a complete CFD analysis is presented to illustrate these guidelines on a NIF-related thermal problem.

Martin, R.; Bernardin, J.; Parietti, L.; Dennison, B.

1998-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Measurement techniques for local and global fluid dynamic quantities in two and three phase systems  

SciTech Connect

This report presents a critical review of the methods available for assessing the fluid dynamic parameters in large industrial two and three phase bubble column and slurry bubble column reactors operated at high pressure and temperature. The physical principles behind various methods are explained, and the basic design of the instrumentation needed to implement each measurement principle is discussed. Fluid dynamic properties of interest are: gas, liquid and solids holdup and their axial and radial distribution as well as the velocity distribution of the two (bubble column) or three phases (slurry bubble column). This information on operating pilot plant and plant reactors is essential to verify the computational fluid dynamic codes as well as scale-up rules used in reactor design. Without such information extensive and costly scale-up to large reactors that exploit syngas chemistries, and other reactors in production of fuels and chemicals, cannot be avoided. In this report, available measurement techniques for evaluation of global and local phase holdups, instantaneous and average phase velocities and for the determination of bubble sizes in gas-liquid and gas-liquid-solid systems are reviewed. Advantages and disadvantages of various techniques are discussed. Particular emphasis is placed on identifying methods that can be employed on large scale, thick wall, high pressure and high temperature reactors used in the manufacture of fuels and chemicals from synthesis gas and its derivatives.

Kumar, S.; Dudukovic, M.P. [Washington Univ., St. Louis, MO (United States). Chemical Reaction Engineering Lab.; Toseland, B.A. [Air Products and Chemicals, Inc., Lehigh Valley, PA (United States)

1996-03-01T23:59:59.000Z

102

Geophysical Methods | Open Energy Information  

Open Energy Info (EERE)

Geophysical Methods Geophysical Methods Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geophysical Methods Details Activities (0) Areas (0) Regions (0) NEPA(1) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: Geophysical Techniques Parent Exploration Technique: Information Provided by Technique Lithology: Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Geophysical Methods: Methods used to measure the physical properties of the earth Other definitions:Wikipedia Reegle Introduction There are five main types of geophysical methods used for geothermal resource discovery: Seismic Methods (active and passive) Electrical Methods Magnetic Methods Gravity Methods Radiometric Methods Seismic methods dominates oil and gas exploration, and probably accounts

103

Geophysical Techniques | Open Energy Information  

Open Energy Info (EERE)

Geophysical Techniques Geophysical Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geophysical Techniques Details Activities (2) Areas (1) Regions (0) NEPA(4) Exploration Technique Information Exploration Group: Geophysical Techniques Exploration Sub Group: None Parent Exploration Technique: Exploration Techniques Information Provided by Technique Lithology: may be inferred Stratigraphic/Structural: may be inferred Hydrological: may be inferred Thermal: may be inferred Dictionary.png Geophysical Techniques: Geophysics is the study of the structure and composition of the earth's interior. Other definitions:Wikipedia Reegle Introduction Geophysical techniques measure physical phenomena of the earth such as gravity, magnetism, elastic waves, electrical and electromagnetic waves.

104

A Two-Way Nested Global-Regional Dynamical Core on the Cubed-Sphere Grid  

Science Conference Proceedings (OSTI)

A nested-grid model is constructed using the Geophysical Fluid Dynamics Laboratory finite-volume dynamical core on the cubed sphere. The use of a global grid avoids the need for externally imposed lateral boundary conditions, and the use of the ...

Lucas M. Harris; Shian-Jiann Lin

2013-01-01T23:59:59.000Z

105

Detailed Simulations of Atmospheric Flow and Dispersion in Downtown Manhattan: An Application of Five Computational Fluid Dynamics Models  

Science Conference Proceedings (OSTI)

Computational fluid dynamics (CFD) model simulations of urban boundary layers have improved in speed and accuracy so that they are useful in assisting in planning emergency response activities related to releases of chemical or biological agents ...

Steven R. Hanna; Michael J. Brown; Fernando E. Camelli; Stevens T. Chan; William J. Coirier; Sura Kim; Olav R. Hansen; Alan H. Huber; R. Michael Reynolds

2006-12-01T23:59:59.000Z

106

Computational Fluid Dynamic Analysis of the VHTR Lower Plenum Standard Problem  

DOE Green Energy (OSTI)

The United States Department of Energy is promoting the resurgence of nuclear power in the U. S. for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The DOE project is called the next generation nuclear plant (NGNP) and is based on a Generation IV reactor concept called the very high temperature reactor (VHTR), which will use helium as the coolant at temperatures ranging from 450 C to perhaps 1000 C. While computational fluid dynamics (CFD) has not been used for past safety analysis for nuclear reactors in the U. S., it is being considered for safety analysis for existing and future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal and accident operational situations. To this end, experimental data have been obtained in a scaled model of a narrow slice of the lower plenum of a prismatic VHTR. The present report presents results of CFD examinations of these data to explore potential issues with the geometry, the initial conditions, the flow dynamics and the data needed to fully specify the inlet and boundary conditions; results for several turbulence models are examined. Issues are addressed and recommendations about the data are made.

Richard W. Johnson; Richard R. Schultz

2009-07-01T23:59:59.000Z

107

BASIC GEOPHYSICAL FLUID Lecture 1: Introduction -  

E-Print Network (OSTI)

conservation, equations of state. · Rotating frame of reference, Centrifugal and Coriolis forces. · Local a perfect gas: pV = RT for 1 mole where R = molar gas const = 8.3 J mol-1 K-1. If M = mass of 1 mole, = M/

Read, Peter L.

108

Study of ebullated bed fluid dynamics. Final progress report, September 1980-July 1983  

Science Conference Proceedings (OSTI)

The fluid dynamics occurring in HRI's H-coal process development unit coal liquefaction reactor during Run PDU-10 were measured and compared with Amoco Oil cold-flow fluidization results. It was found that catalyst bed expansions and gas holdups are higher in the PDU than those observed in the cold-flow tests for slurries having the same nominal viscosity. Comparison of PDU results with cold-flow results shows that the bulk of the operating reactor gas flow lies in the ideal bubbly regime. It also appears that the gas bubbles in these PDU tests are rising quite slowly. Only two of the operating points in our test program on the PDU were found to lie in the churn turbulent regime. Existence of churn turbulent behavior during these two experiments is consistent with trends observed in earlier cold-flow experiments. Two- and three-phase fluidization experiments were carried out in Amoco's cold-flow fluid dynamics unit. The data base now includes fluidization results for coal char/kerosene slurry concentrations of 4.0, 9.8, and 20.7 vol% in addition to the 15.5 and 17.8 vol% data from our earlier work. Both HDS-2A and Amocat-1A catalysts were used in the tests. Bed expansion is primarily a function of slurry velocity, with gas velocity having only a weak effect. Bed contractions have been observed in some cases at sufficiently high gas velocity. Gas and liquid holdups were found to be uniform across the cross-section of the Amoco cold-flow fluid dynamics pilot plant. A viscometer was adapted for measurement of the viscosity of coal slurries at high temperature and pressure. Based on experiments carried out in the Amoco cold-flow unit, a significant degree of backmixing was found to occur in the H-Coal system. 70 references, 93 figures, 32 tables.

Schaefer, R.J.; Rundell, D.N.; Shou, J.K.

1983-07-01T23:59:59.000Z

109

Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances  

DOE Green Energy (OSTI)

This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

Faybishenko, B. (ed.)

1999-02-01T23:59:59.000Z

110

Proceedings of the International Symposium on Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances  

SciTech Connect

This publication contains extended abstracts of papers presented at the International Symposium ''Dynamics of Fluids in Fractured Rocks: Concepts and Recent Advances'' held at Ernest Orlando Lawrence Berkeley National Laboratory on February 10-12, 1999. This Symposium is organized in Honor of the 80th Birthday of Paul A. Witherspoon, who initiated some of the early investigations on flow and transport in fractured rocks at the University of California, Berkeley, and at Lawrence Berkeley National Laboratory. He is a key figure in the development of basic concepts, modeling, and field measurements of fluid flow and contaminant transport in fractured rock systems. The technical problems of assessing fluid flow, radionuclide transport, site characterization, modeling, and performance assessment in fractured rocks remain the most challenging aspects of subsurface flow and transport investigations. An understanding of these important aspects of hydrogeology is needed to assess disposal of nu clear wastes, development of geothermal resources, production of oil and gas resources, and remediation of contaminated sites. These Proceedings of more than 100 papers from 12 countries discuss recent scientific and practical developments and the status of our understanding of fluid flow and radionuclide transport in fractured rocks. The main topics of the papers are: Theoretical studies of fluid flow in fractured rocks; Multi-phase flow and reactive chemical transport in fractured rocks; Fracture/matrix interactions; Hydrogeological and transport testing; Fracture flow models; Vadose zone studies; Isotopic studies of flow in fractured systems; Fractures in geothermal systems; Remediation and colloid transport in fractured systems; and Nuclear waste disposal in fractured rocks.

Faybishenko, B. (ed.)

1999-02-01T23:59:59.000Z

111

COMPUTATIONAL FLUID DYNAMICS MODELING OF SCALED HANFORD DOUBLE SHELL TANK MIXING - CFD MODELING SENSITIVITY STUDY RESULTS  

SciTech Connect

The primary purpose of the tank mixing and sampling demonstration program is to mitigate the technical risks associated with the ability of the Hanford tank farm delivery and celtification systems to measure and deliver a uniformly mixed high-level waste (HLW) feed to the Waste Treatment and Immobilization Plant (WTP) Uniform feed to the WTP is a requirement of 24590-WTP-ICD-MG-01-019, ICD-19 - Interface Control Document for Waste Feed, although the exact definition of uniform is evolving in this context. Computational Fluid Dynamics (CFD) modeling has been used to assist in evaluating scaleup issues, study operational parameters, and predict mixing performance at full-scale.

JACKSON VL

2011-08-31T23:59:59.000Z

112

On the application of computational fluid dynamics codes for liquefied natural gas dispersion.  

SciTech Connect

Computational fluid dynamics (CFD) codes are increasingly being used in the liquefied natural gas (LNG) industry to predict natural gas dispersion distances. This paper addresses several issues regarding the use of CFD for LNG dispersion such as specification of the domain, grid, boundary and initial conditions. A description of the k-{var_epsilon} model is presented, along with modifications required for atmospheric flows. Validation issues pertaining to the experimental data from the Burro, Coyote, and Falcon series of LNG dispersion experiments are also discussed. A description of the atmosphere is provided as well as discussion on the inclusion of the Coriolis force to model very large LNG spills.

Luketa-Hanlin, Anay Josephine; Koopman, Ronald P. (Lawrence Livermore National Laboratory, Livermore, CA); Ermak, Donald (Lawrence Livermore National Laboratory, Livermore, CA)

2006-02-01T23:59:59.000Z

113

TEMPEST: A computer code for three-dimensional analysis of transient fluid dynamics  

SciTech Connect

TEMPEST (Transient Energy Momentum and Pressure Equations Solutions in Three dimensions) is a powerful tool for solving engineering problems in nuclear energy, waste processing, chemical processing, and environmental restoration because it analyzes and illustrates 3-D time-dependent computational fluid dynamics and heat transfer analysis. It is a family of codes with two primary versions, a N- Version (available to public) and a T-Version (not currently available to public). This handout discusses its capabilities, applications, numerical algorithms, development status, and availability and assistance.

Fort, J.A.

1995-06-01T23:59:59.000Z

114

Sandia National Laboratories environmental fluid dynamics code : pH effects user manual.  

Science Conference Proceedings (OSTI)

This document describes the implementation level changes in the source code and input files of Sandia National Laboratories Environmental Fluid Dynamics Code (SNL-EFDC) that are necessary for including pH effects into algae-growth dynamics. The document also gives a brief introduction to how pH effects are modeled into the algae-growth model. The document assumes that the reader is aware of the existing algae-growth model in SNL-EFDC. The existing model is described by James, Jarardhanam and more theoretical considerations behind modeling pH effects are presented therein. This document should be used in conjunction with the original EFDC manual and the original water-quality manual.

Janardhanam, Vijay (University of New Mexico, Albuquerque, NM); James, Scott Carlton

2012-02-01T23:59:59.000Z

115

Molecular Dynamics Study of Freezing Point and Solid-Liquid Interfacial Free Energy of Stockmayer Fluids  

SciTech Connect

Freezing temperatures of Stockmayer fluids with different dipolar strength at zero pressure are estimated and computed using three independent molecular-dynamics (MD) simulation methods, namely, the superheating-undercooling method, the constant-pressure and constant-temperature (NPT) two phase coexistence method, and the constant-pressure and constant-enthalpy (NPH) coexistence method. The best estimate of the freezing temperature (in reduced unit) for the Stockmayer (SM) fluid with a reduced dipole moment is 0.656 0.001, 0.726 0.002 and 0.835 0.005, respectively. The freezing temperature increases with the dipolar strength. The solid-liquid interfacial free energies of the (111), (110) and (100) interface are calculated for the first time using two independent methods, namely, the cleaving-wall method and the interfacial fluctuation method. Both methods predict that the interfacial free energy increases with the dipole moment. Although the interfacial fluctuation method suggests a weaker interfacial anisotropy, particularly for strongly dipolar SM fluids, both methods predicted the same trend of interfacial anisotropy, that is, .

Wang, J. [University of Nebraska, Lincoln; Apte, Pankaj [Indian Institute of Technology, Kanpur; Morris, James R [ORNL; Zeng, X.C. [University of Nebraska, Lincoln

2013-01-01T23:59:59.000Z

116

On the relative importance of second-order terms in relativistic dissipative fluid dynamics  

E-Print Network (OSTI)

In Denicol et al., Phys. Rev. D 85, 114047 (2012), the equations of motion of relativistic dissipative fluid dynamics were derived from the relativistic Boltzmann equation. These equations contain a multitude of terms of second order in Knudsen number, in inverse Reynolds number, or their product. Terms of second order in Knudsen number give rise to non-hyperbolic (and thus acausal) behavior and must be neglected in (numerical) solutions of relativistic dissipative fluid dynamics. The coefficients of the terms which are of the order of the product of Knudsen and inverse Reynolds numbers have been explicitly computed in the above reference, in the limit of a massless Boltzmann gas. Terms of second order in inverse Reynolds number arise from the collision term in the Boltzmann equation, upon expansion to second order in deviations from the single-particle distribution function in local thermodynamical equilibrium. In this work, we compute these second-order terms for a massless Boltzmann gas with constant scattering cross section. Consequently, we assess their relative importance in comparison to the terms which are of the order of the product of Knudsen and inverse Reynolds numbers.

E. Molnr; H. Niemi; G. S. Denicol; D. H. Rischke

2013-08-04T23:59:59.000Z

117

A B-Spline-Based Colocation Method to Approximate the Solutions to the Equations of Fluid Dynamics  

SciTech Connect

The potential of a B-spline collocation method for numerically solving the equations of fluid dynamics is discussed. It is known that B-splines can resolve curves with drastically fewer data than can their standard shape function counterparts. This feature promises to allow much faster numerical simulations of fluid flow than standard finite volume/finite element methods without sacrificing accuracy. An example channel flow problem is solved using the method.

Johnson, Richard Wayne; Landon, Mark Dee

1999-07-01T23:59:59.000Z

118

A B-Spline-Based Colocation Method to Approximate the Solutions to the Equations of Fluid Dynamics  

SciTech Connect

The potential of a B-spline collocation method for numerically solving the equations of fluid dynamics is discussed. It is known that B-splines can resolve complex curves with drastically fewer data than can their standard shape function counterparts. This feature promises to allow much faster numerical simulations of fluid flow than standard finite volume/finite element methods without sacrificing accuracy. An example channel flow problem is solved using the method.

M. D. Landon; R. W. Johnson

1999-07-01T23:59:59.000Z

119

Two-dimensional computational fluid dynamics and conduction simulations of heat transfer in window frames with internal cavities - Part 1: Cavities only  

E-Print Network (OSTI)

of heat fluxes from CFD and conduction simulations for theapproach to solve the conduction heat-transfer equation. TheFluid Dynamics and Conduction Simulations of Heat Transfer

Gustavsen, Arild; Kohler, Christian; Arasteh, Dariush; Curcija, Dragan

2003-01-01T23:59:59.000Z

120

Proceedings of the Second International Symposium on Dynamics of Fluids in Fractured Rock  

E-Print Network (OSTI)

modeling fluid and heat flow in fractured porous media. Soc.Modelling Fluid and Heat Flow in Fractured Porous Media. SPEmodeling fluid and heat flow in fractured porous media. Soc

Faybishenko, Boris; Witherspoon, Paul A.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Proceedings of the Second International Symposium on Dynamics of Fluids in Fractured Rock  

E-Print Network (OSTI)

If water is used as a drilling fluid or in hydraulic packerfrom above or the drilling fluid. Little is known about theFluids in the Upper Continental Crust Results from the German Continental Deep Drilling

Faybishenko, Boris; Witherspoon, Paul A.

2004-01-01T23:59:59.000Z

122

The 3D Quasigeostrophic Fluid Dynamics under Random Forcing on Boundary  

E-Print Network (OSTI)

The three-dimensional baroclinic quasigeostrophic flow model has been widely used to study basic mechanisms in oceanic flows and climate dynamics. In this paper, we consider this flow model under random wind forcing and time-periodic fluctuations on fluid boundary (the interface between the oceans and the atmosphere). The time-periodic fluctuations are due to periodic rotation of the earth and thus periodic exposure of the earth to the solar radiation. After establishing the well-posedness of the baroclinic quasigeostrophic flow model in the state space, we demonstrate the existence of the random attractors, again in the state space. We also discuss the relevance of our result to climate modeling.

Jinqiao Duan; Bjorn Schmalfuss

2000-12-30T23:59:59.000Z

123

Circulating fluidized bed hydrodynamics experiments for the multiphase fluid dynamics research consortium (MFDRC).  

Science Conference Proceedings (OSTI)

An experimental program was conducted to study the multiphase gas-solid flow in a pilot-scale circulating fluidized bed (CFB). This report describes the CFB experimental facility assembled for this program, the diagnostics developed and/or applied to make measurements in the riser section of the CFB, and the data acquired for several different flow conditions. Primary data acquired included pressures around the flow loop and solids loadings at selected locations in the riser. Tomographic techniques using gamma radiation and electrical capacitance were used to determine radial profiles of solids volume fraction in the riser, and axial profiles of the integrated solids volume fraction were produced. Computer Aided Radioactive Particle Tracking was used to measure solids velocities, fluxes, and residence time distributions. In addition, a series of computational fluid dynamics simulations was performed using the commercial code Arenaflow{trademark}.

Oelfke, John Barry; Torczynski, John Robert; O'Hern, Timothy John; Tortora, Paul Richard; Bhusarapu, Satish (; ); Trujillo, Steven Mathew

2006-08-01T23:59:59.000Z

124

Radiation-cooled Dew Water Condensers Studied by Computational Fluid Dynamic (CFD)  

E-Print Network (OSTI)

Harvesting condensed atmospheric vapour as dew water can be an alternative or complementary potable water resource in specific arid or insular areas. Such radiation-cooled condensing devices use already existing flat surfaces (roofs) or innovative structures with more complex shapes to enhance the dew yield. The Computational Fluid Dynamic - CFD - software PHOENICS has been programmed and applied to such radiation cooled condensers. For this purpose, the sky radiation is previously integrated and averaged for each structure. The radiative balance is then included in the CFD simulation tool to compare the efficiency of the different structures under various meteorological parameters, for complex or simple shapes and at various scales. It has been used to precise different structures before construction. (1) a 7.32 m^2 funnel shape was studied; a 30 degree tilted angle (60 degree cone half-angle) was computed to be the best compromise for funnel cooling. Compared to a 1 m^2 flat condenser, the cooling efficienc...

Clus, O; Muselli, M; Nikolayev, Vadim; Sharan, Girja; Beysens, D

2007-01-01T23:59:59.000Z

125

Computational Fluid Dynamics in Support of the SNS Liquid Mercury Thermal-Hydraulic Analysis  

SciTech Connect

Experimental and computational thermal-hydraulic research is underway to support the liquid mercury target design for the Spallation Neutron Source (SNS) facility. The SNS target will be subjected to internal nuclear heat generation that results from pulsed proton beam collisions with the mercury nuclei. Recirculation and stagnation zones within the target are of particular concern because of the likelihood that they will result in local hot spots and diminished heat removal from the target structure. Computational fluid dynamics (CFD) models are being used as a part of this research. Recent improvements to the 3D target model include the addition of the flow adapter which joins the inlet/outlet coolant pipes to the target body and an updated heat load distribution at the new baseline proton beam power level of 2 MW. Two thermal-hydraulic experiments are planned to validate the CFD model.

Siman-Tov, M.; Wendel, M.W.; Yoder, G.L.

1999-11-14T23:59:59.000Z

126

Technical Review of the CENWP Computational Fluid Dynamics Model of the John Day Dam Forebay  

Science Conference Proceedings (OSTI)

The US Army Corps of Engineers Portland District (CENWP) has developed a computational fluid dynamics (CFD) model of the John Day forebay on the Columbia River to aid in the development and design of alternatives to improve juvenile salmon passage at the John Day Project. At the request of CENWP, Pacific Northwest National Laboratory (PNNL) Hydrology Group has conducted a technical review of CENWP's CFD model run in CFD solver software, STAR-CD. PNNL has extensive experience developing and applying 3D CFD models run in STAR-CD for Columbia River hydroelectric projects. The John Day forebay model developed by CENWP is adequately configured and validated. The model is ready for use simulating forebay hydraulics for structural and operational alternatives. The approach and method are sound, however CENWP has identified some improvements that need to be made for future models and for modifications to this existing model.

Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.

2010-12-01T23:59:59.000Z

127

The Dynamics of Fluid Flow and Associated Chemical Fluxes at Active Continental Margins  

E-Print Network (OSTI)

mixture of fluids introduced during drilling and in situdrilling and geologic setting..13 1.4.2 The three fluidof drilling indicators (IR imagery and pore fluid chemical

Solomon, Evan A

2007-01-01T23:59:59.000Z

128

The Dynamics of fluid flow and associated chemical fluxes at active continental margins  

E-Print Network (OSTI)

mixture of fluids introduced during drilling and in situdrilling and geologic setting..13 1.4.2 The three fluidof drilling indicators (IR imagery and pore fluid chemical

Solomon, Evan Alan

2007-01-01T23:59:59.000Z

129

Relativistic Dynamics of Non-ideal Fluids: Viscous and heat-conducting fluids I. General Aspects and 3+1 Formulation for Nuclear Collisions  

E-Print Network (OSTI)

Relativistic non-ideal fluid dynamics is formulated in 3+1 space--time dimensions. The equations governing dissipative relativistic hydrodynamics are given in terms of the time and the 3-space quantities which correspond to those familiar from non-relativistic physics. Dissipation is accounted for by applying the causal theory of relativistic dissipative fluid dynamics. As a special case we consider a fluid without viscous/heat couplings in the causal system of transport/relaxation equations. For the study of physical systems we consider pure (1+1)-dimensional expansion in planar geometry, (1+1)-dimensional spherically symmetric ({\\em fireball}) expansion, (1+1)-dimensional cylindrically symmetric expansion and a (2+1)-dimensional expansion with cylindrical symmetry in the transverse plane ({\\em firebarell} expansion). The transport/relaxation equations are given in terms of the spatial components of the dissipative fluxes, since these are not independent. The choice for the independent components is analogous to the non-relativistic equations.

Azwinndini Muronga

2006-11-25T23:59:59.000Z

130

An Integrated Model For The Geothermal Field Of Milos From Geophysical  

Open Energy Info (EERE)

Milos From Geophysical Milos From Geophysical Experiments Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Integrated Model For The Geothermal Field Of Milos From Geophysical Experiments Details Activities (0) Areas (0) Regions (0) Abstract: The results of geophysical experiments carried out by eight teams on the island of Milos as part of an integrated project under the European Commission's geothermal R & D programme are considered. The combination of these data with earlier studies on the geology and geophysics of Milos allow the compilation of a possible model of the geothermal reservoir and its surroundings in the central eastern part of the island. The reservoir is fed by convection of hot fluids from a depth of several kilometres, but the geophysical data provide no strong support for the earlier hypothesis

131

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 104, NO. A8, PAGES 17,21717,232, AUGUST, 1999 Latitudinal dynamics of auroral roar emissions  

E-Print Network (OSTI)

dynamics of auroral roar emissions S. G. Shepherd 1 and J. LaBelle Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire C. W. Carlson Space Sciences Laboratory, University of California. Auroral roar, a narrowband (f/f

Shepherd, Simon

132

GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 2: User's Manual  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containment and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK.

B. D. Nichols; C. Mller; G. A. Necker; J. R. Travis; J. W. Spore; K. L. Lam; P. Royl; T. L. Wilson

1998-10-01T23:59:59.000Z

133

Three-Dimensional Computational Fluid Dynamics Modeling of Solid Oxide Electrolysis Cells and Stacks  

DOE Green Energy (OSTI)

A three-dimensional computational fluid dynamics (CFD) electrochemical model has been created for detailed analysis of a high-temperature electrolysis stack (solid oxide fuel cells operated as electrolyzers). Inlet and outlet plenum flow distributions are discussed. Maldistribution of plena flow show deviations in per-cell operating conditions due to non-uniformity of species concentrations. Models have also been created to simulate experimental conditions and for code validation. Comparisons between model predictions and experimental results are discussed. Mass, momentum, energy, and species conservation and transport are provided via the core features of the commercial CFD code FLUENT. A solid-oxide fuel cell (SOFC) model adds the electrochemical reactions and loss mechanisms and computation of the electric field throughout the cell. The FLUENT SOFC user-defined subroutine was modified for this work to allow for operation in the electrolysis mode. Model results provide detailed profiles of temperature, Nernst potential, operating potential, activation over-potential, anode-side gas composition, cathode-side gas composition, current density and hydrogen production over a range of stack operating conditions. Variations in flow distribution, and species concentration are discussed. End effects of flow and per-cell voltage are also considered. Predicted mean outlet hydrogen and steam concentrations vary linearly with current density, as expected. Contour plots of local electrolyte temperature, current density, and Nernst potential indicate the effects of heat transfer, reaction cooling/heating, and change in local gas composition.

Grant Hawkes; James O'Brien; Carl Stoots; Stephen Herring

2008-07-01T23:59:59.000Z

134

Wind Turbine Modeling for Computational Fluid Dynamics: December 2010 - December 2012  

DOE Green Energy (OSTI)

With the shortage of fossil fuel and the increasing environmental awareness, wind energy is becoming more and more important. As the market for wind energy grows, wind turbines and wind farms are becoming larger. Current utility-scale turbines extend a significant distance into the atmospheric boundary layer. Therefore, the interaction between the atmospheric boundary layer and the turbines and their wakes needs to be better understood. The turbulent wakes of upstream turbines affect the flow field of the turbines behind them, decreasing power production and increasing mechanical loading. With a better understanding of this type of flow, wind farm developers could plan better-performing, less maintenance-intensive wind farms. Simulating this flow using computational fluid dynamics is one important way to gain a better understanding of wind farm flows. In this study, we compare the performance of actuator disc and actuator line models in producing wind turbine wakes and the wake-turbine interaction between multiple turbines. We also examine parameters that affect the performance of these models, such as grid resolution, the use of a tip-loss correction, and the way in which the turbine force is projected onto the flow field.

Tossas, L. A. M.; Leonardi, S.

2013-07-01T23:59:59.000Z

135

Computational Fluid Dynamics Analyses on Very High Temperature Reactor Air Ingress  

SciTech Connect

A preliminary computational fluid dynamics (CFD) analysis was performed to understand density-gradient-induced stratified flow in a Very High Temperature Reactor (VHTR) air-ingress accident. Various parameters were taken into consideration, including turbulence model, core temperature, initial air mole-fraction, and flow resistance in the core. The gas turbine modular helium reactor (GT-MHR) 600 MWt was selected as the reference reactor and it was simplified to be 2-D geometry in modeling. The core and the lower plenum were assumed to be porous bodies. Following the preliminary CFD results, the analysis of the air-ingress accident has been performed by two different codes: GAMMA code (system analysis code, Oh et al. 2006) and FLUENT CFD code (Fluent 2007). Eventually, the analysis results showed that the actual onset time of natural convection (~160 sec) would be significantly earlier than the previous predictions (~150 hours) calculated based on the molecular diffusion air-ingress mechanism. This leads to the conclusion that the consequences of this accident will be much more serious than previously expected.

Chang H Oh; Eung S. Kim; Richard Schultz; David Petti; Hyung S. Kang

2009-07-01T23:59:59.000Z

136

A Contribution to the Encyclopedia of Climate and Weather Yi Ming NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey USA  

E-Print Network (OSTI)

, the concerns over public health prompted researchers to study the fallout (radioactive dust) from nuclear-phase pollutants) in densely populated cities (such as London and Los Angeles). In the 1970s, a small group

137

Three-dimensional fluid-structure interaction dynamics of a pool-reactor in-tank component. [LMFBR  

SciTech Connect

The safety evaluation of reactor-components often involves the analysis of various types of fluid/structural components interacting in three-dimensional space. For example, in the design of a pool-type reactor several vital in-tank components such as the primary pumps and the intermediate heat exchangers are contained within the primary tank. Typically, these components are suspended from the deck structure and largely submersed in the sodium pool. Because of this positioning these components are vulnerable to structural damage due to pressure wave propagation in the tank during a CDA. In order to assess the structural integrity of these components it is necessary to perform a dynamic analysis in three-dimensional space which accounts for the fluid-structure coupling. A model is developed which has many of the salient features of this fluid-structural component system.

Kulak, R.F.

1979-01-01T23:59:59.000Z

138

Liquefied Natural Gas (LNG) Vapor Dispersion Modeling with Computational Fluid Dynamics Codes  

E-Print Network (OSTI)

Federal regulation 49 CFR 193 and standard NFPA 59A require the use of validated consequence models to determine the vapor cloud dispersion exclusion zones for accidental liquefied natural gas (LNG) releases. For modeling purposes, the physical process of dispersion of LNG release can be simply divided into two stages: source term and atmospheric dispersion. The former stage occurs immediately following the release where the behavior of fluids (LNG and its vapor) is mainly controlled by release conditions. After this initial stage, the atmosphere would increasingly dominate the vapor dispersion behavior until it completely dissipates. In this work, these two stages are modeled separately by a source term model and a dispersion model due to the different parameters used to describe the physical process at each stage. The principal focus of the source term study was on LNG underwater release, since there has been far less research conducted in developing and testing models for the source of LNG release underwater compared to that for LNG release onto land or water. An underwater LNG release test was carried out to understand the phenomena that occur when LNG is released underwater and to determine the characteristics of pool formation and the vapor cloud generated by the vaporization of LNG underwater. A mathematical model was used and validated against test data to calculate the temperature of the vapor emanating from the water surface. This work used the ANSYS CFX, a general-purpose computational fluid dynamics (CFD) package, to model LNG vapor dispersion in the atmosphere. The main advantages of CFD codes are that they have the capability of defining flow physics and allowing for the representation of complex geometry and its effects on vapor dispersion. Discussed are important parameters that are essential inputs to the ANSYS CFX simulations, including the mesh size and shape, atmospheric conditions, turbulence from the source term, ground surface roughness height, and effects of obstacles. A sensitivity analysis was conducted to illustrate the impact of key parameters on the accuracy of simulation results. In addition, a series of medium-scale LNG spill tests have been performed at the Brayton Fire Training Field (BFTF), College Station, TX. The objectives of these tests were to study key parameters of modeling the physical process of LNG vapor dispersion and collect data for validating the ANSYS CFX prediction results. A comparison of test data with simulation results demonstrated that CFX described the physical behavior of LNG vapor dispersion well, and its prediction results of distances to the half lower flammable limit were in good agreement with the test data.

Qi, Ruifeng

2011-08-01T23:59:59.000Z

139

A method for enhancing the stability and robustness of explicit schemes in astrophysical fluid dynamics  

E-Print Network (OSTI)

A method for enhancing the stability and robustness of explicit schemes in computational fluid dynamics is presented. The method is based in reformulating explicit schemes in matrix form, which cane modified gradually into semi or strongly-implicit schemes. From the point of view of matrix-algebra, explicit numerical methods are special cases in which the global matrix of coefficients is reduced to the identity matrix $I$. This extreme simplification leads to severer stability range, hence of their robustness. In this paper it is shown that a condition, which is similar to the Courant-Friedrich-Levy (CFL) condition can be obtained from the stability requirement of inversion of the coefficient matrix. This condition is shown to be relax-able, and that a class of methods that range from explicit to strongly implicit methods can be constructed, whose degree of implicitness depends on the number of coefficients used in constructing the corresponding coefficient-matrices. Special attention is given to a simple and tractable semi-explicit method, which is obtained by modifying the coefficient matrix from the identity matrix $I$ into a diagonal-matrix $D$. This method is shown to be stable, robust and it can be applied to search for stationary solutions using large CFL-numbers, though it converges slower than its implicit counterpart. Moreover, the method can be applied to follow the evolution of strongly time-dependent flows, though it is not as efficient as normal explicit methods. In addition, we find that the residual smoothing method accelerates convergene toward steady state solutions considerably and improves the efficiency of the solution procedure.

A. A. Hujeirat

2004-10-26T23:59:59.000Z

140

Particle Filtering in Geophysical Systems  

Science Conference Proceedings (OSTI)

The application of particle filters in geophysical systems is reviewed. Some background on Bayesian filtering is provided, and the existing methods are discussed. The emphasis is on the methodology, and not so much on the applications themselves. ...

Peter Jan van Leeuwen

2009-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

A Robust Four-Fluid Transient Flow Simulator as an Analysis and Decision Making Tool for Dynamic Kill Operation  

E-Print Network (OSTI)

The worst scenario of drilling operation is blowout which is uncontrolled flow of formation fluid into the wellbore. Blowouts result in environmental damage with potential risk of injuries and fatalities. Although not all blowouts result in disaster, outcomes of blowouts are unknown and should be studied before starting an operation. Plans should be available to prevent blowouts or provide safe and secure ways of controlling the well before the drilling operation starts. The plan should include procedures in case of any blowout incident as a proactive measure. A few commercial softwares are available in the industry for dynamic kill and transient modeling. All models are proprietary and very complex which reduces the flexibility of the program for specific cases. The purpose of this study is to develop a pseudo transient hydraulic simulator for dynamic kill operations. The idea and concept is to consider the flow of each phase as a single phase flow. The summation of hydrostatic and frictional pressure of each phase determines the bottomhole pressure during the dynamic kill operation. The simulator should be versatile and capable of handling special cases that may encounter during blowouts. Some of the main features of the proposed dynamic kill simulator include; quick and robust simulation, fluid properties are corrected for pressure and temperature, sensitivity analysis can be performed through slide bars, and capable of handling variety of wellbore trajectories. The results from the proposed simulator were compared to the result of commercial software, OLGA ABC. The results were in agreement with each other. It is recommended to apply the simulator for operations with required kill fluid volumes of one to two wellbore volumes.

Haghshenas, Arash

2013-05-01T23:59:59.000Z

142

Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls  

SciTech Connect

This is the first Semiannual Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project is to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. Our approach is to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner flow controls. The Electric Power Research Institute (EPRI) is providing co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center are active participants in this project. This program contains multiple tasks and good progress is being made on all fronts. A project kickoff meeting was held in conjunction with NETL's 2002 Sensors and Control Program Portfolio Review and Roadmapping Workshop, in Pittsburgh, PA during October 15-16, 2002. Dr. Marc Cremer, REI, and Dr. Paul Wolff, EPRI I&C, both attended and met with the project COR, Susan Maley. Following the review of REI's database of wall-fired coal units, the project team selected a front wall fired 150 MW unit with a Riley Low NOx firing system including overfire air for evaluation. In addition, a test matrix outlining approximately 25 simulations involving variations in burner secondary air flows, and coal and primary air flows was constructed. During the reporting period, twenty-two simulations have been completed, summarized, and tabulated for sensitivity analysis. Based on these results, the team is developing a suitable approach for quantifying the sensitivity coefficients associated with the parametric tests. Some of the results of the CFD simulations of the single wall fired unit were presented in a technical paper entitled, ''CFD Investigation of the Sensitivity of Furnace Operational Conditions to Burner Flow Controls,'' presented at the 28th International Technical Conference on Coal Utilization and Fuel Systems in Clearwater, FL March 9-14, 2003. In addition to the work completed on the single wall fired unit, the project team made the selection of a 580 MW opposed wall fired unit to be the subject of evaluation in this program. Work is in progress to update the baseline model of this unit so that the parametric simulations can be initiated.

Marc Cremer; Kirsi St. Marie; Dave Wang

2003-04-30T23:59:59.000Z

143

On the Fundamental Unsteady Fluid Dynamics of Shock-Induced Flows through Ducts  

E-Print Network (OSTI)

Unsteady shock wave propagation through ducts has many applications, ranging from blast wave shelter design to advanced high-speed propulsion systems. The research objective of this study was improved fundamental understanding of the transient flow structures during unsteady shock wave propagation through rectangular ducts with varying cross-sectional area. This research focused on the fluid dynamics of the unsteady shock-induced flow fields, with an emphasis placed on understanding and characterizing the mechanisms behind flow compression (wave structures), flow induction (via shock waves), and enhanced mixing (via shock-induced viscous shear layers). A theoretical and numerical (CFD) parametric study was performed, in which the effects of these parameters on the unsteady flow fields were examined: incident shock strength, area ratio, and viscous mode (inviscid, laminar, and turbulent). Two geometries were considered: the backward-facing step (BFS) geometry, which provided a benchmark and conceptual framework, and the splitter plate (SP) geometry, which was a canonical representation of the engine flow path. The theoretical analysis was inviscid, quasi-1D and quasi-steady; and the computational analysis was fully 2D, time-accurate, and viscous. The theory provided the wave patterns and primary wave strengths for the BFS geometry, and the simulations verified the wave patterns and quantified the effects of geometry and viscosity. It was shown that the theoretical wave patterns on the BFS geometry can be used to systematically analyze the transient, 2D, viscous flows on the SP geometry. This work also highlighted the importance and the role of oscillating shock and expansion waves in the development of these unsteady flows. The potential for both upstream and downstream flow induction was addressed. Positive upstream flow induction was not found in this study due to the persistent formation of an upstream-moving shock wave. Enhanced mixing was addressed by examining the evolution of the unsteady shear layer, its instability, and their effects on the flow field. The instability always appeared after the reflected shock interaction, and was exacerbated in the laminar cases and damped out in the turbulent cases. This research provided new understanding of the long-term evolution of these confined flows. Lastly, the turbulent work is one of the few turbulent studies on these flows.

Mendoza, Nicole Renee

2013-05-01T23:59:59.000Z

144

Computational fluid dynamics for LNG vapor dispersion modeling: a key parameters study  

E-Print Network (OSTI)

The increased demand for liquefied natural gas (LNG) has led to the construction of several new LNG terminals in the United States (US) and around the world. To ensure the safety of the public, consequence modeling is used to estimate the exclusion distances. The purpose of having these exclusion distances is to protect the public from being reached by flammable vapors during a release. For LNG industry, the exclusion zones are determined by the half lower flammability limits (half LFL, 2.5% V/V). Since LNG vapors are heavier?than?air when released into atmosphere, it goes through stages, negative, neutral and positive buoyant effect. In this process, it may reach the half LFL. The primary objective of this dissertation is to advance the status of LNG vapor dispersion modeling, especially for complex scenarios (i.e. including obstacle effects). The most used software, box models, cannot assess these complex scenarios. Box models simulate the vapor in a free?obstacle environment. Due to the advancement in computing, this conservative approach has become questionable. New codes as computational fluid dynamics (CFD) have been proven viable and more efficient than box models. The use of such advance tool in consequence modeling requires the refinement of some of the parameters. In these dissertation, these parameters were identified and refine through a series of field tests at the Brayton Firefighter Training Field (BFTF) as part of the Texas A&M University System (TAMUS). A total of five tests contributed to this dissertation, which three of them were designed and executed by the LNG team of the Mary Kay O'Connor Process Safety Center (MKOPSC) and the financial support from BP Global SPU Gas (BP). The data collected were used as calibration for a commercial CFD code called CFX from ANSYS. Once the CFD code was tuned, it was used in a sensitivity analysis to assess the effects of parameters in the LFL distance and the concentration levels. The dissertation discusses also the validity range for the key parameters.

Cormier, Benjamin Rodolphe

2008-08-01T23:59:59.000Z

145

Computational fluid dynamics (CFD) simulations of aerosol in a u-shaped steam generator tube  

E-Print Network (OSTI)

To quantify primary side aerosol retention, an Eulerian/Lagrangian approach was used to investigate aerosol transport in a compressible, turbulent, adiabatic, internal, wall-bounded flow. The ARTIST experimental project (Phase I) served as the physical model replicated for numerical simulation. Realizable k-? and standard k-? turbulence models were selected from the computational fluid dynamics (CFD) code, FLUENT, to provide the Eulerian description of the gaseous phase. Flow field simulation results exhibited: a) onset of weak secondary flow accelerated at bend entrance towards the inner wall; b) flow separation zone development on the convex wall that persisted from the point of onset; c) centrifugal force concentrated high velocity flow in the direction of the concave wall; d) formation of vortices throughout the flow domain resulted from rotational (Dean-type) flow; e) weakened secondary flow assisted the formation of twin vortices in the outflow cross section; and f) perturbations induced by the bend influenced flow recovery several pipe diameters upstream of the bend. These observations were consistent with those of previous investigators. The Lagrangian discrete random walk model, with and without turbulent dispersion, simulated the dispersed phase behavior, incorrectly. Accurate deposition predictions in wall-bounded flow require modification of the Eddy Impaction Model (EIM). Thus, to circumvent shortcomings of the EIM, the Lagrangian time scale was changed to a wall function and the root-mean-square (RMS) fluctuating velocities were modified to account for the strong anisotropic nature of flow in the immediate vicinity of the wall (boundary layer). Subsequent computed trajectories suggest a precision that ranges from 0.1% to 0.7%, statistical sampling error. The aerodynamic mass median diameter (AMMD) at the inlet (5.5 ?m) was consistent with the ARTIST experimental findings. The geometric standard deviation (GSD) varied depending on the scenario evaluated but ranged from 1.61 to 3.2. At the outlet, the computed AMMD (1.9 ?m) had GSD between 1.12 and 2.76. Decontamination factors (DF), computed based on deposition from trajectory calculations, were just over 3.5 for the bend and 4.4 at the outlet. Computed DFs were consistent with expert elicitation cited in NUREG-1150 for aerosol retention in steam generators.

Longmire, Pamela

2007-05-01T23:59:59.000Z

146

Coupled computational fluid dynamics and heat transfer analysis of the VHTR lower plenum.  

SciTech Connect

The very high temperature reactor (VHTR) concept is being developed by the US Department of Energy (DOE) and other groups around the world for the future generation of electricity at high thermal efficiency (> 48%) and co-generation of hydrogen and process heat. This Generation-IV reactor would operate at elevated exit temperatures of 1,000-1,273 K, and the fueled core would be cooled by forced convection helium gas. For the prismatic-core VHTR, which is the focus of this analysis, the velocity of the hot helium flow exiting the core into the lower plenum (LP) could be 35-70 m/s. The impingement of the resulting gas jets onto the adiabatic plate at the bottom of the LP could develop hot spots and thermal stratification and inadequate mixing of the gas exiting the vessel to the turbo-machinery for energy conversion. The complex flow field in the LP is further complicated by the presence of large cylindrical graphite posts that support the massive core and inner and outer graphite reflectors. Because there are approximately 276 channels in the VHTR core from which helium exits into the LP and a total of 155 support posts, the flow field in the LP includes cross flow, multiple jet flow interaction, flow stagnation zones, vortex interaction, vortex shedding, entrainment, large variation in Reynolds number (Re), recirculation, and mixing enhancement and suppression regions. For such a complex flow field, experimental results at operating conditions are not currently available. Instead, the objective of this paper is to numerically simulate the flow field in the LP of a prismatic core VHTR using the Sandia National Laboratories Fuego, which is a 3D, massively parallel generalized computational fluid dynamics (CFD) code with numerous turbulence and buoyancy models and simulation capabilities for complex gas flow fields, with and without thermal effects. The code predictions for simpler flow fields of single and swirling gas jets, with and without a cross flow, are validated using reported experimental data and theory. The key processes in the LP are identified using phenomena identification and ranking table (PIRT). It may be argued that a CFD code that accurately simulates simplified, single-effect flow fields with increasing complexity is likely to adequately model the complex flow field in the VHTR LP, subject to a future experimental validation. The PIRT process and spatial and temporal discretizations implemented in the present analysis using Fuego established confidence in the validation and verification (V and V) calculations and in the conclusions reached based on the simulation results. The performed calculations included the helicoid vortex swirl model, the dynamic Smagorinsky large eddy simulation (LES) turbulence model, participating media radiation (PMR), and 1D conjugate heat transfer (CHT). The full-scale, half-symmetry LP mesh used in the LP simulation included unstructured hexahedral elements and accounted for the graphite posts, the helium jets, the exterior walls, and the bottom plate with an adiabatic outer surface. Results indicated significant enhancements in heat transfer, flow mixing, and entrainment in the VHTR LP when using swirling inserts at the exit of the helium flow channels into the LP. The impact of using various swirl angles on the flow mixing and heat transfer in the LP is qualified, including the formation of the central recirculation zone (CRZ), and the effect of LP height. Results also showed that in addition to the enhanced mixing, the swirling inserts result in negligible additional pressure losses and are likely to eliminate the formation of hot spots.

El-Genk, Mohamed S. (University of New Mexico, Albuquerque, NM); Rodriguez, Salvador B.

2010-12-01T23:59:59.000Z

147

A suction lysimeter and a geophysical access port  

DOE Patents (OSTI)

A sampling apparatus is described for monitoring vadose zones, geologic media or buried waste in sediment and more particularly to such an apparatus which is operable as an access port for geophysical logging and collecting fluid samples to permit analysis of such fluid samples for the presence of toxic substances, having a pipe-like, stainless steel, longitudinally extending, access tube with two ends, where the first end extends above the surface of the sediment and has a removable air tight seal. The subject invention further has a backing in fluid communication with the access tube and a fluid permeable plate contiguous with the backing, wherein the fluid permeable plate is made up of porous stainless steel. A reservoir is integrated into the second closed end of the access tube for containing the collected fluid. A vacuum pump, having a vacuum gauge/transducer attached thereto, is connected to the removable air tight seal for applying a vacuum to the access tube, such that gas and fluid samples may be drawn through the fluid permeable plate. A fluid sample connector coupled to the removable air tight seal, in addition to the vacuum pump with vacuum gauge/transducer, for withdrawing a fluid sample from the access tube.

Hubbell, J.M.; Sisson, J.B.

1995-12-31T23:59:59.000Z

148

Definition: Geophysical Techniques | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Geophysical Techniques Jump to: navigation, search Dictionary.png Geophysical Techniques Geophysics is the study of the structure and composition of the earth's interior.[1] View on Wikipedia Wikipedia Definition Exploration geophysics is the applied branch of geophysics which uses surface methods to measure the physical properties of the subsurface Earth, along with the anomalies in these properties, in order to detect or infer the presence and position of ore minerals, hydrocarbons, geothermal reservoirs, groundwater reservoirs, and other geological structures. Exploration geophysics is the practical application of physical methods (such as seismic, gravitational, magnetic, electrical and electromagnetic)

149

Characterization of Filter Cake Buildup and Cleanup under Dynamic Fluid Loss Conditions  

E-Print Network (OSTI)

Hydraulic fracturing is a popular stimulation method in tight gas and shale gas reservoirs that uses a viscous fluid to fracture the reservoir rock and uniformly transport proppant to create a highly conductive path that is kept open by the proppant after fracturing. This method is used to improve the productivity of the otherwise low permeability reservoirs. Hydraulic fracturing, though in general beneficial, is a complex process that has a number of challenges in fracturing design and execution. This research focuses on studying the damage caused by the fracturing fluid (gel) to the fracture and the conditions to remove the damage. Guar gum and its derivatives have been the most commonly used polymers to increase the viscosity of fracturing fluids. The fracturing fluid gets dehydrated under pressure leaving behind a highly concentrated unbroken residue called filter cake which causes permeability impairment in the proppant pack, resulting in low fracture conductivity and decreased effective fracture length. This study seeks to characterize filter cakes. By measuring its thickness and with the leak off volume, the concentration and yield stress of the filter cake can be estimated. The thickness of the filter cake was measured with a precise laser profilometer. Correlations are proposed to estimate filter cake properties (thickness, concentration and yield stress) based on pumping conditions (pump rate, time and net pressure) and rock properties. With these properties known, a required flow back rate of the reservoir fluid can be estimated to clean up the filter cake modeled as a non-newtonian fluid exhibiting a yield stress. Typical field conditions were referenced and scaled down in the lab to closely represent the field conditions. Recommendations are provided on gel damage based on the observation of the study.

Yango, Takwe

2011-08-01T23:59:59.000Z

150

Computational Fluid Dynamics Based Investigation of Sensitivity of Furnace Operational Conditions to Burner Flow Controls  

SciTech Connect

This is the Final Technical Report for DOE Cooperative Agreement No: DE-FC26-02NT41580. The goal of this project was to systematically assess the sensitivity of furnace operational conditions to burner air and fuel flows in coal fired utility boilers. The focus of this project was to quantify the potential impacts of ''fine level'' controls rather than that of ''coarse level'' controls (i.e. combustion tuning). Although it is well accepted that combustion tuning will generally improve efficiency and emissions of an ''out of tune'' boiler, it is not as well understood what benefits can be derived through active multiburner measurement and control systems in boiler that has coarse level controls. The approach used here was to utilize existing baseline furnace models that have been constructed using Reaction Engineering International's (REI) computational fluid dynamics (CFD) software. Using CFD analyses provides the ability to carry out a carefully controlled virtual experiment to characterize the sensitivity of NOx emissions, unburned carbon (UBC), furnace exit CO (FECO), furnace exit temperature (FEGT), and waterwall deposition to burner air and fuel flow rates. The Electric Power Research Institute (EPRI) provided co-funding for this program, and instrument and controls experts from EPRI's Instrument and Controls (I&C) Center have been active participants in this project. CFD simulations were completed for five coal fired boilers as planned: (1) 150 MW wall fired, (2) 500 MW opposed wall fired, (3) 600 MW T-Fired, (4) 330 MW cyclone-fired, and (5) 200 MW T-Fired Twin Furnace. In all cases, the unit selections were made in order to represent units that were descriptive of the utility industry as a whole. For each unit, between 25 and 44 furnace simulations were completed in order to evaluate impacts of burner to burner variations in: (1) coal and primary air flow rate, and (2) secondary air flow rate. The parametric matrices of cases that were completed were defined in order to accommodate sensitivity analyses of the results. The sensitivity analyses provide a strategy for quantifying the rate of change of NOx or unburned carbon in the fly ash to a rate of change in secondary air or fuel or stoichiometric ratio for individual burners or groups of burners in order to assess the value associated with individual burner flow control. In addition, the sensitivity coefficients that were produced provide a basis for quantifying the differences in sensitivities for the different boiler types. In a ranking of the sensitivity of NOx emissions to variations in secondary air flow between the burners at a fixed lower furnace stoichiometric ratio in order of least sensitive to most sensitive, the results were: (1) 600 MW T-Fired Unit; (2) 500 MW Opposed Wall-Fired Unit; (3) 150 MW Wall-Fired Unit; (4) 100 MW T-Fired Unit; and (5) 330 MW Cyclone-Fired Unit.

Marc Cremer; Dave Wang; Connie Senior; Andrew Chiodo; Steven Hardy; Paul Wolff

2005-07-01T23:59:59.000Z

151

Dissipative Particle Dynamics and Other Particle Methods for Multiphase Fluid Flow in Fractured and Porous Media  

Science Conference Proceedings (OSTI)

Particle methods are less computationally efficient than grid based numerical solution of the Navier Stokes equation. However, they have important advantages including rigorous mass conservation, momentum conservation and isotropy. In addition, there is no need for explicit interface tracking/capturing and code development effort is relatively low. We describe applications of three particle methods: molecular dynamics, dissipative particle dynamics and smoothed particle hydrodynamics. The mesoscale (between the molecular and continuum scales) dissipative particle dynamics method can be used to simulate systems that are too large to simulate using molecular dynamics but small enough for thermal fluctuations to play an important role.

Paul Meakin; Zhijie Xu

2009-08-01T23:59:59.000Z

152

Thermo-fluid Dynamics of Flash Atomizing Sprays and Single Droplet Impacts.  

E-Print Network (OSTI)

??Spray atomization and droplet dynamics are research topics that have existed for many decades. Their prevalence in manufacturing, energy generation and other practical applications is (more)

Vu, Henry

2010-01-01T23:59:59.000Z

153

Volumetric 3-component velocimetry measurements of the flow around a Rushton turbine: A fluid dynamics video  

E-Print Network (OSTI)

This article describes a video uploaded to the APS DFD Annual Meeting 2009 Gallery of Fluid Motion. The video contains both animations and still images from a three-dimensional volumetric velocimetry measurement set acquired in the flow around a Rushton turbine.

Sharp, K V; Troolin, D; Walters, G; Lai, W

2009-01-01T23:59:59.000Z

154

Geophysical Institute. Biennial report, 1993-1994  

SciTech Connect

The 1993-1994 Geophysical Institute Biennial Report was published in November 1995 by the Geophysical Institute of the University of Alaska Fairbanks. It contains an overview of the Geophysical Institute, the Director`s Note, and research presentations concerning the following subjects: Scientific Predictions, Space Physics, Atmospheric Sciences, Snow, Ice and Permafrost, Tectonics and Sedimentation, Seismology, Volcanology, Remote Sensing, and other projects.

NONE

1996-01-01T23:59:59.000Z

155

Geophysical Characterization of a Geothermal System Neal Hot Springs,  

Open Energy Info (EERE)

Characterization of a Geothermal System Neal Hot Springs, Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Characterization of a Geothermal System Neal Hot Springs, Oregon, USA Abstract Neal Hot Springs is an active geothermal area that is also the proposed location of a binary power plant, which is being developed by US Geothermal Inc. To date, two production wells have been drilled and an injection well is in the process of being completed. The primary goal of this field camp was to provide a learning experience for students studying geophysics, but a secondary goal was to characterize the Neal Hot Springs area to provide valuable information on the flow of geothermal fluids through the subsurface. This characterization was completed using a variety of

156

Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

Development and Verification of Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine M.J. Lawson and Y. Li. National Renewable Energy Laboratory D.C. Sale University of Washington Presented at the 30 th International Conference on Ocean, Offshore, and Arctic Engineering Rotterdam, The Netherlands June 19-24, 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Conference Paper NREL/CP-5000-50981 October 2011 Contract No. DE-AC36-08GO28308 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (Alliance), a contractor of the US Government under Contract No. DE-AC36-08GO28308. Accordingly, the US

157

Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine  

DOE Green Energy (OSTI)

This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

Lawson, M. J.; Li, Y.; Sale, D. C.

2011-10-01T23:59:59.000Z

158

Analogies of Ocean/Atmosphere Rotating Fluid Dynamics with Gyroscopes: Teaching Opportunities  

Science Conference Proceedings (OSTI)

The dynamics of the rotating shallow-water (RSW) system include geostrophic f low and inertial oscillation. These classes of motion are ubiquitous in the ocean and atmosphere. They are often surprising to people at first because intuition about rotating f ...

Thomas W. N. Haine; Deepak A. Cherian

2013-05-01T23:59:59.000Z

159

Symmetries of Discontinuous Flows and the Dual Rankine-Hugoniot Conditions in Fluid Dynamics  

E-Print Network (OSTI)

It has recently been shown that the maximal kinematical invariance group of polytropic fluids, for smooth subsonic flows, is the semidirect product of SL(2,R) and the static Galilei group G. This result purports to offer a theoretical explanation for an intriguing similarity, that was recently observed, between a supernova explosion and a plasma implosion. In this paper we extend this result to discuss the symmetries of discontinuous flows, which further validates the explanation by taking into account shock waves, which are the driving force behind both the explosion and implosion. This is accomplished by constructing a new set of Rankine-Hugoniot conditions, which follow from Noether's conservation laws. The new set is dual to the standard Rankine-Hugoniot conditions and is related to them through the SL(2,R) transformations. The entropy condition, that the shock needs to satisfy for physical reasons, is also seen to remain invariant under the transformations.

Oliver Jahn; V. V. Sreedhar; Amitabh Virmani

2004-07-26T23:59:59.000Z

160

Optics and Fluid Dynamics Ris-R-1227(EN) Annual Progress Report for 2000  

E-Print Network (OSTI)

of polymer films by laser ablation 12 2.3 New laser systems 13 2.3.1 A new high-power 1.5 µm laser diode thickness determination and cutting of plants by lasers 22 3. Optical diagnostics and information processing dynamics 49 4.1 Introduction 49 4.2 Fusion plasma physics 49 4.2.1 Taming drift-wave turbulence 49 4

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

MEASUREMENT OF INTERFACIAL TENSION IN FLUID-FLUID SYSTEMS  

E-Print Network (OSTI)

Interfacial tension at fluid-fluid interfaces is a reflection of the excess energy associated with unsaturated in parts per million concentration (27). DYNAMIC INTERFACIAL TENSION MEASUREMENTS In fluid-fluid systems, detergency, foam or froth generation, and stability (3). In these pro- cesses, dynamic interfacial tensions

Loh, Watson

162

Environmental and Engineering Geophysical University at SAGEEP 2008: Geophysical Instruction for Non-Geophysicists  

SciTech Connect

The Environmental and Engineering Geophysical Society (EEGS), a nonprofit professional organization, conducted an educational series of seminars at the Symposium on the Application of Geophysics to Engineering and Environmental Problems (SAGEEP) in Philadelphia in April 2008. The purpose of these seminars, conducted under the name Environmental and Engineering Geophysical University (EEGU) over three days in parallel with the regular SAGEEP technical sessions, was to introduce nontraditional geophysical conference attendees to the appropriate use of geophysics in environmental and engineering projects. Five half-day, classroom-style sessions were led by recognized experts in the application of seismic, electrical, gravity, magnetics, and ground-penetrating radar methods. Classroom sessions were intended to educate regulators, environmental program managers, consultants, and students who are new to near-surface geophysics or are interested in learning how to incorporate appropriate geophysical approaches into characterization or remediation programs or evaluate the suitability of geophysical methods for general classes of environmental or engineering problems.

Jeffrey G. Paine

2009-03-13T23:59:59.000Z

163

Geophysical Exploration (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geophysical Exploration (Montana) Geophysical Exploration (Montana) Geophysical Exploration (Montana) < Back Eligibility Utility Fed. Government Commercial Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Installer/Contractor Rural Electric Cooperative Tribal Government Retail Supplier Institutional Fuel Distributor Savings Category Buying & Making Electricity Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Natural Resources and Conservation An exploration permit is required for any entity conducting geophysical exploration within the state of Montana. Such entities are also required to follow rules adopted by the Board of Oil and Gas Conservation, including those pertaining to: (a) Adequate identification of seismic exploration crews operating in this

164

Borehole Geophysical Methods | Open Energy Information  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Borehole Geophysical Methods Citation Carole D. Johnson. Borehole...

165

Borehole Geophysical Logging | Open Energy Information  

Open Energy Info (EERE)

2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Borehole Geophysical Logging Citation Hager-Richter Geoscience, Inc.....

166

IGPP: Institute for Geophysics and Planetary Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

IGPP Home IGPP Astrophysics IGPP Planetary Sciences IGPP Mini Grant Seminars Phone Book LLNL Home FY09 IGPP Mini Grant The Institute of Geophysics and Planetary Physics (IGPP)...

167

High Precision Geophysics & Detailed Structural Exploration ...  

Open Energy Info (EERE)

icon High Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling Geothermal Project Jump to: navigation, search Last modified on July 22, 2011....

168

Evaluation and Effect of Fracturing Fluids on Fracture Conductivity in Tight Gas Reservoirs Using Dynamic Fracture Conductivity Test  

E-Print Network (OSTI)

Unconventional gas has become an important resource to help meet our future energy demands. Although plentiful, it is difficult to produce this resource, when locked in a massive sedimentary formation. Among all unconventional gas resources, tight gas sands represent a big fraction and are often characterized by very low porosity and permeability associated with their producing formations, resulting in extremely low production rate. The low flow properties and the recovery factors of these sands make necessary continuous efforts to reduce costs and improve efficiency in all aspects of drilling, completion and production techniques. Many of the recent improvements have been in well completions and hydraulic fracturing. Thus, the main goal of a hydraulic fracture is to create a long, highly conductive fracture to facilitate the gas flow from the reservoir to the wellbore to obtain commercial production rates. Fracture conductivity depends on several factors, such as like the damage created by the gel during the treatment and the gel clean-up after the treatment. This research is focused on predicting more accurately the fracture conductivity, the gel damage created in fractures, and the fracture cleanup after a hydraulic fracture treatment under certain pressure and temperature conditions. Parameters that alter fracture conductivity, such as polymer concentration, breaker concentration and gas flow rate, are also examined in this study. A series of experiments, using a procedure of dynamical fracture conductivity test, were carried out. This procedure simulates the proppant/frac fluid slurries flow into the fractures in a low-permeability rock, as it occurs in the field, using different combinations of polymer and breaker concentrations under reservoirs conditions. The result of this study provides the basis to optimize the fracturing fluids and the polymer loading at different reservoir conditions, which may result in a clean and conductive fracture. Success in improving this process will help to decrease capital expenditures and increase the production in unconventional tight gas reservoirs.

Correa Castro, Juan

2011-05-01T23:59:59.000Z

169

LANL Institutes - Institute of Geophysics and Planetary Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Geophysics Geophysics Focus Leader: Scott Baldridge sbaldridge@lanl.gov This focus supports a breadth of basic research concerning planetary surfaces and interiors, including numerical, experimental, and field studies of the structure, properties, processes, and dynamics of terrestrial and giant planets. It is strongly recommended that proposals exploit unique LANL resources (e.g., LANL high-performance computing resources; the Los Alamos Neutron Science Center (LANSCE); geochemical analyses facilities resident in EES and C divisions; and/or sensor technology capabilities resident in C, EES, ISR, and N divisions). We are particularly interested in innovative research projects in areas of current, strong international scientific interest such as the following: New techniques in passive (imaging) or active (e.g., lidar, radar)

170

SURFACE GEOPHYSICAL EXPLORATION - COMPENDIUM DOCUMENT  

SciTech Connect

This report documents the evolution of the surface geophysical exploration (SGE) program and highlights some of the most recent successes in imaging conductive targets related to past leaks within and around Hanford's tank farms. While it is noted that the SGE program consists of multiple geophysical techniques designed to (1) locate near surface infrastructure that may interfere with (2) subsurface plume mapping, the report will focus primarily on electrical resistivity acquisition and processing for plume mapping. Due to the interferences from the near surface piping network, tanks, fences, wells, etc., the results of the three-dimensional (3D) reconstruction of electrical resistivity was more representative of metal than the high ionic strength plumes. Since the first deployment, the focus of the SGE program has been to acquire and model the best electrical resistivity data that minimizes the influence of buried metal objects. Toward that goal, two significant advances have occurred: (1) using the infrastructure directly in the acquisition campaign and (2) placement of electrodes beneath the infrastructure. The direct use of infrastructure was successfully demonstrated at T farm by using wells as long electrodes (Rucker et al., 2010, 'Electrical-Resistivity Characterization of an Industrial Site Using Long Electrodes'). While the method was capable of finding targets related to past releases, a loss of vertical resolution was the trade-off. The burying of electrodes below the infrastructure helped to increase the vertical resolution, as long as a sufficient number of electrodes are available for the acquisition campaign.

RUCKER DF; MYERS DA

2011-10-04T23:59:59.000Z

171

Geophysical characterization of subsurface barriers  

SciTech Connect

An option for controlling contaminant migration from plumes and buried waste sites is to construct a subsurface barrier of a low-permeability material. The successful application of subsurface barriers requires processes to verify the emplacement and effectiveness of barrier and to monitor the performance of a barrier after emplacement. Non destructive and remote sensing techniques, such as geophysical methods, are possible technologies to address these needs. The changes in mechanical, hydrologic and chemical properties associated with the emplacement of an engineered barrier will affect geophysical properties such a seismic velocity, electrical conductivity, and dielectric constant. Also, the barrier, once emplaced and interacting with the in situ geologic system, may affect the paths along which electrical current flows in the subsurface. These changes in properties and processes facilitate the detection and monitoring of the barrier. The approaches to characterizing and monitoring engineered barriers can be divided between (1) methods that directly image the barrier using the contrasts in physical properties between the barrier and the host soil or rock and (2) methods that reflect flow processes around or through the barrier. For example, seismic methods that delineate the changes in density and stiffness associated with the barrier represents a direct imaging method. Electrical self potential methods and flow probes based on heat flow methods represent techniques that can delineate the flow path or flow processes around and through a barrier.

Borns, D.J.

1995-08-01T23:59:59.000Z

172

Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation  

SciTech Connect

Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH{sub 4}{sup +} production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface.

Wu, Y.; Ajo-Franklin, J.B.; Spycher, N.; Hubbard, S.S.; Zhang, G.; Williams, K.H.; Taylor, J.; Fujita, Y.; Smith, R.

2011-07-15T23:59:59.000Z

173

Geophysical Monitoring and Reactive Transport Modeling of Ureolytically-Driven Calcium Carbonate Precipitation  

Science Conference Proceedings (OSTI)

Ureolytically-driven calcium carbonate precipitation is the basis for a promising in-situ remediation method for sequestration of divalent radionuclide and trace metal ions. It has also been proposed for use in geotechnical engineering for soil strengthening applications. Monitoring the occurrence, spatial distribution, and temporal evolution of calcium carbonate precipitation in the subsurface is critical for evaluating the performance of this technology and for developing the predictive models needed for engineering application. In this study, we conducted laboratory column experiments using natural sediment and groundwater to evaluate the utility of geophysical (complex resistivity and seismic) sensing methods, dynamic synchrotron x-ray computed tomography (micro-CT), and reactive transport modeling for tracking ureolytically-driven calcium carbonate precipitation processes under site relevant conditions. Reactive transport modeling with TOUGHREACT successfully simulated the changes of the major chemical components during urea hydrolysis. Even at the relatively low level of urea hydrolysis observed in the experiments, the simulations predicted an enhanced calcium carbonate precipitation rate that was 3-4 times greater than the baseline level. Reactive transport modeling results, geophysical monitoring data and micro-CT imaging correlated well with reaction processes validated by geochemical data. In particular, increases in ionic strength of the pore fluid during urea hydrolysis predicted by geochemical modeling were successfully captured by electrical conductivity measurements and confirmed by geochemical data. The low level of urea hydrolysis and calcium carbonate precipitation suggested by the model and geochemical data was corroborated by minor changes in seismic P-wave velocity measurements and micro-CT imaging; the latter provided direct evidence of sparsely distributed calcium carbonate precipitation. Ion exchange processes promoted through NH4+ production during urea hydrolysis were incorporated in the model and captured critical changes in the major metal species. The electrical phase increases were potentially due to ion exchange processes that modified charge structure at mineral/water interfaces. Our study revealed the potential of geophysical monitoring for geochemical changes during urea hydrolysis and the advantages of combining multiple approaches to understand complex biogeochemical processes in the subsurface.

Yuxin Wu; Jonathan B. Ajo-Franklin; Nicolas Spycher; Susan S. Hubbard; Guoxiang Zhang; Kenneth H. Williams; Joanna Taylor; Yoshiko Fujita; Robert Smith

2011-09-01T23:59:59.000Z

174

Computational fluid dynamics simulation of chemical reactors: Application of in situ adaptive tabulation to methane thermochlorination chemistry  

SciTech Connect

Recently, a novel algorithm--in situ adaptive tabulation--has been proposed to effectively incorporate detailed chemistry in computational fluid dynamics (CFD) simulations for turbulent reacting flows. In this work, detailed tests performed on a pairwise-mixing stirred reactor (PMSR) model are presented implementing methane thermochlorination chemistry to validate the in situ adaptive tabulation (ISAT) algorithm. The detailed kinetic scheme involves 3 elements (H, C, Cl) and 38 chemical species undergoing a total of 152 elementary reactions. The various performance issues (error control, accuracy, storage requirements, speed-up) involved in the implementation of detailed chemistry in particle-based methods (full PDF methods) are discussed. Using an error tolerance of {epsilon}{sub tol} = 2 x 10{sup {minus}4}, sufficiently accurate results with minimal storage requirements and significantly less computational time than would be required with direct integration are obtained. Based on numerous test simulations, an error tolerance in the range of 10{sup {minus}3}--10{sup {minus}4} is found to be satisfactory for carrying out full PDF simulations of methane thermochlorination reactors. The results presented here demonstrate that the implementation of ISAT makes possible the hitherto formidable task of implementing detailed chemistry in CFD simulations of methane thermochlorination reactors.

Shah, J.J.; Fox, R.O.

1999-11-01T23:59:59.000Z

175

Computational fluid dynamics simulation of the air/suppressant flow in an uncluttered F18 engine nacelle  

DOE Green Energy (OSTI)

For the purposes of designing improved Halon-alternative fire suppression strategies for aircraft applications, Computational Fluid Dynamics (CFD) simulations of the air flow, suppressant transport, and air-suppressant mixing within an uncluttered F18 engine nacelle were performed. The release of inert gases from a Solid Propellant Gas Generator (SPGG) was analyzed at two different injection locations in order to understand the effect of injection position on the flow patterns and the mixing of air and suppression agent. An uncluttered engine nacelle was simulated to provide insight into the global flow features as well as to promote comparisons with previous nacelle fire tests and recent water tunnel tests which included little or no clutter. Oxygen concentration levels, fuel/air residence times that would exist if a small fuel leak were present, velocity contours, and streamline patterns are presented inside the engine nacelle. The numerical results show the influence of the gent release location on regions of potential flame extinction due to oxygen inerting and high flame strain. The occurrence of inflow through the exhaust ducts on the aft end of the nacelle is also predicted. As expected, the predicted oxygen concentration levels were consistently higher than the measured levels since a fire was not modeled in this analysis. Despite differences in the conditions of these simulations and the experiments, good agreement was obtained between the CFD predictions and the experimental measurements.

Lopez, A.R.; Gritzo, L.A.; Hassan, B.

1997-06-01T23:59:59.000Z

176

Development and Verification of a Computational Fluid Dynamics Model of a Horizontal-Axis Tidal Current Turbine  

SciTech Connect

This paper describes the development of a computational fluid dynamics (CFD) methodology to simulate the hydrodynamics of horizontal-axis tidal current turbines (HATTs). First, an HATT blade was designed using the blade element momentum method in conjunction with a genetic optimization algorithm. Several unstructured computational grids were generated using this blade geometry and steady CFD simulations were used to perform a grid resolution study. Transient simulations were then performed to determine the effect of time-dependent flow phenomena and the size of the computational timestep on the numerical solution. Qualitative measures of the CFD solutions were independent of the grid resolution. Conversely, quantitative comparisons of the results indicated that the use of coarse computational grids results in an under prediction of the hydrodynamic forces on the turbine blade in comparison to the forces predicted using more resolved grids. For the turbine operating conditions considered in this study, the effect of the computational timestep on the CFD solution was found to be minimal, and the results from steady and transient simulations were in good agreement. Additionally, the CFD results were compared to corresponding blade element momentum method calculations and reasonable agreement was shown. Nevertheless, we expect that for other turbine operating conditions, where the flow over the blade is separated, transient simulations will be required.

Lawson, Mi. J.; Li, Y.; Sale, D. C.

2011-01-01T23:59:59.000Z

177

Reaction Engineering International and Pacific Northwest Laboratory staff exchange: Addressing computational fluid dynamics needs of the chemical process industry  

SciTech Connect

Staff exchanges, such as the one described in this report, are intended to facilitate communications and collaboration among scientists and engineers at Department of Energy (DOE) laboratories, in US industry, and academia. Funding support for these exchanges is provided by the DOE, Office of Energy Research, Laboratory Technology Transfer Program. Funding levels for each exchange typically range from $20,000 to $40,000. The exchanges offer the opportunity for the laboratories to transfer technology and expertise to industry, gain a perspective to industry`s problems, and develop the basis for further cooperative efforts through Cooperative Research and Development Agreements (CRADAS) or other mechanisms. Information in this report on the staff exchange of the Pacific Northwest Laboratory (PNL) staff with Reaction Engineering International (REI) includes the significant accomplishments, significant problems, industry benefits realized, recommended follow-on work and potential benefit of that work. The objectives of this project were as follows: Work with REI to develop an understanding of the computational fluid dynamics (CFD) needs of the chemical process industry; assess the combined capabilities of the PNL and REI software analysis tools to address these needs; and establish a strategy for a future programmatically funded, joint effort to develop a new CFD tool for the chemical process industry.

Fort, J.A.

1995-07-01T23:59:59.000Z

178

Computational fluid dynamics modeling of two-phase flow in a BWR fuel assembly. Final CRADA Report.  

Science Conference Proceedings (OSTI)

A direct numerical simulation capability for two-phase flows with heat transfer in complex geometries can considerably reduce the hardware development cycle, facilitate the optimization and reduce the costs of testing of various industrial facilities, such as nuclear power plants, steam generators, steam condensers, liquid cooling systems, heat exchangers, distillers, and boilers. Specifically, the phenomena occurring in a two-phase coolant flow in a BWR (Boiling Water Reactor) fuel assembly include coolant phase changes and multiple flow regimes which directly influence the coolant interaction with fuel assembly and, ultimately, the reactor performance. Traditionally, the best analysis tools for this purpose of two-phase flow phenomena inside the BWR fuel assembly have been the sub-channel codes. However, the resolution of these codes is too coarse for analyzing the detailed intra-assembly flow patterns, such as flow around a spacer element. Advanced CFD (Computational Fluid Dynamics) codes provide a potential for detailed 3D simulations of coolant flow inside a fuel assembly, including flow around a spacer element using more fundamental physical models of flow regimes and phase interactions than sub-channel codes. Such models can extend the code applicability to a wider range of situations, which is highly important for increasing the efficiency and to prevent accidents.

Tentner, A.; Nuclear Engineering Division

2009-10-13T23:59:59.000Z

179

Category:Geophysical Techniques | Open Energy Information  

Open Energy Info (EERE)

Techniques Techniques Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Geophysical Techniques page? For detailed information on Geophysical Techniques as exploration techniques, click here. Category:Geophysical Techniques Add.png Add a new Geophysical Techniques Technique Subcategories This category has the following 4 subcategories, out of 4 total. E [+] Electrical Techniques‎ (2 categories) 5 pages G [×] Gravity Techniques‎ 3 pages M [×] Magnetic Techniques‎ 3 pages S [+] Seismic Techniques‎ (2 categories) 2 pages Pages in category "Geophysical Techniques" The following 5 pages are in this category, out of 5 total. D DC Resistivity Survey (Mise-Á-La-Masse) E Electrical Techniques G Gravity Techniques M Magnetic Techniques

180

MODELING COUPLED FLUID FLOW AND GEOMECHANICAL AND GEOPHYSICAL PHENOMENA WITHIN  

E-Print Network (OSTI)

. Specifically, the Mandel-Cryer effect (initially higher pore pressures resulting from a drained boundary condition) and the Noordbergum effect (initially higher pore pressures resulting from layered heterogeneity investigations, including sample-scale loading experiments, wellbore pressure-transient testing, and reservoir

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Crustal Geophysics and Geochemistry Science Center | Open Energy...  

Open Energy Info (EERE)

Crustal Geophysics and Geochemistry Science Center Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Crustal Geophysics and Geochemistry Science Center...

182

Geophysics II. Tools for seismic interpretation  

SciTech Connect

During the past two decades, the technology of geophysics has exploded. At the same time, the petroleum industry has been forced to look for more and more subtle traps in more and more difficult terrain. The choice of papers in this geophysics reprint volume reflects this evolution. The papers were chosen to help geologists, not geophysicists, enhance their knowledge of geophysics. Math-intensive papers were excluded because those papers are relatively esoteric and have limited applicability for most geologists. This volume concentrates on tools for seismic data interpretation. Each of the 25 papers were abstracted and indexed for the U.S. Department of Energy's Energy Data Base.

Beaumont, E.A.; Foster, N.H. (comps.)

1989-01-01T23:59:59.000Z

183

Geophysics IV. Gravity, Magnetic, and Magnetotelluric Methods  

SciTech Connect

During the past two decades, the technology of geophysics has exploded. At the same time, the petroleum industry has been forced to look for more and more subtle traps in more and more difficult terrain. The choice of papers in this geophysics reprint volume reflects this evolution. The papers were chosen to help geologists, not geophysicists, enhance their knowledge of geophysics. Math-intensive papers were excluded because those papers are relatively esoteric and have limited applicability for most geologists. This volume concentrates on gravity, magnetic, and magnetotelluric methods. Each of the 10 papers were abstracted and indexed for the U.S. Department of Energy's Energy Data Base.

Beaumont, E.A.; Foster, N.H. (comps.)

1989-01-01T23:59:59.000Z

184

Geophysics III. Geologic interpretation of seismic data  

SciTech Connect

During the past two decades, the technology of geophysics has exploded. At the same time, the petroleum industry has been forced to look for more and more subtle traps in more and more difficult terrain. The choice of papers in this geophysics reprint volume reflects this evolution. The papers were chosen to help geologists, not geophysicists, enhance their knowledge of geophysics. Math-intensive papers were excluded because those papers are relatively esoteric and have limited applicability for most geologists. This volume concentrates on geologic interpretation of seismic data interpretation. Each of the 21 papers were abstracted and indexed for the U.S. Department of Energy's Energy Data Base.

Beaumont, E.A.; Foster, N.H. (comps.)

1989-01-01T23:59:59.000Z

185

GASFLOW: A Computational Fluid Dynamics Code for Gases, Aerosols, and Combustion, Volume 1: Theory and Computational Model  

DOE Green Energy (OSTI)

Los Alamos National Laboratory (LANL) and Forschungszentrum Karlsruhe (FzK) are developing GASFLOW, a three-dimensional (3D) fluid dynamics field code as a best-estimate tool to characterize local phenomena within a flow field. Examples of 3D phenomena include circulation patterns; flow stratification; hydrogen distribution mixing and stratification; combustion and flame propagation; effects of noncondensable gas distribution on local condensation and evaporation; and aerosol entrainment, transport, and deposition. An analysis with GASFLOW will result in a prediction of the gas composition and discrete particle distribution in space and time throughout the facility and the resulting pressure and temperature loadings on the walls and internal structures with or without combustion. A major application of GASFLOW is for predicting the transport, mixing, and combustion of hydrogen and other gases in nuclear reactor containments and other facilities. It has been applied to situations involving transporting and distributing combustible gas mixtures. It has been used to study gas dynamic behavior (1) in low-speed, buoyancy-driven flows, as well as sonic flows or diffusion dominated flows; and (2) during chemically reacting flows, including deflagrations. The effects of controlling such mixtures by safety systems can be analyzed. The code version described in this manual is designated GASFLOW 2.1, which combines previous versions of the United States Nuclear Regulatory Commission code HMS (for Hydrogen Mixing Studies) and the Department of Energy and FzK versions of GASFLOW. The code was written in standard Fortran 90. This manual comprises three volumes. Volume I describes the governing physical equations and computational model. Volume II describes how to use the code to set up a model geometry, specify gas species and material properties, define initial and boundary conditions, and specify different outputs, especially graphical displays. Sample problems are included. Volume III contains some of the assessments performed by LANL and FzK. GASFLOW is under continual development, assessment, and application by LANL and FzK. This manual is considered a living document and will be updated as warranted.

Nichols, B.D.; Mueller, C.; Necker, G.A.; Travis, J.R.; Spore, J.W.; Lam, K.L.; Royl, P.; Redlinger, R.; Wilson, T.L.

1998-10-01T23:59:59.000Z

186

A General Strategy for Physics-Based Model Validation Illustrated with Earthquake Phenomenology, Atmospheric Radiative Transfer, and Computational Fluid Dynamics  

E-Print Network (OSTI)

Validation is often defined as the process of determining the degree to which a model is an accurate representation of the real world from the perspective of its intended uses. Validation is crucial as industries and governments depend increasingly on predictions by computer models to justify their decisions. In this article, we survey the model validation literature and propose to formulate validation as an iterative construction process that mimics the process occurring implicitly in the minds of scientists. We thus offer a formal representation of the progressive build-up of trust in the model, and thereby replace incapacitating claims on the impossibility of validating a given model by an adaptive process of constructive approximation. This approach is better adapted to the fuzzy, coarse-grained nature of validation. Our procedure factors in the degree of redundancy versus novelty of the experiments used for validation as well as the degree to which the model predicts the observations. We illustrate the new methodology first with the maturation of Quantum Mechanics as the arguably best established physics theory and then with several concrete examples drawn from some of our primary scientific interests: a cellular automaton model for earthquakes, an anomalous diffusion model for solar radiation transport in the cloudy atmosphere, and a computational fluid dynamics code for the Richtmyer-Meshkov instability. This article is an augmented version of Sornette et al. [2007] that appeared in Proceedings of the National Academy of Sciences in 2007 (doi: 10.1073/pnas.0611677104), with an electronic supplement at URL http://www.pnas.org/cgi/content/full/0611677104/DC1. Sornette et al. [2007] is also available in preprint form at physics/0511219.

Didier Sornette; Anthony B. Davis; James R. Kamm; Kayo Ide

2007-10-01T23:59:59.000Z

187

Modeling and analysis of transient vehicle underhood thermo- hydrodynamic events using computational fluid dynamics and high performance computing.  

DOE Green Energy (OSTI)

This work has explored the preliminary design of a Computational Fluid Dynamics (CFD) tool for the analysis of transient vehicle underhood thermo-hydrodynamic events using high performance computing platforms. The goal of this tool will be to extend the capabilities of an existing established CFD code, STAR-CD, allowing the car manufacturers to analyze the impact of transient operational events on the underhood thermal management by exploiting the computational efficiency of modern high performance computing systems. In particular, the project has focused on the CFD modeling of the radiator behavior during a specified transient. The 3-D radiator calculations were performed using STAR-CD, which can perform both steady-state and transient calculations, on the cluster computer available at ANL in the Nuclear Engineering Division. Specified transient boundary conditions, based on experimental data provided by Adapco and DaimlerChrysler were used. The possibility of using STAR-CD in a transient mode for the entire period of time analyzed has been compared with other strategies which involve the use of STAR-CD in a steady-state mode at specified time intervals, while transient heat transfer calculations would be performed for the rest of the time. The results of these calculations have been compared with the experimental data provided by Adapco/DaimlerChrysler and recommendations for future development of an optimal strategy for the CFD modeling of transient thermo-hydrodynamic events have been made. The results of this work open the way for the development of a CFD tool for the transient analysis of underhood thermo-hydrodynamic events, which will allow the integrated transient thermal analysis of the entire cooling system, including both the engine block and the radiator, on high performance computing systems.

Tentner, A.; Froehle, P.; Wang, C.; Nuclear Engineering Division

2004-01-01T23:59:59.000Z

188

Modeling and analysis of transient vehicle underhood thermo - hydrodynamic events using computational fluid dynamics and high performance computing.  

DOE Green Energy (OSTI)

This work has explored the preliminary design of a Computational Fluid Dynamics (CFD) tool for the analysis of transient vehicle underhood thermo-hydrodynamic events using high performance computing platforms. The goal of this tool will be to extend the capabilities of an existing established CFD code, STAR-CD, allowing the car manufacturers to analyze the impact of transient operational events on the underhood thermal management by exploiting the computational efficiency of modern high performance computing systems. In particular, the project has focused on the CFD modeling of the radiator behavior during a specified transient. The 3-D radiator calculations were performed using STAR-CD, which can perform both steady-state and transient calculations, on the cluster computer available at ANL in the Nuclear Engineering Division. Specified transient boundary conditions, based on experimental data provided by Adapco and DaimlerChrysler were used. The possibility of using STAR-CD in a transient mode for the entire period of time analyzed has been compared with other strategies which involve the use of STAR-CD in a steady-state mode at specified time intervals, while transient heat transfer calculations would be performed for the rest of the time. The results of these calculations have been compared with the experimental data provided by Adapco/DaimlerChrysler and recommendations for future development of an optimal strategy for the CFD modeling of transient thermo-hydrodynamic events have been made. The results of this work open the way for the development of a CFD tool for the transient analysis of underhood thermo-hydrodynamic events, which will allow the integrated transient thermal analysis of the entire cooling system, including both the engine block and the radiator, on high performance computing systems.

Froehle, P.; Tentner, A.; Wang, C.

2003-09-05T23:59:59.000Z

189

Distributed computational fluid dynamics  

E-Print Network (OSTI)

that arises in these practical turbulent combustion pro- cesses is a strong coupling between turbulence, chemical kinetics and heat release. These interactions are generally three dimensional and time de- pendent, and are not easily accessible to experimental... and at university and national level by very large massively-parallel supercomputers. Therefore, CFD offers a major opportunity for the development and application of Grid technology in engineering and forms the motivation for the present study. A difficulty...

Jenkins, K; Yang, Xiaobo; Hayes, Mark; Cant, Stewart R

2008-06-26T23:59:59.000Z

190

Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical  

Open Energy Info (EERE)

Geochemical, Groundwater Geochemical, And Radiometric Geophysical Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal Prospects In Northern Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical Signatures At Three Geothermal Prospects In Northern Nevada Details Activities (14) Areas (3) Regions (0) Abstract: Ground water sampling, desorbed mercury soil geochemical surveys and a radiometric geophysical survey was conducted in conjunction with geological mapping at three geothermal prospects in northern Nevada. Orientation sample lines from 610 m (2000 ft.) to 4575 m (15,000 ft.) in length were surveyed at right angles to known and suspected faults. Scintillometer readings (gamma radiation - total counts / second) were also

191

Institute of Geophysics, Planetary Physics, and Signatures  

NLE Websites -- All DOE Office Websites (Extended Search)

Opportunities » Opportunities » Institute of Geophysics, Planetary Physics, and Signatures Institute of Geophysics, Planetary Physics, and Signatures Promoting and supporting high-quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. Contact Director Harald Dogliani (505) 663-5309 Email Deputy and Signatures Jon Schoonover (505) 665-0772 Email Professional Staff Assistant Georgia Sanchez (505) 663-5291 Email Astophysics and Cosmology Ed Fenimore (505) 667-7371 Email Climate Manvendra K. Dubey (505) 665-3128 Email Geophysics Scott Baldridge (505) 667-4338 Email Space Physics Josef Koller (505) 665-7395 Email Expanding the frontiers of astrophysical, space, earth, and climate sciences and their signatures The Institute of Geophysics, Planetary Physics, and Signatures at Los

192

Lecture notes Ideal fluid mechanics  

E-Print Network (OSTI)

involves energy loss--such fluids are known as viscous fluids--we will not consider them here. Some fluids of the basic equations underlying the dynamics of ideal fluids is based on three basic principles (see Chorin. Conservation of energy, energy is neither created nor destroyed. In turn these principles generate the: 1

Malham, Simon J.A.

193

Spinning fluid cosmology  

E-Print Network (OSTI)

The dynamics of a spinning fluid in a flat cosmological model is investigated. The space-time is itself generated by the spinning fluid which is characterized by an energy-momentum tensor consisting a sum of the usual perfect-fluid energy-momentum tensor and some Belinfante-Rosenfeld tensors. It is shown that the equations of motion admit a solution for which the fluid four-velocity and four-momentum are not co-linear in general. The momentum and spin densities of the fluid are expressed in terms of the scale factor.

Morteza Mohseni

2008-07-22T23:59:59.000Z

194

Spinning fluid cosmology  

E-Print Network (OSTI)

The dynamics of a spinning fluid in a flat cosmological model is investigated. The space-time is itself generated by the spinning fluid which is characterized by an energy-momentum tensor consisting a sum of the usual perfect-fluid energy-momentum tensor and some Belinfante-Rosenfeld tensors. It is shown that the equations of motion admit a solution for which the fluid four-velocity and four-momentum are not co-linear in general. The momentum and spin densities of the fluid are expressed in terms of the scale factor.

Mohseni, Morteza

2008-01-01T23:59:59.000Z

195

Geophysical LaboratoryGeophysical Laboratory Carnegie Institution of WashingtonCarnegie Institution of Washington  

E-Print Network (OSTI)

of Washington Washington, DCWashington, DC Russell J. HemleyRussell J. Hemley Percy W. BridgmanPercy W. BridgmanGeophysical LaboratoryGeophysical Laboratory Carnegie Institution of WashingtonCarnegie Institution STATE VIBRATIONAL STATE ELECTRONIC STATE (K-edge, Band Gap) OPTICAL X-RAY · Diamond window opaque above

Hemley, Russell J.

196

Geophysical Exploration Technologies | Open Energy Information  

Open Energy Info (EERE)

Geophysical Exploration Technologies Geophysical Exploration Technologies Jump to: navigation, search Geothermal ARRA Funded Projects for Geophysical Exploration Technologies Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

197

Fluid and drift-kinetic description of a magnetized plasma with low collisionality and slow dynamics orderings. II. Ion theory  

SciTech Connect

The ion side of a closed, fluid and drift-kinetic theoretical model to describe slow and macroscopic plasma processes in a fusion-relevant, low collisionality regime is presented. It follows the ordering assumptions and the methodology adopted in the companion electron theory [Ramos, Phys. Plasmas 17, 082502 (2010)]. To reach the frequency scale where collisions begin to play a role, the drift-kinetic equation for the ion distribution function perturbation away from a Maxwellian must be accurate to the second order in the Larmor radius. The macroscopic density, flow velocity and temperature are accounted for in the Maxwellian, and are evolved by a fluid system which includes consistently the gyroviscous part of the stress tensor and second-order contributions to the collisionless perpendicular heat flux involving non-Maxwellian fluid moments. The precise compatibility among these coupled high-order fluid and drift-kinetic equations is made manifest by showing that the evolution of the non-Maxwellian part of the distribution function is such that its first three velocity moments remain equal to zero.

Ramos, J. J. [Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States)

2011-10-15T23:59:59.000Z

198

Eulerian multi-fluid models for the simulation of dynamics and coalescence of particles in solid propellant combustion  

Science Conference Proceedings (OSTI)

The accurate simulation of polydisperse sprays undergoing coalescence in unsteady gaseous flows is a crucial issue. In solid rocket motors, the internal flow depends strongly on the alumina droplet size distribution, which spreads up with coalescence. ... Keywords: Adaptive quadrature for coalescence integrals, Aluminum oxide droplets, CEDRE code, High order Eulerian multi-fluid model, Polydisperse spray, Solid propellant combustion

F. Doisneau; F. Laurent; A. Murrone; J. Dupays; M. Massot

2013-02-01T23:59:59.000Z

199

Earth materials and earth dynamics  

Science Conference Proceedings (OSTI)

In the project ''Earth Materials and Earth Dynamics'' we linked fundamental and exploratory, experimental, theoretical, and computational research programs to shed light on the current and past states of the dynamic Earth. Our objective was to combine different geological, geochemical, geophysical, and materials science analyses with numerical techniques to illuminate active processes in the Earth. These processes include fluid-rock interactions that form and modify the lithosphere, non-linear wave attenuations in rocks that drive plate tectonics and perturb the earth's surface, dynamic recrystallization of olivine that deforms the upper mantle, development of texture in high-pressure olivine polymorphs that create anisotropic velocity regions in the convecting upper mantle and transition zone, and the intense chemical reactions between the mantle and core. We measured physical properties such as texture and nonlinear elasticity, equation of states at simultaneous pressures and temperatures, magnetic spins and bonding, chemical permeability, and thermal-chemical feedback to better characterize earth materials. We artificially generated seismic waves, numerically modeled fluid flow and transport in rock systems and modified polycrystal plasticity theory to interpret measured physical properties and integrate them into our understanding of the Earth. This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL).

Bennett, K; Shankland, T. [and others

2000-11-01T23:59:59.000Z

200

The Dynamic Compressive Response of an Open-Cell Foam Impregnated With a Non-Newtonian Fluid  

E-Print Network (OSTI)

The response of a reticulated, elastomeric foam filled with colloidal silica under dynamic compression is studied. Under compression beyond local strain rates on the order of 1 s[superscript ?1], the non-Newtonian, colloidal ...

Dawson, Matthew A.

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Transdisciplinary Fluid Integration Research Center  

E-Print Network (OSTI)

Environment Reality-Coupled Computation Energy Dynamics Integrated Visual Informatics Super-Real-Time Medical of Fluid Science, Tohoku University, in April 2003. The next generation transdisciplinary research Research focus is to advance utilization of Computer Fluid Dynamics (CFD) for solving engineering problems

Obayashi, Shigeru

202

Review of geophysical characterization methods used at the Hanford Site  

SciTech Connect

This paper presents a review of geophysical methods used at Hanford in two parts: (1) shallow surface-based geophysical methods and (2) borehole geophysical methods. This review was not intended to be ``all encompassing'' but should represent the vast majority (>90% complete) of geophysical work conducted onsite and aimed at hazardous waste investigations in the vadose zone and/or uppermost groundwater aquifers. This review did not cover geophysical methods aimed at large-scale geologic structures or seismicity and, in particular, did not include those efforts conducted in support of the Basalt Waste Isolation Program. This review focused primarily on the more recent efforts.

GV Last; DG Horton

2000-03-23T23:59:59.000Z

203

Geophysical investigation: New Production Reactor Complex, Idaho National Engineering Laboratory  

Science Conference Proceedings (OSTI)

Seismic crosshole and downhole velocity measurements were performed for two borehole arrays approximately 300 feet deep in conjunction with verticality measurements and geophysical logging of borehole WO-2 (to a depth of 4,960 feet) at the NPR site of the INEL. Past studies show that the site area is covered by a thin layer of soil which overlies numerous basalt flows interrupted by sandy and clayey interbeds. Compressional and shear wave velocities computed for these arrays revealed low velocity zones at the following elevation ranges for crosshole array No. 1: 4,893 feet to 4,873 feet (basalt rubble zone) and 4,705 feet to 4,686 feet (sediment interbed). Corresponding elevation ranges for crosshole array No. 2 include: 4,830 feet to 4,815 feet (sediment interbed), 4,785 feet to 4,765 feet (highly vesicular and fractured basalt), 4,715 feet to 4,705 feet (basalt rubble zone), and 4,672 feet to 4,667 feet (sediment interbed). In general, crosshole velocity data correlated between arrays with velocity differences possibly explained by localized lithologic changes. Due to scatter in the downhole velocity data, only velocity averages were computed. However, these downhole velocities correlated to the approximate mean crosshole velocity values and therefore independent confirmed the crosshole data. Geophysical logging of well WO-2 included natural gamma, neutron, and compensated density logs to a depth of 4,960 feet at which a viscous borehole fluid inhibited further investigation. Second runs of small sections of these logs were repeated satisfactorily for confirmation of certain anomalous areas.

Filipkowski, F.; Blackey, M.; Davies, D.; Levine, E.N.; Murphy, V. [Weston Geophysical Corp., Westboro, MA (US)

1991-12-01T23:59:59.000Z

204

Physics-Based Simulations for Fluid Mixtures Dongwoon Lee  

E-Print Network (OSTI)

experience a chemical reaction which produces a new type of fluid or generates heat energy. When heat energy knowledge of fluids. He helped me to understand dynamics of fluids through his lectures and experiments. I Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3 Fluid Models 10 3.1 Fluid Dynamics

Toronto, University of

205

Geophysical Method At Raft River Geothermal Area (1977) | Open Energy  

Open Energy Info (EERE)

Geophysical Method At Raft River Geothermal Area (1977) Geophysical Method At Raft River Geothermal Area (1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geophysical Techniques Activity Date 1977 Usefulness not indicated DOE-funding Unknown Notes Borehole geophysics were completed at the Raft River valley, Idaho. References Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. (1 February 1977) Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Geophysical_Method_At_Raft_River_Geothermal_Area_(1977)&oldid=594349" Category: Exploration Activities

206

Fluid dynamics, particulate segregation, chemical processes, and natural ore analog discussions that relate to the potential for criticality in Hanford tanks  

SciTech Connect

This report presents an in-depth review of the potential for nuclear criticality to occur in Hanford defense waste tanks during past, current and future safe storage and maintenance operations. The report also briefly discusses the potential impacts of proposed retrieval activities, although retrieval was not a main focus of scope. After thorough review of fluid dynamic aspects that focus on particle segregation, chemical aspects that focus on solubility and adsorption processes that might concentrate plutonium and/or separate plutonium from the neutron absorbers in the tank waste, and ore-body formation and mining operations, the interdisciplinary team has come to the conclusion that there is negligible risk of nuclear critically under existing storage conditions in Hanford site underground waste storage tanks. Further, for the accident scenarios considered an accidental criticality is incredible.

Barney, G.S.

1996-09-27T23:59:59.000Z

207

Investigation of novel geophysical techniques for monitoring CO2 movement during sequestration  

Science Conference Proceedings (OSTI)

Cost effective monitoring of reservoir fluid movement during CO{sub 2} sequestration is a necessary part of a practical geologic sequestration strategy. Current petroleum industry seismic techniques are well developed for monitoring production in petroleum reservoirs. The cost of time-lapse seismic monitoring can be born because the cost to benefit ratio is small in the production of profit making hydrocarbon. However, the cost of seismic monitoring techniques is more difficult to justify in an environment of sequestration where the process produces no direct profit. For this reasons other geophysical techniques, which might provide sufficient monitoring resolution at a significantly lower cost, need to be considered. In order to evaluate alternative geophysical monitoring techniques we have undertaken a series of numerical simulations of CO{sub 2} sequestration scenarios. These scenarios have included existing projects (Sleipner in the North Sea), future planned projects (GeoSeq Liberty test in South Texas and Schrader Bluff in Alaska) as well as hypothetical models based on generic geologic settings potentially attractive for CO{sub 2} sequestration. In addition, we have done considerable work on geophysical monitoring of CO{sub 2} injection into existing oil and gas fields, including a model study of the Weyburn CO{sub 2} project in Canada and the Chevron Lost Hills CO{sub 2} pilot in Southern California (Hoversten et al. 2003). Although we are specifically interested in considering ''novel'' geophysical techniques for monitoring we have chosen to include more traditional seismic techniques as a bench mark so that any quantitative results derived for non-seismic techniques can be directly compared to the industry standard seismic results. This approach will put all of our finding for ''novel'' techniques in the context of the seismic method and allow a quantitative analysis of the cost/benefit ratios of the newly considered methods compared to the traditional, more expensive, seismic technique. The Schrader Bluff model was chosen as a numerical test bed for quantitative comparison of the spatial resolution of various geophysical techniques being considered for CO{sub 2} sequestration monitoring. We began with a three dimensional flow simulation model provided by BP Alaska of the reservoir and developed a detailed rock-properties model from log data that provides the link between the reservoir parameters (porosity, pressure, saturations, etc.) and the geophysical parameters (velocity, density, electrical resistivity). The rock properties model was used to produce geophysical models from the flow simulations.

Hoversten, G. Michael; Gasperikova, Erika

2003-10-31T23:59:59.000Z

208

SRM -? Fluids  

Science Conference Proceedings (OSTI)

... These reference fluid formulations characterize the behavior of broad ranges of chemically similar fluids; in this way data on propane, for example ...

2012-10-01T23:59:59.000Z

209

MIT-CTP-3519 Symmetries of Discontinuous Flows and the Dual Rankine-Hugoniot Conditions in Fluid Dynamics  

E-Print Network (OSTI)

It has recently been shown that the maximal kinematical invariance group of polytropic fluids, for smooth subsonic flows, is the semidirect product of SL(2, R) and the static Galilei group G. This result purports to offer a theoretical explanation for an intriguing similarity, that was recently observed, between a supernova explosion and a plasma implosion. In this paper we extend this result to discuss the symmetries of discontinuous flows, which further validates the explanation by taking into account shock waves, which are the driving force behind both the explosion and implosion. This is accomplished by constructing a new set of Rankine-Hugoniot conditions, which follow from Noethers conservation laws. The new set is dual to the standard Rankine-Hugoniot conditions and is related to them through the SL(2, R) transformations. The entropy condition, that the shock needs to satisfy for physical reasons, is also seen to remain invariant under the transformations.

Oliver Jahn; V. V. Sreedhar; Amitabh Virmani

2004-01-01T23:59:59.000Z

210

Phase separation of an asymmetric binary fluid mixture confined in a nanoscopic slit pore: Molecular-dynamics simulations  

E-Print Network (OSTI)

As a generic model system of an asymmetric binary fluid mixture, hexadecane dissolved in carbon dioxide is considered, using a coarse-grained bead-spring model for the short polymer, and a simple spherical particle with Lennard-Jones interactions for the carbon dioxide molecules. In previous work, it has been shown that this model reproduces the real phase diagram reasonable well, and also the initial stages of spinodal decomposition in the bulk following a sudden expansion of the system could be studied. Using the parallelized simulation package ESPResSo on a multiprocessor supercomputer, phase separation of thin fluid films confined between parallel walls that are repulsive for both types of molecules are simulated in a rather large system (1356 x 1356 x 67.8 A^3, corresponding to about 3.2 million atoms). Following the sudden system expansion, a complicated interplay between phase separation in the directions perpendicular and parallel to the walls is found: in the early stages the hexadecane molecules accumulate mostly in the center of the slit pore, but as the coarsening of the structure in the parallel direction proceeds, the inhomogeneity in the perpendicular direction gets much reduced. Studying then the structure factors and correlation functions at fixed distances from the wall, the densities are essentially not conserved at these distances, and hence the behavior differs strongly from spinodal decomposition in the bulk. Some of the characteristic lengths show a nonmonotonic variation with time, and simple coarsening described by power-law growth is only observed if the domain sizes are much larger than the film thickness.

K. Bucior; L. Yelash; K. Binder

2008-04-09T23:59:59.000Z

211

A localised subgrid scale model for fluid dynamical simulations in astrophysics II: Application to type Ia supernovae  

E-Print Network (OSTI)

The dynamics of the explosive burning process is highly sensitive to the flame speed model in numerical simulations of type Ia supernovae. Based upon the hypothesis that the effective flame speed is determined by the unresolved turbulent velocity fluctuations, we employ a new subgrid scale model which includes a localised treatment of the energy transfer through the turbulence cascade in combination with semi-statistical closures for the dissipation and non-local transport of turbulence energy. In addition, subgrid scale buoyancy effects are included. In the limit of negligible energy transfer and transport, the dynamical model reduces to the Sharp-Wheeler relation. According to our findings, the Sharp-Wheeler relation is insuffcient to account for the complicated turbulent dynamics of flames in thermonuclear supernovae. The application of a co-moving grid technique enables us to achieve very high spatial resolution in the burning region. Turbulence is produced mostly at the flame surface and in the interior ash regions. Consequently, there is a pronounced anisotropy in the vicinity of the flame fronts. The localised subgrid scale model predicts significantly enhanced energy generation and less unburnt carbon and oxygen at low velocities compared to earlier simulations.

W. Schmidt; J. C. Niemeyer; W. Hillebrandt; F. K. Roepke

2006-01-23T23:59:59.000Z

212

Experimental reconsideration of spatio-temporal dynamics observed in fluid-elastic oscillator arrays from complex system viewpoint: From vibrating pipes in heat exchangers to waving plants in agricultural fields: Research Articles  

Science Conference Proceedings (OSTI)

Transition from local complexity to global spatio-temporal dynamics in a two-dimensional array of fluid-elastic oscillators is examined experimentally with an apparatus comprising 90-1000 cantilevered rods in a wind tunnel as the Reynolds number (based ... Keywords: impact, nonlinear vibration, self-organization, spatio-temporal pattern, wave

Masaharu Kuroda; Francis C. Moon

2007-03-01T23:59:59.000Z

213

BSU Geophysics Field Camp Report 2012 | Open Energy Information  

Open Energy Info (EERE)

BSU Geophysics Field Camp Report 2012 BSU Geophysics Field Camp Report 2012 Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BSU Geophysics Field Camp Report 2012 Abstract Neal Hot Springs (NHS) is an active geothermal site and home to a new binary power plant built by U.S. Geothermal and funded through the Department of Energy. Power production is scheduled to begin in late 2012 and is proposed to generate 25 mega-watts of power to its customer Idaho Power. The project has also served Boise State University as an ideal location for geophysical exploration and research. Research began in spring of 2011 during BSU's annual geophysics field camp. Students and faculty conducted various geophysical surveys to gain insight into the controlling geological structure of the area. Studies of the site continued into 2012

214

Water at a hydrophilic solid surface probed by ab-initio molecular dynamics: inhomogeneous thin layers of dense fluid  

DOE Green Energy (OSTI)

We present a microscopic model of the interface between liquid water and a hydrophilic, solid surface, as obtained from ab-initio molecular dynamics simulations. In particular, we focused on the (100)surface of cubic SiC, a leading candidate semiconductor for bio-compatible devices. Our results show that, in the liquid in contact with the clean substrate, molecular dissociation occurs in a manner unexpectedly similar to that observed in the gas phase. After full hydroxylation takes place, the formation of a thin ({approx}3 {angstrom})interfacial layer is observed, which has higher density than bulk water and forms stable hydrogen bonds with the substrate. The liquid does not uniformly wet the surface, rather molecules preferably bind along directions parallel to the Si dimer rows. Our calculations also predict that one dimensional confinement between two hydrophilic surfaces at about 1.3 nm distance does not affect the structural and electronic properties of the whole water sample.

Cicero, G; Grossman, J; Galli, G; Catellani, A

2005-01-28T23:59:59.000Z

215

Turbulent thermal diffusion of aerosols in geophysics and laboratory experiments  

E-Print Network (OSTI)

We discuss a new phenomenon of turbulent thermal diffusion associated with turbulent transport of aerosols in the atmosphere and in laboratory experiments. The essence of this phenomenon is the appearance of a nondiffusive mean flux of particles in the direction of the mean heat flux, which results in the formation of large-scale inhomogeneities in the spatial distribution of aerosols that accumulate in regions of minimum mean temperature of the surrounding fluid. This effect of turbulent thermal diffusion was detected experimentally. In experiments turbulence was generated by two oscillating grids in two directions of the imposed vertical mean temperature gradient. We used Particle Image Velocimetry to determine the turbulent velocity field, and an Image Processing Technique based on an analysis of the intensity of Mie scattering to determine the spatial distribution of aerosols. Analysis of the intensity of laser light Mie scattering by aerosols showed that aerosols accumulate in the vicinity of the minimum mean temperature due to the effect of turbulent thermal diffusion. Geophysical applications of the obtained results are discussed.

A. Eidelman; T. Elperin; N. Kleeorin; A. Krein; I. Rogachevskii; J. Buchholz; G. Gruenefeld

2004-11-11T23:59:59.000Z

216

Recent advances in optimized geophysical survey design Hansruedi Maurer1  

E-Print Network (OSTI)

- time tomography: Geophysics, 74, no.4, Q27­Q40, doi:10.1190/ 1.3141738. Atkinson, A. C., A. N. Donev

217

Borehole geophysics evaluation of the Raft River geothermal reservoir,  

Open Energy Info (EERE)

reservoir, reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: GEOTHERMAL ENERGY; GEOTHERMAL FIELDS; GEOPHYSICAL SURVEYS; RAFT RIVER VALLEY; GEOTHERMAL EXPLORATION; BOREHOLES; EVALUATION; HOT-WATER SYSTEMS; IDAHO; MATHEMATICAL MODELS; WELL LOGGING; CAVITIES; EXPLORATION; GEOTHERMAL SYSTEMS; HYDROTHERMAL SYSTEMS; NORTH AMERICA; PACIFIC NORTHWEST REGION; USA Author(s): Applegate, J.K.; Donaldson, P.R.; Hinkley, D.L.; Wallace, T.L. Published: Geophysics, 2/1/1977 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Geophysical Method At Raft River Geothermal Area (1977) Raft River Geothermal Area

218

Geophysical Study of the Salton Trough of Southern California...  

Open Energy Info (EERE)

1964 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geophysical Study of the Salton Trough of Southern California Citation Shawn...

219

An Integrated Geophysical Study Of The Geothermal Field Of Tule...  

Open Energy Info (EERE)

Geothermal Field Of Tule Chek, Bc, Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Integrated Geophysical Study Of The Geothermal Field Of...

220

Reconnaissance geophysical studies of the geothermal system in...  

Open Energy Info (EERE)

geophysical studies of the geothermal system in southern Raft River Valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance...

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Borehole geophysics evaluation of the Raft River geothermal reservoir...  

Open Energy Info (EERE)

reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Borehole geophysics evaluation of the Raft River geothermal reservoir, Idaho Details...

222

LANL Institutes - Institute of Geophysics and Planetary Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

NEWS LIBRARY JOBS SITE MAP Emergency Maps Organization Goals Phone Search Science > LANL Institutes > Institute of Geophysics and Planetary Physics National Security Education...

223

Heat transfer and fluid dynamics of air-water two-phase flow in micro-channels  

SciTech Connect

Heat transfer, pressure drop, and void fraction were simultaneously measured for upward heated air-water non-boiling two-phase flow in 0.51 mm ID tube to investigate thermo-hydro dynamic characteristics of two-phase flow in micro-channels. At low liquid superficial velocity j{sub l} frictional pressure drop agreed with Mishima-Hibiki's correlation, whereas agreed with Chisholm-Laird's correlation at relatively high j{sub l}. Void fraction was lower than the homogeneous model and conventional empirical correlations. To interpret the decrease of void fraction with decrease of tube diameter, a relation among the void fraction, pressure gradient and tube diameter was derived. Heat transfer coefficient fairly agreed with the data for 1.03 and 2.01 mm ID tubes when j{sub l} was relatively high. But it became lower than that for larger diameter tubes when j{sub l} was low. Analogy between heat transfer and frictional pressure drop was proved to hold roughly for the two-phase flow in micro-channel. But satisfactory relation was not obtained under the condition of low liquid superficial velocity. (author)

Kaji, Masuo; Sawai, Toru; Kagi, Yosuke [Department of Mechanical Engineering, School of Biology-Oriented Science and Technology, Kinki University, 930 Nishi-mitani, Kinokawa, Wakayama 649-6493 (Japan); Ueda, Tadanobu [Toyota Central R and D Laboratory, Incorporated, 41-1 Yokomichi, Nagakute, Aichi 480-1192 (Japan)

2010-05-15T23:59:59.000Z

224

Field implementation of geophysical diffraction tomography  

SciTech Connect

Geophysical diffraction tomography is a new technique that shows promise as a tool for quantitative subsurface (below-ground) imaging. The approach being used is based upon the filtered backpropagation algorithm, which is a mathematical extension of the reconstruction software used in conventional X-ray CAT scanners. The difference between this method and existing methods is that the new algorithm rigorously accounts for diffraction effects through an exact inversion of the wave equation. This refinement is necessary in that it admits the use of acoustic and long-wavelength electromagnetic waves, allowing tomography to be taken from the laboratory to the field. ORNL's effort in geophysical diffraction tomography involves reducing the filtered backpropagation algorithm to practice. This requires the design and construction of field instrumentation as well as the development of an improved algorithm. The original algorithm requires the imaged region to be illuminated by plane waves. This requirement simplifies the algorithm but complicates its field implementation in that plane waves are difficult to generate. Consequently, ORNL has been working to generalize the filtered backpropagation algorithm to allow a broader range of incoming wave fields which can more easily be realized in the field. The instrumentation aspects involve the selection of appropriate sonic sources and receivers along with the development of a state-of-art, portable, computer-controlled, multichannel data acquisition system. 5 references, 6 figures.

Witten, A.J.; Stevens, S.S.

1984-01-01T23:59:59.000Z

225

Pollutant dispersion in a large indoor space: Part 2 -Computational Fluid Dynamics (CFD) predictions and comparison with ascale model experiment for isothermal flow  

SciTech Connect

This paper reports on an investigation of the adequacy of Computational fluid dynamics (CFD), using a standard Reynolds Averaged Navier Stokes (RANS) model, for predicting dispersion of neutrally buoyant gas in a large indoor space. We used CFD to predict pollutant (dye) concentration profiles in a water filled scale model of an atrium with a continuous pollutant source. Predictions from the RANS formulation are comparable to an ensemble average of independent identical experiments. Model results were compared to pollutant concentration data in a horizontal plane from experiments in a scale model atrium. Predictions were made for steady-state (fully developed) and transient (developing) pollutant concentrations. Agreement between CFD predictions and ensemble averaged experimental measurements is quantified using the ratios of CFD-predicted and experimentally measured dye concentration at a large number of points in the measurement plane. Agreement is considered good if these ratios fall between 0.5 and 2.0 at all points in the plane. The standard k-epsilon two equation turbulence model obtains this level of agreement and predicts pollutant arrival time to the measurement plane within a few seconds. These results suggest that this modeling approach is adequate for predicting isothermal pollutant transport in a large room with simple geometry.

Finlayson, Elizabeth U.; Gadgil, Ashok J.; Thatcher, Tracy L.; Sextro, Richard G.

2002-10-01T23:59:59.000Z

226

The identification of inflow fluid dynamics parameters that can be used to scale fatigue loading spectra of wind turbine structural components  

DOE Green Energy (OSTI)

We have recently shown that the alternating load fatigue distributions measured at several locations on a wind turbine operating in a turbulent flow can be described by a mixture of at least three parametric statistical models. The rainflow cycle counting of the horizontal and vertical inflow components results in a similar mixture describing the cyclic content of the wind. We believe such a description highlights the degree of non-Gaussian characteristics of the flow. We present evidence that the severity of the low-cycle, high-amplitude alternating stress loads seen by wind turbine components are a direct consequence of the degree of departure from normality in the inflow. We have examined the details of the turbulent inflow associated with series large loading events that took place on two adjacent wind turbines installed in a large wind park in San Gorgonio Pass, California. In this paper, we describe what we believe to be the agents in the flow that induced such events. We also discuss the atmospheric mechanisms that influence the low-cycle, high-amplitude range loading seen by a number of critical wind turbine components. We further present results that can be used to scale the specific distribution shape as functions of measured inflow fluid dynamics parameters.

Kelley, N.D.

1993-11-01T23:59:59.000Z

227

Numerical simulation of the air flow field in a laboratory fume hood using the CFD-ACE(TM) computational fluid dynamics code  

E-Print Network (OSTI)

The purpose of this research was the numerical simulation of the air flow field within a standard laboratory fume hood using the k-6 turbulence model. The study investigated the flow field at different sash openings. The results of the computation realized information on the hood entry losses and other design parameters that are of interest to the users, designers and owners of fume hoods. After the specification of the problem and generation of the mesh, the modeled hood was simulated using CFD-ACE TM , a commercial computational fluid dynamics software package. The code is based on the finite volume method. In defining the grid, due care was exercised in maintaining the cell aspect ratio and grid orthogonality within the recommended limits. The air flow patterns at full open sash compared favorably with experimental results. The results at lowered sash revealed air flow characteristics and slot volume flows that were not reported in previously published literature on fume hoods. These results along with smaller hood entry losses confirmed the better performance of fume hoods at sash openings that are less than half open. Further, comparison between the computed volume flow rates and published design data was favorable.

D'Sousa, Cedric Benedict

1997-01-01T23:59:59.000Z

228

Geophysical Method At Raft River Geothermal Area (1975) | Open Energy  

Open Energy Info (EERE)

Method At Raft River Geothermal Area (1975) Method At Raft River Geothermal Area (1975) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geophysical Method At Raft River Geothermal Area (1975) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Geophysical Techniques Activity Date 1975 Usefulness not indicated DOE-funding Unknown Notes Geologic and geophysics studies were completed at the Raft River valley. References Williams, P.L.; Mabey, D.R.; Pierce, K.L.; Zohdy, A.A.R.; Ackermann, H.; Hoover, D.B. (1 May 1975) Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Geophysical_Method_At_Raft_River_Geothermal_Area_(1975)&oldid=59434

229

Integrated Surface Geophysical Methods for Characterization of the Naval  

Open Energy Info (EERE)

Integrated Surface Geophysical Methods for Characterization of the Naval Integrated Surface Geophysical Methods for Characterization of the Naval Air Warfare Center, New Jersey Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Integrated Surface Geophysical Methods for Characterization of the Naval Air Warfare Center, New Jersey Author USGS Published Publisher Not Provided, 2013 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Integrated Surface Geophysical Methods for Characterization of the Naval Air Warfare Center, New Jersey Citation USGS. Integrated Surface Geophysical Methods for Characterization of the Naval Air Warfare Center, New Jersey [Internet]. 2013. [updated 2013/01/03;cited 2013/11/22]. Available from: http://water.usgs.gov/ogw/bgas/toxics/NAWC-surface.html

230

An introduction to electrical resistivity in geophysics | Open Energy  

Open Energy Info (EERE)

An introduction to electrical resistivity in geophysics An introduction to electrical resistivity in geophysics Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: An introduction to electrical resistivity in geophysics Abstract Physicists are finding that the skills they have learned in their training may be applied to areas beyond traditional physics topics. One such field is that of geophysics. This paper presents the electrical resistivity component of an undergraduate geophysics course at Radford University. It is taught from a physics perspective, yet the application of the theory to the real world is the overriding goal. The concepts involved in electrical resistivity studies are first discussed in a general sense, and then they are studied through the application of the relevant electromagnetic theory.

231

FRACTURING FLUID CHARACTERIZATION FACILITY  

SciTech Connect

Hydraulic fracturing technology has been successfully applied for well stimulation of low and high permeability reservoirs for numerous years. Treatment optimization and improved economics have always been the key to the success and it is more so when the reservoirs under consideration are marginal. Fluids are widely used for the stimulation of wells. The Fracturing Fluid Characterization Facility (FFCF) has been established to provide the accurate prediction of the behavior of complex fracturing fluids under downhole conditions. The primary focus of the facility is to provide valuable insight into the various mechanisms that govern the flow of fracturing fluids and slurries through hydraulically created fractures. During the time between September 30, 1992, and March 31, 2000, the research efforts were devoted to the areas of fluid rheology, proppant transport, proppant flowback, dynamic fluid loss, perforation pressure losses, and frictional pressure losses. In this regard, a unique above-the-ground fracture simulator was designed and constructed at the FFCF, labeled ''The High Pressure Simulator'' (HPS). The FFCF is now available to industry for characterizing and understanding the behavior of complex fluid systems. To better reflect and encompass the broad spectrum of the petroleum industry, the FFCF now operates under a new name of ''The Well Construction Technology Center'' (WCTC). This report documents the summary of the activities performed during 1992-2000 at the FFCF.

Subhash Shah

2000-08-01T23:59:59.000Z

232

Computational Fluid Dynamics Modeling of The Dalles Project: Effects of Spill Flow Distribution Between the Washington Shore and the Tailrace Spillwall  

DOE Green Energy (OSTI)

The U.S. Army Corps of Engineers-Portland District (CENWP) has ongoing work to improve the survival of juvenile salmonids (smolt) migrating past The Dalles Dam. As part of that effort, a spillwall was constructed to improve juvenile egress through the tailrace downstream of the stilling basin. The spillwall was designed to improve smolt survival by decreasing smolt retention time in the spillway tailrace and the exposure to predators on the spillway shelf. The spillwall guides spillway flows, and hence smolt, more quickly into the thalweg. In this study, an existing computational fluid dynamics (CFD) model was modified and used to characterize tailrace hydraulics between the new spillwall and the Washington shore for six different total river flows. The effect of spillway flow distribution was simulated for three spill patterns at the lowest total river flow. The commercial CFD solver, STAR-CD version 4.1, was used to solve the unsteady Reynolds-averaged Navier-Stokes equations together with the k-epsilon turbulence model. Free surface motion was simulated using the volume-of-fluid (VOF) technique. The model results were used in two ways. First, results graphics were provided to CENWP and regional fisheries agency representatives for use and comparison to the same flow conditions at a reduced-scale physical model. The CFD results were very similar in flow pattern to that produced by the reduced-scale physical model but these graphics provided a quantitative view of velocity distribution. During the physical model work, an additional spill pattern was tested. Subsequently, that spill pattern was also simulated in the numerical model. The CFD streamlines showed that the hydraulic conditions were likely to be beneficial to fish egress at the higher total river flows (120 kcfs and greater, uniform flow distribution). At the lowest flow case, 90 kcfs, it was necessary to use a non-uniform distribution. Of the three distributions tested, splitting the flow evenly between Bay 7 and Bay 8 had hydraulics deemed most beneficial for egress by CENWP fisheries biologists and regional fishery agency representatives. The numerical and physical model results were very similar, building confidence in both hydraulic tools.

Rakowski, Cynthia L.; Serkowski, John A.; Richmond, Marshall C.

2010-12-01T23:59:59.000Z

233

Nonlinear Processes in Geophysics (2005) 12: 139148 SRef-ID: 1607-7946/npg/2005-12-139  

E-Print Network (OSTI)

-consistent theory of nearly incompressible fluid dynamics for non-magnetized hydrodynamics as well as magnetofluids passive con- vection and the low frequency generation of sound. Thus, the NI fluid models, unlike fully (hydrodynamic) fluid admits two invariants (con- stants of motion), namely the energy and the mean squared

Paris-Sud XI, Université de

234

CFD [computational fluid dynamics] And Safety Factors. Computer modeling of complex processes needs old-fashioned experiments to stay in touch with reality.  

SciTech Connect

Computational fluid dynamics (CFD) is recognized as a powerful engineering tool. That is, CFD has advanced over the years to the point where it can now give us deep insight into the analysis of very complex processes. There is a danger, though, that an engineer can place too much confidence in a simulation. If a user is not careful, it is easy to believe that if you plug in the numbers, the answer comes out, and you are done. This assumption can lead to significant errors. As we discovered in the course of a study on behalf of the Department of Energy's Savannah River Site in South Carolina, CFD models fail to capture some of the large variations inherent in complex processes. These variations, or scatter, in experimental data emerge from physical tests and are inadequately captured or expressed by calculated mean values for a process. This anomaly between experiment and theory can lead to serious errors in engineering analysis and design unless a correction factor, or safety factor, is experimentally validated. For this study, blending times for the mixing of salt solutions in large storage tanks were the process of concern under investigation. This study focused on the blending processes needed to mix salt solutions to ensure homogeneity within waste tanks, where homogeneity is required to control radioactivity levels during subsequent processing. Two of the requirements for this task were to determine the minimum number of submerged, centrifugal pumps required to blend the salt mixtures in a full-scale tank in half a day or less, and to recommend reasonable blending times to achieve nearly homogeneous salt mixtures. A full-scale, low-flow pump with a total discharge flow rate of 500 to 800 gpm was recommended with two opposing 2.27-inch diameter nozzles. To make this recommendation, both experimental and CFD modeling were performed. Lab researchers found that, although CFD provided good estimates of an average blending time, experimental blending times varied significantly from the average.

Leishear, Robert A.; Lee, Si Y.; Poirier, Michael R.; Steeper, Timothy J.; Ervin, Robert C.; Giddings, Billy J.; Stefanko, David B.; Harp, Keith D.; Fowley, Mark D.; Van Pelt, William B.

2012-10-07T23:59:59.000Z

235

Development of a Laboratory Verified Single-Duct VAV System Model with Fan Powered Terminal Units Optimized Using Computational Fluid Dynamics  

E-Print Network (OSTI)

Single Duct Variable Air Volume (SDVAV) systems use series and parallel Fan Powered Terminal Units to control the air flow in conditioned spaces. This research developed a laboratory verified model of SDVAV systems that used series and parallel fan terminal units where the fan speeds were controlled by either Silicon Controlled Rectifiers (SCR) or Electronically Commutated Motors (ECM) motors. As part of the research, the model was used to compare the performance of the systems and to predict the harmonics generated by ECM systems. All research objectives were achieved. The CFD model, which was verified with laboratory measurements, showed the potential to identify opportunities for improvement in the design of the FPTU and accurately predicted the static pressure drop as air passed through the unit over the full operating range of the FPTU. Computational fluid dynamics (CFD) models of typical a FPTU were developed and used to investigate opportunities for optimizing the design of FPTUs. The CFD model identified key parameters required to conduct numerical simulations of FPTU and some of the internal components used to manufacture the units. One key internal component was a porous baffle used to enhance mixing when primary air and induced air entered the mixing chamber. The CFD analysis showed that a pressure-drop based on face velocity model could be used to accurately predict the performance of the FPTU. The SDVAV simulation results showed that parallel FPTUs used less energy overall than series systems that used SCR motors as long as primary air leakage was not considered. Simulation results also showed that series ECM FPTUs used about the same amount of energy, within 3 percent, of parallel FPTU even when leakage was not considered. A leakage rate of 10 percent was enough to reduce the performance of the parallel FPTU to the level of the series SCR system and the series ECM FPTUs outperformed the parallel FPTUs at all weather locations used in the study.

Davis, Michael A.

2010-08-01T23:59:59.000Z

236

Wavelet Turbulence for Fluid Simulation Theodore Kim  

E-Print Network (OSTI)

in the running time. We instead propose an algorithm that generates small-scale fluid de- tail procedurally. We of the key results of Kolmogorov the- ory is that the energy spectrum of a turbulent fluid approaches a five spectra [Perrier et al. 1995], and the sub- stitution is common in fluid dynamics [Farge et al. 1996

California at Santa Barbara, University of

237

Supercritical fluid reverse micelle separation  

DOE Patents (OSTI)

A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

Fulton, J.L.; Smith, R.D.

1993-11-30T23:59:59.000Z

238

Supercritical fluid reverse micelle separation  

DOE Patents (OSTI)

A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

Fulton, John L. (Richland, WA); Smith, Richard D. (Richland, WA)

1993-01-01T23:59:59.000Z

239

A Hybrid Hydrologic-Geophysical Inverse Technique for the Assessment and Monitoring of Leachates in the Vadose Zone  

SciTech Connect

The objective of this study is to develop and field test a new, integrated Hybrid Hydrologic-Geophysical Inverse Technique (HHGIT) for characterization of the vadose zone at contaminated sites. This new approach to site characterization and monitoring can provide detailed maps of hydrogeological heterogeneity and the extent of contamination by combining information from 3D electric resistivity tomography (ERT) and/or 2D cross borehole ground penetrating radar (XBGPR) surveys, statistical information about heterogeneity and hydrologic processes, and sparse hydrologic data. Because the electrical conductivity and dielectric constant of the vadose zone (from the ERT and XBGPR measurements, respectively) can be correlated to the fluid saturation and/or contaminant concentration, the hydrologic and geophysical measurements are related.

ALUMBAUGH,DAVID L.; YEH,JIM; LABRECQUE,DOUG; GLASS,ROBERT J.; BRAINARD,JAMES; RAUTMAN,CHRIS

1999-06-15T23:59:59.000Z

240

Fluid turbine  

SciTech Connect

A fluid turbine designed for increased power output includes an annular housing provided with a semi-spherical dome for directing incoming fluid flow to impinge on a plurality of rotor blades within the housing fixed to a vertical output shaft. An angle on the order of between 5 to 85/sup 0/, in the direction of rotation of the shaft, exists between the upper (Leading) and lower (Trailing) edges of each blade. The blades are manufactured from a plurality of aerodynamically-shaped, radially spaced ribs covered with a skin. The leading edge of each rib is curved, while the trailing edge is straight. The straight edge of the ribs in each blade approach a vertical plane through the vertical axis of the housing output shaft as the ribs progress radially inwardly towards the output shaft. The housing has fluid exit passages in its base so that deenergized fluid can be quickly flushed from the housing by the downwardly directed flow in combination with the novel blade configuration, which acts as a screw or force multiplier, to expel deenergized fluid. The airfoil shaped ribs also provide the blades with a contour for increasing the fluid velocity on the underside of the blades adjacent the fluid exit passage to aid in expelling the deenergized air while providing the turbine with both impulse and axial-flow, fluid impingement on the blades, resulting in a force vector of increased magnitude. A downwardly directed, substantially semi-cylindrical deflector frame connected to the housing blocks the path of flow of ambient fluid to create a low pressure area beneath the base to aid in continuously drawing fluid into the housing at high velocity to impinge on the rotor blades. The increased flow velocity and force on the blades along with the enhanced removal of deenergized fluid results in increased power output of the turbine.

Lebost, B.A.

1980-11-18T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Dynamic  

Office of Legacy Management (LM)

Dynamic Dynamic , and Static , Res.ponse of the Government Oil Shale Mine at ' , . , Rifle, Colorado, to the Rulison Event. , . ; . . DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. p ( y c - - a 2-1 0 -4- REPORT AT (29-2) 914 USBM 1 0 0 1 UNITED STATES DEPARTMENT O F THE I NTERIOR BUREAU OF MINES e s.09 P. L. R U S S E L L RESEARCH D l RECTOR Februory 2, lB7O DYNAMIC AND STATIC RESPONSE 'OF THE GOVERNMENT OIL SHALE MINE A T RIFLE, COLORADO, T O THE, RULISON EVENT ORDER FROM CFSTl A S ~ B ~ &J C / This page intentionally left blank CONTENTS Page . . . . . . . . . . . . . . . . . . . . . . . . . H i s t o r i c . a l Des c r i p t i o n 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Summary 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Introduction 3

242

Cutting Fluids  

Science Conference Proceedings (OSTI)

Table 6   Cutting fluids for aluminum...Table 6 Cutting fluids for aluminum Type of lubricant Principal ingredients Viscosity range Application; maintenance Relative effectiveness Necessary precautions Mineral oils (fatty-additive type preferred) Mineral oil, lard, or neats-foot oil; oleic acid

243

Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot  

Open Energy Info (EERE)

Geophysical Exploration of a Known Geothermal Resource: Neal Hot Geophysical Exploration of a Known Geothermal Resource: Neal Hot Springs Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Integrated Geophysical Exploration of a Known Geothermal Resource: Neal Hot Springs Abstract We present integrated geophysical data to characterize a geothermal system at Neal Hot Springs in eastern Oregon. This system is currently being developed for geothermal energy production. The hot springs are in a region of complex and intersecting fault trends associated with two major extensional events, the Oregon-Idaho Graben and the Western Snake River Plain. The intersection of these two fault systems, coupled with high geothermal gradients from thin continental crust produces pathways for surface water and deep geothermal water interactions at Neal Hot Springs.

244

Rules and Regulations Governing Geophysical, Seismic or Other Type  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rules and Regulations Governing Geophysical, Seismic or Other Type Rules and Regulations Governing Geophysical, Seismic or Other Type Exploration on State-Owned Lands Other Than State-Owned Marine Waters (Mississippi) Rules and Regulations Governing Geophysical, Seismic or Other Type Exploration on State-Owned Lands Other Than State-Owned Marine Waters (Mississippi) < Back Eligibility Commercial Developer Fuel Distributor General Public/Consumer Industrial Investor-Owned Utility Municipal/Public Utility Utility Program Info State Mississippi Program Type Environmental Regulations Siting and Permitting Provider Mississippi Development Authority The Rules and Regulations Governing Geophysical, seismic or Other Type Exploration on State-Owned Lands Other than State-Owned Marine Waters is applicable to the Natural Gas Sector and the Coal with CCS Sector. This law

245

Geological and geophysical analysis of Coso Geothermal Exploration Hole No.  

Open Energy Info (EERE)

and geophysical analysis of Coso Geothermal Exploration Hole No. and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geological and geophysical analysis of Coso Geothermal Exploration Hole No. 1 (CGEH-1), Coso Hot Springs KGRA, California Details Activities (5) Areas (1) Regions (0) Abstract: The Coso Geothermal Exploration Hole number one (CGEH-1) was drilled in the Coso Hot Springs KGRA, California, from September 2 to December 2, 1977. Chip samples were collected at ten foot intervals and extensive geophysical logging surveys were conducted to document the geologic character of the geothermal system as penetrated by CGEH-1. The major rock units encountered include a mafic metamorphic sequence and a

246

Beyond Gaussian Statistical Modeling in Geophysical Data Assimilation  

Science Conference Proceedings (OSTI)

This review discusses recent advances in geophysical data assimilation beyond Gaussian statistical modeling, in the fields of meteorology, oceanography, as well as atmospheric chemistry. The non-Gaussian features are stressed rather than the ...

Marc Bocquet; Carlos A. Pires; Lin Wu

2010-08-01T23:59:59.000Z

247

Contour Analysis: A New Approach for Melding Geophysical Fields  

Science Conference Proceedings (OSTI)

This paper introduces a new approach, contour analysis, for combining independent estimates of a geophysical field to produce a single realization incorporating data from all sources. Contour analysis divides the field estimates into contours and ...

Arthur J. Mariano

1990-04-01T23:59:59.000Z

248

Near-Inertial Oscillations of Geophysical Surface Frontal Currents  

Science Conference Proceedings (OSTI)

Intrinsic oscillations of stable geophysical surface frontal currents of the unsteady, nonlinear, reduced-gravity shallow-water equations on an f plane are investigated analytically and numerically. For frictional (Rayleigh) currents ...

Angelo Rubino; Sergey Dotsenko; Peter Brandt

2003-09-01T23:59:59.000Z

249

AGU: Journal of Geophysical Research geomagnetic ionosphere currents  

E-Print Network (OSTI)

AGU: Journal of Geophysical Research Keywords geomagnetic ionosphere currents Index Terms Ionosphere: Polar cap ionosphere Ionosphere: Current systems Geomagnetism and Paleomagnetism: Rapid time variations Space Weather: Impacts on technological systems Space Weather: Geomagnetically induced currents

Michigan, University of

250

Geophysical Applications of Partial Wavelet Coherence and Multiple Wavelet Coherence  

Science Conference Proceedings (OSTI)

In this paper, the application of partial wavelet coherence (PWC) and multiple wavelet coherence (MWC) to geophysics is demonstrated. PWC is a technique similar to partial correlation that helps identify the resulting wavelet coherence (WTC) ...

Eric K. W. Ng; Johnny C. L. Chan

2012-12-01T23:59:59.000Z

251

STANFORD ROCK PHYSICS BOREHOLE GEOPHYSICS PROJECT  

E-Print Network (OSTI)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B1 Velocity-pressure and porosity-pressure trends in sands Zimmer, Prasad & Mavko. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . B2 Comparison between hydrostatic pressure and polyaxial stress tests in sands Vega, Prasad, Mavko to the grain material properties, porosity, pressure, and pore fluid. By comparing these models to experimental

Nur, Amos

252

STANFORD ROCK PHYSICS BOREHOLE GEOPHYSICS PROJECT  

E-Print Network (OSTI)

TABLE OF CONTENTS A: Rock Physics and Geology. Pressure-solution models and the velocity......................................................... A3 Pressure trends of compressional-and shear-wave velocities measured measured in sands to 20 MPA.....................................................C3 Properties of pore fluids at very high pressures from equations of state. Walls & Dvorkin

Nur, Amos

253

Understanding biogeobatteries: Where geophysics meets microbiology  

SciTech Connect

Although recent research suggests that contaminant plumes behave as geobatteries that produce an electrical current in the ground, no associated model exists that honors both geophysical and biogeochemical constraints. Here, we develop such a model to explain the two main electrochemical contributions to self-potential signals in contaminated areas. Both contributions are associated with the gradient of the activity of two types of charge carriers, ions and electrons. In the case of electrons, bacteria act as catalysts for reducing the activation energy needed to exchange the electrons between electron donor and electron acceptor. Possible mechanisms that facilitate electron migration include iron oxides, clays, and conductive biological materials, such as bacterial conductive pili or other conductive extracellular polymeric substances. Because we explicitly consider the role of biotic processes in the geobattery model, we coined the term 'biogeobattery'. After theoretical development of the biogeobattery model, we compare model predictions with self-potential responses associated with laboratory and field-scale conducted in contaminated environments. We demonstrate that the amplitude and polarity of large (>100 mV) self-potential signatures requires the presence of an electronic conductor to serve as a bridge between electron donors and acceptors. Small self-potential anomalies imply that electron donors and electron acceptors are not directly interconnected, but instead result simply from the gradient of the activity of the ionic species that are present in the system.

Revil, A.; Mendonca, C.A.; Atekwana, E.A.; Kulessa, B.; Hubbard, S.S.; Bohlen, K.

2009-08-15T23:59:59.000Z

254

KINETIC MODELING OF A FISCHER-TROPSCH REACTION OVER A COBALT CATALYST IN A SLURRY BUBBLE COLUMN REACTOR FOR INCORPORATION INTO A COMPUTATIONAL MULTIPHASE FLUID DYNAMICS MODEL  

DOE Green Energy (OSTI)

Currently multi-tubular fixed bed reactors, fluidized bed reactors, and slurry bubble column reactors (SBCRs) are used in commercial Fischer Tropsch (FT) synthesis. There are a number of advantages of the SBCR compared to fixed and fluidized bed reactors. The main advantage of the SBCR is that temperature control and heat recovery are more easily achieved. The SBCR is a multiphase chemical reactor where a synthesis gas, comprised mainly of H2 and CO, is bubbled through a liquid hydrocarbon wax containing solid catalyst particles to produce specialty chemicals, lubricants, or fuels. The FT synthesis reaction is the polymerization of methylene groups [-(CH2)-] forming mainly linear alkanes and alkenes, ranging from methane to high molecular weight waxes. The Idaho National Laboratory is developing a computational multiphase fluid dynamics (CMFD) model of the FT process in a SBCR. This paper discusses the incorporation of absorption and reaction kinetics into the current hydrodynamic model. A phased approach for incorporation of the reaction kinetics into a CMFD model is presented here. Initially, a simple kinetic model is coupled to the hydrodynamic model, with increasing levels of complexity added in stages. The first phase of the model includes incorporation of the absorption of gas species from both large and small bubbles into the bulk liquid phase. The driving force for the gas across the gas liquid interface into the bulk liquid is dependent upon the interfacial gas concentration in both small and large bubbles. However, because it is difficult to measure the concentration at the gas-liquid interface, coefficients for convective mass transfer have been developed for the overall driving force between the bulk concentrations in the gas and liquid phases. It is assumed that there are no temperature effects from mass transfer of the gas phases to the bulk liquid phase, since there are only small amounts of dissolved gas in the liquid phase. The product from the incorporation of absorption is the steady state concentration profile of the absorbed gas species in the bulk liquid phase. The second phase of the model incorporates a simplified macrokinetic model to the mass balance equation in the CMFD code. Initially, the model assumes that the catalyst particles are sufficiently small such that external and internal mass and heat transfer are not rate limiting. The model is developed utilizing the macrokinetic rate expression developed by Yates and Satterfield (1991). Initially, the model assumes that the only species formed other than water in the FT reaction is C27H56. Change in moles of the reacting species and the resulting temperature of the catalyst and fluid phases is solved simultaneously. The macrokinetic model is solved in conjunction with the species transport equations in a separate module which is incorporated into the CMFD code.

Anastasia Gribik; Doona Guillen, PhD; Daniel Ginosar, PhD

2008-09-01T23:59:59.000Z

255

HYDRAULIC FLUIDS  

E-Print Network (OSTI)

This fact sheet answers the most frequently asked health questions (FAQs) about hydraulic fluids. For more information, call the ATSDR Information Center at 1-888-422-8737. This fact sheet is one in a series of summaries about hazardous substances and their health effects. This information is important because this substance may harm you. The effects of exposure to any hazardous substance depend on the dose, the duration, how you are exposed, personal traits and habits, and whether other chemicals are present. HIGHLIGHTS: Exposure to hydraulic fluids occurs mainly in the workplace. Drinking certain types of hydraulic fluids can cause death in humans, and swallowing or inhaling certain types of hydraulic fluids has caused nerve damage in animals. Contact with some types of hydraulic fluids can irritate your skin or eyes. These substances have been found in at least 10 of the 1,428 National Priorities List sites identified by the Environmental Protection Agency (EPA). What are hydraulic fluids? (Pronounced ?????????????????) Hydraulic fluids are a large group of liquids made of many kinds of chemicals. They are used in automobile automatic

unknown authors

1997-01-01T23:59:59.000Z

256

Computational fluid dynamics analyses of lateral heat conduction, coolant azimuthal mixing and heat transfer predictions in a BR2 fuel assembly geometry.  

SciTech Connect

To support the analyses related to the conversion of the BR2 core from highly-enriched (HEU) to low-enriched (LEU) fuel, the thermal-hydraulics codes PLTEMP and RELAP-3D are used to evaluate the safety margins during steady-state operation (PLTEMP), as well as after a loss-of-flow, loss-of-pressure, or a loss of coolant event (RELAP). In the 1-D PLTEMP and RELAP simulations, conduction in the azimuthal and axial directions is not accounted. The very good thermal conductivity of the cladding and the fuel meat and significant temperature gradients in the lateral directions (axial and azimuthal directions) could lead to a heat flux distribution that is significantly different than the power distribution. To evaluate the significance of the lateral heat conduction, 3-D computational fluid dynamics (CFD) simulations, using the CFD code STAR-CD, were performed. Safety margin calculations are typically performed for a hot stripe, i.e., an azimuthal region of the fuel plates/coolant channel containing the power peak. In a RELAP model, for example, a channel between two plates could be divided into a number of RELAP channels (stripes) in the azimuthal direction. In a PLTEMP model, the effect of azimuthal power peaking could be taken into account by using engineering factors. However, if the thermal mixing in the azimuthal direction of a coolant channel is significant, a stripping approach could be overly conservative by not taking into account this mixing. STAR-CD simulations were also performed to study the thermal mixing in the coolant. Section II of this document presents the results of the analyses of the lateral heat conduction and azimuthal thermal mixing in a coolant channel. Finally, PLTEMP and RELAP simulations rely on the use of correlations to determine heat transfer coefficients. Previous analyses showed that the Dittus-Boelter correlation gives significantly more conservative (lower) predictions than the correlations of Sieder-Tate and Petukhov. STAR-CD 3-D simulations were performed to compare heat transfer predictions from CFD and the correlations. Section III of this document presents the results of this analysis.

Tzanos, C. P.; Dionne, B. (Nuclear Engineering Division)

2011-05-23T23:59:59.000Z

257

Dynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydration Hydration Water on Rutile Studied by Backscattering Neutron Spectroscopy and Molecular Dynamics Simulation E. Mamontov,* ,† D. J. Wesolowski, ‡ L. Vlcek, § P. T. Cummings, §,| J. Rosenqvist, ‡ W. Wang, ⊥ and D. R. Cole ‡ Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6473, Chemical Sciences DiVision, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6110, Department of Chemical Engineering, Vanderbilt UniVersity, NashVille, Tennessee 37235-1604, Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6496, and EnVironmental Sciences DiVision, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6036 ReceiVed: December 20, 2007; ReVised Manuscript ReceiVed: June 4, 2008 The high energy resolution, coupled with the wide dynamic range, of the new backscattering

258

Geothermal Geophysical Research in Electrical Methods at UURI  

DOE Green Energy (OSTI)

The principal objective of electrical geophysical research at UURI has been to provide reliable exploration and reservoir assessment tools for the shallowest to the deepest levels of interest in geothermal fields. Three diverse methods are being considered currently: magnetotellurics (MT, and CSAMT), self-potential, and borehole resistivity. Primary shortcomings in the methods addressed have included a lack of proper interpretation tools to treat the effects of the inhomogeneous structures often encountered in geothermal systems, a lack of field data of sufficient accuracy and quantity to provide well-focused models of subsurface resistivity structure, and a poor understanding of the relation of resistivity to geothermal systems and physicochemical conditions in the earth generally. In MT, for example, interpretation research has focused successfully on the applicability of 2-D models in 3-D areas which show a preferred structural grain. Leading computer algorithms for 2-D and 3-D simulation have resulted and are combined with modern methods of regularized inversion. However, 3-D data coverage and interpretation is seen as a high priority. High data quality in our own research surveys has been assured by implementing a fully remote reference with digital FM telemetry and real-time processing with data coherence sorting. A detailed MT profile across Long Valley has mapped a caldera-wide altered tuff unit serving as the primary hydrothermal aquifer, and identified a low-resistivity body in the middle crust under the west moat which corresponds closely with teleseismic delay and low density models. In the CSAMT method, our extensive tensor survey over the Sulphur Springs geothermal system provides valuable structural information on this important thermal regime and allows a fundamental analysis of the CSAMT method in heterogeneous areas. The self-potential (SP) method is promoted as an early-stage, cost-effective, exploration technique for covered hydrothermal resources, of low to high temperature, which has little or no adverse environmental impact and yields specific targets for temperature gradient and fluid chemistry testing. Substantial progress has been made in characterizing SP responses for several known, covered geothermal systems in the Basin and Range and southern Rio Grande Rift, and at identifying likely, causative source areas of thermal fluids. (Quantifying buried SP sources requires detailed knowledge of the resistivity structure, obtainable through DC or CSAMT surveys with 2-D or 3-D modeling.) Borehole resistivity (BHR) methods may help define hot and permeable zones in geothermal systems, trace the flow of cooler injected fluids and determine the degree of-water saturation in vapor dominated systems. At UURI, we develop methods to perform field surveys and to model and interpret various borehole-to-borehole, borehole-to-surface and surface-to-borehole arrays. The status of our BHR research may be summarized as follows: (1) forward modeling algorithms have been developed and published to evaluate numerous resistivity methods and to examine the effects of well-casing and noise; (2) two inverse two-dimensional algorithms have been devised and successfully applied to simulated field data; (3) a patented, multi-array resistivity system has been designed and is under construction; and (4) we are seeking appropriate wells in geothermal and other areas in which to test the methods.

Wannamaker, Philip E.; Wright, Phillip M.

1992-03-24T23:59:59.000Z

259

Geophysical background and as-built target characteristics  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) Grand Junction Projects Office (GJPO) has provided a facility for DOE, other Government agencies, and the private sector to evaluate and document the utility of specific geophysical measurement techniques for detecting and defining cultural and environmental targets. This facility is the Rabbit Valley Geophysics Performance Evaluation Range (GPER). Geophysical surveys prior to the fiscal year (FY) 1994 construction of new test cells showed the primary test area to be relatively homogeneous and free from natural or man-made artifacts, which would generate spurious responses in performance evaluation data. Construction of nine new cell areas in Rabbit Valley was completed in June 1994 and resulted in the emplacement of approximately 150 discrete targets selected for their physical and electrical properties. These targets and their geophysical environment provide a broad range of performance evaluation parameters from ``very easy to detect`` to ``challenging to the most advanced systems.`` Use of nonintrusive investigative techniques represents a significant improvement over intrusive characterization methods, such as drilling or excavation, because there is no danger of exposing personnel to possible hazardous materials and no risk of releasing or spreading contamination through the characterization activity. Nonintrusive geophysical techniques provide the ability to infer near-surface structure and waste characteristics from measurements of physical properties associated with those targets.

Allen, J.W.

1994-09-01T23:59:59.000Z

260

Characterization Of Geothermal Resources Using New Geophysical Technology |  

Open Energy Info (EERE)

Using New Geophysical Technology Using New Geophysical Technology Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Characterization Of Geothermal Resources Using New Geophysical Technology Details Activities (2) Areas (2) Regions (0) Abstract: This paper presents a geothermal case history using a relatively new but proven technology that can accurately map groundwater at significant depths (up to 1,000 meters) over large areas (square kilometers) in short periods of time (weeks). Understanding the location and extent of groundwater resources is very important to the geothermal industry for obvious reasons. It is crucial to have a cost-effective method of understanding where concentrations of geothermal water are located as well as the preferential flow paths of the water in the subsurface. Such

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Reconnaissance geophysical studies of the geothermal system in southern  

Open Energy Info (EERE)

geophysical studies of the geothermal system in southern geophysical studies of the geothermal system in southern Raft River Valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Details Activities (4) Areas (1) Regions (0) Abstract: Gravity, aeromagnetic, and telluric current surveys in the southern Raft River have been used to infer the structure and the general lithology underlying the valley. The gravity data indicate the approximate thickness of the Cenozoic rocks and location of the larger normal faults, and the aeromagnetic data indicate the extent of the major Cenozoic volcanic units. The relative ellipse area contour map compiled from the telluric current survey generally conforms to the gravity map except for

262

Geophysical Investigations of Archaeological Resources in Southern Idaho  

SciTech Connect

At the Idaho National Laboratory and other locations across southern Idaho, geophysical tools are being used to discover, map, and evaluate archaeological sites. A variety of settings are being explored to expand the library of geophysical signatures relevant to archaeology in the region. Current targets of interest include: prehistoric archaeological features in open areas as well as lava tube caves, historical structures and activity areas, and emigrant travel paths. We draw from a comprehensive, state of the art geophysical instrumentation pool to support this work. Equipment and facilities include ground penetrating radar, electromagnetic and magnetic sensors, multiple resistivity instruments, advanced positioning instrumentation, state of the art processing and data analysis software, and laboratory facilities for controlled experiments.

Brenda Ringe Pace; Gail Heath; Clark Scott; Carlan McDaniel

2005-10-01T23:59:59.000Z

263

Well casing-based geophysical sensor apparatus, system and method  

DOE Patents (OSTI)

A geophysical sensor apparatus, system, and method for use in, for example, oil well operations, and in particular using a network of sensors emplaced along and outside oil well casings to monitor critical parameters in an oil reservoir and provide geophysical data remote from the wells. Centralizers are affixed to the well casings and the sensors are located in the protective spheres afforded by the centralizers to keep from being damaged during casing emplacement. In this manner, geophysical data may be detected of a sub-surface volume, e.g. an oil reservoir, and transmitted for analysis. Preferably, data from multiple sensor types, such as ERT and seismic data are combined to provide real time knowledge of the reservoir and processes such as primary and secondary oil recovery.

Daily, William D. (Livermore, CA)

2010-03-09T23:59:59.000Z

264

A Class of Semi-Lagrangian Approximations for Fluids  

Science Conference Proceedings (OSTI)

This paper discusses a class of finite-difference approximations to the evolution equations of fluid dynamics. These approximations derive from elementary properties of differential forms. Values of a fluid variable ? at any two points of a space-...

Piotr K. Smolarkiewicz; Janusz A. Pudykiewicz

1992-11-01T23:59:59.000Z

265

Controlling the fluid-fluid mixing-demixing phase transition with electric fields  

E-Print Network (OSTI)

We review recent theoretical advances on controlling the fluid-fluid phase transition with electric fields. Using a mean-field approach, we compare the effects of uniform versus non-uniform electric fields, and show how non-uniform fields are better at altering the phase diagram. Focusing on non-uniform fields, we then discuss the behavior of the fluid concentration profile and the parameters (temperature, fluid concentration, etc.) that control the location of the fluid-fluid interface from both equilibrium and dynamic perspectives.

Jennifer Galanis; Sela Samin; Yoav Tsori

2012-12-06T23:59:59.000Z

266

New geophysical approaches to study neotectonics and associated geohazards  

E-Print Network (OSTI)

control of fluid flow: offshore fluid seepage in the SantaRegional Method to Assess Offshore Slope Stability: Journalin southern California, Offshore Tech. Conf. , Volume OTC

Dingler, Jeffrey A

2007-01-01T23:59:59.000Z

267

Geophysical logs from water wells in the Yakima area, Washington  

DOE Green Energy (OSTI)

The logs include: natural gamma, gamma gamma, neutron neutron, neutron gamma, caliper, fluid temperature, fluid resistivity, wall resistivity, spontaneous potential, and flow meter.

Biggane, J.H.

1983-01-01T23:59:59.000Z

268

R fluids  

E-Print Network (OSTI)

A theory of collisionless fluids is developed in a unified picture, where nonrotating figures with anisotropic random velocity component distributions and rotating figures with isotropic random velocity component distributions, make adjoints configurations to the same system. R fluids are defined and mean and rms angular velocities and mean and rms tangential velocity components are expressed, by weighting on the moment of inertia and the mass, respectively. The definition of figure rotation is extended to R fluids. The generalized tensor virial equations are formulated for R fluids and further attention is devoted to axisymmetric configurations where, for selected coordinate axes, a variation in figure rotation has to be counterbalanced by a variation in anisotropy excess and vice versa. A microscopical analysis of systematic and random motions is performed under a few general hypotheses, by reversing the sign of tangential or axial velocity components of an assigned fraction of particles, leaving the distribution function and other parameters unchanged (Meza 2002). The application of the reversion process to tangential velocity components, implies the conversion of random motion rotation kinetic energy into systematic motion rotation kinetic energy. The application of the reversion process to axial velocity components, implies the conversion of random motion translation kinetic energy into systematic motion translation kinetic energy, and the loss related to a change of reference frame is expressed in terms of systematic (imaginary) motion rotation kinetic energy. A procedure is sketched for deriving the spin parameter distribution (including imaginary rotation) from a sample of observed or simulated large-scale collisionless fluids i.e. galaxies and galaxy clusters.

R. Caimmi

2007-10-20T23:59:59.000Z

269

Particle and Blood Cell Dynamics in Oscillatory Flows Final Report  

SciTech Connect

Our aim has been to uncover fundamental aspects of the suspension and dislodgement of particles in wall-bounded oscillatory flows, in flows characterized by Reynolds numbers en- compassing the situation found in rivers and near shores (and perhaps in some industrial processes). Our research tools are computational and our coverage of parameter space fairly broad. Computational means circumvent many complications that make the measurement of the dynamics of particles in a laboratory setting an impractical task, especially on the broad range of parameter space we plan to report upon. The impact of this work on the geophysical problem of sedimentation is boosted considerably by the fact that the proposed calculations can be considered ab-initio, in the sense that little to no modeling is done in generating dynamics of the particles and of the moving fluid: we use a three-dimensional Navier Stokes solver along with straightforward boundry conditions. Hence, to the extent that Navier Stokes is a model for an ideal incompressible isotropic Newtonian fluid, the calculations yield benchmark values for such things as the drag, buoyancy, and lift of particles, in a highly controlled environment. Our approach will be to make measurements of the lift, drag, and buoyancy of particles, by considering progressively more complex physical configurations and physics.

Juan M. Restrepo (PI)

2008-09-01T23:59:59.000Z

270

Terracentric Nuclear Fission Reactor: Background, Basis, Feasibility, Structure, Evidence, and Geophysical Implications  

E-Print Network (OSTI)

The background, basis, feasibility, structure, evidence, and geophysical implications of a naturally occurring Terracentric nuclear fission georeactor are reviewed. For a nuclear fission reactor to exist at the center of the Earth, all of the following conditions must be met: (1) There must originally have been a substantial quantity of uranium within Earth's core; (2) There must be a natural mechanism for concentrating the uranium; (3) The isotopic composition of the uranium at the onset of fission must be appropriate to sustain a nuclear fission chain reaction; (4) The reactor must be able to breed a sufficient quantity of fissile nuclides to permit operation over the lifetime of Earth to the present; (5) There must be a natural mechanism for the removal of fission products; (6) There must be a natural mechanism for removing heat from the reactor; (7) There must be a natural mechanism to regulate reactor power level, and; (8) The location of the reactor or must be such as to provide containment and prevent meltdown. Herndon's georeactor alone is shown to meet those conditions. Georeactor existence evidence based upon helium measurements and upon antineutrino measurements is described. Geophysical implications discussed include georeactor origin of the geomagnetic field, geomagnetic reversals from intense solar outbursts and severe Earth trauma, as well as georeactor heat contributions to global dynamics.

J. Marvin Herndon

2013-08-23T23:59:59.000Z

271

Sandstone cementation and fluids in hydrocarbon basins R.S. Haszeldinea,*, C.I. Macaulaya  

E-Print Network (OSTI)

of Geology and Geophysics, University of Edinburgh Edinburgh, EH9 3JW, UK b Isotope Geology Unit, SUERC, East-specific and difficult to model in general terms. Combining techniques from petrography, isotopic and ion microprobe; North Sea; permeability; porosity; aquifer; isotope 1. Fluid motion or stasis in basins Two main goals

Haszeldine, Stuart

272

Merging High Resolution Geophysical and Geochemical Surveys to Reduce  

Open Energy Info (EERE)

Merging High Resolution Geophysical and Geochemical Surveys to Reduce Merging High Resolution Geophysical and Geochemical Surveys to Reduce Exploration Risk at Glass Buttes, Oregon Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Merging High Resolution Geophysical and Geochemical Surveys to Reduce Exploration Risk at Glass Buttes, Oregon Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description This program will combine detailed gravity, high resolution aeromagnetic, and LIDAR data, all of which will be combined for structural modeling, with hyperspectral data, which will identify and map specific minerals and mineral assemblages that may point to upflow zones. The collection of these surveys and analyses of the merged data and model will be used to site deeper slim holes. Slim holes will be flow tested to determine whether or not Ormat can move forward with developing this resource. An innovative combination of geophysical and geochemical tools will significantly reduce risk in exploring this area, and the results will help to evaluate the value of these tools independently and in combination when exploring for blind resources where structure, permeability, and temperature are the most pressing questions. The slim holes will allow testing of models and validation of methods, and the surveys within the wellbores will be used to revise the models and site production wells if their drilling is warranted.

273

Wavelet denoising techniques with applications to experimental geophysical data  

Science Conference Proceedings (OSTI)

In this paper, we compare Fourier-based and wavelet-based denoising techniques applied to both synthetic and real experimental geophysical data. The Fourier-based technique used for comparison is the classical Wiener estimator, and the wavelet-based ... Keywords: Denoising, Empirical Bayes, Wavelet, Wavelet thresholding, Wiener filter

Albert C. To; Jeffrey R. Moore; Steven D. Glaser

2009-02-01T23:59:59.000Z

274

High Precision Geophysics & Detailed Structural Exploration & Slim Well  

Open Energy Info (EERE)

Precision Geophysics & Detailed Structural Exploration & Slim Well Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title High Precision Geophysics & Detailed Structural Exploration & Slim Well Drilling Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description Existing geologic data show that the basalt has been broken by complex intersecting fault zones at the hot springs. Natural state hot water flow patterns in the fracture network will be interpreted from temperature gradient wells and then tested with moderate depth core holes. Production and injection well tests of the core holes will be monitored with an innovative combination of Flowing Differential Self-Potential (FDSP) and resistivity tomography surveys. The cointerpretation of all these highly detailed geophysical methods sensitive to fracture permeability patterns and water flow during the well tests will provide unprecedented details on the structures and flow in a shallow geothermal aquifer and support effective development of the low temperature reservoir and identification of deep up flow targets.

275

Fluid extraction  

DOE Patents (OSTI)

A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

Wai, Chien M. (Moscow, ID); Laintz, Kenneth E. (Los Alamos, NM)

1999-01-01T23:59:59.000Z

276

Fluid-temperature logs for selected wells in eastern Washington  

DOE Green Energy (OSTI)

This Open-File Report consists of fluid temperature logs compiled during studies of the geohydrology and low temperature geothermal resources of eastern Washington. The fluid temperature logs are divided into two groups. Part A consists of wells which are concentrated in the Moses Lake-Ritzville-Connell area. Full geophysical log suites for many of these wells are presented in Stoffel and Widness (1983) and discussed in Widness (1983, 1984). Part B consists of wells outside of the Moses Lake-Ritzville-Connell study area.

Stoffel, K.L.; Widness, S. (comps.)

1983-12-01T23:59:59.000Z

277

Visually simulating realistic fluid motion  

E-Print Network (OSTI)

In this thesis we investigate various methods for visually simulating fluid flow. The focus is on implementing effective fluid simulation within an interactive animation system. Two implementations have been developed based on derivations and simplifications of the Navier-Stokes' equations. The first implementation is the most accurate and follows the physics of fluid dynamics more closely. However, the high computation times incurred by this implementation make it inappropriate as an interactive method. The second approach is not as accurate as the first one, however it incurs lower computation times. This second method is only able to model a subset of the total fluid behavior. The second method has been integrated into an interactive modeling and animation environment. Several examples are included.

Naithani, Priyanka

2002-01-01T23:59:59.000Z

278

Inkjet printing of non-Newtonian fluids  

E-Print Network (OSTI)

G. Harlen; Department of Applied Mathematics; University of Leeds, Leeds, LS2 9JT, U.K. Abstract Jet breakup is strongly affected by fluid rheology. In par- ticular, small amounts of polymer can cause substantially differ- ent breakup dynamics... fluid dynamics (2008) from the University of Cambridge. Since then he has worked at the Department of Applied Mathematics at the University of Leeds. His recent research involves the development of computational techniques for the simulation of flows...

Morrison, N.F.; Harlen, O.G.

2011-01-01T23:59:59.000Z

279

Extending the Photon Mapping Method for Realistic Rendering of Hot Gaseous Fluids  

E-Print Network (OSTI)

fluid dynamics have proved very successful. As a result, diverse physically based fluid animation fluids. In addition to the generation of ap- pealing motions of gaseous fluids, several inter- esting, they are gen- erated within the gaseous fluid, but an energy value is assigned to each one according to the to

Texas at Austin, University of

280

Geological and geophysical studies of a geothermal area in the southern  

Open Energy Info (EERE)

Geological and geophysical studies of a geothermal area in the southern Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: areal geology; Cassia County Idaho; Cenozoic; clastic rocks; clasts; composition; conglomerate; economic geology; electrical methods; evolution; exploration; faults; folds; geophysical methods; geophysical surveys; geothermal energy; gravity methods; Idaho; igneous rocks; lithostratigraphy; magnetic methods; pyroclastics; Raft River Valley; resources; sedimentary rocks; seismic methods; stratigraphy; structural geology; structure; surveys; tectonics; United States; volcanic rocks

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Geological, Geophysical, And Thermal Characteristics Of The Salton Sea Geothermal Field, California  

DOE Green Energy (OSTI)

The Salton Sea Geothermal Field is the largest water-dominated geothermal field in the Salton Trough in Southern California. Within the trough, local zones of extension among active right-stepping right-lateral strike-slip faults allow mantle-derived magmas to intrude the sedimentary sequence. The intrusions serves as heat sources to drive hydrothermal systems. We can characterize the field in detail because we have an extensive geological and geophysical data base. The sediments are relatively undeformed and can be divided into three categories as a function of depth: (1) low-permeability cap rock, (2) upper reservoir rocks consisting of sandstones, siltstones, and shales that were subject to minor alterations, and (3) lower reservoir rocks that were extensively altered. Because of the alteration, intergranular porosity and permeability are reduced with depth. permeability is enhanced by renewable fractures, i.e., fractures that can be reactivated by faulting or natural hydraulic fracturing subsequent to being sealed by mineral deposition. In the central portion of the field, temperature gradients are high near the surface and lower below 700 m. Surface gradients in this elliptically shaped region are fairly constant and define a thermal cap, which does not necessarily correspond to the lithologic cap. At the margin of the field, a narrow transition region, with a low near-surface gradient and an increasing gradient at greater depths, separates the high temperature resource from areas of normal regional gradient. Geophysical and geochemical evidence suggest that vertical convective motion in the reservoir beneath the thermal cap is confined to small units, and small-scale convection is superimposed on large-scale lateral flow of pore fluid. Interpretation of magnetic, resistivity, and gravity anomalies help to establish the relationship between the inferred heat source, the hydrothermal system, and the observed alteration patterns. A simple hydrothermal model is supported by interpreting the combined geological, geophysical, and thermal data. In the model, heat is transferred from an area of intrusion by lateral spreading of hot water in a reservoir beneath an impermeable cap rock.

Younker, L.W.; Kasameyer, P. W.; Tewhey, J. D.

1981-01-01T23:59:59.000Z

282

Standardization of Thermo-Fluid Modeling in Modelica.Fluid  

E-Print Network (OSTI)

This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

Rdiger Franke; et al.

2009-01-01T23:59:59.000Z

283

Borehole geophysics evaluation of the Raft River geothermal reservoir |  

Open Energy Info (EERE)

reservoir reservoir Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Borehole geophysics evaluation of the Raft River geothermal reservoir Details Activities (1) Areas (1) Regions (0) Abstract: Borehole geophysics techniques were used in evaluating the Raft River geothermal reservoir to establish a viable model for the system. The assumed model for the hot water (145/sup 0/C) reservoir was a zone of higher conductivity, increased porosity, decreased density, and lower sonic velocity. It was believed that the long term contact with the hot water would cause alteration producing these effects. With this model in mind, cross-plots of the above parameters were made to attempt to delineate the reservoir. It appears that the most meaningful data include smoothed and

284

LANL Institutes - Institute of Geophysics and Planetary Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Summer of Applied Geophysical Experience (SAGE) Summer of Applied Geophysical Experience (SAGE) Application Form A complete application includes: An on-line application Letter of Interest two (2) references (download reference form in PDF or Word format). Referee must submit by email to georgia@lanl.gov or fax to: 505-663-5225 proof of health insurance complete transcripts (unofficial is acceptable) Foreign students, please contact Georgia Sanchez at georgia@lanl.gov regarding your application. Cost is $500, $100.00 is due with the application. Please mail deposit with a copy of your application to: SAGE IGPPS, MS-T001 Los Alamos National Laboratory Los Alamos, NM 87545 USA Email: georgia@lanl.gov Voice: 505-663-5291 Note: Course credit may be possible by prior arrangement with your university (please check with your advisor) but cannot be awarded directly

285

Geophysical data fusion for subsurface imaging. Final report  

SciTech Connect

This report contains the results of a three year, three-phase project whose long-range goal has been to create a means for the more detailed and accurate definition of the near-surface (0--300 ft) geology beneath a site that had been subjected to environmental pollution. The two major areas of research and development have been: improved geophysical field data acquisition techniques; and analytical tools for providing the total integration (fusion) of all site data. The long-range goal of this project has been to mathematically, integrate the geophysical data that could be derived from multiple sensors with site geologic information and any other type of available site data, to provide a detailed characterization of thin clay layers and geological discontinuities at hazardous waste sites.

NONE

1995-10-01T23:59:59.000Z

286

Regional geology and geophysics of the Jemez Mountains  

DOE Green Energy (OSTI)

The western margin of the Rocky Mountain tectonic belt is the initial site for the Los Alamos Geothermal Project. lgneous activity in the area culminated with the formation of a collapsed volcanic caldera and the deposition of thick beds of tuff. Geophysical studies indicate that the region is one of relatively highterrestrial heat flow, low-crustal density, low-crustal seismic velocities, low-crustal magnetoelectric impedance, and thin crust. 34 references. (auth)

West, F.G.

1973-08-01T23:59:59.000Z

287

Geophysics-based method of locating a stationary earth object  

DOE Patents (OSTI)

A geophysics-based method for determining the position of a stationary earth object uses the periodic changes in the gravity vector of the earth caused by the sun- and moon-orbits. Because the local gravity field is highly irregular over a global scale, a model of local tidal accelerations can be compared to actual accelerometer measurements to determine the latitude and longitude of the stationary object.

Daily, Michael R. (Albuquerque, NM); Rohde, Steven B. (Corrales, NM); Novak, James L. (Albuquerque, NM)

2008-05-20T23:59:59.000Z

288

An evaluation of the neutron radiography facility at the Nuclear Science Center for dynamic imaging of two-phase hydrogenous fluids  

E-Print Network (OSTI)

Though both film and video radiographic image techniques are available in neutron radiography, radiographic cameras are commonly used to capture the dynamic flow patterns in a rapid sequence of images. These images may be useful to verify two-phase flow models in small diameter flow channels. An initial series of real-time neutron radiography experiments were performed at the Texas A&M University System, Texas Engineering Experiment Station, Nuclear Science Center Reactor (NSCR) to determined the image resolution of two-phase water and air flow regimes through small diameter metal flow channels. After evaluating these initial images, research was conducted to determine cost effective enhancements that would increase the dimensional accuracy and contrast of these flow images. Modifications were completed to the beam collimator and the radiography camera video processing board was realigned to provide a stronger vidio signal with less noise. Several hydrogenous-media reference standards were designed and constructed to evaluate the effectiveness of the modifications. The beamport collimator was redesigned and the radiography calibration methodology was changed. The post-modification images demonstrate that a smaller, more focused neutron beam and a more sensitive video camera provide clearer images with excellent dimensional characteristics. Specific research to quantify both the resolution and sensitivity limits is proposed and a change in dynamic target imaging methodology is proposed.

Carlisle, Bruce Scott

1994-01-01T23:59:59.000Z

289

Institute of Geophysics and Planetary Physics 1993 annual report, October 1, 1992--September 30, 1993  

Science Conference Proceedings (OSTI)

This report contains brief papers on the research being conducted at the Institute of Geophysics and Planetary Physics in 1993 in Geosciences, High-Pressure sciences, and Astrophysics.

Ryerson, F.J.; Budwine, C.M. [eds.

1994-06-15T23:59:59.000Z

290

An Integrated Model For The Geothermal Field Of Milos From Geophysical...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon An Integrated Model For The Geothermal Field Of Milos From Geophysical Experiments Jump to:...

291

At quadrennial geophysics fest, earth scientists think globally  

Science Conference Proceedings (OSTI)

This article focuses on two areas of current research interest from the International Union of Geodesy and Geophysics meeting in July 1995. The first is the possible long and unlikely seeming change of connections. Linked are the warm surface of the tropical Pacific Ocean, the atmosphere at the midlatitudes in the Southern Hemisphere and the icy stratosphere over Antarctica where the warming of the sea surface 15 years ago may have set the stage for the Antarctic ozone hole. The second major research research reviewed concerned increases in ultraviolet light. Surface radiation in the DNA-damaging region of the spectrum is increasing by as much as 12% per decade at high latitudes.

Kerr, R.A.

1995-07-28T23:59:59.000Z

292

J. Non-Newtonian Fluid Mech. 166 (2011) 487499 Contents lists available at ScienceDirect  

E-Print Network (OSTI)

framework for complex fluid mixtures where the microstructural dynamics has an energy-based variational to the sur- rounding fluid motion as the plates are set into steady motion to generate a bulk shear flow within the liquid crystal phase with some model of the nematic director dynamics and elastic fluid

Shen, Jie

293

Local rheological probes for complex fluids: Application to Laponite suspensions C. Wilhelm,1,2  

E-Print Network (OSTI)

of the fluid viscosity on the applied stress, and a dynamical yield stress which saturates with the fluid aging . Their constitutive entities are in interaction; the competition between the different energies generates structures to ensure a Stokes flow: Re uR/v 10 2 , where v is the fluid dynamic viscosity. 2 This value of corresponds

Weeks, Eric R.

294

Fluid Interface Reactions, Structures and Transport (FIRST) Center EFRC Director: David J. Wesolowski  

E-Print Network (OSTI)

environment in which to train the next generation of scientists to meet 21st century energy challenges. Fluid computational models relating the nanoscale structures, dynamics and reactivities of fluid-solid interfaces the interfacial region differ in structure, dynamics and reactivity from the bulk properties of the fluid

295

Fluid Simulation using Laplacian Eigenfunctions TYLER DE WITT, CHRISTIAN LESSIG and EUGENE FIUME  

E-Print Network (OSTI)

complement to the methods in the literature. 2. RELATED WORK Incompressible fluid dynamics is a vast subject in computer graphics applications. 2.2 Computational Fluid Dynamics In the 1950's, Silberman presented a fluid conditions, and still dissipates energy. Bridson presented a simple means to generate procedural divergence

Toronto, University of

296

Partitioned solution to fluid-structure interaction problem in application to free-surface flows  

E-Print Network (OSTI)

distribution). Fluid material properties are the dynamic viscosity µ and the density . To write a unique Computational fluid Dynamic programs solve the fluid equations on a fixed (Eulerian) grid. The classical and structure sub-problems. Contrary to explicit algorithms which generate spurious energy at the in- terface

Paris-Sud XI, Université de

297

A Molecular Dynamics Simulation  

Science Conference Proceedings (OSTI)

Ab Initio Local Energy and Local Stress Calculations: Applications to Materials ... Computational Fluid Dynamics and Experimental Results for the Horizontal .... Films and Applications to a New Generation of Multifunctional Devices/Systems.

298

A Molecular Dynamics  

Science Conference Proceedings (OSTI)

A Tale of Two States and More: Modeling of New Generation of Lattice Stability from Zero ... Analysis of Nano Fluid Using CFD-A Hybrid Approach for Cooling Purpose ... Molecular Dynamics Simulations of Grain Boundary Free Energy and

299

A Molecular Dynamic Study  

Science Conference Proceedings (OSTI)

A Tale of Two States and More: Modeling of New Generation of Lattice Stability from Zero ... Analysis of Nano Fluid Using CFD-A Hybrid Approach for Cooling Purpose ... Molecular Dynamics Simulations of Grain Boundary Free Energy and

300

Computerized coal-quality prediction from digital geophysical logs  

SciTech Connect

A digital suite of geophysical logs, including gamma-ray, resistivity and gamma-gamma density, were used to develop and test a method for predicting coal quality parameters for the Wyodak coal in the Powder River basin of Wyoming. The method was developed by plotting the average of various log response increments (obtained from the contractor's 9-track digital tapes) versus the analytically determined ash, moisture, and Btu/lb for the same intervals of the coal seam. Standard curve-fitting techniques were then employed to determine which log response parameter most accurately predicted the various quality parameters. A computer program was written that reads 9-track, digital, log tapes and determines the coal quality parameters based on the relationships between log response and analytical values. The computer program was written in Fortran 77 for a VAX 11/780 minicomputer. The program was designed to run interactively with user-determined options depending on which geophysical logs were available. Preliminary results have been very encouraging to date with predicted versus analytically determined parameters being estimated to an accuracy of +/-300 Btu/lb (with the average being +/-150 Btu/lb), +/-2% ash and +/-3% moisture. This compares to ASTM lab-to-lab analytical standards of +/-100 Btu/lb, +/-0.7% ash, and +/-0.5% moisture. This prediction methods is applicable to coals from other basins and offers promise as a cost saving tool for exploration and production uses.

Nations, D.L.; Tabet, D.E.; Gerould, C.R.

1984-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Fluid transport container  

DOE Patents (OSTI)

An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

1995-11-14T23:59:59.000Z

302

Fluid transport container  

DOE Patents (OSTI)

An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitment for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container.

DeRoos, Bradley G. (41 James St., Sequim, WA 98382); Downing, Jr., John P. (260 Kala Heights Dr., Port Townsand, WA 98368); Neal, Michael P. (921 Amberly Pl., Columbus, OH 43220)

1995-01-01T23:59:59.000Z

303

Hamiltonian description of the ideal fluid  

SciTech Connect

Fluid mechanics is examined from a Hamiltonian perspective. The Hamiltonian point of view provides a unifying framework; by understanding the Hamiltonian perspective, one knows in advance (within bounds) what answers to expect and what kinds of procedures can be performed. The material is organized into five lectures, on the following topics: rudiments of few-degree-of-freedom Hamiltonian systems illustrated by passive advection in two-dimensional fluids; functional differentiation, two action principles of mechanics, and the action principle and canonical Hamiltonian description of the ideal fluid; noncanonical Hamiltonian dynamics with examples; tutorial on Lie groups and algebras, reduction-realization, and Clebsch variables; and stability and Hamiltonian systems.

Morrison, P.J.

1994-01-01T23:59:59.000Z

304

A heuristic algorithm for pattern identification in large multivariate analysis of geophysical data sets  

Science Conference Proceedings (OSTI)

This paper aims to present a heuristic algorithm with factor analysis and a local search optimization system for pattern identification problems as applied to large and multivariate aero-geophysical data. The algorithm was developed in MATLAB code using ... Keywords: Aero-geophysical data, Factor analysis, Local search system, MATLAB program, Patterns identification

Joo Eduardo da Silva Pereira; Adelir Jos Strieder; Janete Pereira Amador; Jos Luiz Silvrio da Silva; Lenidas Luiz Volcato Descovi Filho

2010-01-01T23:59:59.000Z

305

CV-Huiming Bao Department of Geology & Geophysics, E235 Howe-Russell Geoscience Complex, Louisiana  

E-Print Network (OSTI)

chemistry & Stable isotopes Postdoc 1998-2001 APPOINTMENTS 2012- Professor in Geology and Geophysics Geology and Earth System History for undergraduate students; Stable Isotope Geochemistry and Carbonate1 CV- Huiming Bao Department of Geology & Geophysics, E235 Howe-Russell Geoscience Complex

Bao, Huiming

306

CV-Huiming Bao Department of Geology & Geophysics, E235 Howe-Russell Geoscience Complex, Louisiana  

E-Print Network (OSTI)

isotopes Postdoc 1998-2001 APPOINTMENTS 2007- Associate professor in Geology and Geophysics, Louisiana Physical Geology and Earth System History for undergraduate students; Stable Isotope Geochemistry1 CV- Huiming Bao Department of Geology & Geophysics, E235 Howe-Russell Geoscience Complex

Bao, Huiming

307

A Geothermal Field Model Based On Geophysical And Thermal Prospectings In  

Open Energy Info (EERE)

Model Based On Geophysical And Thermal Prospectings In Model Based On Geophysical And Thermal Prospectings In Nea Kessani (Ne Greece) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Geothermal Field Model Based On Geophysical And Thermal Prospectings In Nea Kessani (Ne Greece) Details Activities (0) Areas (0) Regions (0) Abstract: The present study completes a study by Thanassoulas et al. (1986) Geophys. Prosp.34, 83-97 and deals with geophysical exploration for geothermal resources in Nea Kessani area, NE Greece. The results of some deep electrical soundings (AB = 6000 m) with the interpretation of a gravity profile crossing the investigated area are considered together with thermal investigations. All subsequent information, along with the conclusions of an earlier paper dealing with a reconnaissance geophysical

308

Laboratory Measurement of Geophysical Properties for Monitoring of CO2 Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Laboratory Measurement of Geophysical Properties for Monitoring of Laboratory Measurement of Geophysical Properties for Monitoring of CO 2 Sequestration Larry R. Myer (LRMyer@lbl.gov; 510/486-6456) Lawrence Berkeley National Laboratory Earth Science Division One Cyclotron Road, MS 90-1116 Berkeley, CA 94720 Introduction Geophysical techniques will be used in monitoring of geologic sequestration projects. Seismic and electrical geophysical techniques will be used to map the movement of CO 2 in the subsurface and to establish that the storage volume is being efficiently utilized and the CO 2 is being safely contained within a known region. Rock physics measurements are required for interpretation of the geophysical surveys. Seismic surveys map the subsurface velocities and attenuation while electrical surveys map the conductivity. Laboratory measurements are required to convert field

309

Geophysical logging case history of the Raft River geothermal system, Idaho  

Open Energy Info (EERE)

Geophysical logging case history of the Raft River geothermal system, Idaho Geophysical logging case history of the Raft River geothermal system, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geophysical logging case history of the Raft River geothermal system, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: Drilling to evaluate the geothermal resource in the Raft River Valley began in 1974 and resulted in the discovery of a geothermal reservoir at a depth of approximately 1523 m (500 ft). Several organizations and companies have been involved in the geophysical logging program. There is no comprehensive report on the geophysical logging, nor has there been a complete interpretation. The objectives of this study are to make an integrated interpretation of the available data and compile a case history. Emphasis has been on developing a simple interpretation

310

Control of underactuated fluid-body systems with real-time particle image velocimetry  

E-Print Network (OSTI)

Controlling the interaction of a robot with a fluid, particularly when the desired behavior is intimately related to the dynamics of the fluid, is a difficult and important problem. High-performance aircraft cannot ignore ...

Roberts, John W., Ph. D. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

311

Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel  

Open Energy Info (EERE)

the Vicinity of Blue Mountain and Pumpernickel the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geophysical Studies in the Vicinity of Blue Mountain and Pumpernickel Valley near Winnemucca, North-Central Nevada Abstract From May 2008 to September 2009, the U.S. Geological Survey (USGS) collected data from more than 660 gravity stations, 100 line-km of truck-towed magnetometer traverses, and 260 physical-property sites in the vicinity of Blue Mountain and Pumpernickel Valley, northern Nevada (fig. 1). Gravity, magnetic, and physical-property data were collected to study regional crustal structures as an aid to understanding the geologic framework of the Blue Mountain and Pumpernickel Valley areas, which in

312

LANL Institutes - Institute of Geophysics and Planetary Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Expanding the Frontiers of Astrophysical, Space, Earth, & Climate Sciences & Their Signatures The Institute of Geophysics, Planetary Physics, and Signatures at Los Alamos National Laboratory is committed to promoting and supporting high quality, cutting-edge science in the areas of astrophysics, space physics, solid planetary geoscience, and climate science. These subject areas are selected based on their breadth of scientific challenges facing the international scientific community, as well as relevance to the strategic objective to extend Laboratory scientific excellence. IGPPS/LANL makes a special effort to promote and support new research ideas, which can be further developed through seed funding into major programs supported by federal or other funding sources. IGPPS also supports

313

Environmentally safe fluid extractor  

DOE Patents (OSTI)

An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

Sungaila, Zenon F. (Orland Park, IL)

1993-01-01T23:59:59.000Z

314

Drilling Fluid Corrosion  

Science Conference Proceedings (OSTI)

Table 8   Drilling fluid corrosion control troubleshooting chart...Table 8 Drilling fluid corrosion control troubleshooting chart Corrosion cause Primary source Identification Major corrosion forms Remedies Oxygen Atmosphere, mud conditioning, equipment, oxidizing

315

Fluid Suspensions & Emulsions  

Science Conference Proceedings (OSTI)

Fluid Suspensions & Emulsions. Summary: Our primary interest is protein ... protein solutions? 1. Health & Safety. There is ongoing ...

2013-09-29T23:59:59.000Z

316

Fluid Dynamics of Oceanic Thermocline Ventilation  

Science Conference Proceedings (OSTI)

A flux form of the Potential vorticity (PV) equation is applied to study the creation and transport of potential vorticity in an ocean gyre; generalized PV fluxes (J vectors) and the associated PV flux fines are used to map the creation, by ...

John C. Marshall; A. J. George Nurser

1992-06-01T23:59:59.000Z

317

Fluid dynamics of partially radiative blast waves  

E-Print Network (OSTI)

We derive a self similar solution for the propagation of an extreme relativistic (or Newtonian) radiative spherical blast wave into a surrounding cold medium. The solution is obtained under the assumption that the radiation process is fast, it takes place only in the vicinity of the shock and that it radiates away a fixed fraction of the energy generated by the shock. In the Newtonian regime these solutions generalize the Sedov-Taylor adiabatic solution and the pressure-driven fully radiative solution. In the extreme relativistic case these solutions generalize the Blandford-McKee adiabatic solution. They provide a new fully radiative extreme relativistic solution which is different from the Blandford-McKee fully radiative relativistic solution. This new solution develops a hot interior which causes it to cool faster than previous estimates. We find that the energy of the blast wave behaves as a power law of the location of the shock. The power law index depends on the fraction of the energy emitted by the shock. We obtain an analytic solution for the interior of the blast wave. These new solutions might be applicable to the study of GRB afterglow or SNRs.

Ehud Cohen; Tsvi Piran; Re'em Sari

1998-03-22T23:59:59.000Z

318

table of contents part i: fluid dynamics  

Science Conference Proceedings (OSTI)

CHAPTER 7: HEAT TRANSFER AND THE ENERGY EQUATION. 7.1 Heat ... 7.2 Heat transfer with laminar forced convection over a flat plate [pp. 224-228

319

Computational Fluid Dynamics University of Leeds  

E-Print Network (OSTI)

simulations to be calculated, or more detailed simulations of present CFD problems; (c) The numerical schemes from a burst tyre led to a ruptured fuel tank on the underside of the left wing. The emerging fuel flow into electricity and can drastically reduce the greenhouse emissions in power plants by using a SOFC and gas

Haase, Markus

320

Computational Fluid Dynamics for Engineering Design  

Science Conference Proceedings (OSTI)

Table 2   Examples of CFD software available in the United States...several computer hardware and software companies on the Internet early

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The Cove Fort-Sulphurdale KGRA, a geologic and geophysical case study  

DOE Green Energy (OSTI)

Geological, geochemical and geophysical data are presented for one of the major geothermal systems in the western United States. Regional data indicate major tectonic structures which are still active and provide the conduits for the geothermal system. Detailed geologic mapping has defined major glide blocks of Tertiary volcanics which moved down from the Tushar Mountains and locally act as a leaky cap to portions of the presently known geothermal system. Mapping and geochemical studies indicate three periods of mineralization have affected the area, two of which are unrelated to the present geothermal activity. The geologic relationships demonstrate that the major structures have been opened repeatedly since the Tertiary. Gravity and magnetic data are useful in defining major structures beneath alluvium and basalt cover, and indicate the importance of the Cove Fort-Beaver graben and the Cove Creek fault in localizing the geothermal reservoir. These structures and a high level of microearthquake activity also suggest other target areas within the larger thermal anomaly. Electrical resistivity surveys and thermal gradient holes both contribute to the delineation of the known reservoir. Deep exploration wells which test the reservoir recorded maximum temperatures of 178 C and almost isothermal behavior beginning at 700 to 1000 m and continuing to a depth of 1800 m. Costly drilling, high corrosion rates and low reservoir pressure coupled with the relatively low reservoir temperatures have led to the conclusion that the reservoir is not economic for electric power production at present. Plans are underway to utilize the moderate-temperature fluids for agribusiness, and exploration continues for a deep high-temperature reservoir.

Ross, Howard P.; Moore, Joseph N.; Christensen, Odin D.

1982-09-01T23:59:59.000Z

322

Entropy production at freeze-out from dissipative fluids  

E-Print Network (OSTI)

Entropy production due to shear viscosity during the continuous freeze-out of a longitudinally expanding dissipative fluid is addressed. Assuming the validity of the fluid dynamical description during the continuous removal of interacting matter we estimated a small entropy production as function of the freeze-out duration and the ratio of dissipative to non-dissipative quantities in case of a relativistic massless pion fluid.

E. Molnar

2007-09-17T23:59:59.000Z

323

A comparison of grid-based techniques for Navier-Stokes fluid simulation in computer graphics  

E-Print Network (OSTI)

1. Fluid Simulation in Computer Graphics 2. PreviousB. Applications in Computer Graphics II The Navier Stokesstable ?uid dynamics for computer graphics. In SIGGRAPH

Chrisman, Cameron

2008-01-01T23:59:59.000Z

324

Fluid Flow Transport Phenomena in Steel Continuous Casting FC ...  

Science Conference Proceedings (OSTI)

Ab Initio Local Energy and Local Stress Calculations: Applications to Materials ... Computational Fluid Dynamics and Experimental Results for the Horizontal .... Films and Applications to a New Generation of Multifunctional Devices/Systems.

325

Lagrangian Motion and Fluid Exchange in a Barotropic Meandering Jet  

Science Conference Proceedings (OSTI)

Kinematic models predict that a coherent structure, such as a jet or an eddy, in an unsteady flow can exchange fluid with its surroundings. The authors consider the significance of this effect for a fully nonlinear, dynamically consistent, ...

A. M. Rogerson; P. D. Miller; L. J. Pratt; C. K. R. T. Jones

1999-10-01T23:59:59.000Z

326

2.25 Advanced Fluid Mechanics, Fall 2002  

E-Print Network (OSTI)

Survey of principal concepts and methods of fluid dynamics. Mass conservation, momentum, and energy equations for continua. Navier-Stokes equation for viscous flows. Similarity and dimensional analysis. Lubrication theory. ...

Sonin, A. A.

327

J. Fluid Mech. (2004) Copyright c 2004 Cambridge University Press  

E-Print Network (OSTI)

(1968) that the depth of an energy-conserving gravity current is half that of the ambient fluid ahead-zero . Apparently, the process of generating these waves dominates the dynamics governing the motion of the gravityJ. Fluid Mech. (2004) Copyright c 2004 Cambridge University Press 1 Intrusive Gravity Currents

Sutherland, Bruce

328

Spinning fluids reactor  

SciTech Connect

A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

Miller, Jan D; Hupka, Jan; Aranowski, Robert

2012-11-20T23:59:59.000Z

329

Phenomenology of Rayleigh-Taylor Turbulence If a heavy fluid lies above a light one, the gravity-  

E-Print Network (OSTI)

to surface tension. We examined in [2] the dynamics of two immiscible fluids when the heavier fluid is placed be estimated to be the scale where the kinetic energy density of the fluids, (vl)2 , and the interfacial energy, generating an emulsion that is progres- sively more dispersed. Dynamically, the permanent decrease

330

Electromagnetic geophysics: Notes from the past and the road ahead | Open  

Open Energy Info (EERE)

Electromagnetic geophysics: Notes from the past and the road ahead Electromagnetic geophysics: Notes from the past and the road ahead Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electromagnetic geophysics: Notes from the past and the road ahead Abstract During the last century, electrical geophysics has been transformed from a simple resistivity method to a modern technology that uses complex data-acquisition systems and high-performance computers for enhanced data modeling and interpretation. Not only the methods and equipment have changed but also our ideas about the geoelectrical models used for interpretation have been modified tremendously. This paper describes the evolution of the conceptual and technical foundations of EM methods. Author Michael S. Zhdanov Published Journal

331

GRR/Section 4-AK-b - Geophysical Exploration Permit | Open Energy  

Open Energy Info (EERE)

4-AK-b - Geophysical Exploration Permit 4-AK-b - Geophysical Exploration Permit < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 4-AK-b - Geophysical Exploration Permit 04AKBGeophysicalExplorationPermit.pdf Click to View Fullscreen Contact Agencies Alaska Department of Natural Resources Alaska Division of Oil and Gas Regulations & Policies Alaska Statutes Alaska Administrative Code Triggers None specified Click "Edit With Form" above to add content 04AKBGeophysicalExplorationPermit.pdf Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Error creating thumbnail: Page number not in range. Flowchart Narrative A Geophysical Exploration Permit is necessary for conducting seismic

332

Role of borehole geophysics in defining the physical characteristics of the  

Open Energy Info (EERE)

Role of borehole geophysics in defining the physical characteristics of the Role of borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Role of borehole geophysics in defining the physical characteristics of the Raft River geothermal reservoir, Idaho Details Activities (4) Areas (1) Regions (0) Abstract: Numerous geophysical logs have been made in three deep wells and in several intermediate depth core holes in the Raft River geothermal reservoir, Idaho. Laboratory analyses of cores from the intermediate depth holes were used to provide a qualitative and quantitative basis for a detailed interpretation of logs from the shallow part of the reservoir. A less detailed interpretation of logs from the deeper part of the reservoir

333

Geologic And Geophysical Evidence For Intra-Basin And Footwall Faulting At  

Open Energy Info (EERE)

Geophysical Evidence For Intra-Basin And Footwall Faulting At Geophysical Evidence For Intra-Basin And Footwall Faulting At Dixie Valley, Nevada Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Geologic And Geophysical Evidence For Intra-Basin And Footwall Faulting At Dixie Valley, Nevada Details Activities (1) Areas (1) Regions (0) Abstract: A 'nested graben' structural model, in which multiple faults successively displace rocks downward to the deepest part of the basin, is supported by recent field geologic analysis and correlation of results to geophysical data for Dixie Valley. Aerial photographic analysis and detailed field mapping provide strong evidence for a deep graben separated from the ranges to the east and west by multiple normal faults that affect the Tertiary/Quaternary basin-fill sediments. Correlation with seismic

334

Geophysical imaging methods for analysis of the Krafla Geothermal Field, NE Iceland  

E-Print Network (OSTI)

Joint geophysical imaging techniques have the potential to be reliable methods for characterizing geothermal sites and reservoirs while reducing drilling and production risks. In this study, we applied a finite difference ...

Parker, Beatrice Smith

2012-01-01T23:59:59.000Z

335

Mining geophysical parameters through decision-tree analysis to determine correlation with tropical cyclone development  

Science Conference Proceedings (OSTI)

Correlations between geophysical parameters and tropical cyclones are essential in understanding and predicting the formation of tropical cyclones. Previous studies show that sea surface temperature and vertical wind shear significantly influence the ... Keywords: Data mining, Hurricane, Natural disaster, Prediction

Wenwen Li; Chaowei Yang; Donglian Sun

2009-02-01T23:59:59.000Z

336

Geophysical applications of nuclear resonant spectroscopy Wolfgang Sturhahn and Jennifer M. Jackson*  

E-Print Network (OSTI)

Geophysical applications of nuclear resonant spectroscopy Wolfgang Sturhahn and Jennifer M. Jackson summarize recent developments of nuclear resonant spectroscopy methods like nuclear resonant inelastic x important information on valence, spin state, and magnetic ordering. Both methods use a nuclear resonant

Jackson, Jennifer M.

337

Interactions between mantle plumes and mid-ocean ridges : constraints from geophysics, geochemistry, and geodynamical modeling  

E-Print Network (OSTI)

This thesis studies interactions between mid-ocean ridges and mantle plumes using geophysics, geochemistry, and geodynamical modeling. Chapter 1 investigates the effects of the Marion and Bouvet hotspots on the ultra-slow ...

Georgen, Jennifer E

2001-01-01T23:59:59.000Z

338

On the Use of Emulators with Extreme and Highly Nonlinear Geophysical Simulators  

Science Conference Proceedings (OSTI)

Gaussian process emulators are a powerful tool for understanding complex geophysical simulators, including oceanic and atmospheric general circulation models. Concern has been raised about their ability to emulate complex nonlinear systems. For ...

Robin Tokmakian; Peter Challenor; Yiannis Andrianakis

2012-11-01T23:59:59.000Z

339

Toward Optimal Choices of Control Space Representation for Geophysical Data Assimilation  

Science Conference Proceedings (OSTI)

In geophysical data assimilation, observations shed light on a control parameter space through a model, a statistical prior, and an optimal combination of these sources of information. This control space can be a set of discrete parameters, or, ...

Marc Bocquet

2009-07-01T23:59:59.000Z

340

Geophysical Research Abstracts Vol. 12, EGU2010-5305, 2010  

E-Print Network (OSTI)

. Two power plants generate electricity and fluid extraction rate varies with time and wells features of the crust and to mon- itor underground changes of seismic wave ground velocity. We present French high-enthalpy geothermal system exploited for electrical power from 3 collocated productive wells

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geophysical study of the Clear Lake region, California  

DOE Green Energy (OSTI)

Results of geophysical studies in the Clear Lake region of California, north of San Francisco, have revealed a prominent, nearly circular negative gravity anomaly with an amplitude of more than 25 milligals (mgal) and an areal extent of approximately 250 square miles and, in addition, a number of smaller positive and negative anomalies. The major negative gravity anomaly is closely associated with the Clear Lake volcanic field and with an area characterized by hot springs and geothermal fields. However, the anomaly cannot be explained by mapped surface geologic features of the area. Aeromagnetic data in the Clear Lake region show no apparent correlation with the major negative gravity anomaly; the local magnetic field is affected principally by serpentine. An electrical resistivity low marks the central part of the gravity minimum, and a concentration of earthquake epicenters characterizes the Clear Lake volcanic field area. The primary cause of the major negative gravity anomaly is believed to be a hot intrusive mass, possibly a magma chamber, that may underlie the Clear Lake volcanic field and vicinity. This mass may serve as a source of heat for the geothermal phenomena in the area. Other smaller gravity anomalies in the Clear Lake region are apparently caused by near-surface geologic features, including relatively dense units of the Franciscan Formation and less dense Cenozoic sedimentary and volcanic rock units.

Chapman, R.H.

1975-01-01T23:59:59.000Z

342

Imaging algorithms for geophysical applications of impedance tomography  

SciTech Connect

The methods of impedance tomography may be employed to obtain images of subsurface electrical and conductivity variations. For practical reasons, voltages and currents are usually applied at locations on the ground surface or down a limited number of boreholes, but almost never over the entire surface of the region being investigated. The geophysical inversion process can be facilitated by constructing algorithms adopted to these particular geometries and to the lack of complete surface data. In this paper we assume that the fluctuations in conductivity are small compared to the background value. The imaging of these fluctuations is carried out exactly within the constraints imposed by the problem geometry. Several possible arrangements of injection and monitoring electrodes are considered. In two dimensions include: Cross-line geometry, current input along one line (borehole) and measurements along a separate parallel line. Single-line geometry, injection and monitoring using the same borehole. Surface reflection geometry, all input and measurement along the ground surface. Theoretical and practical limitations on the image quality produced by the algorithms are discussed. They are applied to several sets of simulated data, and the images produced are displayed and analyzed.

Witten, A.J. (Oak Ridge National Lab., TN (United States)); Molyneux, J.E. (Widener Univ., Dept. of Mechanical Engineering, Chester, PA (United States))

1992-06-02T23:59:59.000Z

343

Fluid velocity fluctuations in a collision of a sphere with a wall J. Rafael Pacheco,1,a)  

E-Print Network (OSTI)

, Arizona State University, Tempe, Arizona 85287, USA and Environmental Fluid Dynamics Laboratories of a combined experimental and numerical study on the fluid motion generated by the controlled approach axisymmetric. The fluid agitation of the fluid related to the kinetic energy is obtained as function of time

Pacheco, Jose Rafael

344

Geophysical imaging method utilizing backpropagation and zeroth-order phase approximation  

DOE Patents (OSTI)

A method is provided for determining, under field conditions and in near-real time, an image of a geophysical objective under the ground in a geophysical medium, utilizing a zeroth order phase approximation implemented with first signal-to-detector arrival times for a plurality of signal transmitters transmitting signals through the geologic medium and the geologic objective to a plurality of signal receivers, disposed adjacent to the geologic objective in a predetermined manner. 9 figs.

Witten, A.J.

1989-09-12T23:59:59.000Z

345

DETECTION OF HISTORICAL PIPELINE LEAK PLUMES USING NON-INTRUSIVE SURFACE-BASED GEOPHYSICAL TECHNIQUES AT THE HANFORD NUCLEAR SITE WASHINGTON USA  

Science Conference Proceedings (OSTI)

Historical records from the Department of Energy Hanford Nuclear Reservation (in eastern WA) indicate that ruptures in buried waste transfer pipelines were common between the 1940s and 1980s, which resulted in unplanned releases (UPRs) of tank: waste at numerous locations. A number of methods are commercially available for the detection of active or recent leaks, however, there are no methods available for the detection of leaks that occurred many years ago. Over the decades, leaks from the Hanford pipelines were detected by visual observation of fluid on the surface, mass balance calculations (where flow volumes were monitored), and incidental encounters with waste during excavation or drilling. Since these detection methods for historic leaks are so limited in resolution and effectiveness, it is likely that a significant number of pipeline leaks have not been detected. Therefore, a technology was needed to detect the specific location of unknown pipeline leaks so that characterization technologies can be used to identify any risks to groundwater caused by waste released into the vadose zone. A proof-of-concept electromagnetic geophysical survey was conducted at an UPR in order to image a historical leak from a waste transfer pipeline. The survey was designed to test an innovative electromagnetic geophysical technique that could be used to rapidly map the extent of historical leaks from pipelines within the Hanford Site complex. This proof-of-concept test included comprehensive testing and analysis of the transient electromagnetic method (TEM) and made use of supporting and confirmatory geophysical methods including ground penetrating radar, magnetics, and electrical resistivity characterization (ERC). The results for this initial proof-of-concept test were successful and greatly exceeded the expectations of the project team by providing excellent discrimination of soils contaminated with leaked waste despite the interference from an electrically conductive pipe.

SKORSKA MB; FINK JB; RUCKER DF; LEVITT MT

2010-12-02T23:59:59.000Z

346

Microwave fluid flow meter  

DOE Patents (OSTI)

A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

Billeter, Thomas R. (Richland, WA); Philipp, Lee D. (Richland, WA); Schemmel, Richard R. (Lynchburg, VA)

1976-01-01T23:59:59.000Z

347

Climate-Carbon Cycle Interactions Dr. John P. Krasting  

NLE Websites -- All DOE Office Websites (Extended Search)

Ensemble Modeling of Climate-Carbon Cycle Interactions Dr. John P. Krasting geophysical fluid dynamics Laboratory Wednesday, Jan 23, 2013 - 4:15PM MBG AUDITORIUM Refreshments at...

348

Thermal Convection: Patterns, Evolution and Stability by M. Lappa  

E-Print Network (OSTI)

Review of the book "Thermal Convection: Patterns, Evolution and Stability" by M. Lappa. Invited by the journal Geophysical and Astrophysical Fluid Dynamics.

Simitev, R D

2010-01-01T23:59:59.000Z

349

Climate-Weather Modeling Studies Using a Prototype Global Cloud...  

NLE Websites -- All DOE Office Websites (Extended Search)

Institution: Geophysical Fluid Dynamics Laboratory Allocation Program: ESP Allocation Hours at ALCF: 150 Million Year: 2010 to 2013 Research Domain: Earth Science...

350

ghan-99.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

La Jolla, California S. Klein Geophysical Fluid Dynamics Laboratory Princeton, New Jersey S. K. Krueger Department of Meteorology University of Utah Salt Lake City, Utah...

351

Fluid Models of Many-server Queues with Abandonment  

E-Print Network (OSTI)

We study many-server queues with abandonment in which customers have general service and patience time distributions. The dynamics of the system are modeled using measure- valued processes, to keep track of the residual service and patience times of each customer. Deterministic fluid models are established to provide first-order approximation for this model. The fluid model solution, which is proved to uniquely exists, serves as the fluid limit of the many-server queue, as the number of servers becomes large. Based on the fluid model solution, first-order approximations for various performance quantities are proposed.

Zhang, Jiheng

2009-01-01T23:59:59.000Z

352

Complex Fluids Group  

Science Conference Proceedings (OSTI)

... applications in energy, sustainability, electronics and medicine. As these materials are typically in the fluid state during their production or end-use ...

2013-05-14T23:59:59.000Z

353

Working/Functional Fluids  

Science Conference Proceedings (OSTI)

... power cycle except that it uses an organic working fluid instead of water to allow operation at lower temperatures, including geothermal or solar ...

2012-10-05T23:59:59.000Z

354

DISCRETE AND CONTINUOUS doi:10.3934/dcdss.2010.3.xx DYNAMICAL SYSTEMS SERIES S  

E-Print Network (OSTI)

AND DIMITRIOS MITSOTAKIS where u is the fluid velocity, ± are the fluids densities, µ± are the fluids dynamic is needed for the heavy fluid to acquire the kinetic energy and to enter into the propagation r generation by dynamic displacement of sea bed due to dip-slip faulting. Mathematics and Computers

Paris-Sud XI, Université de

355

Nonlinear pressure and temperature waves propagation in fluid-saturated rocks  

Science Conference Proceedings (OSTI)

A numerical study for the simulation of rock deformation due to nonlinear temperature and pressure waves in fluid saturated porous rock is presented. The problem of an homogeneous, thermoelastic, and isotropic fluid-saturated matrix, lying over an aquifer ... Keywords: Fluid dynamics, Geothermics, Nonlinear model, Quasi-Newton solver

M. De' Michieli Vitturi; F. Beux

2005-10-01T23:59:59.000Z

356

2D simulation of fluid-structure interaction using finite element method  

Science Conference Proceedings (OSTI)

This paper deals with pressure-based finite element analysis of fluid-structure systems considering the coupled fluid and structural dynamics. The present method uses two-dimensional fluid elements and structural line elements for the numerical simulation ... Keywords: Finite element, Galerkin weighted residual method, Newmark's predictor-corrector method, Pressure formulation, Sloshing

S. Mitra; K. P. Sinhamahapatra

2008-12-01T23:59:59.000Z

357

Supercritical Fluid Extraction  

E-Print Network (OSTI)

In supercritical fluid extraction, many options are available for achieving and controlling the desired selectivity, which is extremely sensitive to variations in pressure, temperature, and choice of solvent. The ability of supercritical fluids to vaporize relatively nonvolatile compounds at moderate temperatures can reduce the energy requirements compared to distillation and liquid extraction.

Johnston, K. P.; Flarsheim, W. M.

1984-01-01T23:59:59.000Z

358

OpenMP parallelism for fluid and fluid-particulate systems  

Science Conference Proceedings (OSTI)

In order to exploit the flexibility of OpenMP in parallelizing large scale multi-physics applications where different modes of parallelism are needed for efficient computation, it is first necessary to be able to scale OpenMP codes as well as MPI on ... Keywords: Computational fluid dynamics (CFD), Hybrid parallelization, MPI, Multiphase flows, OpenMP, Performance tools

Amit Amritkar; Danesh Tafti; Rui Liu; Rick Kufrin; Barbara Chapman

2012-09-01T23:59:59.000Z

359

On the Mapping of Multivariate Geophysical Fields: Sensitivities to Size, Scales, and Dynamics  

Science Conference Proceedings (OSTI)

The effects of a priori parameters on the error subspace estimation and mapping methodology introduced by P. F. J. Lermusiaux et al. is investigated. The approach is three-dimensional, multivariate, and multiscale. The sensitivities of the ...

P. F. J. Lermusiaux

2002-10-01T23:59:59.000Z

360

Annu. Rev. Fluid Mech. 2004. 36:281314 doi: 10.1146/annurev.fluid.36.050802.122121  

E-Print Network (OSTI)

. Dissipative and dynamical mechanisms generate a global average #12;VERTICAL MIXING, ENERGY, AND THE GENERAL on the ocean capable of generating an energy supply to the fluid. They are (a) wind, (b) heating and cooling density variations due to compressibility that have no dynamical effect. #12;VERTICAL MIXING, ENERGY

Wunsch, Carl

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Geothermal resources of the western arm of the Black Rock Desert, northwestern Nevada. Part I. Geology and geophysics  

DOE Green Energy (OSTI)

Studies of the geothermal potential of the western arm of the Black Rock Desert in northwestern Nevada included a compilation of existing geologic data on a detailed map, a temperature survey at 1-meter depth, a thermal-scanner survey, and gravity and seismic surveys to determine basin geometry. The temperature survey showed the effects of heating at shallow depths due to rising geothermal fluids near the known hot spring areas. Lower temperatures were noted in areas of probable near-surface ground-water movement. The thermal-scanner survey verified the known geothermal areas and showed relatively high-temperature areas of standing water and ground-water discharge. The upland areas of the desert were found to be distinctly warmer than the playa area, probably due to the low thermal diffusivity of upland areas caused by low moisture content. Surface geophysical surveys indicated that the maximum thickness of valley-fill deposits in the desert is about 3200 meters. Gravity data further showed that changes in the trend of the desert axis occurred near thermal areas. 53 refs., 8 figs., 3 tabs.

Schaefer, D.H.; Welch, A.H.; Maurer, D.K.

1983-01-01T23:59:59.000Z

362

New Geophysical Technique for Mineral Exploration and Mineral Discrimination Based on Electromagnetic Methods  

DOE Green Energy (OSTI)

The research during the first two years of the project was focused on developing the foundations of a new geophysical technique for mineral exploration and mineral discrimination, based on electromagnetic (EM) methods. The developed new technique is based on examining the spectral induced polarization effects in electromagnetic data using effective-medium theory and advanced methods of 3-D modeling and inversion. The analysis of IP phenomena is usually based on models with frequency dependent complex conductivity distribution. In this project, we have developed a rigorous physical/mathematical model of heterogeneous conductive media based on the effective-medium approach. The new generalized effective-medium theory of IP effect (GEMTIP) provides a unified mathematical method to study heterogeneity, multi-phase structure, and polarizability of rocks. The geoelectrical parameters of a new composite conductivity model are determined by the intrinsic petrophysical and geometrical characteristics of composite media: mineralization and/or fluid content of rocks, matrix composition, porosity, anisotropy, and polarizability of formations. The new GEMTIP model of multi-phase conductive media provides a quantitative tool for evaluation of the type of mineralization, and the volume content of different minerals using electromagnetic data. We have developed a 3-D EM-IP modeling algorithm using the integral equation (IE) method. Our IE forward modeling software is based on the contraction IE method, which improves the convergence rate of the iterative solvers. This code can handle various types of sources and receivers to compute the effect of a complex resistivity model. We have demonstrated that the generalized effective-medium theory of induced polarization (GEMTIP) in combination with the IE forward modeling method can be used for rock-scale forward modeling from grain-scale parameters. The numerical modeling study clearly demonstrates how the various complex resistivity models manifest differently in the observed EM data. These modeling studies lay a background for future development of the IP inversion method, directed at determining the electrical conductivity and the intrinsic chargeability distributions, as well as the other parameters of the relaxation model simultaneously. The new technology introduced in this project can be used for the discrimination between uneconomic mineral deposits and the location of zones of economic mineralization and geothermal resources.

Michael S. Zhdanov

2009-03-09T23:59:59.000Z

363

A Survey of Department of Energy-Sponsored Geophysical Research for Shallow Waste Site Characterization  

Science Conference Proceedings (OSTI)

Subsurface contamination plagues many U.S. Department of Energy (DOE) sites and threatens groundwater supplies. This survey discusses research sponsored by the DOE Environmental Management Science Program (EMSP) for geophysical characterization of the vadose zone at the Idaho National Engineering and Environmental Laboratory (INEEL) and other contaminated sites. Various types of geophysical imaging techniques are used to characterize the shallow subsurfaceelectromagnetic, ground-penetrating radar, electrical, seismic, and nuclear magnetic resonance. Three common themes appear in the research surveyed in this article: (1) the development of high-resolution imaging capabilities to capture important details of the heterogeneous nature of subsurface properties and processes, (2) the coupling of non-intrusive survey geophysical measurements (e.g., electrical surveys) with detailed quantitative precise point-sensor measurements (e.g., lysimeters and vapor-port systems) or borehole (e.g., nuclear magnetic resonance, neutron-based moisture, and geochemical tools) measurements to extend high-precision knowledge away from the borehole, and finally (3) the application of multiple geophysical methods to constrain the uncertainty in determining critical subsurface physical properties. Laboratory, field, theoretical, and computational studies are necessary to develop our understanding of the manner in which contaminants travel through the vadose zone. Applications of geophysical methods to various contaminated areas at the INEEL are given.

Donna Post Guillen

2004-01-01T23:59:59.000Z

364

Geophysical remote sensing of water reservoirs suitable for desalinization.  

Science Conference Proceedings (OSTI)

In many parts of the United States, as well as other regions of the world, competing demands for fresh water or water suitable for desalination are outstripping sustainable supplies. In these areas, new water supplies are necessary to sustain economic development and agricultural uses, as well as support expanding populations, particularly in the Southwestern United States. Increasing the supply of water will more than likely come through desalinization of water reservoirs that are not suitable for present use. Surface-deployed seismic and electromagnetic (EM) methods have the potential for addressing these critical issues within large volumes of an aquifer at a lower cost than drilling and sampling. However, for detailed analysis of the water quality, some sampling utilizing boreholes would be required with geophysical methods being employed to extrapolate these sampled results to non-sampled regions of the aquifer. The research in this report addresses using seismic and EM methods in two complimentary ways to aid in the identification of water reservoirs that are suitable for desalinization. The first method uses the seismic data to constrain the earth structure so that detailed EM modeling can estimate the pore water conductivity, and hence the salinity. The second method utilizes the coupling of seismic and EM waves through the seismo-electric (conversion of seismic energy to electrical energy) and the electro-seismic (conversion of electrical energy to seismic energy) to estimate the salinity of the target aquifer. Analytic 1D solutions to coupled pressure and electric wave propagation demonstrate the types of waves one expects when using a seismic or electric source. A 2D seismo-electric/electro-seismic is developed to demonstrate the coupled seismic and EM system. For finite-difference modeling, the seismic and EM wave propagation algorithms are on different spatial and temporal scales. We present a method to solve multiple, finite-difference physics problems that has application beyond the present use. A limited field experiment was conducted to assess the seismo-electric effect. Due to a variety of problems, the observation of the electric field due to a seismic source is not definitive.

Aldridge, David Franklin; Bartel, Lewis Clark; Bonal, Nedra; Engler, Bruce Phillip

2009-12-01T23:59:59.000Z

365

LANL Institutes - Institute of Geophysics and Planetary Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

Space Physics' Space Physics' Focus Leader: Josef Koller jkoller@lanl.gov Proposals are solicited that advance theoretical research, computational research, and/or observational research into the plasma environment of the Earth's atmosphere, the magnetosphere, and into processes that affect these environments. Research on the transport of plasma and energy from the Sun through interplanetary space to the Earth and other planets is also encouraged. These include the interaction of various plasma populations and the coupling of microscopic and macroscopic phenomena. The following topics are covered: solar dynamics responsible for the solar wind magnetohydrodynamics of the magnetosphere and thermosphere magnetospheric substorms Ionosphere lightening magnetotail current sheet dynamics

366

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID...  

Open Energy Info (EERE)

TRACING FLUID SOURCES IN THE COSO GEOTHERMAL SYSTEM USING FLUID-INCLUSION GAS CHEMISTRY Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: TRACING...

367

Supercritical fluid extraction  

DOE Patents (OSTI)

A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

Wai, Chien M. (Moscow, ID); Laintz, Kenneth (Pullman, WA)

1994-01-01T23:59:59.000Z

368

IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY |  

Open Energy Info (EERE)

IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: IDENTIFYING FRACTURES AND FLUID TYPES USING FLUID INCLUSION STRATIGRAPHY Details Activities (1) Areas (1) Regions (0) Abstract: Fluid Inclusion Stratigraphy (FIS) is a method currently being developed for use in geothermal systems to identify fractures and fluid types. This paper is the third in a series of papers on the development of FIS. Fluid inclusion gas chemistry is analyzed and plotted on well log diagrams. The working hypothesis is that select gaseous species and species ratios indicate areas of groundwater and reservoir fluid flow and reservoir seals. Previously we showed that FIS analyses identify fluid types and

369

A Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles  

Open Energy Info (EERE)

Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles Caldera, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Geological And Geophysical Appraisal Of The Baca Geothermal Field, Valles Caldera, New Mexico Details Activities (10) Areas (2) Regions (0) Abstract: The Baca location #1 geothermal field is located in north-central New Mexico within the western half of the Plio-Pleistocene Valles Caldera. Steam and hot water are produced primarily from the northeast-trending Redondo Creek graben, where downhole temperatures exceed 260°C at depths of less than 2 km. Stratigraphically the reservoir region can be described as a five-layer sequence that includes Tertiary and Quaternary volcanic rocks, and Mesozoic and Tertiary sediments overlying Precambrian granitic

370

Geophysical technique for mineral exploration and discrimination based on electromagnetic methods and associated systems  

DOE Patents (OSTI)

Mineral exploration needs a reliable method to distinguish between uneconomic mineral deposits and economic mineralization. A method and system includes a geophysical technique for subsurface material characterization, mineral exploration and mineral discrimination. The technique introduced in this invention detects induced polarization effects in electromagnetic data and uses remote geophysical observations to determine the parameters of an effective conductivity relaxation model using a composite analytical multi-phase model of the rock formations. The conductivity relaxation model and analytical model can be used to determine parameters related by analytical expressions to the physical characteristics of the microstructure of the rocks and minerals. These parameters are ultimately used for the discrimination of different components in underground formations, and in this way provide an ability to distinguish between uneconomic mineral deposits and zones of economic mineralization using geophysical remote sensing technology.

Zhdanov; Michael S. (Salt Lake City, UT)

2008-01-29T23:59:59.000Z

371

EETD Researchers at the American Geophysical Union Meeting in San Francisco  

NLE Websites -- All DOE Office Websites (Extended Search)

EETD Researchers at the American Geophysical Union Meeting in San Francisco EETD Researchers at the American Geophysical Union Meeting in San Francisco December 9-13 December 2013 A number of scientists from the Environmental Energy Technologies Division are presenting papers and posters at the American Geophysical Union Meeting next week in San Francisco. Here are brief descriptions of one talk and two posters by EETD scientists and their colleagues. For more information, go to the AGU meeting site at the link below, where you can look up presentations by scientists from EETD and other divisions of Lawrence Berkeley National Laboratory. Energy-Water Integrated Assessment of the Sacramento Area and a Demonstration of WEAP-LEAP Capability Poster Monday, December 9, 2013, 8 AM - 12 PM Hall A-C Moscone South Researchers from EETD and partner institutions report on a new basin-scale

372

Status of data, major results, and plans for geophysical activities, Yucca Mountain Project  

Science Conference Proceedings (OSTI)

This report describes past and planned geophysical activities associated with the Yucca Mountain Project and is intended to serve as a starting point for integration of geophysical activities. This report relates past results to site characterization plans, as presented in the Yucca Mountain Site Characterization Plan (SCP). This report discusses seismic exploration, potential field methods, geoelectrical methods, teleseismic data collection and velocity structural modeling, and remote sensing. This report discusses surface-based, airborne, borehole, surface-to-borehole, crosshole, and Exploratory Shaft Facility-related activities. The data described in this paper, and the publications discussed, have been selected based on several considerations; location with respect to Yucca Mountain, whether the success or failure of geophysical data is important to future activities, elucidation of features of interest, and judgment as to the likelihood that the method will produce information that is important for site characterization. 65 refs., 19 figs., 12 tabs.

Oliver, H.W. [Geological Survey, Menlo Park, CA (USA); Hardin, E.L. [Science Applications International Corp., Las Vegas, NV (USA); Nelson, P.H. [Geological Survey, Denver, CO (USA)] [eds.

1990-07-01T23:59:59.000Z

373

A Case Study Of The Influx Of Upper Mantle Fluids Into The Crust | Open  

Open Energy Info (EERE)

Influx Of Upper Mantle Fluids Into The Crust Influx Of Upper Mantle Fluids Into The Crust Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Case Study Of The Influx Of Upper Mantle Fluids Into The Crust Details Activities (0) Areas (0) Regions (0) Abstract: Geochemical and geophysical investigations in the Bohai Gulf and adjacent areas, China, indicate that uplift of the high-conductivity layer in the lithosphere coincides with the area of high heat flow. In this area are distributed abundant oil and gas fields in a Tertiary fault basin and also large quantities of basaltic rocks. Gas fields, mostly CO2 bearing, occur at the basin margins, where a widespread alkaline olivine basalt has high contents of gold. Geochemical prospecting of the surface (soil and soil gas) in the area indicates that there is an anomaly zone of

374

Application of Cutting Fluids  

Science Conference Proceedings (OSTI)

...is transferred to the drill by a rotating gland and is forced directly into the cutting zone. The fluid flowing from the hole assists in chip removal. Oil-hole drills have become very popular in

375

Basic fluid system trainer  

DOE Patents (OSTI)

This invention, a trainer mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

Semans, J.P.; Johnson, P.G.; LeBoeuf, R.F. Jr.; Kromka, J.A.; Goron, R.H.; Hay, G.D.

1991-04-30T23:59:59.000Z

376

Basic fluid system trainer  

DOE Patents (OSTI)

A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

Semans, Joseph P. (Uniontown, PA); Johnson, Peter G. (Pittsburgh, PA); LeBoeuf, Jr., Robert F. (Clairton, PA); Kromka, Joseph A. (Idaho Falls, ID); Goron, Ronald H. (Connellsville, PA); Hay, George D. (Venetia, PA)

1993-01-01T23:59:59.000Z

377

Phoresis in fluids  

E-Print Network (OSTI)

This paper presents a unified theory of phoretic phenomena in single-component fluids. Simple formulas are given for the phoretic velocities of small inert force-free non-Brownian particles migrating through otherwise ...

Brenner, Howard

378

Geophysical Surveys of a Known Karst Feature, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect

Geophysical data were acquired at a site on the Oak Ridge Reservation, Tennessee to determine the characteristics of a mud-filled void and to evaluate the effectiveness of a suite of geophysical methods at the site. Methods that were used included microgravity, electrical resistivity, and seismic refraction. Both microgravity and resistivity were able to detect the void as well as overlying structural features. The seismic data provide bedrock depth control for the other two methods, and show other effects that are caused by the void.

Carpenter, P.J.; Carr, B.J.; Doll, W.E.; Kaufmann, R.D.; Nyquist, J.E.

1999-11-14T23:59:59.000Z

379

Geophysical Surveys of a Known Karst Feature, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee  

SciTech Connect

Geophysical data were acquired at a site on the Oak Ridge Reservation, Tennessee to determine the characteristics of a mud-filled void and to evaluate the effectiveness of a suite of geophysical methods at the site. Methods that were used included microgravity, electrical resistivity, and seismic refraction. Both microgravity and resistivity were able to detect the void as well as overlying structural features. The seismic data provide bedrock depth control for the other two methods, and show other effects that are caused by the void.

Doll, W.E.; Nyquist, J.E.; Carpenter, P.J.; Kaufmann, R.D.; Carr, B.J.

1998-12-01T23:59:59.000Z

380

Mapping groundwater contamination using dc resistivity and VLF geophysical methods -- A case study  

SciTech Connect

Geophysical methods can be helpful in mapping areas of contaminated soil and groundwater. Electrical resistivity and very low-frequency electromagnetic induction (VLF) surveys were carried out at a site of shallow hydrocarbon contamination in Utah County, Utah. Previously installed monitoring wells facilitated analysis of water chemistry to enhance interpretation of the geophysical data. The electrical resistivity and VLF data correlate well, and vertical cross-sections and contour maps generated from these data helped map the contaminant plume, which was delineated as an area of high interpreted resistivities.

Benson, A.K.; Payne, K.L.; Stubben, M.A. [Brigham Young Univ., Provo, UT (United States). Dept. of Geology and Geophysics

1997-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Hagit P. Affek Yale University, Dept. of Geology & Geophysics, 210 Whitney Ave. New Haven, CT 06520-8109  

E-Print Network (OSTI)

and Geophysics. · Caltech, Pasadena, CA. 2003-2007. Posdoc in Isotope geochemistry. Department of GeologicalHagit P. Affek Yale University, Dept. of Geology & Geophysics, 210 Whitney Ave. New Haven, CT 06520 Plants: Physiological Role and Isotopic Composition. Adviser: Dan Yakir. Professional experience · Yale

382

The History and Dynamics of Global Plate Motions, GEOPHYSICAL MONOGRAPH 121, M. Richards, R. Gordon and R. van der Hilst, eds., American Geophysical Union, pp546, 2000  

E-Print Network (OSTI)

thermal boundary layer, of mantle convection. We review how simple convection pertains to plate formation as we shall see in this review [see also review by Oxburgh and Turcotte, 1978]. However, there is still- ately, caused by mantle convection. There is little doubt that the direct energy source for plate

Bercovici, David

383

GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID | Open Energy  

Open Energy Info (EERE)

FLUID PROPENE AND PROPANE: INDICATORS OF FLUID FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Details Activities (1) Areas (1) Regions (0) Abstract: The use of fluid inclusion gas analysis propene/propene ratios is investigated. Ratios of these species are affected by geothermal fluid temperature and oxidations state. Our purpose is to determine if analyses of these species in fluid inclusions these species to can be used to interpret fluid type, history, or process. Analyses were performed on drill cuttings at 20ft intervals from four Coso geothermal wells. Two wells are good producers, one has cold-water entrants in the production zone, and the fourth is a non-producer. The ratios show distinct differences between

384

Boiler using combustible fluid  

DOE Patents (OSTI)

A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

Baumgartner, H.; Meier, J.G.

1974-07-03T23:59:59.000Z

385

Preclosure Monitoring and Performance Confirmation at Yucca Mountain: Applicability of Geophysical, Geohydrological, and Geochemical Methods  

E-Print Network (OSTI)

and Monitoring Electrical Resistivity with Surface andthe pore fluid electrical resistivity (inverse of conduc

Tsang, C.F.

2010-01-01T23:59:59.000Z

386

Geophysical evidence for gas hydrates in the deep water of the South Caspian Basin, Azerbaijan  

E-Print Network (OSTI)

Geophysical evidence for gas hydrates in the deep water of the South Caspian Basin, Azerbaijan C the South Caspian Sea, offshore Azerbaijan, document for the ®rst time in the deep water (up to 650 m Caspian Sea. The Absheron block, named after the nearby Absheron Peninsula in Azerbaijan, is situated

Knapp, Camelia Cristina

387

Assessment of surface geophysical methods in geothermal exploration and recommendations for future research  

DOE Green Energy (OSTI)

The four classes of geophysical methods considered are: passive seismic methods; active seismic methods; natural field electrical and electromagnetic methods; and, controlled-source electrical and electromagnetic methods. Areas of rsearch for improvement of the various techniques for geothermal exploration are identified. (JGB)

Goldstein, N.E.; Norris, R.A.; Wilt, M.J.

1978-01-01T23:59:59.000Z

388

CV-Huiming Bao Department of Geology & Geophysics, E235 Howe-Russell Geoscience Complex, Louisiana  

E-Print Network (OSTI)

chemistry & Stable isotopes Postdoc 1998-2001 APPOINTMENTS 2012- Charles L. Jones Professor in Geology Geology and Earth System History for undergraduate students; Stable Isotope Geochemistry and Carbonate1 CV- Huiming Bao Department of Geology & Geophysics, E235 Howe-Russell Geoscience Complex

Bao, Huiming

389

CV-Huiming Bao Department of Geology & Geophysics, E235 Howe-Russell Geoscience Complex, Louisiana  

E-Print Network (OSTI)

1 CV- Huiming Bao Department of Geology & Geophysics, E235 Howe-Russell Geoscience Complex Palaeontology & Stratigraphy B. Sc. 1982-1986 Nanjing Institute of Geology and Paleontology, Academia Sinica Calcareous Algae & carbonate sedimentology M.Sc. 1986-1989 Princeton University Stable isotope geochemistry

Bao, Huiming

390

CV-Huiming Bao Department of Geology & Geophysics, E235 Howe-Russell Geoscience Complex, Louisiana  

E-Print Network (OSTI)

chemistry & Stable isotopes Postdoc 1998-2001 APPOINTMENTS 2012- Charles L. Jones Professor in Geology, 2013, Oxygen isotope composition of meltwater from a Neoproterozoic glaciation in South China. Geology1 CV- Huiming Bao Department of Geology & Geophysics, E235 Howe-Russell Geoscience Complex

Bao, Huiming

391

Major results of geophysical investigations at Yucca Mountain and vicinity, southern Nevada  

SciTech Connect

In the consideration of Yucca Mountain as a possible site for storing high level nuclear waste, a number of geologic concerns have been suggested for study by the National Academy of Sciences which include: (1) natural geologic and geochemical barriers, (2) possible future fluctuations in the water table that might flood a mined underground repository, (3) tectonic stability, and (4) considerations of shaking such as might be caused by nearby earthquakes or possible volcanic eruptions. This volume represents the third part of an overall plan of geophysical investigation of Yucca Mountain, preceded by the Site Characterization Plan (SCP; dated 1988) and the report referred to as the Geophysical White Paper, Phase 1, entitled Status of Data, Major Results, and Plans for Geophysical Activities, Yucca Mountain Project (Oliver and others, 1990). The SCP necessarily contained uncertainty about applicability and accuracy of methods then untried in the Yucca Mountain volcano-tectonic setting, and the White Paper, Phase 1, focused on summarization of survey coverage, data quality, and applicability of results. For the most part, it did not present data or interpretation. The important distinction of the current volume lies in presentation of data, results, and interpretations of selected geophysical methods used in characterization activities at Yucca Mountain. Chapters are included on the following: gravity investigations; magnetic investigations; regional magnetotelluric investigations; seismic refraction investigations; seismic reflection investigations; teleseismic investigations; regional thermal setting; stress measurements; and integration of methods and conclusions. 8 refs., 60 figs., 2 tabs.

Oliver, H.W.; Ponce, D.A. [eds.] [Geological Survey, Menlo Park, CA (United States); Hunter, W.C. [ed.] [Geological Survey, Denver, CO (United States). Yucca Mountain Project Branch

1995-12-31T23:59:59.000Z

392

Geological and geophysical studies in Grass Valley, Nevada. Preliminary open file report  

DOE Green Energy (OSTI)

The geologic setting, geochemistry, and heat flow of the Leach Hot Springs area are discussed. Geophysical data is presented under the following section headings: survey lines; presentation of data; gravity survey; magnetic survey; self-potential; bipole-dipole apparent resistivity and apparent conductance; electric field ratio tellurics; dipole-dipole resistivity; magnetotellurics; seismological methods; seismic data and preliminary interpretation. (JGB)

Beyer, H.; Dey, A.; Liaw, A.; Majer, E.; McEvilly, T.V.; Morrison, H.F.; Wollenberg, H.

1976-09-01T23:59:59.000Z

393

GEOPHYSICS, VOL. 64, NO. 5 (SEPTEMBER-OCTOBER 1999); P. 13471348 Computers and creativity  

E-Print Network (OSTI)

GEOPHYSICS, VOL. 64, NO. 5 (SEPTEMBER-OCTOBER 1999); P. 1347­1348 Computers and creativity John A. Scales and Roel Snieder "The real danger is not that computers will begin to think like men, but that men will begin to think like computers."--Sydney J. Harris "Technical skill is mastery of complexity while

Scales, John

394

Adiabatic and entropy perturbations with interacting fluids and fields  

E-Print Network (OSTI)

We develop a gauge-invariant formalism for the study of density perturbations in a Friedmann-Robertson-Walker universe with multiple interacting fluids and/or scalar fields. We show how N scalar fields may be described by N kinetic fluids (with maximally stiff equation of state) interacting with a non-dynamical potential (with vacuum equation of state). We split generic perturbations into adiabatic and entropic parts, and give the coupled first-order evolution equations on all scales, including energy and momentum exchange. We identify the non-adiabatic effects on large scales, and define adiabatic initial conditions in the presence of multiple fluids and fields.

Karim A. Malik; David Wands

2004-11-25T23:59:59.000Z

395

Full Life Wind Turbine Gearbox Lubricating Fluids  

DOE Green Energy (OSTI)

Industrial gear box lubricants typically are hydrocarbon based mineral oils with considerable amounts of additives to overcome the lack of base fluid properties like wear protection, oxidation stability, load carrying capacity, low temperature solidification and drop of viscosity at higher temperatures. For today's wind turbine gearboxes, the requirements are more severe and synthetic hydrocarbon oils are used to improve on this, but all such hydrocarbon based lubricants require significant amounts of Extreme Pressure (EP) additives to meet performance requirements. Perfluoropolyether (PFPE) fluids provide load carrying capacity as an inherent property. During the course of the project with the main tasks of 'Establish a Benchmark', 'Lubricant Evaluation', 'Full Scale Gearbox Trial' and 'Economic Evaluation', the PAO Reference oil exhibited significant changes after laboratory gear testing, in service operation in the field and full scale gearbox trial. Four hydrocarbon base oils were selected for comparison in the benchmarking exercise and showed variation with respect to meeting the requirements for the laboratory micro-pitting tests, while the PFPE fluid exceeded the requirements even with the material taken after the full scale gear box trial. This is remarkable for a lubricant without EP additives. Laboratory bearing tests performed on the PFPE fluids before and after the full scale gear box trial showed the results met requirements for the industry standard. The PFPE fluid successfully completed the full scale gear box test program which included baseline and progressive staged load testing. The evaluation of gears showed no micro-pitting or objectionable wear. By the final stage, lubricant film thickness had been reduced to just 21% of its original value, this was by design and resulted in a lambda ratio of well below 1. This test design scenario of a low lambda ratio is a very undesirable lubrication condition for real world but creates the ability to test the lubricating fluids performance under the most extreme conditions. The PAO Reference oil also passed its testing without any noticeable deterioration of the gear surface. However the PAO Reference oil was replaced midway through the progressive loading, as the lubricant was burned in an attempt to raise the sump temperature to the same levels as for the PFPE. Both materials experienced a decrease of viscosity during their respective run times. The viscosity index decreased for the PAO there while there was a slight increase for the PFPE. FZG laboratory gear tests and measurements of the drive motor's current during the full scale gear box trial were made to characterize the relative efficiency between the PFPE fluid and the PAO Reference oil. In the FZG laboratory efficiency test, the PFPE fluids show much higher churning losses due to their higher viscosity and density. The analysis seems to show that the efficiency correlates better to dynamic viscosity than any other of the measured metrics such as film thickness. In load stages where the load, speed and temperature are similar, the PFPE fluid has a greater film thickness and theoretical gear protection, but requires a larger current for the drive motor than the PAO. However in load stages where the film thickness is the same, the PFPE fluid's reduced dynamic viscosity gives it a slight efficiency advantage relative to the PAO reference oil. Ultimately, many factors such as temperature, rotational speed, and fluid viscosity combine in a complex fashion to influence the results. However, the PFPE's much lower change of viscosity with respect to temperature, allows variations in designing an optimum viscosity to balance efficiency versus gear protection. Economic analysis was done using Cost of Energy calculations. The results vary from 5.3% for a 'Likely Case' to 16.8% for a 'Best Case' scenario as potential cost improvement by using PFPE as the gearbox lubricating fluid. It is important to note the largest portion of savings comes in Levelized Replacement Cost, which is dictated by the assumption on gearb

Lutz, Glenn A.; Jungk, Manfred; Bryant, Jonathan J.; Lauer, Rebecca S.; Chobot, Anthony; Mayer, Tyler; Palmer, Shane; Kauffman, Robert E.

2012-02-28T23:59:59.000Z

396

Universal fluid droplet ejector  

DOE Patents (OSTI)

A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.

Lee, Eric R. (Redwood City, CA); Perl, Martin L. (Palo Alto, CA)

1999-08-24T23:59:59.000Z

397

Geophysical framework of the southwestern Nevada volcanic field and hydrogeologic implications  

DOE Green Energy (OSTI)

Gravity and magnetic data, when integrated with other geophysical, geological, and rock-property data, provide a regional framework to view the subsurface geology in the southwestern Nevada volcanic field. The authors have loosely divided the region into six domains based on structural style and overall geophysical character. For each domain, they review the subsurface tectonic and magmatic features that have been inferred or interpreted from previous geophysical work. Where possible, they note abrupt changes in geophysical fields as evidence for potential structural or lithologic control on ground-water flow. They use inferred lithology to suggest associated hydrogeologic units in the subsurface. The resulting framework provides a basis for investigators to develop hypotheses for regional ground-water pathways where no drill-hole information exists. The authors discuss subsurface features in the northwestern part of the Nevada Test Site and west of the Nevada Test Site in more detail to address potential controls on regional ground-water flow away from areas of underground nuclear-weapons testing at Pahute Mesa. Subsurface features of hydrogeologic importance in these areas are (1) the resurgent intrusion below Timber Mountain, (2) a NNE-trending fault system coinciding with western margins of the Silent Canyon and Timber Mountain caldera complexes, (3) a north-striking, buried fault east of Oasis Mountain extending for 15 km, which they call the Hogback fault, and (4) an east-striking transverse fault or accommodation zone that, in part, bounds Oasis Valley basin on the south, which they call the Hot Springs fault. In addition, there is no geophysical nor geologic evidence for a substantial change in subsurface physical properties within a corridor extending from the northwestern corner of the Rainier Mesa caldera to Oasis Valley basin (east of Oasis Valley discharge area). This observation supports the hypothesis of other investigators that regional ground water from Pahute Mesa is likely to follow a flow path that extends southwestward to Oasis Valley discharge area.

Grauch, V.J.S.; Sawyer, D.A.; Fridrich, C.J.; Hudson, M.R.

2000-06-08T23:59:59.000Z

398

ICPIG, July 15-20, 2007, Prague, Czech Republi Negative streamer fronts: comparison of particle and fluid models and  

E-Print Network (OSTI)

. This front region is also important for the generation of high energy electrons in streamer and leader. Fluid model The fluid model approximates the average dynamics of the local electrons as local densitiesV is the ionization energy. Panel (d) zooms into panel (c), both in space and in densities. Both fluid and particle

Ebert, Ute

399

RayleighTaylor and RichtmyerMeshkov instabilities for fluids with a finite density contrast  

E-Print Network (OSTI)

of the fluid energy concentrates in the large­scale coherent motion. The dynamics of the coherent structure­scale coherent structure, the dynamics of small­scale structures, and the cascades of energy should be understood dynamics [3,4]. The singular aspects of the interface evolution (the generation of vorticity and secondary

New York at Stoney Brook, State University of

400

Modeling and Evaluation of Geophysical Methods for Monitoring and Tracking CO2 Migration  

Science Conference Proceedings (OSTI)

Geological sequestration has been proposed as a viable option for mitigating the vast amount of CO{sub 2} being released into the atmosphere daily. Test sites for CO{sub 2} injection have been appearing across the world to ascertain the feasibility of capturing and sequestering carbon dioxide. A major concern with full scale implementation is monitoring and verifying the permanence of injected CO{sub 2}. Geophysical methods, an exploration industry standard, are non-invasive imaging techniques that can be implemented to address that concern. Geophysical methods, seismic and electromagnetic, play a crucial role in monitoring the subsurface pre- and post-injection. Seismic techniques have been the most popular but electromagnetic methods are gaining interest. The primary goal of this project was to develop a new geophysical tool, a software program called GphyzCO2, to investigate the implementation of geophysical monitoring for detecting injected CO{sub 2} at test sites. The GphyzCO2 software consists of interconnected programs that encompass well logging, seismic, and electromagnetic methods. The software enables users to design and execute 3D surface-to-surface (conventional surface seismic) and borehole-to-borehole (cross-hole seismic and electromagnetic methods) numerical modeling surveys. The generalized flow of the program begins with building a complex 3D subsurface geological model, assigning properties to the models that mimic a potential CO{sub 2} injection site, numerically forward model a geophysical survey, and analyze the results. A test site located in Warren County, Ohio was selected as the test site for the full implementation of GphyzCO2. Specific interest was placed on a potential reservoir target, the Mount Simon Sandstone, and cap rock, the Eau Claire Formation. Analysis of the test site included well log data, physical property measurements (porosity), core sample resistivity measurements, calculating electrical permittivity values, seismic data collection, and seismic interpretation. The data was input into GphyzCO2 to demonstrate a full implementation of the software capabilities. Part of the implementation investigated the limits of using geophysical methods to monitor CO{sub 2} injection sites. The results show that cross-hole EM numerical surveys are limited to under 100 meter borehole separation. Those results were utilized in executing numerical EM surveys that contain hypothetical CO{sub 2} injections. The outcome of the forward modeling shows that EM methods can detect the presence of CO{sub 2}.

Daniels, Jeff

2012-11-30T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Thermodynamic Consistency of a Pseudoincompressible Approximation for General Equations of State  

Science Conference Proceedings (OSTI)

In soundproof model equations for geophysical fluid dynamics, the momentum and mechanical energy budgets decouple from the thermodynamics for adiabatic flows. In applying such models to nonadiabatic flows of fluids with general equations of state, ...

Rupert Klein; Olivier Pauluis

2012-03-01T23:59:59.000Z

402

Inertial Particle Dynamics in a Hurricane  

E-Print Network (OSTI)

The motion of inertial (i.e., finite-size) particles is analyzed in a three-dimensional unsteady simulation of Hurricane Isabel. As established recently, the long-term dynamics of inertial particles in a fluid is governed ...

Sapsis, Themistoklis

403

Molecular Dynamics Study of Nucleation during Crystallization  

Science Conference Proceedings (OSTI)

A Tale of Two States and More: Modeling of New Generation of Lattice Stability from Zero ... Analysis of Nano Fluid Using CFD-A Hybrid Approach for Cooling Purpose ... Molecular Dynamics Simulations of Grain Boundary Free Energy and

404

Experimental Properties of Fluids Group  

Science Conference Proceedings (OSTI)

The Experimental Properties of Fluids Group, Physical and Chemical Properties Division of the Chemical Science and Technology Laboratory, NIST.

2000-07-24T23:59:59.000Z

405

Supercritical fluid reverse micelle systems  

DOE Patents (OSTI)

of 1 ) United States Patent 5,158,704 Fulton , et al. October 27, 1992 Supercritical fluid reverse micelle systems

Fulton, John L. (Richland, WA); Smith, Richard D. (Richland, WA)

1992-01-01T23:59:59.000Z

406

A survey of dynamic replication strategies for improving data availability in data grids  

Science Conference Proceedings (OSTI)

Data grid is a distributed collection of storage and computational resources that are not bounded within a geophysical location. It is a fast growing area of research and providing efficient data access and maximum data availability is a challenging ... Keywords: Data grid, Data replication, Dynamic replication techniques, Replication strategies

Tehmina Amjad; Muhammad Sher; Ali Daud

2012-02-01T23:59:59.000Z

407

Production of MHD fluid  

SciTech Connect

A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.

Lacey, James J. (Library, PA); Kurtzrock, Roy C. (Bethel Park, PA); Bienstock, Daniel (Pittsburgh, PA)

1976-08-24T23:59:59.000Z

408

A Hydrologic-geophysical Method for Characterizing Flow and Transport Processes Within The Vadose Zone  

SciTech Connect

The primary purpose of this project was to employ two geophysical imaging techniques, electrical resistivity tomography and cross-borehole ground penetrating radar, to image a controlled infiltration of a saline tracer under unsaturated flow conditions. The geophysical techniques have been correlated to other more traditional hydrologic measurements including neutron moisture measurements and induction conductivity logs. Images that resulted during two successive infiltrations indicate the development of what appear to be preferential pathways through the finer grained materials, although the results could also be produced by cationic capture of free ions in clays. In addition the site as well as the developing solute plume exhibits electrical anisotropy which is likely related to flow properties. However the geologic significance of this phenomenon is still under investigation.

David Alumbaugh; Douglas LaBrecque; James Brainard; T.C. (Jim) Yeh

2004-01-22T23:59:59.000Z

409

Viscous fluid sheets  

E-Print Network (OSTI)

We present a general theory for the dynamics of thin viscous sheets. Employing concepts from differential geometry and tensor calculus we derive the governing equations in terms of a coordinate system that moves with the ...

Savva, Nikos

2007-01-01T23:59:59.000Z

410

Hydrologic and geophysical studies at Midnite Mine, Wellpinit, WA: Summary of 1995 field season. Report of investigations/1996  

SciTech Connect

The Midnite Mine is an inactive, hard-rock uranium mine on the Spokane Indian Reservation in Washington State. Long-term changes in water quality and the results of slug tests and two geophysical surveys are described. Of the locations monitored, only two exhibited water quality degradation over time. Hydraulic conductivity measurements from slug tests are reported for five additional locations in the bedrock. Relative values of hydraulic conductivity from slug tests agreed well with ranked specific capacity data. A geophysical survey identified buried constructed features that channel subsurface water to a contaminated seep. Historic aerial photos corroborated the results of the geophysical study. A new geophysical technique was successfully used to monitor hydraulic and geochemical responses to a pumping test in saturated waste rock.

Williams, B.C.; Riley, J.A.; Montgomery, J.R.; Robinson, J.A.

1996-06-01T23:59:59.000Z

411

SURFACE GEOPHYSICAL EXPLORATION OF SX TANK FARM AT THE HANFORD SITE RESULTS OF BACKGROUND CHARACTERIZATION WITH MAGNETICS AND ELECTROMAGNETICS  

SciTech Connect

This report presents the results of the background characterization of the cribs and trenches surrounding the SX tank farm prepared by HydroGEOPHYSICS Inc, Columbia Energy & Environmental Services Inc and Washington River Protection Solutions.

MYERS DA; RUCKER D; LEVIT M; CUBBAGE B; HENDERSON C

2009-09-24T23:59:59.000Z

412

Downhole Fluid Analyzer Development  

SciTech Connect

A novel fiber optic downhole fluid analyzer has been developed for operation in production wells. This device will allow real-time determination of the oil, gas and water fractions of fluids from different zones in a multizone or multilateral completion environment. The device uses near infrared spectroscopy and induced fluorescence measurement to unambiguously determine the oil, water and gas concentrations at all but the highest water cuts. The only downhole components of the system are the fiber optic cable and windows. All of the active components--light sources, sensors, detection electronics and software--will be located at the surface, and will be able to operate multiple downhole probes. Laboratory testing has demonstrated that the sensor can accurately determine oil, water and gas fractions with a less than 5 percent standard error. Once installed in an intelligent completion, this sensor will give the operating company timely information about the fluids arising from various zones or multilaterals in a complex completion pattern, allowing informed decisions to be made on controlling production. The research and development tasks are discussed along with a market analysis.

Bill Turner

2006-11-28T23:59:59.000Z

413

Reducing Toxic Exposure In Buildings: Application of Computational Fluid  

NLE Websites -- All DOE Office Websites (Extended Search)

Reducing Toxic Exposure In Buildings: Application of Computational Fluid Reducing Toxic Exposure In Buildings: Application of Computational Fluid Dynamics (CFD) Speaker(s): Buvana Jayaraman Date: December 8, 2005 - 12:00pm Location: Bldg. 90 I investigate three applications related to toxic exposure in buildings and demonstrate the use of Computational Fluid Dynamics (CFD) to address important issues: 1. Improving containment of airborne hazardous materials in an existing room containing a downdraft table. CFD is used to find a ventilation configuration that ensures better containment of the hazardous material and hence improved worker safety. 2. Modeling gas transport in a large indoor space. The goal of this study is to understand how the level of detail of the CFD model affects its accuracy. Comparison of predictions with experimental data will be presented. 3. Understanding

414

Proposal of a critical test of the Navier-Stokes-Fourier paradigm for compressible fluid continua  

E-Print Network (OSTI)

A critical, albeit simple experimental and/or molecular-dynamic (MD) simulation test is proposed whose outcome would, in principle, establish the viability of the Navier-Stokes-Fourier (NSF) equations for compressible fluid ...

Brenner, Howard

415

Analytic fluid theory of beam spiraling in high-intensity cyclotrons  

E-Print Network (OSTI)

Using a two-dimensional fluid description, we investigate the nonlinear radial-longitudinal dynamics of intense beams in isochronous cyclotrons in the nonrelativistic limit. With a multiscale analysis separating the time ...

Cerfon, A. J.

416

Drop Formation and Breakup of Low Viscosity Elastic Fluids: Effects of Molecular Weight and Concentration  

E-Print Network (OSTI)

The dynamics of drop formation and pinch-off have been investigated for a series of low viscosity elastic fluids possessing similar shear viscosities, but differing substantially in elastic properties. On initial approach ...

Tirtaatmadja, Viyada

2007-01-23T23:59:59.000Z

417

Sounding liquids: Automatic sound synthesis from fluid simulation  

Science Conference Proceedings (OSTI)

We present a novel approach for synthesizing liquid sounds directly from visual simulation of fluid dynamics. Our approach takes advantage of the fact that the sound generated by liquid is mainly due to the vibration of resonating bubbles in the medium ... Keywords: Sound simulation, liquids

William Moss; Hengchin Yeh; Jeong-Mo Hong; Ming C. Lin; Dinesh Manocha

2010-06-01T23:59:59.000Z

418

Imperfect fluids, Lorentz violations, and Finsler cosmology  

Science Conference Proceedings (OSTI)

We construct a cosmological toy model based on a Finslerian structure of space-time. In particular, we are interested in a specific Finslerian Lorentz violating theory based on a curved version of Cohen and Glashow's very special relativity. The osculation of a Finslerian manifold to a Riemannian manifold leads to the limit of relativistic cosmology, for a specified observer. A modified flat Friedmann-Robertson-Walker cosmology is produced. The analogue of a zero energy particle unfolds some special properties of the dynamics. The kinematical equations of motion are affected by local anisotropies. Seeds of Lorentz violations may trigger density inhomogeneities to the cosmological fluid.

Kouretsis, A. P.; Stathakopoulos, M.; Stavrinos, P. C. [Section of Astrophysics, Astronomy and Mechanics, Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); 1 Anastasiou Genadiou Street, 11474, Athens (Greece); Department of Mathematics, University of Athens, 15784 Greece (Greece)

2010-09-15T23:59:59.000Z

419

Highlights of the 2009 SEG summer research workshop on ""CO2 sequestration geophysics  

SciTech Connect

The 2009 SEG Summer Research Workshop on 'CO{sub 2} Sequestration Geophysics' was held August 23-27, 2009 in Banff, Canada. The event was attended by over 100 scientists from around the world, which proved to be a remarkably successful turnout in the midst of the current global financial crisis and severe corporate travel restrictions. Attendees included SEG President Larry Lines (U. Calgary), and CSEG President John Downton (CGG Veritas), who joined SRW Chairman David Lumley (UWA) in giving the opening welcome remarks at the Sunday Icebreaker. The workshop was organized by an expert technical committee representing a good mix of industry, academic, and government research organizations. The format consisted of four days of technical sessions with over 60 talks and posters, plus an optional pre-workshop field trip to the Columbia Ice Fields to view firsthand the effects of global warming on the Athabasca glacier. Group technical discussion was encouraged by requiring each presenter to limit themselves to 15 minutes of presentation followed by a 15 minute open discussion period. Technical contributions focused on the current and future role of geophysics in CO{sub 2} sequestration, highlighting new research and field-test results with regard to site selection and characterization, monitoring and surveillance, using a wide array of geophysical techniques. While there are too many excellent contributions to mention all individually here, in this paper we summarize some of the key workshop highlights in order to propagate new developments to the SEG community at large.

Huang, Lianjie [Los Alamos National Laboratory; Lumley, David [U. W. AUSTRALIA; Sherlock, Don [CHEVRON; Daley, Tom [LBNL; Lawton, Don [U CALGARY; Masters, Ron [SHELL; Verliac, Michel [SCHLUMBERGER; White, Don [GEOL. SURVEY CANADA

2009-01-01T23:59:59.000Z

420

Karst characterization in a semi-arid region using gravity, seismic, and resistivity geophysical techniques.  

SciTech Connect

We proposed to customize emerging in situ geophysical monitoring technology to generate time-series data during sporadic rain events in a semi-arid region. Electrodes were to be connected to wireless %5Cnodes%22 which can be left in the eld for many months. Embedded software would then increase sampling frequency during periods of rainfall. We hypothesized that this contrast between no-volume ow in karst passageways dur- ing dry periods and partial- or saturated-volume ow during a rain event is detectable by these Wireless Sensor Network (WSN) geophysical nodes, we call this a Wireless Resistivity Network (WRN). The development of new methodologies to characterize semi-arid karst hydrology is intended to augment Sandia National Laboratorys mission to lead e orts in energy technologies, waste disposal and climate security by helping to identify safe and secure regions and those that are at risk. Development and initial eld testing identi ed technological barriers to using WRNs for identifying semi-arid karst, exposing R&D which can be targeted in the future. Gravity, seismic, and resis- tivity surveys elucidated how each technique might e ectively be used to characterize semi-arid karst. This research brings to light the importance and challenges with char- acterizing semi-arid karst through a multi-method geophysical study. As there have been very few studies with this emphasis, this study has expanded the body of practical experience needed to protect the nations water and energy security interests.

Barnhart, Kevin Scott

2013-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Highlights of the 2009 SEG summer research workshop on"CO2 Sequestration Geophysics"  

Science Conference Proceedings (OSTI)

The 2009 SEG Summer Research Workshop on CO2 Sequestration Geophysics was held August 23-27, 2009 in Banff, Canada. The event was attended by over 100 scientists from around the world, which proved to be a remarkably successful turnout in the midst of the current global financial crisis and severe corporate travel restrictions. Attendees included SEG President Larry Lines (U. Calgary), and CSEG President John Downton (CGG Veritas), who joined SRW Chairman David Lumley (UWA) in giving the opening welcome remarks at the Sunday Icebreaker. The workshop was organized by an expert technical committee (see side bar) representing a good mix of industry, academic, and government research organizations. The format consisted of four days of technical sessions with over 60 talks and posters, plus an optional pre-workshop field trip to the Columbia Ice Fields to view firsthand the effects of global warming on the Athabasca glacier (Figures 1-2). Group technical discussion was encouraged by requiring each presenter to limit themselves to 15 minutes of presentation followed by a 15 minute open discussion period. Technical contributions focused on the current and future role of geophysics in CO2 sequestration, highlighting new research and field-test results with regard to site selection and characterization, monitoring and surveillance, using a wide array of geophysical techniques. While there are too many excellent contributions to mention all individually here, in this paper we summarize some of the key workshop highlights in order to propagate new developments to the SEG community at large.

Lumley, D.; Sherlock, D.; Daley, T.; Huang, L.; Lawton, D.; Masters, R.; Verliac, M.; White, D.

2010-01-15T23:59:59.000Z

422

GPA a tool for fluid scalability analysis of massively parallel systems  

E-Print Network (OSTI)

analysis, GPA first generates an abstract representation of the system of ODEs and then dynamically. Hayden, and J. T. Bradley, "Fluid Analysis of Energy Consumption using Rewards in Massively ParallelGPA ­ a tool for fluid scalability analysis of massively parallel systems Anton Stefanek Richard A

Imperial College, London

423

J . Fluid Mech. (1981),vol. 106, pp. 103-130 Printed in Great Britairz  

E-Print Network (OSTI)

small enough, fluid flow generated by the sheet produces forces on the sheet that affect the energy)generating forces in the body of the flow,e.g. extracting energyfromorinjecting energy into the flow work on geo-, astro- and cosmological fluid dynamics is also important pure research which may have

Hunt, Julian

424

J . Fluid Mech. (1989),vol. 207, p p . 133-152 Printed in Great Britain  

E-Print Network (OSTI)

with a fixed randomly generated velocity field. At infinite resolution, the modified dynamics with energyJ . Fluid Mech. (1989),vol. 207, p p . 133-152 Printed in Great Britain 133 Extremal energy) Certain modifications of the Euler equations of fluid motion lead to systems in which the energy decays

Vallis, Geoff

425

J . Fluid Mech. (1990),vol. 213, pp. 54S571 Printed in Great Britain  

E-Print Network (OSTI)

the modified dynamics, (1.4) %l-+5*Vq = 0, at #12;Stable states of inviscid fluids 551 also conserves q on all particles. If the 8 can be chosen at each moment in such a way that the total energy of the fluid must a smoothly distributed, randomly generated vorticity field. 4.1. Energy minimization :Kelvin's sponge Kelvin

Vallis, Geoff

426

Fluid bed material transfer method  

DOE Patents (OSTI)

A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

Pinske, Jr., Edward E. (Akron, OH)

1994-01-01T23:59:59.000Z

427

Encapsulated Nanoparticle Synthesis and Characterization for Improved Storage Fluids: Preprint  

DOE Green Energy (OSTI)

Nanoparticles are typically composed of 50--500 atoms and exhibit properties that are significantly different from the properties of larger, macroscale particles that have the same composition. The addition of these particles to traditional fluids may improve the fluids' thermophysical properties. As an example, the addition of a nanoparticle or set of nanoparticles to a storage fluid may double its heat capacity. This increase in heat capacity would allow a sensible thermal energy storage system to store the same amount of thermal energy in half the amount of storage fluid. The benefit is lower costs for the storage fluid and the storage tanks, resulting in lower-cost electricity. The goal of this long-term research is to create a new class of fluids that enable concentrating solar power plants to operate with greater efficiency and lower electricity costs. Initial research on this topic developed molecular dynamic models that predicted the energy states and transition temperatures for these particles. Recent research has extended the modeling work, along with initiating the synthesis and characterization of bare metal nanoparticles and metal nanoparticles that are encapsulated with inert silica coatings. These particles possess properties that make them excellent candidates for enhancing the heat capacity of storage fluids.

Glatzmaier, G. C.; Pradhan, S.; Kang, J.; Curtis, C.; Blake, D.

2010-10-01T23:59:59.000Z

428

Acoustic concentration of particles in fluid flow  

DOE Patents (OSTI)

An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

Ward, Michael D. (Los Alamos, NM); Kaduchak, Gregory (Los Alamos, NM)

2010-11-23T23:59:59.000Z

429

It's The Fluids SEG Honorary Lecture  

E-Print Network (OSTI)

T.P. Water Butane CO2 #12;Fluid ­ Density 800 1000 1200FluidDensity[kg/m3] Brine CO2 0 2 4 6 8 10 0 200 400 600 Fluid Pressure [MPa] FluidDensity[kg/m Butane CO2 #12;Fluid ­ Modulus 2000 2500 3000 FluidModulus[MPa] Brine 0 2 4 6 8 10 0 500 1000 1500 Fluid Pressure [MPa] FluidModulus[MPa] Butane CO2 #12;GENERAL PHASE

430

Volatiles in hydrothermal fluids- A mass spectrometric study of fluid  

Open Energy Info (EERE)

Volatiles in hydrothermal fluids- A mass spectrometric study of fluid Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Volatiles in hydrothermal fluids- A mass spectrometric study of fluid inclusions from active geothermal systems Details Activities (4) Areas (4) Regions (0) Abstract: A system for analysis of inclusion gas contents based upon quadrupole mass spectrometry has been designed, assembled and tested during the first 7 months of funding. The system is currently being tested and calibrated using inclusions with known gas contents from active geothermal systems. Analyses are in progress on inclusions from the Salton Sea, Valles Caldera, Geysers, and Coso geothermal systems. Author(s): Mckibben, M. A.

431

Hydrodynamic modes in a confined granular fluid  

E-Print Network (OSTI)

Confined granular fluids, placed in a shallow box that is vibrated vertically, can achieve homogeneous stationary states thanks to energy injection mechanisms that take place throughout the system. These states can be stable even at high densities and inelasticities allowing for a detailed analysis of the hydrodynamic modes that govern the dynamics of granular fluids. Analyzing the decay of the time correlation functions it is shown that there is a crossover between a quasielastic regime in which energy evolves as a slow mode, to a inelastic regime, with energy slaved to the other conserved fields. The two regimes have well differentiated transport properties and, in the inelastic regime, the dynamics can be described by a reduced hydrodynamics with modified longitudinal viscosity and sound speed. The crossover between the two regimes takes place at a wavevector that is proportional to the inelasticity. A two dimensional granular model, with collisions that mimic the energy transfers that take place in a confined system is studied by means of microscopic simulations. The results show excellent agreement with the theoretical framework and allows the validation of hydrodynamic-like models.

Ricardo Brito; Dino Risso; Rodrigo Soto

2013-01-17T23:59:59.000Z

432

Newtonian and Post Newtonian Expansionfree Fluid Evolution in f(R) Gravity  

E-Print Network (OSTI)

We consider a collapsing sphere and discuss its evolution under the vanishing expansion scalar in the framework of $f(R)$ gravity. The fluid is assumed to be locally anisotropic which evolves adiabatically. To study the dynamics of the collapsing fluid, Newtonian and post Newtonian regimes are taken into account. The field equations are investigated for a well-known $f(R)$ model of the form $R+\\delta R^2$ admitting Schwarzschild solution. The perturbation scheme is used on the dynamical equations to explore the instability conditions of expansionfree fluid evolution. We conclude that instability conditions depend upon pressure anisotropy, energy density and some constraints arising from this theory.

M. Sharif; H. Rizwana Kausar

2011-11-11T23:59:59.000Z

433

Time Scales of Terrestrial Carbon Response Related to Land-Use Application: Implications for Initializing an Earth System Model  

Science Conference Proceedings (OSTI)

The dynamic vegetation and carbon cycling component, LM3V, of the Geophysical Fluid Dynamics Laboratory (GFDL) prototype Earth system model (ESM2.1), has been designed to simulate the effects of land use on terrestrial carbon pools, including ...

Lori T. Sentman; Elena Shevliakova; Ronald J. Stouffer; Sergey Malyshev

2011-10-01T23:59:59.000Z

434

The New GFDL Global Atmosphere and Land Model AM2LM2: Evaluation with Prescribed SST Simulations  

Science Conference Proceedings (OSTI)

The configuration and performance of a new global atmosphere and land model for climate research developed at the Geophysical Fluid Dynamics Laboratory (GFDL) are presented. The atmosphere model, known as AM2, includes a new gridpoint dynamical ...

2004-12-01T23:59:59.000Z

435

Ultrasonic fluid quality sensor system  

SciTech Connect

A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

2002-10-08T23:59:59.000Z

436

Ultrasonic Fluid Quality Sensor System  

DOE Patents (OSTI)

A system for determining the composition of a multiple-component fluid and for determining linear flow comprising at least one sing-around circuit that determines the velocity of a signal in the multiple-component fluid and that is correlatable to a database for the multiple-component fluid. A system for determining flow uses two of the inventive circuits, one of which is set at an angle that is not perpendicular to the direction of flow.

Gomm, Tyler J. (Meridian, ID); Kraft, Nancy C. (Idaho Falls, ID); Phelps, Larry D. (Pocatello, ID); Taylor, Steven C. (Idaho Falls, ID)

2003-10-21T23:59:59.000Z

437

MOLTEN SALT HEAT TRANSFER FLUID  

thermal energy storage tanks Sandia has developed a heat transfer fluid (HTF) for use at elevated temperatures that has a lower freezing point

438

Parallel adaptive fluid-structure interaction simulation of explosions impacting on building structures  

SciTech Connect

We pursue a level set approach to couple an Eulerian shock-capturing fluid solver with space-time refinement to an explicit solid dynamics solver for large deformations and fracture. The coupling algorithms considering recursively finer fluid time steps as well as overlapping solver updates are discussed in detail. Our ideas are implemented in the AMROC adaptive fluid solver framework and are used for effective fluid-structure coupling to the general purpose solid dynamics code DYNA3D. Beside simulations verifying the coupled fluid-structure solver and assessing its parallel scalability, the detailed structural analysis of a reinforced concrete column under blast loading and the simulation of a prototypical blast explosion in a realistic multistory building are presented.

Deiterding, Ralf [ORNL; Wood, Stephen L [University of Tennessee, Knoxville (UTK)

2013-01-01T23:59:59.000Z

439

Large Scale Computing Requirements for Basic Energy Sciences (An BES / ASCR / NERSC Workshop) Hilton Washington DC/Rockville Meeting Center, Rockville MD 3D Geophysical Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

Requirements Requirements for Basic Energy Sciences (An BES / ASCR / NERSC Workshop) Hilton Washington DC/Rockville Meeting Center, Rockville MD 3D Geophysical Modeling and Imaging G. A. Newman Lawrence Berkeley National Laboratory February 9 - 10 , 2010 Talk Outline * SEAM Geophysical Modeling Project - Its Really Big! * Geophysical Imaging (Seismic & EM) - Its 10 to 100x Bigger! - Reverse Time Migration - Full Waveform Inversion - 3D Imaging & Large Scale Considerations - Offshore Brazil Imaging Example (EM Data Set) * Computational Bottlenecks * Computing Alternatives - GPU's & FPGA's - Issues Why ? So that the resource industry can tackle grand geophysical challenges (Subsalt imaging, land acquisition, 4-D, CO2, carbonates ......) SEAM Mission Advance the science and technology of applied

440

Fluid equations in the presence of electron cyclotron current drive  

Science Conference Proceedings (OSTI)

Two-fluid equations, which include the physics imparted by an externally applied radiofrequency source near electron cyclotron resonance, are derived in their extended magnetohydrodynamic forms using the formalism of Hegna and Callen [Phys. Plasmas 16, 112501 (2009)]. The equations are compatible with the closed fluid/drift-kinetic model developed by Ramos [Phys. Plasmas 17, 082502 (2010); 18, 102506 (2011)] for fusion-relevant regimes with low collisionality and slow dynamics, and they facilitate the development of advanced computational models for electron cyclotron current drive-induced suppression of neoclassical tearing modes.

Jenkins, Thomas G.; Kruger, Scott E. [Tech-X Corporation, 5621 Arapahoe Avenue, Boulder, Colorado 80303 (United States)

2012-12-15T23:59:59.000Z

Note: This page contains sample records for the topic "geophysical fluid dynamics" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fracturing Fluid Characterization Facility  

NLE Websites -- All DOE Office Websites (Extended Search)

Documentation Page Documentation Page 1. Report No. DE - FC 21 - 92MC29077 2. 3. Recipient's Accession No. 5. Report Date August 31, 2000 4. Title and Subtitle Fracturing Fluid Characterization Facility 6. 7. Author(s) The University of Oklahoma 8. Performing Organization Rept. No. 10. Project/Task/Work Unit No. 9. Performing Organization Name and Address The University of Oklahoma Sarkeys Energy Center T301 100 E Boyd St Norman, OK 73019 11. Contract (C) or Grant (G) No. DOE:DE FC21 92 MC29077 13. Type of Report & Period Covered Final Report 09 30 92 - 03 31 00 12. Sponsoring Organization Name and Address US Dept of Energy - FETL 3610 Collins Ferry Road Morgantown, WV 26505 14. 15. Supplementary Notes Several technical papers were prepared and presented at various Society of Petroleum Engineers Conferences and US

442

Comparative assessment of five potential sites for magma: hydrothermal systems - geophysics  

DOE Green Energy (OSTI)

As part of a comparative assessment for the Continental Scientific Drilling Program, geophysical data were used, to characterize and evaluate potential magma-hydrothermal targets at five drill sites in the western United States. The sites include Roosevelt Hot Springs, Utah, the Rio Grande Rift, New Mexico, and The Geysers-Clear Lake, Long Valley, and Salton Trough areas, California. This summary discusses the size, depth, temperature, and setting of each potential target, as well as relvant scientific questions about their natures and the certainty of their existence.

Kasameyer, P.

1980-09-02T23:59:59.000Z

443

Inertial Coupling Method for particles in an incompressible fluctuating fluid  

E-Print Network (OSTI)

We develop an inertial coupling method for modeling the dynamics of point-like 'blob' particles immersed in an incompressible fluid, generalizing previous work for compressible fluids. The coupling consistently includes excess (positive or negative) inertia of the particles relative to the displaced fluid, and accounts for thermal fluctuations in the fluid momentum equation. The coupling between the fluid and the blob is based on a no-slip constraint equating the particle velocity with the local average of the fluid velocity, and conserves momentum and energy. We demonstrate that the formulation obeys a fluctuation-dissipation balance, owing to the non-dissipative nature of the no-slip coupling. We develop a spatio-temporal discretization that preserves, as best as possible, these properties of the continuum formulation. In the spatial discretization, the local averaging and spreading operations are accomplished using compact kernels commonly used in immersed boundary methods. We find that the special properties of these kernels make the discrete blob a particle with surprisingly physically-consistent volume, mass, and hydrodynamic properties. We develop a second-order semi-implicit temporal integrator that maintains discrete fluctuation-dissipation balance, and is not limited in stability by viscosity. Furthermore, the temporal scheme requires only constant-coefficient Poisson and Helmholtz linear solvers, enabling a very efficient and simple FFT-based implementation on GPUs. We numerically investigate the performance of the method on several standard test problems...

F. Balboa Usabiaga; R. Delgado-Buscalioni; B. E. Griffith; A. Donev

2012-12-27T23:59:59.000Z

444

J . Fluid Mech. (1980),vol. 100, part 4, pp. 705-737 Printed in &eat Britain  

E-Print Network (OSTI)

J . Fluid Mech. (1980),vol. 100, part 4, pp. 705-737 Printed in &eat Britain 706 Vortex dynamics, and if they equilibrate between mergings, conservation of energy and angular momentum #12;Vortex dynamics of the turbulent, with vortices of one generation merging to form the larger vortices of the next generation. The reader

Siggia, Eric

445

Hybrid atomistic-continuum method for the simulation of dense fluid flows  

Science Conference Proceedings (OSTI)

We present a hybrid atomistic-continuum method for multiscale simulations of dense fluids. In this method, the atomistic part is described using a molecular dynamics description, while the continuum flow is described by a finite volume discretization ... Keywords: Hybrid algorithms, Molecular dynamics, Multiscale simulation, Nanofluidics

Thomas Werder; Jens H. Walther; Petros Koumoutsakos

2005-05-01T23:59:59.000Z

446

Fracturing fluids -- then and now  

Science Conference Proceedings (OSTI)

Fracturing fluid provides the means by which the hydraulic fracturing process can take place. All applications of well stimulation by fracturing must include selection of fracturing fluid in the initial phases of fracture design and treatment planning. Fracturing fluid has two important purposes: (1) to provide sufficient viscosity to suspend and transport proppant deep into the created fracture system and (2) to decompose, or break, chemically to a low viscosity to allow flowback of a major part of the fluid to the surface for fracture cleanup after the treatment is completed. Because of the importance of its rheological properties and behavior in the fracture under reservoir conditions during (and immediately after) the treatment, service company research laboratories have spent millions of dollars on R and D of fracturing fluids.

Jennings, A.R. Jr. [Enhanced Well Stimulation Inc., Plano, TX (United States)

1996-07-01T23:59:59.000Z

447

Fluid Inclusion Analysis At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

Fluid Inclusion Analysis At Raft River Geothermal Area (2011) Fluid Inclusion Analysis At Raft River Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Raft River Geothermal Area (2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Fluid Inclusion Analysis Activity Date 2011 Usefulness not indicated DOE-funding Unknown Notes Hydrogen isotope values of muscovite (δDMs ∼-100‰) and fluid inclusions in quartz (δDFluid ∼-85‰) indicate the presence of meteoric fluids during detachment dynamics. Recrystallized grain-shape fabrics and quartz c-axis fabric patterns reveal a large component of coaxial strain (pure shear), consistent with thinning of the detachment section. Therefore, the high thermal gradient preserved in the Raft River

448

Helium measurements of pore-fluids obtained from SAFOD drillcore  

SciTech Connect

{sup 4}He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk {sup 4}He diffusion coefficient of 3.5 {+-} 1.3 x 10{sup -8} cm{sup 2}s{sup -1} at 21 C, compared to previously published diffusion coefficients of 1.2 x 10{sup -18} cm{sup 2}s{sup -1} (21 C) to 3.0 x 10{sup -15} cm{sup 2}s{sup -1} (150 C) in the sands and clays. Correcting the diffusion coefficient of {sup 4}He{sub water} for matrix porosity ({approx}3%) and tortuosity ({approx}6-13) produces effective diffusion coefficients of 1 x 10{sup -8} cm{sup 2}s{sup -1} (21 C) and 1 x 10{sup -7} (120 C), effectively isolating pore fluid {sup 4}He from the {sup 4}He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 {+-} 0.4% (SD, n=4) and mudstones 3.1 {+-} 0.8% (SD, n=4).

Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.; Kennedy, B.M.

2010-04-15T23:59:59.000Z

449

Helium measurements of pore-fluids obtained from SAFOD drillcore  

Science Conference Proceedings (OSTI)

{sup 4}He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk {sup 4}He diffusion coefficient of 3.5 {+-} 1.3 x 10{sup -8} cm{sup 2}s{sup -1} at 21 C, compared to previously published diffusion coefficients of 1.2 x 10{sup -18} cm{sup 2}s{sup -1} (21 C) to 3.0 x 10{sup -15} cm{sup 2}s{sup -1} (150 C) in the sands and clays. Correcting the diffusion coefficient of {sup 4}He{sub water} for matrix porosity ({approx}3%) and tortuosity ({approx}6-13) produces effective diffusion coefficients of 1 x 10{sup -8} cm{sup 2}s{sup -1} (21 C) and 1 x 10{sup -7} (120 C), effectively isolating pore fluid {sup 4}He from the {sup 4}He contained in the rock matrix. Model calculations indicate that fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 {+-} 0.4% (SD, n=4) and mudstones 3.1 {+-} 0.8% (SD, n=4).

Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.; Kennedy, B.M.

2010-04-15T23:59:59.000Z

450

Comparison of Geophysical Model Functions for SAR Wind Speed Retrieval in Japanese Coastal Waters  

E-Print Network (OSTI)

Abstract: This work discusses the accuracies of geophysical model functions (GMFs) for retrieval of sea surface wind speed from satellite-borne Synthetic Aperture Radar (SAR) images in Japanese coastal waters characterized by short fetches and variable atmospheric stability conditions. In situ observations from two validation sites, Hiratsuka and Shirahama, are used for comparison of the retrieved sea surface wind speeds using CMOD (C-band model)4, CMOD_IFR2, CMOD5 and CMOD5.N. Of all the geophysical model functions (GMFs), the latest C-band GMF, CMOD5.N, has the smallest bias and root mean square error at both sites. All of the GMFs exhibit a negative bias in the retrieved wind speed. In order to understand the reason for this bias, all SAR-retrieved wind speeds are separated into two categories: onshore wind (blowing from sea to land) and offshore wind (blowing from land to sea). Only offshore winds were found to exhibit the large negative bias, and short fetches from the coastline may be a possible reason for this. Moreover, it is clarified that in both the unstable and stable conditions, CMOD5.N has atmospheric stability effectiveness, and can keep the same accuracy with CMOD5 in the neutral condition. In short, at the moment, CMOD5.N is thought to be the most promising GMF

Yuko Takeyama; Teruo Ohsawa; Katsutoshi Kozai; Charlotte Bay Hasager; Merete Badger

2013-01-01T23:59:59.000Z

451

Radioactive Waste Isolation in Salt: Peer review of documents dealing with geophysical investigations  

Science Conference Proceedings (OSTI)

The Salt Repository Project, a US Department of Energy program to develop a mined repository in salt for high-level radioactive waste, is governed by a complex and sometimes inconsistent array of laws, administrative regulations, guidelines, and position papers. In conducting multidisciplinary peer reviews of contractor documents in support of this project, Argonne National Laboratory has needed to inform its expert reviewers of these governmental mandates, with particular emphasis on the relationship between issues and the technical work undertaken. This report acquaints peer review panelists with the regulatory framework as it affects their reviews of site characterization plans and related documents, including surface-based and underground test plans. Panelists will be asked to consider repository performance objectives and issues as they judge the adequacy of proposed geophysical testing. All site-specific discussions relate to the Deaf Smith County site in Texas, which was approved for site characterization by the President in May 1986. Natural processes active at the Deaf Smith County site and the status of geophysical testing near the site are reviewed briefly. 25 refs., 4 figs., 5 tabs.

McGinnis, L.D.; Bowen, R.H.

1987-03-01T23:59:59.000Z

452

Post-Injection Geophysical Evaluation of the Winding Ridge Site CRADA 98-F012, Final Report  

SciTech Connect

Acid mine drainage (AMD) from underground mines is a major environmental problem. The disposal of coal combustion by-products (CCB) is also a major national problem due to the large volumes produced annually and the economics associated with transportation and environmentally safe disposal. The concept of returning large volumes of the CCB to their point of origin, underground mines, and using the typically alkaline and pozzolanic attributes of the waste material for the remediation of AMD has been researched rather diligently during the past few years by various federal and state agencies and universities. As the result, the State of Maryland initiated a full-scale demonstration of this concept in a small, 5-acre, unmapped underground mine located near Friendsville, MD. Through a cooperative agreement between the State of Maryland and the U.S. Department of Energy, several geophysical techniques were evaluated as potential tools for the post-injection evaluation of the underground mine site. Three non-intrusive geophysical surveys, two electromagnetic (EM) techniques and magnetometry, were conducted over the Frazee Mine, which is located on Winding Ridge near Friendsville, MD. The EM surveys were conducted to locate ground water in both mine void and overburden. The presence of magnetite, which is naturally inherent to CCB'S due to the combustion process and essentially transparent in sedimentary rock, provided the reason for using magnetometry to locate the final resting place of the CCB grout.

Connie Lyons; Richard Current; Terry Ackman

1998-09-16T23:59:59.000Z

453

Marine geophysical study of cyclic sedimentation and shallow sill intrusion in the floor of the Central Gulf of California  

E-Print Network (OSTI)

drilling results found extensive evidence of sill-driven fluid-Drilling results confirmed (Kastner, 1982) that vertical discharge hydrothermal fluids

Kluesner, Jared W.

2011-01-01T23:59:59.000Z

454

Fluid flow monitoring device  

DOE Patents (OSTI)

This invention consists of a flow meter and temperature measuring device comprising a tube with a body centered therein for restricting flow and a sleeve at the upper end of the tube to carry several channels formed longitudinally in the sleeve to the appropriate axial location where they penetrate the tube to allow pressure measurements and temperature measurements with thermocouples. The high pressure measurement is made using a channel penetrating the tube away from the body and the low pressure measurement is made at a location at the widest part of the body. An end plug seals the end of the device and holes at its upper end allow fluid to pass from the interior of the tube into a plenum. The channels are made by cutting grooves in the sleeve, the grooves widened at the surface of the sleeve and then a strip of sleeve material is welded to the grooves closing the channels. Preferably the sleeve is packed with powdered graphite before cutting the grooves and welding the strips.

McKay, M.D.; Sweeney, C.E.

1991-03-05T23:59:59.000Z

455

Fluid sampling system  

DOE Patents (OSTI)

An fluid sampling system allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped upwardly into a sampling jet of a venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decreased, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodically leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

Houck, Edward D. (Idaho Falls, ID)

1994-01-01T23:59:59.000Z

456

Fluid sampling system  

DOE Patents (OSTI)

This invention comprises a fluid sampling system which allows sampling of radioactive liquid without spillage. A feed tank is connected to a liquid transfer jet powered by a pumping chamber pressurized by compressed air. The liquid is pumped up into a sampling jet of venturi design having a lumen with an inlet, an outlet, a constricted middle portion, and a port located above the constricted middle portion. The liquid is passed under pressure through the constricted portion causing its velocity to increase and its pressure to decrease, thereby preventing liquid from escaping. A septum sealing the port can be pierced by a two pointed hollow needle leading into a sample bottle also sealed by a pierceable septum affixed to one end. The bottle is evacuated by flow through the sample jet, cyclic variation in the sampler jet pressure periodicially leaves the evacuated bottle with lower pressure than that of the port, thus causing solution to pass into the bottle. The remaining solution in the system is returned to the feed tank via a holding tank.

Houck, E.D.

1993-12-31T23:59:59.000Z

457