National Library of Energy BETA

Sample records for geology water geochemistry

  1. Geology, Water Geochemistry And Geothermal Potential Of The Jemez...

    Open Energy Info (EERE)

    Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  2. CMI Education Course Inventory: Geology Engineering/Geochemistry...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Course Inventory: Geology EngineeringGeochemistry Geology EngineeringGeochemistry Of the six CMI Team members that are educational institutions, five offer courses in Geology....

  3. Geochemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the safe deep-geologic disposal of radioactive waste. Geochemistry XRD analysis of corrosion products using anoxic sample holder Sandia National Laboratories is a multi-program...

  4. Interplay between microorganisms and geochemistry in geological carbon storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Altman, Susan J.; Kirk, Matthew Fletcher; Santillan, Eugenio-Felipe U.; Bennett, Philip C.

    2016-02-28

    Researchers at the Center for Frontiers of Subsurface Energy Security (CFSES) have conducted laboratory and modeling studies to better understand the interplay between microorganisms and geochemistry for geological carbon storage (GCS). We provide evidence of microorganisms adapting to high pressure CO2 conditions and identify factors that may influence survival of cells to CO2 stress. Factors that influenced the ability of cells to survive exposure to high-pressure CO2 in our experiments include mineralogy, the permeability of cell walls and/or membranes, intracellular buffering capacity, and whether cells live planktonically or within biofilm. Column experiments show that, following exposure to acidic water, biomassmore » can remain intact in porous media and continue to alter hydraulic conductivity. Our research also shows that geochemical changes triggered by CO2 injection can alter energy available to populations of subsurface anaerobes and that microbial feedbacks on this effect can influence carbon storage. Our research documents the impact of CO2 on microorganisms and in turn, how subsurface microorganisms can influence GCS. Furthermore, we conclude that microbial presence and activities can have important implications for carbon storage and that microorganisms should not be overlooked in further GCS research.« less

  5. Water geochemistry study of Indian Wells Valley, Inyo and Kern...

    Open Energy Info (EERE)

    Final report Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Water geochemistry study of Indian Wells Valley, Inyo and Kern Counties, California....

  6. Geology and geochemistry of crude oils, Bolivar coastal fields, Venezuela

    SciTech Connect (OSTI)

    Bockmeulen, H.; Barker, C.; Dickey, P.A.

    1983-02-01

    The Bolivar Coastal Fields (BCF) are located on the eastern margin of Lake Maracaibo, Venezuela. They form the largest oil field outside of the Middle East and contain mostly heavy oil with a gravity less than 22/sup 0/ API. Thirty crude oils from the BCF were collected along two parallel and generally southwest-northeast trends. These oils were characterized by their API gravity, percent saturates, aromatics, NSO and asphalitic compounds, gas chromatograms for whole oils, C/sub 4/-C/sub 7/ fractions, and aromatics. Also, 24 associated waters were sampled and analyzed for Ca/sup + +/, Mg/sup + +/, Na/sup +/, HCO/sub 3//sup -/, CO/sub 3//sup - -/, SO/sub 4//sup - -/, pH, and total dissolved solids (TDS). The geological and geochemical significances of these analyses are discussed with particular emphasis on the genesis of the petroleum.

  7. The geochemistry of formation waters in the Molasse basin of upper Austria

    SciTech Connect (OSTI)

    Andrews, J.N.; Youngman, M.J. ); Goldbrunner, J.E. ); Darling, W.G. )

    1987-01-01

    The geochemistry of formation waters in the Molasse basin of Upper Austria has been investigated to ascertain the extent of meteoric water replacement of the connate interstitial fluids in these sediments. The chemistry, isotopic composition, and dissolved gas contents of the groundwaters and of oil and gas associated brines have been determined. The most superficial sediments of the basin, the Innviertel (Miocene), have been completely flushed by meteoric waters within the last 200 ka. The underlying Hall and Puchkirchen formations (Miocene/Oligocene) form gas reservoirs for biogenic methane, and the associated formation water are chemically and isotopically modified connate brines of the original marine deposition. In the northeastern part of the basin, the connate brines of the deeper sediments (Cretaceous/Jurassic) have been partially or completely replaced by meteoric waters, whereas in the south of the basin these sediments contain high salinity fluids which are substantially of connate origin. These conclusions are supported by the stable isotope composition of the various brines. Oil-associated brines from the Eocene sediments contain large amounts of dissolved radiogenic {sup 40}Ar, which suggests that the oils have migrated from high-temperature environments. The overall geochemical situation confirms the existence of separate hydraulic systems with little interconnection in the several overlying geological horizons.

  8. Geochemistry of Thermal Waters in Long Valley, Mono County, California...

    Open Energy Info (EERE)

    Long Valley, California, issue sodium bicarbonate-chloride waters containing 1000-1420 mgl of dissolved solids. Thermal waters of sodium bicarbonate-chloride composition are...

  9. Geochemistry of clathrate-derived methane in Arctic Ocean waters

    SciTech Connect (OSTI)

    Elliott, S.M.; Reagan, M.T.; Moridis, G.J.; Cameron-Smith, P.J.

    2010-03-15

    Alterations to the composition of seawater are estimated for microbial oxidation of methane from large polar clathrate destabilizations, which may arise in the coming century. Gas fluxes are taken from porous flow models of warming Arctic sediment. Plume spread parameters are then used to bracket the volume of dilution. Consumption stoichiometries for the marine methanotrophs are based on growth efficiency and elemental/enzyme composition data. The nutritional demand implied by extra CH{sub 4} removal is compared with supply in various high latitude water masses. For emissions sized to fit the shelf break, reaction potential begins at one hundred micromolar and falls to order ten a thousand kilometers downstream. Oxygen loss and carbon dioxide production are sufficient respectively to hypoxify and acidify poorly ventilated basins. Nitrogen and the monooxygenase transition metals may be depleted in some locations as well. Deprivation is implied relative to existing ecosystems, along with dispersal of the excess dissolved gas. Physical uncertainties are inherent in the clathrate abundance, patch size, outflow buoyancy and mixing rate. Microbial ecology is even less defined but may involve nutrient recycling and anaerobic oxidizers.

  10. Environmental geochemistry for surface and subsurface waters in the Pajarito Plateau and outlying areas, New Mexico

    SciTech Connect (OSTI)

    Blake, W.D.; Goff, F.; Adams, A.I.; Counce, D.

    1995-05-01

    This report provides background information on waters in the Los Alamos and Santa Fe regions of northern New Mexico. Specifically, the presented data include major element, trace element, and isotope analyses of 130 water samples from 94 different springs, wells, and water bodies in the area. The region considered in this study extends from the western edge of the Valles Caldera to as far east as Santa Fe Lake. For each sample, the presented analysis includes fourteen different major elements, twenty-six trace elements, up to five stable isotopes, and tritium. In addition, this data base contains certain characteristics of the water that are calculated from the aforementioned raw data, including the water`s maximum and minimum residence times, as found from tritium levels assuming no contamination, the water`s recharge elevation, as found from stable isotopes, and the charge balance of the water. The data in this report are meant to provide background information for investigations in groundwater hydrology and geochemistry, and for environmental projects. For the latter projects, the presented information would be useful for determining the presence of contamination it any one location by enabling one to compare potential contaminant levels to the background levels presented here. Likely locations of interest are those possibly effected by anthropogenic activities, including locations in and around Los Alamos National Laboratory, White Rock Canyon, and developed areas in the Rio Grande Valley.

  11. Molecular Geochemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geochemistry - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear

  12. Geologic Water Storage in Pre-Columbian Peru

    SciTech Connect (OSTI)

    Fairley Jr., Jerry P.

    1997-07-14

    Agriculture in the arid and semi-arid regions that comprise much of present-day Peru, Bolivia, and Northern Chile is heavily dependent on irrigation; however, obtaining a dependable water supply in these areas is often difficult. The precolumbian peoples of Andean South America adapted to this situation by devising many strategies for transporting, storing, and retrieving water to insure consistent supply. I propose that the ''elaborated springs'' found at several Inka sites near Cuzco, Peru, are the visible expression of a simple and effective system of groundwater control and storage. I call this system ''geologic water storage'' because the water is stored in the pore spaces of sands, soils, and other near-surface geologic materials. I present two examples of sites in the Cuzco area that use this technology (Tambomachay and Tipon) and discuss the potential for identification of similar systems developed by other ancient Latin American cultures.

  13. Geographical features of global water cycle during warm geological epochs

    SciTech Connect (OSTI)

    Georgiadi, A.G.

    1996-12-31

    The impact of global warming on the water cycle can be extremely complex and diverse. The goal of the investigation was to estimate the geographic features of the mean annual water budget of the world during climatic optimums of the Holocene and the Eemian interglacial periods. These geological epochs could be used as analogs of climatic warming on 1 degree, centigrade and 2 degrees, centigrade. The author used the results of climatic reconstructions based on a simplified version of a GCM.

  14. Isotope geochemistry

    SciTech Connect (OSTI)

    Cole, D.R.; Curtis, D.B.; DePaolo, D.J.; Gerlach, T.M.; Laul, J.C.; Shaw, H.; Smith, B.M.; Sturchio, N.C.

    1990-09-01

    This document represents the consensus of members of the ad hoc Committee on Isotope Geochemistry in the US Department of Energy; the committee is composed of researchers in isotope geochemistry from seven of the national laboratories. Information included in this document was presented at workshops at Lawrence Berkeley Laboratory (April 1989) and at Los Alamos National Laboratory (August 1989).

  15. DOE workshop: Sedimentary systems, aqueous and organic geochemistry

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    A DOE workshop on sedimentary systems, aqueous and organic geochemistry was held July 15-16, 1993 at Lawrence Berkeley Laboratory. Papers were organized into several sections: Fundamental Properties, containing papers on the thermodynamics of brines, minerals and aqueous electrolyte solutions; Geochemical Transport, covering 3-D imaging of drill core samples, hydrothermal geochemistry, chemical interactions in hydrocarbon reservoirs, fluid flow model application, among others; Rock-Water Interactions, with presentations on stable isotope systematics of fluid/rock interaction, fluid flow and petotectonic evolution, grain boundary transport, sulfur incorporation, tracers in geologic reservoirs, geothermal controls on oil-reservoir evolution, and mineral hydrolysis kinetics; Organic Geochemistry covered new methods for constraining time of hydrocarbon migration, kinetic models of petroleum formation, mudstones in burial diagenesis, compound-specific carbon isotope analysis of petroleums, stability of natural gas, sulfur in sedimentary organic matter, organic geochemistry of deep ocean sediments, direct speciation of metal by optical spectroscopies; and lastly, Sedimentary Systems, covering sequence stratigraphy, seismic reflectors and diagenetic changes in carbonates, geochemistry and origin of regional dolomites, and evidence of large comet or asteroid impacts at extinction boundaries.

  16. Geochemistry, palynology, and regional geology of worldclass Upper Devonian source rocks in the Madre de Dios basin, Bolivia

    SciTech Connect (OSTI)

    Peters, K.E.; Conrad, K.T.; Carpenter, D.G.; Wagner, J.B.

    1996-08-01

    Recent exploration drilling indicates the existence of world-class source rock in the Madre de Dios basin, Bolivia. In the Pando-1 X and -2X wells, over 200 m of poorly bioturbated, organic-rich (TOC = 3-16 wt.%) prodelta to shelf mudstones in the Frasnian-Famennian Tomachi Formation contain oil-prone organic matter (hydrogen index = 400-600 mg HC/g TOC). Our calculated source prolificity indices for this interval in these wells (SPI = 15-18 tons of hydrocarbons per square meter of source rock) exceed that for the Upper Jurassic in Central Saudi Arabia. The Tomachi interval is lithologically equivalent to the Colpacucho Formation in the northern Altiplano, the Iquiri Formation in the Cordillera Oriental, and is coeval with other excellent source rocks in North America, Africa, and Eurasia. All of these rocks were deposited under conditions favorable for accumulation of organic matter, including a global highstand and high productivity. However, the Madre de Dios basin was situated at high latitude during the Late Devonian and some of the deposits are interpreted to be of glacial origin, indicating conditions not generally associated with organic-rich deposition. A biomarker and palynological study of Upper Devonian rocks in the Pando-1X well suggests deposition under conditions similar to certain modern fjords. High productivity resulted in preservation of abundant organic matter in the bottom sediments despite a cold, toxic water column. Low-sulfur crude oil produced from the Pando-1X well is geochemically similar to, but more mature than, extracts from associated organic-rich Tomachi samples, and was generated from deeper equivalents of these rocks.

  17. Compiled Multi-Lab Geochemistry Synoptic Survey (LANL, ORNL, LBNL), Barrow, Alaska; 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Brent Newman; Heather Throckmorton

    2012-07-18

    To assess the effects of microtopography and depth on ground water geochemistry in arctic polygonal terrain.

  18. Compiled Multi-Lab Geochemistry Synoptic Survey (LANL, ORNL, LBNL), Barrow, Alaska; 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Brent Newman; Heather Throckmorton

    To assess the effects of microtopography and depth on ground water geochemistry in arctic polygonal terrain.

  19. Distribution and geochemistry of contaminated subsurface waters in fissured volcanogenic bed rocks of the Lake Karachai Area, Chelyabinsk, Southern Urals

    SciTech Connect (OSTI)

    Solodov, I.N.; Belichkin, V.I.; Zotov, A.V.; Kochkin, B.T.; Drozhko, E.G.; Glagolev, A.V.; Skokov, A.N.

    1994-06-01

    The present investigation is devoted to the study of the distribution and geochemistry of contaminated subsurface waters, beneath the site of temporary storage of liquid radioactive waste known as Lake Karachai. For this purpose a method of hydrogeochemical logging (HGCL) together with standard hydrogeochemical and geophysical methods of uncased hole logging were used. The distribution of sodium nitrate brine plumes in the subsurface was determined by the physical and physico-chemical properties of these brines and by the petrochemical composition of enclosing rocks and the structural setting of the flow paths. The latter is represented by fractures and large faults in the bedrock of volcanogenic and volcanogenic-sedimentary rocks of intermediate-to-basic composition. The volcanogenic rocks are overlain in some places by a thin cover of unconsolidated sediments, i.e., by loams and relatively impermeable silts. Contaminated waters flow-in accordance with the eluvium bottom relief towards local areas of natural (Mishelyak and Techa rivers) and artificial (Novogomenskii water intake) discharge of subsurface waters. The large Mishelyak fault, southwest of Lake Karachai and under fluvial sediments of the Mishelyak, is assumed to significantly influence the flow pattern of contaminated waters, diverting them from an intake of drinking water.

  20. Water geochemistry and hydrogeology of the shallow aquifer at Roosevelt Hot Springs, southern Utah: A hot dry rock prospect

    SciTech Connect (OSTI)

    Vuataz, F.D.; Goff, F.

    1987-12-01

    On the western edge of the geothermal field, three deep holes have been drilled that are very hot but mostly dry. Two of them (Phillips 9-1 and Acord 1-26 wells) have been studied by Los Alamos National Laboratory for the Hot Dry Rock (HDR) resources evaluation program. A review of data and recommendations have been formulated to evaluate the HDR geothermal potential at Roosevelt. The present report is directed toward the study of the shallow aquifer of the Milford Valley to determine if the local groundwater would be suitable for use as make-up water in an HDR system. This investigation is the result of a cooperative agreement between Los Alamos and Phillips Petroleum Co., formerly the main operator of the Roosevelt Hot Springs Unit. The presence of these hot dry wells and the similar setting of the Roosevelt area to the prototype HDR site at Fenton Hill, New Mexico, make Roosevelt a very good candidate site for creation of another HDR geothermal system. This investigation has two main objectives: to assess the water geochemistry of the valley aquifer, to determine possible problems in future make-up water use, such as scaling or corrosion in the wells and surface piping, and to assess the hydrogeology of the shallow groundwaters above the HDR zone, to characterize the physical properties of the aquifer. These two objectives are linked by the fact that the valley aquifer is naturally contaminated by geothermal fluids leaking out of the hydrothermal reservoir. In an arid region where good-quality fresh water is needed for public water supply and irrigation, nonpotable waters would be ideal for an industrial use such as injection into an HDR energy extraction system. 50 refs., 10 figs., 10 tabs.

  1. Geochemistry Of Waters In The Valley Of Ten Thousand Smokes Region...

    Open Energy Info (EERE)

    tuff lens deep in the 1912 ash-flow sheet of the upper River Lethe area. Bicarbonate-sulfate waters resulting from interaction of near-surface waters and the cooling 1953-1968...

  2. Hydrology and geochemistry of thermal ground water in southwestern Idaho and north-central Nevada

    SciTech Connect (OSTI)

    Young, H.W.; Lewis, R.E.

    1982-01-01

    Chemical analyses of water from 12 wells and 9 springs indicate that nonthermal waters are a calcium bicarbonate type; thermal waters are a sodium carbonate or bicarbonate type. Chemical geothermometers indicate probable maximum reservoir temperatures are near 100/sup 0/ Celsius. Concentration of tritium in the thermal water is near zero. Depletion of stable isotopes in the hot waters relative to present-day meteoric waters indicates recharge to the system probably occurred when the climate averaged 3/sup 0/ to 5/sup 0/ Celsius colder than at present. Temperatures about 3.5/sup 0/ Celsius colder than at present occurred during periods of recorded Holocene glacial advances and indicate a residence time of water in the system of at least several thousand years. Residence time calculated on the basis of reservoir volume and thermal-water discharge is 3400 to 6800 years for an effective reservoir porosity of 0.05 and 0.10, respectively. Preliminary analyses of carbon-14 determinations indicate an age of the hot waters of about 18,000 to 25,000 years. The proposed conceptual model for the area is one of an old system, where water has circulated for thousands, even tens of thousands, of years. Within constraints imposed by the model described, reservoir thermal energy for the geothermal system in southwestern Idaho and north-central Nevada is about 130 x 10/sup 18/ calories.

  3. Geology and geothermal waters of Lightning Dock region, Animas...

    Open Energy Info (EERE)

    geothermal waters of Lightning Dock region, Animas Valley and Pyramid Mountains, Hidalgo County, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  4. Noble Gas Geochemistry In Thermal Springs | Open Energy Information

    Open Energy Info (EERE)

    Noble Gas Geochemistry In Thermal Springs Abstract The composition of noble gases in both gas and water samples collected from Horseshoe Spring, Yellowstone National Park, was...

  5. Chena Hot Springs GRED III Project: Final Report Geology, Petrology...

    Open Energy Info (EERE)

    Springs GRED III Project: Final Report Geology, Petrology, Geochemistry, Hydrothermal Alteration, and Fluid Analyses Jump to: navigation, search OpenEI Reference LibraryAdd to...

  6. Favorable Geochemistry from Springs and Wells in COlorado

    SciTech Connect (OSTI)

    Zehner, Richard E.

    2012-02-01

    Citation Information: Originator: Geothermal Development Associates, Reno Nevada Originator: United States Geological Survey (USGS) Originator: Colorado Geological Survey Publication Date: 2012 Title: Favorable Geochemistry Edition: First Publication Information: Publication Place: Reno Nevada Publisher: Geothermal Development Associates, Reno, Nevada Description: This layer contains favorable geochemistry for high-temperature geothermal systems, as interpreted by Richard "Rick" Zehner. The data is compiled from the data obtained from the USGS. The original data set combines 15,622 samples collected in the State of Colorado from several sources including 1) the original Geotherm geochemical database, 2) USGS NWIS (National Water Information System), 3) Colorado Geological Survey geothermal sample data, and 4) original samples collected by R. Zehner at various sites during the 2011 field season. These samples are also available in a separate shapefile FlintWaterSamples.shp. Data from all samples were reportedly collected using standard water sampling protocols (filtering through 0.45 micron filter, etc.) Sample information was standardized to ppm (micrograms/liter) in spreadsheet columns. Commonly-used cation and silica geothermometer temperature estimates are included. Spatial Domain: Extent: Top: 4515595.841032 m Left: 149699.513964 m Right: 757959.309388 m Bottom: 4104156.435530 m Contact Information: Contact Organization: Geothermal Development Associates, Reno, Nevada Contact Person: Richard “Rick” Zehner Address: 3740 Barron Way City: Reno State: NV Postal Code: 89511 Country: USA Contact Telephone: 775-737-7806 Spatial Reference Information: Coordinate System: Universal Transverse Mercator (UTM) WGS’1984 Zone 13N False Easting: 500000.00000000 False Northing: 0.00000000 Central Meridian: -105.00000000 Scale Factor: 0.99960000 Latitude of Origin: 0.00000000 Linear Unit: Meter Datum: World Geodetic System 1984 (WGS ’1984) Prime Meridian: Greenwich Angular Unit: Degree Digital Form: Format Name: Shape file

  7. Molecular Geochemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel ... SubTER Carbon Sequestration Program Leadership EnergyWater Nexus EnergyWater History ...

  8. Subseabed Disposal Project annual report, FY85 to termination of project: Physical Oceanography and Water Column Geochemistry Studies, October 1984 through May 1986

    SciTech Connect (OSTI)

    Kupferman, S.L.

    1987-05-01

    This report covers the work of the Physical Oceanography and Water Column Geochemistry (POWCG) Studies Group of the Subseabed Disposal Project (SDP) from October 1984 to termination of the project in May 1986. The overview of the work includes an introduction, general descriptions of the activities, and a summary. Detailed discussions are included as appendices. During the period of this report the POWCG Studies Group held a meeting to develop a long-term research plan for the Nares Abyssal Plain, which was recently designated as a study area for the Environmental Study Group of the SDP. The POWCG Studies Group has also planned and participated in two interdisciplinary oceanographic missions to the Nares which have resulted in the acquisition of data and samples which can be used to begin to understand the workings of the ecosystem at the site, and for developing a preliminary site assessment. The papers in the appendices have been processed for inclusion in the Energy Data Base.

  9. Geological reasons for rapid water encroachment in wells at Sutorma oil field

    SciTech Connect (OSTI)

    Arkhipov, S.V.; Dvorak, S.V.; Sonich, V.P.; Nikolayeva, Ye.V.

    1987-12-01

    The Sutorma oil field on the northern Surgut dome is one of the new fields in West Siberia. It came into production in 1982, but already by 1983 it was found that the water contents in the fluids produced were much greater than the design values. The adverse effects are particularly pronounced for the main reservoir at the deposit, the BS/sub 10//sup 2/ stratum. Later, similar problems occurred at other fields in the Noyarbr and Purpey regions. It is therefore particularly important to elucidate the geological reasons for water encroachment.

  10. Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater

    SciTech Connect (OSTI)

    Birkholzer, Jens; Apps, John; Zheng, Liange; Zhang, Yingqi; Xu, Tianfu; Tsang, Chin-Fu

    2008-10-01

    One promising approach to reduce greenhouse gas emissions is injecting CO{sub 2} into suitable geologic formations, typically depleted oil/gas reservoirs or saline formations at depth larger than 800 m. Proper site selection and management of CO{sub 2} storage projects will ensure that the risks to human health and the environment are low. However, a risk remains that CO{sub 2} could migrate from a deep storage formation, e.g. via local high-permeability pathways such as permeable faults or degraded wells, and arrive in shallow groundwater resources. The ingress of CO{sub 2} is by itself not typically a concern to the water quality of an underground source of drinking water (USDW), but it will change the geochemical conditions in the aquifer and will cause secondary effects mainly induced by changes in pH, in particular the mobilization of hazardous inorganic constituents present in the aquifer minerals. Identification and assessment of these potential effects is necessary to analyze risks associated with geologic sequestration of CO{sub 2}. This report describes a systematic evaluation of the possible water quality changes in response to CO{sub 2} intrusion into aquifers currently used as sources of potable water in the United States. Our goal was to develop a general understanding of the potential vulnerability of United States potable groundwater resources in the event of CO{sub 2} leakage. This goal was achieved in two main tasks, the first to develop a comprehensive geochemical model representing typical conditions in many freshwater aquifers (Section 3), the second to conduct a systematic reactive-transport modeling study to quantify the effect of CO{sub 2} intrusion into shallow aquifers (Section 4). Via reactive-transport modeling, the amount of hazardous constituents potentially mobilized by the ingress of CO{sub 2} was determined, the fate and migration of these constituents in the groundwater was predicted, and the likelihood that drinking water standards might be exceeded was evaluated. A variety of scenarios and aquifer conditions was considered in a sensitivity evaluation. The scenarios and conditions simulated in Section 4, in particular those describing the geochemistry and mineralogy of potable aquifers, were selected based on the comprehensive geochemical model developed in Section 3.

  11. Summary Report on CO{sub 2} Geologic Sequestration & Water Resources Workshop

    SciTech Connect (OSTI)

    Varadharajan, C.; Birkholzer, J.; Kraemer, S.; Porse, S.; Carroll, S.; Wilkin, R.; Maxwell, R.; Bachu, S.; Havorka, S.; Daley, T.; Digiulio, D.; Carey, W.; Strasizar, B.; Huerta, N.; Gasda, S.; Crow, W.

    2012-02-15

    The United States Environmental Protection Agency (EPA) and Lawrence Berkeley National Laboratory (LBNL) jointly hosted a workshop on CO{sub 2} Geologic Sequestration and Water Resources in Berkeley, June 12, 2011. The focus of the workshop was to evaluate R&D needs related to geological storage of CO{sub 2} and potential impacts on water resources. The objectives were to assess the current status of R&D, to identify key knowledge gaps, and to define specific research areas with relevance to EPAs mission. About 70 experts from EPA, the DOE National Laboratories, industry, and academia came to Berkeley for two days of intensive discussions. Participants were split into four breakout session groups organized around the following themes: Water Quality and Impact Assessment/Risk Prediction; Modeling and Mapping of Area of Potential Impact; Monitoring and Mitigation; Wells as Leakage Pathways. In each breakout group, participants identified and addressed several key science issues. All groups developed lists of specific research needs; some groups prioritized them, others developed short-term vs. long-term recommendations for research directions. Several crosscutting issues came up. Most participants agreed that the risk of CO{sub 2} leakage from sequestration sites that are properly selected and monitored is expected to be low. However, it also became clear that more work needs to be done to be able to predict and detect potential environmental impacts of CO{sub 2} storage in cases where the storage formation may not provide for perfect containment and leakage of CO{sub 2}brine might occur.

  12. water scarcity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  13. water savings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  14. water infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  15. Water Demand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  16. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    2014-12-16

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  17. Water Use in Enhanced Geothermal Systems (EGS): Geology of U.S. Stimulation Projects, Water Costs, and Alternative Water Use Policies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Schroeder, Jenna N.

    According to the Energy Information Administration (EIA) of the U.S. Department of Energy (DOE), geothermal energy generation in the United States is projected to more than triple by 2040 (EIA 2013). This addition, which translates to more than 5 GW of generation capacity, is anticipated because of technological advances and an increase in available sources through the continued development of enhanced geothermal systems (EGSs) and low-temperature resources (EIA 2013). Studies have shown that air emissions, water consumption, and land use for geothermal electricity generation have less of an impact than traditional fossil fuel?based electricity generation; however, the long-term sustainability of geothermal power plants can be affected by insufficient replacement of aboveground or belowground operational fluid losses resulting from normal operations (Schroeder et al. 2014). Thus, access to water is therefore critical for increased deployment of EGS technologies and, therefore, growth of the geothermal sector. This paper examines water issues relating to EGS development from a variety of perspectives. It starts by exploring the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects. It then examines the relative costs of different potential traditional and alternative water sources for EGS. Finally it summarizes specific state policies relevant to the use of alternative water sources for EGS, and finally explores the relationship between EGS site geology, stimulation protocols, and below ground water loss, which is one of the largest drivers of water consumption for EGS projects.

  18. Thermohaline pore water trends of southeastern Louisiana: Geologic applications and controls on fluid movement

    SciTech Connect (OSTI)

    Marlin, D.; Schramm, B.

    1995-10-01

    Previous research has suggested that dissolution of salt diapirs and the formation of dense, saline brines at shallow depths are concurrent with large scale fluid migration. A critical foundation of these studies is the determination of salinity from the spontaneous potential (SP) log and the ability to drive fluid vertically through the sediment. Derivation of salinity using the perfect shale model and contouring iso-salinity values over intervals of Lower Miocene and Upper Oligocene sediments that contain thick, impermeable carbonate deposits cloud these findings. The calculation of salinity is based on water resistivity (Rw) variations and the geological constraints on derivation of this variable. Application of the imperfect shale membrane model to determine Rw from the SP log provided a closer approximation to Rw from produced water samples over St. Gabriel Field in Ascension and Iberville parishes, La than past SP models. Further analyses of temperature, pressure, salinity, and freshwater hydraulic head trends of Lower Miocene and Upper Oligocene deposits over the field and surrounding area suggest that dissolution of salt occurred prior to hydrocarbon generation and large scale fluid migration is not dynamic at present. An important control that should be used in future studies of thermohaline fluid movement is the identification of local structure, stratigraphic variation, shale membrane efficiency, and time of salt diapirism.

  19. Property:Geochemistry | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search Property Name Geochemistry Property Type String Description A description of the geofluid geochemistry in the geothermal area, including...

  20. Geothermal Exploration Using Surface Mercury Geochemistry | Open...

    Open Energy Info (EERE)

    Surface Mercury Geochemistry Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geothermal Exploration Using Surface Mercury Geochemistry Abstract...

  1. water for energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  2. water service provider

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  3. Water Monitoring & Treatment Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  4. Geology, hydrothermal petrology, stable isotope geochemistry, and fluid inclusion geothermometry of LASL geothermal test well C/T-1 (Mesa 31-1), East Mesa, Imperial Valley, California, USA

    SciTech Connect (OSTI)

    Miller, K.R.; Elders, W.A.

    1980-08-01

    Borehole Mesa 31-1 (LASL C/T-1) is an 1899-m (6231-ft) deep well located in the northwestern part of the East Mesa Geothermal Field. Mesa 31-1 is the first Calibration/Test Well (C/T-1) in the Los Alamos Scientific Laboratory (LASL), Geothermal Log Interpretation Program. The purpose of this study is to provide a compilation of drillhole data, drill cuttings, well lithology, and formation petrology that will serve to support the use of well LASL C/T-1 as a calibration/test well for geothermal logging. In addition, reviews of fluid chemistry, stable isotope studies, isotopic and fluid inclusion geothermometry, and the temperature log data are presented. This study provides the basic data on the geology and hydrothermal alteration of the rocks in LASL C/T-1 as background for the interpretation of wireline logs.

  5. Evaluation of the US Geological Survey ground-water data-collection program in Hawaii, 1992. Water-resources investigations

    SciTech Connect (OSTI)

    Anthony, S.S.

    1997-12-31

    This report describes an evaluation of the 1992 USGS ground-water data-collection program in Hawaii. The occurrence of ground water in the Hawaiian islands is briefly described. Objectives for the data-collection program are identified followed by a description of well networks needed to prepare maps of water levels and chloride concentrations. For the islands of Oahu, Kauai, Maui, Molokai, and Hawaii, the wells in the 1992 ground-water data-collection program are described followed by maps showing the distribution and magnitude of pumpage, and the distribution of proposed pumped wells. Wells in the 1992 USGS ground-water data-collection program that provide useful data for mapping water levels and chloride concentrations are identified followed by locations where additional wells are needed for water-level and chloride-concentration data. In addition, a procedure to store and review data is described.

  6. Water Availability, Cost, and Use

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ... Geochemistry Geoscience SubTER Carbon Sequestration Program Leadership EnergyWater Nexus ...

  7. Leakage and Sepage of CO2 from Geologic Carbon SequestrationSites: CO2 Migration into Surface Water

    SciTech Connect (OSTI)

    Oldenburg, Curt M.; Lewicki, Jennifer L.

    2005-06-17

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO{sub 2}) and its storage in deep geologic formations. One of the concerns of geologic carbon sequestration is that injected CO{sub 2} may leak out of the intended storage formation, migrate to the near-surface environment, and seep out of the ground or into surface water. In this research, we investigate the process of CO{sub 2} leakage and seepage into saturated sediments and overlying surface water bodies such as rivers, lakes, wetlands, and continental shelf marine environments. Natural CO{sub 2} and CH{sub 4} fluxes are well studied and provide insight into the expected transport mechanisms and fate of seepage fluxes of similar magnitude. Also, natural CO{sub 2} and CH{sub 4} fluxes are pervasive in surface water environments at levels that may mask low-level carbon sequestration leakage and seepage. Extreme examples are the well known volcanic lakes in Cameroon where lake water supersaturated with respect to CO{sub 2} overturned and degassed with lethal effects. Standard bubble formation and hydrostatics are applicable to CO{sub 2} bubbles in surface water. Bubble-rise velocity in surface water is a function of bubble size and reaches a maximum of approximately 30 cm s{sup -1} at a bubble radius of 0.7 mm. Bubble rise in saturated porous media below surface water is affected by surface tension and buoyancy forces, along with the solid matrix pore structure. For medium and fine grain sizes, surface tension forces dominate and gas transport tends to occur as channel flow rather than bubble flow. For coarse porous media such as gravels and coarse sand, buoyancy dominates and the maximum bubble rise velocity is predicted to be approximately 18 cm s{sup -1}. Liquid CO{sub 2} bubbles rise slower in water than gaseous CO{sub 2} bubbles due to the smaller density contrast. A comparison of ebullition (i.e., bubble formation) and resulting bubble flow versus dispersive gas transport for CO{sub 2} and CH{sub 4} at three different seepage rates reveals that ebullition and bubble flow will be the dominant form of gas transport in surface water for all but the smallest seepage fluxes or shallowest water bodies. The solubility of the gas species in water plays a fundamental role in whether ebullition occurs. We used a solubility model to examine CO{sub 2} solubility in waters with varying salinity as a function of depth below a 200 m-deep surface water body. In this system, liquid CO{sub 2} is stable between the deep regions where supercritical CO{sub 2} is stable and the shallow regions where gaseous CO{sub 2} is stable. The transition from liquid to gaseous CO{sub 2} is associated with a large change in density, with corresponding large change in bubble buoyancy. The solubility of CO{sub 2} is lower in high-salinity waters such as might be encountered in the deep subsurface. Therefore, as CO{sub 2} migrates upward through the deep subsurface, it will likely encounter less saline water with increasing capacity to dissolve CO{sub 2} potentially preventing ebullition, depending on the CO{sub 2} leakage flux. However, as CO{sub 2} continues to move upward through shallower depths, CO{sub 2} solubility in water decreases strongly leading to greater likelihood of ebullition and bubble flow in surface water. In the case of deep density-stratified lakes in which ebullition is suppressed, enhanced mixing and man-made degassing schemes can alleviate the buildup of CO{sub 2} and related risk of dangerous rapid discharges. Future research efforts are needed to increase understanding of CO{sub 2} leakage and seepage in surface water and saturated porous media. For example, we recommend experiments and field tests of CO{sub 2} migration in saturated systems to formulate bubble-driven water-displacement models and relative permeability functions that can be used in simulation models.

  8. Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems Intergrating Magnetotellurics, Soil ...

  9. Physicochemical controls on absorbed water film thickness in unsaturated geological media

    SciTech Connect (OSTI)

    Tokunaga, T.

    2011-06-14

    Adsorbed water films commonly coat mineral surfaces in unsaturated soils and rocks, reducing flow and transport rates. Therefore, it is important to understand how adsorbed film thickness depends on matric potential, surface chemistry, and solution chemistry. Here, the problem of adsorbed water film thickness is examined through combining capillary scaling with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Novel aspects of this analysis include determining capillary influences on film thicknesses, and incorporating solution chemistry-dependent electrostatic potential at air-water interfaces. Capillary analysis of monodisperse packings of spherical grains provided estimated ranges of matric potentials where adsorbed films are stable, and showed that pendular rings within drained porous media retain most of the 'residual' water except under very low matric potentials. Within drained pores, capillary contributions to thinning of adsorbed films on spherical grains are shown to be small, such that DLVO calculations for flat surfaces are suitable approximations. Hamaker constants of common soil minerals were obtained to determine ranges of the dispersion component to matric potential-dependent film thickness. The pressure component associated with electrical double layer forces was estimated using the compression and linear superposition approximations. The pH-dependent electrical double layer pressure component is the dominant contribution to film thicknesses at intermediate values of matric potential, especially in lower ionic strength solutions (< 10 mol m{sup -3}) on surfaces with higher magnitude electrostatic potentials (more negative than - 50 mV). Adsorbed water films are predicted to usually range in thickness from 1 to 20 nm in drained pores and fractures of unsaturated environments.

  10. Aluminum forms in stream sediment: Relation to bedrock geology and water chemistry

    SciTech Connect (OSTI)

    Turner, R.R.; Bogle, M.A.; Zeiler, M.A.; Mulholland, P.J.; Elwood, J.W.; Cook, R.B.

    1987-01-01

    Longitudinal gradients in sediment and water chemistry were characterized in a high elevation stream in the southern Appalachian Mountains, USA, to elucidate the geochemical behavior of aluminum across gradients in pH (4.5 to 6.5) and elevation (1120 to 1895 m). Observed gradients are driven in part by the presence of pyritic bedrock, which occurs at higher elevations and yields acidity when exposed to oxidation by landslide activity. Exchangeable Al in sediment (estimated using potassium chloride) varied in response to monomeric Al in streamwater and thus decreased downstream. Organic Al in sediment (estimated using sodium pyrophosphate) did not vary in proportion to the organic carbon content of sediment. Amorphous Al in sediment (estimated as the difference between oxalate- and pyrophosphate-extractable Al) and Al extractable with acidified streamwater (pH 4.5) was lowest at the more acidic sites. These results suggest that increases in soluble Al in downstream reaches during episodic pH depressions could be due in part to the release of adsorbed and/or precipitated Al in sediment.

  11. A Summary of the Geology, Geochemistry, and Geophysics of the...

    Open Energy Info (EERE)

    Area, Utah Authors S. H. Ward, W. T. Parry, W. P. Nash, W. R. Sill, K. L. Cook, R. B. Smith, D. S. Chapman, F. H. Brown, J. A. Whelan and J. R. Bowman Published Journal...

  12. Crustal Geophysics and Geochemistry Science Center | Open Energy...

    Open Energy Info (EERE)

    Geophysics and Geochemistry Science Center Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Crustal Geophysics and Geochemistry Science Center Author...

  13. Ground-water geochemistry and radionuclide activity in the Cambrian-Ordovician aquifer of Dodge and Fond du Lac counties, Wisconsin. Technical report

    SciTech Connect (OSTI)

    Weaver, T.R.; Bahr, J.M.; Anderson, M.P.

    1990-01-01

    Analyses of groundwater from wells in the Cambrian-Ordovician aquifer of eastern Wisconsin indicate that regions of the aquifer contain elevated concentrations of dissolved solids, chloride and sulfate. Groundwater from several wells in the area also approach or exceed the current drinking water standard for combined radium activity. Significant changes in groundwater chemistry occur where the aquifer becomes confined by the Maquoketa shale. Concentrations of Cl(-), SO4(2-) and Na(+) increase in the confined region, and the highest combined radium activities are typically observed in the area. Geochemical modeling implies that the observed changes in major ion groundwater chemistry occur in response to the presence of the confining unit which may act as a source of SO4(2-), through gypsum dissolution, and Na(+), through cation exchange. A finite difference groundwater flow model was linked to a particle tracking routine to determine groundwater flow paths and residence times in the aquifer near the boundary between unconfined and confined conditions. Results suggest that the presence of the confining unit produces a vertically stratified flow regime in the confined region.

  14. Exploration and mining geology. Second edition

    SciTech Connect (OSTI)

    Peters, W.C.

    1987-01-01

    Using the concepts and practices of applied geology as its central theme, here is a balanced and comprehensive treatment of the geological, geochemical, geophysical, and economic elements of exploration and mining. The author offers an overview of the methods and aims in mineral exploration and production and gives coverage of the geologic principles of ore deposits and the geomorphic environment. The text deals with ''hard'' minerals and the nonfluid sources of materials and energy in the continental masses and in ocean basins. This edition has been expanded to include recent advances in applications of satellite imagery, lithogeochemical surveys, isotope geochemistry, and other developments in the field. It also covers current uses of computers in mineral exploration programs and features case histories, a current references section, and financial data.

  15. Hydrological/Geological Studies

    Office of Legacy Management (LM)

    .\ .8.2 Hydrological/Geological Studies Book 1. Radiochemical Analyses of Water Samples from SelectedT" Streams Wells, Springs and Precipitation Collected During Re-Entry Drilling, Project Rulison-7, 197 1 HGS 8 This page intentionally left blank . . . ... . . . . . . . . , : . . . . . . . . . ' . r - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . ..... . - x ..:; . , ' , . . ' . . . . . . !' r:.::. _. . : _ . . : . . . . \ . . ' - \ , : , . . . . . . . . . . .

  16. Overview of fundamental geochemistry basic research at the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Anovitz, L.M.; Benezeth, P.; Blencoe, J.G.

    1996-01-01

    Researchers in ORNL`s Geochemistry and High Temperature Aqueous Chemistry groups are conducting detailed experimental studies of physicochemical properties of the granite-melt-brine system; sorption of water on rocks from steam-dominated reservoirs; partitioning of salts and acid volatiles between brines and steam; effects of salinity on H and O isotope partitioning between brines, minerals, and steam; and aqueous geochemistry of Al. These studies contribute in many ways to cost reductions and improved efficiency in the discovery, characterization, and production of energy from geothermal resources.

  17. Geochemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... speciation, solubility and reactive transport modeling Ion-ion and ion-surface ... Cantrell (2007) Adsorption-desorption processes in subsurface reactive transport modeling. ...

  18. Geochemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface charge due to adsorbed uranyl ions is consistent with spectroscopic measurements (second harmonic generation). Shale Poromechanics Heterogeneity, Flow, Failure, and Creep ...

  19. Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography

    SciTech Connect (OSTI)

    Garland, P.A.; Thomas, J.M.; Brock, M.L.; Daniel, E.W.

    1980-06-01

    A bibliography of 479 references encompassing the fields of uranium and thorium geochemistry and mineralogy, geology of uranium deposits, uranium mining, and uranium exploration techniques has been compiled by the Ecological Sciences Information Center of Oak Ridge National Laboratory. The bibliography was produced for the National Uranium Resource Evaluation Program, which is funded by the Grand Junction Office of the Department of Energy. The references contained in the bibliography have been divided into the following eight subject categories: (1) geology of deposits, (2) geochemistry, (3) genesis O deposits, (4) exploration, (5) mineralogy, (6) uranium industry, (7) reserves and resources, and (8) geology of potential uranium-bearing areas. All categories specifically refer to uranium and thorium; the last category contains basic geologic information concerning areas which the Grand Junction Office feels are particularly favorable for uranium deposition. The references are indexed by author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.

  20. Geochemistry of oil from Santa Cruz basin, Bolivia: case study of migration-fractionation

    SciTech Connect (OSTI)

    Illich, H.A.; Haney, F.R.; Mendoza, M.

    1981-11-01

    Geochemical studies provide important data relevant to the origin of the oils in the Santa Cruz basin, Bolivia. Production from this basin occurs from rocks of Devonian, Carboniferous, Cretaceous, and Tertiary ages. The productive structures are usually undisturbed by major faulting. The Devonian sediments are composed of sandstones and dark marine shales. The post-Devonian rocks are generally oxidized and probably nonmarine. The Tertiary and Cretaceous reservoirs usually contain the highest API/sup 0/ gravity oils. Comparison of geochemical data (N/sub 5/-N/sub 10/ molecular weight range) shows that the oils are very similar; however, systematic compositional trends occur as a function of API/sup 0/ gravity. These trends are interpreted from gross structural group data. Isoparaffins and cycloparaffins increase in relative abundance, while normal paraffins and aromatics decrease with increasing API/sup 0/ gravity. A model is proposed that rationalizes these compositional trends by a mechanism of accommodation in water. The model requires enrichment of hydrocarbons of intermediate solubility, partial exclusion of hydrocarbons of low solubility, and retention in solution of the more soluble hydrocarbons. Processes such as thermal fractionation and biodegradation fail to account satisfactorily for the observed compositional trends. The compositional interrelationships of the oils coupled with the geologic framework suggest that these oils have a common source, most probably the Devonian. Differences between the oils are attributed to fractionation occurring during migration. Exploration risk for areas such as the Santa Cruz basin can be substantially reduced by use of the knowledge derived from petroleum geochemistry.

  1. Advances In The Past 20 Years- Geochemistry In Geothermal Exploration...

    Open Energy Info (EERE)

    The Past 20 Years- Geochemistry In Geothermal Exploration Resource Evaluation And Reservoir Management Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference...

  2. Gas Geochemistry Of The Valles Caldera Region, New Mexico And...

    Open Energy Info (EERE)

    LibraryAdd to library Journal Article: Gas Geochemistry Of The Valles Caldera Region, New Mexico And Comparisons With Gases At Yellowstone, Long Valley And Other Geothermal Systems...

  3. Environmental Geochemistry of Rads | Environmental Radiation Protection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Curriculum Environmental Geochemistry of Rads (3 hr) Instructors: John Seaman and Gwen Geidel Course Description: Participants will develop a fundamental understanding of environmental speciation and mass transport of radioactive elements relevant to energy and nuclear weapons production; the disposition of waste derived from nuclear materials processing; the environmental impact of current and future generation nuclear reactor designs; nuclear fuel reprocessing techniques (open vs. closed

  4. Regional Geologic Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    Shaded relief base with Hot Pot project area, generalized geology, selected mines, and major topographic features

  5. Regional Geologic Map

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Lane, Michael

    2013-06-28

    Shaded relief base with Hot Pot project area, generalized geology, selected mines, and major topographic features

  6. Geohydrologic feasibility study of the Piceance Basin of Colorado for the potential applicability of Jack W. McIntyre`s patented gas/produced water separation process

    SciTech Connect (OSTI)

    Kieffer, F.

    1994-02-01

    Geraghty & Miller, Inc. of Midland, Texas conducted geologic and hydrologic feasibility studies of the potential applicability of Jack McIntyre`s patented process for the recovery of natural gas from coalbed/sand formations in the Piceance Basin through literature surveys. Jack McIntyre`s tool separates produced water from gas and disposes of the water downhole into aquifers unused because of poor water quality, uneconomic lifting costs or poor aquifer deliverability. The beneficial aspects of this technology are two fold. The process increases the potential for recovering previously uneconomic gas resources by reducing produced water lifting, treatment and disposal costs. Of greater importance is the advantage of lessening the environmental impact of produced water by downhole disposal. Results from the survey indicate that research in the Piceance Basin includes studies of the geologic, hydrogeologic, conventional and unconventional recovery oil and gas technologies. Available information is mostly found centered upon the geology and hydrology for the Paleozoic and Mesozoic sediments. Lesser information is available on production technology because of the limited number of wells currently producing in the basin. Limited information is available on the baseline geochemistry of the coal/sand formation waters and that of the potential disposal zones. No determination was made of the compatibility of these waters. The study also indicates that water is often produced in variable quantities with gas from several gas productive formations which would indicate that there are potential applications for Jack McIntyre`s patented tool in the Piceance Basin.

  7. AASG State Geological Survey

    Broader source: Energy.gov [DOE]

    presentation at the April 2013 peer review meeting held in Denver, Colorado.Contributions to the NGDSAASG State Geological Survey

  8. I I Hydrological/Geological Studies Radiochemical Analyses of...

    Office of Legacy Management (LM)

    ' HydrologicalGeological Studies Radiochemical Analyses of Water Samples from Selected Streams, Wells, Springs and Precipitation Collected Prior to Re-Entry . , Drilling, Project ...

  9. Geochemical Implications of CO2 Leakage Associated with Geologic Storage: A Review

    SciTech Connect (OSTI)

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Brown, Christopher F.

    2012-07-09

    Leakage from deep storage reservoirs is a major risk factor associated with geologic sequestration of carbon dioxide (CO2). Different scientific theories exist concerning the potential implications of such leakage for near-surface environments. The authors of this report reviewed the current literature on how CO2 leakage (from storage reservoirs) would likely impact the geochemistry of near surface environments such as potable water aquifers and the vadose zone. Experimental and modeling studies highlighted the potential for both beneficial (e.g., CO2 re sequestration or contaminant immobilization) and deleterious (e.g., contaminant mobilization) consequences of CO2 intrusion in these systems. Current knowledge gaps, including the role of CO2-induced changes in redox conditions, the influence of CO2 influx rate, gas composition, organic matter content and microorganisms are discussed in terms of their potential influence on pertinent geochemical processes and the potential for beneficial or deleterious outcomes. Geochemical modeling was used to systematically highlight why closing these knowledge gaps are pivotal. A framework for studying and assessing consequences associated with each factor is also presented in Section 5.6.

  10. Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure...

    Open Energy Info (EERE)

    Mercury Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Jump to: navigation,...

  11. FLUID GEOCHEMISTRY AT THE RAFT RIVER GEOTHERMAL FIELD, IDAHO...

    Open Energy Info (EERE)

    the fluid geochemistry in the field is spatially variable and complex, with two distinct deep geothermal fluid types (high vs. low K, Na, Cl, Ca, Li, F concentrations) and two...

  12. Aqueous Geochemistry at High Pressures and High Temperatures

    SciTech Connect (OSTI)

    Bass, Jay D.

    2015-05-21

    This project is aimed at experimental characterization of the sound velocities, equations of state (EOS), and derived physical and chemical properties of aqueous solutions and carbon dioxide at extreme pressure and temperature conditions relevant to processes occurring in the interior of the Earth. Chemical transport, phase changes (including melting), fluid-solid reactions, and formation of magmatic liquids at convergent plat boundaries are a key motivation for this project. Research in this area has long been limited by the extreme experimental challenges and lack of data under the appropriate pressure-temperature (P-T) conditions. The vast majority of studies of aqueous geochemistry relevant to terrestrial problems of fluid-rock interactions have been conducted at 0.3 GPa or less, and the widely used Helgeson-Kirkham-Flowers equation of state for aqueous species is applicable only at ~ < 0.5 GPa. These limits are unfortunate because fluid flow and reactions plays a central role in many deeper environments. Recent efforts including our own, have resulted in new experimental techniques that now make it possible to investigate properties of homogeneous and heterogeneous equilibria involving aqueous species and minerals over a much broader range of pressure and temperature appropriate for deep crustal and upper mantle processes involving water-rich fluids. We carried out 1) Brillouin scattering measurements of the equations of state and molar volume of water and carbon dioxide to over 10 GPa and 870K using precise resistance heating of samples under pressure in the diamond anvil cell, and 2) the phase diagrams of the water and CO2, and 3) Exploring new experimental approaches, including CO2 laser heating of samples in a diamond cell, to measurements of sound velocities, EOS, and phase relations by Brillouin scattering to far greater pressures and temperatures.

  13. The Geochemistry of the HGP-A Geothermal Well: A Review and an...

    Open Energy Info (EERE)

    Geochemistry of the HGP-A Geothermal Well: A Review and an Update Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: The Geochemistry of the HGP-A...

  14. RADIOIODINE GEOCHEMISTRY IN THE SRS SUBSURFACE ENVIRONMENT

    SciTech Connect (OSTI)

    Kaplan, D.; Emerson, H.; Powell, B.; Roberts, K.; Zhang, S.; Xu, C.; Schwer, K.; Li, H.; Ho, Y.; Denham, M.; Yeager, C.; Santschi, P.

    2013-05-16

    Iodine-129 is one of the key risk drivers for several Savannah River Site (SRS) performance assessments (PA), including that for the Low-Level Waste Disposal Facility in E-Area. In an effort to reduce the uncertainty associated with the conceptual model and the input values used in PA, several studies have recently been conducted dealing with radioiodine geochemistry at the SRS. The objective of this report was to review these recent studies and evaluate their implications on SRS PA calculations. For the first time, these studies measured iodine speciation in SRS groundwater and provided technical justification for assuming the presence of more strongly sorbing species (iodate and organo-iodine), and measured greater iodine sediment sorption when experiments included these newly identified species; specifically they measured greater sorption coefficients (K{sub d} values: the concentration ratio of iodine on the solid phase divided by the concentration in the aqueous phase). Based on these recent studies, new best estimates were proposed for future PA calculations. The new K{sub d} values are greater than previous recommended values. These proposed K{sub d} values reflect a better understanding of iodine geochemistry in the SRS subsurface environment, which permits reducing the associated conservatism included in the original estimates to account for uncertainty. Among the key contributing discoveries supporting the contention that the K{sub d} values should be increased are that: 1) not only iodide (I{sup -}), but also the more strongly sorbing iodate (IO{sub 3}{sup -}) species exists in SRS groundwater (average total iodine = 15% iodide, 42% iodate, and 43% organoiodine), 2) when iodine was added as iodate, the measured K{sub d} values were 2 to 6 times greater than when the iodine was added as iodide, and perhaps most importantly, 3) higher desorption (10 to 20 mL/g) than (ad)sorption (all previous studies) K{sub d} values were measured. The implications of this latter point is that the iodine desorption process would be appreciably slower than the (ad)sorption process, and as such would control the rate (and the PA K{sub d} value) that iodine sorbed to and therefore migrated through the subsurface sediment. High desorption K{sub d} values would result in the “effective K{sub d}” for a reactive transport model being closer to the desorption K{sub d} value (the rate limiting value) than the (ad)sorption K{sub d} value. In summary, our understanding of {sup 129}I geochemistry has greatly improved, reducing the uncertainty associated with the PA’s conceptual model, thereby permitting us to reduce the conservatism presently incorporated in PA input values to describe {sup 129}I fate and transport in the SRS subsurface environment.

  15. Isotope Geochemistry of Thermal and Nonthermal Waters in the...

    Open Energy Info (EERE)

    above the magmatic heat source of the caldera. Authors Francois D. Vuataz and Fraser E. Goff Published Journal Journal of Geophysical Research, 1986 DOI 10.1029JB091iB02p01835...

  16. Geochemistry And Geothermometry Of Spring Water From The Blackfoot...

    Open Energy Info (EERE)

    for eight springs along the Corral Creek drainage. The springs along Corral Creek have Na-K-Ca temperatures that average 354C, a direct result of high potassium concentrations in...

  17. Geochemistry and habitat of oils in Italy

    SciTech Connect (OSTI)

    Novelli, L.; Mattavelli, L.

    1988-01-01

    Most of the onshore and offshore oil occurrences found in Italy have been systematically analyzed by different techniques, i.e., capillary gas chromatography, biological markers, and stable isotopes composition. On the basis of the above analyses, ten different groups of oil have been identified and geographically located. Subsequently, the influence of the various geological settings on generation and migration of these different groups of oils was investigated and is discussed here. Due to its complex geological and tectonic history, the Alpine-Apennine chain behaved differently with regard to oil generation and migration in different areas. In fact, the high temperatures reached by the Mesozoic source rocks underneath a stack of allochthonous thrust sheets and the insulting thermal blanket effect exerted by the same sheets on other younger source rocks above gave rise to generally light oils. Furthermore, in this unique geological setting, the most external thrust sheets locally acted as reservoirs of the foredeep regime. Foreland sequences acted as both reservoirs of the foredeep oils and as generative kitchens of liquid hydrocarbons if suitable source rocks were present and adequate burial was reached.

  18. Geochemistry and habitat of oils in Italy

    SciTech Connect (OSTI)

    Novelli, L.; Mattavelli, L.

    1988-02-01

    Most of the onshore and offshore oil occurrences found in Italy have been systematically analyzed by different techniques, i.e., capillary gas chromatography, biological markers, and stable isotopes composition. On the basis of the above analyses, ten different groups of oil have been identified and geographically located. Subsequently, the influence of the various geological settings on generation and migration of these different groups of oils was investigated and is discussed here. In a foredeep regime, the remarkably fast heating rates, due to the rapid burial during late Tertiary, caused a rapid generation of oil mainly in the Triassic carbonate source rocks. Such generation, combined with the high over-burden pressure and a contemporaneous development of an intense tectonic compression, resulted in the expulsion of immature, heavy oils. Examples of this are evident in the central Adriatic Sea, southern Italy, and southeastern Sicily. Due to its complex geological and tectonic history, the Alpine-Apennine chain behaved differently with regard to oil generation and migration in different areas. In fact, the high temperatures reached by the Mesozoic source rocks underneath a stack of allochthonous thrust sheets and the insulating thermal blanket effect exerted by the same sheets on other younger source rocks above gave rise to generally light oils. Furthermore, in this unique geological setting, the most external thrust sheets locally acted as reservoirs of the foredeep regime. Foreland sequences acted as both reservoirs of the foredeep oils and as generative kitchens of liquid hydrocarbons if suitable source rocks were present and adequate burial was reached.

  19. Twenty-First Water Reactor Safety Information Meeting. Volume 3, Primary system integrity; Aging research, products and applications; Structural and seismic engineering; Seismology and geology: Proceedings

    SciTech Connect (OSTI)

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25-27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

  20. Method of fracturing a geological formation

    DOE Patents [OSTI]

    Johnson, James O.

    1990-01-01

    An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

  1. Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems

    Broader source: Energy.gov [DOE]

    Intergrating Magnetotellurics, Soil Gas Geochemistry and Structural Analysis to Identify Hidden, High Enthalpy, Extensional Geothermal Systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  2. Plutonium and Americium Geochemistry at Hanford: A Site Wide Review

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Felmy, Andrew R.

    2012-08-23

    This report was produced to provide a systematic review of the state-of-knowledge of plutonium and americium geochemistry at the Hanford Site. The report integrates existing knowledge of the subsurface migration behavior of plutonium and americium at the Hanford Site with available information in the scientific literature regarding the geochemistry of plutonium and americium in systems that are environmentally relevant to the Hanford Site. As a part of the report, key research needs are identified and prioritized, with the ultimate goal of developing a science-based capability to quantitatively assess risk at sites contaminated with plutonium and americium at the Hanford Site and the impact of remediation technologies and closure strategies.

  3. Isotopic Analysis At Jemez Springs Area (Goff, Et Al., 1981)...

    Open Energy Info (EERE)

    (1981) Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Additional References Retrieved from "http:en.openei.orgw...

  4. Compound and Elemental Analysis At Jemez Springs Area (Goff,...

    Open Energy Info (EERE)

    (1981) Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Additional References Retrieved from "http:en.openei.orgw...

  5. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area ...

    Open Energy Info (EERE)

    (1981) Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Additional References Retrieved from "http:en.openei.orgw...

  6. Compound and Elemental Analysis At Fenton Hill HDR Geothermal...

    Open Energy Info (EERE)

    (1981) Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Additional References Retrieved from "http:en.openei.orgw...

  7. Publications | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Element Geochemistry Of Outcrop And Core Samples From The Marcellus Shale Geochemical ... in Marcellus Flowback Water Geological Society of America Southeastern Annual ...

  8. Establishing MICHCARB, a geological carbon sequestration research...

    Office of Scientific and Technical Information (OSTI)

    Western Michigan University 58 GEOSCIENCES Geological carbon sequestration Enhanced oil recovery Characterization of oil, gas and saline reservoirs Geological carbon...

  9. Carbon-14 geochemistry at the Savannah River Site

    SciTech Connect (OSTI)

    Roberts, Kimberly A.; Kaplan, Daniel I.

    2013-05-10

    Carbon-14 is among the key radionuclides driving risk at the E-Area Low-Level Waste Disposal Facility on the Savannah River Site (SRS). Much of this calculated risk is believed to be the result of having to make conservative assumptions in risk calculations because of the lack of site-specific data. The original geochemical data package (Kaplan 2006) recommended that performance assessments and composite analyses for the SRS assume that {sup 14}C did not sorbed to sediments or cementitious materials, i.e., that C-14 K{sub d} value (solid:liquid concentration ratio) be set to 0 mL/g (Kaplan 2006). This recommendation was based primarily on the fact that no site-specific experimental work was available and the assumption that the interaction of anionic {sup 14}C as CO{sub 2}{sup 2-}) with similarly charged sediments or cementitious materials would be minimal. When used in reactive transport equations, the 0 mL/g Kd value results in {sup 14}C not interacting with the solid phase and moving quickly through the porous media at the same rate as water. The objective of this study was to quantify and understand how aqueous {sup 14}C, as dissolved carbonate, sorbs to and desorbs from SRS sediments and cementitious materials. Laboratory studies measuring the sorption of {sup 14}C, added as a carbonate, showed unequivocally that {sup 14}C-carbonate K{sub d} values were not equal to 0 mL/g for any of the solid phases tested, but they required several months to come to steady state. After six months of contact, the apparent K{sub d} values for a clayey sediment was 3,000 mL/g, for a sandy sediment was 10 mL/g, for a 36-year-old concrete was 30,000 mL/g, and for a reducing grout was 40 mL/g. Furthermore, it was demonstrated that (ad)sorption rates were appreciably faster than desorption rates, indicating that a kinetic sorption model, as opposed to the steady-state K{sub d} model, may be a more accurate description of the {sup 14}C-carbonate sorption process. A second study demonstrated that the {sup 14}C-carbonate sorbed very strongly onto the various materials and could not be desorbed by anion exchanged with high concentrations of carbonate or nitrate. High phosphate concentrations were able to desorb {sup 14}C-carbonate from the 36-year-old concrete sample, but not the clayey sediment sample. Together these geochemistry studies support the use of non-zero K{sub d} values in risk calculations on the SRS. For performance assessment (PA) calculations, {sup 14}C would be moving with the groundwater, remaining in contact with sediment for days, not months. Therefore for purposes of SRS risk calculations, it is appropriate to select sorption values after a couple days of contact, departing from the traditional definition that states K{sub d} values reflect the system under steady state conditions. Such an apparent K{sub d} value, would be expected to provide a better (and more conservative) estimate of what to expect under SRS PA conditions. Based on these results, recommended apparent K{sub d} values for use in the PA are 1 mL/g for sandy sediments and 30 mL/g for clayey sediments.

  10. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advancedmore » understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.« less

  11. Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences—A Review

    SciTech Connect (OSTI)

    Chen, Yanyan; Zou, Caineng; Mastalerz, Maria; Hu, Suyun; Gasaway, Carley; Tao, Xiaowan

    2015-12-18

    Fourier transform infrared spectroscopy (FTIR) can provide crucial information on the molecular structure of organic and inorganic components and has been used extensively for chemical characterization of geological samples in the past few decades. In this paper, recent applications of FTIR in the geological sciences are reviewed. Particularly, its use in the characterization of geochemistry and thermal maturation of organic matter in coal and shale is addressed. These investigations demonstrate that the employment of high-resolution micro-FTIR imaging enables visualization and mapping of the distributions of organic matter and minerals on a micrometer scale in geological samples, and promotes an advanced understanding of heterogeneity of organic rich coal and shale. Additionally, micro-FTIR is particularly suitable for in situ, non-destructive characterization of minute microfossils, small fluid and melt inclusions within crystals, and volatiles in glasses and minerals. This technique can also assist in the chemotaxonomic classification of macrofossils such as plant fossils. These features, barely accessible with other analytical techniques, may provide fundamental information on paleoclimate, depositional environment, and the evolution of geological (e.g., volcanic and magmatic) systems.

  12. Evaluation of Five Sedimentary Rocks Other Than Salt for Geologic Repository Siting Purposes

    SciTech Connect (OSTI)

    Croff, A.G.; Lomenick, T.F.; Lowrie, R.S.; Stow, S.H.

    2003-11-15

    The US Department of Energy (DOE), in order to increase the diversity of rock types under consideration by the geologic disposal program, initiated the Sedimary ROck Program (SERP), whose immediate objectiv eis to evaluate five types of secimdnary rock - sandstone, chalk, carbonate rocks (limestone and dolostone), anhydrock, and shale - to determine the potential for siting a geologic repository. The evaluation of these five rock types, together with the ongoing salt studies, effectively results in the consideration of all types of relatively impermeable sedimentary rock for repository purposes. The results of this evaluation are expressed in terms of a ranking of the five rock types with respect to their potential to serve as a geologic repository host rock. This comparative evaluation was conducted on a non-site-specific basis, by use of generic information together with rock evaluation criteria (RECs) derived from the DOE siting guidelines for geologic repositories (CFR 1984). An information base relevant to rock evaluation using these RECs was developed in hydrology, geochemistry, rock characteristics (rock occurrences, thermal response, rock mechanics), natural resources, and rock dissolution. Evaluation against postclosure and preclosure RECs yielded a ranking of the five subject rocks with respect to their potential as repository host rocks. Shale was determined to be the most preferred of the five rock types, with sandstone a distant second, the carbonate rocks and anhydrock a more distant third, and chalk a relatively close fourth.

  13. Summary report on the geochemistry of Yucca Mountain and environs

    SciTech Connect (OSTI)

    Daniels, W.R.; Wolfsberg, K.; Rundberg, R.S.

    1982-12-01

    This report gives a detailed description of work at Los Alamos that will help resolve geochemical issues pertinent to siting a high-level nuclear waste repository in tuff at Yucca Mountain, Nevada. It is necessary to understand the properties and setting of the host tuff because this rock provides the first natural barrier to migration of waste elements from a repository. The geochemistry of tuff is being investigated with particular emphasis on retardation processes. This report addresses the various aspects of sorption by tuff, physical and chemical makeup of tuff, diffusion processes, tuff/groundwater chemistry, waste element chemistry under expected repository conditions, transport processes involved in porous and fracture flow, and geochemical and transport modeling.

  14. Utilization of oil shales and basic research in organic geochemistry

    SciTech Connect (OSTI)

    Burnham, A.K.

    1981-01-13

    This report summarizes current research needs relating to oil shale utilization which might also provide new insight into the organic geochemistry of the Green River formation. There are two general topics which cross boundaries and are particularly worthy of emphasis. The first is a study of changes in the kerogen structure and biological markers with depth and location, and how these changes affect the pyrolysis products. This information would be particularly useful to the retort diagnostic methods. It might also lead to a better chemical reaction model of diagenesis and metagenesis. The second is a study of the heteroatom chemistry of the kerogen and how it relates to mineral matter and trace metals. This would be useful not only to present utilization methods, but also might suggest new nonthermal methods of organic materials recovery.

  15. Geothermal investigations in Idaho. Part 1. Geochemistry and...

    Open Energy Info (EERE)

    of 140C or higher and two on the basis of geologic considerations. Authors Young, H. W.; Mitchell and J. C. Published DOE Information Bridge, 511973 DOI 10.2172...

  16. Chinese Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    Chinese Geological Survey Jump to: navigation, search Name: Chinese Geological Survey Place: China Sector: Geothermal energy Product: Chinese body which is involved in surveys of...

  17. Idaho Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    The Idaho Geological Survey is located in Boise, Idaho. About Information on past oil and gas exploration wells in Idaho was transferred to the Idaho Geological Survey in...

  18. Geologic interpretation of gravity anomalies

    SciTech Connect (OSTI)

    Andreyev, B.A.; Klushin, I.G.

    1990-04-19

    This Russian textbook provides a sufficiently complete and systematic illumination of physico-geologic and mathematical aspect of complex problem of interpretation of gravity anomalies. The rational methods of localization of anomalies are examined in detail. All methods of interpreting gravity anomalies are described which have found successful application in practice. Also given are ideas of some new methods of the interpretation of gravity anomalies, the prospects for further development and industrial testing. Numerous practical examples to interpretation are given. Partial Contents: Bases of gravitational field theory; Physico-geologic bases of gravitational prospecting; Principles of geologic interpretation of gravity anomalies; Conversions and calculations of anomalies; Interpretation of gravity anomalies for bodies of correct geometric form and for bodies of arbitrary form; Geologic interpretation of the results of regional gravitational photographing; Searches and prospecting of oil- and gas-bearing structures and of deposits of ore and nonmetalliferous useful minerals.

  19. Trace-element geochemistry of coal resource development related to environmental quality and health

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    This report assesses for decision makers and those involved in coal resource development the environmental and health impacts of trace-element effects arising from significant increases in the use of coal, unless unusual precautions are invoked. Increasing demands for energy and the pressing need for decreased dependence of the United States on imported oil require greater use of coal to meet the nation's energy needs during the next decade. If coal production and consumption are increased at a greatly accelerated rate, concern arises over the release, mobilization, transportation, distribution, and assimilation of certain trace elements, with possible adverse effects on the environment and human health. It is, therefore, important to understand their geochemical pathways from coal and rocks via air, water, and soil to plants, animals, and ultimately humans, and their relation to health and disease. To address this problem, the Panel on Trace Element Geochemistry of Coal Resource Development Related to Health (PECH) was established. Certain assumptions were made by the Panel to highlight the central issues of trace elements and health and to avoid unwarranted duplication of other studies. Based on the charge to the Panel and these assumptions, this report describes the amounts and distribution of trace elements related to the coal source; the various methods of coal extraction, preparation, transportation, and use; and the disposal or recycling of the remaining residues or wastes. The known or projected health effects are discussed at the end of each section.

  20. STOMP-ECKEChem: An Engineering Perspective on Reactive Transport in Geologic Media

    SciTech Connect (OSTI)

    White, Mark D.; Fang, Yilin

    2012-04-04

    ECKEChem (Equilibrium, Conservation, Kinetic Equation Chemistry) is a reactive transport module for the STOMP suite of multifluid subsurface flow and transport simulators that was developed from an engineering perspective. STOMP comprises a suite of operational modes that are distinguished by the solved coupled conservation equations with capabilities for a variety of subsurface applications (e.g., environmental remediation and stewardship, geologic sequestration of greenhouse gases, gas hydrate production, and oil shale production). The ECKEChem module was designed to provide integrated reactive transport capabilities across the suite of STOMP simulator operational modes. The initial application for the ECKEChem module was in the simulation of the mineralization reactions that occurred with the injection of supercritical carbon dioxide into deep Columbia River basalt formations, where it was implemented in the STOMP-CO2 simulator. The STOMP-ECKEChem solution approach to modeling reactive transport in multifluid geologic media is founded on an engineering perspective: (1) sequential non-iterative coupling between the flow and reactive transport is sufficient, (2) reactive transport can be modeled by operator splitting with local geochemistry and global transport, (3) geochemistry can be expressed as a system of coupled nonlinear equilibrium, conservation and kinetic equations, (4) a limited number of kinetic equation forms are used in geochemical practice. This chapter describes the conceptual approach to converting a geochemical reaction network into a series of equilibrium, conservation and kinetic equations, the implementation of ECKEChem in STOMP, the numerical solution approach, and a demonstration of the simulator on a complex application involving desorption of uranium from contaminated field-textured sediments.

  1. Geologic mapping for groundwater resource protection and assessment

    SciTech Connect (OSTI)

    Shafer, J.M. . Earth Sciences and Resources Inst.); Berg, R.C. )

    1993-03-01

    Groundwater is a vital natural resource in the US and around the world. In order to manage and protect this often threatened resource one must better understand its occurrence, extent, and susceptibility to contamination. Geologic mapping is a fundamental approach to developing more detailed and accurate assessments of groundwater resources. The stratigraphy and lithology of earth materials provide the framework for groundwater systems, whether they are deep confined aquifers or shallow, water table environments. These same earth materials control, in large part, the rates of migration of water and contaminants into and through groundwater systems thus establishing the potential yields of the systems and their vulnerability to contamination. Geologic mapping is used to delineate and display the vertical sequencing of earth materials either in cross-section or over lateral areas as in the stack-unit geologic map. These geologic maps, along with supportive hydrogeologic information, are used to identify the three-dimensional positioning and continuity of aquifer and non-aquifer earth materials. For example, detailed stack-unit mapping to a depth of 30 meters has been completed for a portion of a northern Illinois county. Groundwater contamination potentials were assigned to various vertical sequences of materials. Where aquifers are unconfined, groundwater contamination potentials are greatest. Conversely, other considerations being equal, the thicker the confining unit, the lower the contamination potential. This information is invaluable for land use decision-making; water supply assessment, development, and management; and environmental protection planning.

  2. Evaluation of Confining Layer Integrity Beneath the South District Wastewater Treatment Plant, Miami-Dade Water and Sewer Department, Dade County, Florida

    SciTech Connect (OSTI)

    Starr, R.C.; Green, T.S.; Hull, L.C.

    2001-02-28

    A review has been performed of existing information that describes geology, hydrogeology, and geochemistry at the South District Wastewater Treatment Plant, which is operated by the Miami-Dade Water and Sewer Department, in Dade County, Florida. Treated sanitary wastewater is injected into a saline aquifer beneath the plant. Detection of contaminants commonly associated with treated sanitary wastewater in the freshwater aquifer that overlies the saline aquifer has indicated a need for a reevaluation of the ability of the confining layer above the saline aquifer to prevent fluid migration into the overlying freshwater aquifer. Review of the available data shows that the geologic data set is not sufficient to demonstrate that a competent confining layer is present between the saline and freshwater aquifers. The hydrogeologic data also do not indicate that a competent confining layer is present. The geochemical data show that the freshwater aquifer is contaminated with treated wastewater, and the spatial patterns of contamination are consistent with upward migration through localized conduits through the Middle Confining Unit, such as leaking wells or natural features. Recommendations for collection and interpretation of additional site characterization data are provided.

  3. Evaluation of Confining Layer Integrity Beneath the South District Wastewater Treatment Plant, Miami-Dade Water and Sewer Department, Dade County, Florida

    SciTech Connect (OSTI)

    Starr, Robert Charles; Green, Timothy Scott; Hull, Laurence Charles

    2001-02-01

    A review has been performed of existing information that describes geology, hydrogeology, and geochemistry at the South District Wastewater Treatment Plant, which is operated by the Miami-Dade Water and Sewer Department, in Dade County, Florida. Treated sanitary wastewater is injected into a saline aquifer beneath the plant. Detection of contaminants commonly associated with treated sanitary wastewater in the freshwater aquifer that overlies the saline aquifer has indicated a need for a reevaluation of the ability of the confining layer above the saline aquifer to prevent fluid migration into the overlying freshwater aquifer. Review of the available data shows that the geologic data set is not sufficient to demonstrate that a competent confining layer is present between the saline and freshwater aquifers. The hydrogeologic data also do not indicate that a competent confining layer is present. The geochemical data show that the freshwater aquifer is contaminated with treated wastewater, and the spatial patterns of contamination are consistent with upward migration through localized conduits through the Middle Confining Unit, such as leaking wells or natural features. Recommendations for collection and interpretation of additional site characterization data are provided.

  4. Fresh Water Generation from Aquifer-Pressured Carbon Storage: Annual Report FY09

    SciTech Connect (OSTI)

    Wolery, T; Aines, R; Hao, Y; Bourcier, W; Wolfe, T; Haussman, C

    2009-11-25

    This project is establishing the potential for using brine pressurized by Carbon Capture and Storage (CCS) operations in saline formations as the feedstock for desalination and water treatment technologies including reverse osmosis (RO) and nanofiltration (NF). The aquifer pressure resulting from the energy required to inject the carbon dioxide provides all or part of the inlet pressure for the desalination system. Residual brine is reinjected into the formation at net volume reduction, such that the volume of fresh water extracted balances the volume of CO{sub 2} injected into the formation. This process provides additional CO{sub 2} storage capacity in the aquifer, reduces operational risks (cap-rock fracturing, contamination of neighboring fresh water aquifers, and seismicity) by relieving overpressure in the formation, and provides a source of low-cost fresh water to offset costs or operational water needs. This multi-faceted project combines elements of geochemistry, reservoir engineering, and water treatment engineering. The range of saline formation waters is being identified and analyzed. Computer modeling and laboratory-scale experimentation are being used to examine mineral scaling and osmotic pressure limitations. Computer modeling is being used to evaluate processes in the storage aquifer, including the evolution of the pressure field. Water treatment costs are being evaluated by comparing the necessary process facilities to those in common use for seawater RO. There are presently limited brine composition data available for actual CCS sites by the site operators including in the U.S. the seven regional Carbon Sequestration Partnerships (CSPs). To work around this, we are building a 'catalog' of compositions representative of 'produced' waters (waters produced in the course of seeking or producing oil and gas), to which we are adding data from actual CCS sites as they become available. Produced waters comprise the most common examples of saline formation waters. Therefore, they are expected to be representative of saline formation waters at actual and potential future CCS sites. We are using a produced waters database (Breit, 2002) covering most of the United States compiled by the U.S. Geological Survey (USGS). In one instance to date, we have used this database to find a composition corresponding to the brine expected at an actual CCS site (Big Sky CSP, Nugget Formation, Sublette County, Wyoming). We have located other produced waters databases, which are usually of regional scope (e.g., NETL, 2005, Rocky Mountains basins).

  5. Hawaii geologic map data | Open Energy Information

    Open Energy Info (EERE)

    geologic map data Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii geologic map data Published USGS, Date Not Provided DOI Not Provided Check for...

  6. Utah Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    Logo: Utah Geological Survey Name: Utah Geological Survey Address: 1594 W. North Temple Place: Salt Lake City, Utah Zip: 84114-6100 Phone Number: 801.537.3300 Website:...

  7. Constructing Hydraulic Barriers in Deep Geologic Formations

    SciTech Connect (OSTI)

    Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

    2008-07-01

    Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

  8. Hanford Borehole Geologic Information System (HBGIS)

    SciTech Connect (OSTI)

    Last, George V.; Mackley, Rob D.; Saripalli, Ratna R.

    2005-09-26

    This is a user's guide for viewing and downloading borehold geologic data through a web-based interface.

  9. Assessment of effectiveness of geologic isolation systems. Geologic-simulation model for a hypothetical site in the Columbia Plateau. Volume 2: results

    SciTech Connect (OSTI)

    Foley, M.G.; Petrie, G.M.; Baldwin, A.J.; Craig, R.G.

    1982-06-01

    This report contains the input data and computer results for the Geologic Simulation Model. This model is described in detail in the following report: Petrie, G.M., et. al. 1981. Geologic Simulation Model for a Hypothetical Site in the Columbia Plateau, Pacific Northwest Laboratory, Richland, Washington. The Geologic Simulation Model is a quasi-deterministic process-response model which simulates, for a million years into the future, the development of the geologic and hydrologic systems of the ground-water basin containing the Pasco Basin. Effects of natural processes on the ground-water hydrologic system are modeled principally by rate equations. The combined effects and synergistic interactions of different processes are approximated by linear superposition of their effects during discrete time intervals in a stepwise-integration approach.

  10. Montana Bureau of Mines and Geology Website | Open Energy Information

    Open Energy Info (EERE)

    Web Site: Montana Bureau of Mines and Geology Website Abstract Provides access to digital information on Montana's geology. Author Montana Bureau of Mines and Geology...

  11. Oregon Department of Geology and Mineral Industries | Open Energy...

    Open Energy Info (EERE)

    Geology and Mineral Industries Jump to: navigation, search Logo: Oregon Department of Geology and Mineral Industries Name: Oregon Department of Geology and Mineral Industries...

  12. International Collaboration Activities in Different Geologic Disposal

    Energy Savers [EERE]

    Environments | Department of Energy Collaboration Activities in Different Geologic Disposal Environments International Collaboration Activities in Different Geologic Disposal Environments This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. To date, UFD's International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several

  13. Preliminary Geologic Characterization of West Coast States for Geologic Sequestration

    SciTech Connect (OSTI)

    Larry Myer

    2005-09-29

    Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have potential for enhanced coal bed methane recovery (ECBM).

  14. Thermal Waters of Nevada | Open Energy Information

    Open Energy Info (EERE)

    to library Report: Thermal Waters of Nevada Abstract Abstract unavailable. Authors Larry J. Garside and John H. Schilling Organization Nevada Bureau of Mines and Geology Published...

  15. A STUDY ON GEOTHERMAL RESERVOIR ENGlNEERING APPROACH COMBINED WITH GEOLOGICAL INFORMATIONS

    SciTech Connect (OSTI)

    Hirakawa, S.; Yamaguchi, S.; Yoshinobu, F.

    1985-01-22

    This paper presents the combined approaches of reservoir geology and engineering to a geothermal field where geological characteristics are highly complex and heterogeneous.Especially,the concrete approaches are discussed for the case of geothermal reservoir performance studies with a developed numerical model, by showing example cases accompanied with reinjection of produced disposal hot water into underground in an object geothermal reservoir. This combined approach will be a great help in solving complicated problems encountered during the development of a geothermal field.

  16. Regional geophysics, Cenozoic tectonics and geologic resources...

    Open Energy Info (EERE)

    and geologic resources of the Basin and Range Province and adjoining regions Author G.P. Eaton Conference Basin and Range Symposium and Great Basin Field Conference; Denver,...

  17. Wyoming State Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Wyoming State Geological Survey Abbreviation: WSGS Address: P.O. Box 1347 Place: Laramie, Wyoming Zip: 82073 Year Founded: 1933 Phone Number:...

  18. Validation of Innovative Exploration Technologies for Newberry Volcano: Geochemistry data from 55-29 and 46-16 wells at Newberry 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Validation of Innovative Exploration Technologies for Newberry Volcano: Geochemistry data from 55-29 and 46-16 wells at Newberry 2012

  19. Validation of Innovative Exploration Technologies for Newberry Volcano: Geochemistry data from 55-29 and 46-16 wells at Newberry 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    2012-01-01

    Validation of Innovative Exploration Technologies for Newberry Volcano: Geochemistry data from 55-29 and 46-16 wells at Newberry 2012

  20. Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin

    SciTech Connect (OSTI)

    Pashin, Jack; McIntyre-Redden, Marcella; Mann, Steven; Merkel, David

    2013-10-31

    The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production tends to decline hyperbolically. Hyperbolic decline indicates that water volume is of greatest concern early in the life of a coalbed methane project. Regional mapping indicates that gas production is controlled primarily by the ability to depressurize permeable coal seams that are natively within the steep part of the adsorption isotherm. Water production is greatest within the freshwater intrusion and below thick Cretaceous cover strata and is least in areas of underpressure. Water management strategies include instream disposal, which can be applied effectively in most parts of the basin. Deep disposal may be applicable locally, particularly where high salinity limits the ability to dispose into streams. Artificial wetlands show promise for the management of saline water, especially where the reservoir yield is limited. Beneficial use options include municipal water supply, agricultural use, and industrial use. The water may be of use to an inland shrimp farming industry, which is active around the southwestern coalbed methane fields. The best opportunities for beneficial use are reuse of water by the coalbed methane industry for drilling and hydraulic fracturing. This research has further highlighted opportunities for additional research on treatment efficiency, the origin of nitrogen compounds, organic geochemistry, biogenic gas generation, flow modeling, and computer simulation. Results of this study are being disseminated through a vigorous technology transfer program that includes web resources, numerous presentations to stakeholders, and a variety of technical publications.

  1. Geochemistry Of The Lake City Geothermal System, California,...

    Open Energy Info (EERE)

    This indicates that, with the exception of a few hot springs, mixing with shallow cold ground waters does not have a significant influence on the chemistry of the hot springs....

  2. Isotope Geochemistry Of Minerals And Fluids From Newberry Volcano...

    Open Energy Info (EERE)

    20 hour flow test are -10.2 and -109, respectively. The D value of the hydrothermal water indicates recharge from outside the caldera. Authors William W. Carothers, Robert H....

  3. SRS Geology/Hydrogeology Environmental Information Document

    SciTech Connect (OSTI)

    Denham, M.E.

    1999-08-31

    The purpose of the Savannah River Site Geology and Hydrogeology Environmental Information Document (EID) is to provide geologic and hydrogeologic information to serve as a baseline to evaluate potential environmental impacts. This EID is based on a summary of knowledge accumulated from research conducted at the Savannah River Site (SRS) and surrounding areas.

  4. Generic Deep Geologic Disposal Safety Case

    Broader source: Energy.gov [DOE]

    The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options (e.g., salt, shale, granite, deep borehole) in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW).

  5. Global Warming in Geologic Time

    SciTech Connect (OSTI)

    David Archer

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  6. Global Warming in Geologic Time

    SciTech Connect (OSTI)

    Archer, David

    2008-02-27

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  7. Global Warming in Geologic Time

    ScienceCinema (OSTI)

    David Archer

    2010-01-08

    The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

  8. Geochemistry and habitat of the oils in Italy

    SciTech Connect (OSTI)

    Mattavelli, L.; Novelli, L. )

    1990-10-01

    All varieties of liquid petroleum, ranging from condensates (> 50{degree}API) to immature sulfur-rich heavy oils (as low as 5{degree} API), have been found in Italy. However, nonbiodegraded heavy oils account for about 70% of the total original oil in place. Geochemical analyses indicate that 11 oil groups are present in the Italian basins and two main types of source rocks have been identified: Triassic carbonates and Tertiary shales. About 95% of the oils were originated from Middle and Upper Triassic carbonates containing type II kerogen (about 1% total organic carbon (TOC) and 500 mg hydrocarbon/g TOC). Only a relatively minor amount of oil was generated by Tertiary shales containing type III kerogen with TOC generally less than 1%. Timing of generation and migration and bulk properties of oils were controlled by geodynamic histories of the three main Italian geologic settings: (1) Apennine and Southern Alp thrust belts, (2) foredeep (depression bordering the thrust belts), and (3) foreland (nondeformed African continental margin). Within the Apennine thrust belts, deep burial during the Neogene resulted in the generation of substantially lighter oils, not only from deeply buried Triassic but sometimes also from Tertiary source rocks. In the late Neogene, foredeep depocenters located in the central Adriatic and southern Sicily, high subsidence (up to 1,000 m/m.y.), a low geothermal gradient (22C/km) and compressional tectonics caused the generation of immature heavy oils generally at depths below 5,000 m and temperatures greater than 100C. Rapid burial and higher geothermal gradients (32C/km), which occurred since the Jurassic, resulted in the generation of light oils from the Late Cretaceous to the Oligocene in the southern sector of Adriatic foreland.

  9. Geology: Ground water in Animas Valley, Hidalgo County, New Mexico...

    Open Energy Info (EERE)

    Report 11. Related Geothermal Exploration Activities Activities (1) Geothermal Literature Review At Lightning Dock Geothermal Area (Spiegel, 1957) Areas (1) Lightning Dock...

  10. Idaho Geological Survey and University of Idaho Explore for Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Idaho Geological Survey and University of Idaho Explore for Geothermal Energy Idaho Geological Survey and University of Idaho Explore for Geothermal Energy January 11, 2013 -...

  11. Recovery Act: Geologic Sequestration Training and Research (Technical...

    Office of Scientific and Technical Information (OSTI)

    Recovery Act: Geologic Sequestration Training and Research Citation Details In-Document Search Title: Recovery Act: Geologic Sequestration Training and Research Work under the ...

  12. Summary of geology of Colorado related to geothermal potential...

    Open Energy Info (EERE)

    Journal Article: Summary of geology of Colorado related to geothermal potential Author L.T. Grose Published Journal Colorado Geological Survey Bulletin, 1974 DOI Not Provided...

  13. Rock Physics of Geologic Carbon Sequestration/Storage (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Rock Physics of Geologic Carbon SequestrationStorage Citation Details In-Document Search Title: Rock Physics of Geologic Carbon SequestrationStorage This report ...

  14. Rock Physics of Geologic Carbon Sequestration/Storage (Technical...

    Office of Scientific and Technical Information (OSTI)

    Rock Physics of Geologic Carbon SequestrationStorage Citation Details In-Document Search Title: Rock Physics of Geologic Carbon SequestrationStorage This report covers the ...

  15. Rock Physics of Geologic Carbon Sequestration/Storage (Technical...

    Office of Scientific and Technical Information (OSTI)

    Rock Physics of Geologic Carbon SequestrationStorage Citation Details In-Document Search Title: Rock Physics of Geologic Carbon SequestrationStorage You are accessing a ...

  16. Federal Control of Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Reitze, Arnold

    2011-04-11

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­‐year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-­‐burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-­‐fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

  17. North Carolina Geological Survey | Open Energy Information

    Open Energy Info (EERE)

    Address: 1612 Mail Service Center Place: North Carolina Zip: 27699-1612 Website: www.geology.enr.state.nc.us Coordinates: 35.67, -78.66 Show Map Loading map......

  18. Panel 2, Geologic Storage of Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    under contract DE-AC04-94AL85000. SAND2014-3954P Geologic Storage of Hydrogen Anna S. Lord Geologist Geotechnology & Engineering Department & Peter H. Kobos Principal ...

  19. Geologic Sequestration Training and Research Projects

    Broader source: Energy.gov [DOE]

    In September 2009, the U.S. Department of Energy announced more than $12.7 million in funding for geologic sequestration training and research projects. The 43 projects will offer training...

  20. Interpretation of Water Sample Analysis, Waunita Hot Spring Project...

    Open Energy Info (EERE)

    of Water Sample Analysis, Waunita Hot Spring Project, Gunnison County, Colorado Author R. H. Carpenter Organization Colorado Geological Survey in Cooperation with the U.S....

  1. Ch. III, Interpretation of water sample analyses Waunita Hot...

    Open Energy Info (EERE)

    of water sample analyses Waunita Hot Springs area Gunnison County, Colorado Author R. H. Carpenter Editor T. G. Zacharakis Published Colorado Geological Survey in Cooperation...

  2. 05671_UintaWaterStudy | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Collected hundreds of downhole water samples and analyzed their chemistry; collected ... or 304-285-4396) Utah Geological Survey - Michael Vanden Berg ...

  3. Brine flow in heated geologic salt.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  4. Principles of isotope geology. Second edition

    SciTech Connect (OSTI)

    Faure, G.

    1986-01-01

    This is a text in isotope geology/geoscience that integrates material taught in various courses into a unified picture of the earth sciences. It presents an exposition of the principles used in the interpretation of isotopic data and shows how such interpretations apply to the solution of geological problems. References up to 1985 are included with chapters in this edition. New chapters on Sm-Nd, Lu-Hf Re-Os, and K-Ca decay schemes and cosmogenic radionuclides have been added. Data summaries and references have been expanded.

  5. Method and apparatus for drilling horizontal holes in geological structures from a vertical bore

    DOE Patents [OSTI]

    Summers, David A.; Barker, Clark R.; Keith, H. Dean

    1982-01-01

    This invention is directed to a method and apparatus for drilling horizontal holes in geological strata from a vertical position. The geological structures intended to be penetrated in this fashion are coal seams, as for in situ gasification or methane drainage, or in oil-bearing strata for increasing the flow rate from a pre-existing well. Other possible uses for this device might be for use in the leaching of uranium ore from underground deposits or for introducing horizontal channels for water and steam injections.

  6. Swords into plowshares: Military geology and national security projects

    SciTech Connect (OSTI)

    Neal, J.T.

    1994-12-31

    Military geology and national security projects are often comparable, achieving their rai-son d`etre in support of national goals, military operations, and/or systems-all for vital national interests. The application of Geoscience to these ends, especially engineering geology, has occurred from pole to pole and included every conceivable environment and natural condition. In the conduct of such projects, the Geosciences have advanced, and vice versa. Desert trafficability, most notably regarding playa surfaces, is both temporary and variable and not a persistent condition as some early authors believed. Playas in Australia, Iran, and the US show that saline efflorescence is removed following surface water dissolution and subsequent deflation, resulting in very hard crusts. Magadiite, a hydrous sodium silicate and possible precursor of bedded chert, was first discovered in North America at Alkali Lake, OR, during a military project. Pleistocene Lake Trinity, a small and mostly buried evaporate basin in the northern Jornada del Muerto, NM, was discovered during exploratory drilling in support of a military test program.

  7. Appendix E Supporting Information for Ground Water Modeling

    Office of Legacy Management (LM)

    Supporting Information for Ground Water Modeling This page intentionally left blank Contents Section Geologic Map of Site Area ........................................................................................................ E1.O Stream Flow Measurements ...................................................................................................... E2.0 Estimates of Ground Water Flow .............................................................................................. E3.0

  8. Workshop report on basic research in organic geochemistry applied to national energy needs

    SciTech Connect (OSTI)

    Not Available

    1982-01-01

    The schedule of the workshop shows its organization. After a series of overview presentations, the participants were divided - according to their interests - into three subgroups to consider the exploration, exploitation, and environmental impact problems associated with the production and utilization of natural and synthetic carbonaceous fuels. As a result of these concentrated deliberations, each subgroup evolved a general recommendation and a series of specific recommendations for their particular topic. These are recapitulated, followed by a policy statement resulting from consideration of a means to implement basic research in organic geochemistry, and the subgroup reports. Separate abstracts have been prepared for the papers which are in the appendix of this report for inclusion in the Energy Data Base.

  9. ORS 516 - Department of Geology and Mineral Industries | Open...

    Open Energy Info (EERE)

    6 - Department of Geology and Mineral Industries Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- StatuteStatute: ORS 516 - Department of Geology...

  10. FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...

    Open Energy Info (EERE)

    FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: FMI Borehole Geology, Geomechanics and 3D...

  11. Subsurface geology of the Raft River geothermal area, Idaho ...

    Open Energy Info (EERE)

    geology of the Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Subsurface geology of the Raft River...

  12. Map of Geologic Sequestration Training and Research Projects

    Broader source: Energy.gov [DOE]

    A larger map of FE's Geologic Sequestration Training and Research Projects awarded as part of the Recovery Act.

  13. License for the Konrad Deep Geological Repository

    SciTech Connect (OSTI)

    Biurrun, E.; Hartje, B.

    2003-02-24

    Deep geological disposal of long-lived radioactive waste is currently considered a major challenge. Until present, only three deep geological disposal facilities have worldwide been operated: the Asse experimental repository (1967-1978) and the Morsleben repository (1971-1998) in Germany as well as the Waste Isolation Pilot Plant (WIPP) in the USA (1999 to present). Recently, the licensing procedure for the fourth such facility, the German Konrad repository, ended with a positive ''Planfeststellung'' (plan approval). With its plan approval decision, the licensing authority, the Ministry of the Environment of the state of Lower Saxony, approved the single license needed pursuant to German law to construct, operate, and later close down this facility.

  14. geologic-sequestration | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture Project No.: DE-FE0001953 NETL has partnered with Tuskegee University (TU) to provide fundamental research and hands-on training and networking opportunities to undergraduate students at TU in the area of CO2 capture and transport with a focus on the development of the most economical separation methods for pre-combustion CO2 capture. The bulk of

  15. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    SciTech Connect (OSTI)

    1995-09-01

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

  16. Geological problems in radioactive waste isolation

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1991-01-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

  17. Source document compilation: Los Alamos investigations related to the environment, engineering, geology, and hydrology, 1961--1990. Volume 2

    SciTech Connect (OSTI)

    Purtymun, W.D.

    1994-03-01

    This document is a compilation of informal reports, letters, and memorandums regarding geologic and hydrologic studies and investigations such as foundation investigations for structures, drilling or coring for environmental studies, development of water supply, or construction of test or observation wells for monitoring. Also included are replies requested for specific environmental, engineering, geologic, and hydrologic problems. The purpose of this document is to preserve and make the original data available to the environmental studies that are now in progress at Los Alamos and provide a reference for and supplement the LAMS report ``Records of Observation Wells, Test Holes, Test Wells, Supply Wells, Springs, and Surface water stations at Los Alamos: with Reference to the Geology and Hydrology,`` which is in preparation. The informal reports and memorandums are listed chronologically from December 1961 to January 1990. Item 208 is a descriptive history of the US Geological Survey`s activities at Los Alamos from 1946 through 1972. The history includes a list of published and unpublished reports that cover geology, hydrology, water supply, waste disposal, and environmental monitoring in the Los Alamos area.

  18. Ground water of Yucca Mountain: How high can it rise?; Final report

    SciTech Connect (OSTI)

    1992-12-31

    This report describes the geology, hydrology, and possible rise of the water tables at Yucca Mountain. The possibilities of rainfall and earthquakes causing flooding is discussed.

  19. Hanford Site Guidelines for Preparation and Presentation of Geologic Information

    SciTech Connect (OSTI)

    Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

    2010-04-30

    A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

  20. Federal Energy and Water Management Awards 2014

    Energy Savers [EERE]

    Pamela Dei, Melissa Kostich, Scott McIlhargey, Kristine Murray, Russell Strach U.S. Department of the Interior U.S. Geological Survey Great Lakes Science Center Ann Arbor, Michigan The U.S. Geological Survey's Great Lakes Science Center completed a major wet laboratory upgrade in FY 2013 that will save $9,000 in annual storm water discharge costs and decrease water use by about 52.6 million gallons per year. The upgrade replaced a once-through well water system with a re-circulating city water

  1. Cigeo, the French Geological Repository Project - 13022

    SciTech Connect (OSTI)

    Labalette, Thibaud; Harman, Alain; Dupuis, Marie-Claude; Ouzounian, Gerald

    2013-07-01

    The Cigeo industrial-scale geological disposal centre is designed for the disposal of the most highly-radioactive French waste. It will be built in an argillite formation of the Callovo-Oxfordian dating back 160 million years. The Cigeo project is located near the Bure village in the Paris Basin. The argillite formation was studied since 1974, and from the Meuse/Haute-Marne underground research laboratory since end of 1999. Most of the waste to be disposed of in the Cigeo repository comes from nuclear power plants and from reprocessing of their spent fuel. (authors)

  2. Environmental resources of selected areas of Hawaii: Geological hazards

    SciTech Connect (OSTI)

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

  3. Geological, geochemical, and geophysical survey of the geothermal resources at Hot Springs Bay Valley, Akutan Island, Alaska

    SciTech Connect (OSTI)

    Motyka, R.J.; Wescott, E.M.; Turner, D.L.; Swanson, S.E.; Romick, J.D.; Moorman, M.A.; Poreda, R.J.; Witte, W.; Petzinger, B.; Allely, R.D.

    1985-01-01

    An extensive survey was conducted of the geothermal resource potential of Hot Springs Bay Valley on Akutan Island. A topographic base map was constructed, geologic mapping, geophysical and geochemical surveys were conducted, and the thermal waters and fumarolic gases were analyzed for major and minor element species and stable isotope composition. (ACR)

  4. Precise rare earth analysis of geological materials

    SciTech Connect (OSTI)

    Laul, J.C.; Wogman, N.A.

    1982-01-01

    Rare earth element (REE) concentrations are very informative in revealing chemical fractionation processs in geological systems. The REE's (La-Lu) behavior is characteristic of various primary and secondary minerals which comprise a rock. The REE's contents and their patterns provide a strong fingerprint in distinguishing among various rock types and in understanding the partial melting and/or fractional crystallization of the source region. The REE contents in geological materials are usually at trace levels. To measure all the REE at such levels, radiochemical neutron activation analysis (RNAA) has been used with a REE group separation scheme. To maximize detection sensitivites for individual REE, selective ..gamma..-ray/x-ray measurements have been made using normal Ge(Li) and low-energy photon detectors (LEPD), and Ge(Li)-NaI(Tl) coincidence-noncoincidence spectrometer systems. Using these detection methods an individual REE can be measured at or below the ppB levels; chemical yields of the REE are determined by reactivation.

  5. Geologic investigation :an update of subsurface geology on Kirtland Air Force Base, New Mexico.

    SciTech Connect (OSTI)

    Van Hart, Dirk

    2003-06-01

    The objective of this investigation was to generate a revised geologic model of Kirtland Air Force Base (KAFB) incorporating the geological and geophysical data produced since the Site-Wide Hydrogeologic Characterization Project (SWHC) of 1994 and 1995. Although this report has certain stand-alone characteristics, it is intended to complement the previous work and to serve as a status report as of late 2002. In the eastern portion of KAFB (Lurance Canyon and the Hubbell bench), of primary interest is the elevation to which bedrock is buried under a thin cap of alluvium. Elevation maps of the bedrock top reveal the paleodrainage that allows for the interpretation of the area's erosional history. The western portion of KAFB consists of the eastern part of the Albuquerque basin where bedrock is deeply buried under Santa Fe Group alluvium. In this area, the configuration of the down-to-the-west, basin-bounding Sandia and West Sandia faults is of primary interest. New geological and geophysical data and the reinterpretation of old data help to redefine the location and magnitude of these elements. Additional interests in this area are the internal stratigraphy and structure of the Santa Fe Group. Recent data collected from new monitoring wells in the area have led to a geologic characterization of the perched Tijeras Arroyo Groundwater system and have refined the known limits of the Ancestral Rio Grande fluvial sediments within the Santa Fe Group. Both the reinterpretation of the existing data and a review of the regional geology have shown that a segment of the boundary between the eastern and western portions of KAFB is a complicated early Tertiary (Laramide) wrench-fault system, the Tijeras/Explosive Ordnance Disposal Area/Hubbell Spring system. A portion of this fault zone is occupied by a coeval ''pull-apart'' basin filled with early Tertiary conglomerates, whose exposures form the ''Travertine Hills''.

  6. Ground-water in Texas

    SciTech Connect (OSTI)

    Ward-McLemore, E.

    1985-01-01

    Amount 61% of the water used by Texans is ground-water. Some areas, both municipal and rural, depend entirely on ground-water. In many areas long term withdrawal is lowering the water levels, causing surface land subsidence, salt-water encroachment, and reducing future reservoir availability. The increasing probability of seepage from radioactive and toxic wastes, herbicide residues, septic systems, and oilfield brines is threatening dangerous contamination of fresh ground-water reservoirs. The Texas Department of Water Resources, the Texas Department of Health, State and private colleges and universities, the US Geological Survey, the Environmental Protection Agency, various underground water districts, among others, are cooperating with concerned hydrologists in a concentrated program to increase the efficiency of ground-water use and development, preserve the aquifer reservoirs, and decrease the pollution potential. 88 references.

  7. Geochemistry research planning for the underground storage of high-level nuclear waste

    SciTech Connect (OSTI)

    Apps, J.A.

    1983-09-01

    This report is a preliminary attempt to plan a comprehensive program of geochemistry research aimed at resolving problems connected with the underground storage of high-level nuclear waste. The problems and research needs were identified in a companion report to this one. The research needs were taken as a point of departure and developed into a series of proposed projects with estimated manpowers and durations. The scope of the proposed research is based on consideration of an underground repository as a multiple barrier system. However, the program logic and organization reflect conventional strategies for resolving technological problems. The projects were scheduled and the duration of the program, critical path projects and distribution of manpower determined for both full and minimal programs. The proposed research was then compared with ongoing research within DOE, NRC and elsewhere to identify omissions in current research. Various options were considered for altering the scope of the program, and hence its cost and effectiveness. Finally, recommendations were made for dealing with omissions and uncertainties arising from program implementation. 11 references, 6 figures, 4 tables.

  8. Water resources data, Kentucky. Water year 1991

    SciTech Connect (OSTI)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  9. Environmental Resources of Selected Areas of Hawaii: Geological Hazards (DRAFT)

    SciTech Connect (OSTI)

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed Regis. 5925638) withdrawing its Notice of Intent (Fed Regis. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent U.S. Geological Survey (USGS) publications and open-file reports. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift, and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis). First, overviews of volcanic and earthquake activity, and details of offshore geologic hazards is provided for the Hawaiian Islands. Then, a more detailed discussion of onshore geologic hazards is presented with special emphasis on the southern third of Hawaii and the east rift zone of Kilauea.

  10. Geologic Map and GIS Data for the Tuscarora Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-12-31

    Tuscarora—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Detailed unit descriptions of stratigraphic units. - Five cross‐sections. - Locations of production, injection, and monitor wells. - 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics (model not in the ESRI geodatabase).

  11. Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wastes Geological and Anthropogenic Factors Influencing Mercury Speciation in Mine Wastes Christopher S. Kim,1 James J. Rytuba,2 Gordon E. Brown, Jr.3 1Department of Physical Sciences, Chapman University, Orange, CA 92866 2U.S. Geological Survey, Menlo Park, CA 94025 3Department of Geological and Environmental Sciences, Stanford University, Stanford, CA 94305 Introduction Figure 1. Dr. Christopher Kim collects a mine waste sample from the Oat Hill mercury mine in Northern California. The

  12. Geologic Study of the Coso Formation | Open Energy Information

    Open Energy Info (EERE)

    Coso geothermal field. These studies have provided a wealth of knowledge concerning the geology of the area, including general structural characteristics and kinematic history....

  13. Comparison of methods for geologic storage of carbon dioxide...

    Office of Scientific and Technical Information (OSTI)

    United States Geological Survey (Brennan et al., 2010); ... generated by multiple methods revealed that assessments ... Research Org: National Energy Technology Laboratory - ...

  14. Co2 geological sequestration (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Co2 geological sequestration Citation Details In-Document Search Title: Co2 ... Publication Date: 2004-11-18 OSTI Identifier: 881725 Report Number(s): ...

  15. Geology and Mineral Deposits of Churchill County, Nevada | Open...

    Open Energy Info (EERE)

    Mineral Deposits of Churchill County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology and Mineral Deposits of Churchill County, Nevada...

  16. Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...

    Open Energy Info (EERE)

    a Quaternary Lake of Northwestern Nevada Abstract Abstract unavailable. Author Israel C. Russell Organization U.S. Geological Survey Published U.S. Government Printing...

  17. Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Imaging Wellbore Cement Degradation by Carbon Dioxide under Geologic Sequestration Conditions Using X-ray Computed Microtomography Citation Details In-Document ...

  18. Pre-Investigation Geological Appraisal Of Geothermal Fields ...

    Open Energy Info (EERE)

    by few or faults. The probable conditions are therefore inferred from study of geological environment, structure and stratigraphy, and the type and distribution of thermal springs...

  19. United States Geological Survey, LSC | Open Energy Information

    Open Energy Info (EERE)

    Testing Facilities Name United States Geological Survey, LSC Address Leetown Science Center, Conte Anadromous Fish Laboratory, 1 Migratory Way Place Turners Falls,...

  20. Geologic Map and GIS Data for the Tuscarora Geothermal Area

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    - 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics (model not in the ESRI geodatabase).

  1. Geology and alteration of the Coso Geothermal Area, Inyo County...

    Open Energy Info (EERE)

    Deep thermal fluid flow at Coso will be controlled entirely by structural permeability developed in otherwise tight and impermeable host rocks. Neither geologic mapping...

  2. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Office of Scientific and Technical Information (OSTI)

    Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Arnold, Bill W.; Brady, Patrick; Sutton, Mark; Travis, Karl; MacKinnon, Robert; Gibb, Fergus;...

  3. Deep Borehole Disposal Research: Geological Data Evaluation Alternativ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Deep Borehole Disposal Research: Geological Data Evaluation Alternative Waste Forms and Borehole Seals Citation Details In-Document Search Title: Deep Borehole Disposal Research:...

  4. Geology and alteration of the Raft River geothermal system, Idaho...

    Open Energy Info (EERE)

    Raft River geothermal system, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Geology and alteration of the Raft River geothermal...

  5. International Symposium on Site Characterization for CO2Geological...

    Office of Scientific and Technical Information (OSTI)

    International Symposium on Site Characterization for CO2Geological Storage Citation ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  6. Geologic map of the Sulphur Springs Area, Valles Caldera Geothermal...

    Open Energy Info (EERE)

    and geologic deposits are indicated on the map. (MHR) Cartographers Fraser E. Goff and J. N. Gardner Published Los Alamos National Laboratory, NM, 1980 DOI Not Provided...

  7. Rock Physics of Geologic Carbon Sequestration/Storage Dvorkin...

    Office of Scientific and Technical Information (OSTI)

    Rock Physics of Geologic Carbon SequestrationStorage Dvorkin, Jack; Mavko, Gary 54 ENVIRONMENTAL SCIENCES; 58 GEOSCIENCES This report covers the results of developing the rock...

  8. Carbon Geological Sequestration Systems Bau, Domenico 54 ENVIRONMENTAL

    Office of Scientific and Technical Information (OSTI)

    Multi-Objective Optimization Approaches for the Design of Carbon Geological Sequestration Systems Bau, Domenico 54 ENVIRONMENTAL SCIENCES The main objective of this project is to...

  9. State Geological Survey Contributions to NGDS Data Development...

    Open Energy Info (EERE)

    Arizona Geological Survey Awardee Website http:www.azgs.az.gov Partner 1 Microsoft Research Partner 2 Energy Industry Metadata Standards Working Group Partner 4 String...

  10. Paleomagnetism, Potassium-Argon Ages, and Geology of Rhyolites...

    Open Energy Info (EERE)

    and Dalrymple, 1966). Authors Richard R. Doell, G. Brent Dalrymple, Robert Leland Smith and Roy A. Bailey Published Journal Geological Society of America Memoirs, 1968 DOI...

  11. Geophysics, Geology and Geothermal Leasing Status of the Lightning...

    Open Energy Info (EERE)

    Leasing Status of the Lightning Dock KGRA, Animas Valley, New Mexico Author C. Smith Published New Mexico Geological Society Guidebook, 1978 DOI Not Provided Check for DOI...

  12. Carbon Dioxide Geological Sequestration in Fractured Porous Rocks

    Office of Scientific and Technical Information (OSTI)

    Training and Research on Probabilistic Hydro-Thermo-Mechanical Modeling of Carbon Dioxide Geological Sequestration in Fractured Porous Rocks Gutierrez, Marte 54 ENVIRONMENTAL...

  13. Liquid Metal Heat Exchanger for Geologic Deposits - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liquid Metal Heat Exchanger for Geologic Deposits Oak Ridge National Laboratory Contact ... The apparatus provides more efficient heat transfer than existing technologies for ...

  14. Final Supplemental Environmental Impact Statement for a Geologic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, ...

  15. United States Geological Survey, HIF | Open Energy Information

    Open Energy Info (EERE)

    HIF Jump to: navigation, search Hydro | Hydrodynamic Testing Facilities Name United States Geological Survey, HIF Address Building 2101 Stennis Space Center Place Mississippi Zip...

  16. SMALL, GEOLOGICALLY COMPLEX RESERVOIRS CAN BENEFIT FROM RESERVOIR SIMULATION

    SciTech Connect (OSTI)

    Richard E. Bennett

    2002-06-24

    The Cascade Sand zone of the Mission-Visco Lease in the Cascade Oil field of Los Angeles County, California, has been under water flood since 1970. Increasing water injection to increase oil production rates was being considered as an opportunity to improve oil recovery. However, a secondary gas cap had formed in the up-dip portion of the reservoir with very low gas cap pressures, creating concern that oil could be displaced into the gas cap resulting in the loss of recoverable oil. Therefore, injecting gas into the gas cap to keep the gas cap pressurized and restrict the influx of oil during water injection was also being considered. Further, it was recognized that the reservoir geology in the gas cap area is very complex with numerous folding and faulting and thus there are potential pressure barriers in several locations throughout the reservoir. With these conditions in mind, there were concerns regarding well to well continuity in the gas cap, which could interfere with the intended repressurization impact. Concerns about the pattern of gas flow from well to well, the possibilities of cycling gas without the desired increased pressure, and the possible loss of oil displaced into the gas cap resulted in the decision to conduct a gas tracer survey in an attempt to better define inter-well communication. Following the gas tracer survey, a reservoir model would be developed to integrate the findings of the gas tracer survey, known geologic and reservoir data, and historic production data. The reservoir model would be used to better define the reservoir characteristics and provide information that could help optimize the waterflood-gas injection project under consideration for efficient water and gas injection management to increase oil production. However, due to inadequate gas sampling procedures in the field and insufficiently developed laboratory analytical techniques, the laboratory was unable to detect the tracer in the gas samples taken. At that point, focus on, and an expansion of the scope of the reservoir simulation and modeling effort was initiated, using DOE's BOAST98 (a visual, dynamic, interactive update of BOAST3), 3D, black oil reservoir simulation package as the basis for developing the reservoir model. Reservoir characterization, modeling, and reservoir simulation resulted in a significant change in the depletion strategy. Information from the reservoir characterization and modeling effort indicate that in-fill drilling and relying on natural water influx from the aquifer could increase remaining reserves by 125,000 barrels of oil per well, and that up to 10 infill wells could be drilled in the field. Through this scenario, field production could be increased two to three times over the current 65 bopd. Based on the results of the study, permits have been applied for to drill a directional infill well to encounter the productive zone at a high angle in order to maximize the amount of pay and reservoirs encountered.

  17. Geologic analysis of Devonian Shale cores

    SciTech Connect (OSTI)

    1982-02-01

    Cleveland Cliffs Iron Company was awarded a DOE contract in December 1977 for field retrieval and laboratory analysis of cores from the Devonian shales of the following eleven states: Michigan, Illinois, Indiana, Ohio, New York, Pennsylvania, West Virginia, Maryland, Kentucky, Tennessee and Virginia. The purpose of this project is to explore these areas to determine the amount of natural gas being produced from the Devonian shales. The physical properties testing of the rock specimens were performed under subcontract at Michigan Technological University (MTU). The study also included LANDSAT information, geochemical research, structural sedimentary and tectonic data. Following the introduction, and background of the project this report covers the following: field retrieval procedures; laboratory procedures; geologic analysis (by state); references and appendices. (ATT)

  18. Reservoir geology of Landslide field, southern San Joaquin basin, California

    SciTech Connect (OSTI)

    Carr, T.R.; Tucker, R.D.; Singleton, M.T. )

    1991-02-01

    The Landslide field, which is located on the southern margin of the San Joaquin basin, was discovered in 1985 and consists of 13 producers and six injectors. Cumulative production as of mid-1990 was approximately 10 million bbl of oil with an average daily production of 4700 BOPD. Production is from a series of late Miocene turbidite sands (Stevens Sand) that were deposited as a small constructional submarine fan (less than 2 mi in diameter). Based on interpretation of wireline logs and engineering data, deposition of the fan and of individual lobes within the fan was strongly influenced by preexisting paleotopography and small syndepositional slump features. Based on mapping of individual depositional units and stratigraphic dipmeter analysis, transport direction of the sand was to the north-north across these paleotopographic breaks in slope. Dipmeter data and pressure data from individual sands are especially useful for recognition and mapping of individual flow units between well bores. Detailed engineering, geophysical and geological studies have increased our understanding of the dimensions, continuity, geometry, and inherent reservoir properties of the individual flow units within the reservoir. Based on the results of these studies a series of water isolation workovers and extension wells were proposed and successfully undertaken. This work has increased recoverable reserves and arrested the rapid production decline.

  19. Sandia National Laboratories: 100 Resilient Cities: Sandia Challenge: Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Challenge Water Meeting basic needs Sandia pioneered water infrastructure risk analysis with expertise in geological & urban water systems. Sandia scientist treats brackish water for human consumption. Sandia specializes in helping cities determine which efforts will be effective in reducing their water risks and increasing their resilience. Areas that can provide enormous cost-saving benefits for cities include reducing the amount of water used in energy production and innovative

  20. Behavior of REE in geological and biological systems

    SciTech Connect (OSTI)

    Laul, J.C.; Weimer, W.C.

    1981-05-01

    The REE abundances when normalized to primordial (chondritic) abundances behave as a smooth function of the REE ionic radii in both the geological and biological systems. The REE are hardly fractionated chemically through various stages of their transformation from soil-soil extract-plant-geological systems.

  1. A Catalog of Geologic Data for the Hanford Site

    SciTech Connect (OSTI)

    Horton, Duane G.; Last, George V.; Gilmore, Tyler J.; Bjornstad, Bruce N.; Mackley, Rob D.

    2005-08-01

    This revision of the geologic data catalog incorporates new boreholes drilled after September 2002 as well as other older wells, particularly from the 600 Area, omitted from the earlier catalogs. Additionally, borehole geophysical log data have been added to the catalog. This version of the geologic data catalog now contains 3,519 boreholes and is current with boreholes drilled as of November 2004.

  2. Geologic Map and GIS Data for the Wabuska Geothermal Area

    SciTech Connect (OSTI)

    Hinz, Nick

    2013-09-30

    Wabuska—ESRI geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata. - List of stratigraphic units and stratigraphic correlation diagram. - One cross‐section.

  3. Geologic Map and GIS Data for the Patua Geothermal Area

    SciTech Connect (OSTI)

    Faulds, James E.

    2011-10-31

    Patua—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, veins, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units. - Locations of geothermal wells. - Locations of 40Ar/39Ar and tephra samples.

  4. Petrology and Geochemistry of Neoproterozoic Arc Plutons Beneath the Atlantic Coastal Plain, SRS, SC

    SciTech Connect (OSTI)

    Maryak, M.

    1998-10-21

    In this report is presented first a brief review of the regional geologic setting of the Savannah River Site, descriptions of the plutonic rock units sampled here, whole rock geochemical data on the plutonic igneous rocks, and finally, a discussion of how the crystalline basement rocks of the Savannah River Site formed and how they may correlate with other terranes exposed in the Piedmont of the Carolinas, Georgia, and Virginia.

  5. Geology Data Package for the Single-Shell Tank Waste Management Areas at the Hanford Site

    SciTech Connect (OSTI)

    Reidel, Steve P.; Chamness, Mickie A.

    2007-01-01

    This data package discusses the geology of the single-shell tank (SST) farms and the geologic history of the area. The focus of this report is to provide the most recent geologic information available for the SST farms. This report builds upon previous reports on the tank farm geology and Integrated Disposal Facility geology with information available after those reports were published.

  6. Status report on the geology of the Oak Ridge Reservation

    SciTech Connect (OSTI)

    Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L.; Dreier, R.B.; Ketelle, R.H.; Lee, R.R.; Lee, Suk Young; Lietzke, D.A.; McMaster, W.M.

    1992-10-01

    This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth.

  7. The French Geological Repository Project Cigeo - 12023

    SciTech Connect (OSTI)

    Harman, Alain; Labalette, Thibaud; Dupuis, Marie-Claude; Ouzounian, Gerald [ANDRA, Chatenay-Malabry (France)

    2012-07-01

    The French Agency for Radioactive Waste Management, ANDRA, was launched by law in 1991 to perform and develop the research programme for managing high level and intermediate level long-lived radioactive waste generated by the French nuclear fleet. After a 15-year intensive research programme, including the study of alternative solutions, an overall review and assessment of the results was organized, including a national public debate. As a result, the Parliament passed a Planning Act on radioactive waste management in 2006. Commissioning of a geological repository by 2025 was one of the most important decisions taken at that time. To reach this goal, a license application must be submitted and reviewed by the competent authorities by 2015. A detailed review and consultation process is, as well, defined in the Planning Act. Beside the legal framework the project needs to progress on two fronts. The first one is on siting. A significant milestone was reached in 2009 with the definition of a defined area to locate the underground repository facilities. This area was approved in March 2010 by the Government, after having collected the opinions and positions of all the interested parties, at both National and local levels. A new phase of dialogue with local players began to refine the implementation scenarios of surface facilities. The final site selection will be approved after a public debate planned for 2013. The second one is the industrial organization, planning and costing. The industrial project of this geological repository was called Cigeo (Centre Industriel de Stockage Geologique). Given the amount of work to be done to comply with the given time framework, a detailed organization with well-defined milestones must be set-up. Cigeo will be a specific nuclear facility, built and operated underground for over a hundred years. The consequence of this long duration is that the development of the repository facilities will take place in successive operational phases. The characteristics of the first waste packages received will determine the work and the corresponding investments by 2025 on the repository site. One of the main challenges will be to accommodate both activities of mining and nuclear operations at the same time and at the same location. From the technical standpoint, ventilation and fire risk cannot be managed through a simple transposition from current nuclear industry practices. The reversibility demand also leads to concrete proposals with regard to repository management flexibility and waste package retrievability. These proposals contribute to the dialogue with stakeholders to prepare for the public debate and a future law which will determine the reversibility conditions. New design developments are expected to be introduced in the application from the current studies conducted until 2014. The possibility of optimization beyond 2015 will be kept open taking into account the one hundred years operating time as well as the capability to integrate feedback gained from the first construction and operation works. The industrial committed work aims to reach the application stage by 2015. The license application procedure was defined by the 2006 Act. Subject to authorization, the construction might begin in 2017. (authors)

  8. State Geological Survey Contributions to the National Geothermal Data System- Final Technical Report

    SciTech Connect (OSTI)

    Allison, M. Lee; Richard, Stephen M.

    2015-03-13

    The State Geological Survey Contributions to the National Geothermal Data System project is built on the work of the project managed by Boise State University to design and build the National Geothermal Data System, by deploying it nationwide and populating it with data principally from State Geological Surveys through collaboration with the Association of American State Geologists (AASG). This project subsequently incorporated the results of the design-build and other DOE-funded projects in support of the NGDS. The NGDS (www.geothermaldata.org) provides free open access to millions of data records, images, maps, and reports, sharing relevant geoscience, production, and land use data in 30+ categories to propel geothermal development and production in the U.S. NGDS currently serves information gathered from hundreds of the U.S. Department of Energy sponsored development and research projects and geologic data feeds from 60+ data providers throughout all 50 states. These data are relevant to geothermal energy exploration and development, but also have broad applicability in other areas including natural resources (e.g., energy, minerals, water), natural hazards, and land use and management.

  9. Geologic and tectonic characteristics of rockbursts

    SciTech Connect (OSTI)

    Adushkin, V.V.; Charlamov, V.A.; Kondratyev, S.V.; Rybnov, Y.S.; Shemyakin, V.M.; Sisov, I.A.; Syrnikov, N.M.; Turuntaev, S.B.; Vasilyeva, T.V.

    1995-06-01

    The modern mining enterprises have attained such scales of engineering activity that their direct influence to a rock massif and in series of cases to the region seismic regime doesn`t provoke any doubts. Excavation and removal of large volumes of rock mass, industrial explosions and other technological factors during long time can lead to the accumulation of man-made changes in rock massifs capable to cause catastrophic consequences. The stress state changes in considerable domains of massif create dangerous concentration of stresses at large geological heterogeneities - faults localized in the mining works zone. External influence can lead in that case to such phenomena as tectonic rockbursts and man-made earthquakes. The rockbursts problem in world mining practice exists for more than two hundred years. So that its actuality not only doesn`t decrease but steadily mounts up as due to the mining works depth increase, enlargement of the useful minerals excavations volumes as due to the possibility of safe use of the rock massif potential energy for facilitating the mastering of the bowels of the Earth and for making that more cheap. The purpose of present work is to study the engineering activity influence to processes occurring in the upper part of Earth crust and in particular in a rock massif. The rock massif is treated in those studies as a geophysical medium - such approach takes into account the presence of block structure of medium and the continuous exchange of energy between parts of that structure. The idea ``geophysical medium`` is applied in geophysics sufficiently wide and stresses the difference of actual Earth crust and rock massifs from the continuous media models discussed in mechanics.

  10. Source: U.S. Energy Information Administration, based on DrillingInfo Inc., New York State Geological Survey, Ohio State Geological Survey, Pennsylvania Bureau of

    U.S. Energy Information Administration (EIA) Indexed Site

    Source: U.S. Energy Information Administration, based on DrillingInfo Inc., New York State Geological Survey, Ohio State Geological Survey, Pennsylvania Bureau of Topographic & Geologic Survey, West Virginia Geological & Economic Survey, and U.S. Geological Survey. Note: Map includes production wells from January 2003 through December 2014. Structure map of the Marcellus Formation Thickness map of the Marcellus Formation Source: U.S. Energy Information Administration, based on

  11. Geological site characterization for the proposed Mixed Waste Disposal Facility, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Reneau, S.L.; Raymond, R. Jr.

    1995-12-01

    This report presents the results of geological site characterization studies conducted from 1992 to 1994 on Pajarito Mesa for a proposed Los Alamos National Laboratory Mixed Waste Disposal Facility (MWDF). The MWDF is being designed to receive mixed waste (waste containing both hazardous and radioactive components) generated during Environmental Restoration Project cleanup activities at Los Alamos. As of 1995, there is no Resource Conservation and Recovery Act (RCRA) permitted disposal site for mixed waste at the Laboratory, and construction of the MWDF would provide an alternative to transport of this material to an off-site location. A 2.5 km long part of Pajarito Mesa was originally considered for the MWDF, extending from an elevation of about 2150 to 2225 m (7060 to 7300 ft) in Technical Areas (TAs) 15, 36, and 67 in the central part of the Laboratory, and planning was later concentrated on the western area in TA-67. The mesa top lies about 60 to 75 m (200 to 250 ft) above the floor of Pajarito Canyon on the north, and about 30 m (100 ft) above the floor of Threemile Canyon on the south. The main aquifer used as a water supply for the Laboratory and for Los Alamos County lies at an estimated depth of about 335 m (1100 ft) below the mesa. The chapters of this report focus on surface and near-surface geological studies that provide a basic framework for siting of the MWDF and for conducting future performance assessments, including fulfillment of specific regulatory requirements. This work includes detailed studies of the stratigraphy, mineralogy, and chemistry of the bedrock at Pajarito Mesa by Broxton and others, studies of the geological structure and of mesa-top soils and surficial deposits by Reneau and others, geologic mapping and studies of fracture characteristics by Vaniman and Chipera, and studies of potential landsliding and rockfall along the mesa-edge by Reneau.

  12. Geology of Southwestern New Mexico | Open Energy Information

    Open Energy Info (EERE)

    to library Conference Paper: Geology of Southwestern New Mexico Authors R.E. Clemons and G.H. Mack Conference 39th Field Conference; ConferencePlace"ConferencePlace"...

  13. Geological and geophysical studies of a geothermal area in the...

    Open Energy Info (EERE)

    geology; structure; surveys; tectonics; United States; volcanic rocks Authors Williams, P.L.; Mabey, D.R.; Pierce, K.L.; Zohdy, A.A.R.; Ackermann, H.; Hoover and D.B. Published U....

  14. DOE Manual Studies 11 Major CO2 Geologic Storage Formations

    Broader source: Energy.gov [DOE]

    A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy.

  15. High resolution reservoir geological modelling using outcrop information

    SciTech Connect (OSTI)

    Zhang Changmin; Lin Kexiang; Liu Huaibo

    1997-08-01

    This is China`s first case study of high resolution reservoir geological modelling using outcrop information. The key of the modelling process is to build a prototype model and using the model as a geological knowledge bank. Outcrop information used in geological modelling including seven aspects: (1) Determining the reservoir framework pattern by sedimentary depositional system and facies analysis; (2) Horizontal correlation based on the lower and higher stand duration of the paleo-lake level; (3) Determining the model`s direction based on the paleocurrent statistics; (4) Estimating the sandbody communication by photomosaic and profiles; (6) Estimating reservoir properties distribution within sandbody by lithofacies analysis; and (7) Building the reservoir model in sandbody scale by architectural element analysis and 3-D sampling. A high resolution reservoir geological model of Youshashan oil field has been built by using this method.

  16. Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea...

    Open Energy Info (EERE)

    Kilauea Volcano, HawaiiInfo GraphicMapChart Authors Frank A. Trusdell and Richard B. Moore Published U.S. GEOLOGICAL SURVEY, 2006 DOI Not Provided Check for DOI availability:...

  17. Geology of the Florida Canyon gold deposit, Pershing County,...

    Open Energy Info (EERE)

    Pershing County, Nevada, in: Gold and Silver Deposits of Western Nevada Authors Hastings, J.S., Burkhart, T.H., and Richardson and R.E. Published Geological Society of Nevada 1993...

  18. Geologic interpretation of gravity and magnetic data in the Salida...

    Open Energy Info (EERE)

    interpretation of gravity and magnetic data in the Salida region, Colorado Authors J.E. Case and R.F. Sikora Published U.S. Geological Survey Open-File Report, 1984 Report...

  19. Geological Society of America selects Los Alamos scientist Claudia...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is a stable-isotope geochemist whose research spans the traditional fields of geology, soil science and climate science. July 9, 2015 Claudia Mora Claudia Mora Contact Los Alamos...

  20. Geological aspects of the nuclear waste disposal problem

    SciTech Connect (OSTI)

    Laverov, N.P.; Omelianenko, B.L.; Velichkin, V.I.

    1994-06-01

    For the successful solution of the high-level waste (HLW) problem in Russia one must take into account such factors as the existence of the great volume of accumulated HLW, the large size and variety of geological conditions in the country, and the difficult economic conditions. The most efficient method of HLW disposal consists in the maximum use of protective capacities of the geological environment and in using inexpensive natural minerals for engineered barrier construction. In this paper, the principal trends of geological investigation directed toward the solution of HLW disposal are considered. One urgent practical aim is the selection of sites in deep wells in regions where the HLW is now held in temporary storage. The aim of long-term investigations into HLW disposal is to evaluate geological prerequisites for regional HLW repositories.

  1. Process for structural geologic analysis of topography and point data

    DOE Patents [OSTI]

    Eliason, Jay R.; Eliason, Valerie L. C.

    1987-01-01

    A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

  2. Title Geology of the Great Basin. Copyright Issue Entire Book

    National Nuclear Security Administration (NNSA)

    Fiero, B. 101084 Document Date 1186 Document Type Book ERC Index number 05.09.128 Box Number 1672-1 Recipients Unversity of Nevada Reno Press ADI " Geology of the Great...

  3. A Geological and Geophysical Study of Chena Hot Springs, Alaksa...

    Open Energy Info (EERE)

    Alaksa Jump to: navigation, search OpenEI Reference LibraryAdd to library M.Sc. Thesis: A Geological and Geophysical Study of Chena Hot Springs, AlaksaThesisDissertation...

  4. Geologic Mapping of the Valles Caldera National Preserve, New...

    Open Energy Info (EERE)

    and Bland) are now complete and two others will be finished by 2006 (Valle Toledo and Valle San Antonio). Eventually, the geology of the Valles caldera will be published as a...

  5. Geologic Map of the Jemez Mountains, New Mexico | Open Energy...

    Open Energy Info (EERE)

    MexicoInfo GraphicMapChart Abstract Abstract unavailable Cartographers Robert Leland Smith, Roy A. Bailey and Clarence Samuel Ross Published U.S. Geological Survey, 1970 DOI Not...

  6. Fluid Flow Model Development for Representative Geologic Media

    Broader source: Energy.gov [DOE]

    Clay and granitic geologic rock units are potential host media for future repositories for used nuclear fuel and high level waste. This report addresses the representation of flow in these two media within numerical process (discrete fracture network) models.

  7. Regional Geology: GIS Database for Alternative Host Rocks and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The objective of this work is to develop a spatial database that integrates both geologic data for alternative host-rock formations and information that has been historically used ...

  8. Geological Carbon Sequestration, Spelunking and You | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You August 11, 2010 - 2:45pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this project do? Develops and tests technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts Here's a riddle for you: What do spelunkers, mineralogists and the latest Carbon Capture and Sequestration (CCS) awardees have in common? They're all

  9. Research Portfolio Report Ultra-Deepwater: Geologic Uncertainty

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geologic Uncertainty Cover Image: 3D visualization of directionally drilled boreholes in the Gulf of Mexico, field MC109, showing NETL's interpretation of two reservoir sand intervals. Research Portfolio Report Ultra-Deepwater: Geologic Uncertainty DOE/NETL-2015/1694 Prepared by: Mari Nichols-Haining, Jennifer Funk, Kathy Bruner, John Oelfke, and Christine Rueter KeyLogic Systems, Inc. National Energy Technology Laboratory (NETL) Contact: James Ammer james.ammer@netl.doe.gov Contract

  10. Thermodynamic stability of actinide pyrochlore minerals in deep geologic

    Office of Scientific and Technical Information (OSTI)

    repository environments (Conference) | SciTech Connect Thermodynamic stability of actinide pyrochlore minerals in deep geologic repository environments Citation Details In-Document Search Title: Thermodynamic stability of actinide pyrochlore minerals in deep geologic repository environments Crystalline phases of pyrochlore (e.g., CaPuTi{sub 2}O{sub 7}, CaUTi{sub 2}O{sub 7}) have been proposed as a durable ceramic waste form for disposal of high level radioactive wastes including surplus

  11. Radioactive Waste Management: Study of Spent Fuel Dissolution Rates in Geological Storage Using Dosimetry Modeling and Experimental Verification

    SciTech Connect (OSTI)

    Hansen, Brady; Miller, William

    2011-10-28

    This research will provide improved predictions into the mechanisms and effects of radiolysis on spent nuclear fuel dissolution in a geological respository through accurate dosimetry modeling of the dose to water, mechanistic chemistry modeling of the resulting radiolytic reactions and confirmatory experimental measurements. This work will combine effort by the Nuclear Science and Engineering Institute (NSEI) and the Missouri University Research Reactor (MURR) at the University of Missouri-Columbia, and the expertise and facilities at the Pacific Northwest National Laboratory (PNNL).

  12. Optimization of Geological Environments for Carbon Dioxide Disposan in Saline Aquifers in the United States

    SciTech Connect (OSTI)

    Hovorka, Susan

    1999-02-01

    Recent research and applications have demonstrated technologically feasible methods, defined costs, and modeled processes needed to sequester carbon dioxide (CO{sub 2}) in saline-water-bearing formations (aquifers). One of the simplifying assumptions used in previous modeling efforts is the effect of real stratigraphic complexity on transport and trapping in saline aquifers. In this study we have developed and applied criteria for characterizing saline aquifers for very long-term sequestration of CO{sub 2}. The purpose of this pilot study is to demonstrate a methodology for optimizing matches between CO{sub 2} sources and nearby saline formations that can be used for sequestration. This project identified 14 geologic properties used to prospect for optimal locations for CO{sub 2} sequestration in saline-water-bearing formations. For this demonstration, we digitized maps showing properties of saline formations and used analytical tools in a geographic information system (GIS) to extract areas that meet variably specified prototype criteria for CO{sub 2} sequestration sites. Through geologic models, realistic aquifer properties such as discontinuous sand-body geometry are determined and can be used to add realistic hydrologic properties to future simulations. This approach facilitates refining the search for a best-fit saline host formation as our understanding of the most effective ways to implement sequestration proceeds. Formations where there has been significant drilling for oil and gas resources as well as extensive characterization of formations for deep-well injection and waste disposal sites can be described in detail. Information to describe formation properties can be inferred from poorly known saline formations using geologic models in a play approach. Resulting data sets are less detailed than in well-described examples but serve as an effective screening tool to identify prospects for more detailed work.

  13. Geochemistry of Bolivian salars, Lipez, southern Altiplano: Origin of solutes and brine evolution

    SciTech Connect (OSTI)

    Risacher, F. ); Fritz, B. )

    1991-03-01

    This paper focuses on poorly understood processes related to saline lakes, or salars, of the southern Bolivian Altiplano. A morphologic classification system is described, and the origin of solutes in the inflow waters is discussed. Next, the actual chemical evolution of these inflow waters is compared with their theoretical evolution based on thermodynamic equilibria. The water chemistry of a specific sequence of evaporating waters is then scrutinized to determine which processes are responsible for a significant discrepancy which is apparent between the measured and the calculated evolution.

  14. Temporal Shifts in the Geochemistry and Microbial Community Structure of an Ultradeep Mine Borehole Following Isolation

    SciTech Connect (OSTI)

    Moser, Duane P. ); Onstott, T C.; Fredrickson, Jim K. ); Brockman, Fred J. ); Balkwill, David L.; Drake, G R.; Pfiffner, S; White, D C.; Takai, K Project Japan); Pratt, L M.; Fong, J; Lollar, B S.; Slater, G; Phelps, T J. ); Spoelstra, N ); Deflaun, M; Southam, G; Welty, A T.; Baker, B J.; Hoek, J

    2003-12-01

    A borehole draining a water-bearing dyke fracture at 3.2 km depth in a South African Au mine was isolated from the open mine environment...

  15. An Assessment of Geological Carbon Sequestration Options in the Illinois Basin

    SciTech Connect (OSTI)

    Robert Finley

    2005-09-30

    The Midwest Geological Sequestration Consortium (MGSC) has investigated the options for geological carbon dioxide (CO{sub 2}) sequestration in the 155,400-km{sup 2} (60,000-mi{sup 2}) Illinois Basin. Within the Basin, underlying most of Illinois, western Indiana, and western Kentucky, are relatively deeper and/or thinner coal resources, numerous mature oil fields, and deep salt-water-bearing reservoirs that are potentially capable of storing CO{sub 2}. The objective of this Assessment was to determine the technical and economic feasibility of using these geological sinks for long-term storage to avoid atmospheric release of CO{sub 2} from fossil fuel combustion and thereby avoid the potential for adverse climate change. The MGSC is a consortium of the geological surveys of Illinois, Indiana, and Kentucky joined by six private corporations, five professional business associations, one interstate compact, two university researchers, two Illinois state agencies, and two consultants. The purpose of the Consortium is to assess carbon capture, transportation, and storage processes and their costs and viability in the three-state Illinois Basin region. The Illinois State Geological Survey serves as Lead Technical Contractor for the Consortium. The Illinois Basin region has annual emissions from stationary anthropogenic sources exceeding 276 million metric tonnes (304 million tons) of CO{sub 2} (>70 million tonnes (77 million tons) carbon equivalent), primarily from coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year. Assessing the options for capture, transportation, and storage of the CO{sub 2} emissions within the region has been a 12-task, 2-year process that has assessed 3,600 million tonnes (3,968 million tons) of storage capacity in coal seams, 140 to 440 million tonnes (154 to 485 million tons) of capacity in mature oil reservoirs, 7,800 million tonnes (8,598 million tons) of capacity in saline reservoirs deep beneath geological structures, and 30,000 to 35,000 million tonnes (33,069 to 38,580 million tons) of capacity in saline reservoirs on a regional dip >1,219 m (4,000 ft) deep. The major part of this effort assessed each of the three geological sinks: coals, oil reservoirs, and saline reservoirs. We linked and integrated options for capture, transportation, and geological storage with the environmental and regulatory framework to define sequestration scenarios and potential outcomes for the region. Extensive use of Geographic Information Systems (GIS) and visualization technology was made to convey results to project sponsors, other researchers, the business community, and the general public. An action plan for possible technology validation field tests involving CO{sub 2} injection was included in a Phase II proposal (successfully funded) to the U.S. Department of Energy with cost sharing from Illinois Clean Coal Institute.

  16. Monitored Geologic Repository Operations Monitoring and Control System Description Document

    SciTech Connect (OSTI)

    E.F. Loros

    2000-06-29

    The Monitored Geologic Repository Operations Monitoring and Control System provides supervisory control, monitoring, and selected remote control of primary and secondary repository operations. Primary repository operations consist of both surface and subsurface activities relating to high-level waste receipt, preparation, and emplacement. Secondary repository operations consist of support operations for waste handling and treatment, utilities, subsurface construction, and other selected ancillary activities. Remote control of the subsurface emplacement operations, as well as, repository performance confirmation operations are the direct responsibility of the system. In addition, the system monitors parameters such as radiological data, air quality data, fire detection status, meteorological conditions, unauthorized access, and abnormal operating conditions, to ensure a safe workplace for personnel. Parameters are displayed in a real-time manner to human operators regarding surface and subsurface conditions. The system performs supervisory monitoring and control for both important to safety and non-safety systems. The system provides repository operational information, alarm capability, and human operator response messages during emergency response situations. The system also includes logic control to place equipment, systems, and utilities in a safe operational mode or complete shutdown during emergency response situations. The system initiates alarms and provides operational data to enable appropriate actions at the local level in support of emergency response, radiological protection response, evacuation, and underground rescue. The system provides data communications, data processing, managerial reports, data storage, and data analysis. This system's primary surface and subsurface operator consoles, for both supervisory and remote control activities, will be located in a Central Control Center (CCC) inside one of the surface facility buildings. The system consists of instrument and control equipment and components necessary to provide human operators with sufficient information to monitor and control the operation of the repository in an efficient and safe manner. The system consists of operator consoles and workstations, multiple video display terminals, communications and interfacing equipment, and instrument and control software with customized configuration to meet the needs of the Monitored Geologic Repository (MGR). Process and logic controllers and the associated input/output units of each system interfaced with this system will be configured into Remote Terminal Units (RTU) and located close to the systems to be monitored and controlled. The RTUs are configured to remain operational should communication with CCC operations be lost. The system provides closed circuit television to selectively view systems, operations, and equipment areas and to aid in the operation of mechanical systems. Control and monitoring of site utility systems will be located in the CCC. Site utilities include heating, ventilation, and air conditioning equipment; plant compressed air; plant water; firewater; electrical systems; and inert gases, such as nitrogen, if required. This system interfaces with surface and subsurface systems that either generate output data or require remote control input. The system interfaces with the Site Communications System for bulk storage of operational data, on-site and off-site communication, and a plant-wide public announcement system. The system interfaces with the Safeguards and Security System to provide operational status and emergency alarm indications. The system interfaces with the Site Operation System to provide site wide acquisition of data for analysis and reports, historical information for trends, utility information for plant operation, and to receive operating plans and procedures.

  17. In Situ Spectrophotometric Determination of pH under Geologic CO2 Sequestration Conditions: Method Development and Application

    SciTech Connect (OSTI)

    Shao, Hongbo; Thompson, Christopher J.; Qafoku, Odeta; Cantrell, Kirk J.

    2013-02-25

    Injecting massive amounts of CO2 into deep geologic formations will cause a range of coupled thermal, hydrodynamic, mechanical, and chemical changes. A significant perturbation in water-saturated formations is the pH drop in the reservoir fluids due to CO2 dissolution. Knowing the pH under geological CO2 sequestration conditions is important for a better understanding of the short- and long-term risks associated with geological CO2 sequestration and will help in the design of sustainable sequestration projects. Most previous studies on CO2-rock-brine interactions have utilized thermodynamic modeling to estimate the pH. In this work, a spectrophotometric method was developed to determine the in-situ pH in CO2-H2O-NaCl systems in the presence and absence of reservoir rock by observing the spectra of a pH indicator, bromophenol blue, with a UV-visible spectrophotometer. Effects of temperature, pressure, and ionic strength on the pH measurement were evaluated. Measured pH values in CO2-H2O-NaCl systems were compared with several thermodynamic models. Results indicate that bromophenol blue can be used to accurately determine the pH of brine in contact with supercritical CO2 under geologic CO2 sequestration conditions.

  18. Hydrologic and geologic aspects of low-level radioactive-waste site management. [Shallow land burial at Oak Ridge

    SciTech Connect (OSTI)

    Cutshall, N.H.; Vaughan, N.D.; Haase, C.S.; Olsen, C.R.; Huff, D.D.

    1982-01-01

    Hydrologic and geologic site characterization is a critical phase in development of shallow land-burial sites for low-level radioactive-waste disposal, especially in humid environments. Structural features such as folds, faults, and bedding and textural features such as formation permeability, porosity, and mineralogy all affect the water balance and water movement and, in turn, radionuclide migration. Where these features vary over short distance scales, detailed mapping is required in order to enable accurate model predictions of site performance and to provide the basis for proper design and planning of site-disposal operations.

  19. THERMAL ANALYSIS OF GEOLOGIC HIGH-LEVEL RADIOACTIVE WASTE PACKAGES

    SciTech Connect (OSTI)

    Hensel, S.; Lee, S.

    2010-04-20

    The engineering design of disposal of the high level waste (HLW) packages in a geologic repository requires a thermal analysis to provide the temperature history of the packages. Calculated temperatures are used to demonstrate compliance with criteria for waste acceptance into the geologic disposal gallery system and as input to assess the transient thermal characteristics of the vitrified HLW Package. The objective of the work was to evaluate the thermal performance of the supercontainer containing the vitrified HLW in a non-backfilled and unventilated underground disposal gallery. In order to achieve the objective, transient computational models for a geologic vitrified HLW package were developed by using a computational fluid dynamics method, and calculations for the HLW disposal gallery of the current Belgian geological repository reference design were performed. An initial two-dimensional model was used to conduct some parametric sensitivity studies to better understand the geologic system's thermal response. The effect of heat decay, number of co-disposed supercontainers, domain size, humidity, thermal conductivity and thermal emissivity were studied. Later, a more accurate three-dimensional model was developed by considering the conduction-convection cooling mechanism coupled with radiation, and the effect of the number of supercontainers (3, 4 and 8) was studied in more detail, as well as a bounding case with zero heat flux at both ends. The modeling methodology and results of the sensitivity studies will be presented.

  20. Selenium in Oklahoma ground water and soil

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  1. On Leakage from Geologic Storage Reservoirs of CO2

    SciTech Connect (OSTI)

    Pruess, Karsten

    2006-02-14

    Large amounts of CO2 would need to be injected underground to achieve a significant reduction of atmospheric emissions. The large areal extent expected for CO2 plumes makes it likely that caprock imperfections will be encountered, such as fault zones or fractures, which may allow some CO2 to escape from the primary storage reservoir. Leakage of CO2 could also occur along wellbores. Concerns with escape of CO2 from a primary geologic storage reservoir include (1) acidification of groundwater resources, (2) asphyxiation hazard when leaking CO2 is discharged at the land surface, (3) increase in atmospheric concentrations of CO2, and (4) damage from a high-energy, eruptive discharge (if such discharge is physically possible). In order to gain public acceptance for geologic storage as a viable technology for reducing atmospheric emissions of CO2, it is necessary to address these issues and demonstrate that CO2 can be injected and stored safely in geologic formations.

  2. Niagara Falls Storage Site, Lewiston, New York: geologic report

    SciTech Connect (OSTI)

    Not Available

    1984-06-01

    This report is one of a series of engineering and environmental reports planned for the US Department of Energy's properties at Niagara Falls, New York. It describes the essential geologic features of the Niagara Falls Storage Site. It is not intended to be a definitive statement of the engineering methods and designs required to obtain desired performance features for any permanent waste disposal at the site. Results are presented of a geological investigation that consisted of two phases. Phase 1 occurred during July 1982 and included geologic mapping, geophysical surveys, and a limited drilling program in the vicinity of the R-10 Dike, planned for interim storage of radioactive materials. Phase 2, initiated in December 1982, included excavation of test pits, geophysical surveys, drilling, observation well installation, and field permeability testing in the South Dike Area, the Northern Disposal Area, and the K-65 Tower Area.

  3. Environmental Responses to Carbon Mitigation through Geological Storage

    SciTech Connect (OSTI)

    Cunningham, Alfred; Bromenshenk, Jerry

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO{sub 2} into geologic formations. The research plan has two interrelated research objectives.  Objective 1: Determine the influence of CO{sub 2}-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites.  Objective 2: Determine the Effects of CO{sub 2} leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  4. Use of seismic attributes in geological description of carbonate rocks

    SciTech Connect (OSTI)

    Castrejon-Vacio, F.; Porres-Luna, A.A.

    1994-12-31

    Seismic attributes have been used widely in order to obtain geological description of petroleum reservoirs, especially as a support for the definition of horizontal continuity of strata, with special emphasis on terrigeneous formations. Nevertheless the application of seismic attributes to the study of carbonate and naturally fractured reservoirs has been limited. This paper shows the application of seismic attributes and seismic inversion to the geological and petrophysical characterization of a naturally fractured reservoir with complex lithology, which is characteristic of the most important producing formations in Mexico. The results from these techniques provide the basis for the definition of a realistic geological model, which is of prime concern for the reservoir`s characterization, numerical studies and EOR applications.

  5. The Geochemistry of the HGP-A Geothermal Well: A Review and an Update

    SciTech Connect (OSTI)

    Thomas, Donald M.

    1988-01-01

    The HGP-A geothermal well, located on the lower east rift system of Kilauea volcano, has provided steam and hot water to a 3 MWe wellhead generator facility on a continuous basis since December 1981.

  6. Remedial action and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado. Attachment 2, Geology report

    SciTech Connect (OSTI)

    Not Available

    1993-07-01

    This report presents geologic considerations that are pertinent to the Remedial Action Plan for Slick Rock mill tailings. Topics covered include regional geology, site geology, geologic stability, and geologic suitability.

  7. The geological structure at Clearlake, California: A preliminary review

    SciTech Connect (OSTI)

    Burns, K.L.

    1992-01-01

    The compilation of geologic exploration data from a complex Franciscan terrain near Clearlake, California, was systematized by dividing the geology into three constituent geometric systems, which are a fault system, a lithotope, and a structural vector field. It is inferred the high heat flow is due to a deepseated magma that fed a line of cinder cones and andesite flows. The country rock of the proposed Hot Dry Rock facility will be autochthonous Franciscan metagreywackes on the south limb of the High Valley antiform. The metagreywacke has a foliate texture resulting in a strong mechanical axial anisotropy that caused exceptional deviation of the Audrey A-1 well.

  8. Application of micro-PIXE method to ore geology

    SciTech Connect (OSTI)

    Murao, S.; Hamasaki, S.; Sie, S. H.; Maglambayan, V. B.; Hu, X.

    1999-06-10

    Specific examples of ore mineral analysis by micro-PIXE are presented in this paper. For mineralogical usage it is essential to construct a specimen chamber which is designed exclusively for mineral analysis. In most of the analysis of natural minerals, selection of absorbers is essential in order to obtain optimum results. Trace element data reflect the crystallographic characteristics of each mineral and also geologic settings of sampling locality, and can be exploited in research spanning mineral exploration to beneficiation. Micro-PIXE thus serves as a bridge between small-scale mineralogical experiments and understanding of large-scale geological phenomenon on the globe.

  9. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface...

  10. Water Resources Data. Ohio - Water Year 1992. Volume 1. Ohio River Basin excluding project data

    SciTech Connect (OSTI)

    H.L. Shindel; J.H. Klingler; J.P. Mangus; L.E. Trimble

    1993-03-01

    Water-resources data for the 1992 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 121 gaging stations, 336 wells, and 72 partial-record sites; and water levels at 312 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio. Volume 1 covers the central and southern parts of Ohio, emphasizing the Ohio River Basin. (See Order Number DE95010451 for Volume 2 covering the northern part of Ohio.)

  11. Water resources data, Ohio: Water year 1991. Volume 1, Ohio River Basin excluding project data

    SciTech Connect (OSTI)

    Shindel, H.L.; Klingler, J.H.; Mangus, J.P.; Trimble, L.E.

    1992-03-01

    Water-resources data for the 1991 water year for Ohio consist of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground-water wells. This report, in two volumes, contains records for water discharge at 131 gaging stations, 378 wells, and 74 partial-record sites; and water levels at 431 observation wells. Also included are data from miscellaneous sites. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurements and analyses. These data represent that part of the National Water Data System collected by the US Geological Survey and cooperating State and Federal agencies in Ohio.

  12. Geology, hydrology, chemistry, and microbiology of the in situ bioremediation demonstration site

    SciTech Connect (OSTI)

    Newcomer, D.R.; Doremus, L.A.; Hall, S.H.; Truex, M.J.; Vermeul, V.R.; Engelman, R.E.

    1995-03-01

    This report summarizes characterization information on the geology, hydrology, microbiology, contaminant distribution, and ground-water chemistry to support demonstration of in situ bioremediation at the Hanford Site. The purpose of this information is to provide baseline conditions, including a conceptual model of the aquifer being utilized for in situ bioremediation. Data were collected from sampling and other characterization activities associated with three wells drilled in the upper part of the suprabasalt aquifer. Results of point-dilution tracer tests, conducted in the upper 9 m (30 ft) of the aquifer, showed that most ground-water flow occurs in the upper part of this zone, which is consistent with hydraulic test results and geologic and geophysical data. Other tracer test results indicated that natural ground-water flow velocity is equal to or less than about 0.03 m/d (0.1 ft/d). Laboratory hydraulic conductivity measurements, which represent the local distribution of vertical hydraulic conductivity, varied up to three orders of magnitude. Based on concentration data from both the vadose and saturated zone, it is suggested that most, if not all, of the carbon tetrachloride detected is representative of the aqueous phase. Concentrations of carbon tetrachloride, associated with a contaminant plume in the 200-West Area, ranged from approximately 500 to 3,800 {mu}g/L in the aqueous phase and from approximately 10 to 290 {mu}g/L in the solid phase at the demonstration site. Carbon tetrachloride gas was detected in the vadose zone, suggesting volatilization and subsequent upward migration from the saturated zone.

  13. CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION

    SciTech Connect (OSTI)

    Douglas G. Patchen; Chris Laughrey; Jaime Kostelnik; James Drahovzal; John B. Hickman; Paul D. Lake; John Bocan; Larry Wickstrom; Taury Smith; Katharine Lee Avary

    2004-10-01

    The ''Trenton-Black River Appalachian Basin Exploration Consortium'' has reached the mid-point in a two-year research effort to produce a play book for Trenton-Black River exploration. The final membership of the Consortium includes 17 exploration and production companies and 6 research team members, including four state geological surveys, the New York State Museum Institute and West Virginia University. Seven integrated research tasks and one administrative and technology transfer task are being conducted basin-wide by research teams organized from this large pool of experienced professionals. All seismic data available to the consortium have been examined at least once. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 10 stratigraphic units determined from well logs to seismic profiles in New York and Pennsylvania. In addition, three surfaces in that area have been depth converted, gridded and mapped. In the Kentucky-Ohio-West Virginia portion of the study area, a velocity model has been developed to help constrain time-to-depth conversions. Fifteen formation tops have been identified on seismic in that area. Preliminary conclusions based on the available seismic data do not support the extension of the Rome Trough into New York state. Members of the stratigraphy task team measured, described and photographed numerous cores from throughout the basin, and tied these data back to their network of geophysical log cross sections. Geophysical logs were scanned in raster files for use in detailed well examination and construction of cross sections. Logs on these cross sections that are only in raster format are being converted to vector format for final cross section displays. The petrology team measured and sampled one classic outcrop in Pennsylvania and ten cores in four states. More than 600 thin sections were prepared from samples in those four states. A seven-step procedure is being used to analyze all thin sections, leading to an interpretation of the sequence of diagenetic events and development of porosity in the reservoir. Nearly 1000 stable isotope geochemistry samples have been collected from cores in four of the five states in the study area. More than 400 of these samples will be analyzed for fluid inclusion and/or strontium isotope analyses, as well. Gas samples have been collected from 21 wells in four states and analyzed for chemical content and isotope analyses of carbon and hydrogen. Because natural gases vary in chemical and isotope composition as a function of their formation and migration history, crossplots of these values can be very revealing. Gas from the Homer field in Kentucky indicates compartmentalization and at least two different sources. Gas from the York field in Ohio also came from at least two discrete compartments. Gas from the Cottontree field in West Virginia is very dry, probably generated from post-mature source rocks. Isotope reversals may be indicative of cracking of residual oil. Gas from Glodes Corners Road field in New York also is post-mature, dry gas, and again isotope reversals may indicate cracking of residual oil in the reservoir. Noble gases are predominantly of crustal origin, but a minor helium component was derived from the mantle. The project web server continues to evolve as the project progresses. The user/password authenticated website has 18 industry partner users and 20 research team users. Software has been installed to track website use. Two meetings of the research team were held to review the status of the project and prepare reports to be given to the full consortium. A meeting of the full consortium--industry partners and researchers--was very successful. However, the ultimate product of the research could be improved if industry members were more forthcoming with proprietary data.

  14. State Geological Survey Contributions to the National Geothermal Data System

    Broader source: Energy.gov [DOE]

    Project objectives: Deploy and populate the National Geothermal Data System (NGDS) with state-specific data by creating a national, sustainable, distributed, interoperable network of state geological survey-based data providers that will develop, collect, serve, and maintain geothermal-relevant data that operates as an integral compliant component of NGDS.

  15. Geological problems in radioactive waste isolation - second worldwide review

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1996-09-01

    The first world wide review of the geological problems in radioactive waste isolation was published by Lawrence Berkeley National Laboratory in 1991. This review was a compilation of reports that had been submitted to a workshop held in conjunction with the 28th International Geological Congress that took place July 9-19, 1989 in Washington, D.C. Reports from 15 countries were presented at the workshop and four countries provided reports after the workshop, so that material from 19 different countries was included in the first review. It was apparent from the widespread interest in this first review that the problem of providing a permanent and reliable method of isolating radioactive waste from the biosphere is a topic of great concern among the more advanced, as well as the developing, nations of the world. This is especially the case in connection with high-level waste (HLW) after its removal from nuclear power plants. The general concensus is that an adequate isolation can be accomplished by selecting an appropriate geologic setting and carefully designing the underground system with its engineered barriers. This document contains the Second Worldwide Review of Geological Problems in Radioactive Waste Isolation, dated September 1996.

  16. UNITED STATES GEOLOGICAL SURVEY DEPARTMENT OF THE INTERIOR F

    Office of Legacy Management (LM)

    I i This page intentionally left blank R u l i s o n - 1 0 , 1971 UNITED STATES GEOLOGICAL ... e d b y a n a l y s i s of samples c o l l e c t e d from t h e network s t a t i o n s . ...

  17. Predictive Modeling of Terrestrial Radiation Exposure from Geologic Materials

    SciTech Connect (OSTI)

    Malchow, Russell L.; Haber, Daniel University of Nevada, Las Vegas; Burnley, Pamela; Marsac, Kara; Hausrath, Elisabeth; Adcock, Christopher

    2015-01-01

    Aerial gamma ray surveys are important for those working in nuclear security and industry for determining locations of both anthropogenic radiological sources and natural occurrences of radionuclides. During an aerial gamma ray survey, a low flying aircraft, such as a helicopter, flies in a linear pattern across the survey area while measuring the gamma emissions with a sodium iodide (NaI) detector. Currently, if a gamma ray survey is being flown in an area, the only way to correct for geologic sources of gamma rays is to have flown the area previously. This is prohibitively expensive and would require complete national coverage. This project’s goal is to model the geologic contribution to radiological backgrounds using published geochemical data, GIS software, remote sensing, calculations, and modeling software. K, U and Th are the three major gamma emitters in geologic material. U and Th are assumed to be in secular equilibrium with their daughter isotopes. If K, U, and Th abundance values are known for a given geologic unit the expected gamma ray exposure rate can be calculated using the Grasty equation or by modeling software. Monte Carlo N-Particle Transport software (MCNP), developed by Los Alamos National Laboratory, is modeling software designed to simulate particles and their interactions with matter. Using this software, models have been created that represent various lithologies. These simulations randomly generate gamma ray photons at energy levels expected from natural radiologic sources. The photons take a random path through the simulated geologic media and deposit their energy at the end of their track. A series of nested spheres have been created and filled with simulated atmosphere to record energy deposition. Energies deposited are binned in the same manner as the NaI detectors used during an aerial survey. These models are used in place of the simplistic Grasty equation as they take into account absorption properties of the lithology which the simplistic equation ignores.

  18. Database for Regional Geology, Phase 1: A Tool for Informing Regional Evaluations of Alternative Geologic Media and Decision Making

    SciTech Connect (OSTI)

    Perry, Frank Vinton; Kelley, Richard E.; Birdsell, Suzanne M.; Lugo, Alexander Bryan; Dobson, Patrick; Houseworth, James

    2014-11-12

    Reported is progress in the following areas: Phase 1 and 2 websites for the regional geology GIS database; terrane maps of crystalline basement rocks; inventory of shale formations in the US; and rock properties and in-situ conditions for shale estimated from sonic velocity measurements.

  19. Procurement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ecology, Applied Geology & Geochemistry, Hydrology, Field Hydrology & Chemistry, Biotechnology & Etoxicology, Environmental Characterization and Risk Assessment Groups Physical & ...

  20. index | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    such as liquid transportation fuels and chemicals. Chemistry, materials characterization, geology, geochemistry, engineering, and environmental chemistry. Catalysts, nanomaterials,...

  1. Diffusion Dominant Solute Transport Modelling in Fractured Media Under Deep Geological Environment - 12211

    SciTech Connect (OSTI)

    Kwong, S.; Jivkov, A.P.

    2012-07-01

    Deep geologic disposal of high activity and long-lived radioactive waste is gaining increasing support in many countries, where suitable low permeability geological formation in combination with engineered barriers are used to provide long term waste contaminant and minimise the impacts to the environment and risk to the biosphere. This modelling study examines the solute transport in fractured media under low flow velocities that are relevant to a deep geological environment. In particular, reactive solute transport through fractured media is studied using a 2-D model, that considers advection and diffusion, to explore the coupled effects of kinetic and equilibrium chemical processes. The effects of water velocity in the fracture, matrix porosity and diffusion on solute transport are investigated and discussed. Some illustrative modelled results are presented to demonstrate the use of the model to examine the effects of media degradation on solute transport, under the influences of hydrogeological (diffusion dominant) and microbially mediated chemical processes. The challenges facing the prediction of long term degradation such as cracks evolution, interaction and coalescence are highlighted. The potential of a novel microstructure informed modelling approach to account for these effects is discussed, particularly with respect to investigating multiple phenomena impact on material performance. The GRM code is used to examine the effects of media degradation for a geological waste disposal package, under the combined hydrogeological (diffusion dominant) and chemical effects in low groundwater flow conditions that are typical of deep geological disposal systems. An illustrative reactive transport modelling application demonstrates the use of the code to examine the interplay of kinetic controlled biogeochemical reactive processes with advective and diffusive transport, under the influence of media degradation. The initial model results are encouraging which show the disposal system to evolve in a physically realistic manner. In the example presented the reactive-transport coupling develops chemically reducing zones, which limit the transport of uranium. This illustrates the potential significance of media degradation and chemical effect on the transport of radionuclides which would need to be taken into account when examining the long-term behaviour and containment properties of the geological disposal system. Microstructure-informed modelling and its potential linkage with continuum flow modelling is a subject of ongoing studies. The approach of microstructure-informed modelling is discussed to provide insight and a mechanistic understanding of macroscopic parameters and their evolution. The proposed theoretical and methodological basis for microstructure-informed modelling of porous quasi-brittle media has the potential to develop into an explanatory and predictive tool for deriving mechanism-based, as opposed to phenomenological, evolution laws for macroscopic properties. These concepts in micro-scale modelling are likely to be applicable to the diffusion process, in addition to advective transport illustrated here for porous media. (authors)

  2. Commercial Light Water Reactor Tritium Extraction Facility

    SciTech Connect (OSTI)

    McHood, M D

    2000-10-12

    A geotechnical investigation program has been completed for the Commercial Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing, and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork.

  3. Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering

    SciTech Connect (OSTI)

    Jin, Lixin; Ryan, Mathur; Rother, Gernot; Cole, David; Bazilevskaya, Ekaterina; Williams, Jennifer; Alex, Carone; Brantley, S. L.

    2013-01-01

    Soils developed on the Oatka Creek member of the Marcellus Formation in Huntingdon, Pennsylvania were analyzed to understand the evolution of black shale matrix porosity and the associated changes in elemental and mineralogical composition during infiltration of water into organic-rich shale. Making the reasonable assumption that soil erosion rates are the same as those measured in a nearby location on a less organic-rich shale, we suggest that soil production rates have on average been faster for this black shale compared to the gray shale in similar climate settings. This difference is attributed to differences in composition: both shales are dominantly quartz, illite, and chlorite, but the Oatka Creek member at this location has more organic matter (1.25 wt.% organic carbon in rock fragments recovered from the bottom of the auger cores and nearby outcrops) and accessory pyrite. During weathering, the extremely low-porosity bedrock slowly disaggregates into shale chips with intergranular pores and fractures. Some of these pores are eitherfilled with organic matter or air-filled but remain unconnected, and thus inaccessible to water. Based on weathering bedrock/soil profiles, disintegration is initiated with oxidation of pyrite and organic matter, which increases the overall porosity and most importantly allows water penetration. Water infiltration exposes fresh surface area and thus promotes dissolution of plagioclase and clays. As these dissolution reactions proceed, the porosity in the deepest shale chips recovered from the soil decrease from 9 to 7% while kaolinite and Fe oxyhydroxides precipitate. Eventually, near the land surface, mineral precipitation is outcompeted by dissolution or particle loss of illite and chlorite and porosity in shale chips increases to 20%. As imaged by computed tomographic analysis, weathering causes i) greater porosity, ii) greater average length of connected pores, and iii) a more branched pore network compared to the unweathered sample. This work highlights the impact of shale water O2interactions in near-surface environments: (1) black shale weathering is important for global carbon cycles as previously buried organic matter is quickly oxidized; and (2) black shales weather more quickly than less organic- and sulfide-rich shales, leading to high porosity and mineral surface areas exposed for clay weathering. The fast rates of shale gas exploitation that are ongoing in Pennsylvania, Texas and other regions in the United States may furthermore lead to release of metals to the environment if reactions between water and black shale are accelerated by gas development activities in the subsurface just as they are by low-temperature processes in ourfield study.

  4. Evolution of porosity and geochemistry in Marcellus Formation black shale during weathering

    SciTech Connect (OSTI)

    Jin, Lixin; Mathur, Ryan; Rother, Gernot; Cole, David; Bazilevskaya, Ekaterina; Williams, Jennifer; Carone, Alex; Brantley, Susan L

    2013-01-01

    Soils developed on the Oatka Creek member of the Marcellus Formation in Huntingdon, Pennsylvania were analyzed to understand the evolution of black shale matrix porosity and the associated changes in elemental and mineralogical composition during infiltration of water into organic-rich shale. Making the reasonable assumption that soil erosion rates are the same as those measured in a nearby location on a less organic-rich shale, we suggest that soil production rates have on average been faster for this black shale compared to the gray shale in similar climate settings. This difference is attributed to differences in composition: both shales are dominantly quartz, illite, and chlorite, but the Oatka Creek member at this location has more organic matter (1.25 wt% organic carbon in rock fragments recovered from the bottom of the auger cores and nearby outcrops) and accessory pyrite. During weathering, the extremely low-porosity bedrock slowly disaggregates into shale chips with intergranular pores and fractures. Some of these pores are either filled with organic matter or air-filled but remain unconnected, and thus inaccessible to water. Based on weathering bedrock/soil profiles, disintegration is initiated with oxidation of pyrite and organic matter, which increases the overall porosity and most importantly allows water penetration. Water infiltration exposes fresh surface area and thus promotes dissolution of plagioclase and clays. As these dissolution reactions proceed, the porosity in the deepest shale chips recovered from the soil decrease from 9 to 7 % while kaolinite and Fe oxyhydroxides precipitate. Eventually, near the land surface, mineral precipitation is outcompeted by dissolution or particle loss of illite and chlorite and porosity in shale chips increases to 20%. As imaged by computed tomographic analysis, weathering causes i) greater porosity, ii) greater average length of connected pores, and iii) a more branched pore network compared to the unweathered sample. This work highlights the impact of shale-water-O2 interactions in near-surface environments: (1) black shale weathering is important for global carbon cycles as previously buried organic matter is quickly oxidized; and (2) black shales weather more quickly than less organic- and sulfide-rich shales, leading to high porosity and mineral surface areas exposed for clay weathering. The fast rates of shale gas exploitation that are ongoing in Pennsylvania, Texas and other regions in the United States may furthermore lead to release of metals to the environment if reactions between water and black shale are accelerated by gas development activities in the subsurface just as they are by low-temperature processes in our field study.

  5. Simulating Geologic Co-sequestration of Carbon Dioxide and Hydrogen Sulfide in a Basalt Formation

    SciTech Connect (OSTI)

    Bacon, Diana H.; Ramanathan, Ramya; Schaef, Herbert T.; McGrail, B. Peter

    2014-01-15

    Co-sequestered CO2 with H2S impurities could affect geologic storage, causing changes in pH and oxidation state that affect mineral dissolution and precipitation reactions and the mobility of metals present in the reservoir rocks. We have developed a variable component, non-isothermal simulator, STOMP-COMP (Water, Multiple Components, Salt and Energy), which simulates multiphase flow gas mixtures in deep saline reservoirs, and the resulting reactions with reservoir minerals. We use this simulator to model the co-injection of CO2 and H2S into brecciated basalt flow top. A 1000 metric ton injection of these supercritical fluids, with 99% CO2 and 1% H2S, is sequestered rapidly by solubility and mineral trapping. CO2 is trapped mainly as calcite within a few decades and H2S is trapped as pyrite within several years.

  6. Geological and geophysical analysis of Coso Geothermal Exploration...

    Open Energy Info (EERE)

    controlled and that the drillhole itself was strongly influenced by structural zones. Water chemistry indicates that this geothermal resource is a hot-water rather than a...

  7. Study on fine geological modelling of the fluvial sandstone reservoir in Daqing oilfield

    SciTech Connect (OSTI)

    Zhoa Han-Qing

    1997-08-01

    These paper aims at developing a method for fine reservoir description in maturing oilfields by using close spaced well logging data. The main productive reservoirs in Daqing oilfield is a set of large fluvial-deltaic deposits in the Songliao Lake Basin, characterized by multi-layers and serious heterogeneities. Various fluvial channel sandstone reservoirs cover a fairly important proportion of reserves. After a long period of water flooding, most of them have turned into high water cut layers, but there are considerable residual reserves within them, which are difficult to find and tap. Making fine reservoir description and developing sound a geological model is essential for tapping residual oil and enhancing oil recovery. The principal reason for relative lower precision of predicting model developed by using geostatistics is incomplete recognition of complex distribution of fluvial reservoirs and their internal architecture`s. Tasking advantage of limited outcrop data from other regions (suppose no outcrop data available in oilfield) can only provide the knowledge of subtle changing of reservoir parameters and internal architecture. For the specific geometry distribution and internal architecture of subsurface reservoirs (such as in produced regions) can be gained only from continuous infilling logging well data available from studied areas. For developing a geological model, we think the first important thing is to characterize sandbodies geometries and their general architecture`s, which are the framework of models, and then the slight changing of interwell parameters and internal architecture`s, which are the contents and cells of the model. An excellent model should possess both of them, but the geometry is the key to model, because it controls the contents and cells distribution within a model.

  8. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kaszuba, John P.; Sims, Kenneth W.W.; Pluda, Allison R.

    2014-06-01

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  9. Aqueous geochemistry of the Thermopolis hydrothermal system, southern Bighorn Basin, Wyoming, U.S.A.

    SciTech Connect (OSTI)

    Kaszuba, John P. [Univ. of Wyoming, Laramie, WY (United States). Dept. of Geology and Geophysics; Sims, Kenneth W.W. [Univ. of Wyoming, Laramie, WY (United States). School of Energy Resources; Pluda, Allison R. [Univ. of Wyoming, Laramie, WY (United States). Wyoming High-Precision Isotope Lab.

    2014-03-01

    The Thermopolis hydrothermal system is located in the southern portion of the Bighorn Basin, in and around the town of Thermopolis, Wyoming. It is the largest hydrothermal system in Wyoming outside of Yellowstone National Park. The system includes hot springs, travertine deposits, and thermal wells; published models for the hydrothermal system propose the Owl Creek Mountains as the recharge zone, simple conductive heating at depth, and resurfacing of thermal waters up the Thermopolis Anticline.

  10. Petrology and geochemistry of Alto Peak, a vapor-cored hydrothermal system, Leyte Province, Philippines

    SciTech Connect (OSTI)

    Reyes, A.G.; Giggenbach, W.F.; Saleras, J.R.M.; Salonga, N.D.; Vergara, M.C.

    1993-10-01

    Based on detailed petrological information on secondary mineral assemblages and the composition of fluids trapped in inclusions and discharged from five wells, the Alto Peak geothermal field was found to represent a combined vapor and liquid-dominated system. A central core or chimney, with a diameter of about 1 km, a height of some 3 km and occupied by a high gas vapor (1.1 to 5.6 molal CO{sub 2}), is surrounded by an envelope of intermediate salinity water (7,000 mg/kg Cl) with temperatures between 250 and 350 C. The transition from purely vapor-dominated to liquid-dominated zones takes place via two-phase zones occupied by fluid mixtures of highly variable compositions. Much of the lower temperature, mature neutral pH Cl water is likely to have formed during an earlier stage in the evolution of the system. High temperatures of > 300 C, and associated alteration, are limited to wells AP-1D and the lower parts of AP-2D and are ascribed to re-heating by recent magmatic intrusions. The isotopic composition of the well discharges suggests that they contain some 40 to 50% of magmatic water. Alto Peak is considered a typical example of hydrothermal systems associated with many dormant volcanoes.

  11. The Macolumn: Desperately seeking software. [Geologic software for the Apple Macintosh

    SciTech Connect (OSTI)

    Busbey, A.B.

    1988-08-01

    The Apple Macintosh has been available since 1984, but there has been little development of commercial geological software for it. The author briefly reviews what geological software is available for the Macintosh

  12. Geologic map and coal resources of the Easton Gulch Quadrangle, Moffat County, Colorado

    SciTech Connect (OSTI)

    Reheis, M.C.

    1981-01-01

    This map of the Easton Gulch Quadrangle, Moffat County, Colorado is color coded to show the location of different age geologic formations. Various thickness coal bed are indicated as are abandoned coal mines or prospects, US Geologic Survey (USGS) test holes, abandoned oil and gas test holes, and USGS Mesozoic fossil localities. Various depth coal beds and other types of geologic structures are indicated on the cross-section geologic map. (BLM)

  13. Wave Propagation in Jointed Geologic Media (Technical Report) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Wave Propagation in Jointed Geologic Media Citation Details In-Document Search Title: Wave Propagation in Jointed Geologic Media Predictive modeling capabilities for wave propagation in a jointed geologic media remain a modern day scientific frontier. In part this is due to a lack of comprehensive understanding of the complex physical processes associated with the transient response of geologic material, and in part it is due to numerical challenges that prohibit accurate

  14. THE ROLE OF PORE PRESSURE IN DEFORMATION IN GEOLOGIC PROCESSES

    SciTech Connect (OSTI)

    Narasimhan, T. N.; Houston, W. N.; Nur, A. M.

    1980-03-01

    A Penrose Conference entitled, "The Role of Pore Pressure in Deformation in Geologic Processes" was convened by the authors at San Diego, California between November 9 and 13, 1979. The conference was sponsored by the Geological Society of America. This report is a summary of the highlights of the issues discussed during the conference. In addition, this report also includes a topical reference list relating to the different subject areas relevant to pore pressure and deformation. The references were compiled from a list suggested by the participants and were available for consultation during the conference. Although the list is far from complete, it should prove to be a good starting point for one who is looking for key papers in the field.

  15. International Collaboration Activities in Different Geologic Disposal Environments

    SciTech Connect (OSTI)

    Birkholzer, Jens

    2015-09-01

    This report describes the current status of international collaboration regarding geologic disposal research in the Used Fuel Disposition (UFD) Campaign. Since 2012, in an effort coordinated by Lawrence Berkeley National Laboratory, UFD has advanced active collaboration with several international geologic disposal programs in Europe and Asia. Such collaboration allows the UFD Campaign to benefit from a deep knowledge base with regards to alternative repository environments developed over decades, and to utilize international investments in research facilities (such as underground research laboratories), saving millions of R&D dollars that have been and are being provided by other countries. To date, UFD’s International Disposal R&D Program has established formal collaboration agreements with five international initiatives and several international partners, and national lab scientists associated with UFD have conducted specific collaborative R&D activities that align well with its R&D priorities.

  16. Geologic report for the Weldon Spring Raffinate Pits Site

    SciTech Connect (OSTI)

    1984-10-01

    A preliminary geologic site characterization study was conducted at the Weldon Spring Raffinate Pits Site, which is part of the Weldon Spring Site, in St. Charles County, Missouri. The Raffinate Pits Site is under the custody of the Department of Energy (DOE). Surrounding properties, including the Weldon Spring chemical plant, are under the control of the Department of the Army. The study determined the following parameters: site stratigraphy, lithology and general conditions of each stratigraphic unit, and groundwater characteristics and their relation to the geology. These parameters were used to evaluate the potential of the site to adequately store low-level radioactive wastes. The site investigation included trenching, geophysical surveying, borehole drilling and sampling, and installing observation wells and piezometers to monitor groundwater and pore pressures.

  17. Geologic and Environmental Probe System - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Energy Analysis Energy Analysis Find More Like This Return to Search Geologic and Environmental Probe System (GEOPS) Idaho National Laboratory Contact INL About This Technology Publications: PDF Document Publication Technology Fact Sheet (144 KB) Installing an instrument in the probe casing is safe and easy. Installing an instrument in the probe casing is safe and easy. Technology Marketing Summary Migration of contaminants from buried waste sites

  18. Water Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SunShot Grand Challenge: Regional Test Centers Water Security HomeTag:Water Security Electricity use by water service sector and county. Shown are electricity use by (a) ...

  19. Geologic and geotechnical assessment RFETS Building 371, Rocky Flats, Colorado

    SciTech Connect (OSTI)

    Maryak, M.E.; Wyatt, D.E.; Bartlett, S.F.; Lewis, M.R.; Lee, R.C.

    1995-12-13

    This report describes the review and evaluation of the geological, geotechnical and geophysical data supporting the design basis analysis for the Rocky Flats Environmental Test Site (RFETS) Building 371. The primary purpose of the geologic and geotechnical reviews and assessments described herein are to assess the adequacy of the crustal and near surface rock and soil model used in the seismic analysis of Building 371. This review was requested by the RFETS Seismic Evaluation Program. The purpose was to determine the adequacy of data to support the design basis for Building 371, with respect to seismic loading. The objectives required to meet this goal were to: (1) review techniques used to gather data (2) review analysis and interpretations of the data; and (3) make recommendations to gather additional data if required. Where there were questions or inadequacies in data or interpretation, recommendations were made for new data that will support the design basis analysis and operation of Building 371. In addition, recommendations are provided for a geologic and geophysical assessment for a new facility at the Rocky Flats Site.

  20. An Overview of Geologic Carbon Sequestration Potential in California

    SciTech Connect (OSTI)

    Cameron Downey; John Clinkenbeard

    2005-10-01

    As part of the West Coast Regional Carbon Sequestration Partnership (WESTCARB), the California Geological Survey (CGS) conducted an assessment of geologic carbon sequestration potential in California. An inventory of sedimentary basins was screened for preliminary suitability for carbon sequestration. Criteria included porous and permeable strata, seals, and depth sufficient for critical state carbon dioxide (CO{sub 2}) injection. Of 104 basins inventoried, 27 met the criteria for further assessment. Petrophysical and fluid data from oil and gas reservoirs was used to characterize both saline aquifers and hydrocarbon reservoirs. Where available, well log or geophysical information was used to prepare basin-wide maps showing depth-to-basement and gross sand distribution. California's Cenozoic marine basins were determined to possess the most potential for geologic sequestration. These basins contain thick sedimentary sections, multiple saline aquifers and oil and gas reservoirs, widespread shale seals, and significant petrophysical data from oil and gas operations. Potential sequestration areas include the San Joaquin, Sacramento, Ventura, Los Angeles, and Eel River basins, followed by the smaller Salinas, La Honda, Cuyama, Livermore, Orinda, and Sonoma marine basins. California's terrestrial basins are generally too shallow for carbon sequestration. However, the Salton Trough and several smaller basins may offer opportunities for localized carbon sequestration.

  1. US Geological Survey publications on western tight gas reservoirs

    SciTech Connect (OSTI)

    Krupa, M.P.; Spencer, C.W.

    1989-02-01

    This bibliography includes reports published from 1977 through August 1988. In 1977 the US Geological Survey (USGS), in cooperation with the US Department of Energy's, (DOE), Western Gas Sands Research program, initiated a geological program to identify and characterize natural gas resources in low-permeability (tight) reservoirs in the Rocky Mountain region. These reservoirs are present at depths of less than 2,000 ft (610 m) to greater than 20,000 ft (6,100 m). Only published reports readily available to the public are included in this report. Where appropriate, USGS researchers have incorporated administrative report information into later published studies. These studies cover a broad range of research from basic research on gas origin and migration to applied studies of production potential of reservoirs in individual wells. The early research included construction of regional well-log cross sections. These sections provide a basic stratigraphic framework for individual areas and basins. Most of these sections include drill-stem test and other well-test data so that the gas-bearing reservoirs can be seen in vertical and areal dimensions. For the convenience of the reader, the publications listed in this report have been indexed by general categories of (1) authors, (2) states, (3) geologic basins, (4) cross sections, (5) maps (6) studies of gas origin and migration, (7) reservoir or mineralogic studies, and (8) other reports of a regional or specific topical nature.

  2. A Catalog of Geologic Data for the Hanford Site

    SciTech Connect (OSTI)

    Horton, Duane G.; Last, George V.; Gilmore, Tyler J.; Bjornstad, Bruce N.

    2002-09-30

    This is the first update of the catalog that was published in 2001. This report catalogs the existing geologic data that can be found in various databases, published and unpublished reports, and in individuals' technical files. The scope of this catalog is primarily on the 100, 200, and 300 Areas, with a particular emphasis on the 200 Areas. Over 2,922 wells are included in the catalog. Nearly all of these wells (2,459) have some form of driller's or geologist's log. Archived samples are available for 1,742 wells. Particle size data are available from 1,078 wells and moisture data are available from 356 wells. Some form of chemical property data is available from 588 wells. However, this catalog is by no means complete. Numerous individuals have been involved in various geologic-related studies of the Hanford Site. The true extent of unpublished data retained in their technical files is unknown. However, this data catalog is believed to represent the majority (>90%) of the geologic data that is currently retrievable.

  3. A Catalog of Geologic Data for the Hanford Site

    SciTech Connect (OSTI)

    Horton, Duane G.; Last, George V.; Gilmore, Tyler J.; Bjornstad, Bruce N.

    2001-09-19

    This report catalogs the existing geologic data that can be found in various databases, published and unpublished reports, and in individuals' technical files. The scope of this catalog is primarily on the 100, 200, and 300 Areas, with a particular emphasis on the 200 Areas. Over 2,922 wells are included in the catalog. Nearly all of these wells (2,459) have some form of driller's or geologist's log. Archived samples are available for 1,742 wells. Particle size data are available from 1,078 wells and moisture data are available from 356 wells. Some form of chemical property data is available from 588 wells. However, this catalog is by no means complete. Numerous individuals have been involved in various geologic-related studies of the Hanford Site. The true extent of unpublished data retained in their technical files is unknown. However, this data catalog is believed to represent the majority (>90%) of the geologic data that is currently retrievable.

  4. drinking water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    drinking water - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us ... Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 ...

  5. Water Efficiency

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5-6, 2014 Cape Canaveral, Florida WATER EFFICIENCY Federal Utility Partnership ...ate.mcmordie@pnnl.gov * Francis Wheeler - Water Savers, LLC * fwheeler@watersaversllc.com ...

  6. Evolution of the Geysers (US) - Data From Fluid-Inclusion Microthermometry and Gas Geochemistry

    SciTech Connect (OSTI)

    Moore, J.N.; Hulen, J.B.; Norman, D.I.

    1995-01-01

    The Geysers, California, is the site of an active hydrothermal system that initially developed between about 1.5 and 2 Ma in response to intrusion of a hypabyssal granitic pluton. Mineralogic and fluid-inclusion data demonstrate that the present vapor-dominated regime evolved from an earlier and more extensive, liquid-dominated hydrothermal system. Circulation of these early fluids produced veins characterized by tourmaline and/or biotite {+-} actinolite {+-} clinopyroxene within the pluton and adjacent biotite-rich hornfels, actinolite {+-} ferroaxinite {+-} epidote, and epidote {+-} chlorite {+-} wairakite within the intermediate parts of the thermal system, and calcite in the outer parts. Potassium feldspar and quartz are present in all assemblages. Maximum pressure-corrected homogenization temperatures and apparent salinities of fluid-inclusions in these veins range from 440 C and 44 weight percent NaCl equivalent within the hornfels (<600 m from the pluton) to 325 C and 5 weight percent NaCl equivalent at approximately 1500 m from the intrusion. We suggest that the shallow, moderate-salinity fluids are crustal waters modified by water-rock interactions and that the high-salinity fluids are magmatic brines. The formation of vapor-dominated conditions is reflected in the abrupt appearance of low salinity (0.0 to 0.4 weight percent NaCl equivalent) fluid inclusions with homogenization temperatures near 265 C. These inclusion fluids are thought to represent steam condensate formed as the liquid-dominated system boiled off.

  7. Geochemistry Sampling for Traditional and Multicomponent Equilibrium Geothermometry in Southeast Idaho

    SciTech Connect (OSTI)

    Cannon, Cody; Wood, Thomas; Neupane, Ghanashyam; McLing, Travis; Mattson, Earl; Dobson, Patrick; Conrad, Mark

    2014-10-01

    The Eastern Snake River Plain (ESRP) is an area of high regional heat flux due the movement of the North American Plate over the Yellowstone Hotspot beginning ca.16 Ma. Temperature gradients between 45-60 °C/km (up to double the global average) have been calculated from deep wells that penetrate the upper aquifer system (Blackwell 1989). Despite the high geothermal potential, thermal signatures from hot springs and wells are effectively masked by the rapid flow of cold groundwater through the highly permeable basalts of the Eastern Snake River Plain aquifer (ESRPA) (up to 500+ m thick). This preliminary study is part of an effort to more accurately predict temperatures of the ESRP deep thermal reservoir while accounting for the effects of the prolific cold water aquifer system above. This study combines the use of traditional geothermometry, mixing models, and a multicomponent equilibrium geothermometry (MEG) tool to investigate the geothermal potential of the ESRP. In March, 2014, a collaborative team including members of the University of Idaho, the Idaho National Laboratory, and the Lawrence Berkeley National Laboratory collected 14 thermal water samples from and adjacent to the Eastern Snake River Plain. The preliminary results of chemical analyses and geothermometry applied to these samples are presented herein.

  8. Trace element and isotope geochemistry of geothermal fluids, East Rift Zone, Kilauea, Hawaii

    SciTech Connect (OSTI)

    West, H.B.; Delanoy, G.A.; Thomas, D.M. . Hawaii Inst. of Geophysics); Gerlach, D.C. ); Chen, B.; Takahashi, P.; Thomas, D.M. Evans and Associates, Redwood City, CA )

    1992-01-01

    A research program has been undertaken in an effort to better characterize the composition and the precipitation characteristic of the geothermal fluids produced by the HGP-A geothermal well located on the Kilauea East Rift Zone on the Island of Hawaii. The results of these studies have shown that the chemical composition of the fluids changed over the production life of the well and that the fluids produced were the result of mixing of at least two, and possibly three, source fluids. These source fluids were recognized as: a sea water composition modified by high temperature water-rock reactions; meteoric recharge; and a hydrothermal fluid that had been equilibrated with high temperature reservoir rocks and magmatic volatiles. Although the major alkali and halide elements show clearly increasing trends with time, only a few of the trace transition metals show a similar trend. The rare earth elements, were typically found at low concentrations and appeared to be highly variable with time. Studies of the precipitation characteristics of silica showed that amorphous silica deposition rates were highly sensitive to fluid pH and that increases in fluid pH above about 8.5 could flocculate more than 80% of the suspended colloidal silica in excess of its solubility. Addition of transition metal salts were also found to enhance the recovery fractions of silica from solution. The amorphous silica precipitate was also found to strongly scavenge the alkaline earth and transition metal ions naturally present in the brines; mild acid treatments were shown to be capable of removing substantial fractions of the scavenged metals from the silica flocs yielding a moderately pure gelatinous by-product. Further work on the silica precipitation process is recommended to improve our ability to control silica scaling from high temperature geothermal fluids or to recover a marketable silica by-product from these fluids prior to reinjection.

  9. Water Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Quality Water Quality We protect water quality through stormwater control measures and an extensive network of monitoring wells and stations encompassing groundwater, surface water, storm water and springs. April 12, 2012 Quarterly Groundwater monitoring attended by LANL managers and the Northern New Mexico Citizens Advisory Board LANL scientists brief the Northern New Mexico Citizens Advisory Board during quarterly groundwater monitoring of the well network around Area G. Contact

  10. Water Summit

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advisory: White House to host Water Summit March 21, 2016 Los Alamos watershed research among featured projects LOS ALAMOS, N.M., March 21, 2016-On Tuesday, March 22, 2016-World Water Day-the Administration will host a White House Water Summit to raise awareness of the national importance of water and to highlight new commitments and announcements that the Administration and non-Federal institutions are making to build a sustainable water future. A project from Los Alamos National Laboratory

  11. Integration of geology, geostatistics, well logs and pressure data to model a heterogeneous supergiant field in Iran

    SciTech Connect (OSTI)

    Samimi, B.; Bagherpour, H.; Nioc, A.

    1995-08-01

    The geological reservoir study of the supergiant Ahwaz field significantly improved the history matching process in many aspects, particularly the development of a geostatistical model which allowed a sound basis for changes and by delivering much needed accurate estimates of grid block vertical permeabilities. The geostatistical reservoir evaluation was facilitated by using the Heresim package and litho-stratigraphic zonations for the entire field. For each of the geological zones, 3-dimensional electrolithofacies and petrophysical property distributions (realizations) were treated which captured the heterogeneities which significantly affected fluid flow. However, as this level of heterogeneity was at a significantly smaller scale than the flow simulation grid blocks, a scaling up effort was needed to derive the effective flow properties of the blocks (porosity, horizontal and vertical permeability, and water saturation). The properties relating to the static reservoir description were accurately derived by using stream tube techniques developed in-house whereas, the relative permeabilities of the grid block were derived by dynamic pseudo relative permeability techniques. The prediction of vertical and lateral communication and water encroachment was facilitated by a close integration of pressure, saturation data, geostatistical modelling and sedimentological studies of the depositional environments and paleocurrents. The nature of reservoir barriers and baffles varied both vertically and laterally in this heterogeneous reservoir. Maps showing differences in pressure between zones after years of production served as a guide to integrating the static geological studies to the dynamic behaviour of each of the 16 reservoir zones. The use of deep wells being drilled to a deeper reservoir provided data to better understand the sweep efficiency and the continuity of barriers and baffles.

  12. Application of Cutting-Edge 3D Seismic Attribute Technology to the Assessment of Geological Reservoirs for CO2 Sequestration

    SciTech Connect (OSTI)

    Christopher Liner; Jianjun Zeng; Po Geng Heather King Jintan Li; Jennifer Califf; John Seales

    2010-03-31

    The goals of this project were to develop innovative 3D seismic attribute technologies and workflows to assess the structural integrity and heterogeneity of subsurface reservoirs with potential for CO{sub 2} sequestration. Our specific objectives were to apply advanced seismic attributes to aide in quantifying reservoir properies and lateral continuity of CO{sub 2} sequestration targets. Our study area is the Dickman field in Ness County, Kansas, a type locality for the geology that will be encountered for CO{sub 2} sequestration projects from northern Oklahoma across the U.S. midcontent to Indiana and beyond. Since its discovery in 1962, the Dickman Field has produced about 1.7 million barrels of oil from porous Mississippian carbonates with a small structural closure at about 4400 ft drilling depth. Project data includes 3.3 square miles of 3D seismic data, 142 wells, with log, some core, and oil/water production data available. Only two wells penetrate the deep saline aquifer. Geological and seismic data were integrated to create a geological property model and a flow simulation grid. We systematically tested over a dozen seismic attributes, finding that curvature, SPICE, and ANT were particularly useful for mapping discontinuities in the data that likely indicated fracture trends. Our simulation results in the deep saline aquifer indicate two effective ways of reducing free CO{sub 2}: (a) injecting CO{sub 2} with brine water, and (b) horizontal well injection. A tuned combination of these methods can reduce the amount of free CO{sub 2} in the aquifer from over 50% to less than 10%.

  13. Application of neutron-activation analysis to geological materials

    SciTech Connect (OSTI)

    Laul, J.C.; Wogman, N.A.

    1980-12-01

    Neutron activation analysis (NAA) is an extremely sensitive, selective, and precise method, which yields a wealth of elemental information from even a small-sized sample. By varying neutron fluxes, irradiation times, decay and counting intervals in instrumental NAA, it is possible to accurately determine about 35 elements in a geological aliquot. When INAA is coupled with coincidence-noncoincidence Ge(Li)-Na(Tl) counting, it enhances the sensitivities of various elements by order of magnitude. The attractive features of INAA are that it is fast, nondestructive and economical.

  14. Final Supplemental Environmental Impact Statement for a Geologic Repository

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation Corridor DOE/EIS-0250F-S2 and Final En | Department of Energy Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada - Nevada Rail Transportation Corridor DOE/EIS-0250F-S2 and Final En Final Supplemental Environmental Impact

  15. Monitored Geologic Repository Life Cycle Cost Estimate Assumptions Document

    SciTech Connect (OSTI)

    R. Sweeney

    2000-03-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost estimate and schedule update incorporating information from the Viability Assessment (VA), License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  16. MONITORED GEOLOGIC REPOSITORY LIFE CYCLE COST ESTIMATE ASSUMPTIONS DOCUMENT

    SciTech Connect (OSTI)

    R.E. Sweeney

    2001-02-08

    The purpose of this assumptions document is to provide general scope, strategy, technical basis, schedule and cost assumptions for the Monitored Geologic Repository (MGR) life cycle cost (LCC) estimate and schedule update incorporating information from the Viability Assessment (VA) , License Application Design Selection (LADS), 1999 Update to the Total System Life Cycle Cost (TSLCC) estimate and from other related and updated information. This document is intended to generally follow the assumptions outlined in the previous MGR cost estimates and as further prescribed by DOE guidance.

  17. Geological hazards programs and research in the U. S. A

    SciTech Connect (OSTI)

    Filson, J.R. )

    1988-01-01

    Geological hazards have been studied for centuries, but government support of research to lessen their effects is relatively new. This article briefly describes government programs and research underway in the U.S.A. that are directed towards reducing losses of life and property from earthquakes, volcanic eruptions and landslides. The National Earthquake program is described, including four basic research areas: plate tectonics; estimation of the earthquakes; and effects and hazards assessment. The Volcano Studies Program has three areas of research: fundamentals of volcanoes; hazards assessments; and volcano monitoring. Three research areas are included in landslide studies: land slide processes; prediction; inventory and susceptibility studies.

  18. COLLOQUIUM: Human Impacts on the Earth's Geologic Carbon Cycle |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Princeton Plasma Physics Lab January 15, 2014, 4:00pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Human Impacts on the Earth's Geologic Carbon Cycle Professor David Archer University of Chicago Abstract: PDF icon COLL.01.15.14.pdf When fossil fuel CO2 is released to the atmosphere, it essentially accumulates in the relatively rapidly cycling atmosphere / ocean / land biosphere carbon cycle. The atmospheric concentration of CO2 spikes through a time period of CO2 emissions, then is

  19. Log analysis of six boreholes in conjunction with geologic characterization above and on top of the Weeks Island Salt Dome

    SciTech Connect (OSTI)

    Sattler, A.R.

    1996-06-01

    Six boreholes were drilled during the geologic characterization and diagnostics of the Weeks Island sinkhole that is over the two-tiered salt mine which was converted for oil storage by the U.S. Strategic Petroleum Reserve. These holes were drilled to provide for geologic characterization of the Weeks Island Salt Dome and its overburden in the immediate vicinity of the sinkhole (mainly through logs and core); to establish a crosswell configuration for seismic tomography; to establish locations for hydrocarbon detection and tracer injection; and to provide direct observations of sinkhole geometry and material properties. Specific objectives of the logging program were to: (1) identify the top of and the physical state of the salt dome; (2) identify the water table; (3) obtain a relative salinity profile in the aquifer within the alluvium, which ranges from the water table directly to the top of the Weeks Island salt dome; and (4) identify a reflecting horizon seen on seismic profiles over this salt dome. Natural gamma, neutron, density, sonic, resistivity and caliper logs were run.

  20. Geological input to reservoir simulation, Champion Field, offshore Brunei

    SciTech Connect (OSTI)

    Carter, R.; Salahudin, S.; Ho, T.C.

    1994-07-01

    Brunei Shell Petroleum's giant Champion field is in a mature stage of development with about 23 yr of production history to date. The field comprises a complex sequence of Miocene shallow marine and deltaic layered clastic reservoirs cut by numerous growth faults. This study was aimed at providing a quantified estimate of the effect of lateral and vertical discontinuities within the I and J reservoirs on the recovery for both depletion drive and in a waterflood, with a view to identifying the optimal method of completing the development of the oil reserves in this area. Geological input to the ECLIPSE simulator was aimed at quantifying two key parameters: (1) STOIIP connected to the well bore and (2) permeability contrast. Connected STOIIP is a function of the domain size of interconnected sand bodies, and this parameter was quantified by the use of detailed sedimentology resulting in sand-body facies maps for each reservoir sublayer. Permeability contrast was quantified by using a wireline-log based algorithm, calibrated against core data, which improved the existing accuracy of permeability estimates in this part of the field. Results of simulation runs illustrate the importance of quantifying geologic heterogeneity and provide valuable information for future field development planning.

  1. World Energy Resources program U. S. Geological Survey

    SciTech Connect (OSTI)

    Masters, C.D.

    1986-05-01

    In 1973, with the OPEC embargo, the US was jarred into the world of insecure energy supplies - a harsh reality considering that throughout much of our history we had sufficient domestic supplies of oil and gas to meet all of our requirements. The US Government's response in 1973 was to assess domestic oil and gas potential, which was found to be substantial but nonetheless short of long-term requirements. Born of the need to become more certain about foreign as well has domestic resources, and working in conjunction with the Foreign Energy Supply Assessment Program of the US Department of Energy, the US Geological Survey undertook a program to develop a technical understanding of the reserves and undiscovered recoverable resources of petroleum in every basin in the world with petroleum potential. The World Energy Resources Program prepared an assessment of ultimate resources of crude oil for the World Petroleum Congress (WPC) in 1983, and a revision and update (including nature gas, crude oil, extra heavy oil, and tar sands) are planned for WPC in 1987. This poster session attempts to engender awareness of our scenario of world ultimate petroleum occurrence and to show some elements of the geology that guided our thinking.

  2. Geologic Analysis of Priority Basins for Exploration and Drilling

    SciTech Connect (OSTI)

    Carroll, H.B.; Reeves, T.K.

    1999-04-27

    There has been a substantial decline in both exploratory drilling and seismic field crew activity in the United States over the last 10 years, due primarily to the declining price of oil. To reverse this trend and to preserve the entrepreneurial independent operator, the U.S. DOE is attempting to encourage hydrocarbon exploration activities in some of the under exploited regions of the United States. This goal is being accomplished by conducting broad regional reviews of potentially prospective areas within the lower 48 states. Data are being collected on selected areas, and studies are being done on a regional scale generally unavailable to the smaller independent. The results of this work will be made available to the public to encourage the undertaking of operations in areas which have been overlooked until this project. Fifteen criteria have been developed for the selection of study areas. Eight regions have been identified where regional geologic analysis will be performed. This report discusses preliminary findings concerning the geology, early tectonic history, structure and potential unconventional source rocks for the Black Mesa basin and South Central states region, the two highest priority study areas.

  3. Geologic evaluation of the Oasis Valley basin, Nye County, Nevada

    SciTech Connect (OSTI)

    Fridrich, C.J.; Minor, S.A.; and Mankinen, E.A.

    2000-01-13

    This report documents the results of a geologic study of the area between the underground-nuclear-explosion testing areas on Pahute Mesa, in the northwesternmost part of the Nevada Test Site, and the springs in Oasis Valley, to the west of the Test Site. The new field data described in this report are also presented in a geologic map that is a companion product(Fridrich and others, 1999) and that covers nine 7.5-minute quadrangles centered on Thirsty Canyon SW, the quadrangle in which most of the Oasis Valley springs are located. At the beginning of this study, published detailed maps were available for 3 of the 9 quadrangles of the study area: namely Thirsty Canyon (O'Connor and others, 1966); Beatty (Maldonado and Hausback, 1990); and Thirsty Canyon SE (Lipman and others, 1966). Maps of the last two of these quadrangles, however, required extensive updating owing to recent advances in understanding of the regional structure and stratigraphy. The new map data are integrated in this re port with new geophysical data for the Oasis Valley area, include gravity, aeromagnetic, and paleomagnetic data (Grauch and others, 1997; written comm., 1999; Mankinen and others, 1999; Hildenbrand and others, 1999; Hudson and others, 1994; Hudson, unpub. data).

  4. Performance assessment implementation plan for the geologic repository program

    SciTech Connect (OSTI)

    1990-01-01

    Performance assessment is a major constituent of the program being conducted in the Civilian Radioactive Waste Management (CRWM) Program of the US Department of Energy (DOE) to develop a geologic repository. Performance assessment is the set of activities needed for quantitative evaluations of repository-system performance to access compliance with regulations and to support the development of the geologic repository. To define the strategy for these evaluations, the DOE has developed this performance assessment strategy plan. This document discusses the need for such a strategy, the objectives and scope of the strategy plan, the relationship of the plan to other program plans. Additionally, it defines performance assessment and describes the roles of performance assessment in this program, discusses concepts and general strategies needed for performance assessment, outlines the content of the Safety Analysis Report, summarizes the requirements for the repository Environmental Impact Statement, discusses the requirements that apply to the site-suitability analyses and describes the site characterization. 10 figs., 7 tabs.

  5. Hawaii Energy Resource Overviews. Volume II. Impact of geothermal development on the geology and hydrology of the Hawaiian Islands

    SciTech Connect (OSTI)

    Feldman, C.; Siegel, B.Z.

    1980-06-01

    The following topics are discussed: the geological setting of the Hawaiian Islands, regional geology of the major islands, geohydrology of the Hawaiian Islands, Hawaiis' geothermal resources, and potential geological/hydrological problems associated with geothermal development. Souces of information on the geology of Hawaii are presented. (MHR)

  6. Log analysis of six boreholes in conjunction with geologic characterization above and on top of the Weeks Island salt dome

    SciTech Connect (OSTI)

    Sattler, A.R.

    1996-04-01

    Six boreholes were drilled during the geologic characterization and diagnostics of the Weeks Island sinkhole that is over the two-tiered salt mine which was converted for oil storage by the US Strategic Petroleum Reserve. These holes were drilled to provide for geologic characterization of the Weeks Island Salt Dome and its overburden in the immediate vicinity of the sinkhole (mainly through logs and core); to establish a crosswell configuration for seismic tomography; to establish locations for hydrocarbon detection and tracer injection; and to Provide direct observations of sinkhole geometry and material properties. Specific objectives of the logging program were to: (1) identify the top of and the physical state of the salt dome; (2) identify the water table; (3) obtain a relative salinity profile in the aquifer within the alluvium, which ranges from the water table directly to the top of the Weeks Island salt dome; and (4) identify a reflecting horizon seen on seismic profiles over this salt dome. Natural gamma, neutron, density, sonic, resistivity and caliper logs were run. Neutron and density logs were run from inside the well casing because of the extremely unstable condition of the deltaic alluvium overburden above the salt dome. The logging program provided important information about the salt dome and the overburden in that (1) the top of the salt dome was identified at {approximately}189 ft bgl (103 ft msl), and the top of the dome contains relatively few fractures; (2) the water table is approximately 1 ft msl, (3) this aquifer appears to become steadily more saline with depth; and (4) the water saturation of much of the alluvium over the salt dome is shown to be influenced by the prevalent heavy rainfall. This logging program, a part of the sinkhole diagnostics, provides unique information about this salt dome and the overburden.

  7. Reusing Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into...

  8. Water Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power Events Water Power Events Below is an industry calendar with meetings, conferences, and webinars of interest to the conventional hydropower and marine and hydrokinetic technology communities.

    Water Power Information Resources Water Power Information Resources How Hydropower Works How Hydropower Works See a detailed view of the inside of a hydropower energy generation system. Read more Marine and Hydrokinetic Technology Database on OpenEI Marine and Hydrokinetic Technology Database

  9. The consequences of failure should be considered in siting geologic carbon sequestration projects

    SciTech Connect (OSTI)

    Price, P.N.; Oldenburg, C.M.

    2009-02-23

    Geologic carbon sequestration is the injection of anthropogenic CO{sub 2} into deep geologic formations where the CO{sub 2} is intended to remain indefinitely. If successfully implemented, geologic carbon sequestration will have little or no impact on terrestrial ecosystems aside from the mitigation of climate change. However, failure of a geologic carbon sequestration site, such as large-scale leakage of CO{sub 2} into a potable groundwater aquifer, could cause impacts that would require costly remediation measures. Governments are attempting to develop regulations for permitting geologic carbon sequestration sites to ensure their safety and effectiveness. At present, these regulations focus largely on decreasing the probability of failure. In this paper we propose that regulations for the siting of early geologic carbon sequestration projects should emphasize limiting the consequences of failure because consequences are easier to quantify than failure probability.

  10. Water Resources Data Ohio: Water year 1994. Volume 1, Ohio River Basin excluding Project Data

    SciTech Connect (OSTI)

    1994-12-31

    The Water Resources Division of the US Geological Survey (USGS) in cooperation with State agencies, obtains a large amount of data each water year (a water year is the 12-month period from October 1 through September 30 and is identified by the calendar year in which it ends) pertaining to the water resources of Ohio. These data, accumulated during many years, constitute a valuable data base for developing an improved understanding of the water resources of the State. To make these data readily available to interested parties outside the USGS, they are published annually in this report series entitled ``Water Resources Data--Ohio.`` This report (in two volumes) includes records on surface water and ground water in the State. Specifically, it contains: (1) Discharge records for streamflow-gaging stations, miscellaneous sites, and crest-stage stations; (2) stage and content records for streams, lakes, and reservoirs; (3) water-quality data for streamflow-gaging stations, wells, synoptic sites, and partial-record sit -aid (4) water-level data for observation wells. Locations of lake-and streamflow-gaging stations, water-quality stations, and observation wells for which data are presented in this volume are shown in figures 8a through 8b. The data in this report represent that part of the National Water Data System collected by the USGS and cooperating State and Federal agencies in Ohio. This series of annual reports for Ohio began with the 1961 water year with a report that contained only data relating to the quantities of surface water. For the 1964 water year, a similar report was introduced that contained only data relating to water quality. Beginning with the 1975 water year, the report was changed to present (in two or three volumes) data on quantities of surface water, quality of surface and ground water, and ground-water levels.

  11. International Symposium on Site Characterization for CO2Geological...

    Office of Scientific and Technical Information (OSTI)

    inject the COsub 2 into deep subsurface formations for ... Ground Water Protection Council,International Association of Hydraulic Engineering andResearch Country of ...

  12. Geology and Groundwater Investigation Many Devils Wash, Shiprock...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in a Desert Arroyo: Many Devils Wash, Shiprock, New Mexico Multivariate Statistical Analysis of Water Chemistry in Evaluating the Origin of Contamination in Many Devils ...

  13. Geological Society of America selects Los Alamos scientist Claudia Mora as

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    president elect Geological Society of America selects Mora as president elect Geological Society of America selects Los Alamos scientist Claudia Mora as president elect Mora is a stable-isotope geochemist whose research spans the traditional fields of geology, soil science and climate science. July 9, 2015 Claudia Mora Claudia Mora Contact Los Alamos National Laboratory Nancy Ambrosiano Communications Office (505) 667-0471 Email "This is a really great testament to Claudia's impact and

  14. Determining resistivity of a geological formation using circuitry located within a borehole casing

    DOE Patents [OSTI]

    Vail III, William Banning

    2006-01-17

    Geological formation resistivity is determined. Circuitry is located within the borehole casing that is adjacent to the geological formation. The circuitry can measure one or more voltages across two or more voltage measurement electrodes associated with the borehole casing. The measured voltages are used by a processor to determine the resistivity of the geological formation. A common mode signal can also be reduced using the circuitry.

  15. Preliminary paper - Development of the Reference Design Description for a geologic repository

    SciTech Connect (OSTI)

    Daniel, Russell B.; Rindskopf, M. Sam

    1997-11-20

    This report describes the current Reference Design Description (RDD) design expectations for a potential geologic repository that could be located at Yucca Mountain in Nevada.

  16. Soda Lake Well Lithology Data and Geologic Cross-Sections (Dataset...

    Office of Scientific and Technical Information (OSTI)

    Comprehensive catalogue of drill-hole data in spreadsheet, shapefile, and Geosoft database ... area; Well Lithology Data; Drill-hole database; Geologic Cross-Sections; Gravity ...

  17. Rock Sampling At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    collected included: geographic coordinates, rock type, magnetic susceptibility, and density. References US Geological Survey (2012) Geophysical Studies in the Vicinity of Blue...

  18. Aeromagnetic Survey At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Exploration Activity Details...

  19. Ground Magnetics At Blue Mountain Geothermal Area (U.S. Geological...

    Open Energy Info (EERE)

    Blue Mountain Geothermal Area (U.S. Geological Survey, 2012) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At Blue Mountain...

  20. Surficial Geology and Landscape Development in Northern Frenchman Flat, Interim Summary and Soil Data

    SciTech Connect (OSTI)

    Raytheon Services Nevada Environmental Restoration and Waste Management Division

    1995-09-01

    This report summarizes geologic studies by Raytheon Services Nevada near the Area 5 Radioactive Waste Management Site at the Nevada Test Site. These studies are part of a program to satisfy data needs of (1) the Greater Confinement Disposal (GCD) Program Performance Assessment (PA), (2) the low-level waste (LLW) PA, and (3) the Resource Conservation and Recovery Act (RCRA) permit application. The geologic studies were integrated into a single program that worked toward a landscape evolution model of northern Frenchman Flat, with more detailed geologic studies of particular topics as needed. Only the Holocene tectonism and surficial geology components of the landscape model are presented in this report.

  1. Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs

    SciTech Connect (OSTI)

    L.A. Davis; A.L. Graham; H.W. Parker; J.R. Abbott; M.S. Ingber; A.A. Mammoli; L.A. Mondy; Quanxin Guo; Ahmed Abou-Sayed

    2005-12-07

    Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Formations The U.S. and other countries may enter into an agreement that will require a significant reduction in CO2 emissions in the medium to long term. In order to achieve such goals without drastic reductions in fossil fuel usage, CO2 must be removed from the atmosphere and be stored in acceptable reservoirs. The research outlined in this proposal deals with developing a methodology to determine the suitability of a particular geologic formation for the long-term storage of CO2 and technologies for the economical transfer and storage of CO2 in these formations. A novel well-logging technique using nuclear-magnetic resonance (NMR) will be developed to characterize the geologic formation including the integrity and quality of the reservoir seal (cap rock). Well-logging using NMR does not require coring, and hence, can be performed much more quickly and efficiently. The key element in the economical transfer and storage of the CO2 is hydraulic fracturing the formation to achieve greater lateral spreads and higher throughputs of CO2. Transport, compression, and drilling represent the main costs in CO2 sequestration. The combination of well-logging and hydraulic fracturing has the potential of minimizing these costs. It is possible through hydraulic fracturing to reduce the number of injection wells by an order of magnitude. Many issues will be addressed as part of the proposed research to maximize the storage rate and capacity and insure the environmental integrity of CO2 sequestration in geological formations. First, correlations between formation properties and NMR relaxation times will be firmly established. A detailed experimental program will be conducted to determine these correlations. Second, improved hydraulic fracturing models will be developed which are suitable for CO2 sequestration as opposed to enhanced oil recovery (EOR). Although models that simulate the fracturing process exist, they can be significantly improved by extending the models to account for nonsymmetric, nonplanar fractures, coupling the models to more realistic reservoir simulators, and implementing advanced multiphase flow models for the transport of proppant. Third, it may be possible to deviate from current hydraulic fracturing technology by using different proppants (possibly waste materials that need to be disposed of, e.g., asbestos) combined with different hydraulic fracturing carrier fluids (possibly supercritical CO2 itself). Because current technology is mainly aimed at enhanced oil recovery, it may not be ideally suited for the injection and storage of CO2. Finally, advanced concepts such as increasing the injectivity of the fractured geologic formations through acidization with carbonated water will be investigated. Saline formations are located through most of the continental United States. Generally, where saline formations are scarce, oil and gas reservoirs and coal beds abound. By developing the technology outlined here, it will be possible to remove CO2 at the source (power plants, industry) and inject it directly into nearby geological formations, without releasing it into the atmosphere. The goal of the proposed research is to develop a technology capable of sequestering CO2 in geologic formations at a cost of US $10 per ton.

  2. UNITED STATES GEOLOGICAL SURVEY DEPARTMENT OF THE INTERIOR

    Office of Scientific and Technical Information (OSTI)

    GEOLOGICAL SURVEY DEPARTMENT OF THE INTERIOR i ..- - - - . WA-5 PROJECT REPORT West A f r i c a n S t a t e s (ECOWAS) Region I n v e s t i g a t i o n (1R)WA-5 USGS-OFR--82-714 DE84 900493 ASSESSMENT OF THE PETROLEUM, COAL,, AND GEOTHERMAL RESOURCES OF THE ECONOMIC COMMUNITY OF WEST AFRICAN STATES (ECOWAS) REGION Compiled by Robert E. M a t t i c k U.S. G e o l o g i c a l Survey Open-File Report 92 - 7/4! DISCLAIMER This report was prepared as an account of work sponsored by an agency of the

  3. Geology of the lower Yellow Creek Area, Northwestern Colorado

    SciTech Connect (OSTI)

    Hail, W.J.

    1990-01-01

    The lower Yellow Creek area is located in Rio Blanco and Moffat Counties of northwestern Colorado, about midway between the towns of Rangely and Meeker. The study area is in the northwestern part of the Piceance Creek basin, a very deep structural and sedimentary basin that formed during the Laramide orogeny. Potentially important resources in the area are oil shale and related minerals, oil and gas, coal, and uranium. Topics discussed in the report include: Stratigraphy (Subsurface rocks, Cretaceous rocks, Tertiary rocks, and Quaternary deposits); Structure (Midland anticline, graben at Pinyon Ridge, and Crooked Wash syncline, Folds and faults in the vicinity of the White River, Red Wash syncline and central graben zone, Yellow Creek anticlinal nose); Economic geology (Oil shale and associated minerals, Coal, Oil and gas, Uranium, Gravel).

  4. Draft Geologic Disposal Requirements Basis for STAD Specification

    SciTech Connect (OSTI)

    Ilgen, Anastasia G.; Bryan, Charles R.; Hardin, Ernest

    2015-03-25

    This document provides the basis for requirements in the current version of Performance Specification for Standardized Transportation, Aging, and Disposal Canister Systems, (FCRD-NFST-2014-0000579) that are driven by storage and geologic disposal considerations. Performance requirements for the Standardized Transportation, Aging, and Disposal (STAD) canister are given in Section 3.1 of that report. Here, the requirements are reviewed and the rationale for each provided. Note that, while FCRD-NFST-2014-0000579 provides performance specifications for other components of the STAD storage system (e.g. storage overpack, transfer and transportation casks, and others), these have no impact on the canister performance during disposal, and are not discussed here.

  5. Novel Concepts Research in Geologic Storage of CO2

    SciTech Connect (OSTI)

    Neeraj Gupta

    2006-09-30

    As part of the Department of Energy's (DOE) initiative on developing new technologies for the storage of carbon dioxide (CO{sub 2}) in geologic reservoirs, Battelle has been investigating the feasibility of CO{sub 2} sequestration in the deep saline reservoirs of the Ohio River Valley region. In addition to the DOE, the project is being sponsored by American Electric Power (AEP), BP, Ohio Coal Development Office (OCDO) of the Ohio Air Quality Development Authority, Schlumberger, and Battelle. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations. The current technical progress report summarizes activities completed for the July-September 2006 period of the project. As discussed in the following report, the main accomplishments were reservoir modeling for the Copper Ridge ''B-zone'' and design and feasibility support tasks. Work continued on the development of injection well design options, engineering assessment of CO2 capture systems, permitting, and assessment of monitoring technologies as they apply to the project site. In addition, an integrated risk analysis of the proposed system was completed. Finally, slipstream capture construction issues were evaluated with AEP to move the project toward an integrated carbon capture and storage system at the Mountaineer site. Overall, the current design feasibility phase project is proceeding according to plans.

  6. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power/Energy Conversion Efficiency/Water Power Water PowerTara Camacho-Lopez2016-04-18T19:53:50+00:00 Enabling a successful water power industry. Hydropower Optimization Developing tools for optimizing the U.S. hydropower fleet's performance with minimal environmental impact. Technology Development Improving the power performance and reliability of marine hydrokinetic technologies. Market Acceleration & Deployment Addressing barriers to development, deployment, and evaluation of

  7. Reusing Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reusing Water Reusing Water Millions of gallons of industrial wastewater is recycled at LANL by virtue of a long-term strategy to treat wastewater rather than discharging it into the environment. April 12, 2012 Water from cooling the supercomputer is release to maintain a healthy wetland. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email We reuse the same water up to six times before releasing it back into the environment

  8. Geologic and hydrologic research at the Western New York Nuclear Service Center, West Valley, New York. Final report, August 1982-December 1983

    SciTech Connect (OSTI)

    Albanese, J.R.; Anderson, S.L.; Fakundiny, R.H.; Potter, S.M.; Rogers, W.B.; Whitbeck, L.F.; LaFleur, R.G.; Boothroyd, J.C.; Timson, B.S.

    1984-06-01

    This report is the last in a series by the New York State Geological Survey on studies funded by the US Nuclear Regulatory Commission. The report covers five important aspects of the geology and hydrology of the Western New York Nuclear Service Center, near West Valley, New York: geomorphology, stratigraphy, sedimentology, surface water, and radionuclide analyses. We reviewed past research on these subjects and present new data obtained in the final phase of NYSGS research at the site. Also presented are up-to-date summaries of the present knowledge of geomorphology and stratigraphy. The report contains a significant bibliography of previous West Valley studies. Appendices include a report on the Fall 1983 Drilling Project and the procedures used, history and prognosis of Cattaraugus Creek and tributaries down cutting, and bar modification and landslide processes of Buttermilk Valley. 100 references, 7 figures, 7 tables.

  9. Water Infrastructure Security

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... with a national CO2 storage program utilizing geologic saline formations. Users can run power-plant specific scenarios to capture and store CO2 emissions while ...

  10. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    SciTech Connect (OSTI)

    James R. Wood; T.J. Bornhorst; S.D. Chittick; William B. Harrison; W. Quinlan

    2002-01-01

    In this reporting period, we extended the fault study to include more faults and developed new techniques to visualize the faults. We now have used data from the Dundee Formation to document 11 major faults in the Michigan Basin and are in the process of reviewing data from other horizons. These faults appear to control the locations of many of the large anticlinal structures in the Michigan Basin and likely controlled fluid movements as well. The surface geochemistry program is also moving along well with emphasis on measuring samples collected last sampling season. The new laboratory is now functional and has been fully staffed as of December. The annual project review has been set for March 7-9 in Tampa, Florida. Contracts are being prepared for drilling the Bower's prospects in Isabella County, Michigan, this spring or summer.

  11. Integrated geologic and engineering reservoir characterization of the Hutton Sandstone, Jackson region, Australia

    SciTech Connect (OSTI)

    Hamilton, D.S.; Holtz, M.H.; Yeh, J.

    1996-08-01

    An integrated geologic and engineering reservoir characterization study of the Hutton Sandstone was completed for the Jackson region, Eromanga Basin, Australia. Our approach involves four principal steps: (1) determine reservoir architecture within a high-resolution sequence stratigraphic framework, (2) investigate trends in reservoir fluid flow, (3) integrate fluid flow trends with reservoir architecture to identify fundamental reservoir heterogeneities, and (4) identify opportunities for reserve growth. Contrary to the existing perception, the Hutton Sandstone, a continental-scale bed-load fluvial system, does not behave as a large, homogeneous tank in which pistonlike displacement of produced oil occurs unimpeded by vertical migration of the aquifer. The sequence stratigraphic analysis identified numerous thin but widespread shale units, deposited during lacustrine flooding events that periodically interrupted episodes of coarse clastic Hutton deposition. These shales represent chronostratigraphically significant surfaces. More importantly, the trends established in reservoir fluid flow from monitoring aquifer encroachment, production response to water shut-off workovers, and differential depletion in Repeat Formation Tests indicate that these shale units act as efficient barriers to vertical fluid flow. Erosion of the upper part of the Hutton reservoir by the younger Birkhead mixed-load fluvial system caused further stratigraphic complexity and introduced additional barriers to vertical and lateral migration of mobile oil and aquifer encroachment. This integrated characterization targeted strategic infill and step-out drilling and recompletion candidates.

  12. Geologic setting of the New Production Reactor within the Savannah River Site

    SciTech Connect (OSTI)

    Price, V.; Fallaw, W.C.; McKinney, J.B.

    1991-12-31

    The geology and hydrology of the reference New Production Reactor (NPR) site at Savannah River Site (SRS) have been summarized using the available information from the NPR site and areas adjacent to the site, particularly the away from reactor spent fuel storage site (AFR site). Lithologic and geophysical logs from wells drilled near the NPR site do not indicate any faults in the upper several hundred feet of the Coastal Plain sediments. However, the Pen Branch Fault is located about 1 mile south of the site and extends into the upper 100 ft of the Coastal Plain sequence. Subsurface voids, resulting from the dissolution of calcareous portions of the sediments, may be present within 200 ft of the surface at the NPR site. The water table is located within 30 to 70 ft of the surface. The NPR site is located on a groundwater divide, and groundwater flow for the shallowest hydraulic zones is predominantly toward local streams. Groundwater flow in deeper Tertiary sediments is north to Upper Three Runs Creek or west to the Savannah River Swamp. Groundwater flow in the Cretaceous sediments is west to the Savannah River.

  13. Transport of Organic Contaminants Mobilized from Coal through Sandstone Overlying a Geological Carbon Sequestration Reservoir

    SciTech Connect (OSTI)

    Zhong, Lirong; Cantrell, Kirk J.; Bacon, Diana H.; Shewell, Jesse L.

    2014-02-01

    Column experiments were conducted using a wetted sandstone rock installed in a tri-axial core holder to study the flow and transport of organic compounds mobilized by scCO2 under simulated geologic carbon storage (GCS) conditions. The sandstone rock was collected from a formation overlying a deep saline reservoir at a GCS demonstration site. Rock core effluent pressures were set at 0, 500, or 1000 psig and the core temperature was set at 20 or 50C to simulate the transport to different subsurface depths. The concentrations of the organic compounds in the column effluent and their distribution within the sandstone core were monitored. Results indicate that the mobility though the core sample was much higher for BTEX compounds than for naphthalene. Retention of organic compounds from the vapor phase to the core appeared to be primarily controlled by partitioning from the vapor phase to the aqueous phase. Adsorption to the surfaces of the wetted sandstone was also significant for naphthalene. Reduced temperature and elevated pressure resulted in greater partitioning of the mobilized organic contaminants into the water phase.

  14. Study of the isolation system for geologic disposal of radioactive wastes

    SciTech Connect (OSTI)

    Not Available

    1983-01-01

    This study was conducted for the US Department of Energy by a Waste Isolation System Panel of the Board on Radioactive Waste Management under the National Research Council's Commission on Physical Sciences, Mathematics, and Resources. The panel was charged to review the alternative technologies available for the isolation of radioactive waste in mined geologic repositories, evaluate the need for and possible performance benefits from these technologies as potential elements of the isolation system, and identify appropriate technical criteria for choosing among them to achieve satisfactory overall performance of a geologic repository. Information has been acquired through examination of a large body of technical literature, briefings by representatives of government agencies and their industrial and university contractors, in-depth discussions with individual experts in the field, site visits, and calculations by panel members and staff, with deliberations extending over a period of approximately two years. The panel's principal findings are given. Chapters are devoted to: the geologic waste-disposal system; waste characteristics; waste package; conceptual design of repositories; geologic hydrologic, and geochemical properties of geologic waste-disposal systems; overall performance criterion for geologic waste disposal; performance analysis of the geologic waste-disposal system; and natural analogs relevant to geologic disposal. 336 references.

  15. Geologic Map and GID Data for the Salt Wells Geothermal Area

    SciTech Connect (OSTI)

    Hinz, Nick

    2011-10-31

    Salt Wells—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, dikes, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Locations of 40Ar/39Ar samples.

  16. Mobilization and Transport of Organic Compounds from Reservoir Rock and Caprock in Geological Carbon Sequestration Sites

    SciTech Connect (OSTI)

    Zhong, Lirong; Cantrell, Kirk J.; Mitroshkov, Alexandre V.; Shewell, Jesse L.

    2014-05-06

    Supercritical CO2 (scCO2) is an excellent solvent for organic compounds, including benzene, toluene, ethyl-benzene, and xylene (BTEX), phenols, and polycyclic aromatic hydrocarbons (PAHs). Monitoring results from geological carbon sequestration (GCS) field tests has shown that organic compounds are mobilized following CO2 injection. Such results have raised concerns regarding the potential for groundwater contamination by toxic organic compounds mobilized during GCS. Knowledge of the mobilization mechanism of organic compounds and their transport and fate in the subsurface is essential for assessing risks associated with GCS. Extraction tests using scCO2 and methylene chloride (CH2Cl2) were conducted to study the mobilization of volatile organic compounds (VOCs, including BTEX), the PAH naphthalene, and n-alkanes (n-C20 – n-C30) by scCO2 from representative reservoir rock and caprock obtained from depleted oil reservoirs and coal from an enhanced coal-bed methane recovery site. More VOCs and naphthalene were extractable by scCO2 compared to the CH2Cl2 extractions, while scCO2 extractable alkane concentrations were much lower than concentrations extractable by CH2Cl2. In addition, dry scCO2 was found to extract more VOCs than water saturated scCO2, but water saturated scCO2 mobilized more naphthalene than dry scCO2. In sand column experiments, moisture content was found to have an important influence on the transport of the organic compounds. In dry sand columns the majority of the compounds were retained in the column except benzene and toluene. In wet sand columns the mobility of the BTEX was much higher than that of naphthalene. Based upon results determined for the reservoir rock, caprock, and coal samples studied here, the risk to aquifers from contamination by organic compounds appears to be relatively low; however, further work is necessary to fully evaluate risks from depleted oil reservoirs.

  17. CO{sub 2} Geologic Storage: Coupled Hydro-Chemo-Thermo-Mechanical Phenomena - From Pore-scale Processes to Macroscale Implications -

    SciTech Connect (OSTI)

    Santamarina, J. Carlos

    2013-05-31

    Global energy consumption will increase in the next decades and it is expected to largely rely on fossil fuels. The use of fossil fuels is intimately related to CO{sub 2} emissions and the potential for global warming. Geological CO{sub 2} storage aims to mitigate the global warming problem by sequestering CO{sub 2} underground. Coupled hydro-chemo-mechanical phenomena determine the successful operation and long term stability of CO{sub 2} geological storage. This research explores coupled phenomena, identifies different zones in the storage reservoir, and investigates their implications in CO{sub 2} geological storage. In particular, the research: Explores spatial patterns in mineral dissolution and precipitation (comprehensive mass balance formulation); experimentally determines the interfacial properties of water, mineral, and CO{sub 2} systems (including CO{sub 2}-water-surfactant mixtures to reduce the CO{sub 2}- water interfacial tension in view of enhanced sweep efficiency); analyzes the interaction between clay particles and CO{sub 2}, and the response of sediment layers to the presence of CO{sub 2} using specially designed experimental setups and complementary analyses; couples advective and diffusive mass transport of species, together with mineral dissolution to explore pore changes during advection of CO{sub 2}-dissolved water along a rock fracture; upscales results to a porous medium using pore network simulations; measures CO{sub 2} breakthrough in highly compacted fine-grained sediments, shale and cement specimens; explores sealing strategies; and experimentally measures CO{sub 2}-CH{sub 4} replacement in hydrate-bearing sediments during. Analytical, experimental and numerical results obtained in this study can be used to identify optimal CO{sub 2} injection and reservoir-healing strategies to maximize the efficiency of CO{sub 2} injection and to attain long-term storage.

  18. Water Wars

    Energy Science and Technology Software Center (OSTI)

    2012-09-11

    Sandia National Laboratories and Intel Corporation are cooperating on a project aimed at developing serious games to assist in resource planners in conducting open and participatory projects. Water Wars serves as a prototype game focused on water issues. Water Wars is a multi-player, online role-playing "serious game" combining large-scale simulation (e.g. SimCity), with strategy and interpersonal interaction (e.g. Diplomacy). The game is about water use set in present-day New Mexico. Players enact various stakeholder rolesmore » and compete for water while simultaneously cooperating to prevent environmental collapse. The gamespace utilizes immersive 3D graphics to bring the problem alive. The game integrates Intel's OpenSim visualization engine with Sandia developed agent-based and system dynamics models.« less

  19. Novel Concepts Research in Geologic Storage of CO2

    SciTech Connect (OSTI)

    Neeraj Gupta

    2007-06-30

    As part of the Department of Energy's (DOE) initiative on developing new technologies for the storage of carbon dioxide (CO{sub 2}) in geologic reservoirs, Battelle has been investigating the feasibility of CO{sub 2} sequestration in the deep saline reservoirs of the Ohio River Valley region. In addition to the DOE, the project is being sponsored by American Electric Power (AEP), BP, Ohio Coal Development Office (OCDO) of the Ohio Air Quality Development Authority, Schlumberger, and Battelle. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations. The current technical progress report summarizes activities completed for the April-June 2007 period of the project. As discussed in the report, the main accomplishments related to preparation to move forward with a 100,000-300,000 metric tons CO{sub 2}/year capture and sequestration project at the Mountaineer site. The program includes a 10 to 30-megawatt thermal product validation at the Mountaineer Plant where up to 300,000 metric tons CO{sub 2}/year will be captured and sequestered in deep rock formations identified in this work. Design and feasibility support tasks such as development of injection well design options, engineering assessment of CO{sub 2} capture systems, permitting, reservoir storage simulations, and assessment of monitoring technologies as they apply to the project site were developed for the project. Plans to facilitate the next steps of the project will be the main work remaining in this portion of the project as the program moves toward the proposed capture and sequestration system.

  20. Novel Concepts Research in Geologic Storage of CO2

    SciTech Connect (OSTI)

    Neeraj Gupta

    2007-03-31

    As part of the Department of Energy's (DOE) initiative on developing new technologies for the storage of carbon dioxide (CO{sub 2}) in geologic reservoirs, Battelle has been investigating the feasibility of CO{sub 2} sequestration in the deep saline reservoirs of the Ohio River Valley region. In addition to the DOE, the project is being sponsored by American Electric Power (AEP), BP, Ohio Coal Development Office (OCDO) of the Ohio Air Quality Development Authority, Schlumberger, and Battelle. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations. The current technical progress report summarizes activities completed for the January-March 2007 period of the project. As discussed in the report, the main accomplishment was an announcement by AEP to move forward with a {approx}100,000 metric tons CO{sub 2}/year capture and sequestration project at the Mountaineer site. This decision was the outcome of last several years of research under the current DOE funded project involving the technology, site-specific characterization, modeling, risk assessment, etc. This news marks a significant accomplishment for DOE's research program to translate the theoretical potential for carbon sequestration into tangible measures and approaches for the region. The program includes a 30-megawatt thermal product validation at the Mountaineer Plant where up to 100,000 metric tons CO{sub 2}/year will be captured and sequestered in deep rock formations identified in this work. Plans include further steps at Mountaineer with capture and storage at a very expedited pace. Work continued on the design and feasibility support tasks such as development of injection well design options, engineering assessment of CO{sub 2} capture systems, permitting, and assessment of monitoring technologies as they apply to the project site. Overall, the current design feasibility phase of the project has reached a major milestone. Plans to facilitate the next steps of the project will be the main work remaining in this portion of the project as the program moves toward the proposed capture and sequestration system.

  1. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect (OSTI)

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 ft of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5-million-year-old Elephant Mountain Member, was emplaced above the Pomona Member.

  2. Geochemistry Technical Basis Document

    SciTech Connect (OSTI)

    Benedict, Jr, F Christopher; Rose, Timothy P; Thomas, James M; Waddell, Richard; Jacobson, Roger

    2004-03-18

    This document presents a methodology whereby geochemical data can more effectively contribute to the development , calibration, and verification of groundwater flow and slute transport models for the Underground Test Area (UGTA) Project.

  3. Produced Water Management and Beneficial Use

    SciTech Connect (OSTI)

    Terry Brown; Carol Frost; Thomas Hayes; Leo Heath; Drew Johnson; David Lopez; Demian Saffer; Michael Urynowicz; John Wheaton; Mark Zoback

    2007-10-31

    Large quantities of water are associated with the production of coalbed methane (CBM) in the Powder River Basin (PRB) of Wyoming. The chemistry of co-produced water often makes it unsuitable for subsequent uses such as irrigated agriculture. However, co-produced waters have substantial potential for a variety of beneficial uses. Achieving this potential requires the development of appropriate water management strategies. There are several unique characteristics of co-produced water that make development of such management strategies a challenge. The production of CBM water follows an inverse pattern compared to traditional wells. CBM wells need to maintain low reservoir pressures to promote gas production. This need renders the reinjection of co-produced waters counterproductive. The unique water chemistry of co-produced water can reduce soil permeability, making surface disposal difficult. Unlike traditional petroleum operations where co-produced water is an undesirable by-product, co-produced water in the PRB often is potable, making it a highly valued resource in arid western states. This research project developed and evaluated a number of water management options potentially available to CBM operators. These options, which focus on cost-effective and environmentally-sound practices, fall into five topic areas: Minimization of Produced Water, Surface Disposal, Beneficial Use, Disposal by Injection and Water Treatment. The research project was managed by the Colorado Energy Research Institute (CERI) at the Colorado School of Mines (CSM) and involved personnel located at CERI, CSM, Stanford University, Pennsylvania State University, the University of Wyoming, the Argonne National Laboratory, the Gas Technology Institute, the Montana Bureau of Mining and Geology and PVES Inc., a private firm.

  4. A High Spatiotemporal Assessment of Consumptive Water Use and Water Scarcity in the Conterminous United States

    SciTech Connect (OSTI)

    Moore, Brandon C.; Coleman, André M.; Wigmosta, Mark S.; Skaggs, Richard L.; Venteris, Erik R.

    2015-08-15

    Increasing demands for energy production and national objectives for securing energy independence from domestic sources of energy, both renewable and non-renewable, are heavily dependent on available water resources. This explicit interdependency between energy production and required water resources is commonly referred to as the “water-energy nexus” The competition for available water resources can, in part, be understood by evaluating the quantity, timing and spatial distribution of water availability and use. The location and timing at which water is available and consumed dominantly affects the extent to which not only energy and water influence one another, but also the greater cross-sector dependencies that for example, influence agriculture, industry, environment, economics, and social well-being. The understanding of water resources and its use, from a spatiotemporal perspective, is critical for shaping future water use policy and management, planning for change-based impacts at the local level, and resolving prevalent issues and priorities now and into the future. To this end, we present a systematic method for both spatial and temporal disaggregation of United States Geological Survey (USGS) annual, county-scale water use data to a consistent 1/8° spatial resolution at a monthly time-step. The utility of this approach and the resulting data are demonstrated by examining water scarcity at varying spatiotemporal resolutions in the context of food and energy security.

  5. A High Spatiotemporal Assessment of Consumptive Water Use and Water Scarcity in the Conterminous United States

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moore, Brandon C.; Coleman, André M.; Wigmosta, Mark S.; Skaggs, Richard L.; Venteris, Erik R.

    2015-08-15

    Increasing demands for energy production and national objectives for securing energy independence from domestic sources of energy, both renewable and non-renewable, are heavily dependent on available water resources. This explicit interdependency between energy production and required water resources is commonly referred to as the “water-energy nexus” The competition for available water resources can, in part, be understood by evaluating the quantity, timing and spatial distribution of water availability and use. The location and timing at which water is available and consumed dominantly affects the extent to which not only energy and water influence one another, but also the greater cross-sectormore » dependencies that for example, influence agriculture, industry, environment, economics, and social well-being. The understanding of water resources and its use, from a spatiotemporal perspective, is critical for shaping future water use policy and management, planning for change-based impacts at the local level, and resolving prevalent issues and priorities now and into the future. To this end, we present a systematic method for both spatial and temporal disaggregation of United States Geological Survey (USGS) annual, county-scale water use data to a consistent 1/8° spatial resolution at a monthly time-step. The utility of this approach and the resulting data are demonstrated by examining water scarcity at varying spatiotemporal resolutions in the context of food and energy security.« less

  6. Commercial Light Water Reactor Tritium Extraction Facility Geotechnical Summary Report

    SciTech Connect (OSTI)

    Lewis, M.R.

    2000-01-11

    A geotechnical investigation program has been completed for the Circulating Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork.

  7. Reference design description for a geologic repository: Revision 01

    SciTech Connect (OSTI)

    1997-09-01

    This document describes the current design expectations for a potential geologic repository that could be located at Yucca Mountain in Nevada. This Reference Design Description (RDD) looks at the surface and subsurface repository and disposal container design. Additionally, it reviews the expected long-term performance of the potential repository. In accordance with current legislation, the reference design for the potential repository does not include an interim storage option. The reference design presented allows the disposal of highly radioactive material received from government-owned spent fuel custodian sites; produces high-level waste sites, and commercial spent fuel sites. All design elements meet current federal, state, and local regulations governing the disposal of high-level radioactive waste and protection of the public and the environment. Due to the complex nature of developing a repository, the design will be created in three phases to support Viability Assessment, License Application, and construction. This document presents the current reference design. It will be updated periodically as the design progresses. Some of the details presented here may change significantly as more cost-effective solutions, technical advancements, or changes to requirements are identified.

  8. Geology and resources of the Tar Sand Triangle, southeastern Utah

    SciTech Connect (OSTI)

    Dana, G.F.; Oliver, R.L.; Elliott, J.R.

    1984-05-01

    The Tar Sand Triangle is located in southeastern Utah between the Dirty Devil and Colorado Rivers and covers an area of about 200 square miles. The geology of the area consists of gently northwest dipping strata exposed in the box canyons and slopes of the canyonlands morphology. Strata in the area range in age from Jurassic to Permian. The majority of tar sand saturation is found in the Permian White Rim Sandstone Member of the Cutler Formation. The White Rim Sandstone Member consists of a clean, well-sorted sandstone which was deposited in a shallow marine environment. Resources were calculated from analytical data from the three coreholes drilled by the Laramie Energy Technology Center and other available data. The total in-place resources, determined from this study, are 6.3 billion barels. Previous estimates ranged from 2.9 to 16 million barrels. More coring and analyses will be necessary before a more accurate determination of resources can be attempted. 8 references, 11 figures, 7 tables.

  9. Petroleum geology of principal sedimentary basins in eastern China

    SciTech Connect (OSTI)

    Lee, K.Y.

    1986-05-01

    The principal petroliferous basins in eastern China are the Songliao, Ordos, and Sichuan basins of Mesozoic age, and the North China, Jianghan, Nanxiang, and Subei basins of Cenozoic age. These basins contain mostly continental fluvial and lacustrine detrital sediments. Four different geologic ages are responsible for the oil and gas in this region: (1) Mesozoic in the Songliao, Ordos, and Sichuan basins; (2) Tertiary in the North China, Jianghan, Nanxiang, and Subei basins; (3) Permian-Carboniferous in the southern North China basin and the northwestern Ordos basin; and (4) Sinian in the southern Sichuan basin. The most prolific oil and gas sources are the Mesozoic of the Songliao basin and the Tertiary of the North China basin. Although the major source rocks in these basins are lacustrine mudstone and shale, their tectonic settings and the resultant temperature gradients differ. For example, in the Songliao, North China, and associated basins, trapping conditions commonly are associated with block faulting of an extensional tectonic regime; the extensional tectonics in turn contribute to a high geothermal gradient (40/sup 0/-60/sup 0/C/km), which results in early maturation and migration for relatively shallow deposits. However, the Ordos and Sichuan basins formed under compressional conditions and are cooler. Hence, maturation and migration occurred late, relative to reservoir deposition and burial, the result being a poorer quality reservoir.

  10. Geologic development and characteristics of continental margins, Gulf of Mexico

    SciTech Connect (OSTI)

    Coleman, J.M.; Prior, D.B.; Roberts, H.H.

    1986-09-01

    The continental slope of the Gulf basin covers more than 500,000 km/sup 2/ and consists of smooth and gently sloping surfaces, prominent escarpments, knolls, intraslope basins, and submarine canyons and channels. It is an area of extremely diverse topographic and sedimentologic conditions. The slope extends from the shelf break, roughly at the 200-m isobath, to the upper limit of the continental rise at a depth of 2800 m. The most complex province in the basin, and the one of most interest to the petroleum industry, is the Texas-Louisiana slope, occupying 120,000 km/sup 2/ and in which bottom slopes range from less than 1/sup 0/ to greater than 20/sup 0/ around the knolls and basins. The near-surface geology and topography of the slope is a function of the interplay between episodes of rapid shelf-edge and slope progradation and contemporaneous modification of the depositional sequence by diapirism. Development of discrete depocenters throughout the Neogene results in rapid shelf-edge progradation, often exceeding 15-20 km/m.y. This rapid progradation of the shelf edge leads to development of thick wedges of sediment accumulation on the continental slope. Slope oversteepening, high pore pressures in rapidly deposited soft sediments, and changes in eustatic sea level cause subaqueous slope instabilities such as landslides and debris flows. Large-scale features such as shelf-edge separation scars and landslide-related canyons often result from such processes.

  11. Certification Framework Based on Effective Trapping for Geologic Carbon Sequestration

    SciTech Connect (OSTI)

    Oldenburg, Curtis M.; Bryant, Steven L.; Nicot, Jean-Philippe

    2009-01-15

    We have developed a certification framework (CF) for certifying the safety and effectiveness of geologic carbon sequestration (GCS) sites. Safety and effectiveness are achieved if CO{sub 2} and displaced brine have no significant impact on humans, other living things, resources, or the environment. In the CF, we relate effective trapping to CO{sub 2} leakage risk which takes into account both the impact and probability of leakage. We achieve simplicity in the CF by using (1) wells and faults as the potential leakage pathways, (2) compartments to represent environmental resources that may be impacted by leakage, (3) CO{sub 2} fluxes and concentrations in the compartments as proxies for impact to vulnerable entities, (4) broad ranges of storage formation properties to generate a catalog of simulated plume movements, and (5) probabilities of intersection of the CO{sub 2} plume with the conduits and compartments. We demonstrate the approach on a hypothetical GCS site in a Texas Gulf Coast saline formation. Through its generality and flexibility, the CF can contribute to the assessment of risk of CO{sub 2} and brine leakage as part of the certification process for licensing and permitting of GCS sites around the world regardless of the specific regulations in place in any given country.

  12. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in Alabama emit approximately 31 MMst (2.4 Tcf) of CO{sub 2} annually. The total sequestration capacity of the Black Warrior coalbed methane fairway at 350 psi is about 189 MMst (14.9 Tcf), which is equivalent to 6.1 years of greenhouse gas emissions from the coal-fired power plants. Applying the geologic screening model indicates that significant parts of the coalbed methane fairway are not accessible because of fault zones, coal mines, coal reserves, and formation water with TDS content less than 3,000 mg/L. Excluding these areas leaves a sequestration potential of 60 MMst (4.7 Tcf), which is equivalent to 1.9 years of emissions. Therefore, if about10 percent of the flue gas stream from nearby power plants is dedicated to enhanced coalbed methane recovery, a meaningful reduction of CO{sub 2} emissions can be realized for nearly two decades. If the fresh-water restriction were removed for the purposes of CO{sub 2} sequestration, an additional 10 MMst (0.9 Tcf) of CO{sub 2} could feasibly be sequestered. The amount of unswept coalbed methane in the fairway is estimated to be 1.49 Tcf at a pressure of 50 psi. Applying the screening model results in an accessible unswept gas resource of 0.44 Tcf. Removal of the fresh-water restriction would elevate this number to 0.57 Tcf. If a recovery factor of 80 percent can be realized, then enhanced recovery activities can result in an 18 percent expansion of coalbed methane reserves in the Black Warrior basin.

  13. Modeling and Risk Assessment of CO2 Sequestration at the Geologic-basin Scale

    SciTech Connect (OSTI)

    Juanes, Ruben

    2013-11-30

    The overall objective of this proposal was to develop tools for better understanding, modeling and risk assessment of CO2 permanence in geologic formations at the geologic basin scale.

  14. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Power DOE Wind & Waterpower Technologies Office Director, Jose Zayas, addresses crowd at Waterpower Week [photo courtesy of the National Hydro Association] Permalink Gallery Sandia Labs participates in DOE's annual Waterpower Week News, News & Events, Renewable Energy, Uncategorized, Water Power Sandia Labs participates in DOE's annual Waterpower Week During the last week of April, Sandia National Laboratories participated in the National Hydropower Association Waterpower Week in

  15. A Guide for Using the Transient Ground-Water Flow Model of the Death Valley Regional Ground-Water Flow System, Nevada and California

    SciTech Connect (OSTI)

    Joan B. Blainey; Claudia C. Faunt, and Mary C. Hill

    2006-05-16

    This report is a guide for executing numerical simulations with the transient ground-water flow model of the Death Valley regional ground-water flow system, Nevada and California using the U.S. Geological Survey modular finite-difference ground-water flow model, MODFLOW-2000. Model inputs, including observations of hydraulic head, discharge, and boundary flows, are summarized. Modification of the DVRFS transient ground-water model is discussed for two common uses of the Death Valley regional ground-water flow system model: predictive pumping scenarios that extend beyond the end of the model simulation period (1998), and model simulations with only steady-state conditions.

  16. Handling encapsulated spent fuel in a geologic repository environment

    SciTech Connect (OSTI)

    Ballou, L.B.

    1983-02-01

    In support of the Spent Fuel Test-Climate at the U.S. Department of Energy`s Nevada Test Site, a spent-fuel canister handling system has been designed, deployed, and operated successfully during the past five years. This system transports encapsulated commercial spent-fuel assemblies between the packaging facility and the test site ({similar_to}100 km), transfers the canisters 420 m vertically to and from a geologic storage drift, and emplaces or retrieves the canisters from the storage holes in the floor of the drift. The spent-fuel canisters are maintained in a fully shielded configuration at all times during the handling cycle, permitting manned access at any time for response to any abnormal conditions. All normal operations are conducted by remote control, thus assuring as low as reasonably achievable exposures to operators; specifically, we have had no measurable exposure during 30 canister transfer operations. While not intended to be prototypical of repository handling operations, the system embodies a number of concepts, now demonstrated to be safe, reliable, and economical, which may be very useful in evaluating full-scale repository handling alternatives in the future. Among the potentially significant concepts are: Use of an integral shielding plug to minimize radiation streaming at all transfer interfaces. Hydraulically actuated transfer cask jacking and rotation features to reduce excavation headroom requirements. Use of a dedicated small diameter (0.5 m) drilled shaft for transfer between the surface and repository workings. A wire-line hoisting system with positive emergency braking device which travels with the load. Remotely activated grapples - three used in the system - which are insensitive to load orientation. Rail-mounted underground transfer vehicle operated with no personnel underground.

  17. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect (OSTI)

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the movement on the fault appears to have occurred before the youngest lava flow, the 10.5 million year old Elephant Mountain Member was emplaced above the Pomona Member.

  18. State and Regional Control of Geological Carbon Sequestration

    SciTech Connect (OSTI)

    Reitze, Arnold; Durrant, Marie

    2011-03-31

    The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­‐year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. Carbon capture and geologic sequestration offer one method to reduce carbon emissions from coal and other hydrocarbon energy production. While the federal government is providing increased funding for carbon capture and sequestration, recent congressional legislative efforts to create a framework for regulating carbon emissions have failed. However, regional and state bodies have taken significant actions both to regulate carbon and facilitate its capture and sequestration. This article explores how regional bodies and state government are addressing the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. Several regional bodies have formed regulations and model laws that affect carbon capture and storage, and three bodies comprising twenty-­‐three states—the Regional Greenhouse Gas Initiative, the Midwest Regional Greenhouse Gas Reduction Accord, and the Western Climate initiative—have cap-­‐and-­‐trade programs in various stages of development. State property, land use and environmental laws affect the development and implementation of carbon capture and sequestration projects, and unless federal standards are imposed, state laws on torts and renewable portfolio requirements will directly affect the liability and viability of these projects. This paper examines current state laws and legislative efforts addressing carbon capture and sequestration.

  19. Geologic Map of the Neal Hot Springs Geothermal Area - GIS Data

    SciTech Connect (OSTI)

    Faulds, James E.

    2013-03-31

    Neal Hot Springs—ESRI Geodatabase (ArcGeology v1.3): - Contains all the geologic map data, including faults, contacts, folds, unit polygons, and attitudes of strata and faults. - List of stratigraphic units and stratigraphic correlation diagram. - Three cross‐sections. - Locations of production, injection, and exploration wells. - Locations of 40Ar/39Ar samples. - Location of XRF geochemical samples. - 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics (model not in the ESRI geodatabase).

  20. Assessment of effectiveness of geologic isolation systems. Test case release consequence analysis for a spent fuel repository in bedded salt

    SciTech Connect (OSTI)

    Raymond, J.R.; Bond, F.W.; Cole, C.R.; Nelson, R.W.; Reisenauer, A.E.; Washburn, J.F.; Norman, N.A.; Mote, P.A.; Segol, G.

    1980-01-01

    Geologic and geohydrologic data for the Paradox Basin have been used to simulate movement of ground water and radioacrtive contaminants from a hypothetical nuclear reactor spent fuel repository after an assumed accidental release. The pathlines, travel times and velocity of the ground water from the repository to the discharge locale (river) were determined after the disruptive event by use of a two-dimensional finite difference hydrologic model. The concentration of radioactive contaminants in the ground water was calculated along a series of flow tubes by use of a one-dimensional mass transport model which takes into account convection, dispersion, contaminant/media interactions and radioactive decay. For the hypothetical site location and specific parameters used in this demonstration, it is found that Iodine-129 (I-129) is tthe only isotope reaching the Colorado River in significant concentration. This concentration occurs about 8.0 x 10/sup 5/ years after the repository has been breached. This I-129 ground-water concentration is about 0.3 of the drinking water standard for uncontrolled use. The groundwater concentration would then be diluted by the Colorado River. None of the actinide elements reach more than half the distance from the repository to the Colorado River in the two-million year model run time. This exercise demonstrates that the WISAP model system is applicable for analysis of contaminant transport. The results presented in this report, however, are valid only for one particular set of parameters. A complete sensitivity analysis must be performed to evaluate the range of effects from the release of contaminants from a breached repository.

  1. Investigations on the Structure Tectonics, Geophysics, Geochemistry, and Hydrocarbon Potential of the Black Mesa Basin, Northeastern Arizona

    SciTech Connect (OSTI)

    Barker, Colin; Carroll, Herbert; Erickson, Richard; George, Steve; Guo, Genliang; Reeves,T.K.; Sharma, Bijon; Szpakiewicz, Michael; Volk, Len

    1999-04-27

    The U.S. Department of Energy (DOE) has instituted a basin-analysis study program to encourage drilling in underexplored and unexplored areas and increase discovery rates for hydrocarbons by independent oil companies within the continental United States. The work is being performed at the DOE's National Institute for Petroleum and Energy Research (NIPER) in Bartlesville, Oklahoma, by the Exploration and Drilling Group within BDM-Oklahoma (BDM), the manager of the facility for DOE. Several low-activity areas in the Mid-Continent, west, and southwest were considered for the initial study area (Reeves and Carroll 1994a). The Black Mesa region in northwestern Arizona is shown on the U.S. Geological Survey 1995 oil and gas map of the United States as an undrilled area, adapted from Takahashi and Gautier 1995. This basin was selected by DOE s the site for the initial NIPER-BDM survey to develop prospects within the Lower-48 states (Reeves and Carroll 1994b).

  2. Natural radionuclides in Hanford site ground waters

    SciTech Connect (OSTI)

    Smith, M.R.; Laul, J.C.; Johnson, V.G.

    1987-10-01

    Uranium, Th, Ra, Rn, Pb and Po radionuclide concentrations in ground waters from the Hanford Site indicate that U, Th, and Ra are highly sorbed. Relative to Rn, these radionuclides are low by factors of 10/sup -3/ to 10/sup -6/. Uranium sorption is likely due to its reduction from the +6 state, where it is introduced via surface waters, to the +4 state found in the confined aquifers. The distribution of radionuclides is very similar in all of the confined aquifers and significantly different from the distribution observed in the unconfined and surface waters. Barium correlates well with Ra over three orders of magnitude, indicating that stable element analogs may be useful for inferring the behavior of radioactive waste radionuclides in this candidate geologic repository. 8 refs., 7 figs., 1 tab.

  3. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr.; Eby, D.E.

    1996-12-31

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO{sub 2}-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO{sub 2} miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  4. Geological and reservoir characterization of shallow-shelf carbonate fields, Southern Paradox Basin, Utah

    SciTech Connect (OSTI)

    Chidsey, T.C. Jr. ); Eby, D.E. )

    1996-01-01

    The Paradox basin of Utah, Colorado, and Arizona contains nearly 100 small oil fields producing from carbonate mounds within the Pennsylvanian (Desmoinesian) Paradox Formation. These fields typically have one to three wells with primary per field production ranging from 700 MBO to 2 MMBO at a 15-20% recovery rate. Five fields (Anasazi, Mule, Blue Hogan, Heron North, and Runway) within the Navajo Nation of southeastern Utah have been evaluated for CO[sub 2]-flood projects based upon geological characterization and reservoir modeling. Conventional cores from the five fields show that three compositional reservoir types are present: (1) phylloid algal, (2) bioclastic calcarenite, and (3) bryozoan-dominated. Phylloid algal mounds are abundant in four of the five fields, and exhibit the best overall porosity and permeability. This mound type developed where shallow water depths and low energy allowed establishment of calcareous algal colonies possibly on paleohighs. The principal reservoir rock is algal bafflestone composed mostly of the phylloid Ivanovia and occasionally dolomitized. The Heron North field is a bioclastic calcarenite reservoir. It represents high-energy conditions resulting in carbonate beaches developed over foreshore carbonate rubble. The principal reservoir rocks are grainstones and rudstones having grain-selective dissolution and complete dolomitization. Bryozoan-dominated mounds present in Runway field developed in quiet, below wave-base settings that appear to be localized along Mississippian fault blocks trends. The principal reservoir rocks are bindstone and framestone with no dolomitization. The resulting model suggests that CO[sub 2] miscible flooding of these and other small carbonate reservoirs in the Paradox basin could significantly increase ultimate recovery of oil.

  5. Global Sampling for Integrating Physics-Specific Subsystems and Quantifying Uncertainties of CO2 Geological Sequestration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sun, Y.; Tong, C.; Trainor-Guitten, W. J.; Lu, C.; Mansoor, K.; Carroll, S. A.

    2012-12-20

    The risk of CO2 leakage from a deep storage reservoir into a shallow aquifer through a fault is assessed and studied using physics-specific computer models. The hypothetical CO2 geological sequestration system is composed of three subsystems: a deep storage reservoir, a fault in caprock, and a shallow aquifer, which are modeled respectively by considering sub-domain-specific physics. Supercritical CO2 is injected into the reservoir subsystem with uncertain permeabilities of reservoir, caprock, and aquifer, uncertain fault location, and injection rate (as a decision variable). The simulated pressure and CO2/brine saturation are connected to the fault-leakage model as a boundary condition. CO2 andmore » brine fluxes from the fault-leakage model at the fault outlet are then imposed in the aquifer model as a source term. Moreover, uncertainties are propagated from the deep reservoir model, to the fault-leakage model, and eventually to the geochemical model in the shallow aquifer, thus contributing to risk profiles. To quantify the uncertainties and assess leakage-relevant risk, we propose a global sampling-based method to allocate sub-dimensions of uncertain parameters to sub-models. The risk profiles are defined and related to CO2 plume development for pH value and total dissolved solids (TDS) below the EPA's Maximum Contaminant Levels (MCL) for drinking water quality. A global sensitivity analysis is conducted to select the most sensitive parameters to the risk profiles. The resulting uncertainty of pH- and TDS-defined aquifer volume, which is impacted by CO2 and brine leakage, mainly results from the uncertainty of fault permeability. Subsequently, high-resolution, reduced-order models of risk profiles are developed as functions of all the decision variables and uncertain parameters in all three subsystems.« less

  6. Integration of the geological/engineering model with production performance for Patrick Draw Field, Wyoming

    SciTech Connect (OSTI)

    Jackson, S.

    1993-03-01

    The NIPER Reservoir Assessment and Characterization Research Program incorporates elements of the near-term, mid-term and long-term objectives of the National Energy Strategy-Advanced Oil Recovery Program. The interdisciplinary NIPER team focuses on barrier island reservoirs, a high priority class of reservoirs, that contains large amounts of remaining oil in place located in mature fields with a high number of shut-in and abandoned wells. The project objectives are to: (1) identify heterogeneities that influence the movement and trapping of reservoir fluids in two examples of shoreline barrier reservoirs (Patrick Draw Field, WY and Bell Creek Field, MT); (2) develop geological and engineering reservoir characterization methods to quantify reservoir architecture and predict mobile oil saturation distribution for application of targeted infill drilling and enhanced oil recovery (EOR) processes; and (3) summarize reservoir and production characteristics of shoreline barrier reservoirs to determine similarities and differences. The major findings of the research include: (1) hydrogeochemical analytical techniques were demonstrated to be an inexpensive reservoir characterization tool that provides information on reservoir architecture and compartmentalization; (2) the formation water salinity in Patrick Draw Field varies widely across the field and can result in a 5 to 12% error in saturation values calculated from wireline logs if the salinity variations and corresponding resistivity values are not accounted for; and (3) an analysis of the enhanced oil recovery (EOR) potential of Patrick Draw Field indicates that CO[sub 2] flooding in the Monell Unit and horizontal drilling in the Arch Unit are potential methods to recover additional oil from the field.

  7. Integration of the geological/engineering model with production performance for Patrick Draw Field, Wyoming

    SciTech Connect (OSTI)

    Jackson, S.

    1993-03-01

    The NIPER Reservoir Assessment and Characterization Research Program incorporates elements of the near-term, mid-term and long-term objectives of the National Energy Strategy-Advanced Oil Recovery Program. The interdisciplinary NIPER team focuses on barrier island reservoirs, a high priority class of reservoirs, that contains large amounts of remaining oil in place located in mature fields with a high number of shut-in and abandoned wells. The project objectives are to: (1) identify heterogeneities that influence the movement and trapping of reservoir fluids in two examples of shoreline barrier reservoirs (Patrick Draw Field, WY and Bell Creek Field, MT); (2) develop geological and engineering reservoir characterization methods to quantify reservoir architecture and predict mobile oil saturation distribution for application of targeted infill drilling and enhanced oil recovery (EOR) processes; and (3) summarize reservoir and production characteristics of shoreline barrier reservoirs to determine similarities and differences. The major findings of the research include: (1) hydrogeochemical analytical techniques were demonstrated to be an inexpensive reservoir characterization tool that provides information on reservoir architecture and compartmentalization; (2) the formation water salinity in Patrick Draw Field varies widely across the field and can result in a 5 to 12% error in saturation values calculated from wireline logs if the salinity variations and corresponding resistivity values are not accounted for; and (3) an analysis of the enhanced oil recovery (EOR) potential of Patrick Draw Field indicates that CO{sub 2} flooding in the Monell Unit and horizontal drilling in the Arch Unit are potential methods to recover additional oil from the field.

  8. Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines

    Broader source: Energy.gov [DOE]

    The objective of this work is to develop a spatial database that integrates both geologic data for alternative host-rock formations and information that has been historically used for siting...

  9. An overview of the geology and secondary mineralogy of the high...

    Open Energy Info (EERE)

    the geology and secondary mineralogy of the high temperature geothermal system in Dixie Valley, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  10. A Review of Methods Applied by the US Geological Survey in the...

    Open Energy Info (EERE)

    Methods Applied by the US Geological Survey in the Assessment of Identified Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: A Review...

  11. Nevada Bureau of Mines and Geology Open-File Report 12-3: Data...

    Open Energy Info (EERE)

    2012 Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Nevada Bureau of Mines and Geology Open-File Report 12-3: Data Tables and graphs of geothermal power...

  12. A Geological and Hydro-Geochemical Study of the Animas Geothermal...

    Open Energy Info (EERE)

    Hydro-Geochemical Study of the Animas Geothermal Area, Hidalgo County, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Geological...

  13. Idaho Geological Survey and University of Idaho Explore for Geothermal Energy

    Broader source: Energy.gov [DOE]

    The University of Idaho's Idaho Geological Survey recently drilled new wells in southeastern Idaho to provide the most accurate assessment of high-temperature geothermal energy potential in the region.

  14. DOE Research Projects to Examine Promising Geologic Formations for CO2 Storage

    Broader source: Energy.gov [DOE]

    The Department of Energy today announced 11 projects valued at $75.5 million aimed at increasing scientific understanding about the potential of promising geologic formations to safely and permanently store carbon dioxide (CO2).

  15. DOE Selects Projects to Monitor and Evaluate Geologic CO2 Storage

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today announced the selection of 19 projects to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide (CO2) storage in geologic formations.

  16. DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic Formations

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy today issued a Funding Opportunity Announcement (FOA) to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide storage in geologic formations.

  17. DOE Releases Report on Techniques to Ensure Safe, Effective Geologic Carbon Sequestration

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy's National Energy Technology Laboratory has created a comprehensive new document that examines existing and emerging techniques to monitor, verify, and account for carbon dioxide stored in geologic formations.

  18. Geology of Geothermal Test Hole GT-2 Fenton Hill Site, July 1974...

    Open Energy Info (EERE)

    Geothermal Test Hole GT-2 Fenton Hill Site, July 1974 Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geology of Geothermal Test Hole GT-2 Fenton Hill...

  19. WATER CONSERVATION PLAN

    National Nuclear Security Administration (NNSA)

    ... Average water consumers can save thousands of gallons of water per year by being aware of ... program on the water distribution systems to include water saving replacement parts. ...

  20. Geological challenges in radioactive waste isolation: Third worldwide review

    SciTech Connect (OSTI)

    Witherspoon Editor, P.A.; Bodvarsson Editor, G.S.

    2001-12-01

    The broad range of activities on radioactive waste isolation that are summarized in Table 1.1 provides a comprehensive picture of the operations that must be carried out in working with this problem. A comparison of these activities with those published in the two previous reviews shows the important progress that is being made in developing and applying the various technologies that have evolved over the past 20 years. There are two basic challenges in perfecting a system of radioactive waste isolation: choosing an appropriate geologic barrier and designing an effective engineered barrier. One of the most important developments that is evident in a large number of the reports in this review is the recognition that a URL provides an excellent facility for investigating and characterizing a rock mass. Moreover, a URL, once developed, provides a convenient facility for two or more countries to conduct joint investigations. This review describes a number of cooperative projects that have been organized in Europe to take advantage of this kind of a facility in conducting research underground. Another critical development is the design of the waste canister (and its accessory equipment) for the engineered barrier. This design problem has been given considerable attention in a number of countries for several years, and some impressive results are described and illustrated in this review. The role of the public as a stakeholder in radioactive waste isolation has not always been fully appreciated. Solutions to the technical problems in characterizing a specific site have generally been obtained without difficulty, but procedures in the past in some countries did not always keep the public and local officials informed of the results. It will be noted in the following chapters that this procedure has caused some problems, especially when approval for a major component in a project was needed. It has been learned that a better way to handle this problem is to keep all stakeholders fully informed of project plans and hold periodic meetings to brief the public, especially in the vicinity of the selected site. This procedure has now been widely adopted and represents one of the most important developments in the Third Worldwide Review.

  1. Adapting Dry Cask Storage for Aging at a Geologic Repository

    SciTech Connect (OSTI)

    C. Sanders; D. Kimball

    2005-08-02

    A Spent Nuclear Fuel (SNF) Aging System is a crucial part of operations at the proposed Yucca Mountain repository in the United States. Incoming commercial SNF that does not meet thermal limits for emplacement will be aged on outdoor pads. U.S. Department of Energy SNF will also be managed using the Aging System. Proposed site-specific designs for the Aging System are closely based upon designs for existing dry cask storage (DCS) systems. This paper evaluates the applicability of existing DCS systems for use in the SNF Aging System at Yucca Mountain. The most important difference between existing DCS facilities and the Yucca Mountain facility is the required capacity. Existing DCS facilities typically have less than 50 casks. The current design for the aging pad at Yucca Mountain calls for a capacity of over 2,000 casks (20,000 MTHM) [1]. This unprecedented number of casks poses some unique problems. The response of DCS systems to off-normal and accident conditions needs to be re-evaluated for multiple storage casks. Dose calculations become more complicated, since doses from multiple or very long arrays of casks can dramatically increase the total boundary dose. For occupational doses, the geometry of the cask arrays and the order of loading casks must be carefully considered in order to meet ALARA goals during cask retrieval. Due to the large area of the aging pad, skyshine must also be included when calculating public and worker doses. The expected length of aging will also necessitate some design adjustments. Under 10 CFR 72.236, DCS systems are initially certified for a period of 20 years [2]. Although the Yucca Mountain facility is not intended to be a storage facility under 10 CFR 72, the operational life of the SNF Aging System is 50 years [1]. Any cask system selected for use in aging will have to be qualified to this design lifetime. These considerations are examined, and a summary is provided of the adaptations that must be made in order to use DCS technologies successfully at a geologic repository.

  2. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Oldenburg, Curtis M [LBNL Earth Sciences Division

    2011-04-28

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  3. Soda Lake Well Lithology Data and Geologic Cross-Sections (Dataset) | Data

    Office of Scientific and Technical Information (OSTI)

    Explorer Soda Lake Well Lithology Data and Geologic Cross-Sections Title: Soda Lake Well Lithology Data and Geologic Cross-Sections Comprehensive catalogue of drill-hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. Plus, 13 cross-sections in Adobe Illustrator format. Authors: Faulds, James E. Publication Date: 2013-12-31

  4. Reservoir architecture modeling: Nonstationary models for quantitative geological characterization. Final report, April 30, 1998

    SciTech Connect (OSTI)

    Kerr, D.; Epili, D.; Kelkar, M.; Redner, R.; Reynolds, A.

    1998-12-01

    The study was comprised of four investigations: facies architecture; seismic modeling and interpretation; Markov random field and Boolean models for geologic modeling of facies distribution; and estimation of geological architecture using the Bayesian/maximum entropy approach. This report discusses results from all four investigations. Investigations were performed using data from the E and F units of the Middle Frio Formation, Stratton Field, one of the major reservoir intervals in the Gulf Coast Basin.

  5. Center for Nanoscale Controls on Geologic CO2 (NCGC) | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Center for Nanoscale Controls on Geologic CO2 (NCGC) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Nanoscale Controls on Geologic CO2 (NCGC) Print Text Size: A A A FeedbackShare Page NCGC Header Director Donald DePaolo Lead Institution Lawrence Berkeley National Laboratory Year Established 2009 Mission To enhance the performance and

  6. Testing the suitability of geologic frameworks for extrapolating hydraulic properties across regional scales

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mirus, Benjamin B.; Halford, Keith J.; Sweetkind, Donald; Fenelon, Joseph M.

    2016-02-18

    The suitability of geologic frameworks for extrapolating hydraulic conductivity (K) to length scales commensurate with hydraulic data is difficult to assess. A novel method is presented for evaluating assumed relations between K and geologic interpretations for regional-scale groundwater modeling. The approach relies on simultaneous interpretation of multiple aquifer tests using alternative geologic frameworks of variable complexity, where each framework is incorporated as prior information that assumes homogeneous K within each model unit. This approach is tested at Pahute Mesa within the Nevada National Security Site (USA), where observed drawdowns from eight aquifer tests in complex, highly faulted volcanic rocks providemore » the necessary hydraulic constraints. The investigated volume encompasses 40 mi3 (167 km3) where drawdowns traversed major fault structures and were detected more than 2 mi (3.2 km) from pumping wells. Complexity of the five frameworks assessed ranges from an undifferentiated mass of rock with a single unit to 14 distinct geologic units. Results show that only four geologic units can be justified as hydraulically unique for this location. The approach qualitatively evaluates the consistency of hydraulic property estimates within extents of investigation and effects of geologic frameworks on extrapolation. Distributions of transmissivity are similar within the investigated extents irrespective of the geologic framework. In contrast, the extrapolation of hydraulic properties beyond the volume investigated with interfering aquifer tests is strongly affected by the complexity of a given framework. As a result, testing at Pahute Mesa illustrates how this method can be employed to determine the appropriate level of geologic complexity for large-scale groundwater modeling.« less

  7. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    SciTech Connect (OSTI)

    Oldenburg, Curtis M

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  8. Development of a Geological and Geomechanical Framwork for the Analysis of

    Broader source: Energy.gov (indexed) [DOE]

    MEQ in EGS Experiments | Department of Energy a Geological and Geomechanical Framwork for the Analysis of MEQ in EGS Experiments presentation at the April 2013 peer review meeting held in Denver, Colorado. PDF icon ghassemi_meq_peer2013.pdf More Documents & Publications Development of a Geological and GeomechanicalFramework for the Analysis of MEQ in EGS Experiments Analysis of Geothermal Reservoir Stimulation using Geomechanics-Based Stochastic Analysis of Injection-Induced Seismicity

  9. Isotope Geochemistry of Calcite Coatings and the Thermal History of the Unsaturated Zone at Yucca Mountain, Nevada

    SciTech Connect (OSTI)

    B.D. Marshall; J.F. Whelan

    2000-07-27

    Calcite and opal coatings found on fracture footwalls and lithophysal cavity bottoms in the volcanic section at Yucca Mountain (exposed in a tunnel) contain a record of gradual chemical and isotopic changes that have occurred in the unsaturated zone. The thin (less than 6 cm) coatings are composed primarily of calcite, opal, chalcedony, and quartz. Fluid inclusions in calcite that homogenize at greater than ambient temperatures provide impetus for geochronologic studies in order to determine the thermal history. In the welded Topopah Spring Tuff (12.7 Ma), U-Pb ages of opal and chalcedony layers provide evidence of a long history of deposition throughout the past 10 m.y. However, these ages can constrain the ages of associated calcite layers only in samples with an easily interpretable microstratigraphy. Strontium isotope ratios in calcite increase with microstratigraphic position from the base up to the outermost surface of the coatings. The strontium incorporated in these coatings records the systematic change in pore-water isotopic composition due to water-rock interaction primarily in the overlying nonwelded tuffs. A one-dimensional advection-reaction model simulates strontium isotope ratios measured in pore water extracted from core in three vertical boreholes adjacent to the tunnel. By calculating the strontium isotope compositions of the rocks at various past times, the model predicts a history of the strontium isotope ratios in the water that matches the record in the calcite and therefore provides approximate ages. Oxygen isotope ratios measured in calcite gradually increase with decreasing model strontium age. Assuming that the oxygen isotope ratio of the percolating water was relatively constant, this trend indicates a gradual cooling of the rocks over millions of years, in agreement with thermal modeling of magma beneath the 12-Ma Timber Mountain caldera just north of Yucca Mountain. This model predicts that temperatures significantly exceeding current geotherm values occurred prior to 6 Ma. We find no evidence for Quaternary or recent thermal perturbations to the cooling rocks.

  10. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong, Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2003-01-01

    Sequestration of CO{sub 2} in coal has potential to reduce greenhouse gas emissions from coal-fired power plants while enhancing coalbed methane recovery. Data from more than 4,000 coalbed methane wells in the Black Warrior basin of Alabama provide an opportunity to quantify the carbon sequestration potential of coal and to develop a geologic screening model for the application of carbon sequestration technology. This report summarizes stratigraphy and sedimentation, structural geology, geothermics, hydrology, coal quality, gas capacity, and production characteristics of coal in the Black Warrior coalbed methane fairway and the implications of geology for carbon sequestration and enhanced coalbed methane recovery. Coal in the Black Warrior basin is distributed among several fluvial-deltaic coal zones in the Lower Pennsylvanian Pottsville Formation. Most coal zones contain one to three coal beds that are significant targets for coalbed methane production and carbon sequestration, and net coal thickness generally increases southeastward. Pottsville strata have effectively no matrix permeability to water, so virtually all flow is through natural fractures. Faults and folds influence the abundance and openness of fractures and, hence, the performance of coalbed methane wells. Water chemistry in the Pottsville Formation ranges from fresh to saline, and zones with TDS content lower than 10,000 mg/L can be classified as USDW. An aquifer exemption facilitating enhanced recovery in USDW can be obtained where TDS content is higher than 3,000 mg/L. Carbon dioxide becomes a supercritical fluid above a temperature of 88 F and a pressure of 1,074 psi. Reservoir temperature exceeds 88 F in much of the study area. Hydrostatic pressure gradients range from normal to extremely underpressured. A large area of underpressure is developed around closely spaced longwall coal mines, and areas of natural underpressure are distributed among the coalbed methane fields. The mobility and reactivity of supercritical CO{sub 2} in coal-bearing strata is unknown, and potential exists for supercritical conditions to develop below a depth of 2,480 feet following abandonment of the coalbed methane fields. High-pressure adsorption isotherms confirm that coal sorbs approximately twice as much CO{sub 2} as CH{sub 4} and approximately four times as much CO{sub 2} as N{sub 2}. Analysis of isotherm data reveals that the sorption performance of each gas can vary by a factor of two depending on rank and ash content. Gas content data exhibit extreme vertical and lateral variability that is the product of a complex burial history involving an early phase of thermogenic gas generation and an ongoing stage of late biogenic gas generation. Production characteristics of coalbed methane wells are helpful for identifying areas that are candidates for carbon sequestration and enhanced coalbed methane recovery. Many geologic and engineering factors, including well construction, well spacing, and regional structure influence well performance. Close fault spacing limits areas where five-spot patterns may be developed for enhanced gas recovery, but large structural panels lacking normal faults are in several gas fields and can be given priority as areas to demonstrate and commercialize carbon sequestration technology in coalbed methane reservoirs.

  11. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI.

    SciTech Connect (OSTI)

    James R. Wood; T.J. Bornhorst; William B. Harrison; W. Quinlan

    2002-04-01

    The fault study continues to find more faults and develop new techniques to visualize them. Data from the Dundee Formation has been used to document 11 major faults in the Michigan Basin which have now been verified using data from other horizons. These faults control the locations of many of the large anticlinal structures in the Michigan Basin and likely controlled fluid movements as well. The surface geochemistry program is also moving along well with emphasis on measuring samples collected last sampling season. The new GC laboratory is now functional and has been fully staffed as of December. The annual project review was held March 7-9 in Tampa, Florida. Contracts are being prepared for drilling the Bower's prospects in Isabella County, Michigan, this spring or summer. A request was made to extend the scope of the project to include the Willison Basin. A demonstration well has been suggested in Burke County, N. Dakota, following a review of 2D seismic and surface geochem. A 3D seismic survey is scheduled for the prospect.

  12. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    SciTech Connect (OSTI)

    James R. Wood; W. Quinlan

    2003-04-01

    The principal objective of the study was to test a new analytical technique, Solid-Phase Microextraction (SPME), for detecting trace amounts of light hydrocarbons in pore gases as a means of reducing risk in hydrocarbon exploration and production. This involved measuring the effectiveness of SPME to extract hydrocarbons under controlled conditions in the laboratory. As part of the study, a field demonstration was undertaken to assess the validity and usefulness of the laboratory results. Presented in this quarterly report is the condensed version of the Case History and Well Summary for the Bear Lake area in Manistee County, Michigan. The full version will be in the annual report. The condensed case history presents the important technical details regarding the geochemistry and horizontal lateral for Bear Lake, as well as the field demonstration results and the applicability of these results to other demonstration projects. This format could be duplicated for other demonstration projects and will be used on all subsequent field demonstrations as they near completion.

  13. Using Recent Advances in 2D Seismic Technology and Surface Geochemistry to Economically Redevelop a Shallow Shelf Carbonate Reservoir: Vernon Field, Isabella County, M, Class III

    SciTech Connect (OSTI)

    Wood, James R.; Bornhorst, T.J.; Chittick, S.D.; Harrison, William B.; Tayjor, W. Quinlan

    2001-08-07

    In this project a consortium consisting of Cronus Exploration (Traverse City, MI), Michigan Technological University (Houghton, MI) and Western Michigan University (Kalamazoo, MI) proposed to develop and execute an economical and environmentally sensitive plan for recovery of hydrocarbons from an abandoned shallow-shelf carbonate field that is typical of many fields in the U.S. Midwest. This is a 5-year project that will use surface geochemistry as a tool to reduce risk in locating and producing hydrocarbons in Class II fields. The project will develop new techniques for measuring hydrocarbon gases in the soil horizon to locate new and bypassed oil in the shallow-shelf carbonate environments typified by the Dundee and Trenton Formations of the Michigan Basin (Fisher et. al., 1988). In Phase I of the project, the consortium proposes to re-develop the Vernon Oil field located in Vernon Twp, Isabella County, Michigan and produce both bypassed hydrocarbons from the original field and to locate and produce extensions of the original field.

  14. USING RECENT ADVANCES IN 2D SEISMIC TECHNOLOGY AND SURFACE GEOCHEMISTRY TO ECONOMICALLY REDEVELOP A SHALLOW SHELF CARBONATE RESERVOIR: VERNON FIELD, ISABELLA COUNTY, MI

    SciTech Connect (OSTI)

    James R. Wood; W. Quinlan

    2003-01-01

    Presented in this quarterly report is the Case History and Well Summary for the Vernon Field demonstration project in Isabella County, Michigan. This new case history and well summary format organizes and presents the technical and historical details of the Vernon Field demonstration, as well as the field demonstration results and the applicability of these results to other demonstration projects. This format could be duplicated for other demonstration projects and will be used on all subsequent field demonstrations as they near completion. Planning for the annual project meeting in Tampa, Florida has begun. This meeting will be held March 7-9, 2003 at the same site as the last three meetings. The goals of this project were to: (1) test the use of multi-lateral wells to recover bypassed hydrocarbons and (2) to access the potential of using surface geochemistry to reduce drilling risk. Two new demonstration wells, the State-Smock and the Bowers 4-25, were drilled to test the Dundee Formation at Vernon Field for bypassed oil. Neither well was commercial, although both produced hydrocarbon shows. An extensive geochemical survey in the vicinity of Vernon Field, covering much of Isabella County, has produced a base map for interpretation of anomalies in Michigan. Several potential new anomalies were discovered that could be further investigated.

  15. Hanford Site ground-water monitoring for 1994

    SciTech Connect (OSTI)

    Dresel, P.E.; Thorne, P.D.; Luttrell, S.P.

    1995-08-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1994 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiologic and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1994 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1993 and June 1994. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal.

  16. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  17. Water Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy Nuclear

  18. FY12 ARRA-NRAP Report Studies to Support Risk Assessment of Geologic Carbon Sequestration

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Shao, Hongbo; Thompson, C. J.; Zhong, Lirong; Jung, Hun Bok; Um, Wooyong

    2011-09-27

    This report summarizes results of research conducted during FY2012 to support the assessment of environmental risks associated with geologic carbon dioxide (CO2) sequestration and storage. Several research focus areas are ongoing as part of this project. This includes the quantification of the leachability of metals and organic compounds from representative CO2 storage reservoir and caprock materials, the fate of metals and organic compounds after release, and the development of a method to measure pH in situ under supercritical CO2 (scCO2) conditions. Metal leachability experiments were completed on 6 different rock samples in brine in equilibrium with scCO2 at representative geologic reservoir conditions. In general, the leaching of RCRA metals and other metals of concern was found to be limited and not likely to be a significant issue (at least, for the rocks tested). Metals leaching experiments were also completed on 1 rock sample with scCO2 containing oxygen at concentrations of 0, 1, 5, and 10% to simulate injection of CO2 originating from the oxy-fuel combustion process. Significant differences in the leaching behavior of certain metals were observed when oxygen is present in the CO2. These differences resulted from oxidation of sulfides, release of sulfate, ferric iron and other metals, and subsequent precipitation of iron oxides and some sulfates such as barite. Experiments to evaluate the potential for mobilization of organic compounds from representative reservoir materials and cap rock and their fate in porous media (quartz sand) have been conducted. Results with Fruitland coal and Gothic shale indicate that lighter organic compounds were more susceptible to mobilization by scCO2 compared to heavier compounds. Alkanes demonstrated very low extractability by scCO2. No significant differences were observed between the extractability of organic compounds by dry or water saturated scCO2. Reaction equilibrium appears to have been reached by 96 hours. When the scCO2 was released from the reactor, less than 60% of the injected lighter compounds (benzene, toluene) were transported through dry sand column by the CO2, while more than 90% of the heavier organics were trapped in the sand column. For wet sand columns, most (80% to 100%) of the organic compounds injected into the sand column passed through, except for naphthalene which was substantial removed from the CO2 within the column. A spectrophotometric method was developed to measure pH in brines in contact with scCO2. This method provides an alternative to fragile glass pH electrodes and thermodynamic modeling approaches for estimating pH. The method was tested in simulated reservoir fluids (CO2NaClH2O) at different temperatures, pressures, and ionic strength, and the results were compared with other experimental studies and geochemical models. Measured pH values were generally in agreement with the models, but inconsistencies were present between some of the models.

  19. Assessment of Effectiveness of Geologic Isolation Systems: REFERENCE SITE INITIAL ASSESSMENT FOR A SALT DOME REPOSITORY

    SciTech Connect (OSTI)

    Harwell,, M. A.; Brandstetter,, A.; Benson,, G. L.; Bradley,, D. J.; Serne,, R. J.; Soldat, J. K; Cole,, C. R.; Deutsch,, W. J.; Gupta,, S. K.; Harwell,, C. C.; Napier,, B. A.; Reisenauer,, A. E.; Prater,, L. S.; Simmons,, C. S.; Strenge,, D. L.; Washburn,, J. F.; Zellmer,, J. T.

    1982-06-01

    As a methodology demonstration for the Office of Nuclear Waste Isolation (ONWI), the Assessment of Effectiveness of Geologic Isolation Systems (AEGIS) Program conducted an initial reference site analysis of the long-term effectiveness of a salt dome repository. The Hainesville Salt Dome in Texas was chosen to be representative of the Gulf Coast interior salt domes; however, the Hainesville Site has been eliminated as a possible nuclear waste repository site. The data used for this exercise are not adequate for an actual assessment, nor have all the parametric analyses been made that would adequately characterize the response of the geosystem surrounding the repository. Additionally, because this was the first exercise of the complete AEGIS and WASTE Rock Interaction Technology (WRIT) methodology, this report provides the initial opportunity for the methodology, specifically applied to a site, to be reviewed by the community outside the AEGIS. The scenario evaluation, as a part of the methodology demonstration, involved consideration of a large variety of potentially disruptive phenomena, which alone or in concert could lead to a breach in a salt dome repository and to a subsequent transport of the radionuclides to the environment. Without waste- and repository-induced effects, no plausible natural geologic events or processes which would compromise the repository integrity could be envisioned over the one-million-year time frame after closure. Near-field (waste- and repository-induced) effects were excluded from consideration in this analysis, but they can be added in future analyses when that methodology development is more complete. The potential for consequential human intrusion into salt domes within a million-year time frame led to the consideration of a solution mining intrusion scenario. The AEGIS staff developed a specific human intrusion scenario at 100 years and 1000 years post-closure, which is one of a whole suite of possible scenarios. This scenario resulted in the delivery of radionuclidecontaminated brine to the surface, where a portion was diverted to culinary salt for direct ingestion by the existing population. Consequence analyses indicated calculated human doses that would be highly deleterious. Additional analyses indicated that doses well above background would occur from such a scenario t even if it occurred a million years into the future. The way to preclude such an intrusion is for continued control over the repository sitet either through direct institutional control or through the effective passive transfer of information. A secondary aspect of the specific human intrusion scenario involved a breach through the side of the salt dome t through which radionuclides migrated via the ground-water system to the accessible environment. This provided a demonstration of the geotransport methodology that AEGIS can use in actual site evaluations, as well as the WRIT program's capabilities with respect to defining the source term and retardation rates of the radionuclides in the repository. This reference site analysis was initially published as a Working Document in December 1979. That version was distributed for a formal peer review by individuals and organizations not involved in its development. The present report represents a revisiont based in part on the responses received from the external reviewers. Summaries of the comments from the reviewers and responses to these comments by the AEGIS staff are presented. The exercise of the AEGIS methodology was successful in demonstrating the methodologyt and thus t in providing a basis for substantive peer review, in terms of further development of the AEGIS site-applications capability and in terms of providing insight into the potential for consequential human intrusion into a salt dome repository.

  20. Groundwater Flow Systems at the Nevada Test Site, Nevada: A Synthesis of Potentiometric Contours, Hydrostratigraphy, and Geologic Structures

    SciTech Connect (OSTI)

    Fenelon, Joseph M.; Sweetkind, Donald S.; Laczniak, Randell J.

    2010-01-25

    Contaminants introduced into the subsurface of the Nevada Test Site by underground nuclear testing are of concern to the U.S. Department of Energy and regulators responsible for protecting human health and safety. The potential for contaminant movement away from the underground test areas and into the accessible environment is greatest by groundwater transport. The primary hydrologic control on this transport is evaluated and examined through a series of contour maps developed to represent the hydraulic-head distribution within each of the major aquifers underlying the area. Aquifers were identified and their extents delineated by merging and analyzing multiple hydrostratigraphic framework models developed by other investigators from existing geologic information. A map of the hydraulic-head distribution in each major aquifer was developed from a detailed evaluation and assessment of available water-level measurements. Multiple spreadsheets that accompany this report provide pertinent water-level and geologic data by well or drill hole. Aquifers are mapped and discussed in general terms as being one of two types: alluvial-volcanic, or carbonate. Both aquifer types are subdivided and mapped as independent regional and local aquifers, based on the continuity of their component rock. Groundwater-flow directions, approximated from potentiometric contours that were developed from the hydraulic-head distribution, are indicated on the maps and discussed for each of the regional aquifers and for selected local aquifers. Hydraulic heads vary across the study area and are interpreted to range in altitude from greater than 5,000 feet in a regional alluvial-volcanic aquifer beneath a recharge area in the northern part of the study area to less than 2,300 feet in regional alluvial-volcanic and carbonate aquifers in the southwestern part of the study area. Flow directions throughout the study area are dominantly south-southwest with some local deviations. Vertical hydraulic gradients between aquifer types are downward throughout most of the study area; however, flow from the alluvial-volcanic aquifer into the underlying carbonate aquifer, where both aquifers are present, is believed to be minor because of an intervening confining unit. Limited exchange of water between aquifer types occurs by diffuse flow through the confining unit, by focused flow along fault planes, or by direct flow where the confining unit is locally absent. Interflow between regional aquifers is evaluated and mapped to define major flow paths. These flow paths delineate tributary flow systems, which converge to form intermediate and regional flow systems. The implications of these flow systems in controlling transport of radionuclides away from the underground test areas at the Nevada Test Site are briefly discussed. Additionally, uncertainties in the delineation of aquifers, the development of potentiometric contours, and the identification of flow systems are identified and evaluated. Eleven tributary flow systems and three larger flow systems are mapped in the Nevada Test Site area. Flow systems within the alluvial-volcanic aquifer dominate the western half of the study area, whereas flow systems within the carbonate aquifer are most prevalent in the southeastern half of the study area. Most of the flow in the regional alluvial-volcanic aquifer that moves through the underground testing area on Pahute Mesa is discharged to the land surface at springs and seeps in Oasis Valley. Flow in the regional carbonate aquifer is internally compartmentalized by major geologic structures, primarily thrust faults, which constrain flow into separate corridors. Contaminants that reach the regional carbonate aquifer from testing areas in Yucca and Frenchman Flats flow toward downgradient discharge areas through the Alkali Flat-Furnace Creek Ranch or Ash Meadows flow systems and their tributaries.

  1. Geology and ground shaking: The April 25--26, 1992 Cape Mendocino earthquake sequence

    SciTech Connect (OSTI)

    Moley, K.; Dengler, L. . Dept. of Geology)

    1993-04-01

    The authors present a simplified geologic map of Humboldt and Del Norte Counties, California and compare it to Modified Mercalli Intensities (MMI) produced by the April 25, 1992 M[sub S] = 7.1, and April 26 Ms = 6.6, and Ms = 6.7 Cape Mendocino earthquakes. The generalized geology was compiled from California Division of Mines and Geology Regional Geology Maps, and area geologic mapping by the USGS and Humboldt State University. Six rock/sediment groups are distinguished by considering lithology, consolidation, compaction, bedding orientation and degree of shearing: (1) landslides and glacial deposits; (2) bay muds and fill, alluvium, lake deposits and beach sand; (3) quaternary marine and non-marine deposits; (4) unstable bedrock; (5) moderately stable bedrock; (6) intrusions. Intensity values for the Saturday earthquake were calculated from over 2,000 surveys to individuals and businesses in the northcoast area by an algorithm based on a weighted sum of survey responses. Numerical data was compiled for over 100 locations in the region. The intensity VIII and greater zone encompassed an area of about 500 km[sup 2] including the communities of Petrolia, Ferndale and Rio Dell. Ground motion generally decays with distance in a roughly radial pattern. A different approach was taken to estimate the pattern of shaking in the two Sunday earthquakes. These earthquakes occurred when most respondents were sleeping and their perception of ground motion was likely to be affected.

  2. Selenium in Oklahoma ground water and soil. Quarterly report No. 6

    SciTech Connect (OSTI)

    Atalay, A.; Vir Maggon, D.

    1991-03-30

    Selenium with a consumption of 2 liters per day (5). The objectives of this study are: (1) to determine the concentrations of Se in Oklahoma ground water and soil samples. (2) to map the geographical distribution of Se species in Oklahoma. (3) to relate groundwater depth, pH and geology with concentration of Se.

  3. Breakthrough Water Cleaning Technology Could Lessen Environmental Impacts from Shale Production

    Office of Energy Efficiency and Renewable Energy (EERE)

    A novel water cleaning technology currently being tested in field demonstrations could help significantly reduce potential environmental impacts from producing natural gas from the Marcellus shale and other geologic formations, according to the Department of Energy’s National Energy Technology Laboratory

  4. Procedures for ground-water investigations

    SciTech Connect (OSTI)

    Not Available

    1989-09-01

    This manual was developed by the Pacific Northwest Laboratory (PNL) to document the procedures used to carry out and control the technical aspects of ground-water investigations at the PNL. Ground-water investigations are carried out to fulfill the requirements for the US Department of Energy (DOE) to meet the requirements of DOE Orders. Investigations are also performed for various clients to meet the requirements of the Resource Conservation and Recovery Act of 1976 (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). National standards including procedures published by the American Society for Testing and Materials (ASTM) and the US Geological Survey were utilized in developing the procedures contained in this manual.

  5. Rocky Mountain Basins Produced Water Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Historical records for produced water data were collected from multiple sources, including Amoco, British Petroleum, Anadarko Petroleum Corporation, United States Geological Survey (USGS), Wyoming Oil and Gas Commission (WOGC), Denver Earth Resources Library (DERL), Bill Barrett Corporation, Stone Energy, and other operators. In addition, 86 new samples were collected during the summers of 2003 and 2004 from the following areas: Waltman-Cave Gulch, Pinedale, Tablerock and Wild Rose. Samples were tested for standard seven component "Stiff analyses", and strontium and oxygen isotopes. 16,035 analyses were winnowed to 8028 unique records for 3276 wells after a data screening process was completed. [Copied from the Readme document in the zipped file available at http://www.netl.doe.gov/technologies/oil-gas/Software/database.html] Save the Zipped file to your PC. When opened, it will contain four versions of the database: ACCESS, EXCEL, DBF, and CSV formats. The information consists of detailed water analyses from basins in the Rocky Mountain region.

  6. Using comprehensive two-dimensional gas chromatography to explore the geochemistry of the Santa Barbara oil seeps

    SciTech Connect (OSTI)

    Reddy, Christopher; Nelson, Robert

    2013-03-27

    The development of comprehensive two-dimensional gas chromatography (GC x GC) has expanded the analytical window for studying complex mixtures like oil. Compared to traditional gas chromatography, this technology separates and resolves at least an order of magnitude more compounds, has a much larger signal to noise ratio, and sorts compounds based on their chemical class; hence, providing highly refined inventories of petroleum hydrocarbons in geochemical samples that was previously unattainable. In addition to the increased resolution afforded by GC x GC, the resulting chromatograms have been used to estimate the liquid vapor pressures, aqueous solubilities, octanol-water partition coefficients, and vaporization enthalpies of petroleum hydrocarbons. With these relationships, powerful and incisive analyses of phase-transfer processes affecting petroleum hydrocarbon mixtures in the environment are available. For example, GC x GC retention data has been used to quantitatively deconvolve the effects of phase transfer processes such as water washing and evaporation. In short, the positive attributes of GC x GC-analysis have led to a methodology that has revolutionized the analysis of petroleum hydrocarbons. Overall, this research has opened numerous fields of study on the biogeochemical "œgenetics" (referred to as petroleomics) of petroleum samples in both subsurface and surface environments. Furthermore, these new findings have already been applied to the behavior of oil at other seeps as well, for petroleum exploration and oil spill studies.

  7. Geology of the Yucca Mountain Region, Chapter in Stuckless, J.S., ED., Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste

    SciTech Connect (OSTI)

    J.S. Stuckless; D. O'Leary

    2006-09-25

    Yucca Mountain has been proposed as the site for the Nation's first geologic repository for high-level radioactive waste. This chapter provides the geologic framework for the Yucca Mountain region. The regional geologic units range in age from late Precambrian through Holocene, and these are described briefly. Yucca Mountain is composed dominantly of pyroclastic units that range in age from 11.4 to 15.2 Ma. The proposed repository would be constructed within the Topopah Spring Tuff, which is the lower of two major zoned and welded ash-flow tuffs within the Paintbrush Group. The two welded tuffs are separated by the partly to nonwelded Pah Canyon Tuff and Yucca Mountain Tuff, which together figure prominently in the hydrology of the unsaturated zone. The Quaternary deposits are primarily alluvial sediments with minor basaltic cinder cones and flows. Both have been studied extensively because of their importance in predicting the long-term performance of the proposed repository. Basaltic volcanism began about 10 Ma and continued as recently as about 80 ka with the eruption of cones and flows at Lathrop Wells, approximately 10 km south-southwest of Yucca Mountain. Geologic structure in the Yucca Mountain region is complex. During the latest Paleozoic and Mesozoic, strong compressional forces caused tight folding and thrust faulting. The present regional setting is one of extension, and normal faulting has been active from the Miocene through to the present. There are three major local tectonic domains: (1) Basin and Range, (2) Walker Lane, and (3) Inyo-Mono. Each domain has an effect on the stability of Yucca Mountain.

  8. Annotated bibliography: Marine geologic hazards of the Hawaiian Islands with special focus on submarine slides and turbidity currents

    SciTech Connect (OSTI)

    Normark, W.R.; Herring, H.H.

    1993-10-01

    This annotated bibliography was compiled to highlight the submarine geology of the Hawaiian Islands and identify known and potential marine geologic hazards with special emphasis on turbidity currents, submarine slides and tsunamis. Some references are included that are not specific to Hawaii but are needed to understand the geologic processes that can affect the integrity of submarine cables and other man-made structures. Entries specific to the Hawaiian Island area are shown in bold type.

  9. Conversion of the Big Hill geological site characterization report to a three-dimensional model.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Rautman, Christopher Arthur

    2003-02-01

    The Big Hill salt dome, located in southeastern Texas, is home to one of four underground oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Big Hill site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 14 oil storage caverns at the site. This work provides a realistic and internally consistent geologic model of the Big Hill site that can be used in support of future work.

  10. Conversion of the West Hackberry geological site characterization report to a three-dimensional model.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Rautman, Christopher Arthur; Snider, Anna C.

    2004-08-01

    The West Hackberry salt dome, in southwestern Louisiana, is one of four underground oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the West Hackberry site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary layers, mapped faults, and a portion of the oil storage caverns at the site. This work provides a realistic and internally consistent geologic model of the West Hackberry site that can be used in support of future work.

  11. Conversion of the Bryan Mound geological site characterization reports to a three-dimensional model.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Rautman, Christopher Arthur

    2005-04-01

    The Bryan Mound salt dome, located near Freeport, Texas, is home to one of four underground crude oil-storage facilities managed by the U. S. Department of Energy Strategic Petroleum Reserve (SPR) Program. Sandia National Laboratories, as the geotechnical advisor to the SPR, conducts site-characterization investigations and other longer-term geotechnical and engineering studies in support of the program. This report describes the conversion of two-dimensional geologic interpretations of the Bryan Mound site into three-dimensional geologic models. The new models include the geometry of the salt dome, the surrounding sedimentary units, mapped faults, and the 20 oil-storage caverns at the site. This work provides an internally consistent geologic model of the Bryan Mound site that can be used in support of future work.

  12. Processing of Neutron Diffraction Data for Strain Measurement in Geological Materials

    SciTech Connect (OSTI)

    Polsky, Yarom; An, Ke; Anovitz, Lawrence {Larry} M; Bingham, Philip R; Carmichael, Justin R; Dessieux Jr, Luc Lucius

    2014-01-01

    : Conventional rock mechanics testing techniques typically involve the loading of samples and measurement of displacements or strains on the outer boundary of the specimen surface. Neutron diffraction based strain measurement techniques represent a unique and powerful tool for measuring the strain within geological materials under load. The structural variability and non-uniform crystallinity of geological materials, however, create many complexities in the intensity patterns that must be analyzed to quantify strains within the material. The attenuating and scattering properties of the pressure cell housing the sample further add difficulties to the data analysis. This paper describes the methods and processes used to process neutron scattering data for strain measurement in geological materials. It is intended to provide a primer for those in the rock mechanics community that are interested in utilizing this technique along with additional discussion of neutron diffraction experimental factors that may affect data quality.

  13. Risk Assessment of Geologic Formation Sequestration in The Rocky Mountain Region, USA

    SciTech Connect (OSTI)

    Lee, Si-Yong; McPherson, Brian

    2013-08-01

    The purpose of this report is to describe the outcome of a targeted risk assessment of a candidate geologic sequestration site in the Rocky Mountain region of the USA. Specifically, a major goal of the probabilistic risk assessment was to quantify the possible spatiotemporal responses for Area of Review (AoR) and injection-induced pressure buildup associated with carbon dioxide (CO₂) injection into the subsurface. Because of the computational expense of a conventional Monte Carlo approach, especially given the likely uncertainties in model parameters, we applied a response surface method for probabilistic risk assessment of geologic CO₂ storage in the Permo-Penn Weber formation at a potential CCS site in Craig, Colorado. A site-specific aquifer model was built for the numerical simulation based on a regional geologic model.

  14. Geological problems in radioactive waste isolation - A world wide review

    SciTech Connect (OSTI)

    Witherspoon, P.A.

    1991-06-01

    The problem of isolating radioactive wastes from the biosphere presents specialists in the earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high-level waste (HLW), which must be isolated in the underground and away from the biosphere for thousands of years. The most widely accepted method of doing this is to seal the radioactive materials in metal canisters that are enclosed by a protective sheath and placed underground in a repository that has been carefully constructed in an appropriate rock formation. Much new technology is being developed to solve the problems that have been raised, and there is a continuing need to publish the results of new developments for the benefit of all concerned. Table 1 presents a summary of the various formations under investigation according to the reports submitted for this world wide review. It can be seen that in those countries that are searching for repository sites, granitic and metamorphic rocks are the prevalent rock type under investigation. Six countries have developed underground research facilities that are currently in use. All of these investigations are in saturated systems below the water table, except the United States project, which is in the unsaturated zone of a fractured tuff.

  15. Integrated geologic/engineering study of Kurten field waterflood project

    SciTech Connect (OSTI)

    Gay, A.L.

    1989-03-01

    An integrated interpretation of petrographic, geochemical, engineering, and electric-log data is used to evaluate a current waterflood project in Kurten field, Brazos County, Texas. Petrographic studies reveal three sand facies deposited in a dynamic sand ridge environment. Although electric-log porosity is relatively constant throughout the sand body, SEM, thin-section, and engineering profile studies reveal the clean well-sorted sand facies to be impermeable due to quartz overgrowths. A quartz-rich bioturbated sand is identified as the reservoir facies, having fewer quartz overgrowths and more authigenic clays. The third sand facies, a clay-rich bioturbated sand, is impermeable due to an overabundance of authigenic and detrital clays. Engineering and production data support this interpretation. A comparison of hydrocarbon composition of the oils using capillary gas chromatography supports the conclusion that the well-sorted clean sand contains many permeability barriers and is not a continuous reservoir conductive to waterflooding. Interactive computer interpretation of electric logs, using a combination of sonic and density porosities, deep resistivity, and SP, allows the mapping of the sand facies. Water saturation and net oil-in-place maps reveal the best portions of the field on which to focus the revised waterflood project. This revision should concentrate on the quartz-rich bioturbated sand in the central portion of the original unit to result in a more efficient, economical, secondary recovery program.

  16. Integrated geologic/engineering study of the Kurten Field waterflood

    SciTech Connect (OSTI)

    Gay, A.L. )

    1990-05-01

    An integrated interpretation of petrographic, geochemical, engineering, and electric-log data was used to evaluate a current waterflood project in Kurten field, Brazos County, Texas. Petrographic studies reveal three sand facies deposited in a dynamic sand ridge environment. Although electric-log porosity is relatively constant throughout the sand body, scanning electron microscope thin section and engineering profile studies reveal the clean well-sorted sand facies to be impermeable due to quartz overgrowths. A quartz-rich bioturbated sand is identified as the reservoir facies, having fewer quartz overgrowths and more authigenic clays. The third sand facies, a clay-rich bioturbated sand, is impermeable due to an overabundance of authigenic and detrital clays. Engineering and production data support this interpretation. A comparison of hydrocarbon composition of the oils, using capillary gas chromatography, supports the conclusion that the well-sorted clean sand contains many permeability barriers and is not a continuous reservoir conducive to waterflooding. Interactive computer interpretation of electric logs, using a combination of sonic and density porosities, deep resistivity, and spontaneous potential, allows the mapping of the sand facies. Water saturations and net oil in place maps reveal the best parts of the field on which to focus the revised waterflood project. This revision should concentrate on the quartz-rich bioturbated sand in the central part of the original unit to result in a more efficient economical secondary recovery program.

  17. Efficient Water Use & Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Use Goal 4: Efficient Water Use & Management Aware of the arid climate of northern New Mexico, water reduction and conservation remains a primary concern at LANL. Energy...

  18. Forecasting Water Quality & Biodiversity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting Water Quality & Biodiversity March 25, 2015 Cross-cutting Sustainability ... that measure feedstock production, water quality, water quantity, and biodiversity. ...

  19. Yucca Mountain, Nevada - A Proposed Geologic Repository for High-Level Radioactive Waste (Volume 1) Introduction

    SciTech Connect (OSTI)

    R.A. Levich; J.S. Stuckless

    2006-09-25

    Yucca Mountain in Nevada represents the proposed solution to what has been a lengthy national effort to dispose of high-level radioactive waste, waste which must be isolated from the biosphere for tens of thousands of years. This chapter reviews the background of that national effort and includes some discussion of international work in order to provide a more complete framework for the problem of waste disposal. Other chapters provide the regional geologic setting, the geology of the Yucca Mountain site, the tectonics, and climate (past, present, and future). These last two chapters are integral to prediction of long-term waste isolation.

  20. A Hydro-mechanical Model and Analytical Solutions for Geomechanical Modeling of Carbon Dioxide Geological Sequestration

    SciTech Connect (OSTI)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-05-15

    We present a hydro-mechanical model for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the coupling between the geomechanical response and the fluid flow in greater detail. The simplified hydro-mechanical model includes the geomechanical part that relies on the linear elasticity, while the fluid flow is based on the Darcys law. Two parts were coupled using the standard linear poroelasticity. Analytical solutions for pressure field were obtained for a typical geological sequestration scenario. The model predicts the temporal and spatial variation of pressure field and effects of permeability and elastic modulus of formation on the fluid pressure distribution.

  1. Center for Geologic Storage of CO2 (GSCO2) | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Center for Geologic Storage of CO2 (GSCO2) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Center for Geologic Storage of CO2 (GSCO2) Print Text Size: A A A FeedbackShare Page GSCO<sub>2</sub> Director Scott M. Frailey Lead Institution University of Illinois at Urbana-Champaign Year Established 2014 Mission To generate new conceptual, mathematical,

  2. Geology and recognition criteria for uranium deposits of the quartz-pebble conglomerate type. Final report

    SciTech Connect (OSTI)

    Button, A.; Adams, S.S.

    1981-03-01

    This report is concerned with Precambrian uraniferous conglomerates. This class of deposit has been estimated to contain between approximately 16 and 35 percent of the global uranium reserve in two rather small areas, one in Canada, the other in South Africa. Similar conglomerates, which are often gold-bearing, are, however, rather widespread, being found in parts of most Precambrian shield areas. Data have been synthesized on the geologic habitat and character of this deposit type. The primary objective has been to provide the most relevant geologic observations in a structural fashion to allow resource studies and exploration to focus on the most prospective targets in the shortest possible time.

  3. Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross‐sections in Adobe Illustrator format. Comprehensive catalogue of drill‐hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross‐sections, drill‐hole data, and geophysics.

  4. Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Faulds, James E.

    2013-12-31

    Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross?sections in Adobe Illustrator format. Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics.

  5. CMI Course Inventory: Recycling/Industrial Engineering | Critical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to rare earths and critical materials. Other courses are available in these areas: Geology EngineeringGeochemistry Mining Engineering Metallurgical EngineeringMaterials...

  6. CMI Course Inventory: Chemistry Engineering | Critical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to rare earths and critical materials. Other courses are available in these areas: Geology EngineeringGeochemistry Mining Engineering Metallurgical EngineeringMaterials...

  7. CMI Course Inventory: Mining Engineering | Critical Materials...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to rare earths and critical materials. Other courses are available in these areas: Geology EngineeringGeochemistry Metallurgical EngineeringMaterials Science Chemistry...

  8. CMI Education Partners Offer Courses | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of courses taught by CMI Team members is available by university and grouped by topic: Geology Engineering Geochemistry Mining Engineering Metallurgical Engineering Material...

  9. CMI Course Inventory: Metallurgical Engineering/Materials Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to rare earths and critical materials. Other courses are available in these areas: Geology EngineeringGeochemistry Mining Engineering Chemistry Engineering Mineral...

  10. GBCGE Resarch, Education and Outreach

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PI-lead projects that use geology, geochemistry, geophysics, remote sensing and the synthesis of multi- disciplinary information to create new models of geothermal systems in the ...

  11. Adak Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  12. Thermo Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  13. Hellisheidi Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  14. Maui Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  15. Romania Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  16. Ndunga Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  17. Bjarnaflag Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  18. Yangbajain Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  19. RMOTC Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  20. Langjiu Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  1. East Nusatenngara | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  2. Neustadt-Glewe Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  3. Bruchsal Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  4. Garching Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  5. Department of Energy Announces More than $8.4 Million for Regional...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The selected awards will produce the workforce necessary for the CCS industry with skills and competencies in geology, geophysics, geomechanics, geochemistry and reservoir ...

  6. Secretary Chu Announces $2.4 billion in Funding for Carbon Capture...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... and engineers with skills and competencies in geology, geophysics, geomechanics, geochemistry and reservoir engineering disciplines needed to staff a broad national CCS program. ...

  7. West Valley Reservoir Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  8. Lake City Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  9. Boyes Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  10. Travertine Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  11. New River Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  12. Leonards Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  13. East Brawley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  14. North Shore Mono Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  15. Clear Lake Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  16. Pilger Estates Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  17. South Brawley Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  18. Tecopa Hot Springs Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  19. Fort Bidwell Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  20. Marble Hot Well Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration...

  1. Takigami Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  2. Yamagawa Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8...

  3. fe0023919-uta | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Phase 3B will focus on continued shore-based scientific analysis of the data, samples and ... morphology, saturation, physical properties, geochemistry, and geological characteristics. ...

  4. Preliminary Safety Analysis of the Gorleben Site: Geological Database - 13300

    SciTech Connect (OSTI)

    Weber, Jan Richard; Mrugalla, Sabine; Dresbach, Christian; Hammer, Joerg

    2013-07-01

    The Gorleben salt dome is 4 km wide and nearly 15 km long. It is composed of different salt rock types of the Zechstein (Upper Permian) series and extends to the Zechstein basis in a depth of more than 3 km. In the course of the salt dome formation the salt was moved several kilometers. During the uplift of the salt the initially plane-bedded strata of the Zechstein series were extensively folded. In this process anhydrite as a competent layer was broken to isolated blocks. In the core of the salt dome the Hauptsalz, which is characterized by a particularly high creeping capacity, forms a homogeneous halite body with a volume of several cubic kilometres. The Hauptsalz contains gaseous and liquid hydrocarbons in separated zones of decimeter to meter dimensions. The overall hydrocarbon content is far below 0.01 %. At the flanks the salt dome consists of salt rocks with lower creeping capacities. Brine reservoirs with fluid volumes in the range of liters to hundreds of cubic meters exist in certain regions of this part of the salt dome. The water content of the Hauptsalz is below 0.02 %. Interconnected pores do not exist in the salt rock outside of fluid bearing or fractured areas, i.e. the salt rock is impermeable. The exploration of the Gorleben site as a potential site for a HLW-repository started in 1979 and is still in progress. To date no scientific findings contest the suitability of the site for a safe HLW-repository. (authors)

  5. Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles, for Large-Scale Geologic Storage of CO₂

    SciTech Connect (OSTI)

    Bruno, Michael

    2014-12-08

    Geomechanics Technologies has completed a detailed characterization study of the Wilmington Graben offshore Southern California area for large-scale CO₂ storage. This effort has included: an evaluation of existing wells in both State and Federal waters, field acquisition of about 175 km (109 mi) of new seismic data, new well drilling, development of integrated 3D geologic, geomechanics, and fluid flow models for the area. The geologic analysis indicates that more than 796 MMt of storage capacity is available within the Pliocene and Miocene formations in the Graben for midrange geologic estimates (P50). Geomechanical analyses indicate that injection can be conducted without significant risk for surface deformation, induced stresses or fault activation. Numerical analysis of fluid migration indicates that injection into the Pliocene Formation at depths of 1525 m (5000 ft) would lead to undesirable vertical migration of the CO₂ plume. Recent well drilling however, indicates that deeper sand is present at depths exceeding 2135 m (7000 ft), which could be viable for large volume storage. For vertical containment, injection would need to be limited to about 250,000 metric tons per year per well, would need to be placed at depths greater than 7000ft, and would need to be placed in new wells located at least 1 mile from any existing offset wells. As a practical matter, this would likely limit storage operations in the Wilmington Graben to about 1 million tons per year or less. A quantitative risk analysis for the Wilmington Graben indicate that such large scale CO₂ storage in the area would represent higher risk than other similar size projects in the US and overseas.

  6. Investigation of the thermal regime and geologic history of the Cascade volcanic arc: First phase of a program for scientific drilling in the Cascade Range

    SciTech Connect (OSTI)

    Priest, G.R.

    1987-01-01

    A phased, multihole drilling program with associated science is proposed as a means of furthering our understanding of the thermal regime and geologic history of the Cascade Range of Washington, Oregon, and northern California. The information obtained from drilling and ancillary geological and geophysical investigations will contribute to our knowledge in the following general areas: (1) the magnitude of the regional background heat flow of parts of the Quaternary volcanic belt dominated by the most abundant volcanic rock types, basalt and basaltic andesite; (2) the nature of the heat source responsible for the regional heat-flow anomaly; (3) the characteristics of the regional hydrothermal and cold-water circulation; the rates of volcanism for comparison with models for the rate and direction of plate convergence of the Cascades; (5) the history of deformation and volcanism in the volcanic arc that can be related to subduction; (6) the present-day stress regime of the volcanic arc and the relation of these stresses to plate interactions and possible large earthquakes; and the current geometry of the subducted oceanic plate below the Cascade Range and the relationship of the plate to the distribution of heat flow, Quaternary volcanism, and Quaternary deformation. Phase I research will be directed toward a detailed investigation of the Santiam Pass segment. In concert with the Santiam Pass research, a detailed study of the nearby Breitenbush Hot Springs area is also recommended as a component of Phase I. The object of the Breitenbush research is to study one of the hottest known Cascade hydrothermal systems, which coincidentally also has a good geological and geophysical data base. A coordinated program of drilling, sampling, subsurface measurements, and surface surveys will be associated with the drilling of several holes.

  7. Imaging Reservoir Quality: Seismic Signatures of Geologic Processes

    SciTech Connect (OSTI)

    Department of Geophysics

    2008-06-30

    Lithofacies successions from diverse depositional environments show distinctive patterns in various rock-physics planes (velocity-porosity, velocity-density and porosity-clay). Four clear examples of decameter-scale lithofacies sequences are documented in this study: (1) Micocene fluvial deposits show an inverted-V pattern indicative of dispersed fabric, (2) a fining-upward sequence of mud-rich deep deposits shows a linear trend associated with laminated sand-clay mixtures, (3) sand-rich deposits show a pattern resulting from the scarcity of mixed lithofacies, and (4) a coarsening-upward sequence shows evidence of both dispersed and horizontally laminated mixed lithofacies, with predominating dispersed mixtures generated by bioturbation. It was observed that carbonate-cemented sandstones are extremely heterogeneous in the project deep-water study area. Those from the base of incisions are usually associated with lower shaliness, lower porosity and higher P-impedance, while from the top of flooding surfaces exhibit higher shaliness, higher porosity and lower P-impedance. One rock physics model that captures the observed impedance-porosity trend is the 'stiff-sand model'. For this model, the high-porosity end-member is unconsolidated sand whose initial porosity is a function of sorting and shaliness, while the low-porosity end-member is solid mineral. These two end points are joined with a Hashin-Shtrikman equation. A systematic variation of quartz:clay ratio from proximal to distal locations was observed in the study area even within a single facies. The quartz:clay ratio changes from [0.5:0.5] to [1:0] along the direction of flow, based on the trends of P-impedance vs. porosity as predicted by the rock model for uncemented sands. The results are in agreement with spill-and-fill sequence stratigraphic model in mini-basin setting. In addition, porosity at the distal location ({approx}25 % to 35%) is higher than the porosity at the proximal location ({approx}20 % to 23%). This trend is explained by a sequence stratigraphic model which predicts progressive increase in sorting by turbidity current along the flow, as well as, quantified by a rock model that heuristically accounts for sorting. The results can be applied to improve quantitative predication of sediment parameters from seismic impedance, away from well locations.

  8. Waters LANL Protects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Waters LANL Protects Waters LANL Protects LANL watersheds source in the Jemez Mountains and end at the Rio Grande.

  9. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOE Patents [OSTI]

    Vail, W.B. III.

    1993-02-16

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  10. Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells

    DOE Patents [OSTI]

    Vail, III, William B.

    1993-01-01

    A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

  11. Potiguar basin: geologic model and habitat of oil of a Brazilian equatorial basin

    SciTech Connect (OSTI)

    Falkenhein, F.U.; Barros, R.M.; Da Costa, I.G.; Cainelli, C.

    1984-04-01

    The Potiguar basin integrates the eastern part of the Brazilian equatorial Atlantic-type margin. The rifting stage of this basin occurred during the Neocomian and Aptian. The drifting stage and sea-floor spreading began in the Late Albian. The rifting stage clearly was intracratonic during the Neocomian and is recognized as a mosaic of half-grabens trending mostly northeast-southwest and filled with syntectonic lacustrine siliciclastics. The half-graben pattern exhibits rotation of beds into the major fault zone, and the preserved uplifted margins display either paleostructures of paleogeomorphic features with hydrocarbons. A regional pre-Aptian unconformity preceded the Aptian proto-oceanic rifting stage which was characterized by syntectonic fluvio-deltaic sediments. The Aptian tectonics were represented by reactivation of former lineaments superimposed by predominant east-west normal faulting. Structural highs during this stage are so far the most prolific oil accumulations. The most important source beds and reservoir rocks are both Neocomian and Aptian sediments. Geochemistry and hydrodynamics have shown that hydrocarbon migration was driven through fracture or fault zones in both Aptian or Albian plays. Lithofacies maps support this interpretation because pools occur whenever adjacent downthrown blocks present a high shale content.

  12. Geologic Characterization of Young Alluvial Basin-Fill Deposits from Drill Hole Data in Yucca Flat, Nye County, Nevada.

    SciTech Connect (OSTI)

    Donald S. Sweetkind; Ronald M. Drake II

    2007-01-22

    Yucca Flat is a topographic and structural basin in the northeastern part of the Nevada Test Site (NTS) in Nye County, Nevada, that has been the site of numerous underground nuclear tests; many of these tests occurred within the young alluvial basin-fill deposits. The migration of radionuclides to the Paleozoic carbonate aquifer involves passage through this thick, heterogeneous section of Tertiary and Quaternary rock. An understanding of the lateral and vertical changes in the material properties of young alluvial basin-fill deposits will aid in the further development of the hydrogeologic framework and the delineation of hydrostratigraphic units and hydraulic properties required for simulating ground-water flow in the Yucca Flat area. This report by the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, presents data and interpretation regarding the three-dimensional variability of the shallow alluvial aquifers in areas of testing at Yucca Flat, data that are potentially useful in the understanding of the subsurface flow system. This report includes a summary and interpretation of alluvial basin-fill stratigraphy in the Yucca Flat area based on drill hole data from 285 selected drill holes. Spatial variations in lithology and grain size of the Neogene basin-fill sediments can be established when data from numerous drill holes are considered together. Lithologic variations are related to different depositional environments within the basin including alluvial fan, channel, basin axis, and playa deposits.

  13. Phased Array Approach To Retrieve Gases, Liquids, Or Solids From Subsurface And Subaqueous Geologic Or Man-Made Formations

    DOE Patents [OSTI]

    Rynne, Timothy M.; Spadaro, John F.; Iovenitti, Joe L.; Dering, John P.; Hill, Donald G.

    1998-10-27

    A method of enhancing the remediation of contaminated soils and ground water, production of oil and gas, and production of any solid, gas, and/or liquid from subsurface geologic and man-made formations including the steps of estimating the geometric boundaries of the region containing the material to be recovered, drilling a recovery well(s) into subsurface in a strategic location to recover the material of interest, establishing multiple sources of acoustical power in an array about and spaced-apart from the surface or at various depths below the surface in a borehole(s) and/or well(s), directing a volume of acoustical excitation from the sources into the region containing the material to be recovered, the excitation in the form of either controllable sinusoidal, square, pulsed, or various combinations of these three waveforms, and controlling the phasing, frequency, power, duration, and direction of these waveforms from the sources to increase and control the intensity of acoustical excitation in the region of the material to be recovered to enhance. the recovery of said material from the recovery well(s). The invention will augment any technology affecting the removal of materials from the subsurface.

  14. Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide

    SciTech Connect (OSTI)

    Spangler, Lee; Cunningham, Alfred; Barnhart, Elliot; Lageson, David; Nall, Anita; Dobeck, Laura; Repasky, Kevin; Shaw, Joseph; Nugent, Paul; Johnson, Jennifer; Hogan, Justin; Codd, Sarah; Bray, Joshua; Prather, Cody; McGrail, B.; Oldenburg, Curtis; Wagoner, Jeff; Pawar, Rajesh

    2014-12-19

    The Zero Emissions Research and Technology (ZERT) collaborative was formed to address basic science and engineering knowledge gaps relevant to geologic carbon sequestration. The original funding round of ZERT (ZERT I) identified and addressed many of these gaps. ZERT II has focused on specific science and technology areas identified in ZERT I that showed strong promise and needed greater effort to fully develop.

  15. Subsurface exploration using bucket auger borings and down-hole geologic inspection

    SciTech Connect (OSTI)

    Scullin, C.M. )

    1994-03-01

    The down-hole geologic inspection of 24 in. bucket auger borings has been a hands-on technique for collecting valuable geologic structural and lithologic detail in southern California investigations for over 35 yr. Although it has been used for all types of investigations for hillside urban development, it is of particular benefit in landslide investigations and evaluations. The benefits of down-hole geologic inspection during detailed mapping of large landslide complexes with multiple slide planes are discussed in this paper. Many of the geotechnical investigations of these massive landslide complexes have been very limited in their determinations of accurate landslide parameters and very deficient in proper engineering analysis while based upon this limited data. This has resulted in many cases where the geotechnical consultant erroneously concludes that ancient landslides don't move and it is all right to build upon them, even though they have neither justified the landslide parameters, nor the slope stability or safety. Because this author and the many consultants contacted during the preparation of this paper were not aware of other publications regarding this method of collecting detailed geologic data, this author included the safety considerations, safety equipment, the cost and the Cal OSHA requirements for entering exploration shafts.

  16. U.S. Geological Survey Open-File Report 99-310

    National Nuclear Security Administration (NNSA)

    r e d fr om Gr a v i t y D a ta , Ne va da Test Si te , N e va da by G.A. Phelps 1 , V.E. ... Figure 1. Map showing simplified geology of the Nevada Test Site region. White, Cenozoic ...

  17. Continental Scientific Drilling Program thermal regimes: comparative site assessment geology of five magma-hydrothermal systems

    SciTech Connect (OSTI)

    Goff, F.; Waters, A.C.

    1980-10-01

    The geology and salient aspects of geophysics and hydrogeochemistry of five high-grade geothermal systems in the USA are reviewed. On the basis of this information, a target location is suggested for a deep (5- to 8-km) borehole that will maximize the amount of scientific information to be learned at each of the five geothermal areas.

  18. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    2004-02-19

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  19. ARM: Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Maria Cadeddu

    Microwave Radiometer data (MWR Profiles - QME), water vapor, temp, cloud liquid water, precip water retrievals

  20. An information system for the utility of the ephemeral tributaries west of the Nile Valley in Sudan. Based on remote sensing and geological techniques

    SciTech Connect (OSTI)

    Al Biely, A.I.; Mohamed, A.H.A.; Khidir, S.O.

    1996-08-01

    Interpretation of landsat MSS and TM satellite and NOAA-AVHRR images, climatological data and conventional geological methods were integrated in this study to arrive at a rigorous scientific geoinformation system that could assist the on-going endeavours to rehabilitate areas west of the Nile Valley. The study area, which repetitively suffered severe spells of drought, extends between latitudes 12{degrees}N-18{degrees}N and longitudes 27{degrees}E-32{degrees}E. The area considered abodes four major ephemeral tributaries of the River Nile, they are Wadi Howar, Wadi El Milk, Wadi El Mugaddam and Khor Abu Habil. Visual interpretation of remotely sensed data coupled with geological investigations revealed that these ephemeral tributaries are structurally controlled and their lower courses are buried under extensive sand sheets, that block their channels from reaching the Nile Valley. Sites where those tributaries disappear could constitute huge reservoirs of groundwater that could be utilized to harness desert encroachment and to plan rehabilitation projects. It is envisaged that, surface and subsurface hydrological engineering constructions in favourable sites, across those tributaries may lead to permanent surface water ponding. The performed study demonstrated the possibility of combating the environmental degradation on the area under consideration through carefully designed rehabilitation and development projects based on the integration of available data in a geoinformation system.

  1. POOL WATER TREATMENT AND COOLING SYSTEM DESCRIPTION DOCUMENT

    SciTech Connect (OSTI)

    V. King

    2000-06-19

    The Pool Water Treatment and Cooling System is located in the Waste Handling Building (WHB), and is comprised of various process subsystems designed to support waste handling operations. This system maintains the pool water temperature within an acceptable range, maintains water quality standards that support remote underwater operations and prevent corrosion, detects leakage from the pool liner, provides the capability to remove debris from the pool, controls the pool water level, and helps limit radiological exposure to personnel. The pool structure and liner, pool lighting, and the fuel staging racks in the pool are not within the scope of the Pool Water Treatment and Cooling System. Pool water temperature control is accomplished by circulating the pool water through heat exchangers. Adequate circulation and mixing of the pool water is provided to prevent localized thermal hotspots in the pool. Treatment of the pool water is accomplished by a water treatment system that circulates the pool water through filters, and ion exchange units. These water treatment units remove radioactive and non-radioactive particulate and dissolved solids from the water, thereby providing the water clarity needed to conduct waste handling operations. The system also controls pool water chemistry to prevent advanced corrosion of the pool liner, pool components, and fuel assemblies. Removal of radioactivity from the pool water contributes to the project ALARA (as low as is reasonably achievable) goals. A leak detection system is provided to detect and alarm leaks through the pool liner. The pool level control system monitors the water level to ensure that the minimum water level required for adequate radiological shielding is maintained. Through interface with a demineralized water system, adequate makeup is provided to compensate for loss of water inventory through evaporation and waste handling operations. Interface with the Site Radiological Monitoring System provides continuous radiological monitoring of the pool water. The Pool Water Treatment and Cooling System interfaces with the Waste Handling Building System, Site-Generated Radiological Waste Handling System, Site Radiological Monitoring System, Waste Handling Building Electrical System, Site Water System, and the Monitored Geologic Repository Operations Monitoring and Control System.

  2. UNITED STATES D E P A R T M E N T O F THE INTERIOR GEOLOGICAL...

    Office of Legacy Management (LM)

    D E P A R T M E N T O F THE INTERIOR GEOLOGICAL S U R V E Y GEOLOGIC ASPECTS OF THE N O V E M B E R 1960 HIGH-EXPLOSIVE TEST AT TEE PR0;IECT CHARIOT SITE, N O R T H W E S T E R N ...

  3. Water Heating | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Public Services Homes Water Heating Water Heating Infographic: Water Heaters 101 Infographic: Water Heaters 101 Everything you need to know about saving money on water...

  4. Reconnaissance of ground-water quality in the Papio-Missouri river natural resources district, Eastern Nebraska, July through September 1992. Water resources investigation

    SciTech Connect (OSTI)

    Verstraeten, I.M.; Ellis, M.J.

    1995-12-31

    The purpose of this report is to describe the water quality of the principal aquifers in the study area. Wells representative of the geology and land use in the study area were selected for water-quality sampling. Variations in constituent concentration among aquifers are discussed. The report describes the spatial distributions of dissolved nitrite plus-nitrate as nitrogen and triazine and other acetanilide herbicides and evaluates the effects of cropland application of nitrogen and herbicides on the ground-water quality within the study area. The report also summarizes the concentrations of dissolved major and trace constituents including radionuclide activity and concentration.

  5. Hanford Site ground-water monitoring for 1993

    SciTech Connect (OSTI)

    Dresel, P.E.; Luttrell, S.P.; Evans, J.C.

    1994-09-01

    This report presents the results of the Ground-Water Surveillance Project monitoring for calendar year 1993 on the Hanford Site, Washington. Hanford Site operations from 1943 onward produced large quantities of radiological and chemical waste that have impacted ground-water quality on the Site. Monitoring of water levels and ground-water chemistry is performed to track the extent of contamination and trends in contaminant concentrations. The 1993 monitoring was also designed to identify emerging ground-water quality problems. The information obtained is used to verify compliance with applicable environmental regulations and to evaluate remedial actions. Data from other monitoring and characterization programs were incorporated to provide an integrated assessment of Site ground-water quality. Additional characterization of the Site`s geologic setting and hydrology was performed to support the interpretation of contaminant distributions. Numerical modeling of sitewide ground-water flow also supported the overall project goals. Water-level monitoring was performed to evaluate ground-water flow directions, to track changes in water levels, and to relate such changes to changes in site disposal practices. Water levels over most of the Hanford Site continued to decline between June 1992 and June 1993. The greatest declines occurred in the 200-West Area. These declines are part of the continued response to the cessation of discharge to U Pond and other disposal facilities. The low permeability in this area which enhanced mounding of waste-water discharge has also slowed the response to the reduction of disposal. Water levels remained nearly constant in the vicinity of B Pond, as a result of continued disposal to the pond. Water levels measured from wells in the unconfined aquifer north and east of the Columbia River indicate that the primary source of recharge is irrigation practices.

  6. The Geochemistry of Technetium: A Summary of the Behavior of an Artificial Element in the Natural Environment

    SciTech Connect (OSTI)

    Icenhower, Jonathan P.; Qafoku, Nikolla; Martin, Wayne J.; Zachara, John M.

    2008-12-01

    Interest in the chemistry of technetium has only increased since its discovery in 1937, mainly because of the large and growing inventory of 99Tc generated during fission of 235U, its environmental mobility in oxidizing conditions, and its potential radiotoxicity. For every ton of enriched uranium fuel (3% 235U) that is consumed at a typical burn-up rate, nearly 1 kg of 99Tc is generated. Thus, the mass of 99Tc produced since 1993 has nearly quadrupled, and will likely to continue to increase if more emphasis is placed on nuclear power to slow the accumulation of atmospheric greenhouse gases. In order to gain a comprehensive understanding of the interaction of 99Tc and the natural environment, we review the sources of 99Tc in the nuclear fuel cycle, its chemical properties, radiochemistry, and biogeochemical behavior. We include an evaluation of the use of Re as a chemical analog of Tc, as well as a summary of the redox potential, thermodynamics, sorption, colloidal behavior, and interaction of humic substances with Tc, and the potential for re-oxidation and remobilization of Tc(IV). What emerges is a more complicated picture of Tc behavior than that of an easily tractable transition of Tc(VII) to Tc(IV) with consequent immobilization. Reducing conditions (+200 to +100 mV Eh) are generally thought necessary to cause reduction of Tc(VII) to Tc(IV), but far more important are the presence of reducing agents, such as Fe(II) sorbed onto mineral grains. Catalysis of Tc(VII) by surface-mediated Fe(II) will bring the mobile Tc(VII) species to a lower oxidation state and will form the relatively insoluble Tc(IV)O2∙nH2O, but even as a solid, equilibrium concentrations of aqueous Tc are nearly a factor of 20× above the EPA set drinking water standards. However, sequestration of Tc(IV) into Fe(III)-bearing phases, such as goethite or other hydrous oxyhydroxides of iron, may ameliorate concerns over the mobility of Tc. Further, the outcome of many studies on terrestrial and marine sediments that are oxidizing overall indicate that Tc is relatively immobile, due to formation of oxygen-depleted microenvironments that develop in response to bacteriological activities. The rate of re-mobilization of Tc from these microenvironments is just beginning to be assessed, but with no firm consensus. Reassessment of the simple models in which Tc is mobilized and immobilized is therefore urged.

  7. Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk

    SciTech Connect (OSTI)

    Oldenburg, C.M.

    2011-04-01

    Fossil fuels are abundant, inexpensive to produce, and are easily converted to usable energy by combustion as demonstrated by mankind's dependence on fossil fuels for over 80% of its primary energy supply (13). This reliance on fossil fuels comes with the cost of carbon dioxide (CO{sub 2}) emissions that exceed the rate at which CO{sub 2} can be absorbed by terrestrial and oceanic systems worldwide resulting in increases in atmospheric CO{sub 2} concentration as recorded by direct measurements over more than five decades (14). Carbon dioxide is the main greenhouse gas linked to global warming and associated climate change, the impacts of which are currently being observed around the world, and projections of which include alarming consequences such as water and food shortages, sea level rise, and social disruptions associated with resource scarcity (15). The current situation of a world that derives the bulk of its energy from fossil fuel in a manner that directly causes climate change equates to an energy-climate crisis. Although governments around the world have only recently begun to consider policies to avoid the direst projections of climate change and its impacts, sustainable approaches to addressing the crisis are available. The common thread of feasible strategies to the energy climate crisis is the simultaneous use of multiple approaches based on available technologies (e.g., 16). Efficiency improvements (e.g., in building energy use), increased use of natural gas relative to coal, and increased development of renewables such as solar, wind, and geothermal, along with nuclear energy, are all available options that will reduce net CO{sub 2} emissions. While improvements in efficiency can be made rapidly and will pay for themselves, the slower pace of change and greater monetary costs associated with increased use of renewables and nuclear energy suggests an additional approach is needed to help bridge the time period between the present and a future when low-carbon energy is considered cheap enough to replace fossil fuels. Carbon dioxide capture and storage (CCS) is one such bridging technology (1). CCS has been the focus of an increasing amount of research over the last 15-20 years and is the subject of a comprehensive IPCC report that thoroughly covers the subject (1). CCS is currently being carried out in several countries around the world in conjunction with natural gas extraction (e.g., 2, 3) and enhanced oil recovery (17). Despite this progress, widespread deployment of CCS remains the subject of research and future plans rather than present action on the scale needed to mitigate emissions from the perspective of climate change. The reasons for delay in deploying CCS more widely are concerns about cost (18), regulatory and legal uncertainty (19), and potential environmental impacts (21). This chapter discusses the long-term (decadal) sustainability and environmental hazards associated with the geologic CO{sub 2} storage (GCS) component of large-scale CCS (e.g., 20). Discussion here barely touches on capture and transport of CO{sub 2} which will occur above ground and which are similar to existing engineering, chemical processing, and pipeline transport activities and are therefore easier to evaluate with respect to risk assessment and feasibility. The focus of this chapter is on the more uncertain part of CCS, namely geologic storage. The primary concern for sustainability of GCS is whether there is sufficient capacity in sedimentary basins worldwide to contain the large of amounts of CO{sub 2} needed to address climate change. But there is also a link between sustainability and environmental impacts. Specifically, if GCS is found to cause unacceptable impacts that are considered worse than its climate-change mitigation benefits, the approach will not be widely adopted. Hence, GCS has elements of sustainability insofar as capacity of the subsurface for CO{sub 2} is concerned, and also in terms of whether the associated environmental risks are acceptable or not to the public.

  8. A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool.

    SciTech Connect (OSTI)

    Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James; Klise, Geoffrey T.

    2011-09-01

    The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino et al., 2008; Panfilov et al., 2006). These existing H{sub 2} facilities are quite small by natural gas storage standards. The second stage of the analysis involved providing ANL with estimated geostorage costs of hydrogen within salt caverns for various market penetrations for four representative cities (Houston, Detroit, Pittsburgh and Los Angeles). Using these demand levels, the scale and cost of hydrogen storage necessary to meet 10%, 25% and 100% of vehicle summer demands was calculated.

  9. Hanford Borehole Geologic Information System (HBGIS) Updated Users Guide for Web-based Data Access and Export

    SciTech Connect (OSTI)

    Mackley, Rob D.; Last, George V.; Allwardt, Craig H.

    2008-09-24

    The Hanford Borehole Geologic Information System (HBGIS) is a prototype web-based graphical user interface (GUI) for viewing and downloading borehole geologic data. The HBGIS is being developed as part of the Remediation Decision Support function of the Soil and Groundwater Remediation Project, managed by Fluor Hanford, Inc., Richland, Washington. Recent efforts have focused on improving the functionality of the HBGIS website in order to allow more efficient access and exportation of available data in HBGIS. Users will benefit from enhancements such as a dynamic browsing, user-driven forms, and multi-select options for selecting borehole geologic data for export. The need for translating borehole geologic data into electronic form within the HBGIS continues to increase, and efforts to populate the database continue at an increasing rate. These new web-based tools should help the end user quickly visualize what data are available in HBGIS, select from among these data, and download the borehole geologic data into a consistent and reproducible tabular form. This revised users guide supersedes the previous users guide (PNNL-15362) for viewing and downloading data from HBGIS. It contains an updated data dictionary for tables and fields containing borehole geologic data as well as instructions for viewing and downloading borehole geologic data.

  10. Water, Energy and Carbon Sequestration Model (WECSsim) v. 1.0

    SciTech Connect (OSTI)

    2011-11-14

    The national Water, Energy and Carbon Sequestration Simulation Model (WECSsim) is an analysis tool that can be used at the local, regional and national scale to address a potentially combined system using a coal or natural gas-fired power plant, a geologic carbon sequestration system in saline formations, and water extraction and treatment. With this combined system for geologic storage of CO2 in saline formations, the treated saline formation water could be used as cooling water in the power plant. The key areas addressed in this tool include applying a data reduction process to existing NatCarb saline formation data to select the most viable formations for CO2 injection, water withdrawal and treatment metrics, and developing a national model to address the multiple combinations of power plants and saline formations. This model can be utilized by decision makers to understand the economic benefits and tradeoffs of this combined system. WECSsim allows for sensitivity analyses for capital costs, variables costs, CO2 sequestration and water treatment systems’ costs. The main goal of the WECSsim model is to allow interested individuals or groups the ability to run custom power plant, CO2 sequestration and water use scenarios for different regions of the country and understand the associated economics, longevity and potential of the CO2 sequestration and water extraction systems.

  11. 14 MeV neutron activation analysis of geological and lunar samples

    SciTech Connect (OSTI)

    Laul, J.C.; Wogman, N.A.

    1981-04-01

    14 MeV neutron activation analysis (NAA) is ideal for accurately determining Oxygen and Silicon contents in geological and lunar materials. It is fast, nondestructive, economical, and can be used on a routine basis in a laboratory. Although 14 MeV NAA is particularly suited to light elements, its use has been extended to measure other elements as well such as Aluminum, Magnesium, Iron, Calcium, Titanium, Strontium, Nickel, Yttrium, Zirconium, Niobium and Cerium. Thus, the use of 14 MeV neutrons is of considerable importance in NAA. The disadvantages of the method are that interference reactions are common because of high neutron energy; the flux is nonuniform in longer irradiation due to depletion of the target in the neutron generator. Overall, 14 MeV NAA is ideal for short irradiations and when supplemented with thermal NAA provides the maximum elemental information in small aliquants of geological and lunar materials.

  12. A fluid pressure and deformation analysis for geological sequestration of carbon dioxide

    SciTech Connect (OSTI)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-06-07

    We present a hydro-mechanical model and deformation analysis for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the two-way coupling between the geomechanical response and the fluid flow process in greater detail. In order for analytical solutions, the simplified hydro-mechanical model includes the geomechanical part that relies on the theory of linear elasticity, while the fluid flow is based on the Darcys law. The model was derived through coupling the two parts using the standard linear poroelasticity theory. Analytical solutions for fluid pressure field were obtained for a typical geological sequestration scenario and the solutions for ground deformation were obtained using the method of Greens function. Solutions predict the temporal and spatial variation of fluid pressure, the effect of permeability and elastic modulus on the fluid pressure, the ground surface uplift, and the radial deformation during the entire injection period.

  13. A Feasibility Study of Non-Seismic Geophysical Methods forMonitoring Geologic CO2 Sequestration

    SciTech Connect (OSTI)

    Gasperikova, Erika; Hoversten, G. Michael

    2006-07-01

    Because of their wide application within the petroleumindustry it is natural to consider geophysical techniques for monitoringof CO2 movement within hydrocarbon reservoirs, whether the CO2 isintroduced for enhanced oil/gas recovery or for geologic sequestration.Among the available approaches to monitoring, seismic methods are by farthe most highly developed and applied. Due to cost considerations, lessexpensive techniques have recently been considered. In this article, therelative merits of gravity and electromagnetic (EM) methods as monitoringtools for geological CO2 sequestration are examined for two syntheticmodeling scenarios. The first scenario represents combined CO2 enhancedoil recovery (EOR) and sequestration in a producing oil field, theSchrader Bluff field on the north slope of Alaska, USA. The secondscenario is a simplified model of a brine formation at a depth of 1,900m.

  14. Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes

    DOE Patents [OSTI]

    Vail, III, William B.

    1989-01-01

    Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes.

  15. Methods and apparatus for measurement of the resistivity of geological formations from within cased boreholes

    DOE Patents [OSTI]

    Vail, W.B. III.

    1989-04-11

    Methods and apparatus are disclosed which allow measurement of the resistivity of a geological formation through borehole casing which may be surrounded by brine saturated cement. A.C. current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. The A.C. voltage difference is measured between two additional vertically disposed electrodes on the interior of the casing which provides a measure of the resistivity of the geological formation. A calibration and nulling procedure is presented which minimizes the influence of variations in the thickness of the casing. The procedure also minimizes the influence of inaccurate placements of the additional vertically disposed electrodes. 3 figs.

  16. Clean Water Act Section 401 Water Quality Certification: A Water...

    Open Energy Info (EERE)

    Certification: A Water Quality Protection Tool for States and Tribes Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  17. Clean Water Act Section 401 Water Quality Certification A Water...

    Open Energy Info (EERE)

    Certification A Water Quality Protection Tool for States and Tribes Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance - Guide...

  18. Key factors for determining groundwater impacts due to leakage from geologic carbon sequestration reservoirs

    Office of Scientific and Technical Information (OSTI)

    Journal of Greenhouse Gas Control 29 (2014) 153-168 ELSEVIER Contents lists available at ScienceDirect International Journal of Greenhouse Gas Control journal homepage www.elsevier.com/locate/ijggc Key factors for determining groundwater impacts due to leakage from geologic carbon sequestration reservoirs* Susan A. Carroll3'*, Elizabeth Keating13'1, Kayyum Mansoor3'2, Zhenxue Daib'3, Yunwei Suna'4, Whitney Trainor-Guittona'5, Chris Brownc'6, Diana Baconc'7 a Lawrence Livermore National

  19. Subsurface geological and geophysical study of the Cerro Prieto geothermal field, Baja California, Mexico

    SciTech Connect (OSTI)

    Lyons, D.J.; van de Kamp, P.C.

    1980-01-01

    The subsurface investigation of the Cerro Prieto field and surrounding area is described including the stratigraphy, structure, hydrothermal alteration, and reservoir properties for use in designing reservoir simulation models and planning development of the field. Insights into the depositional, tectonic, and thermal history of the area are presented. The following types of data were used: well sample descriptions and analyses, well logs, geophysical surveys; physiography, and regional geology. (MHR)

  20. Impact of P and T on geological repositories an overview of the EURATOM red impact project

    SciTech Connect (OSTI)

    Westlen, Daniel; Norris, Simon; Gonzalez-Romero, Enrique M.; Greneche, Dominique; Boucher, Lionel; Marivoet, Jan; Zimmerman, Colin; von Lensa, Werner

    2007-07-01

    The European Commission project Red Impact is in a state of conclusion after three years. Within the project, the consequences of P and T on, mainly, geological disposal have been investigated. Six scenarios have been developed, including three considered to be deployable today, and three more advanced scenarios including P and T in different ways. The scenarios all have different strengths and weaknesses, which are discussed in the present paper. (authors)