Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Isotope GeoloGy1 Unlike physics or chemistry, teaching isotope  

E-Print Network (OSTI)

Isotope GeoloGy1 Unlike physics or chemistry, teaching isotope geochemistry is difficult because. Writing an effective book on geochemistry is thus even more difficult. Claude Allègre's Isotope Geology geochemistry book, given how effective the texts by Faure and Dickin are. However, Allègre's Isotope Geology

Lee, Cin-Ty Aeolus

2

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Chemistry Availability Technology Negotiable Licensing Insensitive Extrudable Explosive Express Licensing Metal aminoboranes Express Licensing Nanocrystalsol-gel...

3

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Chemistry Express Licensing Energy Efficient Synthesis Of Boranes Express Licensing Fabrication Of Multilayered Thin Films Via Spin-Assembly Express Licensing...

4

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Chemistry Top Journals Journal of the American Chemical Society Angewandte Chemie & Angewandte Chemie, international edition in English Chemical Communications Chemical...

5

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Electron Source Breakthrough Research on Platinum-Nickel Alloys Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Catalysts Chemistry of Cobalt-Platinum...

6

Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Chemistry Chemistry Print Chemical science at the ALS encompasses a broad range of approaches and specializations, including surfaces/interfaces, catalysis, chemical dynamics (gas-phase chemistry), crystallography, and physical chemistry. By one estimate, nearly 80% of all chemical reactions in nature and in human technology take place at boundaries between phases, i.e., at surfaces or interfaces. Atomic- and molecular-scale studies are needed to develop a thorough understanding of the relationships between surface properties and parameters relevant to potential applications and devices. Catalysts play a central role in processes relevant to energy, the environment, and biology. Researchers are working to develop cheaper and smarter catalysts that are fine tuned to accelerate reactions that, for example, drive fuel-refinement, sweep toxins from emissions, or convert starch to sugar.

7

Environ Monit Assess DOI 10.1007/s10661-013-3256-6 Evaluation of stream chemistry trends in US Geological Survey reference watersheds, 19702010  

E-Print Network (OSTI)

is a long-term monitoring program established by the US Geological Survey in the 1960s to track changes in the streamflow and stream chemistry in undeveloped watersheds across the USA. Trends in stream chemistry were tested at 15 HBN stations over two periods (1970 2010 and 19902010) using the parametric Load Estimator (LOADEST) model and the nonparametric seasonal Kendall test. Trends in annual streamflow and precipitation chemistry also were tested to help identify likely drivers of changes in stream chemistry. At stations in the northeastern USA, there were significant declines in stream sulfate, which were consistent with declines in sulfate deposition resulting from the reductions in SO2 emissions mandated under the Clean Air Act Amendments. Sulfate declines in stream water were smaller than declines in deposition suggesting sulfate may be accumulating in watershed soils and thereby delaying the stream response to improvements in deposition. Trends in stream chemistry at stations in other part of the country generally were attributed to climate variability or land disturbance. Despite declines in sulfate deposition, increasing stream sulfate was observed at several stations and appeared to be linked to periods of drought or declining streamflow. Falling water tables might have

M. Alisa Mast; M. A. Mast

2013-01-01T23:59:59.000Z

8

APPLIED MATHEMATICS ATMOSPHERIC SCIENCE BIOMEDICAL ENGINEERING BIOPHYSICS BIOSTATISTICS CHEMISTRY FORENSIC SCIENCE GEOGRAPHY GEOLOGY HYDROLOGIC SCIENCES MATHEMATICS PHYSICS SOILS AND BIOGEOCHEMISTRY  

E-Print Network (OSTI)

; environmental science and policy; land, air and water resources; applied science; computer science; biomedical, fertilizers, plastics, and materials for energy conversion and information technology. The chemistry graduate and Southeastern Asia; and the American West and Southwest, especially California. Master's students develop

Hammock, Bruce D.

9

Quantum Cosmology  

E-Print Network (OSTI)

We give an introduction into quantum cosmology with emphasis on its conceptual parts. After a general motivation we review the formalism of canonical quantum gravity on which discussions of quantum cosmology are usually based. We then present the minisuperspace Wheeler--DeWitt equation and elaborate on the problem of time, the imposition of boundary conditions, the semiclassical approximation, the origin of irreversibility, and singularity avoidance. Restriction is made to quantum geometrodynamics; loop quantum gravity and string theory are discussed in other contributions to this volume.

Claus Kiefer; Barbara Sandhoefer

2008-04-04T23:59:59.000Z

10

String Gas Cosmology  

E-Print Network (OSTI)

String gas cosmology is a string theory-based approach to early universe cosmology which is based on making use of robust features of string theory such as the existence of new states and new symmetries. A first goal of string gas cosmology is to understand how string theory can effect the earliest moments of cosmology before the effective field theory approach which underlies standard and inflationary cosmology becomes valid. String gas cosmology may also provide an alternative to the current standard paradigm of cosmology, the inflationary universe scenario. Here, the current status of string gas cosmology is reviewed.

Brandenberger, Robert H

2009-01-01T23:59:59.000Z

11

Updated September 2012 Chemistry Degree Requirements  

E-Print Network (OSTI)

approved courses at the 400-level in Chemistry, Geology and Physics Option 2) One approved course GEOL 471** Aqueous Geochemistry GEOL 472** Isotope Geochemistry GEOL 473** Courses not offered AY 12 ** contact the Geology department for course offerings #12;

Cina, Jeff

12

Inflationary Cosmology  

E-Print Network (OSTI)

The big bang model and the history of the early universe according to the grand unified theories are introduced. The shortcomings of big bang are discussed together with their resolution by inflationary cosmology. Inflation, the subsequent oscillation and decay of the inflaton, and the resulting "reheating" of the universe are studied. The density perturbations produced by inflation and the temperature fluctuations of the cosmic background radiation are discussed. The hybrid inflationary model is described. Two "natural" extensions of this model which avoid the disaster encountered in its standard realization from the overproduction of monopoles are presented. Successful "reheating" satisfying the gravitino constraint takes place after the end of inflation in all three versions of hybrid inflation. Adequate baryogenesis via a primordial leptogenesis occurs consistently with the solar and atmospheric neutrino oscillation data. The primordial lepton asymmetry is turned partly into baryon asymmetry via the sphalerons which are summarized.

G. Lazarides

2001-11-26T23:59:59.000Z

13

The Chemistry and Technology of Magnesia  

Science Conference Proceedings (OSTI)

Apr 20, 2007 ... In 17 chapters, The Chemistry and Technology of Magnesia covers a wide variety of topics that range from history to economic geology, mining,...

14

CLUSTER CHEMISTRY  

E-Print Network (OSTI)

Advanced Inorganic Chemistry, 11 Wiley Huetterties and C. M.Submitted to the Journal of Organometallic ChemistryCLUSTER CHEMISTRY Earl L. Muetterties TWO-WEEK LOAN COPY May

Muetterties, Earl L.

2013-01-01T23:59:59.000Z

15

Actinide Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Actinide Chemistry Actinide Chemistry Actinide Chemistry Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise David Gallimore Actinide Analytical Chemistry Email Rebecca Chamberlin Actinide Analytical Chemistry Email Josh Smith Chemistry Communications Email Along with the lanthanides, they are often called "the f-elements" because they have valence electrons in the f shell. Actinide chemistry serves a critical role in addressing global threats Project Description At Los Alamos, scientists are using actinide analytical chemistry to identify and quantify the chemical and isotopic composition of materials. Since the Manhattan Project, such work has supported the Laboratory's

16

Constraints on cosmological parameters  

E-Print Network (OSTI)

A cosmological model with total density close to critical (and flat geometry), dominated by dark matter and dark energy of unknown nature, and consistent with the basic predictions of the inflationary scenario is a very good fit to a variety of cosmological probes: the anisotropy of the CMB, the large scale distribution of matter, the luminosity distance of high-redshift type Ia supernovae and so on. These high-quality data have established a new standard of precision in the determination of cosmological parameters. CMB and Physics of the Early universe

Amedeo Balbi; Amedeo Balbi

2006-01-01T23:59:59.000Z

17

Dark gravity and cosmology  

E-Print Network (OSTI)

The previous version of this article was a first attempt to confront the Dark Gravity theory to cosmological data. However, more recent developments lead to the conclusion that the cosmological principle is probably not valid in Dark Gravity so that this kind of analysis is at best very premature. A more recent and living review of the Dark Gravity theory can be found in gr-qc/0610079

F. Henry-Couannier; A. Tilquin; C. Tao; A. Ealet

2005-09-05T23:59:59.000Z

18

Nuclear Analytical Chemistry Portal  

Science Conference Proceedings (OSTI)

NIST Home > Nuclear Analytical Chemistry Portal. Nuclear Analytical Chemistry Portal. ... see all Nuclear Analytical Chemistry news ... ...

2010-08-02T23:59:59.000Z

19

Medicinal chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Medicinal chemistry Name: Jason A Stamm Age: NA Location: NA Country: NA Date: NA Question: I am a senior chemistry major interested in going to grad school, specifically for...

20

Moving mesh cosmology: tracing cosmological gas accretion  

E-Print Network (OSTI)

We investigate the nature of gas accretion onto haloes and galaxies at z=2 using cosmological hydrodynamic simulations run with the moving mesh code AREPO. Implementing a Monte Carlo tracer particle scheme to determine the origin and thermodynamic history of accreting gas, we make quantitative comparisons to an otherwise identical simulation run with the smoothed particle hydrodynamics (SPH) code GADGET-3. Contrasting these two numerical approaches, we find significant physical differences in the thermodynamic history of accreted gas in haloes above 10^10.5 solar masses. In agreement with previous work, GADGET simulations show a cold fraction near unity for galaxies forming in massive haloes, implying that only a small percentage of accreted gas heats to an appreciable fraction of the virial temperature during accretion. The same galaxies in AREPO show a much lower cold fraction, gas accretion rate which, at this same halo mass, is an order o...

Nelson, Dylan; Genel, Shy; Sijacki, Debora; Keres, Dusan; Springel, Volker; Hernquist, Lars

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Supernova Cosmology Project  

NLE Websites -- All DOE Office Websites (Extended Search)

The Hubble Space Telescope Cluster Supernova Survey: The Hubble Space Telescope Cluster Supernova Survey: An Intensive HST Survey for z>1 Type Ia Supernovae by Targeting Galaxy Clusters Survey Paper: Dawson et al. (The Supernova Cosmology Project) 2009, AJ, 138, 1271 [ADS] [arXiv] We present a new survey strategy to discover and study high redshift Type Ia supernovae (SNe Ia) using the Hubble Space Telescope (HST). By targeting massive galaxy clusters at 0.9 0.95, nine of which were in galaxy clusters. This strategy provides a SN sample that can be used to decouple the effects of host galaxy extinction and intrinsic color in high redshift SNe, thereby reducing one of the largest systematic uncertainties in SN cosmology.

22

Unified phantom cosmologies  

E-Print Network (OSTI)

We present a general algorithm based on the concept of form-invariance which can be used for generating phantom cosmologies. It involves linear transformations between the kinetic energy and the potential of the scalar field, and transforms solutions of the Einstein-Klein-Gordon equations which preserve the weak energy condition into others which violate it, while keeping the energy density of the field positive. All known solutions representing phantom cosmologies are unified by this procedure. Using the general algorithm we obtain those solutions and show the relations between them. In addition, the scale factors of the product and seed solutions are related by a generalization of the well-known $a\\to a^{-1}$ duality.

Luis P. Chimento; Ruth Lazkoz

2004-05-26T23:59:59.000Z

23

RMOTC - Geologic & Resivoir Data  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic & Reservoir Data Data Sets Online Data Rooms Geologic & Reservoir Data Hills surrounding RMOTC Testing Facility Over the years, the field has become very well...

24

Exoplanet Chemistry  

E-Print Network (OSTI)

The characteristic chemistry of terrestrial planets and, in particular, of giant planets rich and poor in He and H2 are described.

Lodders, Katharina

2009-01-01T23:59:59.000Z

25

Computational Chemistry  

Science Conference Proceedings (OSTI)

... and numerical tools to quantify uncertainties for computational quantum chemistry. ... Results appear in the issue of The Journal of Chemical Physics. ...

2010-10-05T23:59:59.000Z

26

Measuring Cosmology with Supernovae  

E-Print Network (OSTI)

Over the past decade, supernovae have emerged as some of the most powerful tools for measuring extragalactic distances. A well developed physical understanding of type II supernovae allow them to be used to measure distances independent of the extragalactic distance scale. Type Ia supernovae are empirical tools whose precision and intrinsic brightness make them sensitive probes of the cosmological expansion. Both types of supernovae are consistent with a Hubble Constant within ~10% of H_0 = 70 km/s/Mpc. Two teams have used type Ia supernovae to trace the expansion of the Universe to a look-back time more than 60% of the age of the Universe. These observations show an accelerating Universe which is currently best explained by a cosmological constant or other form of dark energy with an equation of state near w = p/rho = -1. While there are many possible remaining systematic effects, none appears large enough to challenge these current results. Future experiments are planned to better characterize the equation of state of the dark energy leading to the observed acceleration by observing hundreds or even thousands of objects. These experiments will need to carefully control systematic errors to ensure future conclusions are not dominated by effects unrelated to cosmology.

Saul Perlmutter; Brian P. Schmidt

2003-03-18T23:59:59.000Z

27

Cosmological shock waves  

E-Print Network (OSTI)

Large-scale structure formation, accretion and merging processes, AGN activity produce cosmological gas shocks. The shocks convert a fraction of the energy of gravitationally accelerated flows to internal energy of the gas. Being the main gas-heating agent, cosmological shocks could amplify magnetic fields and accelerate energetic particles via the multi-fluid plasma relaxation processes. We first discuss the basic properties of standard single-fluid shocks. Cosmological plasma shocks are expected to be collisionless. We then review the plasma processes responsible for the microscopic structure of collisionless shocks. A tiny fraction of the particles crossing the shock is injected into the non-thermal energetic component that could get a substantial part of the ram pressure power dissipated at the shock. The energetic particles penetrate deep into the shock upstream producing an extended shock precursor. Scaling relations for postshock ion temperature and entropy as functions of shock velocity in strong collisionless multi-fluid shocks are discussed. We show that the multi-fluid nature of collisionless shocks results in excessive gas compression, energetic particle acceleration, precursor gas heating, magnetic field amplification and non-thermal emission. Multi-fluid shocks provide a reduced gas entropy production and could also modify the observable thermodynamic scaling relations for clusters of galaxies.

A. M. Bykov; K. Dolag; F. Durret

2008-01-07T23:59:59.000Z

28

Cosmological Consequences of String Axions  

E-Print Network (OSTI)

2005 Cosmological Consequences of String Axions ? Ben Kain for the model independent string axion we consider thefor two additional string axions. We do so independent of

Kain, Ben

2005-01-01T23:59:59.000Z

29

CV-Huiming Bao Department of Geology & Geophysics, E235 Howe-Russell Geoscience Complex, Louisiana  

E-Print Network (OSTI)

chemistry & Stable isotopes Postdoc 1998-2001 APPOINTMENTS 2012- Professor in Geology and Geophysics Geology and Earth System History for undergraduate students; Stable Isotope Geochemistry and Carbonate1 CV- Huiming Bao Department of Geology & Geophysics, E235 Howe-Russell Geoscience Complex

Bao, Huiming

30

CV-Huiming Bao Department of Geology & Geophysics, E235 Howe-Russell Geoscience Complex, Louisiana  

E-Print Network (OSTI)

chemistry & Stable isotopes Postdoc 1998-2001 APPOINTMENTS 2012- Charles L. Jones Professor in Geology Geology and Earth System History for undergraduate students; Stable Isotope Geochemistry and Carbonate1 CV- Huiming Bao Department of Geology & Geophysics, E235 Howe-Russell Geoscience Complex

Bao, Huiming

31

CV-Huiming Bao Department of Geology & Geophysics, E235 Howe-Russell Geoscience Complex, Louisiana  

E-Print Network (OSTI)

chemistry & Stable isotopes Postdoc 1998-2001 APPOINTMENTS 2012- Charles L. Jones Professor in Geology, 2013, Oxygen isotope composition of meltwater from a Neoproterozoic glaciation in South China. Geology1 CV- Huiming Bao Department of Geology & Geophysics, E235 Howe-Russell Geoscience Complex

Bao, Huiming

32

Radiotracer Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Radiotracer Chemistry Radiotracer Chemistry Radiotracer chemistry is focused on the short lived positron emitters. New radiotracer chemistry and molecular targeting strategies are being developed to increase the complexity and diversity of molecular probes (small molecules and plant hormones) for imaging applications. We emphasize C-11 chemistry because the substitution of stable carbon with carbon-11 provides the opportunity to measure and quantify the distribution and kinetics of physiologically relevant substrates and signaling molecules without altering the biological properties of the parent molecule. Recent accomplishments include the development of miniaturized automated systems for the production of C-11 precursor molecules, the synthesis of C-11 labeled azaleic acid and the radiolabeling of auxin for studies of their movement and metabolism in the whole plant in vivo.

33

Particle Data Group - Astrophysics and Cosmology  

NLE Websites -- All DOE Office Websites (Extended Search)

Astrophysical Constants and Parameters Experimental tests of gravitational theory Big-Bang cosmology Big-Bang nucleosynthesis Cosmological parameters Dark matter Cosmic...

34

Chaplygin DGP cosmologies  

E-Print Network (OSTI)

A new class of braneworld models displaying late-time phantom acceleration without resorting to a phantom fluid is presented. In this scenario expansion is fuelled by dark matter together with some effective dark energy capable of crossing the phantom divide. Unlike a previous proposal of this nature, in these models the effective phantom behaviour remains valid at all redshifts for some choices of the free parameters of the models. The construction is based on the generalised Chaplygin gas, and the cosmological history interpolates between a standard CDM-like behaviour at early times and a de Sitter-like behaviour at late times, so no future singularity is reached.

Mariam Bouhmadi-Lpez; Ruth Lazkoz

2007-06-26T23:59:59.000Z

35

Inflationary Axion Cosmology  

DOE R&D Accomplishments (OSTI)

If Peccei-Quinn (PQ) symmetry is broken after inflation, the initial axion angle is a random variable on cosmological scales; based on this fact, estimates of the relic-axion mass density give too large a value if the axion mass is less than about 10-6 eV. This bound can be evaded if the Universe underwent inflation after PQ symmetry breaking and if the observable Universe happens to be a region where the initial axion angle was atypically small, .1 . (ma/10-6eV)0.59. We show consideration of fluctuations induced during inflation severely constrains the latter alternative.

Wilczek, Frank; Turner, Michael S.

1990-09-00T23:59:59.000Z

36

Spinning fluid cosmology  

E-Print Network (OSTI)

The dynamics of a spinning fluid in a flat cosmological model is investigated. The space-time is itself generated by the spinning fluid which is characterized by an energy-momentum tensor consisting a sum of the usual perfect-fluid energy-momentum tensor and some Belinfante-Rosenfeld tensors. It is shown that the equations of motion admit a solution for which the fluid four-velocity and four-momentum are not co-linear in general. The momentum and spin densities of the fluid are expressed in terms of the scale factor.

Morteza Mohseni

2008-07-22T23:59:59.000Z

37

Spinning fluid cosmology  

E-Print Network (OSTI)

The dynamics of a spinning fluid in a flat cosmological model is investigated. The space-time is itself generated by the spinning fluid which is characterized by an energy-momentum tensor consisting a sum of the usual perfect-fluid energy-momentum tensor and some Belinfante-Rosenfeld tensors. It is shown that the equations of motion admit a solution for which the fluid four-velocity and four-momentum are not co-linear in general. The momentum and spin densities of the fluid are expressed in terms of the scale factor.

Mohseni, Morteza

2008-01-01T23:59:59.000Z

38

Cosmology: Recent and future developments  

Science Conference Proceedings (OSTI)

The precision with which the cosmological parameters have been determined has made dramatic progress in just the last two years. The author reviews this recent observational progress, highlights some of the key questions facing cosmology in the new millennium, and briefly discusses some of the projects now being mounted or contemplated to address them.

Joshua A. Frieman

2003-01-15T23:59:59.000Z

39

Cosmological models with isotropic singularities  

E-Print Network (OSTI)

In 1985 Goode and Wainwright devised the concept of an isotropic singularity. Since that time, numerous authors have explored the interesting consequences, in mathematical cosmology, of assuming the existence of this type of singularity. In this paper, we collate all examples of cosmological models which are known to admit an isotropic singularity, and make a number of observations regarding their general characteristics.

Susan M. Scott; Geoffery Ericksson

1998-12-07T23:59:59.000Z

40

Chemistry Central Journal Commentary  

E-Print Network (OSTI)

Industrial chemistry and chemoecology are linked together to realize a modern and sustainable chemistry

Peter Saling; Peter Saling

2007-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Nonlinear Noise in Cosmology  

E-Print Network (OSTI)

This paper derives and analyzes exact, nonlocal Langevin equations appropriate in a cosmological setting to describe the interaction of some collective degree of freedom with a surrounding ``environment.'' Formally, these equations are much more general, involving as they do a more or less arbitrary ``system,'' characterized by some time-dependent potential, which is coupled via a nonlinear, time-dependent interaction to a ``bath'' of oscillators with time-dependent frequencies. The analysis reveals that, even in a Markov limit, which can often be justified, the time dependences and nonlinearities can induce new and potentially significant effects, such as systematic and stochastic mass renormalizations and state-dependent ``memory'' functions, aside from the standard ``friction'' of a heuristic Langevin description. One specific example is discussed in detail, namely the case of an inflaton field, characterized by a Landau-Ginsburg potential, that is coupled quadratically to a bath of scalar ``radiation.'' T...

Habib, S; Habib, Salman; Kandrup, Henry E.

1992-01-01T23:59:59.000Z

42

NEWTON's Chemistry Videos  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Videos Do you have a great chemistry videos? Please click our Ideas page. Featured Videos: Steve Marsden's Chemistry Resources The Periodic Table of Videos The University...

43

Green Chemistry and Workers  

E-Print Network (OSTI)

J. Warner. 1998. Green Chemistry: Theory and Practice. NewNew Science, Green Chemistry and Environmental Health.abstract.html 5. American Chemistry Council. 2003. Guide to

2009-01-01T23:59:59.000Z

44

NEWTON's Chemistry References  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry References Do you have a great chemistry reference link? Please click our Ideas page. Featured Reference Links: Steve Marsden's Chemistry Resources Steve Marsden's...

45

Precision Cosmology and the Landscape  

E-Print Network (OSTI)

After reviewing the cosmological constant problem - why is Lambda not huge? - I outline the two basic approaches that had emerged by the late 1980s, and note that each made a clear prediction. Precision cosmological experiments now indicate that the cosmological constant is nonzero. This result strongly favors the environmental approach, in which vacuum energy can vary discretely among widely separated regions in the universe. The need to explain this variation from first principles constitutes an observational constraint on fundamental theory. I review arguments that string theory satisfies this constraint, as it contains a dense discretuum of metastable vacua. The enormous landscape of vacua calls for novel, statistical methods of deriving predictions, and it prompts us to reexamine our description of spacetime on the largest scales. I discuss the effects of cosmological dynamics, and I speculate that weighting vacua by their entropy production may allow for prior-free predictions that do not resort to explicitly anthropic arguments.

Raphael Bousso

2006-10-18T23:59:59.000Z

46

Inflationary cosmology and fundamental physics  

E-Print Network (OSTI)

This thesis is a collection of several papers at the interface between cosmology, particle physics, and field theory. In the first half, we examine topics that are directly related to inflation: axions, string theory, and ...

Hertzberg, Mark Peter

2010-01-01T23:59:59.000Z

47

Particle Production in Matrix Cosmology  

E-Print Network (OSTI)

We consider cosmological particle production in 1+1 dimensional string theory. The process is described most efficiently in terms of anomalies, but we also discuss the explicit mode expansions. In matrix cosmology the usual vacuum ambiguity of quantum fields in time-dependent backgrounds is resolved by the underlying matrix model. This leads to a finite energy density for the "in" state which cancels the effect of anomalous particle production.

Sumit R. Das; Joshua L. Davis; Finn Larsen; Partha Mukhopadhyay

2004-03-28T23:59:59.000Z

48

Cosmological milestones and energy conditions  

E-Print Network (OSTI)

Until recently, the physically relevant singularities occurring in FRW cosmologies had traditionally been thought to be limited to the "big bang", and possibly a "big crunch". However, over the last few years, the zoo of cosmological singularities considered in the literature has become considerably more extensive, with "big rips" and "sudden singularities" added to the mix, as well as renewed interest in non-singular cosmological events such as "bounces" and "turnarounds". In this talk, we present an extensive catalogue of such cosmological milestones, both at the kinematical and dynamical level. First, using generalized power series, purely kinematical definitions of these cosmological events are provided in terms of the behaviour of the scale factor a(t). The notion of a "scale-factor singularity" is defined, and its relation to curvature singularities (polynomial and differential) is explored. Second, dynamical information is extracted by using the Friedmann equations (without assuming even the existence of any equation of state) to place constraints on whether or not the classical energy conditions are satisfied at the cosmological milestones. Since the classification is extremely general, and modulo certain technical assumptions complete, the corresponding results are to a high degree model-independent.

Celine Cattoen; Matt Visser

2006-09-18T23:59:59.000Z

49

Educational Chemistry Games  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Games Do you have a great chemistry game? Please click our Ideas page. Featured Games: Nobelprize.org's Chemistry Games Nobelprize.org's Chemistry Games Nobelprize.org,...

50

New ekpyrotic cosmology  

SciTech Connect

In this paper, we present a new scenario of the early universe that contains a pre-big bang ekpyrotic phase. By combining this with a ghost condensate, the theory explicitly violates the null energy condition without developing any ghostlike instabilities. Thus the contracting universe goes through a nonsingular bounce and evolves smoothly into the expanding post-big bang phase. The curvature perturbation acquires a scale-invariant spectrum well before the bounce in this scenario. It is sourced by the scale-invariant entropy perturbation engendered by two ekpyrotic scalar fields, a mechanism recently proposed by Lehners et al. Since the background geometry is nonsingular at all times, the curvature perturbation remains nearly constant on superhorizon scales. It emerges from the bounce unscathed and imprints a scale-invariant spectrum of density fluctuations in the matter-radiation fluid at the onset of the hot big bang phase. The ekpyrotic potential can be chosen so that the spectrum has a red tilt, in accordance with the recent data from WMAP. As in the original ekpyrotic scenario, the model predicts a negligible gravity wave signal on all observable scales. As such ''new ekpyrotic cosmology'' provides a consistent and distinguishable alternative to inflation to account for the origin of the seeds of large-scale structure.

Buchbinder, Evgeny I.; Khoury, Justin [Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5 (Canada); Ovrut, Burt A. [Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6395 (United States)

2007-12-15T23:59:59.000Z

51

Geologic CO2 Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic CO2 Sequestration Geologic CO2 Sequestration Geologic reservoirs offer promising option for long- term storage of captured CO 2 Accumulations of gases (including CO 2 ) in geologic reservoirs, by natural processes or through enhanced oil recovery operations, demonstrate that gas can be stored for long periods of time and provide insights to the efficacy and impacts of geological gas storage. Los Alamos scientists in the Earth and Environmental Sciences (EES) Division have been involved in geologic CO 2 storage research for over a decade. Research Highlights * Led first-ever US field test on CO 2 sequestration in depleted oil reservoirs * Participant in two Regional Carbon Sequestration Partnerships (Southwest Regional and Big Sky) * Part of the National Risk Assessment Partnership (NRAP) for CO

52

Timescape cosmology with radiation fluid  

E-Print Network (OSTI)

The timescape cosmology represents a potentially viable alternative to the standard homogeneous cosmology, without the need for dark energy. Although average cosmic evolution in the timescape scenario only differs substantially from that of Friedmann-Lemaitre model at relatively late epochs when the contribution from the energy density of radiation is negligible, a full solution of the Buchert equations to incorporate radiation is necessary to smoothly match parameters to the epoch of photon decoupling and to obtain constraints from cosmic microwave background data. Here we extend the matter-dominated solution found in earlier work to include radiation, providing series solutions at early times and an efficient numerical integration strategy for generating the complete solution. The numerical solution is used to directly calculate the scale of the sound horizon at decoupling, and at the baryon drag epoch. The constraints on these scales from the Planck satellite data yield bounds on the timescape cosmological...

Duley, James A G; Wiltshire, David L

2013-01-01T23:59:59.000Z

53

Stringy Model of Cosmological Dark Energy  

E-Print Network (OSTI)

A string field theory(SFT) nonlocal model of the cosmological dark energy providing w<-1 is briefly surveyed. We summarize recent developments and open problems, as well as point out some theoretical issues related with others applications of the SFT nonlocal models in cosmology, in particular, in inflation and cosmological singularity.

Irina Ya. Aref'eva

2007-10-16T23:59:59.000Z

54

Interpretation of Water Chemistry and Stable Isotope Data from a Karst Aquifer According to Flow Regimes Identified through Hydrograph  

E-Print Network (OSTI)

82 Interpretation of Water Chemistry and Stable Isotope Data from a Karst Aquifer According to Flow.S. Geological Survey, 345 Middlefield Rd., MS 434, Menlo Park, CA, 94025 2 Univ. of Minnesota, Dept. of Geology for the identification of four separate flow regimes of the aquifer outflow. Major ion chemistry and stable isotopic

55

Cosmological science enabled by Planck  

E-Print Network (OSTI)

Planck will be the first mission to map the entire cosmic microwave background (CMB) sky with mJy sensitivity and resolution better than 10'. The science enabled by such a mission spans many areas of astrophysics and cosmology. In particular it will lead to a revolution in our understanding of primary and secondary CMB anisotropies, the constraints on many key cosmological parameters will be improved by almost an order of magnitude (to sub-percent levels) and the shape and amplitude of the mass power spectrum at high redshift will be tightly constrained.

Martin White

2006-06-27T23:59:59.000Z

56

REMOTE SENSING GEOLOGICAL SURVEY  

E-Print Network (OSTI)

REMOTE SENSING IN GEOLOGICAL SURVEY OF BRAZIL August/2010 Mônica Mazzini Perrotta Remote Sensing Division Head #12;SUMMARY The Geological Survey of Brazil mission The Remote Sensing Division Main remote, Paleontology, Remote Sensing Director of Hydrology and Land Management But Remote Sensing Division gives

57

The Department of Geology at Wayne State University is located in a urban environmental set-  

E-Print Network (OSTI)

The Department of Geology at Wayne State University is located in a urban environmental set- ting-time faculty and four part-time instructors. Faculty include: Drs. Mark Baskaran (Isotope Geo- chemistry), Jeff Howard (Sedimentology), Larry Lemke (Hydrogeology), Ed van Hees (Economic Geology), and Sarah Brownlee

Cinabro, David

58

Electric Time in Quantum Cosmology  

E-Print Network (OSTI)

Effective quantum cosmology is formulated with a realistic global internal time given by the electric vector potential. New possibilities for the quantum behavior of space-time are found, and the high-density regime is shown to be very sensitive to the specific form of state realized.

Stephon Alexander; Martin Bojowald; Antonino Marciano; David Simpson

2012-12-10T23:59:59.000Z

59

Conformal formulation of cosmological futures  

E-Print Network (OSTI)

We summarise the new conformal framework of an Anisotropic Future Endless Universe and an Anisotropic Future Singularity. Both new definitions are motivated by, but not restricted to quiescent cosmology and the Weyl curvature hypothesis, which previously only possessed a framework for a classical initial state of the universe, namely the Isotropic Singularity. Some of the features of the framework are briefly discussed.

Philipp A Hoehn; Susan M Scott

2010-01-22T23:59:59.000Z

60

Median statistics cosmological parameter values  

E-Print Network (OSTI)

We present median statistics central values and ranges for 12 cosmological parameters, using 582 measurements (published during 1990-2010) collected by Croft & Dailey (2011). On comparing to the recent Planck collaboration Ade et al. 2013 estimates of 11 of these parameters, we find good consistency in nine cases.

Crandall, Sara

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Summary & Outlook: Particles and Cosmology  

E-Print Network (OSTI)

We review new results on strong and electroweak interactions, flavour physics, cosmic rays and cosmology, which were presented at this conference, focussing on physics beyond the Standard Models. Special emphasis is given to the Higgs sector of the Standard Model of Particle Physics and recent results on high-energy cosmic rays and their implications for dark matter.

Wilfried Buchmuller

2010-03-04T23:59:59.000Z

62

ALS Chemistry Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

ALS Chemistry Lab Print ALS Chemistry Labs The ALS Chemistry Labs are located in the User Support Building (15-130) and in Building 6 (6-2233)*. These spaces are dedicated for...

63

ALS Chemistry Lab  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Lab Print ALS Chemistry Labs The ALS Chemistry Labs are located in the User Support Building (15-130) and in Building 6 (6-2233)*. These spaces are dedicated for...

64

Geology and Reservoir Simulation  

NLE Websites -- All DOE Office Websites (Extended Search)

Service: 1-800-553-7681 Geology and Reservoir Simulation Background Natural gas from shale is becoming ever more recognized as an abundant and economically viable fuel in the...

65

Chemistry Applications at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Chemistry Applications Gaussian 09 Gaussian 09 is a connected series of programs for performing semi-empirical, density functional theory and ab initio molecular orbital...

66

Chemistry Department Seminar Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Department Seminar Schedule Hamilton Seminar Room, Bldg. 555 This page shows future Chemistry Department seminars and those that have taken place within the past six...

67

Green Chemistry and Workers  

E-Print Network (OSTI)

19. P. Anastas, J. Warner. 1998. Green Chemistry: Theory andto Advance New Science, Green Chemistry and EnvironmentalChronicle Extra: Guide to Green Jobs. Field with a Future.

2009-01-01T23:59:59.000Z

68

Federal Interagency Chemistry Representatives (FICR) ...  

Science Conference Proceedings (OSTI)

Federal Interagency Chemistry Representatives (FICR) Meeting 2013 - A Federal Green Chemistry Forum. ...

2013-05-31T23:59:59.000Z

69

Cosmology, Thermodynamics and Matter Creation  

E-Print Network (OSTI)

Several approaches to the matter creation problem in the context of cosmological models are summarily reviewed. A covariant formulation of the general relativistic imperfect simple fluid endowed with a process of matter creation is presented. By considering the standard big bang model, it is shown how the recent results of Prigogine et alii \\cite{1} can be recovered and, at the same time their limits of validity are explicited.

J. A. S. Lima; M. O. Calvao; I. Waga

2007-08-24T23:59:59.000Z

70

Quantum Weak Measurements and Cosmology  

E-Print Network (OSTI)

The indeterminism of quantum mechanics generally permits the independent specification of both an initial and a final condition on the state. Quantum pre-and-post-selection of states opens up a new, experimentally testable, sector of quantum mechanics, when combined with statistical averages of identical weak measurements. In this paper I apply the theory of weak quantum measurements combined with pre-and-post-selection to cosmology. Here, pre-selection means specifying the wave function of the universe or, in a popular semi-classical approximation, the initial quantum state of a subset of quantum fields propagating in a classical back-ground spacetime. The novel feature is post-selection: the additional specification of a condition on the quantum state in the far future. I discuss "natural" final conditions, and show how they may lead to potentially large and observable effects at the present cosmological epoch. I also discuss how pre-and-post-selected quantum contrast to the expectation value of the stress-energy-momentum tensor, resolving a vigorous debate from the 1970's. The paper thus provides a framework for computing large-scale cosmological effects arising from this new sector of quantum mechanics. A simple experimental test is proposed.

Paul Davies

2013-09-03T23:59:59.000Z

71

Timescape cosmology with radiation fluid  

E-Print Network (OSTI)

The timescape cosmology represents a potentially viable alternative to the standard homogeneous cosmology, without the need for dark energy. Although average cosmic evolution in the timescape scenario only differs substantially from that of Friedmann-Lemaitre model at relatively late epochs when the contribution from the energy density of radiation is negligible, a full solution of the Buchert equations to incorporate radiation is necessary to smoothly match parameters to the epoch of photon decoupling and to obtain constraints from cosmic microwave background data. Here we extend the matter-dominated solution found in earlier work to include radiation, providing series solutions at early times and an efficient numerical integration strategy for generating the complete solution. The numerical solution is used to directly calculate the scale of the sound horizon at decoupling, and at the baryon drag epoch. The constraints on these scales from the Planck satellite data yield bounds on the timescape cosmological parameters, which are found to also agree with the best-fit values from a recent analysis of SDSS-II supernova data, while avoiding the problem of a primordial lithium-7 abundance anomaly.

James A. G. Duley; M. Ahsan Nazer; David L. Wiltshire

2013-06-13T23:59:59.000Z

72

String Gas Cosmology and Non-Gaussianities  

E-Print Network (OSTI)

Recently it has been shown that string gas cosmology, an alternative model of the very early universe which does not involve a period of cosmological inflation, can give rise to an almost scale invariant spectrum of metric perturbations. Here we calculate the non-Gaussianities of the spectrum of cosmological fluctuations in string gas cosmology, and find that these non-Gaussianities depend linearly on the wave number and that their amplitude depends sensitively on the string scale. If the string scale is at the TeV scale, string gas cosmology could lead to observable non-Gaussianities, if it is close to the Planck scale, then the non-Gaussianities on current cosmological scales are negligible.

Bin Chen; Yi Wang; Wei Xue; Robert Brandenberger

2007-12-14T23:59:59.000Z

73

A small but nonzero cosmological constant  

E-Print Network (OSTI)

Recent astrophysical observations seem to indicate that the cosmological constant is small but nonzero and positive. The old cosmological constant problem asks why it is so small; we must now ask, in addition, why it is nonzero, and why it is positive. In this essay, we try to kill these three metaphorical birds with one stone. That stone is the unimodular theory of gravity, which is the canonical theory of gravity, except for the way the cosmological constant arises in the theory.

Y. Jack Ng (a; H. Van Dam (b

1999-01-01T23:59:59.000Z

74

Imperfect fluids, Lorentz violations, and Finsler cosmology  

Science Conference Proceedings (OSTI)

We construct a cosmological toy model based on a Finslerian structure of space-time. In particular, we are interested in a specific Finslerian Lorentz violating theory based on a curved version of Cohen and Glashow's very special relativity. The osculation of a Finslerian manifold to a Riemannian manifold leads to the limit of relativistic cosmology, for a specified observer. A modified flat Friedmann-Robertson-Walker cosmology is produced. The analogue of a zero energy particle unfolds some special properties of the dynamics. The kinematical equations of motion are affected by local anisotropies. Seeds of Lorentz violations may trigger density inhomogeneities to the cosmological fluid.

Kouretsis, A. P.; Stathakopoulos, M.; Stavrinos, P. C. [Section of Astrophysics, Astronomy and Mechanics, Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); 1 Anastasiou Genadiou Street, 11474, Athens (Greece); Department of Mathematics, University of Athens, 15784 Greece (Greece)

2010-09-15T23:59:59.000Z

75

Geology of Nevada: The  

E-Print Network (OSTI)

Geology plays a central role in Nevadas human history, economy, and future. Cordilleran tectonics have created the Basin and Range landscape and interior drainage of the Great Basin, provided a rain shadow to make Nevada the nations driest state, and generated frequent earthquakes along normal and strike-slip faults. Geology is key to reducing risks from Nevadas natural and anthropogenic hazards (earthquakes, flash floods, drought, land subsidence, erosion after wildland fires, landslides, swelling and collapsing soils, radon, arsenic, and others). Nevadas geologic fortunes make it the leading state in the production of gold, silver, barite, lithium, and mercury and a major producer of geothermal power and gypsum. The metals are primarily related to igneous activity, with major pulses of magma during the Jurassic, Cretaceous, and Tertiary. Barite is mined from Paleozoic

Jonathan G. Price

2002-01-01T23:59:59.000Z

76

The International Year of Chemistry 2011  

Science Conference Proceedings (OSTI)

Chemistry our life our future The International Year of Chemistry 2011 Analytical Chemistry Related associations Marketing ...

77

Cosmological Simulations for Large-Scale Sky Surveys | Argonne Leadership  

NLE Websites -- All DOE Office Websites (Extended Search)

Instantaneous velocity magnitude in a flow through an open valve in a valve/piston assembly. Instantaneous velocity magnitude in a flow through an open valve in a valve/piston assembly. Instantaneous velocity magnitude in a flow through an open valve in a valve/piston assembly. Christos Altantzis, MIT, and Martin Schmitt, LAV. All the images were generated from their work at LAV. Cosmological Simulations for Large-Scale Sky Surveys PI Name: Christos Frouzakis PI Email: frouzakis@lav.mavt.ethz.ch Institution: Swiss Federal Institute of Technology Zurich Allocation Program: INCITE Allocation Hours at ALCF: 100 Million Year: 2014 Research Domain: Chemistry The combustion of coal and petroleum-based fuels supply most of the energy needed to meet the world's transportation and power generation demands. To address the anticipated petroleum shortage, along with increasing energy

78

Neutrinos in Cosmology and Astrophysics  

E-Print Network (OSTI)

We briefly review the recent developments in neutrino physics and astrophysics which have import for frontline research in nuclear physics. These developments, we argue, tie nuclear physics to exciting developments in observational cosmology and astrophysics in new ways. Moreover, the behavior of neutrinos in dense matter is itself a fundamental problem in many-body quantum mechanics, in some ways akin to well-known issues in nuclear matter and nuclei, and in some ways radically different, especially because of nonlinearity and quantum de-coherence. The self-interacting neutrino gas is the only many body system driven by the weak interactions.

A. B. Balantekin; G. M. Fuller

2013-03-15T23:59:59.000Z

79

A new perspective on early cosmology  

E-Print Network (OSTI)

We present a new perspective on early cosmology based on Loop Quantum Gravity. We use projected spinnetworks, coherent states and spinfoam techniques, to implement a quantum reduction of the full Kinematical Hilbert space of LQG, suitable to describe inhomogeneous cosmological models. Some preliminary results on the solutions of the Scalar constraint of the reduced theory are also presented.

Emanuele Alesci

2013-03-04T23:59:59.000Z

80

Preface to Special Issue of Chemical Geology on Precambrian Chemostratigraphy in honor of the late William T. Holser  

E-Print Network (OSTI)

South American symposium on Isotope Geology (held in Salvador, Brazil, August 17­24, 2003, includingPreface Preface to Special Issue of Chemical Geology on Precambrian Chemostratigraphy in honor "Bill" T. Holser and colleagues on ancient ocean chemistry, several groups began carbon isotope studies

Kaufman, Alan Jay

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NUCLEAR CHEMISTRY ANNUAL REPORT 1970  

E-Print Network (OSTI)

1970). tpresent address: Chemistry Department, University ofSept. 1970); Nuclear Chemistry Division Annual Report, 1969,S. G. Thompson, in Nuclear Chemistry Division Annual Report

Authors, Various

2011-01-01T23:59:59.000Z

82

Computational Chemistry | More Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

SHARE Computational Chemistry Computational Chemistry at ORNL uses principles of computer science and mathematics and the results of theoretical physics and chemistry to...

83

Symplectic method in quantum cosmology  

Science Conference Proceedings (OSTI)

In the present work, we study the quantum cosmology description of Friedmann-Robertson-Walker models in the presence of a generic perfect fluid and a cosmological constant, which may be positive or negative. We work in Schutz's variational formalism and the three-dimensional spatial sections may have positive, negative, or zero constant curvature. If one uses the scale factor and its canonically conjugated momentum as the phase space variables that describe the geometrical sector of these models, one obtains Wheeler-DeWitt equations with operator ordering ambiguities. In order to avoid those ambiguities and simplify the quantum treatment of the models, we follow references [Edesio M. Barbosa, Jr. and Nivaldo A. Lemos, Gen. Relativ. Gravit. 38, 1609 (2006).][Edesio M. Barbosa, Jr. and Nivaldo A. Lemos, Phys. Rev. D 78, 023504 (2008).] and introduce new phase space variables. We explicitly demonstrate, using the symplectic method, that the transformation leading from the old set of variables to the new one is canonical.

Silva, E. V. Correa; Monerat, G. A.; Oliveira-Neto, G.; Neves, C. [Departamento de Matematica e Computacao, Faculdade de Tecnologia, Universidade do Estado do Rio de Janeiro, Rodovia Presidente Dutra, Km 298, Polo Industrial, CEP 27537-000, Resende-RJ (Brazil); Ferreira Filho, L. G. [Departamento de Mecanica e Energia, Faculdade de Tecnologia, Universidade do Estado do Rio de Janeiro, Rodovia Presidente Dutra, Km 298, Polo Industrial, CEP 27537-000, Resende-RJ (Brazil)

2009-08-15T23:59:59.000Z

84

Green Chemistry and Workers  

E-Print Network (OSTI)

public/private investment in green chemistry research andinvestment in cleaner chemical technologies, known collectively as greenGREEN CHEMISTRY AND WORKERS / most hazardous chemicals on the market (closing the safety gap) will spur investment

2009-01-01T23:59:59.000Z

85

Geological Sciences College of Science  

E-Print Network (OSTI)

postgraduate studies in Engineering Geology. `From going to mines and quarries, looking at what the job entails to his childhood when he would enjoy visiting mines and caves while on holidays around the UK, learning Geological Evolution of NZ and Antarctica GEOL 483 Coal & Petroleum Geology GEOL488 Special Topics

Hickman, Mark

86

Hydrological/Geological Studies  

Office of Legacy Management (LM)

.\ .8.2 .\ .8.2 Hydrological/Geological Studies Book 1. Radiochemical Analyses of Water Samples from SelectedT" Streams Wells, Springs and Precipitation Collected During Re-Entry Drilling, Project Rulison-7, 197 1 HGS 8 This page intentionally left blank . . . ... . . . . . . . . , : . . . . . . . . . ' . r - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . ..... . - x ..:; . , ' , . . ' . . . . . . !' r:.::. _. . : _ . . : . . . . \ . . ' - \ , : , . . . . . . . . . . . . . il.'; , . . y,.:.: . . . . . . . . ., ' . . ' . , . . . . . . . . . - . . . . . ... . . . . . : . . - . . . . . . . . . . . . . . . . . . . . . . .,. . . . . . . . .. 2 . . . . . . . . . . . ..... . . . . . . . . . . . . , .- , . : , . , . . . . ......... ... ) . . i - . . . . . . . . . . . . . . . . . . Prepared. Under . . . ~ ~ r e e m e n t - No. AT(29-2) -474 for the ~ e v a d a - - Operations Office U. S .. Atomic. ,Energy Commi~ssion

87

Analytical Chemistry Databases and Links  

Science Conference Proceedings (OSTI)

Analytical chemistry websites, humor, Material Safety Data Sheets,Patent Information, and references. Analytical Chemistry Databases and Links Analytical Chemistry acid analysis Analytical Chemistry aocs applicants april articles atomic)FluorometryDiffer

88

Fuel Chemistry Preprints  

Science Conference Proceedings (OSTI)

Papers are presented under the following symposia titles: advances in fuel cell research; biorefineries - renewable fuels and chemicals; chemistry of fuels and emerging fuel technologies; fuel processing for hydrogen production; membranes for energy and fuel applications; new progress in C1 chemistry; research challenges for the hydrogen economy, hydrogen storage; SciMix fuel chemistry; and ultraclean transportation fuels.

NONE

2005-09-30T23:59:59.000Z

89

Radiation Dominated Universe for Jordan-Brans-Dicke Cosmology  

E-Print Network (OSTI)

Jordan-Brans-Dicke cosmology with a standard kinetic term for the scalar field and no mass term has the same radiation dominated solution as standard Einstein cosmology without the cosmological constant. Because of this, the primordial nucleosynthesis (Big - Bang nucleosynthesis) result obtained for standard cosmology remains the same for Jordan-Brans-Dicke cosmology. We show that Jordan-Brans-Dicke cosmology with a mass term for the scalar field as well as explaining dark energy for the present era, can also explain radiation dominated cosmology for the primordial nucleosynthesis era.

M. Arik; L. Amon Susam

2010-06-22T23:59:59.000Z

90

Scalar perturbations in deflationary cosmological models  

E-Print Network (OSTI)

We consider scalar perturbations of energy--density for a class of cosmological models where an early phase of accelerated expansion evolves, without any fine--tuning for graceful exit, towards the standard Friedman eras of observed universe. The geometric procedure which generates such models agrees with results for string cosmology since it works if dynamics is dominated by a primordial fluid of extended massive objects. The main result is that characteristic scales of cosmological interest, connected with the extension of such early objects, are selected.}

S. Capozziello; G. Lambiase; G. Scarpetta

1998-06-09T23:59:59.000Z

91

Assistant Professor Quantitative Structural Geology or Geomechanics  

E-Print Network (OSTI)

/tectonics, hydrogeology, stable isotope geochemistry, environmental geology, sedimentology and stratigraphyAssistant Professor Quantitative Structural Geology or Geomechanics The Department of Geology structural geology with interest in the study of fractured reservoirs and geomechanics. The successful

Mohaghegh, Shahab

92

From Microwave Anisotropies to Cosmology  

E-Print Network (OSTI)

Fluctuations in the temperature of the cosmic microwave background have now been detected over a wide range of angular scales, and a consistent picture seems to be emerging. This article describes some of the implications for cosmology. Analysis of all the published detections suggests the existence of a peak on degree scales of height 2.4 to 10 (90%CL) relative to the amplitude of the power spectrum at large angular scales. This result confirms an early prediction, implies that the universe did in fact recombine, and limits theories of structure formation. Illustrative examples are provided of how the comparison of microwave background and large-scale structure data will be a potentially powerful means of answering fundamental questions about the universe.

Douglas Scott; Joe Silk; Martin White

1995-05-04T23:59:59.000Z

93

Generating Cosmological Gaussian Random Fields  

E-Print Network (OSTI)

We present a generic algorithm for generating Gaussian random initial conditions for cosmological simulations on periodic rectangular lattices. We show that imposing periodic boundary conditions on the real-space correlator and choosing initial conditions by convolving a white noise random field results in a significantly smaller error than the traditional procedure of using the power spectrum. This convolution picture produces exact correlation functions out to separations of L/2, where L is the box size, which is the maximum theoretically allowed. This method also produces tophat sphere fluctuations which are exact at radii $ R \\le L/4 $. It is equivalent to windowing the power spectrum with the simulation volume before discretizing, thus bypassing sparse sampling problems. The mean density perturbation in the volume is no longer constrained to be zero, allowing one to assemble a large simulation using a series of smaller ones. This is especially important for simulations of Lyman-$\\alpha$ systems where sma...

Pen, U L

1997-01-01T23:59:59.000Z

94

Higgs Particle Mass in Cosmology  

E-Print Network (OSTI)

A version of the Standard Model is considered, where the electroweak symmetry breaking is provided by cosmological initial data given for the zeroth Fourier harmonic of the Higgs field $$. The initial data symmetry breaking mechanism removes the Higgs field contribution to the vacuum energy density, possible creation of monopoles, and tachion behavior at high energies, if one imposes an ``inertial'' condition on the Higgs potential $\\textsf{V}_{\\rm Higgs}()=0$. The requirement of zero radiative corrections to this {\\em inertial} condition coincides with the limiting point of the vacuum stability in the Standard Model. The latter together with the direct experimental limit gives the prediction for the mass of the Higgs boson to be in the range $114 < m_h \\lsim 134$ GeV.

A. B. Arbuzov; L. A. Glinka; V. N. Pervushin

2007-05-31T23:59:59.000Z

95

Dynamical System Analysis of Cosmologies with Running Cosmological Constant from Quantum Einstein Gravity  

E-Print Network (OSTI)

We discuss a mechanism that induces a time-dependent vacuum energy on cosmological scales. It is based on the instability induced renormalization triggered by the low energy quantum fluctuations in a Universe with a positive cosmological constant. We employ the dynamical systems approach to study the qualitative behavior of Friedmann-Robertson-Walker cosmologies where the cosmological constant is dynamically evolving according with this nonperturbative scaling at low energies. It will be shown that it is possible to realize a "two regimes" dark energy phases, where an unstable early phase of power-law evolution of the scale factor is followed by an accelerated expansion era at late times.

Bonanno, Alfio

2011-01-01T23:59:59.000Z

96

Constraining Palatini cosmological models using GRB data  

E-Print Network (OSTI)

New constraints on previously investigated Palatini cosmological models [arXiv:1109.3420] have been obtained by adding Gamma Ray Burst data [arXiv:1205.2954].

Michal Kamionka

2013-03-08T23:59:59.000Z

97

SLAC National Accelerator Laboratory - Astrophysics and Cosmology  

NLE Websites -- All DOE Office Websites (Extended Search)

Astrophysics and Cosmology A night time aerial image of one of the labs at SLAC SLAC astrophysicists and cosmologists play leading roles in the study of the high-energy universe,...

98

Entropy signature of the running cosmological constant  

E-Print Network (OSTI)

Renormalization group (RG) improved cosmologies based upon a RG trajectory of Quantum Einstein Gravity (QEG) with realistic parameter values are investigated using a system of cosmological evolution equations which allows for an unrestricted energy exchange between the vacuum and the matter sector. It is demonstrated that the scale dependence of the gravitational parameters, the cosmological constant in particular, leads to an entropy production in the matter system. The picture emerges that the Universe started out from a state of vanishing entropy, and that the radiation entropy observed today is essentially due to the coarse graining (RG flow) in the quantum gravity sector which is related to the expansion of the Universe. Furthermore, the RG improved field equations are shown to possess solutions with an epoch of power law inflation immediately after the initial singularity. The inflation is driven by the cosmological constant and ends automatically once the RG running has reduced the vacuum energy to the...

Bonanno, Alfio

2007-01-01T23:59:59.000Z

99

A small but nonzero cosmological constant  

E-Print Network (OSTI)

Recent astrophysical observations seem to indicate that the cosmological constant is small but nonzero and positive. The old cosmological constant problem asks why it is so small; we must now ask, in addition, why it is nonzero (and is in the range found by recent observations), and why it is positive. In this essay, we try to kill these three metaphorical birds with one stone. That stone is the unimodular theory of gravity, which is the ordinary theory of gravity, except for the way the cosmological constant arises in the theory. We argue that the cosmological constant becomes dynamical, and eventually, in terms of the cosmic scale factor $R(t)$, it takes the form $\\Lambda(t) = \\Lambda(t_0)(R(t_0)/R(t))^2$, but not before the epoch corresponding to the redshift parameter $z \\sim 1$.

Y. Jack Ng; H. van Dam

1999-11-13T23:59:59.000Z

100

Quantum cosmology and late-time singularities  

E-Print Network (OSTI)

The development of dark energy models has stimulated interest to cosmological singularities, which differ from the traditional Big Bang and Big Crunch singularities. We review a broad class of phenomena connected with soft cosmological singularities in classical and quantum cosmology. We discuss the classification of singularities from the geometrical point of view and from the point of view of the behaviour of finite size objects, crossing such singularities. We discuss in some detail quantum and classical cosmology of models based on perfect fluids (anti-Chaplygin gas and anti-Chaplygin gas plus dust), of models based on the Born-Infeld-type fields and of the model of a scalar field with a potential inversely proportional to the field itself. We dwell also on the phenomenon of the phantom divide line crossing in the scalar field models with cusped potentials. Then we discuss the Friedmann equations modified by quantum corrections to the effective action of the models under considerations and the influence of such modification on the nature and the existence of soft singularities. We review also quantum cosmology of models, where the initial quantum state of the universe is presented by the density matrix (mixed state). Finally, we discuss the exotic singularities arising in the brane-world cosmological models.

A. Yu. Kamenshchik

2013-07-22T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Cosmological Acceleration: Dark Energy or Modified Gravity?  

E-Print Network (OSTI)

We review the evidence for recently accelerating cosmological expansion or "dark energy", either a negative pressure constituent in General Relativity (Dark Energy) or modified gravity (Dark Gravity), without any Dark Energy constituent. If constituent Dark Energy does not exist, so that our universe is now dominated by pressure-free matter, Einstein gravity must be modified at low curvature. The vacuum symmetry of any Robertson-Walker universe then characterizes Dark Gravity as low- or high-curvature modifications of Einstein gravity. The dynamics of either kind of "dark energy" cannot be derived from the homogeneous expansion alone, but requires also observing the growth of inhomogeneities. Present and projected observations are all consistent with a small fine tuned cosmological constant, with nearly static Dark Energy, or with gravity modified at cosmological scales. The growth of cosmological fluctuations will potentially distinguish static "dark energy" from dynamic "dark energy" with equation of state $w(z)$ either changing rapidly or tracking the background matter. But to cosmologically distinguish $\\Lambda$CDM from modified gravity will require a weak lensing shear survey more ambitious than any now projected. Dvali-Gabadadze-Porrati modifications of Einstein gravity may also be detected in refined bservations in the solar system or at the intermediate Vainstein scale. Dark Energy's epicyclic character, failure to explain the original Cosmic Coincidence ("Why now?") without fine tuning, inaccessibility to laboratory or solar system tests, along with braneworld theories, now motivate future precision solar system, Vainstein-scale and cosmological-scale studies of Dark Gravity.

Sidney Bludman

2006-05-08T23:59:59.000Z

102

Conformal cosmological model and SNe Ia data  

SciTech Connect

Now there is a huge scientific activity in astrophysical studies and cosmological ones in particular. Cosmology transforms from a pure theoretical branch of science into an observational one. All the cosmological models have to pass observational tests. The supernovae type Ia (SNe Ia) test is among the most important ones. If one applies the test to determine parameters of the standard Friedmann-Robertson-Walker cosmological model one can conclude that observations lead to the discovery of the dominance of the {Lambda} term and as a result to an acceleration of the Universe. However, there are big mysteries connected with an origin and an essence of dark matter (DM) and the {Lambda} term or dark energy (DE). Alternative theories of gravitation are treated as a possible solution of DM and DE puzzles. The conformal cosmological approach is one of possible alternatives to the standard {Lambda}CDM model. As it was noted several years ago, in the framework of the conformal cosmological approach an introduction of a rigid matter can explain observational data without {Lambda} term (or dark energy). We confirm the claim with much larger set of observational data.

Zakharov, A. F., E-mail: zakharov@itep.ru [National Astronomical Observatories of Chinese Academy of Sciences (China); Pervushin, V. N. [Joint Institute for Nuclear Research, Bogoliubov Laboratory for Theoretical Physics (Russian Federation)

2012-11-15T23:59:59.000Z

103

Magnetic Bianchi type II string cosmological model in loop quantum cosmology  

E-Print Network (OSTI)

The loop quantum cosmology of the Bianchi type II string cosmological model in the presence of a homogeneous magnetic field is studied. We present the effective equations which provide modifications to the classical equations of motion due to quantum effects. The numerical simulations confirm that the big bang singularity is resolved by quantum gravity effects.

Victor Rikhvitsky; Bijan Saha; Mihai Visinescu

2013-12-09T23:59:59.000Z

104

DOE fundamentals handbook: Chemistry  

SciTech Connect

This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids).

Not Available

1993-01-01T23:59:59.000Z

105

Cermic Chemistry.qrk  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Manufacturing Technologies The Manufacturing Science and Technology Center develops both aque- ous and non-aqueous chemical synthesis routes to generate highly controlled...

106

Chemistry Dept. Research Facilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Facilities As a research organization within a National Laboratory, the Chemistry Department operates research facilities that are available to other researchers as...

107

Synthetic and Mechanistic Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

work was published in the international edition of the chemistry journal Angewandte Chemie. http:www.lanl.govnewsroomnews-releases2012November11.26-hanson-catalysis.php...

108

BNL Chemistry Department  

NLE Websites -- All DOE Office Websites (Extended Search)

American Academy of Arts and Sciences In Memoriam: Carol Creutz Women @ Energy: Joanna Fowler Electrocatalysis Pays Tribute to BNL Scientist Radoslav Adzic All Chemistry...

109

Forensic Database Chemistry & Toxicology  

Science Conference Proceedings (OSTI)

... A free online commercial chemistry and biology reference tool that searches ... Rashida Weathers DEA Mid-Atlantic Laboratory Director 301.583.3200. ...

2013-07-31T23:59:59.000Z

110

Chemistry Dept. Research Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Programs in the Chemistry Department Artificial Photosynthesis Catalysis: Reactivity and Structure Gas Phase Molecular Dynamics Electron- and Photo-Induced Processes for...

111

Chemistry Department Operations  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures (c). Laser Safety Information: (d). Chemistry Department Laser Safety Guidelines Operational Work Planning (a). Training waiver (b). Staff Shop Posting Local...

112

Generating Cosmological Gaussian Random Fields  

E-Print Network (OSTI)

We present a generic algorithm for generating Gaussian random initial conditions for cosmological simulations on periodic rectangular lattices. We show that imposing periodic boundary conditions on the real-space correlator and choosing initial conditions by convolving a white noise random field results in a significantly smaller error than the traditional procedure of using the power spectrum. This convolution picture produces exact correlation functions out to separations of L/2, where L is the box size, which is the maximum theoretically allowed. This method also produces tophat sphere fluctuations which are exact at radii $ R \\le L/4 $. It is equivalent to windowing the power spectrum with the simulation volume before discretizing, thus bypassing sparse sampling problems. The mean density perturbation in the volume is no longer constrained to be zero, allowing one to assemble a large simulation using a series of smaller ones. This is especially important for simulations of Lyman-$\\alpha$ systems where small boxes with steep power spectra are routinely used. We also present an extension of this procedure which generates exact initial conditions for hierarchical grids at negligible cost.

Ue-Li Pen

1997-09-25T23:59:59.000Z

113

TERAPIXEL IMAGING OF COSMOLOGICAL SIMULATIONS  

SciTech Connect

The increasing size of cosmological simulations has led to the need for new visualization techniques. We focus on smoothed particle hydrodynamic (SPH) simulations run with the GADGET code and describe methods for visually accessing the entire simulation at full resolution. The simulation snapshots are rastered and processed on supercomputers into images that are ready to be accessed through a Web interface (GigaPan). This allows any scientist with a Web browser to interactively explore simulation data sets in both spatial and temporal dimensions and data sets which in their native format can be hundreds of terabytes in size or more. We present two examples, the first a static terapixel image of the MassiveBlack simulation, a P-GADGET SPH simulation with 65 billion particles, and the second an interactively zoomable animation of a different simulation with more than 1000 frames, each a gigapixel in size. Both are available for public access through the GigaPan Web interface. We also make our imaging software publicly available.

Feng Yu; Croft, Rupert A. C.; Di Matteo, Tiziana; Khandai, Nishikanta [Bruce and Astrid McWilliams Center for Cosmology, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Sargent, Randy; Nourbakhsh, Illah; Dille, Paul; Bartley, Chris [Robotics Institute, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Springel, Volker [Heidelberger Institut fuer Theoretische Studien, Schloss-Wolfsbrunnenweg 35, 69118 Heidelberg (Germany); Jana, Anirban [Pittsburgh Supercomputing Center, Pittsburgh, PA 15213 (United States); Gardner, Jeffrey, E-mail: yfeng1@andrew.cmu.edu [Physics Department, University of Washington, Seattle, WA 98195 (United States)

2011-12-01T23:59:59.000Z

114

NWChem and Actinide Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

ACTINIDE CHEMISTRY MEETS COMPUTATION ACTINIDE CHEMISTRY MEETS COMPUTATION Capturing how contaminants migrate across groundwater-surface water inter- faces is a challenge that researchers at the Department of Energy's EMSL-the Environmental Molecular Sciences Laboratory-are rising to. This challenge, a top priority for waste cleanup efforts at the Hanford Site in Richland, Washington, and other parts of the DOE weapons complex, is being addressed using NWChem, a computational chemistry package developed at EMSL that is designed to run on high-performance parallel supercomputers, such as EMSL's Chinook. NWChem is enabling breakthrough discoveries in actinide behavior and chemistry, in part because it allows researchers to accurately model the dynamical formation, speciation, and redox chemistry of actinide complexes in realistic complex mo-

115

The Universe Adventure - The Cosmological Principle  

NLE Websites -- All DOE Office Websites (Extended Search)

Cosmological Principle Cosmological Principle The distribution of matter across the universe is approximately even. The distribution of matter across the Universe is approximately even, homogeneous, when considered at large scales. Albert Einstein's theory of General Relativity permits many possible types of universes. In applying the theory to describe the dynamics of our Universe, Einstein made a central empirical assumption to limit the number of possible solutions to the equations. He assumed that on very large scales the distribution of matter in the Universe is constant, making the Universe appear smooth. This idea is a form of the modern cosmological principle. This principle is not exact since much of the Universe's matter is found clustered together in planets, stars, and galaxies, but when considered at

116

Higgs mass determined by cosmological parameters  

E-Print Network (OSTI)

Postulating that all massless elementary fields have conformal scaling symmetry removes a conflict between gravitational theory and the standard model of elementary quantum fields. If the scalar field essential to SU(2) symmetry breaking has conformal symmetry, it must depend explicitly on the Ricci curvature scalar of gravitational theory. This has profound consequences for both cosmology and elementary particle physics, since cosmological data determine scalar field parameters. A modified Friedmann equation is derived and solved numerically. The theory is consistent with all relevant data for supernovae redshifts below $z=1$. The implied value of the cosmological constant implies extremely small Higgs mass, far below current empirical lower bounds. Detection of a Higgs boson with large mass would falsify this argument.

R. K. Nesbet

2008-11-25T23:59:59.000Z

117

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

118

Thermodynamics of Ideal Gas in Cosmology  

E-Print Network (OSTI)

The equation of state and the state functions for the gravitational source are necessary conditions for solving cosmological model and stellar structure. The usual treatments are directly based on the laws of thermodynamics, and the physical meanings of some concepts are obscure. This letter show that, we can actually derive all explicit fundamental state functions for the ideal gas in the context of cosmology via rigorous dynamical and statistical calculation. These relations have clear physical meanings, and are valid in both non-relativistic and ultra-relativistic cases. Some features of the equation of state are important for a stable structure of a star with huge mass.

Ying-Qiu Gu

2007-08-22T23:59:59.000Z

119

DOE fundamentals handbook: Chemistry  

Science Conference Proceedings (OSTI)

The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems.

Not Available

1993-01-01T23:59:59.000Z

120

Hawaii geologic map data | Open Energy Information  

Open Energy Info (EERE)

Not Provided DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Hawaii geologic map data Citation Hawaii geologic map data Internet. 2013....

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

CRYSTAL CHEMISTRY OF HYDROUS MINERALS  

DOE Green Energy (OSTI)

Hydrogen has long been appreciated for its role in geological processes of the Earth's crust. However, its role in Earth's deep interior has been neglected in most geophysical thinking. Yet it is now believed that most of our planet's hydrogen may be locked up in high pressure phases of hydrous silicate minerals within the Earth's mantle. This rocky interior (approximately 7/8 of Earth's volume) is conjectured to contain 1-2 orders of magnitude more water than the more obvious oceans (the ''hydrosphere'') and atmosphere. This project is aimed at using the capability of neutron scattering from hydrogen to study the crystal chemistry and stability of hydrogen-bearing minerals at high pressures and temperatures. At the most basic level this is a study of the atomic position and hydrogen bond itself. We have conducted experimental runs on hydrous minerals under high pressure and high temperature conditions. The crystallographic structure of hydrous minerals at extreme conditions and its structural stability, and hydrogen bond at high P-T conditions are the fundamental questions to be addressed. The behavior of the hydrous minerals in the deep interior of the Earth has been discussed.

Y. ZHAO; ET AL

2001-02-01T23:59:59.000Z

122

NETL: Geological and Environmental Science  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological & Environmental Systems Geological & Environmental Systems Onsite Research Geological and Environmental Sciences Geological and Environmental Sciences (GES) is a focus area of the National Energy Technology Laboratory's Office of Research and Development (ORD). ORD's other focus areas are Energy System Dynamics, Computational and Basic Sciences, and Materials Science and Engineering. Scientists and engineers in ORD conduct research at NETL's advanced research facilities in Morgantown, WV; Pittsburgh, PA; and Albany, OR, and at various offsite locations. GES tackles the challenge of clean energy production from fossil energy sources by focusing on the behavior of natural systems at both the earth's surface and subsurface, including prediction, control, and monitoring of fluid flow in porous and fractured media. Efforts include

123

Chemistry Department Seminar Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Archive of Chemistry Department Seminars Archive of Chemistry Department Seminars See also: recent Department seminars Friday, July 27, 2012 "Precise Design of Donor-Acceptor Interface based on Microphase Segregated Nanostructure" Sadayuki Asaoka, Kyoto Institute of Technology Hosted by Dr. John Miller 11:00 AM, Room 300, Chemistry Bldg. 555 Thursday, April 26, 2012 ""NOx Catalysis from the Bottom Up"" Dr. William F. Schneider, Dept. of Chemical and Biomolecular Engineering, University of Notre Dame Hosted by Ping Liu 11:00 AM, Hamilton Seminar Room, Bldg. 555 Friday, April 13, 2012 "High-energy resolution x-ray emission spectroscopy for catalysis and materials chemistry" Olga Safonova, Swiss Light Source & Energy Dept. at Paul Scherrer Institute Hosted by Dario Stacchiola

124

The Entire Chemistry Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Archives Chemistry Archives Chemistry Archives, Since November 1991 Table of Contents: When entropy = 0, does atomic motion stop? When H2O and methanol mix Heavy element names Radon Bee's wax CFC's and ozone depletion Solar cells and Phosphorous vs Chlorophyll B Aromaticity Hypercolor t-shirt Bonds for tie dye Soda POP General chemistry questions Tyndall Effect Silicon chips Molecules and cancer Acetylene safety Picric acid Buckyballs Piezoelectric Weak pennies Extracting fats Anti-oxidants Batteries & chemicals Hydrogen, can it be an isotope? Can soda conduct electricity? pH What is the biggest molecule? Smallest molecule Metallic zinc as catalyst Bond order in carbon bonds Packing of crystal structure Advantages, disadvantages of chloroform Coloring oil Free-radicals Acid-Base reaction

125

Cycle Chemistry Improvement Program  

Science Conference Proceedings (OSTI)

The purity of water and steam is central to ensuring fossil plant component availability and reliability. This report, which describes formal cycle chemistry improvement programs at nine utilities, will assist utilities in achieving significant operation and maintenance cost reductions.

1997-04-21T23:59:59.000Z

126

Synthetic and Mechanistic Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

work was published in the international edition of the chemistry journal Angewandte Chemie. http:www.lanl.gov newsroomnews-releases2012November11.26-hanson-catalysis.php...

127

BNL Chemistry Department  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Dept. Bldg. 555A Brookhaven National Lab P.O. Box 5000 Upton, NY 11973-5000 Ph: (631)344-4301 Fax: (631)344-5815 Radoslav Adzic, Vyacheslov Volcov, Lijun Wu, Wei An, Jia...

128

Cosmological singularities in Bakry-mery spacetimes  

E-Print Network (OSTI)

We consider spacetimes consisting of a manifold with Lorentzian metric and a weight function or scalar field. These spacetimes admit a Bakry-\\'Emery-Ricci tensor which is a natural generalization of the Ricci tensor. We impose an energy condition on the Bakry-\\'Emery-Ricci tensor and obtain singularity theorems of a cosmological type, both for zero and for positive cosmological constant. That is, we find conditions under which every timelike geodesic is incomplete. These conditions are given by "open" inequalities, so we examine the borderline (equality) cases and show that certain singularities are avoided in these cases only if the geometry is rigid; i.e., if it splits as a Lorentzian product or, for a positive cosmological constant, a warped product, and the weight function is constant along the time direction. Then the product case is future timelike geodesically complete while, in the warped product case, worldlines of conformally static observers are complete. Our results answer a question posed by J Case. We then apply our results to the cosmology of scalar-tensor gravitation theories. We focus on the Brans-Dicke family of theories in 4 spacetime dimensions, where we obtain "Jordan frame" singularity theorems for big bang singularities.

Gregory J Galloway; Eric Woolgar

2013-12-12T23:59:59.000Z

129

Primordial magnetic field limits from cosmological data  

SciTech Connect

We study limits on a primordial magnetic field arising from cosmological data, including that from big bang nucleosynthesis, cosmic microwave background polarization plane Faraday rotation limits, and large-scale structure formation. We show that the physically relevant quantity is the value of the effective magnetic field, and limits on it are independent of how the magnetic field was generated.

Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, Ontario P3E 2C (Canada); Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Tevzadze, Alexander G. [Abastumani Astrophysical Observatory, Ilia State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Faculty of Exact and Natural Sciences, Tbilisi State University, 1 Chavchavadze Avenue, Tbilisi, GE-0128 (Georgia); Sethi, Shiv K. [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213 (United States); Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Pandey, Kanhaiya [Raman Research Institute, Sadashivanagar, Bangalore 560080 (India); Ratra, Bharat [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States)

2010-10-15T23:59:59.000Z

130

Encoding cosmological futures with conformal structures  

E-Print Network (OSTI)

Quiescent cosmology and the Weyl curvature hypothesis possess a mathematical framework, namely the definition of an Isotropic Singularity, but only for the initial state of the universe. A complementary framework is necessary to also encode appropriate cosmological futures. In order to devise a new framework we analyse the relation between regular conformal structures and (an)isotropy, the behaviour and role of a monotonic conformal factor which is a function of cosmic time, as well as four example cosmologies for further guidance. Finally, we present our new definitions of an Anisotropic Future Endless Universe and an Anisotropic Future Singularity which offer a promising realisation for the new framework. Their irregular, degenerate conformal structures differ significantly from those of the Isotropic Singularity. The combination of the three definitions together could then provide the first complete formalisation of the quiescent cosmology concept. For completeness we also present the new definitions of an Isotropic Future Singularity and a Future Isotropic Universe. The relation to other approaches, in particular to the somewhat dual dynamical systems approach, and other asymptotic scenarios is briefly discussed.

Philipp A Hoehn; Susan M Scott

2010-01-18T23:59:59.000Z

131

Cosmological parameter estimation from CMB experiments  

Science Conference Proceedings (OSTI)

I review the general aspects of cosmological parameter estimation from observations of the cosmic microwave background (CMB) temperature anisotropies in the framework of inflationary adiabatic models. The most recent CMB datasets are starting to give good constraints on the relevant parameters of inflationary adiabatic models. They point toward a model consistent with the basic predictions of inflation: a nearly flat universe

Amedeo Balbi

2001-01-01T23:59:59.000Z

132

SC e-journals, Chemistry  

Office of Scientific and Technical Information (OSTI)

Chemistry Chemistry Accounts of Chemical Research Accreditation and Quality Assurance ACS Chemical Biology ACS Nano Acta Biotheoretica Acta Materialia Acta Neuropathologica Adsorption Advanced Engineering Materials Advances in Physical Chemistry - OAJ AlChE Journal Amino Acids Analyst Analytica Chimica Acta Analytical and Bioanalytical Chemistry Analytical Biochemistry Analytical Chemistry Analytical Sciences - OAJ Angewandte Chemie - International Edition Annual Review of Analytical Chemistry Annual Review of Biochemistry Annual Review of Biophysics Annual Review of Materials Research Annual Review of Physical Chemistry Antimicrobial Agents and Chemotherapy Applied Geochemistry Applied Radiation and Isotopes Applied Surface Science Applied Thermal Engineering Aquatic Geochemistry

133

Conformal Structures Admitted by a Class of FRW Cosmologies  

E-Print Network (OSTI)

In this paper we demonstrate that there are large classes of Friedmann-Robertson-Walker (FRW) cosmologies that admit isotropic conformal structures of Quiescent Cosmology. FRW models have long been known to admit singularities such as Big Bangs and Big Crunches [1, 2] but recently it has been shown that there are other cosmological structures that these solutions contain. These structures are Big Rips, Sudden Singularities and Extremality Events [1, 2]. Within the Quiescent Cosmology framework [3] there also exist structures consistent with a cosmological singularity known as the Isotropic Past Singularity (IPS) [4, 5]. There also exists a cosmological final state known as a Future Isotropic Universe (FIU) [4], which strictly speaking, doesn't fit with the fundamental ideals of Quiescent Cosmology. In this paper, we compare the cosmological events of a large class of FRW solutions to the conformal structures of Quiescent Cosmology [4]. In the first section of this paper we present the relevant background information and our motivation. In the second section of this paper we construct conformal relationships for relevant FRW models. The third section contains a thorough discussion of a class of FRW solutions that cannot represent any of the previously constructed isotropic conformal structures from Quiescent Cosmology. The final section contains our remarks and future outlook for further study of this field.

Philip Threlfall; Susan M. Scott

2012-11-26T23:59:59.000Z

134

Guide to Chemistry Dept  

NLE Websites -- All DOE Office Websites (Extended Search)

Guide to the Chemistry Building Guide to the Chemistry Building The main Chemistry building (Building 555) has been designed to make adequate facilities available for research and to provide an informal atmosphere for free exchange among Department members. There are public areas, shared laboratories, shared office space, and privately assigned places. A newcomer to the building should become familiar with locations of the key areas. Stairs and Elevators - Building 555 The central main staircase and a passenger elevator are for personnel traffic only. Each wing has a staircase. There is a rear staircase for traffic directly to service areas. The building has a freight elevator at the rear core. Flammable material, chemicals, solvents, gas cylinders, etc. can be transported in the freight elevator but not in the passenger elevator. Do not ride with gas cylinders or dewars charged with cryogens as the presence of these in a confined space introduces a suffocation hazard.

135

A Cosmology Forecast Toolkit -- CosmoLib  

E-Print Network (OSTI)

The package CosmoLib is a combination of a cosmological Boltzmann code and a simulation toolkit to forecast the constraints on cosmological parameters from future observations. In this paper we describe the released linear-order part of the package. We discuss the stability and performance of the Boltzmann code. This is written in Newtonian gauge and including dark energy perturbations. In CosmoLib the integrator that computes the CMB angular power spectrum is optimized for a $\\ell$-by-$\\ell$ brute-force integration, which is useful for studying inflationary models predicting sharp features in the primordial power spectrum of metric fluctuations. The numerical code and its documentation are available at http://www.cita.utoronto.ca/~zqhuang/CosmoLib.

Zhiqi Huang

2012-01-28T23:59:59.000Z

136

Greening Up Cross-Coupling Chemistry  

E-Print Network (OSTI)

today. Insofar as green chemistry is concerned, however,Handbook of organopalladium chemistry for organic synthesis.Hanefeld U (2007) Green chemistry and catalysis. Wiley-VCH,

Lipshutz, Bruce H.; Abela, Alexander R.; Bokovi?, arko V.; Nishikata, Takashi; Duplais, Christophe; Krasovskiy, Arkady

2010-01-01T23:59:59.000Z

137

THE COORDINATION CHEMISTRY OF METAL SURFACES  

E-Print Network (OSTI)

48 and the cluster chemistry by the The nickel and platinumL. Muetterties Department of Chemistry, Lawrence Berkeleyphenomenon in metal surface chemistry. Ultra high vacuw:n

Muetterties, Earl L.

2013-01-01T23:59:59.000Z

138

Nuclear Chemistry at BNL 1947-66  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry in the Chemistry Department. The National Laboratories were spawned from the Manhattan Project. Not coincidentally, nuclear chemistry and nuclear physics burgeoned...

139

Geologic Repository at a Geologic Repository Operations Area at Yucca  

E-Print Network (OSTI)

On June 3, 2008, the U.S. Department of Energy (DOE) submitted its license application (LA) to the U.S. Nuclear Regulatory Commission (NRC) for a construction authorization for a geologic repository pursuant to Section 114 of the Nuclear Waste Policy Act of 1982, as amended

Mountain Nevada; William J. Boyle

2008-01-01T23:59:59.000Z

140

Simple Cosmological Model with Relativistic Gas  

E-Print Network (OSTI)

We construct simple and useful approximation for the relativistic gas of massive particles. The equation of state is given by an elementary function and admits analytic solution of the Friedmann equation, including more complex cases when the relativistic gas of massive particles is considered together with radiation or with dominating cosmological constant. The model of relativistic gas may be interesting for the description of primordial Universe, especially as a candidate for the role of a Dark Matter.

Guilherme de Berredo-Peixoto; Ilya L. Shapiro; Flavia Sobreira

2004-12-11T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Shock Waves and Cosmological Matrix Models  

E-Print Network (OSTI)

We find the shock wave solutions in a class of cosmological backgrounds with a null singularity, each of these backgrounds admits a matrix description. A shock wave solution breaks all supersymmetry meanwhile indicates that the interaction between two static D0-branes cancel, thus provides basic evidence for the matrix description. The probe action of a D0-brane in the background of another suggests that the usual perturbative expansion of matrix model breaks down.

Miao Li; Wei Song

2005-07-19T23:59:59.000Z

142

Forecasting Cosmological Constraints from Redshift Surveys  

E-Print Network (OSTI)

Observations of redshift-space distortions in spectroscopic galaxy surveys offer an attractive method for observing the build-up of cosmological structure, which depends both on the expansion rate of the Universe and our theory of gravity. In this paper we present a formalism for forecasting the constraints on the growth of structure which would arise in an idealized survey. This Fisher matrix based formalism can be used to study the power and aid in the design of future surveys.

Martin White; Yong-Seon Song; Will J. Percival

2008-10-08T23:59:59.000Z

143

Home / Chemistry / Chemistry (general) Angewandte Chemie International Edition  

E-Print Network (OSTI)

JOURNALS Home / Chemistry / Chemistry (general) Angewandte Chemie International Edition See Also: Angewandte Chemie Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim View all previous titles

Jo, Moon-Ho

144

Consistent probabilities in loop quantum cosmology  

E-Print Network (OSTI)

A fundamental issue for any quantum cosmological theory is to specify how probabilities can be assigned to various quantum events or sequences of events such as the occurrence of singularities or bounces. In previous work, we have demonstrated how this issue can be successfully addressed within the consistent histories approach to quantum theory for Wheeler-DeWitt-quantized cosmological models. In this work, we generalize that analysis to the exactly solvable loop quantization of a spatially flat, homogeneous and isotropic cosmology sourced with a massless, minimally coupled scalar field known as sLQC. We provide an explicit, rigorous and complete decoherent histories formulation for this model and compute the probabilities for the occurrence of a quantum bounce vs. a singularity. Using the scalar field as an emergent internal time, we show for generic states that the probability for a singularity to occur in this model is zero, and that of a bounce is unity, complementing earlier studies of the expectation values of the volume and matter density in this theory. We also show from the consistent histories point of view that all states in this model, whether quantum or classical, achieve arbitrarily large volume in the limit of infinite `past' or `future' scalar `time', in the sense that the wave function evaluated at any arbitrary fixed value of the volume vanishes in that limit. Finally, we briefly discuss certain misconceptions concerning the utility of the consistent histories approach in these models.

David A. Craig; Parampreet Singh

2013-06-26T23:59:59.000Z

145

Planck 2013 results. XVI. Cosmological parameters  

E-Print Network (OSTI)

We present the first results based on Planck measurements of the CMB temperature and lensing-potential power spectra. The Planck spectra at high multipoles are extremely well described by the standard spatially-flat six-parameter LCDM cosmology. In this model Planck data determine the cosmological parameters to high precision. We find a low value of the Hubble constant, H0=67.3+/-1.2 km/s/Mpc and a high value of the matter density parameter, Omega_m=0.315+/-0.017 (+/-1 sigma errors) in excellent agreement with constraints from baryon acoustic oscillation (BAO) surveys. Including curvature, we find that the Universe is consistent with spatial flatness to percent-level precision using Planck CMB data alone. We present results from an analysis of extensions to the standard cosmology, using astrophysical data sets in addition to Planck and high-resolution CMB data. None of these models are favoured significantly over standard LCDM. The deviation of the scalar spectral index from unity is insensitive to the additi...

Ade, P A R; Armitage-Caplan, C; Arnaud, M; Ashdown, M; Atrio-Barandela, F; Aumont, J; Baccigalupi, C; Banday, A J; Barreiro, R B; Bartlett, J G; Battaner, E; Benabed, K; Benot, A; Benoit-Lvy, A; Bernard, J -P; Bersanelli, M; Bielewicz, P; Bobin, J; Bock, J J; Bonaldi, A; Bond, J R; Borrill, J; Bouchet, F R; Bridges, M; Bucher, M; Burigana, C; Butler, R C; Calabrese, E; Cappellini, B; Cardoso, J -F; Catalano, A; Challinor, A; Chamballu, A; Chary, R -R; Chen, X; Chiang, L -Y; Chiang, H C; Christensen, P R; Church, S; Clements, D L; Colombi, S; Colombo, L P L; Couchot, F; Coulais, A; Crill, B P; Curto, A; Cuttaia, F; Danese, L; Davies, R D; Davis, R J; de Bernardis, P; de Rosa, A; de Zotti, G; Delabrouille, J; Delouis, J -M; Dsert, F -X; Dickinson, C; Diego, J M; Dolag, K; Dole, H; Donzelli, S; Dor, O; Douspis, M; Dunkley, J; Dupac, X; Efstathiou, G; Elsner, F; Enlin, T A; Eriksen, H K; Finelli, F; Forni, O; Frailis, M; Fraisse, A A; Franceschi, E; Gaier, T C; Galeotta, S; Galli, S; Ganga, K; Giard, M; Giardino, G; Giraud-Hraud, Y; Gjerlw, E; Gonzlez-Nuevo, J; Grski, K M; Gratton, S; Gregorio, A; Gruppuso, A; Gudmundsson, J E; Haissinski, J; Hamann, J; Hansen, F K; Hanson, D; Harrison, D; Henrot-Versill, S; Hernndez-Monteagudo, C; Herranz, D; Hildebrandt, S R; Hivon, E; Hobson, M; Holmes, W A; Hornstrup, A; Hou, Z; Hovest, W; Huffenberger, K M; Jaffe, T R; Jaffe, A H; Jewell, J; Jones, W C; Juvela, M; Keihnen, E; Keskitalo, R; Kisner, T S; Kneissl, R; Knoche, J; Knox, L; Kunz, M; Kurki-Suonio, H; Lagache, G; Lhteenmki, A; Lamarre, J -M; Lasenby, A; Lattanzi, M; Laureijs, R J; Lawrence, C R; Leach, S; Leahy, J P; Leonardi, R; Len-Tavares, J; Lesgourgues, J; Lewis, A; Liguori, M; Lilje, P B; Linden-Vrnle, M; Lpez-Caniego, M; Lubin, P M; Macas-Prez, J F; Maffei, B; Maino, D; Mandolesi, N; Maris, M; Marshall, D J; Martin, P G; Martnez-Gonzlez, E; Masi, S; Matarrese, S; Matthai, F; Mazzotta, P; Meinhold, P R; Melchiorri, A; Melin, J -B; Mendes, L; Menegoni, E; Mennella, A; Migliaccio, M; Millea, M; Mitra, S; Miville-Deschnes, M -A; Moneti, A; Montier, L; Morgante, G; Mortlock, D; Moss, A; Munshi, D; Naselsky, P; Nati, F; Natoli, P; Netterfield, C B; Nrgaard-Nielsen, H U; Noviello, F; Novikov, D; Novikov, I; O'Dwyer, I J; Osborne, S; Oxborrow, C A; Paci, F; Pagano, L; Pajot, F; Paoletti, D; Partridge, B; Pasian, F; Patanchon, G; Pearson, D; Pearson, T J; Peiris, H V; Perdereau, O; Perotto, L; Perrotta, F; Pettorino, V; Piacentini, F; Piat, M; Pierpaoli, E; Pietrobon, D; Plaszczynski, S; Platania, P; Pointecouteau, E; Polenta, G; Ponthieu, N; Popa, L; Poutanen, T; Pratt, G W; Przeau, G; Prunet, S; Puget, J -L; Rachen, J P; Reach, W T; Rebolo, R; Reinecke, M; Remazeilles, M; Renault, C; Ricciardi, S; Riller, T; Ristorcelli, I; Rocha, G; Rosset, C; Roudier, G; Rowan-Robinson, M; Rubio-Martn, J A; Rusholme, B; Sandri, M; Santos, D; Savelainen, M; Savini, G; Scott, D; Seiffert, M D; Shellard, E P S; Spencer, L D; Starck, J -L; Stolyarov, V; Stompor, R; Sudiwala, R; Sunyaev, R; Sureau, F; Sutton, D; Suur-Uski, A -S; Sygnet, J -F; Tauber, J A; Tavagnacco, D; Terenzi, L; Toffolatti, L; Tomasi, M; Tristram, M; Tucci, M; Tuovinen, J; Trler, M; Umana, G; Valenziano, L; Valiviita, J; Van Tent, B; Vielva, P; Villa, F; Vittorio, N; Wade, L A; Wandelt, B D; Wehus, I K; White, M; White, S D M; Wilkinson, A; Yvon, D; Zacchei, A; Zonca, A

2013-01-01T23:59:59.000Z

146

Decaying Higgs Fields and Cosmological Dark Energy  

E-Print Network (OSTI)

The observed dark energy in the universe might give particles inertial mass. We investigate one realization of this idea, that the dark energy field might be a decayed scalar component of a supermultiplet field in the early universe that creates inertial mass through spontaneous symmetry breaking, e.g. a Higgs field. To investigate this possibility, the cosmological Friedmann equation of energy balance is augmented in a standard way to incorporate a minimally coupled cosmological Higgs. For epochs where the expansion of the universe is driven by matter and radiation and not the scalar field, the observed hidden nature of the Higgs field can be codified into a single differential equation that we call the "hidden higgs" condition. The resulting differential equation is solved for the time dependant scalar field and a simple and interesting solution is found analytically. Such a Higgs field decays from Planck scale energies rapidly and approximately exponentially from onset, leaving only the initially negligible constant term of the potential as a final cosmological constant. Such evolution replaces the hierarchy problem with the problem of explaining why such evolution is physically justified.

Robert J. Nemiroff; Bijunath Patla

2004-09-27T23:59:59.000Z

147

Isotropic singularities in shear-free perfect fluid cosmologies  

E-Print Network (OSTI)

We investigate barotropic perfect fluid cosmologies which admit an isotropic singularity. From the General Vorticity Result of Scott, it is known that these cosmologies must be irrotational. In this paper we prove, using two different methods, that if we make the additional assumption that the perfect fluid is shear-free, then the fluid flow must be geodesic. This then implies that the only shear-free, barotropic, perfect fluid cosmologies which admit an isotropic singularity are the FRW models.

Geoffery Ericksson; Susan M. Scott

2001-08-02T23:59:59.000Z

148

A Cosmology Calculator for the World Wide Web  

E-Print Network (OSTI)

A cosmology calculator that computes times and distances as a function of redshift for user-defined cosmological parameters is available on the World Wide Web. This note gives the formulae used by the cosmology calculator and discusses some of its implementation. A version of the calculator that allows one to specify the equation of state parameter w and w' and neutrino masses, and a version for converting the light travel times usually given in the popular press into redshifts are also available.

Edward L. Wright

2006-09-20T23:59:59.000Z

149

Keeping up with detergent chemistry  

Science Conference Proceedings (OSTI)

The detergent industry is highly competitive, mostly recession proof, and, thanks to chemistry, always changing ever so slightly. It has been years, however, since cleaning chemistry has been the driving force in detergent innovation. Instead, the environm

150

Constraining gravitational and cosmological parameters with astrophysical data  

E-Print Network (OSTI)

We use astrophysical data to shed light on fundamental physics by constraining parametrized theoretical cosmological and gravitational models. Gravitational parameters are those constants that parametrize possible departures ...

Mao, Yi, Ph. D. Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

151

A new multidimensional AMR Hydro+Gravity Cosmological code  

E-Print Network (OSTI)

A new cosmological multidimensional hydrodynamic and N-body code based on an Adaptive Mesh Refinement scheme is described and tested. The hydro part is based on modern high-resolution shock-capturing techniques, whereas N-body approach is based on the Particle Mesh method. The code has been specifically designed for cosmological applications. Tests including shocks, strong gradients, and gravity have been considered. A cosmological test based on Santa Barbara cluster is also presented. The usefulness of the code is discussed. In particular, this powerful tool is expected to be appropriate to describe the evolution of the hot gas component located inside asymmetric cosmological structures.

Vicent Quilis

2004-05-20T23:59:59.000Z

152

Birth of the Universe, Direct Numerical Simulations of Cosmological...  

NLE Websites -- All DOE Office Websites (Extended Search)

Simulations of Cosmological Reionization November 30, 2011 Tweet EmailPrint In this video from SC11, Michael Norman (SDSC), Joseph Insley (MCS), and Rick Wagner (SDSC) describe...

153

GEOLOGY, April 2010 315 INTRODUCTION  

E-Print Network (OSTI)

GEOLOGY, April 2010 315 INTRODUCTION The redox evolution of the oceans through Earth history shaped; Erbacher et al., 2005). In this study we use variations in the isotope composition of U, a trace element and Palmer, 1991). As recently observed, the burial of U into sediments is associated with isotope fraction

Pross, Jörg

154

Integrated Solutions in Chemistry  

E-Print Network (OSTI)

Paths best traveled Choose from a portfolio of comprehensive, interlinked, intuitive and accessible chemistry resources Paths best traveled Choose from a comprehensive portfolio of interlinked, intuitive and accessible resources www.info.sciencedirect.com/solutions www.elsevier.com/chemistrysolutions ELSEVIERS

unknown authors

2004-01-01T23:59:59.000Z

155

Chemistry Dept. Research Programs  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Department Overview: Chemistry Department Overview: While the subjects of chemical research in the Chemistry Department are diverse, several predominant themes span traditional research fields and research groups. These themes include: artificial photosynthesis, charge transfer for energy conversion, chemistry with ionizing radiation, catalysis and surface science, nanoscience, combustion, and nuclear chemistry. Artificial Photosynthesis This program addresses major issues hindering progress in photoinduced catalytic reduction of carbon dioxide, water splitting, and small molecule activation using an integrated experimental and theoretical approach that offers fundamental insights into the underlying photochemical processes. One thrust investigates factors controlling reductive half-reactions. Among these are: (1) searching for visible-light absorbers to couple with electron transfer and/or catalytic processes; (2) avoiding high-energy intermediates through multi-electron, multi-proton processes; (3) using earth-abundant metals, or metal complexes that have bio-inspired or non-innocent ligands to achieve low-energy pathways via second-coordination sphere interactions or redox leveling; (4) adopting water as the target solvent and the source of protons and electrons; and (5) immobilizing catalysts on electrode or semiconductor surfaces for better turnover rates and frequencies. Another thrust investigates water oxidation, focusing on photoelectrolysis processes occurring in band-gap-narrowed semiconductor and catalyst components by: (i) tuning semiconductors to control their light-harvesting and charge-separation abilities; (ii) developing viable catalysts for the four-electron water oxidation process; (iii) immobilizing the homogenous catalysts and metal oxide catalysts on electrodes and/or metal-oxide nanoparticles; and (iv) exploring the interfacial water-decomposition reactions using carriers generated by visible-light irradiation with the goal of understanding semiconductorccatalystcwater charge transport.

156

Risk assessment framework for geologic carbon sequestration sites  

E-Print Network (OSTI)

Framework for geologic carbon sequestration risk assessment,for geologic carbon sequestration risk assessment, Energyfor Geologic Carbon Sequestration, Int. J. of Greenhouse Gas

Oldenburg, C.

2010-01-01T23:59:59.000Z

157

Certification Framework Based on Effective Trapping for Geologic Carbon Sequestration  

E-Print Network (OSTI)

workshop on geologic carbon sequestration, 2002. Benson,verification of geologic carbon sequestration, Geophys. Res.CO 2 from geologic carbon sequestration sites, Vadose Zone

Oldenburg, Curtis M.

2009-01-01T23:59:59.000Z

158

Geology and Groundwater Investigation Many Devils Wash, Shiprock...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geology and Groundwater Investigation Many Devils Wash, Shiprock Site, New Mexico Geology and Groundwater Investigation Many Devils Wash, Shiprock Site, New Mexico Geology and...

159

Hanford Borehole Geologic Information System (HBGIS)  

Science Conference Proceedings (OSTI)

This is a user's guide for viewing and downloading borehold geologic data through a web-based interface.

Last, George V.; Mackley, Rob D.; Saripalli, Ratna R.

2005-09-26T23:59:59.000Z

160

Cosmological Parameters and Quintessence From Radio Galaxies  

E-Print Network (OSTI)

FRIIb radio galaxies provide a tool to determine the coordinate distance to sources at redshifts from zero to two. The coordinate distance depends on the present values of global cosmological parameters, quintessence, and the equation of state of quintessence. The coordinate distance provides one of the cleanest determinations of global cosmological parameters because it does not depend on the clustering properties of any of the mass-energy components present in the universe. Two complementary methods that provide direct determinations of the coordinate distance to sources with redshifts out to one or two are the modified standard yardstick method utilizing FRIIb radio galaxies, and the modified standard candle method utilizing type Ia supernovae. These two methods are compared here, and are found to be complementary in many ways. The two methods do differ in some regards; perhaps the most significant difference is that the radio galaxy method is completely independent of the local distance scale and independent of the properties of local sources, while the supernovae method is very closely tied to the local distance scale and the properties of local sources. FRIIb radio galaxies provide one of the very few reliable probes of the coordinate distance to sources with redshifts out to two. This method indicates that the current value of the density parameter in non-relativistic matter, ?m, must be low, irrespective of whether the universe is spatially flat, and of whether a significant cosmological constant or quintessence pervades the universe at the present epoch. The effect of quintessence, with equation of state w, is considered. FRIIb radio galaxies indicate that the universe is currently accelerating in its expansion if the primary components of the universe at the present epoch are non-relativistic matter and quintessence, and the universe is spatially flat. 1.

A. Daly; Erick J. Guerra

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The cosmological simulation code GADGET-2  

E-Print Network (OSTI)

We discuss the cosmological simulation code GADGET-2, a new massively parallel TreeSPH code, capable of following a collisionless fluid with the N-body method, and an ideal gas by means of smoothed particle hydrodynamics (SPH). Our implementation of SPH manifestly conserves energy and entropy in regions free of dissipation, while allowing for fully adaptive smoothing lengths. Gravitational forces are computed with a hierarchical multipole expansion, which can optionally be applied in the form of a TreePM algorithm, where only short-range forces are computed with the `tree'-method while long-range forces are determined with Fourier techniques. Time integration is based on a quasi-symplectic scheme where long-range and short-range forces can be integrated with different timesteps. Individual and adaptive short-range timesteps may also be employed. The domain decomposition used in the parallelisation algorithm is based on a space-filling curve, resulting in high flexibility and tree force errors that do not depend on the way the domains are cut. The code is efficient in terms of memory consumption and required communication bandwidth. It has been used to compute the first cosmological N-body simulation with more than 10^10 dark matter particles, reaching a homogeneous spatial dynamic range of 10^5 per dimension in a 3D box. It has also been used to carry out very large cosmological SPH simulations that account for radiative cooling and star formation, reaching total particle numbers of more than 250 million. We present the algorithms used by the code and discuss their accuracy and performance using a number of test problems. GADGET-2 is publicly released to the research community.

Volker Springel

2005-05-02T23:59:59.000Z

162

Chemistry Department Directory  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry Staff Directory Chemistry Staff Directory Last Name, First Phone E-mail Note: All listed phone extensions are in the format of (631) 344-xxxx. Adzic, Radoslav 4522 adzic@bnl.gov Akimov, Alexey No Entry akimov@bnl.gov An, Wei 4317 weian@bnl.gov Anselmini, James 4399 anselmini@bnl.gov Baber, Ashleigh 4317 ababer@bnl.gov Badiei, Yosra 4360 ybadiei@bnl.gov Bak, Seong Min BAK 3663 smbak@bnl.gov Bakalis, Jin No Entry jbakalis@bnl.gov Bird, Matthew 4331 mbird@bnl.gov Cabelli, Diane 4361 cabelli@bnl.gov Camillone III, Nicholas 4412 nicholas@bnl.gov Chen, Jingguang 2655 jgchen@bnl.gov Chen, Wei-Fu 4360 wfchen@bnl.gov Concepcion, Javier 4369 jconcepc@bnl.gov Cook, Andrew 4782 acook@bnl.gov Cumming, James 4338 cumming@bnl.gov Duan, Lele 4357 lduan@bnl.gov Ertem, Mehmed No Entry mzertem@bnl.gov

163

Energy Conservation in Flat FRW Cosmology  

E-Print Network (OSTI)

The consequence of energy conservation in the flat Friedmannn-Robertson-Walker (FRW) cosmology is a strictly positive accelerating expansion. A mechanism is proposed for this expansion due to the effect of the attractive (negative) gravitational potential of matter as it is being included within the expanding horizon, and the offsetting work of metric expansion, which takes place at sub-luminal speed. In our semi-classical treatment, we deal with a quintic as the equation for the scale parameter. Implications for modeling the earliest parts of the primordial expansion are discussed.

Steven Maxson

2009-01-07T23:59:59.000Z

164

About non standard Lagrangians in cosmology  

Science Conference Proceedings (OSTI)

A review of non standard Lagrangians present in modern cosmological models will be considered. Well known example of non standard Lagrangian is Dirac-Born-Infeld (DBI) type Lagrangian for tachyon field. Another type of non standard Lagrangian under consideration contains scalar field which describes open p-adic string tachyon and is called p-adic string theory Lagrangian. We will investigate homogenous cases of both DBI and p-adic fields and obtain Lagrangians of the standard type which have the same equations of motions as aforementioned non standard one.

Dimitrijevic, Dragoljub D.; Milosevic, Milan [Department of Physics, Faculty of Science and Mathematics, University of Nis, Visegradska 33, P.O. Box 224, 18000 Nis (Serbia)

2012-08-17T23:59:59.000Z

165

Cosmological implications of light element abundances: Theory  

DOE Green Energy (OSTI)

Primordial nucleosynthesis provides (with the microwave background radiation) one of the two quantitative experimental tests of the hot Big Bang cosmological model (versus alternative explanations for the observed Hubble expansion). The standard homogeneous-isotopic calculation fits the light element abundances ranging from [sup 1]H at 76% and [sup 4]He at 24% by mass through [sup 2]H and [sup 3]He at parts in 10[sup 5] down to [sup 7]Li at parts in 10[sup 10]. It is also noted how the recent Large Electron Positron Collider (and Stanford Linear Collider) results on the number of neutrinos (N[sub [nu

Schramm, D.N. (Univ. of Chicago, IL (United States) Fermi National Accelerator Lab., Batavia, IL (United States))

1993-06-01T23:59:59.000Z

166

Dependent component analysis for cosmology: a case study  

Science Conference Proceedings (OSTI)

In this paper, we discuss various dependent component analysis approaches available in the literature and study their performances on the problem of separation of dependent cosmological sources from multichannel microwave radiation maps of the sky. Realisticaly ... Keywords: cosmic microwave background radiation, cosmological source separation, dependent component analysis

Ercan E. Kuruoglu

2010-09-01T23:59:59.000Z

167

Exact cosmological solutions of models with an interacting dark sector  

E-Print Network (OSTI)

We extend the First Order Formalism for cosmological models, developed including an interaction between a fermionic and a scalar field. Cosmological exact solutions, describing universes filled with interacting dark energy and dark matter, have been obtained. We suggest some alternative couplings that yield solutions for the scalar field that could model the present expansion of our universe.

Pavan, A B; Micheletti, S; Ferreira, E G M; de Souza, J C C

2011-01-01T23:59:59.000Z

168

Geological/geophysical study progresses  

SciTech Connect

Robertson Research (U.S.) Inc. of Houston is working on the second of a planned three-phase regional geological and geochemical study of Paleozoic rocks in the Williston Basin. The studies cover the entire Williston Basin in North Dakota, South Dakota, Montana, Saskatchewan and Manitoba. Each report is based largely on original petrographic, well log, and geochemical data that were developed by Robertson.

Savage, D.

1983-10-01T23:59:59.000Z

169

Evolution of Dust Extinction and Supernova Cosmology  

E-Print Network (OSTI)

We have made a quantitative calculation for the systematic evolution of average extinction by interstellar dust in host galaxies of high-redshift Type Ia supernovae, by using a realistic model of photometric and chemical evolution of galaxies and supernova rate histories in various galaxy types. We find that average B band extinction at z \\sim 0.5 is typically 0.1-0.2 mag larger than present, under a natural assumption that dust optical depth is proportional to gas column density and gas metallicity. This systematic evolution causes average reddening with E(B-V) \\sim 0.025-0.05 mag with the standard extinction curve, and this is comparable with the observational uncertainty of the reddening of high-redshift supernovae. Therefore, our result does not contradict the observations showing no significant reddening in high-z supernovae. However, the difference in apparent magnitude between an open universe and a \\Lambda-dominated flat universe is only \\sim 0.2 mag at z \\sim 0.5, and hence this systematic evolution of extinction should be taken into account in a reliable measurement of cosmological parameters. Considering this uncertainty, we show that it is difficult to discriminate between an open and \\Lambda-dominated flat cosmologies from the current data.

Tomonori Totani; Chiaki Kobayashi

1999-10-04T23:59:59.000Z

170

Constraints on cosmological parameters from MAXIMA-1  

SciTech Connect

We set new constraints on a seven-dimensional space of cosmological parameters within the class of inflationary adiabatic models. We use the angular power spectrum of the cosmic microwave background measured over a wide range of l in the first flight of the MAXIMA balloon-borne experiment (MAXIMA-1) and the low-l results from the COBE Differential Microwave Radiometer experiment. We find constraints on the total energy density of the universe, Omega = 1.0(-0.30)(+0.15), the physical density of baryons, Omega (b)h(2) = 0.03 +/- 0.01, the physical density of cold dark matter, Omega (cdm)h(2) = 0.2(-0.1)(+0.2), and the spectral index of primordial scalar fluctuations, n(s) = 1.08 +/- 0.1,all at the 95 percent confidence level. By combining our results with measurements of high-redshift supernovae we constrain the value of the cosmological constant and the fractional amount of pressureless matter in the universe to 0.45<(Lambda)<0.75 and 0.25

Balbi, A.; Ade, P.; Bock, J.; Borrill, J.; Boscaleri, A.; DeBernardis, P.; Ferreira, P.G.; Hanany, S.; Hristov, V.; Jaffe, A.H.; Lee,A.T.; Oh, S.; Pascale; E.; Rabii, B.; Richards, R.L.; Smoot, G.F.; Stompor, R.; Winant, C.D.; Wu, J.H.P.

2006-05-08T23:59:59.000Z

171

Preliminary Geologic Characterization of West Coast States for Geologic Sequestration  

SciTech Connect

Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have potential for enhanced coal bed methane recovery (ECBM).

Larry Myer

2005-09-29T23:59:59.000Z

172

Henry Taube and Coordination Chemistry  

Office of Scientific and Technical Information (OSTI)

Henry Taube and Coordination Chemistry Henry Taube and Coordination Chemistry Resources with Additional Information Henry Taube Chuck Painter/Stanford News Service Henry Taube, a Marguerite Blake Wilbur Professor of Chemistry, Emeritus, at Stanford University, received the 1983 Nobel Prize in Chemistry "for his work on the mechanisms of electron transfer reactions, especially in metal complexes" Taube 'received a doctorate from the University of California-Berkeley in 1940 and was an instructor there from 1940-41. "I became deeply interested in chemistry soon after I came to Berkeley," Taube recalled. ... He joined the Cornell University faculty in 1941, becoming a naturalized United States citizen in 1942, and then moved in 1946 to the University of Chicago where he remained until 1961. A year later he joined the Stanford faculty as professor of chemistry, a position he held until 1986, when he became professor emeritus. ...

173

NUCLEAR CHEMISTRY ANNUAL REPORT 1970  

SciTech Connect

Papers are presented for the following topics: (1) Nuclear Structure and Nuclear Properties - (a) Nuclear Spectroscopy and Radioactivity; (b) Nuclear Reactions and Scattering; (c) Nuclear Theory; and (d) Fission. (2) Chemical and Atomic Physics - (a) Atomic and Molecular Spectroscopy; and (b) Hyperfine Interactions. (3) Physical, Inorganic, and Analytical Chemistry - (a) X-Ray Crystallography; (b) Physical and Inorganic Chemistry; (c) Radiation Chemistry; and (d) Chemical Engineering. (4) Instrumentation and Systems Development.

Authors, Various

1971-05-01T23:59:59.000Z

174

Asymptotic analysis of perturbed dust cosmologies to second order  

E-Print Network (OSTI)

Nonlinear perturbations of Friedmann-Lemaitre cosmologies with dust and a positive cosmological constant have recently attracted considerable attention. In this paper our first goal is to compare the evolution of the first and second order perturbations by determining their asymptotic behaviour at late times in ever-expanding models. We show that in the presence of spatial curvature K or a positive cosmological constant, the density perturbation approaches a finite limit both to first and second order, but the rate of approach depends on the model, being power law in the scale factor if the cosmological constant is positive but logarithmic if it is zero and and Kdoes not die away, i.e. it contributes on an equal footing as the growing mode to the asymptotic expression for the density perturbation. On the other hand, the future asymptotic regime of the Einstein-de Sitter universe (for which the cosmological constant and the spatial curvature are both zero) is completely different, as exemplified by the density perturbation which diverges; moreover, the second order perturbation diverges faster than the first order perturbation, which suggests that the Einstein-de Sitter universe is unstable to perturbations, and that the perturbation series do not converge towards the future. We conclude that the presence of spatial curvature or a cosmological constant stabilizes the perturbations. Our second goal is to derive an explicit expression for the second order density perturbation that can be used to study the effects of including a cosmological constant and spatial curvature.

Claes Uggla; John Wainwright

2013-03-19T23:59:59.000Z

175

VIDEOS: History of Nuclear Chemistry  

Science Conference Proceedings (OSTI)

Oct 19, 2007 ... Topic Summary: The Living Textbook of Nuclear Chemistry, ACS. Collection of brief videos on the discoveries of several heavy elements

176

Cosmological evolution of the cosmological plasma with interpartial scalar interaction. II. Formulation of mathematical model  

E-Print Network (OSTI)

On the basis of the relativistic kinetic theory the relativistic statistical systems with scalar interaction particles are investigated. The self-consistent system of the equations describing self-gravitating plasma with interpartial scalar interaction is formulated, macroscopical laws of preservation are received. The closed system of the equations describing cosmological models to which the matter is presented by plasma with interpartial scalar interaction is received.

Yu. G. Ignat'ev

2013-07-09T23:59:59.000Z

177

Environmental Soil Chemistry Second Edition Environmental Soil Chemistry illustrates fundamental principles of soil  

E-Print Network (OSTI)

Environmental Soil Chemistry Second Edition Environmental Soil Chemistry illustrates fundamental principles of soil chemistry with respect to environmental reactions between soils and other natural contemporary training in the basics of soil chemistry and applications to real-world environmental concerns

Sparks, Donald L.

178

A Critique of Supernova Data Analysis in Cosmology  

E-Print Network (OSTI)

Observational astronomy has shown significant growth over the last decade and made important contributions to cosmology. A major paradigm shift in cosmology was brought about by the observations of Type Ia supernovae. The notion that the universe is accelerating has led to several theoretical challenges. Unfortunately, although the supernovae data-sets of high quality are being produced, their statistical analysis leaves much to be desired. Instead of using the data to test the model directly, several studies seem to concentrate on assuming the model to be correct and limiting themselves to estimating model parameters and internal errors. As shown here, the important purpose of testing a cosmological theory is thereby vitiated.

Vishwakarma, Ram Gopal

2010-01-01T23:59:59.000Z

179

A Critique of Supernova Data Analysis in Cosmology  

E-Print Network (OSTI)

Observational astronomy has shown significant growth over the last decade and has made important contributions to cosmology. A major paradigm shift in cosmology was brought about by observations of Type Ia supernovae. The notion that the universe is accelerating has led to several theoretical challenges. Unfortunately, although high quality supernovae data-sets are being produced, their statistical analysis leaves much to be desired. Instead of using the data to directly test the model, several studies seem to concentrate on assuming the model to be correct and limiting themselves to estimating model parameters and internal errors. As shown here, the important purpose of testing a cosmological theory is thereby vitiated.

Ram Gopal Vishwakarma; Jayant V. Narlikar

2010-10-25T23:59:59.000Z

180

Physics and Cosmology : the Milli-Electron-Volt Scale  

E-Print Network (OSTI)

A short review about vacuum energy and the cosmological constant is presented. The observed acceleration of the universe introduces a new meV energy scale. The problem is that, theoretically, the predicted vacuum energy is many orders of magnitude larger than $10^{-3}$ eV. The problem is a link between two Standard Models, namely the Standard Model of Particles and their Interactions (where the vacuum energy appears) and the Standard Cosmological Model (where a cosmological constant is a good fit to data), and perhaps it is a clue in our search for new physics.

Eduard Masso

2009-02-27T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Absence of Black Holes Information Paradox in Group Field Cosmology  

E-Print Network (OSTI)

In this paper we will analyse the black hole information paradox in group field cosmology. We will first construct a group field cosmology with third quantized gauge symmetry. Then we will argue that that in this group field cosmology the process that change the topology of spacetime are unitarity process. Thus, the information paradox from this perspective appears only because we are using a second quantized formalism to explain a third quantized process. A similar paradox would also occur if we analyse a second quantized process in first quantized formalism. Hence, we will demonstrated that in reality there is no information paradox but only a breakdown of the second quantized formalism.

Mir Faizal

2013-01-02T23:59:59.000Z

182

Cosmological perturbations in singularity-free, deflationary models  

E-Print Network (OSTI)

We consider scalar perturbations of energy-density for a class of cosmological models where an early phase of accelerated expansion evolves, without any fine-tuning for graceful exit, towards the standard Friedman eras of observed universe. The quantum geometric procedure which generates such models agrees with results for string cosmology since it works if dynamics is dominated by a primordial fluid of extended massive objects. The main result is that characteristic scales of cosmological interest, connected with the extension of such early objects, are selected.

S. Capozziello; G. Lambiase; G. Scarpetta

1998-05-13T23:59:59.000Z

183

Environment-induced superselection in cosmology  

SciTech Connect

Interaction between a quantum system and its environment can be often regarded as a measurement, in the course of which one of the system observables influences the evolution of the external degrees of freedom and is thus monitored'' by the environment. This causes the system to decohere.'' Loss of quantum coherence erases part of the density matrix responsible for the correlations between the eigenstates of the monitored observables. This mechanism is very efficient even in the limit of weak coupling to the environment. The classical limit of quantum theory -- that is, both classical irreversible equations of motion and classical states (trajectories in phase space rather than their superpositions) obtains in the limit in which the coupling strength and the Planck constant simultaneously tend to zero. Transition from quantum to classical in the inflationary cosmological model can be justified in the framework of environment induced susperselection. 24 refs., 2 figs.

Zurek, W.H.

1990-01-01T23:59:59.000Z

184

Green's function of the cosmological thermalization problem  

E-Print Network (OSTI)

Energy release in the early Universe leads to spectral distortions of the cosmic microwave background (CMB) which in the future might allow probing different physical processes in the pre-recombination (z>~10^3) epoch. Depending on the energy injection history, the associated distortion partially thermalizes due to the combined action of Compton scattering, double Compton scattering and Bremsstrahlung emission, a problem that in general is hard to solve. Various analytic approximations describing the resulting distortion exist, however, for small distortions and fixed background cosmology the Green's function of the problem can be computed numerically. Here we show that this approach gives very accurate results for general thermal histories, allowing fast and quasi-exact computation of the spectral distortion given the energy release rate. Our method can thus be used to forecast possible constraints on early-universe physics obtained from future measurements of the CMB spectrum.

Chluba, Jens

2013-01-01T23:59:59.000Z

185

Scaling cosmological solutions with Horndeski Lagrangian  

E-Print Network (OSTI)

We find the most general coupled scalar field Lagrangian linear in $\\Box\\phi$ and with a general kinetic term that contains cosmological scaling solutions, i.e. solutions on which the ratio of matter to field density and the equation of state remains constant. Scaling solutions of this kind may help solving the coincidence problem since in this case the presently observed ratio of matter to dark energy does not depend on initial conditions but rather on the theoretical parameters. Extending previous results we find that it is impossible to join in a single solution a matter era and the scaling attractor. This is an additional step towards finding the most general scaling Lagrangian within the Horndeski class, i.e. general scalar-tensor models with second order equations of motion.

Gomes, A R

2013-01-01T23:59:59.000Z

186

Precision cosmology defeats void models for acceleration  

SciTech Connect

The suggestion that we occupy a privileged position near the center of a large, nonlinear, and nearly spherical void has recently attracted much attention as an alternative to dark energy. Putting aside the philosophical problems with this scenario, we perform the most complete and up-to-date comparison with cosmological data. We use supernovae and the full cosmic microwave background spectrum as the basis of our analysis. We also include constraints from radial baryonic acoustic oscillations, the local Hubble rate, age, big bang nucleosynthesis, the Compton y distortion, and for the first time include the local amplitude of matter fluctuations, {sigma}{sub 8}. These all paint a consistent picture in which voids are in severe tension with the data. In particular, void models predict a very low local Hubble rate, suffer from an ''old age problem,'' and predict much less local structure than is observed.

Moss, Adam; Zibin, James P.; Scott, Douglas [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, V6T 1Z1 (Canada)

2011-05-15T23:59:59.000Z

187

String spectra near some null cosmological singularities  

Science Conference Proceedings (OSTI)

We construct cosmological spacetimes with null Kasner-like singularities as purely gravitational solutions with no other background fields turned on. These can be recast as anisotropic plane-wave spacetimes by coordinate transformations. We analyze string quantization to find the spectrum of string modes in these backgrounds. The classical string modes can be solved for exactly in these time-dependent backgrounds, which enables a detailed study of the near-singularity string spectrum, (time-dependent) oscillator masses, and wave functions. We find that for low-lying string modes (finite oscillation number), the classical near-singularity string mode functions are nondivergent for various families of singularities. Furthermore, for any infinitesimal regularization of the vicinity of the singularity, we find a tower of string modes of ultrahigh oscillation number which propagate essentially freely in the background. The resulting picture suggests that string interactions are non-negligible near the singularity.

Madhu, Kallingalthodi [Tata Institute of Fundamental Research, Homi Bhabha Road, Colaba, Mumbai 400005 (India); Narayan, K. [Chennai Mathematical Institute, SIPCOT IT Park, Padur PO, Siruseri 603103 (India)

2009-06-15T23:59:59.000Z

188

Radion Physics, Stability and Cosmological issues  

Science Conference Proceedings (OSTI)

Moduli fields are a known ingredient of models that involve extra compact dimensions, as the Kaluza-Klein theories, String theory, and models with compact extra dimensions. They are scalar fields that emerge when the configuration of the compact space is perturbed. The radion is a particular example of this type of fields, which is associated to the variations of the total volume of compact space. Radions usually couple to all other fields, affecting the definition of coupling constants and gravity strength. They also modify gravitational potentials in a way that may be tested in table top experiments. Usually, these fields are run away modes which manifest the difficulties to stabilize the shape of the compact manifold of extra space. This is feature that can be a threat for cosmology on the early Universe. Here we provide a brief discussion of these general aspects of the radion physics.

Perez-Lorenzana, Abdel [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del I.P.N. Apdo. Post. 14-740, 07000, Mexico, D.F. (Mexico); Santos, Eli [Centro de Estudios en Fisica y Matematicas Basicas y Aplicadas, UNACH, 4a Oriente Norte 1428, C.P. 29000 Tuxtla Gutierrez, Chiapas (Mexico); Instituto de Fisica y Matematicas, Universidad Michoacana de San Nicolas de Hidalgo Edificio C-3, Ciudad Universitaria, CP. 58040 Morelia, Michoacan (Mexico)

2010-07-12T23:59:59.000Z

189

The Cosmology of Composite Inelastic Dark Matter  

SciTech Connect

Composite dark matter is a natural setting for implementing inelastic dark matter - the O(100 keV) mass splitting arises from spin-spin interactions of constituent fermions. In models where the constituents are charged under an axial U(1) gauge symmetry that also couples to the Standard Model quarks, dark matter scatters inelastically off Standard Model nuclei and can explain the DAMA/LIBRA annual modulation signal. This article describes the early Universe cosmology of a minimal implementation of a composite inelastic dark matter model where the dark matter is a meson composed of a light and a heavy quark. The synthesis of the constituent quarks into dark hadrons results in several qualitatively different configurations of the resulting dark matter composition depending on the relative mass scales in the system.

Spier Moreira Alves, Daniele; Behbahani, Siavosh R.; /SLAC /Stanford U., ITP; Schuster, Philip; Wacker, Jay G.; /SLAC

2011-08-19T23:59:59.000Z

190

Projective Structures in Loop Quantum Cosmology  

E-Print Network (OSTI)

Projective structures have successfully been used for the construction of measures in the framework of loop quantum gravity. In the present paper we establish such a structure for the space $R \\sqcup R_Bohr$ recently constructed in the context of homogeneous isotropic loop quantum cosmology. This space has the advantage to be canonically embedded into the quantum configuration space of the full theory, but, in contrast to the traditional space $R_Bohr$, there exists no Haar measure on $R \\sqcup R_Bohr$. The introduced projective structure, however, allows to construct a family of canonical measures on $R \\sqcup R_Bohr$ whose corresponding Hilbert spaces of square integrable functions we finally investigate.

Maximilian Hanusch

2013-09-03T23:59:59.000Z

191

BRST technique for the cosmological density matrix  

E-Print Network (OSTI)

The microcanonical density matrix in closed cosmology has a natural definition as a projector on the space of solutions of Wheeler-DeWitt equations, which is motivated by the absence of global non-vanishing charges and energy in spatially closed gravitational systems. Using the BRST/BFV formalism in relativistic phase space of gauge and ghost variables we derive the path integral representation for this projector and the relevant statistical sum. This derivation circumvents the difficulties associated with the open algebra of noncommutative quantum Dirac constraints and the construction/regularization of the physical inner product in the subspace of BRS singlets. This inner product is achieved via the Batalin-Marnelius gauge fixing in the space of BRS-invariant states, which in its turn is shown to be a result of truncation of the BRST/BFV formalism to the "matter" sector of relativistic phase space.

Andrei O. Barvinsky

2013-08-14T23:59:59.000Z

192

Emergent universe in spatially flat cosmological model  

E-Print Network (OSTI)

The scenario of an emergent universe provides a promising resolution to the big bang singularity in universes with positive or negative spatial curvature. It however remains unclear whether the scenario can be successfully implemented in a spatially flat universe which seems to be favored by present cosmological observations. In this paper, we study the stability of Einstein static state solutions in a spatially flat Shtanov-Sahni braneworld scenario. With a negative dark radiation term included and assuming a scalar field as the only matter energy component, we find that the universe can stay at an Einstein static state past eternally and then evolve to an inflation phase naturally as the scalar field climbs up its potential slowly. In addition, we also propose a concrete potential of the scalar field that realizes this scenario.

Kaituo Zhang; Puxun Wu; Hongwei Yu

2013-11-16T23:59:59.000Z

193

Open Cooling Water Chemistry Guideline  

Science Conference Proceedings (OSTI)

State-of-the-art chemistry programs help to ensure the continued operation of open cooling water systems while mitigating corrosion and fouling mechanisms. This document, Open Cooling Water Chemistry Guideline, prepared by a committee of industry experts, reflects field and laboratory data on corrosion and fouling issues of open cooling systems.BackgroundService Water System Chemical Addition Guideline (Electric Power Research Institute ...

2012-09-17T23:59:59.000Z

194

Gable named Geological Society of America Fellow  

NLE Websites -- All DOE Office Websites (Extended Search)

member of a large team that received a Laboratory Distinguished Performance Award for the Yucca Mountain Project. About the Geological Society of America Established in 1888, The...

195

Geothermal: Sponsored by OSTI -- Geologic flow characterization...  

Office of Scientific and Technical Information (OSTI)

Geologic flow characterization using tracer techniques Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On HomeBasic Search About...

196

NETL: Geological Sequestration Training and Research Program...  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture Project No.: DE-FE0001953 NETL...

197

Synthetic and Mechanistic Chemistry publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Synthetic and Mechanistic Chemistry » Synthetic and Mechanistic Chemistry » Synthetic and Mechanistic Synthetic and Mechanistic publications Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise Dave Thorn Chemistry Program Manager Email Josh Smith Chemistry Communications Email "Research into alternative forms of energy, of which biofuels is a key component, is one of the major national security imperatives of this century. Energy security is vital to our future national security and the efficient functioning of our market economy." -LANL Director Charles McMillan Harshini Mukundan, Hongzhi Xie, Aaron S. Anderson, W. Kevin Grace, John E. Shively, and Basil I. Swanson, "Optimizing a waveguide-based sandwich immunoassay for tumor biomarkers: Evaluating fluorescent labels and functional surfaces," Bioconjugate Chemistry 20(2), 222-230 (2009).

198

A new type of second order cosmological lagrangians  

E-Print Network (OSTI)

We investigate a possible connection between Galileon gravity and teleparallel gravity. We also propose a new type of second order cosmological lagrangian and study a some of its properties.

P. Tretyakov

2013-02-26T23:59:59.000Z

199

Cosmology and Astrophysical Constraints of Gauss-Bonnet Dark Energy  

E-Print Network (OSTI)

Cosmological consequences of a string-motivated dark energy scenario featuring a scalar field coupled to the Gauss-Bonnet invariant are investigated. We study the evolution of the universe in such a model, identifying its key properties. The evolution of the homogeneous background and cosmological perturbations, both at large and small scales, are calculated. The impact of the coupling on galaxy distributions and the cosmic microwave background is examined. We find the coupling provides a mechanism to viably onset the late acceleration, to alleviate the coincidence problem, and furthermore to effectively cross the phantom divide at the present while avoiding a Big Rip in the future. We show the model could explain the present cosmological observations, and discuss how various astrophysical and cosmological data, from the Solar system, supernovae Ia, cosmic microwave background radiation and large scale structure constrain it.

Tomi Koivisto; David F. Mota

2006-06-04T23:59:59.000Z

200

Dynamical eigenfunctions and critical density in loop quantum cosmology  

E-Print Network (OSTI)

We offer a new, physically transparent argument for the existence of the critical, universal maximum matter density in loop quantum cosmology for the case of a flat Friedmann-Lemaitre-Robertson-Walker cosmology with scalar matter. The argument is based on the existence of a sharp exponential ultraviolet cutoff in momentum space on the eigenfunctions of the quantum cosmological dynamical evolution operator (the gravitational part of the Hamiltonian constraint), attributable to the fundamental discreteness of spatial volume in loop quantum cosmology. The existence of the cutoff is proved directly from recently found exact solutions for the eigenfunctions for this model. As a consequence, the operators corresponding to the momentum of the scalar field and the spatial volume approximately commute. The ultraviolet cutoff then implies that the scalar momentum, though not a bounded operator, is in effect bounded on subspaces of constant volume, leading to the upper bound on the expectation value of the matter densit...

Craig, David A

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Darboux Transformation and Exactly Solvable Cosmological Models  

E-Print Network (OSTI)

We present a simple and effective method for constructing exactly solvable cosmological models containing inflation with exit. This method does not involve any parameter fitting. We discuss the problems arising with solutions that violate the weak energy condition.

A. V. Yurov; S. D. Vereshchagin

2005-02-10T23:59:59.000Z

202

3D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological  

Open Energy Info (EERE)

D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological Survey Details Activities (0) Areas (0) Regions (0) Abstract: Many Geological Survey Organisations (GSOs) are using 3D modelling software technology for a vast variety of applications. Initially many 3D tools were designed for the exploitation of digital seismic mass data existing in hydrocarbon exploration industry. Accordingly, GSOs have to adapt available software and to modify it to their special requirements, defining their own best practice. The Geological Survey of the Bavarian Environment Agency has developed procedures and workflows for a variety of

203

Chemistry Department Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Administration Administration A. Harris, Chair (631) 344-4301 alexh@bnl.gov G. Hall, Deputy Chair (631) 344-4376 gehall@bnl.gov S. McAlary, Deputy BES Manager (631) 344-4305 mcalary2@bnl.gov J. Petterson, Senior Administrative Assistant (631) 344-4302 jpetter@bnl.gov Administrative Support Includes budgeting, procurement activities, foreign/domestic travel, seminars and general administrative concerns. Guest Appointments and Personnel matters should be referred to the Department's Senior Administrative Assistant. L. Sallustio (631) 344-4303 lsallust@bnl.gov Building and Stockroom Maintain the Chemistry Department stockroom and provide technical and building support to the staff. Information on the BNL Chemical Management Inventory system is available through the stockroom. Click here to view

204

Atmospheric Chemistry and Physics  

E-Print Network (OSTI)

Abstract. A 3-D chemistry-transport model has been applied to the Mexico City metropolitan area to investigate the origin of elevated levels of non-fossil (NF) carbonaceous aerosols observed in this highly urbanized region. High time resolution measurements of the fine aerosol concentration and composition, and 12 or 24 h integrated 14 C measurements of aerosol modern carbon have been performed in and near Mexico City during the March 2006 MILAGRO field experiment. The non-fossil carbon fraction (fNF), which is lower than the measured modern fraction (fM) due to the elevated 14 C in the atmosphere caused by nuclear bomb testing, is estimated from the measured fM and the source-dependent information on modern carbon enrichment. The fNF contained in PM1 total carbon analyzed by a US team (f TC

unknown authors

2010-01-01T23:59:59.000Z

205

Silane discharge ion chemistry  

SciTech Connect

Silane dc, rf, and dc proximity discharges have been studied using mass spectroscopic measurements of the positive ions as a detailed diagnostic for the type of discharge used to produce hydrogenated amorphous silicon solar photovoltaic cells. The properties and quality of these films depends in a very complex way upon the interactions of the many reactive neutral and ion species in the discharge. Qualitative models of the ion chemical processes in these discharges have been developed from experimental measurements. Knowledge of the ion-molecule and electron-molecule collision cross sections is important to any attempt at understanding silane discharge chemistry. Consequently, the electron impact ionization cross sections for silane and disilane have been measured and for comparison purposes also for methane and ethane. In addition, the rate coefficients for charge exchange reactions of He , Ne , and Ar with silane, disilane, methane, and ethane have been measured as these are important to understanding discharges in inert gas-silane mixtures. A detailed quantitative model of the cathode sheath region of a silane dc discharge has been developed by extending the best recent calculation of the electron motion in the sheath to a self-consistent form which includes the ion motion. This model is used with comparison of silane dc discharge data to diagnose the ion chemistry occurring in the sheath region of silane dc discharge. The understanding of the discharge ion chemical processes that have been gained in this study represent an important step toward understanding the chemical and physical processes leading to film growth.

Chatham, R.H. III

1984-01-01T23:59:59.000Z

206

Nanomaterials Chemistry Group - CSD  

NLE Websites -- All DOE Office Websites (Extended Search)

CSD CSD Organization Contact List Search Other Links CSD CSD Organization Contact List Search Other Links Selected Research and Development Projects The Nanomaterials Chemistry Group at Chemical Sciences Division, the Oak Ridge National Laboratory conducts fundamental research related to synthesis and characterization of nanoscopic materials as well as ionic liquids for fundamental investigation of separation and catalysis processes. This group also conducts the applied research related to the applications of nanomaterials in advanced scintillators for radiation sensing, catalysts for fuel cells, radioactive tracers for medical imaging, novel electrodes for energy storage, and sensing devices for biological agents. Extensive synthesis capabilities exist within the group for preparation of mesoporous materials (oxides and carbons), low-dimensional materials (e.g., quantum dots and nanowires), sol-gel materials, inorganic and hybrid monoliths (e.g., membranes), and nanocatalysts. Solvothermal, ionothermal, templating synthesis, chemical vapor deposition (CVD), and atomic layer deposition (ALD) methods are extensively utilized in the group for tailored synthesis of nanostructured materials. An array of techniques for characterizing physical and chemical properties related to separation and catalysis are in place or are currently being developed. This research program also takes advantage of the unique resources at ORNL such as small-angle x-ray scattering, small-angle neutron scattering at the High Flux Isotope Reactor and Spallation Neutron Source (SNS), structural analysis by a variety of electron microscopes (SEM, TEM, STEM, HRTEM) and powdered X-ray diffraction (XRD) techniques. A wide variety of other facilities for routine and novel techniques are also utilized including the Center for Nanophase Materials Science. Computational chemistry tools are employed to understand experimental results related to separation and other interfacial chemical processes and design better nanomaterials and ionic liquids. Commonly used methods include first principles density functional theory (DFT) and mixed quantum mechanical/molecular mechanical (QM/MM) techniques.

207

Applicability of the linearly perturbed FRW metric and Newtonian cosmology  

E-Print Network (OSTI)

It has been argued that the effect of cosmological structure formation on the average expansion rate is negligible, because the linear approximation to the metric remains applicable in the regime of non-linear density perturbations. We discuss why the arguments based on the linear theory are not valid. We emphasise the difference between Newtonian gravity and the weak field, small velocity limit of general relativity in the cosmological setting.

Syksy Rasanen

2010-02-25T23:59:59.000Z

208

Chemistry and Material Sciences Codes at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry and Material Sciences Codes Chemistry and Material Sciences Codes at NERSC April 6, 2011 & ast edited: 2012-02-24 15:12:59...

209

BNL Center for Radiation Chemistry Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Department | Photo- and Radiation Chemistry | Group Members Welcome to the Brookhaven National Laboratory Center for Radiation Chemistry Research LEAF Logo CRCR Logo Graphic Pop-up...

210

Sandia National Laboratories: Careers: Chemistry & Chemical Engineerin...  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry & Chemical Engineering Chemistry research photo Sandia's Combustion Research Facility pioneered the use of chemical-imaging tools, such as laser diagnostics, for...

211

SLAC National Accelerator Laboratory - Materials, Chemistry and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials, Chemistry and Energy Sciences Two people holding a solar cell outdoors Materials, chemistry and energy sciences are central to many of today's most critical technical...

212

FERNANDO GILBES-SANTAELLA DEPARTMENT OF GEOLOGY  

E-Print Network (OSTI)

University of Puerto Rico Mayagüez Campus Faculty of Arts and Sciences Department of Geology + Spectral Analyses and Sedimentation of the West Coast Beaches of Puerto Rico Undergraduate Research Final, and mineralogy along the west coast of Puerto Rico. These sand sediments were sampled at different geologic

Gilbes, Fernando

213

Christopher U.S. Geological Survey  

E-Print Network (OSTI)

Christopher Magirl U.S. Geological Survey 934 Broadway Suite 300 Tacoma, Washington 98402 Phone; Hydraulic modeling; Computer programming (C/C++, Fortran, Perl), Field survey; Geographic information Research Hydrologist U.S. Geological Survey, Tacoma, Washington. September 2009 ­ present · Analyzing

214

Nuclear chemistry. Annual report, 1974  

SciTech Connect

The 1974 Nuclear Chemistry Annual Report contains information on research in the following areas: nuclear science (nuclear spectroscopy and radioactivity, nuclear reactions and scattering, nuclear theory); chemical and atomic physics (heavy ion-induced atomic reactions, atomic and molecular spectroscopy, photoelectron spectroscopy and hyperfine interactions); physical, inorganic, and analytical chemistry (x-ray crystallography, physical and inorganic chemistry, geochemistry); and instrumentation. Thesis abstracts, 1974 publication titles, and an author index are also included. Papers having a significant amount of information are listed separately by title. (RWR)

Conzett, H.E.; Edelstein, N.M.; Tsang, C.F. (eds.)

1975-07-01T23:59:59.000Z

215

Neutron Stars and the Cosmological Constant Problem  

E-Print Network (OSTI)

The gravitational aether theory is a modification of general relativity that decouples vacuum energy from gravity, and thus can potentially address the cosmological constant problem. The classical theory is distinguishable from general relativity only in the presence of relativistic pressure (or vorticity). Since the interior of neutron stars has high pressure and as their mass and radius can be measured observationally, they are the perfect laboratory for testing the validity of the aether theory. In this paper, we solve the equations of stellar structure for the gravitational aether theory and find the predicted mass-radius relation of non-rotating neutron stars using two different realistic proposals for the equation of state of nuclear matter. We find that the maximum neutron star mass predicted by the aether theory is 12% - 16% less than the maximum mass predicted by general relativity assuming these two equations of state. We also show that the effect of aether is similar to modifying the equation of state in general relativity. The effective pressure of the neutron star given by the aether theory at a fiducial density differs from the values given by the two nuclear equations of state to an extent that can be constrained using future gravitational wave observations of neutron stars in compact systems. This is a promising way to test the aether theory if further progress is made in constraining the equation of state of nuclear matter in densities above the nuclear saturation density.

Farbod Kamiab; Niayesh Afshordi

2011-04-29T23:59:59.000Z

216

Cosmological properties of a gauged axion  

SciTech Connect

We analyze the most salient cosmological features of axions in extensions of the standard model with a gauged anomalous extra U(1) symmetry. The model is built by imposing the constraint of gauge invariance in the anomalous effective action, which is extended with Wess-Zumino counterterms. These generate axionlike interactions of the axions to the gauge fields and a gauged shift symmetry. The scalar sector is assumed to acquire a nonperturbative potential after inflation, at the electroweak phase transition, which induces a mixing of the Stueckelberg field of the model with the scalars of the electroweak sector, and at the QCD phase transition. We discuss the possible mechanisms of sequential misalignments which could affect the axions of these models, and generated, in this case, at both transitions. We compute the contribution of these particles to dark matter, quantifying their relic densities as a function of the Stueckelberg mass. We also show that models with a single anomalous U(1) in general do not account for the dark energy, due to the presence of mixed U(1)-SU(3) anomalies.

Coriano, Claudio; Mariano, Antonio [Dipartimento di Fisica, Universita del Salento, Via Arnesano 73100 Lecce (Italy) and INFN Sezione di Lecce, Via Arnesano 73100 Lecce (Italy); Guzzi, Marco [Department of Physics, Southern Methodist University, Dallas Texas 75275 (United States); Lazarides, George [Physics Division, School of Technology, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)

2010-09-15T23:59:59.000Z

217

Advanced Chemistry Basins Model  

SciTech Connect

The objective of this project is to: (1) Develop a database of additional and better maturity indicators for paleo-heat flow calibration; (2) Develop maturation models capable of predicting the chemical composition of hydrocarbons produced by a specific kerogen as a function of maturity, heating rate, etc.; assemble a compositional kinetic database of representative kerogens; (3) Develop a 4 phase equation of state-flash model that can define the physical properties (viscosity, density, etc.) of the products of kerogen maturation, and phase transitions that occur along secondary migration pathways; (4) Build a conventional basin model and incorporate new maturity indicators and data bases in a user-friendly way; (5) Develop an algorithm which combines the volume change and viscosities of the compositional maturation model to predict the chemistry of the hydrocarbons that will be expelled from the kerogen to the secondary migration pathways; (6) Develop an algorithm that predicts the flow of hydrocarbons along secondary migration pathways, accounts for mixing of miscible hydrocarbon components along the pathway, and calculates the phase fractionation that will occur as the hydrocarbons move upward down the geothermal and fluid pressure gradients in the basin; and (7) Integrate the above components into a functional model implemented on a PC or low cost workstation.

Blanco, Mario; Cathles, Lawrence; Manhardt, Paul; Meulbroek, Peter; Tang, Yongchun

2003-02-13T23:59:59.000Z

218

Coda-wave interferometry analysis of time-lapse VSP data for monitoring geological carbon sequestration  

E-Print Network (OSTI)

Monitoring Geological Carbon Sequestration Authors: RongmaoGeological Carbon Sequestration ABSTRACT Injection andmonitoring geological carbon sequestration. ACKNOWLEDGEMENTS

Zhou, R.

2010-01-01T23:59:59.000Z

219

AVIRIS Canopy Chemistry Data (ACCP)  

NLE Websites -- All DOE Office Websites (Extended Search)

Canopy Chemistry Data Canopy Chemistry Data The ORNL DAAC has added a data set to its holdings from the Accelerated Canopy Chemistry Program (ACCP). The new data set is entitled "Site AVIRIS Images, 1992 (ACCP)." ACCP was an investigation to determine the theoretical and empirical basis for remote sensing of nitrogen and lignin concentrations in vegetation canopies of various ecosystems in the United States. Ten AVIRIS image scenes over selected ACCP sites were acquired in 1992. Pixels that coincided with ACCP field sites were extracted, and surface reflectance values were calculated. The purpose of the data set was to measure spectra of naturally occurring canopies where the chemical constituents were measured. The ORNL DAAC also holds ACCP data related to leaf chemistry, seedling

220

An Improved Raindrop Chemistry Spectrometer  

Science Conference Proceedings (OSTI)

A spectrometer allowing size-fractional chemical analysis of raindrops has been described previously by the authors. Modifications to this raindrop chemistry spectrometer now allow improved performance in windy conditions. Instrument ...

Stuart G. Bradley; Stephen J. Adams; C. David Stow; Stephen J. de Mora

1991-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hot atom chemistry and radiopharmaceuticals  

Science Conference Proceedings (OSTI)

The chemical products made in a cyclotron target are a combined result of the chemical effects of the nuclear transformation that made the radioactive atom and the bulk radiolysis in the target. This review uses some well-known examples to understand how hot atom chemistry explains the primary products from a nuclear reaction and then how radiation chemistry is exploited to set up the optimal product for radiosynthesis. It also addresses the chemical effects of nuclear decay. There are important principles that are common to hot atom chemistry and radiopharmaceutical chemistry. Both emphasize short-lived radionuclides and manipulation of high specific activity nuclides. Furthermore, they both rely on radiochromatographic separation for identification of no-carrieradded products.

Krohn, Kenneth A.; Moerlein, Stephen M.; Link, Jeanne M.; Welch, Michael J. [University of Washington, Department of Radiology, Molecular Imaging Center, 1959 NE Pacific St., Box 356004, Seattle, WA 98195-6004 (United States); Washington University, Department of Radiology, Division of Radiological Sciences, 510 South Kingshighway, St. Louis, MO 63110 (United States); University of Washington, Department of Radiology, Molecular Imaging Center, 1959 NE Pacific St., Box 356004, Seattle, WA 98195-6004 (United States); Washington University, Department of Radiology, Division of Radiological Sciences, 510 South Kingshighway, St. Louis, MO 63110 (United States)

2012-12-19T23:59:59.000Z

222

Global Warming in Geologic Time  

Science Conference Proceedings (OSTI)

The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere/ ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial/interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

Archer, David (University of Chicago)

2008-02-27T23:59:59.000Z

223

Dynamics and constraints of the unified dark matter flat cosmologies  

SciTech Connect

We study the dynamics of the scalar field Friedmann-Lemaitre-Robertson-Walker flat cosmological models within the framework of the unified dark matter (UDM) scenario. In this model we find that the main cosmological functions such as the scale factor of the Universe, the scalar field, the Hubble flow, and the equation of state parameter are defined in terms of hyperbolic functions. These analytical solutions can accommodate an accelerated expansion, equivalent to either the dark energy or the standard {lambda} models. Performing a joint likelihood analysis of the recent supernovae type Ia data and the baryonic acoustic oscillations traced by the Sloan Digital Sky Survey galaxies, we place tight constraints on the main cosmological parameters of the UDM cosmological scenario. Finally, we compare the UDM scenario with various dark energy models namely {lambda} cosmology, parametric dark energy model and variable Chaplygin gas. We find that the UDM scalar field model provides a large and small scale dynamics which are in fair agreement with the predictions by the above dark energy models although there are some differences especially at high redshifts.

Basilakos, Spyros [Academy of Athens, Research Center for Astronomy and Applied Mathematics, Soranou Efesiou 4, GR-11527, Athens (Greece); Lukes-Gerakopoulos, Georgios [Academy of Athens, Research Center for Astronomy and Applied Mathematics, Soranou Efesiou 4, GR-11527, Athens (Greece); University of Athens, Department of Physics, Section of Astrophysics, Astronomy and Mechanics (Greece)

2008-10-15T23:59:59.000Z

224

Geologic Carbon Dioxide Storage Field Projects Supported by DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program...

225

On leakage and seepage from geological carbon sequestration sites  

E-Print Network (OSTI)

from Geologic Carbon Sequestration Sites Orlando Lawrencefrom Geologic Carbon Sequestration Sites Farrar, C.D. , M.L.1999. Reichle, D. et al. , Carbon sequestration research and

Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

2002-01-01T23:59:59.000Z

226

Florida Geological Survey - 2011 Monthly Oil and Gas Production...  

Open Energy Info (EERE)

Florida Geological Survey - 2011 Monthly Oil and Gas Production Data The Florida Geological Survey is where data related to oil, gas, and geothermal resources for the state of...

227

Pages that link to "Idaho Geological Survey" | Open Energy Information  

Open Energy Info (EERE)

Edit History Share this page on Facebook icon Twitter icon Pages that link to "Idaho Geological Survey" Idaho Geological Survey Jump to: navigation, search What links...

228

Changes related to "Idaho Geological Survey" | Open Energy Information  

Open Energy Info (EERE)

Special page Share this page on Facebook icon Twitter icon Changes related to "Idaho Geological Survey" Idaho Geological Survey Jump to: navigation, search This is a...

229

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL...  

Open Energy Info (EERE)

GEOLOGY AND HYDROTHERMAL ALTERATION OF THE RAFT RIVER GEOTHERMAL SYSTEM, IDAHO Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: GEOLOGY AND...

230

Engineered barrier system and waste package design concepts for a potential geologic repository at Yucca Mountain  

Science Conference Proceedings (OSTI)

We are using an iterative process to develop preliminary concept descriptions for the Engineered Barrier System and waste-package components for the potential geologic repository at Yucca Mountain. The process allows multiple design concepts to be developed subject to major constraints, requirements, and assumptions. Involved in the highly interactive and interdependent steps of the process are technical specialists in engineering, metallic and nonmetallic materials, chemistry, geomechanics, hydrology, and geochemistry. We have developed preliminary design concepts that satisfy both technical and nontechnical (e.g., programmatic or policy) requirements.

Short, D.W.; Ruffner, D.J.; Jardine, L.J.

1991-10-01T23:59:59.000Z

231

Chemistry Central Journal Commentary Molecular biology: Self-sustaining chemistry  

E-Print Network (OSTI)

which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Molecular biology is an established interdisciplinary field within biology that deals fundamentally with the function of any nucleic acid in the cellular context. The molecular biology section in Chemistry Central Journal focusses on the genetically determined chemistry and biochemistry occuring in the cell. How can thousands of chemical reactions interact smoothly to maintain the life of cells, even in a variable environment? How is this self-sustaining system achieved? These are questions that should be answered in the light of molecular biology and evolution, but with the application of biophysical, physico-chemical, analytical and preparative technologies. As the Section Editor for the molecular biology section in Chemistry Central Journal, I hope to receive manuscripts that present new approaches aimed at better answering and shedding light upon these fascinating questions related to the chemistry of livings cells. Molecular biology in Chemistry Central Journal At the outset, let me pose two important questions: Why

Paul Wrede

2007-01-01T23:59:59.000Z

232

Utah Geological Survey | Open Energy Information  

Open Energy Info (EERE)

Utah Geological Survey Utah Geological Survey Name Utah Geological Survey Address 1594 W. North Temple Place Salt Lake City, Utah Zip 84114-6100 Phone number 801.537.3300 Website http://geology.utah.gov/ Coordinates 40.7713859°, -111.9367973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7713859,"lon":-111.9367973,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

233

Geology of Kilauea Volcano | Open Energy Information  

Open Energy Info (EERE)

Geology of Kilauea Volcano Geology of Kilauea Volcano Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology of Kilauea Volcano Abstract This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, bul the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems lhat develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water, of some of these hydrothermal convection systems are known through studies of surface geology,and drill holes. Observations of eruptions during the past

234

Property:AreaGeology | Open Energy Information  

Open Energy Info (EERE)

AreaGeology AreaGeology Jump to: navigation, search Property Name AreaGeology Property Type String Description A description of the area geology This is a property of type String. Subproperties This property has the following 22 subproperties: A Amedee Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak Geothermal Area D cont. Dixie Valley Geothermal Area E East Mesa Geothermal Area G Geysers Geothermal Area K Kilauea East Rift Geothermal Area L Lightning Dock Geothermal Area Long Valley Caldera Geothermal Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area S Salt Wells Geothermal Area Salton Sea Geothermal Area San Emidio Desert Geothermal Area

235

United States Geological Survey Geospatial Information Response  

E-Print Network (OSTI)

requirements, capabilities, and operations in response to a natural or man-made disaster1 United States Geological Survey Geospatial Information Response Information Response Team (GIRT) Standard Operating Procedures (SOP) contains the GIRT

Fleskes, Joe

236

Geological Assessment of the Greenhouse Effect  

Science Conference Proceedings (OSTI)

Geologic studies provide a valuable perspective on the importance of greenhouse forcing for climate change. On both Pleistocene and tectonic time scales, changes in climate are positively correlated with greenhouse gas variations. However, the ...

Thomas J. Crowley

1993-12-01T23:59:59.000Z

237

What does cosmology tell us about particle physics beyond the Standard Model?  

Science Conference Proceedings (OSTI)

Cosmology demands particle physics beyond the Standard Model: we need to explain the nature of dark matter and dark energy

Eiichiro Komatsu

2012-01-01T23:59:59.000Z

238

On some physical aspects of isotropic cosmology in Riemann-Cartan spacetime  

E-Print Network (OSTI)

Isotropic cosmology built in the framework of the Poincar\\'e gauge theory of gravity based on sufficiently general expression of gravitational Lagrangian is considered. The derivation of cosmological equations and equations for torsion functions in the case of the most general homogeneous isotropic models is given. Physical aspects of isotropic cosmology connected with possible solution of dark energy problem and problem of cosmological singularity are discussed.

A. V. Minkevich; A. S. Garkun; V. I. Kudin

2013-02-11T23:59:59.000Z

239

Theoretical Research in Cosmology, High-Energy Physics and String Theory  

Science Conference Proceedings (OSTI)

The research was in the area of Theoretical Physics: Cosmology, High-Energy Physics and String Theory

Ng, Y Jack; Dolan, Louise; Mersini-Houghton, Laura; Frampton, Paul

2013-07-29T23:59:59.000Z

240

Thermalization of Starlight in the Steady-State Cosmology  

E-Print Network (OSTI)

We investigate the fate of starlight in the Steady-State Cosmology. We discover that it is largely unaffected by the presence of ions in intergalactic space as it gets progressively red-shifted from the visible all the way down to the plasma frequency of the intergalactic matter. At that point, after about 450 Gyr - and contrary to previously published claims - the radiation will be thermalized. Under the assumptions adopted by Gold, Bondi, Hoyle, Narlikar, Burbidge and others concerning the creation of matter in the Steady-State Cosmology, and using reasonable estimates for the baryonic mass-density and mass-fraction of 4He, the analysis predicts a universal radiation field matching the CMB, i.e. having a black-body spectrum and temperature of about 2.7 K. The Steady-state Cosmology predicts that this radiation field will appear to originate from the intergalactic plasma.

M. Ibison

2009-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Cosmological toolkit project featured on DOE energy website | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Cosmological toolkit project featured on DOE energy website Cosmological toolkit project featured on DOE energy website October 2, 2013 Tweet EmailPrint Researchers from Argonne National Laboratory, in partnership with Fermilab and Lawrence Berkeley National Laboratory, are developing a state-of-the-art toolkit for analyzing cosmological simulation data. The work was recently featured on the DOE website Energy.gov. Leading the Argonne team are Salman Habib, senior physicist and computational scientist in Argonne's High Energy Physics and Mathematics and Computer Science Divisions, and Ravi Madduri, project manager in the MCS Division. The multilaboratory team seeks to create an open platform with a web-based front end that will allow scientists to transfer, search, and analyze the complex data being generated by galaxy-formation simulations. Key to this

242

Quiescent cosmology and the final state of the universe  

E-Print Network (OSTI)

It has long been a primary objective of cosmology to understand the apparent isotropy in our universe and to provide a mathematical formulation for its evolution. A school of thought for its explanation is quiescent cosmology, which already possesses a mathematical framework, namely the definition of an Isotropic Singularity, but only for the initial state of the universe. A complementary framework is necessary in order to also describe possible final states of the universe. Our new definitions of an Anisotropic Future Endless Universe and an Anisotropic Future Singularity, whose structure and properties differ significantly from those of the Isotropic Singularity, offer a promising realisation for this framework. The combination of the three definitions together may then provide the first complete formalisation of the quiescent cosmology concept.

Philipp A Hoehn; Susan M Scott

2010-01-18T23:59:59.000Z

243

Thermodynamics of de Sitter Black Holes: Thermal Cosmological Constant  

E-Print Network (OSTI)

We study the thermodynamic properties associated with the black hole event horizon and the cosmological horizon for black hole solutions in asymptotically de Sitter spacetimes. We examine thermodynamics of these horizons on the basis of the conserved charges according to Teitelboim's method. In particular, we have succeeded in deriving the generalized Smarr formula among thermodynamical quantities in a simple and natural way. We then show that cosmological constant must decrease when one takes into account the quantum effect. These observations have been obtained if and only if cosmological constant plays the role of a thermodynamical state variable. We also touch upon the relation between inflation of our universe and a phase transition of black holes.

Yuichi Sekiwa

2006-02-25T23:59:59.000Z

244

Crisis in Cosmology : Observational Constraints on Omega and H_0  

E-Print Network (OSTI)

Thanks to new technology of observations and fresh inputs from particle physics, cosmology has advanced on both observational and theoretical fronts. It is therefore opportune that we take stock of the cosmological situation today and examine the observational and theoretical constraints as they are now. The bottom line in this review is that despite the availability of the cosmological constant as an extra parameter for flat Friedmann models, the allowed parameter space for such models is very small. The observations that we consider here include the ages of globular clusters, measurement of Hubble's constant, abundance of rich clusters of galaxies, fraction of mass contributed by baryons in rich clusters and abundance of high redshift objects.

J. S. Bagla; T. Padmanabhan; J. V. Narlikar

1995-11-22T23:59:59.000Z

245

COSMOLOGICAL POST-NEWTONIAN APPROXIMATION COMPARED WITH PERTURBATION THEORY  

Science Conference Proceedings (OSTI)

We compare the cosmological first-order post-Newtonian (1PN) approximation with the relativistic cosmological linear perturbation theory in a zero-pressure medium with the cosmological constant. We compare equations and solutions in several different gauge conditions available in both methods. In the PN method we have perturbation equations for density, velocity, and gravitational potential independently of the gauge condition to 1PN order. However, correspondences with these 1PN equations are available only in certain gauge conditions in the perturbation theory. Equations of perturbed velocity and the perturbed gravitational potential in the zero-shear gauge exactly coincide with the Newtonian equations, which remain valid even to 1PN order (the same is true for perturbed velocity identified in the comoving gauge), and equations of perturbed density in the zero-shear gauge and the uniform-expansion gauge coincide to 1PN order. We identify other correspondences available in different gauge conditions of the perturbation theory.

Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon 305-348 (Korea, Republic of); Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of)

2012-10-01T23:59:59.000Z

246

Midwest Geological Sequestration Consortium--Validation Phase  

NLE Websites -- All DOE Office Websites (Extended Search)

Geological Sequestration Geological Sequestration Consortium-Validation Phase Background The U.S. Department of Energy (DOE) has selected seven partnerships, through its Regional Carbon Sequestration Partnership (RCSP) initiative, to determine the best approaches for capturing and permanently storing carbon dioxide (CO 2 ), a greenhouse gas (GHG) which can contribute to global climate change. The RCSPs are made up of state and local agencies, coal companies, oil and gas companies, electric utilities,

247

Cosmological mass limits on neutrinos, axions, and other light particles  

E-Print Network (OSTI)

The small-scale power spectrum of the cosmological matter distribution together with other cosmological data provides a sensitive measure of the hot dark matter fraction, leading to restrictive neutrino mass limits. We extend this argument to generic cases of low-mass thermal relics. We vary the cosmic epoch of thermal decoupling, the radiation content of the universe, and the new particle's spin degrees of freedom. Our treatment covers various scenarios of active plus sterile neutrinos or axion-like particles. For three degenerate massive neutrinos, we reproduce the well-known limit of m_nu solar eV-mass axions to be discovered by the CAST experiment.

Steen Hannestad; Georg Raffelt

2003-12-11T23:59:59.000Z

248

Cosmological Solutions in Biconnection and Bimetric Gravity Theories  

E-Print Network (OSTI)

We show how generic off--diagonal cosmological solutions depending, in general, on all spacetime coordinates can be constructed in massive gravity using the anholonomic frame deformation method. Such metrics describe the late time acceleration due to effective cosmological terms induced by nonlinear off--diagonal interactions and graviton mass and include matter, graviton mass and other effective sources modelling nonlinear gravitational and matter fields interactions with polarization of physical constants and deformations of metrics, which may explain certain dark energy and dark matter effects.

Sergiu I. Vacaru

2013-04-02T23:59:59.000Z

249

General properties of cosmological models with an Isotropic Singularity  

E-Print Network (OSTI)

Much of the published work regarding the Isotropic Singularity is performed under the assumption that the matter source for the cosmological model is a barotropic perfect fluid, or even a perfect fluid with a $\\gamma$-law equation of state. There are, however, some general properties of cosmological models which admit an Isotropic Singularity, irrespective of the matter source. In particular, we show that the Isotropic Singularity is a point-like singularity and that vacuum space-times cannot admit an Isotropic Singularity. The relationships between the Isotropic Singularity, and the energy conditions, and the Hubble parameter is explored. A review of work by the authors, regarding the Isotropic Singularity, is presented.

Geoffery Ericksson; Susan M. Scott

2003-02-25T23:59:59.000Z

250

Towards a holographic theory of cosmology -- threads in a tapestry  

E-Print Network (OSTI)

In this Essay we address several fundamental issues in cosmology: What is the nature of dark energy and dark matter? Why is the dark sector so different from ordinary matter? Why is the effective cosmological constant non-zero but so incredibly small? What is the reason behind the emergence of a critical acceleration parameter of magnitude $10^{-8} cm/sec^2$ in galactic dynamics? We suggest that the holographic principle is the linchpin in a unified scheme to understand these various issues.

Y. Jack Ng

2013-05-16T23:59:59.000Z

251

Interplanetary Measures Can Not Bound the Cosmological Constant  

E-Print Network (OSTI)

The effect of a cosmological constant on the precession of the line of apsides is O(\\Lambda c^2 r^3/GM) which is 3(H_\\circ P)^2/8\\pi^2 \\approx 10^{-23} for a vacuum-dominated Universe with Hubble constant H_\\circ = 65 km/sec/Mpc and for the orbital period P = 88 days of Mercury. This is unmeasurably small, so planetary perturbations cannot be used to limit the cosmological constant, contrary to the suggestion by Cardona & Tejeiro (1998).

Edward L. Wright

1998-05-21T23:59:59.000Z

252

Role of inorganic chemistry on nuclear energy examined  

NLE Websites -- All DOE Office Websites (Extended Search)

Role of inorganic chemistry on nuclear energy examined Role of inorganic chemistry on nuclear energy examined Inorganic chemistry can provide insight and improve technical issues...

253

COORDINATION CHEMISTRY OF METAL SURFACES AND METAL COMPLEXES  

E-Print Network (OSTI)

molecular coordination chemistry of CH3NC has been reported.features of this surface chemistry. ACKNOw"LEDGMENTS The1980 Catalysis~ COORDINATION CHEMISTRY OF METAL SURFACES AND

Muetterties, E.L.

2013-01-01T23:59:59.000Z

254

Pyrochemical separations chemistry of plutonium  

Science Conference Proceedings (OSTI)

The recovery and purification of plutonium involves interesting chemistry. Currently in use are several high temperature processes based on redox reactions. These processes include direct oxide reduction which uses calcium to reduce the oxide to the free metal and electrorefining which is used as a final purification step. The chemical research group at Rocky Flats is currently investigating the use of an aluminum/magnesium alloy to remove the ionic plutonium from the salts used in the above named processes. The results of this study along with an overview of pyrochemical plutonium processing chemistry will be presented.

Bynum, R.V.; Navratil, J.D.

1986-01-01T23:59:59.000Z

255

CHEMISTRY 213B: Introductory Physical Chemistry I. General Information  

E-Print Network (OSTI)

and applications 9.4 Lecture 21. Chemical equilibrium 11 February 25 - March 1: STUDY BREAK Lecture 22. Chemical Chemistry. Supplementary Texts 1. P. A. Rock, Chemical Thermodynamics. 2. Gordon M. Barrow, Physical of gases 2 Lecture 3. Empirical properties of liquids and solids 5 Lecture 4. Molecular basis: Kinetic

Ronis, David M.

256

Troubles with quantum anisotropic cosmological models: loss of unitarity  

E-Print Network (OSTI)

The anisotropic Bianchi I cosmological model coupled with perfect fluid is quantized in the minisuperspace. The perfect fluid is described by using the Schutz formalism which allows to attribute dynamical degrees of freedom to matter. It is shown that the resulting model is non-unitary. This breaks the equivalence between the many-worlds and dBB interpretations of quantum mechanics.

F. G. Alvarenga; A. B. Batista; J. C. Fabris; S. V. B. Goncalves

2004-02-25T23:59:59.000Z

257

Problems of Cosmological Variability of Fundamental Physical Constants  

E-Print Network (OSTI)

of the fundamental constants which govern most of the common phenomena and are usually given in the handbooks. NoteProblems of Cosmological Variability of Fundamental Physical Constants #3; D. A. Varshalovich, A. Y and astronomical observations aimed at testing the possible space-time variability of fundamental physical

258

FRW quantum cosmology with a generalized Chaplygin gas  

SciTech Connect

Cosmologies with a Chaplygin gas have recently been explored with the objective of explaining the transition from a dust dominated epoch towards an accelerating expansion stage. In this context, we consider the hypothesis that this transition involves a quantum mechanical process. Our analysis is entirely analytical, with the objective of finding explicit mathematical expressions for the different quantum mechanical states and their cosmological implications. We employ a Friedmann-Robertson-Walker (FRW) minisuperspace model, characterized by two Lorentzian sectors, separated by a classically forbidden region. This is the configuration associated with the evolution of a generalized Chaplygin gas in a FRW universe. The Hartle-Hawking and Vilenkin wave functions are then computed, together with the transition amplitudes towards the accelerating epoch. Furthermore, for specific initial conditions we found that the generalized Chaplygin gas parameters become related through an expression involving an integer n. We also introduce a phenomenological association between some brane-world scenarios and a FRW minisuperspace cosmology with a generalized Chaplygin gas. The aim is to promote a discussion and subsequent research on the quantum creation of brane cosmologies from such a perspective. Additional results in this paper suggest that the brane tension would become related with the generalized Chaplygin gas parameters through another expression involving an integer.

Bouhmadi-Lopez, Mariam; Moniz, Paulo Vargas [Institute of Cosmology and Gravitation, University of Portsmouth, Mercantile House, Hampshire Terrace, Portsmouth PO1 2EG (United Kingdom); Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom)

2005-03-15T23:59:59.000Z

259

An Alternative Solution to the Cosmological Constant Problem  

E-Print Network (OSTI)

In this paper it is analyzed the consecuences of a (1,1) dimensional space time at Planck scales. With this hypothesis is proposed an alternative solution to the density energy and the coincidence problem of the cosmological constant. Similarly it is predicted that the density of the dark energy is 4/9 of the critical density in the Universe.

Angel, Garcia Aspeitia Miguel

2010-01-01T23:59:59.000Z

260

Dark Energy: The Cosmological Challenge of the T. Padmanabhan  

E-Print Network (OSTI)

Dark Energy: The Cosmological Challenge of the Millennium T. Padmanabhan IUCAA, Pune Observational. It is made of a very exotic species called dark energy which exerts negative pressure. This is more esoteric per cent dark 1 #12;energy. The key direct evidence, however, came in late ninetees from the analysis

Udgaonkar, Jayant B.

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Kaluza-Klein Cosmology With Modified Holographic Dark Energy  

E-Print Network (OSTI)

We investigate the compact Kaluza-Klein cosmology in which modified holographic dark energy is interacting with dark matter. Using this scenario, we evaluate equation of state parameter as well as equation of evolution of the modified holographic dark energy. Further, it is shown that the generalized second law of thermodynamics holds without any constraint.

M. Sharif; Farida Khanum

2011-06-13T23:59:59.000Z

262

Three fluid cosmological model using Lie and Noether symmetries  

E-Print Network (OSTI)

We employ a three fluid model in order to construct a cosmological model in the Friedmann Robertson Walker flat spacetime, which contains three types of matter dark energy, dark matter and a perfect fluid with a linear equation of state. Dark matter is described by dust and dark energy with a scalar field with potential V({\\phi}). In order to fix the scalar field potential we demand Lie symmetry invariance of the field equations, which is a model-independent assumption. The requirement of an extra Lie symmetry selects the exponential scalar field potential. The further requirement that the analytic solution is invariant under the point transformation generated by the Lie symmetry eliminates dark matter and leads to a quintessence and a phantom cosmological model containing a perfect fluid and a scalar field. Next we assume that the Lagrangian of the system admits an extra Noether symmetry. This new assumption selects the scalar field potential to be exponential and forces the perfect fluid to be stiff. Furthermore the existence of the Noether integral allows for the integration of the dynamical equations. We find new analytic solutions to quintessence and phantom cosmologies which contain all three fluids. Using these solutions one is able to compute analytically all main cosmological functions, such as the scale factor, the scalar field, the Hubble expansion rate, the deceleration parameter etc.

Michael Tsamparlis; Andronikos Paliathanasis

2011-11-23T23:59:59.000Z

263

Cosmological Constraints from the SDSS maxBCG Cluster Catalog  

Science Conference Proceedings (OSTI)

We use the abundance and weak lensing mass measurements of the SDSS maxBCG cluster catalog to simultaneously constrain cosmology and the richness-mass relation of the clusters. Assuming a flat {Lambda}CDM cosmology, we find {sigma}{sub 8}({Omega}{sub m}/0.25){sup 0.41} = 0.832 {+-} 0.033 after marginalization over all systematics. In common with previous studies, our error budget is dominated by systematic uncertainties, the primary two being the absolute mass scale of the weak lensing masses of the maxBCG clusters, and uncertainty in the scatter of the richness-mass relation. Our constraints are fully consistent with the WMAP five-year data, and in a joint analysis we find {sigma}{sub 8} = 0.807 {+-} 0.020 and {Omega}{sub m} = 0.265 {+-} 0.016, an improvement of nearly a factor of two relative to WMAP5 alone. Our results are also in excellent agreement with and comparable in precision to the latest cosmological constraints from X-ray cluster abundances. The remarkable consistency among these results demonstrates that cluster abundance constraints are not only tight but also robust, and highlight the power of optically-selected cluster samples to produce precision constraints on cosmological parameters.

Rozo, Eduardo; /CCAPP; Wechsler, Risa H.; /KIPAC, Menlo Park /SLAC; Rykoff, Eli S.; /UC, Santa Barbara; Annis, James T.; /Fermilab; Becker, Matthew R.; /Chicago U. /KICP, Chicago; Evrard, August E.; /Michigan U. /Michigan U., MCTP; Frieman, Joshua A.; /Fermilab /KICP, Chicago /Chicago U.; Hansen, Sarah M.; /UC, Santa Cruz; Hao, Jia; /Michigan U.; Johnston, David E.; /Northwestern U.; Koester, Benjamin P.; /KICP, Chicago /Chicago U.; McKay, Timothy A.; /Michigan U. /Michigan U., MCTP; Sheldon, Erin S.; /Brookhaven; Weinberg, David H.; /CCAPP /Ohio State U.

2009-08-03T23:59:59.000Z

264

The quantization of unimodular gravity and the cosmological constant problem  

E-Print Network (OSTI)

A quantization of unimodular gravity is described, which results in a quantum effective action which is also unimodular, ie a function of a metric with fixed determinant. A consequence is that contributions to the energy momentum tensor of the form of the metric times a spacetime constant, whether classical or quantum, are not sources of curvature in the equations of motion derived from the quantum effective action. This solves the first cosmological constant problem, which is suppressing the enormous contributions to the cosmological constant coming from quantum corrections. We discuss several forms of uniodular gravity and put two of them, including one proposed by Henneaux and Teitelboim, in constrained Hamiltonian form. The path integral is constructed from the latter. Furthermore, the second cosmological constant problem, which is why the measured value is so small, is also addressed by this theory. We argue that a mechanism first proposed by Ng and van Dam for suppressing the cosmological constant by quantum effects obtains at the semiclassical level.

Lee Smolin

2009-04-30T23:59:59.000Z

265

Comments on the Quasi-Steady-State Cosmology  

E-Print Network (OSTI)

The Quasi-Steady-State Cosmology as proposed by Hoyle, Burbidge and Narlikar does not fit the observed facts of the Universe. In particular, it predicts that 75-90\\% of the radio sources in the brightest sample that shows steeper than Euclidean source counts should be blueshifted.

Edward L. Wright

1994-10-20T23:59:59.000Z

266

NETL: Carbon Storage - Geologic Characterization Efforts  

NLE Websites -- All DOE Office Websites (Extended Search)

RCSP Geologic Characterization Efforts RCSP Geologic Characterization Efforts The U.S. Department of Energy created a nationwide network of seven Regional Carbon Sequestration Partnerships (RCSP) in 2003 to help determine and implement the technology, infrastructure, and regulations most appropriate to promote carbon storage in different regions of the United States and Canada. The RCSP Initiative is being implemented in three phases: (1) Characterization Phase (2003-2005) to collect data on CO2 stationary sources and geologic formations and develop the human capital to support and enable future carbon storage field tests, (2) Validation Phase (2005-2011) to evaluate promising CO2 storage opportunities through a series of small-scale (<1 million metric tons of CO2) field tests, and (3) Development Phase (2008-2018+) that involves the injection of 1 million metric tons or more of CO2 by each RCSP into regionally significant geologic formations. In addition to working toward developing human capital, encouraging stakeholder networking, and enhancing public outreach and education on carbon capture and storage (CCS), the RCSPs are conducting extensive geologic characterization across all three project phases, as well as CO2 stationary source identification and re-evaluation over time.

267

Geological assessment of the greenhouse effect  

SciTech Connect

Geologic studies provide a valuable perspective on the importance of greenhouse forcing for climate change. On both Pleistocene and tectonic time scales, changes in climate are positively correlated with greenhouse gas variations. However, the sensitivity of the system to greenhouse gas changes cannot yet be constrained by paleoclimate data below its present large range. Geologic records do not support one of the major predictions of greenhouse models-namely, that tropical sea surface temperatures will increase. Geologic data also suggest that winter cooling in high-latitude land areas is less than predicted by models. As the above-mentioned predictions appear to be systemic features of the present generation of climate models, some significant changes in model design may be required to reconcile models and geologic data. However, full acceptance of this conclusion requires more measurements and more systematic compilations of existing geologic data. Since progress in data collection in this area has been quite slow, uncertainties associated with these conclusions may persist for some time. 106 refs., 6 figs.

Crowley, T.J. (Texas A M Univ., College Station, TX (United States))

1993-12-01T23:59:59.000Z

268

Bureau of Economic Geology. 1978 annual report  

DOE Green Energy (OSTI)

Bureau research programs and projects are designed to address many of the State's major concerns in the areas of geologic, energy, mineral, land, and environmental resouces. Research programs incorporate geologic concepts that will build toward an understanding of a specific resource and its impact on human activities. In addition to resource assessments in uranium, lignite, and geopressured geothermal energy, the Bureau continued research into analysis of governmental policy related to energy. Systemic geologic mapping, coastal studies, basin analysis projects, and investigations in other areas of economic geology further indicate the range of research programs carried forward in 1978. Specifically, research on mineral resources and land resources, coastal studies, hydrogeology, basin studies, geologic mapping, and other research (tektites and meteorites, carboniferous of Texas, depositional environments of the Marble Falls Formation, Central Texas) are reported. The establishment of the Mining and Mineral Resources Research Institute is followed. Contracts and grant support and contract reports are listed. The publications eminating from the Bureau are listed. Services rendered by the Bureau and personnel information are included. (MCW)

Not Available

1978-01-01T23:59:59.000Z

269

Bio-Organic Chemistry Quarterly Report  

E-Print Network (OSTI)

I). Johannes Ull~.ich, in Bio-Organic Chc! mistry Qiinrtcr-sodium E. A. Shneour, in Bio-Organic Chemistry Quarterly2, Edwige Tyszkiewicz, in Bio-Organic Chemistry Qnarterly

Various

1961-01-01T23:59:59.000Z

270

Chemistry of Cobalt-Platinum Nanocatalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry of Cobalt-Platinum Nanocatalysts Chemistry of Cobalt-Platinum Nanocatalysts Print Monday, 25 February 2013 15:59 Bimetallic cobalt-platinum (CoPt) nanoparticles are...

271

Boron chemistry reported in Chemical Reviews  

NLE Websites -- All DOE Office Websites (Extended Search)

813chemistry 03282013 Boron chemistry reported in Chemical Reviews Anne M Stark, LLNL, (925) 422-9799, stark8@llnl.gov Printer-friendly A ball-and-stick structural model of...

272

THE ROLE OF SOOT IN AEROSOL CHEMISTRY  

E-Print Network (OSTI)

characterization of aerosols." in Nature. Aim. and MethodsLAWRENCE THE ROLE OF SOOT IN AEROSOL CHEMISTRY T. NovakovTHE ROLE OF SOOT IN AEROSOL CHEMISTRY* T. Novakov Lawrence

Novakov, T.

2010-01-01T23:59:59.000Z

273

IN SITU MAGIC ANGLE SPINNING NMR FOR STUDYING GEOLOGICAL CO(2) SEQUESTRATION  

Science Conference Proceedings (OSTI)

Geological carbon sequestration (GCS) is one of the most promising ways of mitigating atmospheric greenhouse gases (1-3). Mineral carbonation reactions are potentially important to the long-term sealing effectiveness of caprock but remain poorly predictable, particularly in low-water supercritical CO2 (scCO2)-dominated environments where the chemistry has not been adequately explored. In situ probes that provide molecular-level information is desirable for investigating mechanisms and rates of GCS mineral carbonation reactions. MAS-NMR is a powerful tool for obtaining detailed molecular structure and dynamics information of a system regardless whether the system is in a solid, a liquid, a gaseous, or a supercritical state, or a mixture thereof (4,5). However, MAS NMR under scCO2 conditions has never been realized due to the tremendous technical difficulties of achieving and maintaining high pressure within a fast spinning MAS rotor (6,7), where non-metal materials must be used. In this work, we report development of a unique high pressure MAS NMR capability, and its application to mineral carbonation chemistry in scCO2 under geologically relevant temperatures and pressures.

Hoyt, David W.; Turcu, Romulus VF; Sears, Jesse A.; Rosso, Kevin M.; Burton, Sarah D.; Kwak, Ja Hun; Felmy, Andrew R.; Hu, Jian Z.

2011-03-27T23:59:59.000Z

274

Computing Policy Department of Chemistry  

E-Print Network (OSTI)

Computing Policy Department of Chemistry Michigan Technological University This document describes the rules and regulations concerning the acquisition, provision, maintenance, and use of the computing established by: · Michigan Internet Provider, MERIT: (http://www.merit.edu/) · MTU Computer Advisory Committee

Honrath, Richard E.

275

Pre-Big Bang, vacuum and noncyclic cosmologies  

E-Print Network (OSTI)

WMAP and Planck open the way to unprecedented Big Bang phenomenology, potentially allowing to test the standard Big Bang model as well as less conventional approaches including noncyclic pre-Big Bang cosmologies that would incorporate a new fundamental scale beyond the Planck scale and, possibly, new ultimate constituents of matter. Alternatives to standard physics can be considered from a cosmological point of view concerning vacuum structure, the nature of space-time, the origin and evolution of our Universe, the validity of quantum field theory and conventional symmetries, solutions to the cosmological constant problem, inflationary scenarios, dark matter and dark energy, the interpretation of string-like theories... Lorentz-like symmetries for the properties of matter (standard or superbradyonic) can then be naturally stable space-time configurations resulting from general cosmological scenarios that incorporate physics beyond the Planck scale and describe the formation and evolution of the present vacuum. But an even more primordial question seems to be that of the origin of half-integer spins, that cannot be generated through orbital angular momentum in the usual real space-time. It turns out that the use of a spinorial space-time with two complex coordinates instead of the conventional four real ones presents several attractive features. Taking the cosmic time to be the modulus of a SU(2) spinor leads by purely geometric means to a naturally expanding universe, with a ratio between cosmic relative velocities and distances equal to the inverse of the age of the Universe. No reference to standard matter, hidden fields, gravitation or relativity is required to get such a result that looks quite reasonable from an observational point of view. We discuss basic ideas and phenomenological issues for noncyclic pre-Big Bang cosmologies in the present context.

Luis Gonzalez-Mestres

2012-12-12T23:59:59.000Z

276

Chemistry Monitoring and Control for Fuel Reliability  

Science Conference Proceedings (OSTI)

Water chemistry has been identified as a known or potential contributing cause in recent corrosion-induced fuel failures and anomalies such as fuel crud spallation and enhanced nodular corrosion. The 2004 revision of the BWR Water Chemistry Guidelines (EPRI report 1008192) addressed these concerns by recommending tighter chemistry control limits and additional monitoring for contaminants and additives that can have an adverse effect on fuel cladding corrosion. The revision focused on chemistry control fo...

2004-12-13T23:59:59.000Z

277

Interfacial Chemistry and Engineering Annual Report 2000  

Science Conference Proceedings (OSTI)

This annual report describes the research and staff accomplishments in 2000 for the EMSL Interfacial Chemistry and Engineering Directorate.

Grate, Jay W.

2001-08-01T23:59:59.000Z

278

Heat Recovery Steam Generator Cycle Chemistry Instrumentation  

Science Conference Proceedings (OSTI)

Effective monitoring of the purity of water and steam is an integral part of any productive cycle chemistry monitoring program. The Electric Power Research Institute's (EPRI's) heat recovery steam generator (HRSG) cycle chemistry guidelines identified a group of core monitoring parameters that are considered the minimum requirements. Meeting these requirements is part of EPRI's cycle chemistry benchmarking criteria for HRSGs. In addition to the core parameters, many chemistry parameters might need to be ...

2010-11-19T23:59:59.000Z

279

Eleventh international symposium on radiopharmaceutical chemistry  

SciTech Connect

This document contains abstracts of papers which were presented at the Eleventh International Symposium on Radiopharmaceutical Chemistry. Sessions included: radiopharmaceuticals for the dopaminergic system, strategies for the production and use of labelled reactive small molecules, radiopharmaceuticals for measuring metabolism, radiopharmaceuticals for the serotonin and sigma receptor systems, labelled probes for molecular biology applications, radiopharmaceuticals for receptor systems, radiopharmaceuticals utilizing coordination chemistry, radiolabelled antibodies, radiolabelling methods for small molecules, analytical techniques in radiopharmaceutical chemistry, and analytical techniques in radiopharmaceutical chemistry.

NONE

1995-12-31T23:59:59.000Z

280

Ivaco Rolling Mills LP, Chemistry Laboratory  

Science Conference Proceedings (OSTI)

Ivaco Rolling Mills LP, Chemistry Laboratory. NVLAP Lab Code: 200143-0. Address and Contact Information: Highway 17 ...

2013-09-06T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations  

Open Energy Info (EERE)

Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations During And After The Volcanic Crisis Of Spring 1990, And Monitoring Prior To The May 2003 Eruption Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Anatahan, Northern Mariana Islands- Reconnaissance Geological Observations During And After The Volcanic Crisis Of Spring 1990, And Monitoring Prior To The May 2003 Eruption Details Activities (0) Areas (0) Regions (0) Abstract: Anatahan island is 9.5 km east-west by 3.5 km north-south and truncated by an elongate caldera 5 km east-west by 2.5 km north-south. A steep-walled pit crater ~1 km across and ~200 m deep occupies the eastern part of the caldera. The island is the summit region of a mostly submarine stratovolcano. The oldest subaerial rocks (stage 1) are exposed low on the

282

Brine flow in heated geologic salt.  

Science Conference Proceedings (OSTI)

This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

Kuhlman, Kristopher L.; Malama, Bwalya

2013-03-01T23:59:59.000Z

283

Modeling biochemical pathways using an artificial chemistry  

Science Conference Proceedings (OSTI)

Artificial chemistries are candidates for methodologies that model and design biochemical systems. If artificial chemistries can deal with such systems in beneficial ways, they may facilitate activities in the new area of biomolecular engineering. In ... Keywords: Artificial chemistry, biochemical pathways, biomolecular engineering, modularity, reasoning, scalability

Kazuto Tominaga; Yoshikazu Suzuki; Keiji Kobayashi; Tooru Watanabe; Kazumasa Koizumi; Koji Kishi

2009-01-01T23:59:59.000Z

284

Method of fracturing a geological formation  

DOE Patents (OSTI)

An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

1990-01-01T23:59:59.000Z

285

Chemistry-nuclear chemistry division. Progress report, October 1979-September 1980  

Science Conference Proceedings (OSTI)

This report presents the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, element migration and fixation, inorganic chemistry, isotope separation and analysis, atomic and molecular collisions, molecular spectroscopy, muonic x rays, nuclear cosmochemistry, nuclear structure and reactions, radiochemical separations, theoretical chemistry, and unclassified weapons research.

Ryan, R.R. (comp.)

1981-05-01T23:59:59.000Z

286

GS3: A Knowledge Management Architecture for Collaborative Geologic Sequestration Modeling  

Science Conference Proceedings (OSTI)

Modern scientific enterprises are inherently knowledge-intensive. In general, scientific studies in domains such as groundwater, climate, and other environmental modeling as well as fundamental research in chemistry, physics, and biology require the acquisition and manipulation of large amounts of experimental and field data in order to create inputs for large-scale computational simulations. The results of these simulations must then be analyzed, leading to refinements of inputs and models and further simulations. In this paper we describe our efforts in creating a knowledge management platform to support collaborative, wide-scale studies in the area of geologic sequestration. The platform, known as GS3 (Geologic Sequestration Software Suite), exploits and integrates off-the-shelf software components including semantic wikis, content management systems and open source middleware to create the core architecture. We then extend the wiki environment to support the capture of provenance, the ability to incorporate various analysis tools, and the ability to launch simulations on supercomputers. The paper describes the key components of GS3 and demonstrates its use through illustrative examples. We conclude by assessing the suitability of our approach for geologic sequestration modeling and generalization to other scientific problem domains

Gorton, Ian; Black, Gary D.; Schuchardt, Karen L.; Sivaramakrishnan, Chandrika; Wurstner, Signe K.; Hui, Peter SY

2010-01-10T23:59:59.000Z

287

GEOLOGY FIELD TRIPS IN THE APPALACHIAN MOUNTAINS  

E-Print Network (OSTI)

-- Exploration for Petroleum and Natural Gas (optional laboratory) 87 -- The Obelisk: Revisited 96 -- References recording past events. Rather than letters and words, rock characteristics such as shape, color, composition of answers to questions about the nature of geological data gathered through the field trips and laboratory

Engelder, Terry

288

Geological Carbon Storage: The Roles of Government  

E-Print Network (OSTI)

Geological Carbon Storage: The Roles of Government and Industry in Risk Management ROSE MURPHY Carbon Storage: The Roles of Government and Industry in Risk Management ro s e m ur phy an d m a r k jac c a rd Carbon dioxide capture and storage (ccs) offers the promise that humanity can continue

289

The KU Geologic Record Volume 1, 2004  

E-Print Network (OSTI)

of the articles. KU has one of the strongest research groups in the world working on car- bonate rocks. GeotimesPhil- lips) was cited as the example of resurgent focus on hydro- thermal oil and gas reser- voirs. These are systems in which hot fluids move though rocks and enhance porosity. Such studies integrate hydro- geology

Peterson, Blake R.

290

Geology of magma systems: background and review  

DOE Green Energy (OSTI)

A review of basic concepts and current models of igneous geology is presented. Emphasis is centered on studies of magma generation, ascent, emplacement, evolution, and surface or near-surface activity. An indexed reference list is also provided to facilitate future investigations.

Peterfreund, A.R.

1981-03-01T23:59:59.000Z

291

Monitored Geologic Repository Test Evaluation Plan  

SciTech Connect

The Monitored Geologic Repository test & evaluation program will specify tests, demonstrations, examinations, and analyses, and describe procedures to conduct and document testing necessary to verify meeting Monitored Geologic Repository requirements for a safe and effective geologic repository for radioactive waste. This test program will provide assurance that the repository is performing as designed, and that the barriers perform as expected; it will also develop supporting documentation to support the licensing process and to demonstrate compliance with codes, standards, and regulations. This comprehensive program addresses all aspects of verification from the development of test requirements to the performance of tests and reporting of the test results. The ''Monitored Geologic Repository Test & Evaluation Plan'' provides a detailed description of the test program approach necessary to achieve the above test program objectives. This test plan incorporates a set of test phases focused on ensuring repository safety and operational readiness and implements a project-wide integrated product management team approach to facilitate test program planning, analysis, and implementation. The following sections provide a description of the individual test phases, the methodology for test program planning and analyses, and the management approach for implementing these activities.

M.B. Skorska

2002-01-02T23:59:59.000Z

292

Cosmological evolution of the cosmological plasma with interpartial scalar interaction. III. Model with the attraction of the like scalar charged particles  

E-Print Network (OSTI)

On the basis of the relativistic kinetic theory the mathematical model of cosmological plasmas with an attraction of the like charged scalar particles is formulated. It is shown, that cosmological the model, based on a classical scalar field with an attraction, is unsatisfactory, that leads to necessity of attraction of phantom models of a scalar field for systems with an attraction.

Yu. G. Ignat'ev

2013-07-09T23:59:59.000Z

293

MIDWEST GEOLOGICAL SEQUESTRATION CONSORTIUM THE UNITED S T A  

NLE Websites -- All DOE Office Websites (Extended Search)

MIDWEST GEOLOGICAL SEQUESTRATION CONSORTIUM THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Midwest Geological Sequestration Consortium The Midwest Geological Sequestration Consortium (MGSC) is a consortium of the geologic surveys of Illinois, Indiana, and Kentucky joined by private corporations, professional business associations, the Interstate Oil and Gas Compact Commission, three Illinois state agencies, and university researchers to assess carbon capture, transportation, and geologic storage processes and their costs and viability in the Illinois Basin region. The Illinois State Geological Survey is the Lead Technical Contractor for MGSC, which covers all of Illinois, southwest Indiana, and western Kentucky. To avoid atmospheric release of CO

294

BNL Photo- and Radiation Chemistry Group Members  

NLE Websites -- All DOE Office Websites (Extended Search)

and Radiation Chemistry Group and Radiation Chemistry Group Chemistry Department, Brookhaven National Laboratory Staff Diane E. Cabelli Redox chemistry of high oxidation state transition-metal complexes, particularly CuIII, MnIII/MnIV; Superoxide chemistry in aqueous solutions: dismutation of superoxide radical; copper-zinc superoxide dismutase and model compounds. Andrew R. Cook Excited state structure, dynamics and electron transfer reactions of a variety of organic radicals in both low temperature matrices and room temperature solutions using radiation chemistry techniques. Robert A. Crowell Ultrafast reaction phenomena. Etsuko Fujita Photochemistry of transition-metal complexes, small molecule activation by high- and low-oxidation state metal complexes; and biomimetic chemistry of porphyrins and enzymes.

295

(Chemistry of the global atmosphere)  

SciTech Connect

The traveler attended the conference The Chemistry of the Global Atmosphere,'' and presented a paper on the anthropogenic emission of carbon dioxide (CO{sub 2}) to the atmosphere. The conference included meetings of the International Global Atmospheric Chemistry (IGAC) programme, a core project of the International Geosphere/Biosphere Programme (IGBP) and the traveler participated in meetings on the IGAC project Development of Global Emissions Inventories'' and agreed to coordinate the working group on CO{sub 2}. Papers presented at the conference focused on the latest developments in analytical methods, modeling and understanding of atmospheric CO{sub 2}, CO, CH{sub 4}, N{sub 2}O, SO{sub 2}, NO{sub x}, NMHCs, CFCs, and aerosols.

Marland, G.

1990-09-27T23:59:59.000Z

296

NUMERICAL VERIFICATION OF EQUILIBRIUM CHEMISTRY  

SciTech Connect

A numerical tool is in an advanced state of development to compute the equilibrium compositions of phases and their proportions in multi-component systems of importance to the nuclear industry. The resulting software is being conceived for direct integration into large multi-physics fuel performance codes, particularly for providing boundary conditions in heat and mass transport modules. However, any numerical errors produced in equilibrium chemistry computations will be propagated in subsequent heat and mass transport calculations, thus falsely predicting nuclear fuel behaviour. The necessity for a reliable method to numerically verify chemical equilibrium computations is emphasized by the requirement to handle the very large number of elements necessary to capture the entire fission product inventory. A simple, reliable and comprehensive numerical verification method is presented which can be invoked by any equilibrium chemistry solver for quality assurance purposes.

Piro, Markus [Royal Military College of Canada; Lewis, Brent [Royal Military College of Canada; Thompson, Dr. William T. [Royal Military College of Canada; Simunovic, Srdjan [ORNL; Besmann, Theodore M [ORNL

2010-01-01T23:59:59.000Z

297

IN-PACKAGE CHEMISTRY ABSTRACTION  

Science Conference Proceedings (OSTI)

This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.

E. Thomas

2005-07-14T23:59:59.000Z

298

Cold Controlled Chemistry Roman Krems  

E-Print Network (OSTI)

· Possible applications of cold controlled chemistry #12; #¢¡ ©£¡ ! # %¢ ¥¤6#¢¡§¦ # ¤¨¤§! # ¤§¦ Centrifugal processes remains a significant challenge..." Paul Brumer, DAMOP 2007, Bulletin of the APS #12;Thermal gas is difficult to control #12;Low temperature gas under external fieldE #12;E BLow temperature gas

Krems, Roman

299

Jake F. Weltzin United States Geological Survey  

E-Print Network (OSTI)

: A national science and monitoring program for understanding climate change #12;Outline · Definitions monitoring programs #12;Study of the cause and the consequence of the timing of recurring biological phases, Precipitation, Radiation, Humidity, Wind Chemistry CO2, CH4, N2O ozone, aerosols Microclimate Canopy Physiology

Kuligowski, Bob

300

Non-Abelian Einstein-Born-Infeld-Dilaton Cosmology  

E-Print Network (OSTI)

The non-abelian Einstein-Born-Infeld-Dilaton theory, which rules the dynamics of tensor-scalar gravitation coupled to a $su(2)$-valued gauge field ruled by Born-Infeld lagrangian, is studied in a cosmological framework. The microscopic energy exchange between the gauge field and the dilaton which results from a non-universality of the coupling to gravity modifies the usual behaviour of tensor-scalar theories coupled to matter fluids. General cosmological evolutions are derived for different couplings to gravitation and a comparison to universal coupling is highlighted. Evidences of cosmic acceleration are presented when the evolution is interpreted in the Jordan physical frame of a matter respecting the weak equivalence principle. The importance for the mechanism of cosmic acceleration of the dynamics of the Born-Infeld gauge field, the attraction role of the matter fluid and the non-universality of the gravitational couplings is briefly outlined.

A. Fuzfa; J. -M. Alimi

2005-11-16T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Cosmological and astrophysical constraints on superconducting cosmic strings  

E-Print Network (OSTI)

We investigate the cosmological and astrophysical constraints on superconducting cosmic strings (SCSs). SCS loops emit strong bursts of electromagnetic waves, which might affect various cosmological and astrophysical observations. We take into account the effect on the CMB anisotropy, CMB blackbody spectrum, BBN, observational implications on radio wave burst and X-ray or gamma-ray events, and stochastic gravitational wave background measured by pulsar timing experiments. We then derive constraints on the parameters of SCS from current observations and estimate prospects for detecting SCS signatures in on-going observations. As a result, we find that these constraints exclude broad parameter regions, and also that on-going radio wave observations can probe large parameter space.

Koichi Miyamoto; Kazunori Nakayama

2012-12-30T23:59:59.000Z

302

Photon-Axion-Like Particle Coupling Constant and Cosmological Observations  

E-Print Network (OSTI)

We estimated the photon-pseudoscalar particle mixing constant from the effect of cosmological alignment and cosmological rotation of polarization plane of distant QSOs. This effect is explained in terms of birefringent phenomenon due to photon-pseudoscalar (axion-like) particle mixing in a cosmic magnetic field. On the contrary, one can estimate the strength of the cosmic magnetic field using the constraints on the photon-axion-like particle coupling constant from the CAST experiment and from SNe Ia dimming effect. In a result, the lower limit on the intergalactic ($z\\approx 1\\div 2$) magnetic field appears at the level of about $4\\times 10^{-10}\\div 10^{-11}$ G.

M. Yu. Piotrovich; Yu. N. Gnedin; T. M. Natsvlishvili

2008-05-23T23:59:59.000Z

303

Nuclear and particle physics, astrophysics and cosmology (NPAC) capability review  

Science Conference Proceedings (OSTI)

The present document represents a summary self-assessment of the status of the Nuclear and Particle Physics, Astrophysics and Cosmology (NPAC) capability across Los Alamos National Laboratory (LANL). For the purpose of this review, we have divided the capability into four theme areas: Nuclear Physics, Particle Physics, Astrophysics and Cosmology, and Applied Physics. For each theme area we have given a general but brief description of the activities under the area, a list of the Laboratory divisions involved in the work, connections to the goals and mission of the Laboratory, a brief description of progress over the last three years, our opinion of the overall status of the theme area, and challenges and issues.

Redondo, Antonio [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

304

Interacting Dark Energy in Ho?ava-Lifshitz Cosmology  

E-Print Network (OSTI)

In the usual Ho\\v{r}ava-Lifshitz cosmological models, the scalar field is responsible for dark matter. Using an additional scalar field, Saridakis \\cite{sari} has formulated Ho\\v{r}ava-Lifshitz cosmology with an effective dark energy sector. In the paper \\cite{sari} the scalar fields do not interact with each other, here we extend this work to the interacting case, where matter scalar field $\\phi$ interact with dark energy scalar field $\\sigma$. We will show that in contrast with \\cite{sari}, where $\\sigma$-filed is absent, we can obtain $w_d ^{\\rm eff}dark energy presenting phantom behaviour. This behaviour is pure effect of the interaction.

M R Setare

2009-09-02T23:59:59.000Z

305

Equation of state and singularities in FLRW cosmological models  

E-Print Network (OSTI)

We consider FLRW cosmological models with standard Friedmann equations, but leaving free the equation of state. We assume that the dark energy content of the universe is encoded in an equation of state $p=f(\\rho)$, which is expressed with most generality in the form of a power expansion. The inclusion of this expansion in Friedmann equations allows us to construct a perturbative solution and to relate the coefficients of the equation of state with the formation of singularities of different types.

L. Fernandez-Jambrina; R. Lazkoz

2010-01-18T23:59:59.000Z

306

Nonexpanding impulsive gravitational waves with an arbitrary cosmological constant  

E-Print Network (OSTI)

Exact solutions for nonexpanding impulsive waves in a background with nonzero cosmological constant are constructed using a `cut and paste' method. These solutions are presented using a unified approach which covers the cases of de Sitter, anti-de Sitter and Minkowski backgrounds. The metrics are presented in continuous and distributional forms, both of which are conformal to the corresponding metrics for impulsive pp-waves, and for which the limit as $\\Lambda\\to 0$ can be made explicitly.

J. Podolsky; J. B. Griffiths

1999-08-02T23:59:59.000Z

307

Brane World Cosmology In Jordan-Brans-Dicke Theory  

E-Print Network (OSTI)

We consider the embedding of 3+1 dimensional cosmology in 4+1 dimensional Jordan-Brans-Dicke theory. We show that exponentially growing and power law scale factors are implied. Whereas the 4+1 dimensional scalar field is approximately constant for each, the effective 3+1 dimensional scalar field is constant for exponentially growing scale factor and time dependent for power law scale factor.

M. Arik; D. Ciftci

2005-06-17T23:59:59.000Z

308

Self-Consistent Cosmological Simulations of DGP Braneworld Gravity  

Science Conference Proceedings (OSTI)

We perform cosmological N-body simulations of the Dvali-Gabadadze-Porrati braneworld model, by solving the full non-linear equations of motion for the scalar degree of freedom in this model, the brane bending mode. While coupling universally to matter, the brane-bending mode has self-interactions that become important as soon as the density field becomes non-linear. These self-interactions lead to a suppression of the field in high-density environments, and restore gravity to General Relativity. The code uses a multi-grid relaxation scheme to solve the non-linear field equation in the quasi-static approximation. We perform simulations of a flat self-accelerating DGP model without cosmological constant. However, the type of non-linear interactions of the brane-bending mode, which are the focus of this study, are generic to a wide class of braneworld cosmologies. The results of the DGP simulations are compared with standard gravity simulations assuming the same expansion history, and with DGP simulations using the linearized equation for the brane bending mode. This allows us to isolate the effects of the non-linear self-couplings of the field which are noticeable already on quasi-linear scales. We present results on the matter power spectrum and the halo mass function, and discuss the behavior of the brane bending mode within cosmological structure formation. We find that, independently of CMB constraints, the self-accelerating DGP model is strongly constrained by current weak lensing and cluster abundance measurements.

Schmidt, Fabian; /Chicago U., Astron. Astrophys. Ctr. /KICP, Chicago

2009-09-01T23:59:59.000Z

309

Thermodynamics of the apparent horizon in massive cosmology  

E-Print Network (OSTI)

Applying Clausius relation with energy-supply defined by the unified first law of thermodynamics formalism to the apparent horizon of a massive cosmological model proposed lately, the corrected entropic formula of the apparent horizon is obtained with the help of the modified Friedmann equations. This entropy-area relation, together with the identified internal energy, verifies the first law of thermodynamics for the apparent horizon with a volume change term for consistency. On the other hand, by means of the corrected entropy-area formula and the Clausius relation $\\delta Q=T dS$, the modified Friedmann equations governing the dynamical evolution of the universe are reproduced with the known energy density and pressure of massive graviton. The integration constant is found to correspond to a cosmological term which could be absorbed into the energy density of matter. Having established the correspondence of massive cosmology with the unified first law of thermodynamics on the apparent horizon, the validity of the generalized second law of thermodynamics is also discussed by assuming the thermal equilibrium between the apparent horizon and the matter field bounded by the apparent horizon. It is found that, in the limit $H_c\\rightarrow 0$ which recovers the Minkowski reference metric solution in the flat case, the generalized second law of thermodynamics holds if $\\alpha_3+4\\alpha_4<0$. Apart from that, even for the simplest model of dRGT massive cosmology with $\\alpha_3=\\alpha_4=0$, the generalized second law of thermodynamics could be violated.

Hui Li; Yi Zhang

2013-04-17T23:59:59.000Z

310

Specially Coupled Dark Energy in the Oscillating FRW Cosmology  

E-Print Network (OSTI)

We consider a four-dimensional flat-space Friedman universe, which is filled with two interacting ideal fluids (the coupling of dark energy with dark matter of special form). The gravitational equations of motion are solved. It is shown that in some cases there appears a periodic universe with finite-time cosmological singularities and also the universe becomes static in the remote future.

A. V. Timoshkin

2009-05-18T23:59:59.000Z

311

Post-Newtonian Celestial Dynamics in Cosmology: Field Equations  

E-Print Network (OSTI)

The present paper outlines theoretical principles of the post-Newtonian mechanics in the expanding universe. It is based upon the gauge-invariant theory of the Lagrangian perturbations of cosmological manifold caused by an isolated astronomical N-body system. We postulate that the background manifold is described by Friedman-Lemaitre-Robertson-Walker (FLRW) metric governed by two primary components - the dark matter and the dark energy. The dark matter is treated as an ideal fluid. The dark energy is described by a single scalar field with a potential which is hold unspecified as long as the theory permits. The Lagrangian of the dark matter and that of the scalar field are formulated in terms of the field variables. We use variational calculus to derive the gauge-invariant field equations of the post-Newtonian celestial mechanics of an isolated astronomical system in an expanding universe. These equations generalize the field equations of the post-Newtonian theory in asymptotically-flat spacetime by taking into account the cosmological effects explicitly. We introduce a new cosmological gauge which generalizes the harmonic gauge of the post-Newtonian theory in asymptotically-flat spacetime. This gauge significantly simplifies the gravitational field equations and allows finding out the approximations where the field equations can be fully decoupled and solved analytically. The residual gauge freedom is explored. The results of the present paper can be useful in the solar system for calculating more precise ephemerides of the solar system bodies on extremely long time intervals, in galactic astronomy to study the dynamics of clusters of galaxies, and in gravitational wave astronomy for discussing the impact of cosmology on generation and propagation of gravitational waves emitted by coalescing binaries and/or merging galactic nuclei.

Sergei Kopeikin; Alexander Petrov

2013-01-24T23:59:59.000Z

312

The Quantum Configuration Space of Loop Quantum Cosmology  

E-Print Network (OSTI)

The article gives an account of several aspects of the space known as the Bohr compactification of the line, featuring as the quantum configuration space in loop quantum cosmology, as well as of the corresponding configuration space realization of the so-called polymer representation. Analogies with loop quantum gravity are explored, providing an introduction to (part of) the mathematical structure of loop quantum gravity, in a technically simpler context.

J. M. Velhinho

2007-04-18T23:59:59.000Z

313

Neutron beta-decay, Standard Model and cosmology  

E-Print Network (OSTI)

The precise value of the neutron lifetime is of fundamental importance to particle physics and cosmology. The neutron lifetime recently obtained, 878.5 +/- 0.7stat +/- 0.3sys s, is the most accurate one to date. The new result for the neutron lifetime differs from the world average value by 6.5 standard deviations. The impact of the new result on testing of Standard Model and on data analysis for the primordial nucleosynthesis model is scrutinized.

A. P. Serebrov

2006-11-22T23:59:59.000Z

314

Red Galaxies from Hot Halos in Cosmological Hydro Simulations  

E-Print Network (OSTI)

I highlight three results from cosmological hydrodynamic simulations that yield a realistic red sequence of galaxies: 1) Major galaxy mergers are not responsible for shutting off star-formation and forming the red sequence. Starvation in hot halos is. 2) Massive galaxies grow substantially (about a factor of 2 in mass) after being quenched, primarily via minor (1:5) mergers. 3) Hot halo quenching naturally explains why galaxies are red when they either (a) are massive or (b) live in dense environments.

Gabor, Jared

2012-01-01T23:59:59.000Z

315

FRW Quantum Cosmology with a Generalized Chaplygin Gas  

E-Print Network (OSTI)

Cosmologies with a Chaplygin gas have recently been explored with the objective of explaining the transition from a dust dominated epoch towards an accelerating expansion stage. We consider the hypothesis that the transition to the accelerated period involves a quantum mechanical process. Three physically admissible cases are possible. In particular, we identify a minisuperspace configuration with two Lorentzian sectors, separated by a classically forbidden region. The Hartle-Hawking and Vilenkin wave functions are computed, together with the transition amplitudes towards the accelerating epoch. Furthermore, it is found that for specific initial conditions, the parameters characterizing the generalized Chaplygin gas become related through an expression involving an integer $n$. We also introduce a phenomenological association between some brane-world scenarios and a FRW minisuperspace cosmology with a generalized Chaplygin gas. The aim is to promote a discussion and subsequent research on the quantum creation of brane cosmologies from such a perspective. Results suggest that the brane tension would become related with generalized Chaplygin gas parameters through another expression involving an integer.

Mariam Bouhmadi-Lopez; Paulo Vargas Moniz

2004-04-27T23:59:59.000Z

316

Conformal symmetry of gravity and the cosmological constant problem  

E-Print Network (OSTI)

In absence of matter Einstein gravity with a cosmological constant $\\La$ can be formulated as a scale-free theory depending only on the dimensionless coupling constant G \\Lambda where G is Newton constant. We derive the conformal field theory (CFT) and its improved stress-energy tensor that describe the dynamics of conformally flat perturbations of the metric. The CFT has the form of a constrained \\lambda \\phi^{4} field theory. In the cosmological framework the model describes the usual Friedmann-Robertson-Walker flat universe. The conformal symmetry of the gravity sector is broken by coupling with matter. The dimensional coupling constants G and \\Lambda are introduced by different terms in this coupling. If the vacuum of quantum matter fields respects the symmetry of the gravity sector, the vacuum energy has to be zero and the ``physical'' cosmological constant is generated by the coupling of gravity with matter. This could explain the tiny value of the observed energy density driving the accelerating expansion of the universe.

Mariano Cadoni

2006-06-29T23:59:59.000Z

317

New Cosmological Model and Its Implications on Observational Data Interpretation  

E-Print Network (OSTI)

The paradigm of \\Lambda CDM cosmology works impressively well and with the concept of inflation it explains the universe after the time of decoupling. However there are still a few concerns; after much effort there is no detection of dark matter and there are significant problems in the theoretical description of dark energy. We will consider a variant of the cosmological spherical shell model, within FRW formalism and will compare it with the standard \\Lambda CDM model. We will show that our new topological model satisfies cosmological principles and is consistent with all observable data, but that it may require new interpretation for some data. Considered will be constraints imposed on the model, as for instance the range for the size and allowed thickness of the shell, by the supernovae luminosity distance and CMB data. In this model propagation of the light is confined along the shell, which has as a consequence that observed CMB originated from one point or a limited space region. It allows to interpret the uniformity of the CMB without inflation scenario. In addition this removes any constraints on the uniformity of the universe at the early stage and opens a possibility that the universe was not uniform and that creation of galaxies and large structures is due to the inhomogeneities that originated in the Big Bang.

B. Vlahovic

2013-03-03T23:59:59.000Z

318

Fluid Mechanics Explains Cosmology, Dark Matter, Dark Energy, and Life  

E-Print Network (OSTI)

Observations of the interstellar medium by the Herschel, Planck etc. infrared satellites throw doubt on standard {\\Lambda}CDMHC cosmological processes to form gravitational structures. According to the Hydro-Gravitational-Dynamics (HGD) cosmology of Gibson (1996), and the quasar microlensing observations of Schild (1996), the dark matter of galaxies consists of Proto-Globular-star-Cluster (PGC) clumps of Earth-mass primordial gas planets in metastable equilibrium since PGCs began star production at 0.3 Myr by planet mergers. Dark energy and the accelerating expansion of the universe inferred from SuperNovae Ia are systematic dimming errors produced as frozen gas dark matter planets evaporate to form stars. Collisionless cold dark matter that clumps and hierarchically clusters does not exist. Clumps of PGCs began diffusion from the Milky Way Proto-Galaxy upon freezing at 14 Myr to give the Magellanic Clouds and the faint dwarf galaxies of the 10^22 m diameter baryonic dark matter Galaxy halo. The first stars persist as old globular star clusters (OGCs). Water oceans and the biological big bang occurred at 2-8 Myr. Life inevitably formed and evolved in the cosmological primordial organic soup provided by 10^80 big bang planets and their hot oceans as they gently merged to form larger binary planets and small binary stars.

Carl H. Gibson

2012-11-02T23:59:59.000Z

319

Non-minimal Higgs inflation and frame dependence in cosmology  

Science Conference Proceedings (OSTI)

We investigate a very general class of cosmological models with scalar fields non-minimally coupled to gravity. A particular representative in this class is given by the non-minimal Higgs inflation model in which the Standard Model Higgs boson and the inflaton are described by one and the same scalar particle. While the predictions of the non-minimal Higgs inflation scenario come numerically remarkably close to the recently discovered mass of the Higgs boson, there remains a conceptual problem in this model that is associated with the choice of the cosmological frame. While the classical theory is independent of this choice, we find by an explicit calculation that already the first quantum corrections induce a frame dependence. We give a geometrical explanation of this frame dependence by embedding it into a more general field theoretical context. From this analysis, some conceptional points in the long lasting cosmological debate: 'Jordan frame vs. Einstein frame' become more transparent and in principle can be resolved in a natural way.

Steinwachs, Christian F. [School of Mathematical Sciences, University of Nottingham University Park, Nottingham, NG7 2RD (United Kingdom); Kamenshchik, Alexander Yu. [Dipartimento di Fisica e Astronomia and INFN, Via Irnerio 46, 40126 Bologna, Italy and L.D. Landau Institute for Theoretical Physics of the Russian Academy of Sciences, Kosygin str. 2, 119334 Moscow (Russian Federation)

2013-02-21T23:59:59.000Z

320

The trace anomaly and dynamical vacuum energy in cosmology  

Science Conference Proceedings (OSTI)

The trace anomaly of conformal matter implies the existence of massless scalar poles in physical amplitudes involving the stress-energy tensor. These poles may be described by a local effective action with massless scalar fields, which couple to classical sources, contribute to gravitational scattering processes, and can have long range gravitational effects at macroscopic scales. In an effective field theory approach, the effective action of the anomaly is an infrared relevant term that should be added to the Einstein-Hilbert action of classical General Relativity to take account of macroscopic quantum effects. The additional scalar degrees of freedom contained in this effective action may be understood as responsible for both the Casimir effect in flat spacetime and large quantum backreaction effects at the horizon scale of cosmological spacetimes. These effects of the trace anomaly imply that the cosmological vacuum energy is dynamical, and its value depends on macroscopic boundary conditions at the cosmological horizon scale, rather than sensitivity to the extreme ultraviolet Planck scale.

Mottola, Emil [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Cosmological lepton asymmetry with a nonzero mixing angle $\\theta_{13}$  

E-Print Network (OSTI)

While the baryon asymmetry of the Universe is nowadays well measured by cosmological observations, the bounds on the lepton asymmetry in the form of neutrinos are still significantly weaker. We place limits on the relic neutrino asymmetries using some of the latest cosmological data, taking into account the effect of flavor oscillations. We present our results for two different values of the neutrino mixing angle \\theta_{13}, and show that for large \\theta_{13} the limits on the total neutrino asymmetry become more stringent, diluting even large initial flavor asymmetries. In particular, we find that the present bounds are still dominated by the limits coming from Big Bang Nucleosynthesis, while the limits on the total neutrino mass from cosmological data are essentially independent of \\theta_{13}. Finally, we perform a forecast for COrE, taken as an example of a future CMB experiment, and find that it could improve the limits on the total lepton asymmetry approximately by up to a factor 5.

Castorina, Emanuele; Lattanzi, Massimiliano; Lesgourgues, Julien; Mangano, Gianpiero; Melchiorri, Alessandro; Pastor, Sergio

2012-01-01T23:59:59.000Z

322

In-Package Chemistry Abstraction  

SciTech Connect

This report was developed in accordance with the requirements in ''Technical Work Plan for: Regulatory Integration Modeling and Analysis of the Waste Form and Waste Package'' (BSC 2004 [DIRS 171583]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model that uses the EQ3/6 geochemistry-modeling tool, and a surface complexation model that is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed waste packages that contain both high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor that diffuses into the waste package, and (2) seepage water that enters the waste package from the drift as a liquid. (1) Vapor Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H2O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Water Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package. TSPA-LA uses the vapor influx case for the nominal scenario for simulations where the waste package has been breached but the drip shield remains intact, so all of the seepage flow is diverted from the waste package. The chemistry from the vapor influx case is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion, and to determine the degradation rates for the waste forms. TSPA-LA uses the water influx case for the seismic scenario, where the waste package has been breached and the drip shield has been damaged such that seepage flow is actually directed into the waste package. The chemistry from the water influx case that is a function of the flow rate is used to determine the stability of colloids and the solubility of radionuclides available for transport by diffusion and advection, and to determine the degradation rates for the CSNF and HLW glass. TSPA-LA does not use this model for the igneous scenario. Outputs from the in-package chemistry model implemented inside TSPA-LA include pH, ionic strength, and total carbonate concentration. These inputs to TSPA-LA will be linked to the following principle factors: dissolution rates of the CSNF and HLWG, dissolved concentrations of radionuclides, and colloid generation.

E. Thomas

2004-11-09T23:59:59.000Z

323

EIS-0250: Geologic Repository for the Disposal of Spent Nuclear...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada EIS-0250: Geologic Repository for the...

324

Geologic carbon sequestration as a global strategy to mitigate CO2 emissions: Sustainability and environmental risk  

E-Print Network (OSTI)

from geologic carbon sequestration sites: unsaturated zone2 from geologic carbon sequestration sites: CO 2 migrationGeologic Carbon Sequestration as a Global Strategy to

Oldenburg, C.M.

2012-01-01T23:59:59.000Z

325

An improved strategy to detect CO2 leakage for verification of geologic carbon sequestration  

E-Print Network (OSTI)

of geologic carbon sequestration. Geophys Res Lett 2005;from geologic carbon sequestration sites: Unsaturated zoneverification of geologic carbon sequestration Jennifer L.

Lewicki, Jennifer L.; Hilley, George E.; Oldenburg, Curtis M.

2006-01-01T23:59:59.000Z

326

Model Components of the Certification Framework for Geologic Carbon Sequestration Risk Assessment  

E-Print Network (OSTI)

to two geologic carbon sequestration sites, Energy Procedia,for Geologic Carbon Sequestration Based on Effectivefor geologic carbon sequestration risk assessment, Energy

Oldenburg, Curtis M.

2009-01-01T23:59:59.000Z

327

Probability Estimation of CO2 Leakage Through Faults at Geologic Carbon Sequestration Sites  

E-Print Network (OSTI)

for Geologic Carbon Sequestration Based on EffectiveFaults at Geologic Carbon Sequestration Sites Yingqi Zhang*,faults at geologic carbon sequestration (GCS) sites is a

Zhang, Yingqi

2009-01-01T23:59:59.000Z

328

Case studies of the application of the Certification Framework to two geologic carbon sequestration sites  

E-Print Network (OSTI)

from geologic carbon sequestration sites: unsaturated zoneverification of geologic carbon sequestration, Geophys. Res.to two geologic carbon sequestration sites Curtis M.

Oldenburg, Curtis M.

2009-01-01T23:59:59.000Z

329

Map of Geologic Sequestration Training and Research Projects  

Energy.gov (U.S. Department of Energy (DOE))

A larger map of FE's Geologic Sequestration Training and Research Projects awarded as part of the Recovery Act.

330

Physical Chemistry of Sulfide Self-Heating  

Science Conference Proceedings (OSTI)

Geology and Hydrothermal Alteration of the Gold Eagle Deposit: A New Discovery in the Red Lake Camp, Canada Green State Joining of Silicon Nitride to Itself...

331

MICHAEL T. HREN UNIVERISTY OF MICHIGAN DEPARTMENT OF GEOLOGICAL SCIENCES  

E-Print Network (OSTI)

(Geological & Env. Sciences) ­ Stanford University · Stable Isotope Biogeochemistry, Laboratory Methods., Chamberlain, C.P. (In Prep for Geology) Compound- specific stable isotope records of Cenozoic climateMICHAEL T. HREN UNIVERISTY OF MICHIGAN · DEPARTMENT OF GEOLOGICAL SCIENCES 2534 C.C. LITTLE

Hren, Michael

332

Information content in the halo-model dark-matter power spectrum II: Multiple cosmological parameters  

E-Print Network (OSTI)

We investigate the cosmological Fisher information in the non-linear dark-matter power spectrum in the context of the halo model. We find that there is a plateau in information content on translinear scales which is generic to all cosmological parameters we tried. There is a rise in information on smaller scales, but we find that it is quite degenerate among different cosmological parameters (except, perhaps, the tilt). This suggests that it could be difficult to constrain cosmological parameters using the non-linear regime of the dark-matter power spectrum. We suggest ways to get around this problem, such as removing the largest haloes from consideration in survey analysis.

Mark C. Neyrinck; Istvn Szapudi

2006-10-06T23:59:59.000Z

333

United States Geological Survey | Open Energy Information  

Open Energy Info (EERE)

Survey Survey Jump to: navigation, search Logo: United States Geological Survey Name United States Geological Survey Address USGS National Center 12201 Sunrise Valley Drive Place Reston, VA Zip 20192 Region Northeast - NY NJ CT PA Area Year founded 1879 Phone number 703-648-5953 Website http://www.usgs.gov/ Coordinates 38.947077°, -77.370315° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.947077,"lon":-77.370315,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

334

North Carolina Geological Survey | Open Energy Information  

Open Energy Info (EERE)

State North Carolina State North Carolina Name North Carolina Geological Survey Address 1612 Mail Service Center City, State Raleigh, North Carolina Zip 27699-1612 Website http://www.geology.enr.state.n Coordinates 35.67°, -78.66° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.67,"lon":-78.66,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

335

Idaho Geological Survey | Open Energy Information  

Open Energy Info (EERE)

Name Idaho Geological Survey Name Idaho Geological Survey Address 300 North 6th Street Suite 103 City, State Boise, Idaho Zip 83720-0050 Website http://www.idahogeology.org/Dr Coordinates 43.615992°, -116.199217° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.615992,"lon":-116.199217,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

336

Horizontal drilling in shallow, geologically complex reservoirs  

Science Conference Proceedings (OSTI)

The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

Venable, S.D.

1992-01-01T23:59:59.000Z

337

Horizontal drilling in shallow, geologically complex reservoirs  

Science Conference Proceedings (OSTI)

The objective of this project is to test the concept that multiple hydraulic fracturing from a directionally-drilled horizontal well, using the medium radius build rate method, can increase gas production sufficiently to justify economic viability over conventional stimulated vertical wells. The test well is located in Yuma County, Colorado, in a favorable area of established production to avoid exploration risks. This report presents: background information; project description which covers location selection/geologic considerations; and preliminary work plan. (AT)

Venable, S.D.

1992-10-01T23:59:59.000Z

338

Chemistry  

Science Conference Proceedings (OSTI)

... Ultrafast lasers have been used to enable multiplex CARS spectroscopy with a clear sensitivity advantages over conventional Raman spectroscopy ...

2012-10-02T23:59:59.000Z

339

Chemistry  

Science Conference Proceedings (OSTI)

... supported experiments to examine the repeatability of pre-flashover fire patterns generated by short-duration fires from natural gas, gasoline, and ...

2012-11-13T23:59:59.000Z

340

Geological problems in radioactive waste isolation  

SciTech Connect

The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

Witherspoon, P.A. (ed.)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Geological problems in radioactive waste isolation  

SciTech Connect

The problem of isolating radioactive wastes from the biosphere presents specialists in the fields of earth sciences with some of the most complicated problems they have ever encountered. This is especially true for high level waste (HLW) which must be isolated in the underground and away from the biosphere for thousands of years. Essentially every country that is generating electricity in nuclear power plants is faced with the problem of isolating the radioactive wastes that are produced. The general consensus is that this can be accomplished by selecting an appropriate geologic setting and carefully designing the rock repository. Much new technology is being developed to solve the problems that have been raised and there is a continuing need to publish the results of new developments for the benefit of all concerned. The 28th International Geologic Congress that was held July 9--19, 1989 in Washington, DC provided an opportunity for earth scientists to gather for detailed discussions on these problems. Workshop W3B on the subject, Geological Problems in Radioactive Waste Isolation -- A World Wide Review'' was organized by Paul A Witherspoon and Ghislain de Marsily and convened July 15--16, 1989 Reports from 19 countries have been gathered for this publication. Individual papers have been cataloged separately.

Witherspoon, P.A. (ed.)

1991-01-01T23:59:59.000Z

342

Appendix C Analytical Chemistry Data  

Office of Legacy Management (LM)

Analytical Chemistry Data This page intentionally left blank Contents Section Analytical Data for Deleted Contaminants of Concern ............................................................. C1.O Mol~tezuma Creek Hardness Dat Surface Water Copper Data Summa ................ CI-9 Surface Water Radium-228 Dat Surface Water Radon-222 Data Summary ....................... ....................................... . . . . . . . . . . . C l - I 2 Alluvial Ground Water Aln~noniuu~ as Nitrogen Data Summary ....................... . . . ................................ Cl-15 Alluvial Ground Water Cobalt Data Summary ........... Alluvial Ground Water Copper Data Sumrl Alluvial Ground Water Lead Data Su~nmary ................................. C1-19 Alluvial Ground Water Lead-210 Data Sutl~rnary

343

Advancing manufacturing through computational chemistry  

SciTech Connect

The capabilities of nanotechnology and computational chemistry are reaching a point of convergence. New computer hardware and novel computational methods have created opportunities to test proposed nanometer-scale devices, investigate molecular manufacturing and model and predict properties of new materials. Experimental methods are also beginning to provide new capabilities that make the possibility of manufacturing various devices with atomic precision tangible. In this paper, we will discuss some of the novel computational methods we have used in molecular dynamics simulations of polymer processes, neural network predictions of new materials, and simulations of proposed nano-bearings and fluid dynamics in nano- sized devices.

Noid, D.W.; Sumpter, B.G.; Tuzun, R.E.

1995-12-31T23:59:59.000Z

344

Lithium Insertion Chemistry of Some Iron Vanadates  

E-Print Network (OSTI)

in A. Nazri, G.Pistoia (Eds. ), Lithium batteries, Science &structure materials in lithium cells, for a lower limitLithium Insertion Chemistry of Some Iron Vanadates Sbastien

Patoux, Sebastien; Richardson, Thomas J.

2008-01-01T23:59:59.000Z

345

DOE fundamentals handbook: Chemistry. Volume 2  

SciTech Connect

This handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. This volume contains the following modules: reactor water chemistry (effects of radiation on water chemistry, chemistry parameters), principles of water treatment (purpose; treatment processes [ion exchange]; dissolved gases, suspended solids, and pH control; water purity), and hazards of chemicals and gases (corrosives [acids, alkalies], toxic compounds, compressed gases, flammable/combustible liquids).

Not Available

1993-01-01T23:59:59.000Z

346

Chemistry for Measurement and Detection Science  

NLE Websites -- All DOE Office Websites (Extended Search)

and Detection Science Chemistry for Measurement and Detection Science Research into alternative forms of energy, especially energy security, is one of the major national...

347

Symposium on high temperature and materials chemistry  

SciTech Connect

This volume contains the written proceedings of the Symposium on High Temperature and Materials Chemistry held in Berkeley, California on October 24--25, 1989. The Symposium was sponsored by the Materials and Chemical Sciences Division of Lawrence Berkeley Laboratory and by the College of Chemistry of the University of California at Berkeley to discuss directions, trends, and accomplishments in the field of high temperature and materials chemistry. Its purpose was to provide a snapshot of high temperature and materials chemistry and, in so doing, to define status and directions.

1989-10-01T23:59:59.000Z

348

2005 American Conference on Theoretical Chemistry  

Science Conference Proceedings (OSTI)

The materials uploaded are meant to serve as final report on the funds provided by DOE-BES to help sponsor the 2005 American Conference on Theoretical Chemistry.

Carter, Emily A

2006-11-19T23:59:59.000Z

349

Chemistry of Addition-Type Polyimides  

Science Conference Proceedings (OSTI)

...of polyimides are shown in 6and Fig. 5The basic chemistry of the PE series of imide oligomers is illustrated

350

Chemistry of Cobalt-Platinum Nanocatalysts  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry of Cobalt-Platinum Nanocatalysts Print Bimetallic cobalt-platinum (CoPt) nanoparticles are drawing attention in many areas of catalysis as scientists attempt to reduce...

351

Charge Carrier Chemistry in Nanoscopic Materials  

Science Conference Proceedings (OSTI)

Abstract Scope, Defect chemistry is explored in space charge zones with emphasis on mesoscopic situations. After a general overview two representative

352

Introduction to Chemistry and Material Sciences Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

Intro Chem and MatSci Apps Introduction to Chemistry and Material Sciences Applications June 26, 2012 L ast edited: 2013-05-28 15:53:12...

353

BNL Photo- and Radiation Chemistry Program  

NLE Websites -- All DOE Office Websites (Extended Search)

chemistry, and photophysics; energy transduction by electron-transfer reactions; and energy storage through chemical transformations. Theoretical and experimental efforts are...

354

WEB: The Living Textbook of Nuclear Chemistry  

Science Conference Proceedings (OSTI)

Jul 2, 2008 ... The American Chemical Society's website "The Living Textbook of Nuclear Chemistry" provides 12 videos related to the history of nuclear...

355

Radiation Chemistry and Photochemistry of Ionic Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

the nuclear fuel cycle. Therefore, an understanding of the interactions of ionizing radiation and photons with ionic liquids is strongly needed. However, the radiation chemistry...

356

Chemistry and Metallurgy Research Replacement - Nuclear Facility...  

National Nuclear Security Administration (NNSA)

Chemistry and Metallurgy Research Replacement - Nuclear Facility (CMRR-NF SEIS) | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing...

357

The Materials Project: Combining Quantum Chemistry Calculations...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Materials Project: Combining Quantum Chemistry Calculations with Supercomputing Centers for New Materials Discovery Speaker(s): Anubhav Jain Date: December 18, 2012 - 12:00pm...

358

Hanford Site Guidelines for Preparation and Presentation of Geologic Information  

Science Conference Proceedings (OSTI)

A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

2010-04-30T23:59:59.000Z

359

Coupled chemistry/climate issues  

SciTech Connect

Driven by both natural and anthropogenic causes, the distributions of trace chemical species in the atmosphere has altered the natural state of the chemical distribution and, the authors believe, the climate system. A clear example of this change and its effect on climate is through tropospheric ozone. Evidence shows that over the last decade tropospheric ozone has increased, probably caused by increasing concentrations and emissions of CH{sub 4}, CO, NO{sub x}, and NMHCs (nonmethane hydrocarbons). Tropospheric ozone is photochemically produced when nitrogen oxides react in the presence of carbon monoxide, methane, non-methane hydrocarbons and sunlight. The chemistry of ozone and NO{sub x} is also closely associated with the hydroxyl radical (OH), which governs the atmospheric lifetime of a number of species, including CH{sub 4} and chlorofluorocarbons (CFCs), which are major greenhouse gases and which affect the chemical balance of the stratosphere. Increases in the concentrations of CO and CH{sub 4} can lead to decreased concentrations of OH and a positive feedback on the atmospheric lifetimes of CO and methane. The same would occur for other greenhouse gases and for some of the important reactions which form aerosols in the troposphere. This would further enhance the concentrations of the gases and accelerate the radiative effects from these greenhouse species, strongly affecting climate and the accurate prediction of climate. It is believed that warmer climates will also increase the amount of water in the atmosphere, thereby providing another chemistry feedback on OH.

Rotman, D.A. [Lawrence Livermore National Lab., CA (United States). Global Climate Research Div.; Wuebbles, D.J. [Univ. of Illinois, Urbana, IL (United States)

1994-09-01T23:59:59.000Z

360

Quantum Chemistry at Finite Temperature  

E-Print Network (OSTI)

In this article, we present emerging fields of quantum chemistry at finite temperature. We discuss its recent developments on both experimental and theoretical fronts. First, we describe several experimental investigations related to the temperature effects on the structures, electronic spectra, or bond rupture forces for molecules. These include the analysis of the temperature impact on the pathway shifts for the protein unfolding by atomic force microscopy (AFM), the temperature dependence of the absorption spectra of electrons in solvents, and the temperature influence over the intermolecular forces measured by the AFM. On the theoretical side, we review advancements made by the author in the coming fields of quantum chemistry at finite temperature. Starting from the Bloch equation, we have derived the sets of hierarchy equations for the reduced density operators in both canonical and grand canonical ensembles. They provide a law according to which the reduced density operators vary in temperature for the identical and interacting many-body systems. By taking the independent particle approximation, we have solved the equations in the case of a grand canonical ensemble, and obtained an energy eigenequation for the molecular orbitals at finite temperature. The explicit expression for the temperature-dependent Fock operator is also given. They form a mathematical foundation for the examination of the molecular electronic structures and their interplay with finite temperature. Moreover, we clarify the physics concerning the temperature effects on the electronic structures or processes of the molecules, which is crucial for both theoretical understanding and computation. Finally, ....

Liqiang Wei

2006-05-23T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Onderwerpscodes Chemie -Farmacie / Subject headings Chemistry -Pharmacy, 2009, April1 Rubrieken Chemie -Farmacie: Subject headings Chemistry -  

E-Print Network (OSTI)

Onderwerpscodes Chemie - Farmacie / Subject headings Chemistry - Pharmacy, 2009, April1 Rubrieken Chemie - Farmacie: Subject headings Chemistry - Pharmacy Gang . kast - Aisle . bookcase 01 Algemeen 01 chemie 05 Physical chemistry 10.08 - 06 Chemische binding 06 Chemical bonding 10.13 - 07 Anorganische

Galis, Frietson

362

Generic Deep Geologic Disposal Safety Case | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Deep Geologic Disposal Safety Case Deep Geologic Disposal Safety Case Generic Deep Geologic Disposal Safety Case The Generic Deep Geologic Disposal Safety Case presents generic information that is of use in understanding potential deep geologic disposal options in the U.S. for used nuclear fuel (UNF) from reactors and high-level radioactive waste (HLW). Potential disposal options include mined disposal in a variety of geologic media (e.g., salt, shale, granite), and deep borehole disposal in basement rock. The Generic Safety Case is intended to be a source of information to provide answers to questions that may arise as the U.S. works to develop strategies to dispose of current and future inventories of UNF and HLW. DOE is examining combinations of generic geologic media and facility designs that could potentially support

363

The consequences of failure should be considered in siting geologic carbon sequestration projects  

E-Print Network (OSTI)

2007. Geologic Carbon Sequestration Strategies forfor carbon capture and sequestration. Environmental Sciencein Siting Geologic Carbon Sequestration Projects Phillip N.

Price, P.N.

2009-01-01T23:59:59.000Z

364

Geology of the Breitenbush River Area, Linn and Marion Counties, Oregon  

DOE Green Energy (OSTI)

The report is comprised of a geologic map and accompanying descriptive text highlighting structural geology, mineralization, and geothermal resources. (ACR)

Priest, G.R.; Woller, N.M.; Ferns, M.L.

1987-01-01T23:59:59.000Z

365

PHOTOMETRIC SUPERNOVA COSMOLOGY WITH BEAMS AND SDSS-II  

SciTech Connect

Supernova (SN) cosmology without spectroscopic confirmation is an exciting new frontier, which we address here with the Bayesian Estimation Applied to Multiple Species (BEAMS) algorithm and the full three years of data from the Sloan Digital Sky Survey II Supernova Survey (SDSS-II SN). BEAMS is a Bayesian framework for using data from multiple species in statistical inference when one has the probability that each data point belongs to a given species, corresponding in this context to different types of SNe with their probabilities derived from their multi-band light curves. We run the BEAMS algorithm on both Gaussian and more realistic SNANA simulations with of order 10{sup 4} SNe, testing the algorithm against various pitfalls one might expect in the new and somewhat uncharted territory of photometric SN cosmology. We compare the performance of BEAMS to that of both mock spectroscopic surveys and photometric samples that have been cut using typical selection criteria. The latter typically either are biased due to contamination or have significantly larger contours in the cosmological parameters due to small data sets. We then apply BEAMS to the 792 SDSS-II photometric SNe with host spectroscopic redshifts. In this case, BEAMS reduces the area of the {Omega}{sub m}, {Omega}{sub {Lambda}} contours by a factor of three relative to the case where only spectroscopically confirmed data are used (297 SNe). In the case of flatness, the constraints obtained on the matter density applying BEAMS to the photometric SDSS-II data are {Omega}{sup BEAMS}{sub m} = 0.194 {+-} 0.07. This illustrates the potential power of BEAMS for future large photometric SN surveys such as Large Synoptic Survey Telescope.

Hlozek, Renee [Oxford Astrophysics, Department of Physics, University of Oxford, Keble Road, Oxford, OX1 3RH (United Kingdom); Kunz, Martin [Department de physique theorique, Universite de Geneve, 30, quai Ernest-Ansermet, CH-1211 Geneve 4 (Switzerland); Bassett, Bruce; Smith, Mat; Newling, James [African Institute for Mathematical Sciences, 68 Melrose Road, Muizenberg 7945 (South Africa); Varughese, Melvin [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch, Cape Town, 7700 (South Africa); Kessler, Rick; Frieman, Joshua [The Kavli Institute for Cosmological Physics, The University of Chicago, 933 East 56th Street, Chicago, IL 60637 (United States); Bernstein, Joseph P.; Kuhlmann, Steve; Marriner, John [Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States); Campbell, Heather; Lampeitl, Hubert; Nichol, Robert C. [Institute of Cosmology and Gravitation, Dennis Sciama Building Burnaby Road Portsmouth PO1 3FX (United Kingdom); Dilday, Ben [Las Cumbres Observatory Global Telescope Network, 6740 Cortona Drive, Suite 102, Goleta, CA 93117 (United States); Falck, Bridget; Riess, Adam G. [Department of Physics and Astronomy, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218 (United States); Sako, Masao [Department of Physics and Astronomy, University of Pennsylvania, 203 South 33rd Street, Philadelphia, PA 19104 (United States); Schneider, Donald P., E-mail: rhlozek@astro.princeton.edu [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States)

2012-06-20T23:59:59.000Z

366

The First Generation of Stars in Lambda-CDM Cosmology  

DOE Green Energy (OSTI)

We have performed a large set of high-resolution cosmological simulations using smoothed particle hydrodynamics (SPH) to study the formation of the first luminous objects in the {Lambda}CDM cosmology. We follow the collapse of primordial gas clouds in eight early structures and document the scatter in the properties of the first star-forming clouds. Our first objects span formation redshifts from z {approx} 10 to z {approx} 50 and cover an order of magnitude in halo mass. We find that the physical properties of the central star-forming clouds are very similar in all of the simulated objects despite significant differences in formation redshift and environment. This suggests that the formation path of the first stars is largely independent of the collapse redshift; the physical properties of the clouds have little correlation with spin, mass, or assembly history of the host halo. The collapse of proto-stellar objects at higher redshifts progresses much more rapidly due to the higher densities, which accelerates the formation of molecular hydrogen, enhances initial cooling and shortens the dynamical timescales. The mass of the star-forming clouds cover a broad range, from a few hundred to a few thousand solar masses, and exhibit various morphologies: some have disk-like structures which are nearly rotational supported; others form flattened spheroids; still others form bars. All of them develop a single protostellar ''seed'' which does not fragment into multiple objects up to the moment that the central gas becomes optically thick to H{sub 2} cooling lines. At this time, the instantaneous mass accretion rate onto the centre varies significantly from object to object, with disk-like structures having the smallest mass accretion rates. The formation epoch and properties of the star-forming clouds are sensitive to the values of cosmological parameters.

Gao, Liang; /Durham U. /Garching, Max Planck Inst.; Abel, T.; /KIPAC, Menlo Park; Frenk, C.S.; Jenkins, A.; /Durham U.; Springel, V.; /Garching, Max Planck Inst.; Yoshida,; /Nagoya U.

2006-10-10T23:59:59.000Z

367

Equations of State in the Brans-Dicke cosmology  

E-Print Network (OSTI)

We investigate the Brans-Dicke (BD) theory with the potential as cosmological model to explain the present accelerating universe. In this work, we consider the BD field as a perfect fluid with the energy density and pressure in the Jordan frame. Introducing the power-law potential and the interaction with the cold dark matter, we obtain the phantom divide which is confirmed by the native and effective equation of state. Also we can describe the metric $f(R)$ gravity with an appropriate potential, which shows a future crossing of phantom divide in viable $f(R)$ gravity models when employing the native and effective equations of state.

Hyung Won Lee; Kyoung Yee Kim; Yun Soo Myung

2010-10-27T23:59:59.000Z

368

Rippled Cosmological Dark Matter from Damped Oscillating Newton Constant  

E-Print Network (OSTI)

Let the reciprocal Newton 'constant' be an apparently non-dynamical Brans-Dicke scalar field damped oscillating towards its General Relativistic VEV. We show, without introducing additional matter fields or dust, that the corresponding cosmological evolution averagely resembles, in the Jordan frame, the familiar dark radiation -> dark matter -> dark energy domination sequence. The fingerprints of our theory are fine ripples, hopefully testable, in the FRW scale factor; they die away at the General Relativity limit. The possibility that the Brans-Dicke scalar also serves as the inflaton is favorably examined.

Aharon Davidson

2004-09-15T23:59:59.000Z

369

Comment on the Appropriate Null Hypothesis for Cosmological Birefringence  

E-Print Network (OSTI)

A recent paper (Nodland and Ralston, PRL 78, 3043, astro-ph/9704196) claims to have detected evidence for birefringence in the propagation of radio waves across cosmological distances. In order to assess the statistical significance of their results, the authors analyze simulated data sets, finding a stronger correlation in the real data than in the simulations. Unfortunately, the procedure used for generating the simulated data sets is based on an incorrect null hypothesis. Furthermore, the correct null hypothesis would lead to a stronger correlation in the simulated data sets, weakening the case for birefringence. We conclude that the paper's analysis does not provide statistically significant evidence of birefringence.

Daniel J. Eisenstein; Emory F. Bunn

1997-04-24T23:59:59.000Z

370

Statefinder hierarchy of bimetric and galileon models for concordance cosmology  

E-Print Network (OSTI)

In this paper, we use Statefinder hierarchy method to distinguish between bimetric theory of massive gravity, galileon modified gravity and DGP models applied to late time expansion of the universe. We also carry out comparison between bimetric and DGP models using Statefinder pairs {r, s} and {r, q}. We show that statefinder diagnostic can differentiate between {\\Lambda}CDM and above mentioned cosmological models of dark energy, and finally show that Statefinder S2 is an excellent discriminant of {\\Lambda}CDM and modified gravity models.

R. Myrzakulov; M. Shahalam

2013-02-28T23:59:59.000Z

371

Tachyon cosmology, supernovae data, and the big brake singularity  

SciTech Connect

We compare the existing observational data on type Ia supernovae with the evolutions of the Universe predicted by a one-parameter family of tachyon models which we have introduced recently [Phys. Rev. D 69, 123512 (2004)]. Among the set of the trajectories of the model which are compatible with the data there is a consistent subset for which the Universe ends up in a new type of soft cosmological singularity dubbed big brake. This opens up yet another scenario for the future history of the Universe besides the one predicted by the standard {lambda}CDM model.

Keresztes, Z.; Gergely, L. A.; Gorini, V.; Moschella, U.; Kamenshchik, A. Yu. [Department of Theoretical Physics, University of Szeged, Tisza Lajos krt 84-86, Szeged 6720 (Hungary); Department of Experimental Physics, University of Szeged, Dom Ter 9, Szeged 6720 (Hungary); Department of Theoretical Physics, University of Szeged, Tisza Lajos krt 84-86, Szeged 6720 (Hungary); Department of Experimental Physics, University of Szeged, Dom Ter 9, Szeged 6720 (Hungary); Department of Applied Science, London South Bank University, 103 Borough Road, London SE1 OAA (United Kingdom); Dipartimento di Scienze Fisiche e Mathematiche, Universita dell'Insubria, Via Valleggio 11, 22100 Como (Italy); INFN, sezione di Milano, Via Celoria 16, 20133 Milano (Italy); Dipartimento di Fisica and INFN, via Irnerio 46, 40126 Bologna (Italy); L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences, Kosygin street 2, 119334 Moscow (Russian Federation)

2009-04-15T23:59:59.000Z

372

Gamma ray burst distances and the timescape cosmology  

E-Print Network (OSTI)

Gamma ray bursts can potentially be used as distance indicators, providing the possibility of extending the Hubble diagram to redshifts ~7. Here we follow the analysis of Schaefer (2007), with the aim of distinguishing the timescape cosmological model from the \\LambdaCDM model by means of the additional leverage provided by GRBs in the range 2 < z < 7. We find that the timescape model fits the GRB sample slightly better than the \\LambdaCDM model, but that the systematic uncertainties are still too little understood to distinguish the models.

Peter R. Smale

2011-07-27T23:59:59.000Z

373

Bianchi type-II cosmological model: some remarks  

E-Print Network (OSTI)

Within the framework of Bianchi type-II (BII) cosmological model the behavior of matter distribution has been considered. It is shown that the non-zero off-diagonal component of Einstein tensor implies some severe restriction on the choice of matter distribution. In particular for a locally rotationally symmetric Bianchi type-II (LRS BII) space-time it is proved that the matter distribution should be strictly isotropic if the corresponding matter field possesses only non-zero diagonal components of the energy-momentum tensor.

Bijan Saha

2010-10-09T23:59:59.000Z

374

2HOT: an improved parallel hashed oct-tree n-body algorithm for cosmological simulation  

Science Conference Proceedings (OSTI)

We report on improvements made over the past two decades to our adaptive treecode N-body method (HOT). A mathematical and computational approach to the cosmological N-body problem is described, with performance and scalability measured up to 256k (218) ... Keywords: N-body, computational cosmology, fast multipole method

Michael S. Warren

2013-11-01T23:59:59.000Z

375

Cosmological non-Gaussian signature detection: comparing performance of different statistical tests  

Science Conference Proceedings (OSTI)

Currently, it appears that the best method for non-Gaussianity detection in the cosmic microwave background (CMB) consists in calculating the kurtosis of the wavelet coefficients. We know that wavelet-kurtosis outperforms other methods such as the bispectrum, ... Keywords: cosmological microwave background, cosmology, curvelet, multiscale method, non-Gaussianity detection, wavelet

J. Jin; J.-L. Starck; D. L. Donoho; N. Aghanim; O. Forni

2005-01-01T23:59:59.000Z

376

Solutions to Cosmological Problems with Energy Conservation and Varying c, G and Lambda  

E-Print Network (OSTI)

The flatness and cosmological constant problems are solved with varying speed of light c, gravitational coupling strength G and cosmological parameter Lambda, by explicitly assuming energy conservation of observed matter. The present solution to the flatness problem is the same as the previous solution in which energy conservation was absent.

P. Gopakumar; G. V. Vijayagovindan

2000-03-26T23:59:59.000Z

377

Chemistry-Nuclear Chemistry Division. Progress report, October 1980-September 1981  

Science Conference Proceedings (OSTI)

This report describes major progress in the research and development programs pursued by the Chemistry-Nuclear Chemistry Division of the Los Alamos National Laboratory during FY 1981. Topics covered include advanced analytical methods, atmospheric chemistry and transport, biochemistry, biomedical research, medical radioisotopes research, element migration and fixation, nuclear waste isolation research, inorganic and structural chemistry, isotope separation, analysis and applications, the newly established Nuclear Magnetic Resonance Center, atomic and molecular collisions, molecular spectroscopy, nuclear cosmochemistry, nuclear structure and reactions, pion charge exchange, radiochemical separations, theoretical chemistry, and unclassified weapons research.

Ryan, R.R. (comp.)

1982-05-01T23:59:59.000Z

378

MILESTONES IN SOIL CHEMISTRY Donald L. Sparks  

E-Print Network (OSTI)

MILESTONES IN SOIL CHEMISTRY Donald L. Sparks An array of pioneering research, dealing with various aspects of soil chemistry, has appeared in Soil Science for the past 90 years. In this review, two papers others that he published in Soil Science established the importance of variable or pH- dependent surface

Sparks, Donald L.

379

Models of Geothermal Brine Chemistry  

DOE Green Energy (OSTI)

Many significant expenses encountered by the geothermal energy industry are related to chemical effects. When the composition, temperature of pressure of the fluids in the geological formation are changed, during reservoir evolution, well production, energy extraction or injection processes, the fluids that were originally at equilibrium with the formation minerals come to a new equilibrium composition, temperature and pressure. As a result, solid material can be precipitated, dissolved gases released and/or heat lost. Most geothermal energy operations experience these phenomena. For some resources, they create only minor problems. For others, they can have serious results, such as major scaling or corrosion of wells and plant equipment, reservoir permeability losses and toxic gas emission, that can significantly increase the costs of energy production and sometimes lead to site abandonment. In future operations that exploit deep heat sources and low permeability reservoirs, new chemical problems involving very high T, P rock/water interactions and unknown injection effects will arise.

Nancy Moller Weare; John H. Weare

2002-03-29T23:59:59.000Z

380

Geophysics III. Geologic interpretation of seismic data  

SciTech Connect

During the past two decades, the technology of geophysics has exploded. At the same time, the petroleum industry has been forced to look for more and more subtle traps in more and more difficult terrain. The choice of papers in this geophysics reprint volume reflects this evolution. The papers were chosen to help geologists, not geophysicists, enhance their knowledge of geophysics. Math-intensive papers were excluded because those papers are relatively esoteric and have limited applicability for most geologists. This volume concentrates on geologic interpretation of seismic data interpretation. Each of the 21 papers were abstracted and indexed for the U.S. Department of Energy's Energy Data Base.

Beaumont, E.A.; Foster, N.H. (comps.)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Geologic flow characterization using tracer techniques  

DOE Green Energy (OSTI)

A new tracer flow-test system has been developed for in situ characterization of geologic formations. This report describes two sets of test equipment: one portable and one for testing in deep formations. Equations are derived for in situ detector calibration, raw data reduction, and flow logging. Data analysis techniques are presented for computing porosity and permeability in unconfined isotropic media, and porosity, permeability and fracture characteristics in media with confined or unconfined two-dimensional flow. The effects of tracer pulse spreading due to divergence, dispersion, and porous formations are also included.

Klett, R. D.; Tyner, C. E.; Hertel, Jr., E. S.

1981-04-01T23:59:59.000Z

382

Analytical Performance Models for Geologic Repositories  

SciTech Connect

This report presents analytical solutions of the dissolution and hydrogeologic transport of radionuclides in geologic repositories. Numerical examples are presented to demonstrate the equations resulting from these analyses. The subjects treated in the present report are: (a) Solubility-limited transport with transverse dispersion (Chapter 2); (b) Transport of a radionuclide chain with nonequilibrium chemical reactions (Chapter 3); (c) Advective transport in a two-dimensional flow field (Chapter 4); (d) Radionuclide.transport in fractured media (Chapter 5); (e) A mathematical model for EPA's analysis of generic repositories (Chapter 6); and (f) Dissolution of radionuclides from solid waste (Chapter 7).

Chambre, P.L.; Pigford, T.H.; Fujita, A.; Kanki, T.; Kobayashi,A.; Lung, H.; Ting, D.; Sato, Y.; Savoshy, S.J.

1982-10-01T23:59:59.000Z

383

BIO-ORGANIC CHEMISTRY QUARTERLY REPORT. June through August 1963  

E-Print Network (OSTI)

1. G. K. Radda, in Bio -Organic Chemistry Quarterly Report,1963. 2. G. K. Radda, in Bio-Organic Chemistry QuarterlyBassham and Martha Kirk, in Bio-Organic Chemistry Quarterly

Various

1963-01-01T23:59:59.000Z

384

BIO-ORGANIC CHEMISTRY QUARTERLY REPORT - MARCH THROUGH MAY 1961  

E-Print Network (OSTI)

H. Morimoto, and A. Orme, in Bio-Organic Chemistry Quarterly1949, 55. P. R. Hammond, in Bio-Organic Chemistry QuarterlyPhysiol. Edward Markham, in Bio-Organic Chemistry Quarterly

Various

2008-01-01T23:59:59.000Z

385

Chemistry courses as the turning point for premedical students  

E-Print Network (OSTI)

009-9165-3 ORIGINAL PAPER Chemistry courses as the turningnegative experiences in chemistry courses are a major factorTo determine if chemistry courses have a similar effect at a

Barr, Donald A.; Matsui, John; Wanat, Stanley F.; Gonzalez, Maria Elena

2010-01-01T23:59:59.000Z

386

Chemistry of the Colloidal Group II-VI Nanocrystal Synthesis  

E-Print Network (OSTI)

showcase the power of chemistry in creating novel materials.J. R. Journal of Physical Chemistry 1996, 100, 7212-7219.781-783. Lobana, T. S. In The chemistry of organophosphorous

Liu, Haitao

2007-01-01T23:59:59.000Z

387

2012 Short Course Olive Oil Chemistry and Sensory Relationships  

Science Conference Proceedings (OSTI)

Olive Oil Chemistry and Sensory Relationships held at the 103rd AOCS Annual Meeting and Expo. 2012 Short Course Olive Oil Chemistry and Sensory Relationships Olive Oil Chemistry and Sensory Relationships Saturday, April 28 -Sunday, A

388

George A. Olah, Carbocation and Hydrocarbon Chemistry  

Office of Scientific and Technical Information (OSTI)

George A. Olah, Carbocation and Hydrocarbon Chemistry George A. Olah, Carbocation and Hydrocarbon Chemistry Resources with Additional Information · Patents George A. Olah Courtesy Rand Larson, Morningstar Productions George Olah received the 1994 Nobel Prize in Chemistry "for his contribution to carbocation chemistry" and his 'role in the chemistry of hydrocarbons. In particular, he developed superacids ... that are much stronger than ordinary acids, are non-nucleophilic, and are fluid at low temperatures. In such media ... carbocations are stable and their physical properties ... can be observed, thus allowing details of their structures to be determined. Besides trivalent ions ... Olah demonstrated the existence of higher coordinate carbocations ... . These species do not violate the octet rule, but involve 2-electron 3-center bonding. '1

389

Environmental resources of selected areas of Hawaii: Geological hazards  

DOE Green Energy (OSTI)

This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

Staub, W.P.; Reed, R.M.

1995-03-01T23:59:59.000Z

390

LA-2271 CHEMISTRY-GENERAL  

Office of Scientific and Technical Information (OSTI)

2271 2271 CHEMISTRY-GENERAL TID-4500, 14th Ed. LOS ALAMOS SCIENTIFIC LABORATORY OF THE UNIVERSITY OF CALIFORNIA LOS ALAMOS NEW MEXICO REPORT WRITTEN: August 1958 REPORT DISTRIBUTED: March 17, 1959 COMPRESSIBILITY FACTORS AND FUGACITY COEFFICIENTS CALCULATED FROM THE BEATTIE-BRIDGEMAN EQUATION OF STATE FOR HYDROGEN, NITROGEN, OXYGEN, CARBON DIOXIDE, AMMONIA, METHANE, AND HELIUM by C. E. Holley, J r . W. J. Worlton R. K. Zeigler » * This report expresses the opinions of the author or authors and does not necessarily reflect the opinions or views of the Los Alamos Scientific Laboratory. Contract W-7405-ENG. 36 with the U. S. Atomic Energy Commission DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States

391

Chemistry implications of climate change  

SciTech Connect

Since preindustrial times, the concentrations of a number of key greenhouse gases such as carbon dioxide (CO{sub 2}), methane (CH{sub 4}) and the nitric oxides (N{sub 2}O) have increased. Additionally, the concentrations of anthropogenic aerosols have also increased during the same time period. Increasing concentrations of greenhouse gases are expected to increase temperature, while the aerosols tend to have a net cooling effect. Taking both of these effects into account, the current best scientific estimate is that the global average surface temperature is expected to increase by 2{degrees}C between the years 1990 to 2100. A climate change if this magnitude will both directly and indirectly impact atmospheric chemistry. For example, many important tropospheric reactions have a temperature dependence (either Arrhenius or otherwise). Thus, if temperature increase, reaction rates will also increase.

Atherton, C.S.

1997-05-01T23:59:59.000Z

392

Radiation Chemistry of Ionic Liquids  

NLE Websites -- All DOE Office Websites (Extended Search)

Liquids Liquids James F. Wishart, Alison M. Funston, and Tomasz Szreder in "Molten Salts XIV" Mantz, R. A., et al., Eds.; The Electrochemical Society, Pennington, NJ, (2006) pp. 802-813. [Information about the volume (look just above this link)] Abstract: Ionic liquids have potentially important applications in nuclear fuel and waste processing, energy production, improving the efficiency and safety of industrial chemical processes, and pollution prevention. Successful use of ionic liquids in radiation-filled environments will require an understanding of ionic liquid radiation chemistry. For example, characterizing the primary steps of ionic liquid radiolysis will reveal radiolytic degradation pathways and suggest ways to prevent them or mitigate their effects on the properties of the material

393

UCRL-11359 UC-4 Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

1359 1359 UC-4 Chemistry TID-45 (27th Ed ) UNIVERSITY OF CALIFORNIA Lawrence Radiation Laboratory Berkeley, California AEC Contract No. W-7405-eng-48 PROPOSED MOLECULAR BEAM DETERMINATION OF ENERGY PARTITION IN THE PHOTO DISSOCIATION OF POLYATOMIC MOLECULES Richard N. Zare and Dudley R. Herschba.ch January 29, 1.964 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference

394

Loop Quantum Cosmology in Bianchi Type I Models: Analytical Investigation  

E-Print Network (OSTI)

The comprehensive formulation for loop quantum cosmology in the spatially flat, isotropic model was recently constructed. In this paper, the methods are extended to the anisotropic Bianchi I cosmology. Both the precursor and the improved strategies are applied and the expected results are established: (i) the scalar field again serves as an internal clock and is treated as emergent time; (ii) the total Hamiltonian constraint is derived by imposing the fundamental discreteness and gives the evolution as a difference equation; and (iii) the physical Hilbert space, Dirac observables and semi-classical states are constructed rigorously. It is also shown that the state in the kinematical Hilbert space associated with the classical singularity is decoupled in the difference evolution equation, indicating that the big bounce may take place when any of the area scales undergoes the vanishing behavior. The investigation affirms the robustness of the framework used in the isotropic model by enlarging its domain of validity and provides foundations to conduct the detailed numerical analysis.

Dah-Wei Chiou

2006-09-07T23:59:59.000Z

395

Molecular hydrogen regulated star formation in cosmological SPH simulations  

E-Print Network (OSTI)

It has been shown observationally that star formation (SF) correlates tightly with the presence of molecular hydrogen (H2). Therefore it would be important to investigate its implication on galaxy formation in a cosmological context. In the present work, we track the H2 mass fraction within our cosmological smoothed particle hydrodynamics (SPH) code GADGET-3 using an equilibrium analytic model by Krumholz et al. This model allows us to regulate the star formation in our simulation by the local abundance of H2 rather than the total cold gas density, and naturally introduce the dependence of star formation on metallicity. We investigate implications of the equilibrium H2-based SF model on galaxy population properties, such as the stellar-to-halo mass ratio (SHMR), baryon fraction, cosmic star formation rate density (SFRD), galaxy specific SFR, galaxy stellar mass functions (GSMF), and Kennicutt-Schmidt (KS) relationship. The advantage of our work over the previous ones is having a large sample of simulated gala...

Thompson, Robert; Jaacks, Jason; Choi, Jun-Hwan

2013-01-01T23:59:59.000Z

396

The Monotonicity of the Gravitational Entropy Scalar within Quiescent Cosmology  

E-Print Network (OSTI)

In this paper we show that Quiescent Cosmology [1, 2, 3] is consistent with Penrose's Weyl Curvature Hypothesis and the notion of gravitational entropy [4]. Gravitational entropy, from a conceptual point of view, acts in an opposite fashion to the more familiar notion of entropy. A closed system of gravitating particles will coalesce whereas a collection of gas particles will tend to diffuse; regarding increasing entropy, these two scenarios are identical. What has been shown previously [2, 3] is that gravitational entropy at the initial singularity predicted by Quiescent Cosmology - the Isotropic Past Singularity (IPS) - tends to zero. The results from this paper show that not only is this the case but that gravitational entropy increases as this singularity evolves. In the first section of this paper we present relevant background information and motivation. In the second section of this paper we present the main results of this paper. Our third section contains a discussion of how this result will inspire future research before we make concluding remarks in our final section.

Philip Threlfall; Susan M. Scott

2012-11-26T23:59:59.000Z

397

Cosmology, Time's Arrow, and That Old Double Standard  

E-Print Network (OSTI)

It is widely accepted that temporal asymmetry is largely a cosmological problem; the task of explaining temporal asymmetry reduces in the main to that of explaining an aspect of the condition of the early universe. However, cosmologists who discuss these issues often make mistakes similar to those that plagued nineteenth century discussions of the statistical foundations of thermodynamics. In particular, they are often guilty of applying temporal "double standards" of various kinds---e.g., in failing to recognise that certain statistical arguments apply with equal force in either temporal direction. This paper aims to clarify the issue as to what would count as adequate explanation of cosmological time asymmetry. A particular concern is the question whether it is possible to explain why entropy is low near the Big Bang without showing that it must also be low near a Big Crunch, in the event that the universe recollapses. I criticise some of the objections raised to this possibility, showing that these too oft...

Price, Huw

2009-01-01T23:59:59.000Z

398

Positive and Negative Energy Symmetry and the Cosmological Constant Problem  

E-Print Network (OSTI)

The action for gravity and the standard model includes, as well as the positive energy fermion and boson fields, negative energy fields. The Hamiltonian for the action leads through a positive and negative energy symmetry of the vacuum to a cancellation of the zero-point vacuum energy and a vanishing cosmological constant in the presence of a gravitational field solving the cosmological constant problem. To guarantee the quasi-stability of the vacuum, we postulate a positive energy sector and a negative energy sector in the universe which are identical copies of the standard model. They interact only weakly through gravity. As in the case of antimatter, the negative energy matter is not found naturally on Earth or in the universe. A positive energy spectrum and a consistent unitary field theory for a pseudo-Hermitian Hamiltonian is obtained by demanding that the pseudo-Hamiltonian is ${\\cal P}{\\cal T}$ symmetric. The quadratic divergences in the two-point vacuum fluctuations and the self-energy of a scalar field are removed. The finite scalar field self-energy can avoid the Higgs hierarchy problem in the standard model.

J. W. Moffat

2006-10-13T23:59:59.000Z

399

Cosmological Models in Modified f(R) Gravity Theories  

E-Print Network (OSTI)

The actual accelerated expansion of the universe continues being a mystery in physics. Some models had been proposed for this explanations, among them the dark energy, which however has problems of experimental character as well as theoretical. Other approximations, like modified gravity theories are an interesting alternative for this problem. Motivated in this approach we study cosmological models in f(R) theories which are natural extension of General Relativity with arbitrary functions of the Ricci scalar. One chapter has dedicated to obtain the modified field equations in the metric formalism of f(R) theories, including the discussion about boundary terms in the action. Later, we apply these equations in order to describe the dynamics of the universe, using for this as space-time, the FLRW universe. We focus our study in the problem of cosmological distances in f(R) theories. From the study of the Geodesic Deviation Equation (GDE) in this modified scenario, we obtain differential equations for the angular diameter distance, and as an extension, the Dyer-Roeder like equation in f(R) gravity.

Alejandro Guarnizo

2012-11-11T23:59:59.000Z

400

Are there cosmological evolution of Gamma-Ray Bursts?  

E-Print Network (OSTI)

The variability of gamma-ray burst (GRB) is thought to be correlated with its absolute peak luminosity, and this relation had been used to derive an estimate of the redshifts of GRBs. Recently Amati et al. present the results of spectral and energetic properties of several GRBs with know redshifts. Here we analyse the properties of two group GRBs, one group with known redshift from afterglow observation, and another group with redshift derived from the luminosity- variability relation. We study the redshift dependence of various GRBs features in their cosmological rest frames, including the burst duration, the isotropic luminosity and radiated energy, and the peak energy Ep of ?F? spectra. We find that the properties of these two group GRBs are very similar, which strongly implies that the redshift derived from the luminosity-variability relation may be reliable. If this is true, then we see that the burst properties, such as their intrinsic duration, luminosity, radiated energy and peak energy Ep, are all correlated with the redshift, which means that the GRBs features are redshift dependent, i.e. there are cosmological evolution of gamma-ray bursts, and this can provide an interesting clue to the nature of GRBs. Furthermore we find that the Ep- L relation strongly supports the idea that gamma-ray burst emission comes from the internal shock. Key words: gamma rays: bursts

D. M. Wei

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Precise rare earth analysis of geological materials  

Science Conference Proceedings (OSTI)

Rare earth element (REE) concentrations are very informative in revealing chemical fractionation processs in geological systems. The REE's (La-Lu) behavior is characteristic of various primary and secondary minerals which comprise a rock. The REE's contents and their patterns provide a strong fingerprint in distinguishing among various rock types and in understanding the partial melting and/or fractional crystallization of the source region. The REE contents in geological materials are usually at trace levels. To measure all the REE at such levels, radiochemical neutron activation analysis (RNAA) has been used with a REE group separation scheme. To maximize detection sensitivites for individual REE, selective ..gamma..-ray/x-ray measurements have been made using normal Ge(Li) and low-energy photon detectors (LEPD), and Ge(Li)-NaI(Tl) coincidence-noncoincidence spectrometer systems. Using these detection methods an individual REE can be measured at or below the ppB levels; chemical yields of the REE are determined by reactivation.

Laul, J.C.; Wogman, N.A.

1982-01-01T23:59:59.000Z

402

Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of...  

Open Energy Info (EERE)

Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Volcanic National Park Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Chemistry...

403

Secretary of Energy Chu Congratulates 2011 Chemistry Nobel Laureate...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Secretary of Energy Chu Congratulates 2011 Chemistry Nobel Laureate Secretary of Energy Chu Congratulates 2011 Chemistry Nobel Laureate October 5, 2011 - 6:56pm Addthis WASHINGTON,...

404

EA-1404: Actinide Chemistry and Repository Science Laboratory...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Actinide Chemistry and Repository Science Laboratory, Carlsbad, New Mexico EA-1404: Actinide Chemistry and Repository Science Laboratory, Carlsbad, New Mexico SUMMARY This EA...

405

Computational Chemistry for Better Fuel Cells Project at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemistry for Better Fuel Cells Computational Chemistry for Better Fuel Cells Key Challenges: Rational development of polymer electrolyte membranes (PEMs). Fundamental scientific...

406

Jefferson Lab Science Series - Chemistry - It's More Than Puffs...  

NLE Websites -- All DOE Office Websites (Extended Search)

(Dinosaur Extinctions and Giant Asteroids) Dinosaur Extinctions and Giant Asteroids Chemistry - It's More Than Puffs and Bangs Dr. Joe Schwarcz - McGill Office for Chemistry and...

407

Chemistry and Material Sciences Applications Training at NERSC...  

NLE Websites -- All DOE Office Websites (Extended Search)

3 or 510-486-8611 Home For Users Training & Tutorials Training Events Chemistry and Material Sciences Applications Chemistry and Material Sciences Applications June...

408

Coupled aerosol-chemistry-climate twentieth century transient...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coupled aerosol-chemistry-climate twentieth century transient model investigation: Trends in short-lived species and climate responses Title Coupled aerosol-chemistry-climate...

409

NERSC training events: Data Transfer and Archiving; Chemistry...  

NLE Websites -- All DOE Office Websites (Extended Search)

training events: Data Transfer and Archiving; Chemistry and Material Sciences Applications NERSC training events: Data Transfer and Archiving; Chemistry and Material Sciences...

410

June 26 Training: Using Chemistry and Material Sciences Applications  

NLE Websites -- All DOE Office Websites (Extended Search)

June 26 Training: Using Chemistry and Material Sciences Applications June 26 Training: Using Chemistry and Material Sciences Applications June 15, 2012 by Francesca Verdier (0...

411

Site Characterization of Promising Geologic Formations for CO2 Storage |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Site Characterization of Promising Geologic Formations for CO2 Site Characterization of Promising Geologic Formations for CO2 Storage Site Characterization of Promising Geologic Formations for CO2 Storage In September 2009, the U.S. Department of Energy announced the award of 11 projects with a total project value of $75.5 million* to conduct site characterization of promising geologic formations for CO2 storage. These Recovery Act projects will increase our understanding of the potential for these formations to safely and permanently store CO2. The information gained from these projects (detailed below) will further DOE's efforts to develop a national assessment of CO2 storage capacity in deep geologic formations. Site Characterization of Promising Geologic Formations for CO2 Storage * Subsequently, the Board of Public Works project in Holland, MI has been

412

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network (OSTI)

Geo- logic Carbon Dioxide Sequestration: An Analysis of86 MIDWEST REGIONAL CARBON SEQUESTRATION PARTNERSHIP,MONITORING OF GEOLOGIC CARBON SEQUESTRATION B. R. Strazisar,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

413

System-level modeling for geological storage of CO2  

E-Print Network (OSTI)

Gas Reservoirs for Carbon Sequestration and Enhanced Gasfrom geologic carbon sequestration sites, Vadose Zonethe feasibility of carbon sequestration with enhanced gas

Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

2006-01-01T23:59:59.000Z

414

April 7, 2008 Dr. Mark Myers, Director US Geological Survey ...  

Science Conference Proceedings (OSTI)

... US Geological Survey 12201 Sunrise Valley Drive, Mail ... The Central and Eastern United States hazard ... coastal California and the Basin and Range ...

2011-01-26T23:59:59.000Z

415

Reactive transport modeling for CO2 geological sequestration  

E-Print Network (OSTI)

Geochemical detection of carbon dioxide in dilute aquifers.geological storage of carbon dioxide. Int. J. Greenhouse GasIPCC special report on carbon dioxide capture and storage.

Xu, T.

2013-01-01T23:59:59.000Z

416

Geothermal: Sponsored by OSTI -- Geological occurrence of gas...  

Office of Scientific and Technical Information (OSTI)

Geological occurrence of gas hydrates at the Blake Outer Ridge, western North Atlantic Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On...

417

Geological Problems in Radioactive Waste Isolation: Second Worldwide Review  

E-Print Network (OSTI)

c. contamination from Chernobyl m. Technologic complexity a.and Complications from the Chernobyl Disaster . . . .5by radionuclides from Chernobyl Geological division of

2010-01-01T23:59:59.000Z

418

Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...  

Open Energy Info (EERE)

Monograph M11 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geological History of Lake Lahontan, a Quaternary Lake of Northwestern...

419

FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling...  

Open Energy Info (EERE)

NA, 2002 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for FMI Borehole Geology, Geomechanics and 3D Reservoir Modeling Citation...

420

Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea...  

Open Energy Info (EERE)

SURVEY, 2006 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea Volcano,...

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Final Supplemental Environmental Impact Statement for a Geologic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- Nevada Rail Transportation Corridor DOEEIS-0250F-S2 and Final Env Final Supplemental Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear...

422

Recovery Act: Site Characterization of Promising Geologic Formations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Recovery Act: Site Characterization of Promising Geologic Formations for CO2 Storage A Report on the The Department of Energy's (DOE's) Carbon Sequestration Program within the...

423

Modeling wetland loss in coastal Louisiana: Geology, geography ...  

U.S. Energy Information Administration (EIA)

Habitat change in coastal Louisiana from 1955/6 to 1978 was analyzed to determine the influence of geological and man-made changes on landscape ...

424

Final Supplemental Environmental Impact Statement for a Geologic...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada -...

425

Geology, Water Geochemistry And Geothermal Potential Of The Jemez...  

Open Energy Info (EERE)

Geology, Water Geochemistry And Geothermal Potential Of The Jemez Springs Area, Canon De San Diego, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal...

426

Liquid Metal Heat Exchanger for Geologic Deposits - Energy ...  

Researchers at ORNL developed a down-well heating apparatus that efficiently heats subterranean geological deposits, such as oil shale, to extract ...

427

COMPUTER MODELING OF NUCLIDE ADSORPTION ON GEOLOGIC MATERIALS  

E-Print Network (OSTI)

aqueous transport of radionuclides through geologic media,lead J the exchange of radionuclide mass between the aqueousdistribution of a given radionuclide between the solid and

Silva, R.J.

2010-01-01T23:59:59.000Z

428

Simulation Framework for Regional Geologic CO2 Storage Infrastructure...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Development Office of the Ohio Air Quality Development Authority; Ohio, Indiana, and Kentucky Geological Surveys; Western Michigan University; and Battelle's Pacific Northwest...

429

Geologic Distribution of U.S. Proved Reserves, 2009  

U.S. Energy Information Administration (EIA)

Geologic Distribution of U.S. Proved Reserves, 2009 Although proved reserves of crude oil, lease condensate, and natural gas have historically been

430

Chemistry Division annual progress report for period ending January 31, 1984  

Science Conference Proceedings (OSTI)

Progress is reported in the following fields: coal chemistry, aqueous chemistry at high temperatures and pressures, geochemistry, high-temperature chemistry and thermodynamics of structural materials, chemistry of transuranium elements and compounds, separations chemistry, elecrochemistry, catalysis, chemical physics, theoretical chemistry, nuclear waste chemistry, chemistry of hazardous chemicals, and thermal energy storage.

Not Available

1984-05-01T23:59:59.000Z

431

CHEMISTRY DEPARTMENT ORGANIZATION Nuclear & Particle Physics  

NLE Websites -- All DOE Office Websites (Extended Search)

CHEMISTRY DEPARTMENT ORGANIZATION CHEMISTRY DEPARTMENT ORGANIZATION Nuclear & Particle Physics Associate Laboratory Director Berndt Mueller Basic Energy Sciences (BES) Associate Laboratory Director James Misewich Financial Support Angela Wefer Department Chair Alexander L. Harris Gregory Hall, Deputy Chair Jean Petterson, Sr. Administrative Assistant Quality Assurance Rep. Charles Gortakowski *Assoc. Laser Safety Officer (Jack Preses) Berndt Mueller Training Coordinator/ Records Management (Linda Sallustio) Dept. Systems Support & Cyber Security POC Mahendra Kahanda Berndt Mueller Basic Energy Sciences (BES) Nuclear & Particle Physics Neutrino & Nuclear Chemistry Minfang Yeh Gas-Phase Molecular Dynamics Gregory Hall Electron and Photo-

432

Intermediate-energy nuclear chemistry workshop  

SciTech Connect

This report contains the proceedings of the LAMPF Intermediate-Energy Nuclear Chemistry Workshop held in Los Alamos, New Mexico, June 23-27, 1980. The first two days of the Workshop were devoted to invited review talks highlighting current experimental and theoretical research activities in intermediate-energy nuclear chemistry and physics. Working panels representing major topic areas carried out indepth appraisals of present research and formulated recommendations for future research directions. The major topic areas were Pion-Nucleus Reactions, Nucleon-Nucleus Reactions and Nuclei Far from Stability, Mesonic Atoms, Exotic Interactions, New Theoretical Approaches, and New Experimental Techniques and New Nuclear Chemistry Facilities.

Butler, G.W.; Giesler, G.C.; Liu, L.C.; Dropesky, B.J.; Knight, J.D.; Lucero, F.; Orth, C.J.

1981-05-01T23:59:59.000Z

433

DOE fundamentals handbook: Chemistry. Volume 1  

Science Conference Proceedings (OSTI)

The Chemistry Handbook was developed to assist nuclear facility operating contractors in providing operators, maintenance personnel, and the technical staff with the necessary fundamentals training to ensure a basic understanding of chemistry. The handbook includes information on the atomic structure of matter; chemical bonding; chemical equations; chemical interactions involved with corrosion processes; water chemistry control, including the principles of water treatment; the hazards of chemicals and gases, and basic gaseous diffusion processes. This information will provide personnel with a foundation for understanding the chemical properties of materials and the way these properties can impose limitations on the operation of equipment and systems.

Not Available

1993-01-01T23:59:59.000Z

434

Current Status of Deep Geological Repository Development  

Science Conference Proceedings (OSTI)

This talk provided an overview of the current status of deep-geological-repository development worldwide. Its principal observation is that a broad consensus exists internationally that deep-geological disposal is the only long-term solution for disposition of highly radioactive nuclear waste. Also, it is now clear that the institutional and political aspects are as important as the technical aspects in achieving overall progress. Different nations have taken different approaches to overall management of their highly radioactive wastes. Some have begun active programs to develop a deep repository for permanent disposal: the most active such programs are in the United States, Sweden, and Finland. Other countries (including France and Russia) are still deciding on whether to proceed quickly to develop such a repository, while still others (including the UK, China, Japan) have affirmatively decided to delay repository development for a long time, typically for a generation of two. In recent years, a major conclusion has been reached around the world that there is very high confidence that deep repositories can be built, operated, and closed safely and can meet whatever safety requirements are imposed by the regulatory agencies. This confidence, which has emerged in the last few years, is based on extensive work around the world in understanding how repositories behave, including both the engineering aspects and the natural-setting aspects, and how they interact together. The construction of repositories is now understood to be technically feasible, and no major barriers have been identified that would stand in the way of a successful project. Another major conclusion around the world is that the overall cost of a deep repository is not as high as some had predicted or feared. While the actual cost will not be known in detail until the costs are incurred, the general consensus is that the total life-cycle cost will not exceed a few percent of the value of the electricity generated by the power reactors that have produced the waste. Of course, the current international situation is that no nation is currently willing to take any radioactive waste from another nation for deep disposal. This means that every nation will ultimately need to develop its own deep repository. This makes no sense, however--many nations have only a modest amount of waste, or do not have appropriate geological settings for a repository, or both. Ultimately, the need for one or more multi-national or international repositories will emerge, although so far this has not happened.

Budnitz, R J

2005-08-29T23:59:59.000Z

435

Florida Geological Survey | Open Energy Information  

Open Energy Info (EERE)

Florida Florida Name Florida Geological Survey Address 3900 Commonwealth Boulevard M.S. 49 City, State Tallahassee, Florida Zip 32399 Website http://www.dep.state.fl.us/geo Coordinates 30.47491°, -84.357967° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.47491,"lon":-84.357967,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

436

Qualifying radioactive waste forms for geologic disposal  

SciTech Connect

We have developed a phased strategy that defines specific program-management activities and critical documentation for producing radioactive waste forms, from pyrochemical processing of spent nuclear fuel, that will be acceptable for geologic disposal by the US Department of Energy. The documentation of these waste forms begins with the decision to develop the pyroprocessing technology for spent fuel conditioning and ends with production of the last waste form for disposal. The need for this strategy is underscored by the fact that existing written guidance for establishing the acceptability for disposal of radioactive waste is largely limited to borosilicate glass forms generated from the treatment of aqueous reprocessing wastes. The existing guidance documents do not provide specific requirements and criteria for nonstandard waste forms such as those generated from pyrochemical processing operations.

Jardine, L.J. [Lawrence Livermore National Lab., CA (United States); Laidler, J.J.; McPheeters, C.C. [Argonne National Lab., IL (United States)

1994-09-01T23:59:59.000Z

437

Geology of the Tambaredjo oil field, Suriname  

SciTech Connect

After the initial discovery in the sixties of oil below the coastal plain of Suriname (S. America), the State Oil Company of Suriname started production of the unique Tambaredjo field in 1982. The heavy, biodegraded oil (14-16[degrees] API) is produced under compaction drive, from the Paleocene T-sand (average thickness 5 m) at a depth of about 300 m. More than 300 wells have been drilled in an area of about 200 km[sup 2]. High resolution seismics makes it possible to correlate units down to 2 m thick. This dense network of bore holes is very suitable for geological correlations and 3D modeling. The T-sand reservoir consists of angular, medium to coarse grained unconsolidated sands with interfingering clays and lignites. The sands are deposited on a well cemented erosional Cretaceous basement. The reservoir is sealed by locally continuous clays. The oil is trapped in structural highs created by syn-sedimentary rejuvenated basement faults. The depositional environment of the T-sand ranges from fluviatile to deltaic. Frequent avulsion and synsedimentary faulting created a highly compartmented reservoir. Although interconnectedness of the sand bodies is high, clay smears and silting out of the edges confine reservoir compartments. The best genetic sand units such as channel fills or mouth bar deposits hardly correlate over more than a few hundred meters. The Tambaredjo oil field offers an unique opportunity to study the detailed sedimentology and petroleum geology of a fluvio-deltaic transitional realm on the passive margin along the Guiana coast.

Dronkert, H. (Delft Univ. of Technology (Netherlands)); Wong, T.E. (Geological Survey of the Netherlands, Haarlem (Netherlands))

1993-02-01T23:59:59.000Z

438

Monitored Geologic Repository Project Description Document  

SciTech Connect

The primary objective of the Monitored Geologic Repository Project Description Document (PDD) is to allocate the functions, requirements, and assumptions to the systems at Level 5 of the Civilian Radioactive Waste Management System (CRWMS) architecture identified in Section 4. It provides traceability of the requirements to those contained in Section 3 of the Yucca Mountain Site Characterization Project Requirements Document (YMP RD) (YMP 2001a) and other higher-level requirements documents. In addition, the PDD allocates design related assumptions to work products of non-design organizations. The document provides Monitored Geologic Repository (MGR) technical requirements in support of design and performance assessment in preparing for the Site Recommendation (SR) and License Application (LA) milestones. The technical requirements documented in the PDD are to be captured in the System Description Documents (SDDs) which address each of the systems at Level 5 of the CRWMS architecture. The design engineers obtain the technical requirements from the SDDs and by reference from the SDDs to the PDD. The design organizations and other organizations will obtain design related assumptions directly from the PDD. These organizations may establish additional assumptions for their individual activities, but such assumptions are not to conflict with the assumptions in the PDD. The PDD will serve as the primary link between the technical requirements captured in the SDDs and the design requirements captured in US Department of Energy (DOE) documents. The approved PDD is placed under Level 3 baseline control by the CRWMS Management and Operating Contractor (M&O) and the following portions of the PDD constitute the Technical Design Baseline for the MGR: the design characteristics listed in Table 1-1, the MGR Architecture (Section 4.1), the Technical Requirements (Section 5), and the Controlled Project Assumptions (Section 6).

P. Curry

2001-06-26T23:59:59.000Z

439

Plasma chemistry in wire chambers  

SciTech Connect

The phenomenology of wire chamber aging is discussed and fundamentals of proportional counters are presented. Free-radical polymerization and plasma polymerization are discussed. The chemistry of wire aging is reviewed. Similarities between wire chamber plasma (>1 atm dc-discharge) and low-pressure rf-discharge plasmas, which have been more widely studied, are suggested. Construction and use of a system to allow study of the plasma reactions occurring in wire chambers is reported. A proportional tube irradiated by an {sup 55}Fe source is used as a model wire chamber. Condensable species in the proportional tube effluent are concentrated in a cryotrap and analyzed by gas chromatography/mass spectrometry. Several different wire chamber gases (methane, argon/methane, ethane, argon/ethane, propane, argon/isobutane) are tested and their reaction products qualitatively identified. For all gases tested except those containing methane, use of hygroscopic filters to remove trace water and oxygen contaminants from the gas resulted in an increase in the average molecular weight of the products, consistent with results from low-pressure rf-discharge plasmas. It is suggested that because water and oxygen inhibit polymer growth in the gas phase that they may also reduce polymer deposition in proportional tubes and therefore retard wire aging processes. Mechanistic implications of the plasma reactions of hydrocarbons with oxygen are suggested. Unresolved issues in this work and proposals for further study are discussed.

Wise, J.

1990-05-01T23:59:59.000Z

440

Contained radiological analytical chemistry module  

DOE Patents (OSTI)

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1989-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Contained radiological analytical chemistry module  

DOE Patents (OSTI)

A system which provides analytical determination of a plurality of water chemistry parameters with respect to water samples subject to radiological contamination. The system includes a water sample analyzer disposed within a containment and comprising a sampling section for providing predetermined volumes of samples for analysis; a flow control section for controlling the flow through the system; and a gas analysis section for analyzing samples provided by the sampling system. The sampling section includes a controllable multiple port valve for, in one position, metering out sample of a predetermined volume and for, in a second position, delivering the material sample for analysis. The flow control section includes a regulator valve for reducing the pressure in a portion of the system to provide a low pressure region, and measurement devices located in the low pressure region for measuring sample parameters such as pH and conductivity, at low pressure. The gas analysis section which is of independent utility provides for isolating a small water sample and extracting the dissolved gases therefrom into a small expansion volume wherein the gas pressure and thermoconductivity of the extracted gas are measured.

Barney, David M. (Scotia, NY)

1990-01-01T23:59:59.000Z

442

Reconstruction of some cosmological models in f(R,T) gravity  

E-Print Network (OSTI)

In this paper, we reconstruct cosmological models in the framework of $f(R,T)$ gravity, where $R$ is the Ricci scalar and $T$ is the trace of the stress-energy tensor. We show that the dust fluid reproduces $\\Lambda $CDM, phantom-non-phantom era and the phantom cosmology. Further, we reconstruct different cosmological models including, Chaplygin gas, scalar field with some specific forms of $f(R,T)$. Our numerical simulation for Hubble parameter shows good agreement with the BAO observational data for low redshifts $z<2$.

Mubasher Jamil; D. Momeni; Muhammad Raza; Ratbay Myrzakulov

2011-07-28T23:59:59.000Z

443

A Note on the Local Cosmological Constant and the Dark Energy Coincidence Problem  

E-Print Network (OSTI)

It has been suggested that the Dark Energy Coincidence Problem could be interpreted as a possible link between the cosmological constant and a massive graviton. We show that by using that link and models for the graviton mass a dark energy density can be obtained that is indeed very close to measurements by WMAP. As a consequence of the models, the cosmological constant was found to depend on the density of matter. A brief outline of the cosmological consequences such as the effect on the black hole solution is given.

M. Tajmar

2006-07-20T23:59:59.000Z

444

Simplifying Chemistry for Computational Efficiency in Combustion...  

NLE Websites -- All DOE Office Websites (Extended Search)

Simplifying Chemistry for Computational Efficiency in Combustion Calculations Speaker(s): Shaheen Tonse Date: February 28, 2002 - 12:00pm Location: Bldg. 90 Seminar HostPoint of...

445

Accelerators and Other Sources for Radiation Chemistry  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerators and Other Sources for the Study of Radiation Chemistry James F. Wishart Adv. Chem. Ser. 254, Ch. 3, pp. 35-50 Abstract: This chapter is intended as a guide to aid in...

446

Mathematics for Chemistry with Symbolic Computation - CECM  

E-Print Network (OSTI)

... as mentioned above. Download Mathematics for Chemistry with Symbolic Computation version 4.0, February 12th, 2013, for Maple 16 as a 6.7 MB zip file.

447

* Canola: Chemistry, Production, Processing, and Utilization  

Science Conference Proceedings (OSTI)

Volume 4 in the AOCS Monograph Series on Oilseeds. * Canola: Chemistry, Production, Processing, and Utilization Processing agricultural algae algal analytical aocs articles biomass biotechnology By-product Utilization courses detergents division division

448

Strategic thinking in chemistry and materials  

SciTech Connect

Science and technology challenges facing the Chemistry and Materials program relate to the fundamental problem of addressing the critical needs to improve our understanding of how nuclear weapons function and age, while experiencing increased pressures to compensate for a decreasing technology base. Chemistry and materials expertise is an enabling capability embedded within every aspect of nuclear weapons design, testing, production, surveillance and dismantlement. Requirements to capture an enduring chemistry and materials technology base from throughout the integrated contractor complex have promoted a highly visible obligation on the weapons research and development program. The only successful response to this challenge must come from direct improvements in effectiveness and efficiency accomplished through improved understanding. Strategic thinking has generated the following three overarching focus areas for the chemistry and materials competency: As-built Materials Characterization and Performance; Materials Aging; and, Materials Synthesis and Processing.

1995-11-01T23:59:59.000Z

449

Soybeans: Chemistry, Production, Processing, and Utilization  

Science Conference Proceedings (OSTI)

This comprehensive new soybean reference book, a volume from the AOCS Monograph Series on Oilseeds, disseminates key soybean oilseed information. Soybeans: Chemistry, Production, Processing, and Utilization Food Science Health Nutrition Biochemistry P

450

Luminosity distance and redshift in the Szekeres inhomogeneous cosmological models  

E-Print Network (OSTI)

The Szekeres inhomogeneous models can be used to model the true lumpy universe that we observe. This family of exact solutions to Einstein's equations was originally derived with a general metric that has no symmetries. In this work, we develop and use a framework to integrate the angular diameter and luminosity distances in the general Szekeres models. We use the affine null geodesic equations in order to derive a set of first-order ordinary differential equations that can be integrated numerically to calculate the partial derivatives of the null vector components. These equations allow the integration in all generality of the distances in the Szekeres models and some examples are given. The redshift is determined from simultaneous integration of the null geodesic equations. This work does not assume spherical or axial symmetry, and the results will be useful for comparisons of the general Szekeres inhomogeneous models to current and future cosmological data.

Anthony Nwankwo; Mustapha Ishak; John Thompson

2010-05-17T23:59:59.000Z

451

Galaxy Formation and the Cosmological Angular Momentum Problem  

E-Print Network (OSTI)

The importance of angular momentum in regulating the sizes of galactic disks and by this their star formation history is highlighted. Tidal torques and accretion of satellites in principle provide enough angular momentum to form disks with sizes that are in agreement with observations. However three major problems have been identified that challenge cold dark matter theory and affect models of galaxy evolution: (1) too much angular momentum is transferred from the gas to the dark halos during infall, leading to disks with scale lengths that are too small, (2) bulgeless disks require more specific angular momentum than is generated cosmologically even if gas would not lose angular momentum during infall, (3) gravitational torques and hierarchical merging produce a specific angular momentum distribution that does not match the distribution required to form exponential disks naturally; some gas has exceptionally high angular momentum, leading to extended outer disks while another large gas fraction will contain ...

Burkert, A; Burkert, Andreas

2004-01-01T23:59:59.000Z

452

On the Semiclassical Limit of Loop Quantum Cosmology  

E-Print Network (OSTI)

We consider a k=0 Friedman-Robertson-Walker (FRW) model within loop quantum cosmology (LQC) and explore the issue of its semiclassical limit. The model is exactly solvable and allows us to construct analytical (Gaussian) coherent-state solutions for each point on the space of classical states. We propose physical criteria that select from these coherent states, those that display semiclassical behavior, and study their properties in the deep Planck regime. Furthermore, we consider generalized squeezed states and compare them to the Gaussian states. The issue of semiclassicality preservation across the bounce is studied and shown to be generic for all the states considered. Finally, we comment on some implications these results have, depending on the topology of the spatial slice. In particular we consider the issue of the recovery, within our class of states, of a scaling symmetry present in the classical description of the system when the spatial topology is non-compact.

Alejandro Corichi; Edison Montoya

2011-05-13T23:59:59.000Z

453

Cosmological Evolution With Interaction Between Dark Energy And Dark Matter  

E-Print Network (OSTI)

In this review we consider in detail different theoretical topics associated with interaction in the dark sector. We study linear and nonlinear interactions which depend on the dark matter and dark energy densities. We consider a number of different models (including the holographic dark energy and dark energy in a fractal universe) with interacting dark energy (DE) and dark matter (DM), have done a thorough analysis of these models. The main task of this review was not only to give an idea about the modern set of different models of dark energy, but to show how much can be diverse dynamics of the universe in these models. We find that the dynamics of a Universe that contains interaction in the dark sector can differ significantly from the Standard Cosmological Model (SCM).

Bolotin, Yu L; Lemets, O A; Yerokhin, D A

2013-01-01T23:59:59.000Z

454

Higgs boson, renormalization group, and naturalness in cosmology  

E-Print Network (OSTI)

We consider the renormalization group improvement in the theory of the Standard Model (SM) Higgs boson playing the role of an inflaton with a strong non-minimal coupling to gravity. At the one-loop level with the running of constants taken into account, it leads to a range of the Higgs mass that is entirely determined by the lower WMAP bound on the cosmic microwave background (CMB) spectral index. We find that the SM phenomenology is sensitive to current cosmological data, which suggests to perform more precise CMB measurements as a SM test complementary to the LHC program. By using the concept of a field-dependent cutoff, we show the naturalness of the gradient and curvature expansion in this model within the conventional perturbation theory range of the SM. We also discuss the relation of these results to two-loop calculations and the limitations of the latter caused by parametrization and gauge dependence problems.

A. O. Barvinsky; A. Yu. Kamenshchik; C. Kiefer; A. A. Starobinsky; C. F. Steinwachs

2009-10-06T23:59:59.000Z

455

Numerical solutions to the cosmological 3-fluid problem  

E-Print Network (OSTI)

We show that, for the scalar field cosmology with exponential potential, the set of values of the coupling parameter for which the solutions undergo a transient period of acceleration is much larger than the set discussed in the literature. The gradual inclusion of ordinary and dark matters results in an everywhere, but near the origin, smoother and right shifted (along the time axis) acceleration curve. For the 3-fluid problem, the energy density need not exhibit a plateau during the acceleration period. Much excess in the dark matter and/or ordinary matter energy densities would lead the universe to undergo an eternal deceleration expansion. For the 3-fluid problem with a single exponential potential we conclude that the Big Bang Nucleosynthesis constraint is not fulfilled if the universe is to undergo a transient period of acceleration. The 3-fluid model remains a good approximation for the description of large scale structures.

Mustapha Azreg-Anou

2013-02-27T23:59:59.000Z

456

The signatures of new physics, astrophysics and cosmology?  

E-Print Network (OSTI)

The first three years of the LHC experiments at CERN have ended with "the nightmare scenario": all tests, confirm the Standard Model of Particles so well that theorists must search for new physics without any experimental guidance. The supersymmetric theories, a privileged candidate for new physics are nearly excluded. As a potential escape from the crisis, we propose thinking about a series of astonishing relations suggesting fundamental interconnections between the quantum world and the large scale Universe. It seems reasonable that, for instance, the equation relating a quark-antiquark pair with the fundamental physical constants and cosmological parameters must be a sign of new physics. One of the intriguing possibilities is interpreting our relations as a signature of the quantum vacuum containing the virtual gravitational dipoles.

Hajdukovic, Dragan Slavkov

2013-01-01T23:59:59.000Z

457

Environmental Chemistry of Arsenic: A Literature Review  

Science Conference Proceedings (OSTI)

Arsenic is an element of significant interest to energy companies because of its occurrence in coal ash and its potential for release and migration in groundwater. This report summarizes technical information on the environmental chemistry of arsenic assembled from an extensive literature review. In particular, the report provides an in-depth look at the three most important sets of geochemical reactions relevant to understanding the environmental chemistry of arsenic -- precipitation-dissolution, reduct...

2000-12-15T23:59:59.000Z

458

Engineering Fundamentals - Chemistry, Version 3.0  

Science Conference Proceedings (OSTI)

The Chemistry module of Engineering Fundamentals is intended to provide a basic overview of this topic for individuals, from all engineering disciplines, beginning their career in the nuclear power industry.The Chemistry module covers basic terms and concepts as well as their applications in nuclear power plants. This course will help new engineers understand some of the basic processes and equipment that are critical to the operation of nuclear power plants, how their job might affect ...

2012-10-25T23:59:59.000Z

459

Efficient Bayesian inference for multimodal problems in cosmology  

E-Print Network (OSTI)

Bayesian model selection provides the cosmologist with an exacting tool to distinguish between competing models based purely on the data, via the Bayesian evidence. Previous methods to calculate this quantity either lacked general applicability or were computationally demanding. However, nested sampling (Skilling 2004), which was recently applied successfully to cosmology by Muhkerjee et al. 2006, overcomes both of these impediments. Their implementation restricts the parameter space sampled, and thus improves the efficiency, using a decreasing ellipsoidal bound in the n-dimensional parameter space centred on the maximum likelihood point. However, if the likelihood function contains any multi-modality, then the ellipse is prevented from constraining the sampling region efficiently. In this paper we introduce a method of clustered ellipsoidal nested sampling which can form multiple ellipses around each individual peak in the likelihood. In addition we have implemented a method for determining the expectation and variance of the final evidence value without the need to use sampling error from repetitions of the algorithm ; this further reduces the computational load by at least an order of magnitude. We have applied our algorithm to a pair of toy models and one cosmological example where we demonstrate that the number of likelihood evaluations required is ~ 4% of that necessary for using previous algorithms. We have produced a fortran library containing our routines which can be called from any sampling code, in addition for convenience we have incorporated it into the popular CosmoMC code as CosmoClust. Both are available for download at http://www.mrao.cam.ac.uk/software/cosmoclust .

J. R. Shaw; M. Bridges; M. P. Hobson

2007-01-30T23:59:59.000Z

460

Geological investigation of the Socorro geothermal area. Final report  

DOE Green Energy (OSTI)

The results of a comprehensive geological and geochemical study of the Socorro geothermal area are presented. The following are discussed: geologic setting, structural controls, stratigraphic controls, an ancient geothermal system, modern magma bodies, geothermal potential of the Socorro area, and the Socorro transverse shear zone. (MHR)

Chapin, C.E.; Sanford, A.R.; White, D.W.; Chamberlin, R.M.; Osburn, G.R.

1979-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Regulation and Permitting of Carbon Dioxide Geologic Sequestration Wells  

Science Conference Proceedings (OSTI)

This report provides an update of the United States regulations and project experiences associated with permitting injection wells used for geologic sequestration of carbon dioxide (CO2). This report is an update of a previous Electric Power Research Institute (EPRI) study on this subject published in December 2008 when the draft regulations governing geologic sequestration were first published.BackgroundSeparating ...

2013-12-18T23:59:59.000Z

462

A Catalog of Geologic Data for the Hanford Site  

SciTech Connect

This revision of the geologic data catalog incorporates new boreholes drilled after September 2002 as well as other older wells, particularly from the 600 Area, omitted from the earlier catalogs. Additionally, borehole geophysical log data have been added to the catalog. This version of the geologic data catalog now contains 3,519 boreholes and is current with boreholes drilled as of November 2004.

Horton, Duane G.; Last, George V.; Gilmore, Tyler J.; Bjornstad, Bruce N.; Mackley, Rob D.

2005-08-01T23:59:59.000Z

463

Automatic Building of Structured Geological Models Sylvain Brandel1  

E-Print Network (OSTI)

geological models used for oil and gas exploration. We present a prototype of a "geological pilot" which Modeling for oil and gas exploration Hydrocarbon reservoir models are a major tool currently used involved in oil and gas exploration have acquired a huge amount of seismic data, which are neither

Brandel, Sylvain

464

CO2 Geologic Storage (Kentucky) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) < Back Eligibility Industrial Program Info State Kentucky Program Type Industry Recruitment/Support Provider Consultant, Division of Carbon Management Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon dioxide (CO2) in Kentucky. In 2012, KGS conducted a test of carbon dioxide enhanced natural gas recovery in the Devonian Ohio Shale, Johnson County, east Kentucky. During the test, 87 tons of CO2 were injected through perforations in a cased, shut-in shale gas well. Industry partners for this research included Crossrock Drilling, Advanced Resources International, Schlumberger, Ferus Industries, and

465

GRR/Section 16 - Geological Resources Assessment Process | Open Energy  

Open Energy Info (EERE)

GRR/Section 16 - Geological Resources Assessment Process GRR/Section 16 - Geological Resources Assessment Process < GRR Jump to: navigation, search GRR-logo.png GEOTHERMAL REGULATORY ROADMAP Roadmap Home Roadmap Help List of Sections Section 16 - Geological Resources Assessment Process 16GeologicalResourceAssessmentProcess.pdf Click to View Fullscreen Contact Agencies Bureau of Land Management Regulations & Policies Paleontological Resources Preservation Act 43 CFR 8365.1-5: Public Property and Resources 43 CFR 3620: Petrified Wood 16 USC 4301: Federal Cave Resources Protection Act 43 CFR 1610.7-2: Areas of Critical Environmental Concern Federal Land Policy and Management Act of 1976 Triggers None specified Click "Edit With Form" above to add content 16GeologicalResourceAssessmentProcess.pdf Error creating thumbnail: Page number not in range.

466

CO2 Geologic Storage (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 12, 2013. EZFeed Policy Place Kentucky Name CO2 Geologic Storage (Kentucky) Policy Category Other Policy Policy Type Industry Recruitment/Support , Technical Feasibility Projects Affected Technologies Coal with CCS Active Policy Yes Implementing Sector State/Province Program Administrator Brandon Nutall, Division of Carbon Management Primary Website http://energy.ky.gov/carbon/Pages/default.aspx Summary Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon dioxide (CO2) in Kentucky. In

467

Geological History of Lake Lahontan, a Quaternary Lake of Northwestern  

Open Energy Info (EERE)

History of Lake Lahontan, a Quaternary Lake of Northwestern History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Abstract Abstract unavailable. Author Israel C. Russell Organization U.S. Geological Survey Published U.S. Government Printing Office, 1885 Report Number Monograph M11 DOI Not Provided Check for DOI availability: http://crossref.org Online Internet link for Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada Citation Israel C. Russell (U.S. Geological Survey). 1885. Geological History of Lake Lahontan, a Quaternary Lake of Northwestern Nevada. Washington, District of Columbia: U.S. Government Printing Office. Report No.:

468

State Geological Survey Contributions to NGDS Data Development, Collection  

Open Energy Info (EERE)

Geological Survey Contributions to NGDS Data Development, Collection Geological Survey Contributions to NGDS Data Development, Collection and Maintenance Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title State Geological Survey Contributions to NGDS Data Development, Collection and Maintenance Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Geothermal Data Development, Collection, and Maintenance Project Description The project is expected to make large quantities of geothermal-relevant geoscience data held by the State Geological Surveys available via the NGDS. State Arizona Objectives Expand and enhance the National Geothermal Data System (NGDS) by creating a national, sustainable, distributed, interoperable network of state geological survey-based data providers that will develop, collect, serve, and maintain geothermalrelevant data that operates as an integral compliant component of NGDS.

469

doi: 10.1130/G30308A.1 2009;37;1015-1018Geology  

E-Print Network (OSTI)

Geology doi: 10.1130/G30308A.1 2009;37;1015-1018Geology Kendra J. Williams Gregory D. Hoke, Carmala isotope altimeter: Do Quaternary pedogenic carbonates predict Email alerting services articles cite Geological Society of America on December 18, 2009geology.gsapubs.orgDownloaded from #12;GEOLOGY, November

Garzione, Carmala N.

470

CMB temperature anisotropy from broken spatial isotropy due to a homogeneous cosmological magnetic field  

Science Conference Proceedings (OSTI)

We derive the cosmic microwave background temperature anisotropy two-point correlation function (including off-diagonal correlations) from broken spatial isotropy due to an arbitrarily oriented homogeneous cosmological magnetic field.

Kahniashvili, Tina [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States); Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, ON P3E 2C6 (Canada); National Abastumani Astrophysical Observatory, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia); Lavrelashvili, George [Department of Theoretical Physics, A. Razmadze Mathematical Institute, 1 M. Aleksidze, Tbilisi, GE-0193 (Georgia); Ratra, Bharat [Department of Physics, Kansas State University, 116 Cardwell Hall, Manhattan, Kansas 66506 (United States)

2008-09-15T23:59:59.000Z

471

On the Green's function and iterative solutions of Loop Quantum Cosmology  

E-Print Network (OSTI)

Here we shall find the green's function of the difference equation of loop quantum cosmology. To illustrate how to use it, we shall obtain an iterative solution for closed model and evaluate its corresponding Bohmian trajectory.

Fatimah Shojai; Ali Shojai

2006-07-09T23:59:59.000Z

472

Solar System Constraints on a Cosmologically Viable $f(R)$ Theory  

E-Print Network (OSTI)

Recently, a model $f(R)$ theory is proposed \\cite{recent} which is cosmologically viable and distinguishable from $\\Lambda$CDM. We use chameleon mechanism to investigate viability of the model in terms of Solar System experiments.

Yousef Bisabr

2009-07-22T23:59:59.000Z

473

Observational Constraints on Cosmological Models with the Updated Long Gamma-Ray Bursts  

E-Print Network (OSTI)

In the present work, by the help of the newly released Union2 compilation which consists of 557 Type Ia supernovae (SNIa), we calibrate 109 long Gamma-Ray Bursts (GRBs) with the well-known Amati relation, using the cosmology-independent calibration method proposed by Liang {\\it et al.}. We have obtained 59 calibrated high-redshift GRBs which can be used to constrain cosmological models without the circularity problem (we call them ``Hymnium'' GRBs sample for convenience). Then, we consider the joint constraints on 7 cosmological models from the latest observational data, namely, the combination of 557 Union2 SNIa dataset, 59 calibrated Hymnium GRBs dataset (obtained in this work), the shift parameter $R$ from the WMAP 7-year data, and the distance parameter $A$ of the measurement of the baryon acoustic oscillation (BAO) peak in the distribution of SDSS luminous red galaxies. We also briefly consider the comparison of these 7 cosmological models.

Hao Wei

2010-04-28T23:59:59.000Z

474

3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines  

Science Conference Proceedings (OSTI)

In a wide range of applications involving geological modelling, geological data available at low cost usually consist of documents such as cross-sections or geological maps and punctual data like borehole logs or outcrop descriptions. In order to build ... Keywords: 3D geological modelling, Data structuration, GIS, Geomodeler

Olivier Kaufmann; Thierry Martin

2008-03-01T23:59:59.000Z

475

Gauss-Bonnet Braneworld Cosmology with Modified Induced Gravity on the Brane  

E-Print Network (OSTI)

We analyze the background cosmology for an extension of the DGP gravity with Gauss-Bonnet term in the bulk and $f(R)$ gravity on the brane. We investigate implications of this setup on the late-time cosmic history. Within a dynamical system approach, we study cosmological dynamics of this setup focusing on the role played by curvature effects. Finally we constraint the parameters of the model by confrontation with recent observational data.

Kourosh Nozari; Faeze Kiani; Narges Rashidi

2013-08-27T23:59:59.000Z

476

NATIONAL USES AND NEEDS FOR SEPARATED STABLE ISOTOPES IN PHYSICS, CHEMISTRY, AND GEOSCIENCE RESEARCH  

E-Print Network (OSTI)

York, K. Rankama, Isotope Geology, McGraw-Hill, New York,geochronometry and isotope geology. elements report. ofisotopes were utilized in the research areas and geology,

Zisman, M.S.

2010-01-01T23:59:59.000Z

477

Geologic Study of the Coso Formation  

DOE Green Energy (OSTI)

There have been great advances in the last 20 years in understanding the volcanic, structural, geophysical, and petrologic development of the Coso Range and Coso geothermal field. These studies have provided a wealth of knowledge concerning the geology of the area, including general structural characteristics and kinematic history. One element missing from this dataset was an understanding of the sedimentology and stratigraphy of well-exposed Cenozoic sedimentary strata - the Coso Formation. A detailed sedimentation and tectonics study of the Coso Formation was undertaken to provide a more complete picture of the development of the Basin and Range province in this area. Detailed mapping and depositional analysis distinguishes separate northern and southern depocenters, each with its own accommodation and depositional history. While strata in both depocenters is disrupted by faults, these faults show modest displacement, and the intensity and magnitude of faulting does no t record significant extension. For this reason, the extension between the Sierran and Coso blocks is interpreted as minor in comparison to range bounding faults in adjacent areas of the Basin and Range.

D. L. Kamola; J. D. Walker

1999-12-01T23:59:59.000Z

478

Constructing Hydraulic Barriers in Deep Geologic Formations  

Science Conference Proceedings (OSTI)

Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

479

Modeling the effects of topography and wind on atmospheric dispersion of CO2 surface leakage at geologic carbon sequestration sites  

E-Print Network (OSTI)

CO 2 from geologic carbon sequestration sites, Vadose Zoneleakage at geologic carbon sequestration sites Fotini K.assessment for geologic carbon sequestration sites. We have

Chow, Fotini K.

2009-01-01T23:59:59.000Z

480

Leakage and Sepage of CO2 from Geologic Carbon Sequestration Sites: CO2 Migration into Surface Water  

E-Print Network (OSTI)

from geologic carbon sequestration sites: unsaturated zoneCO 2 from Geologic Carbon Sequestration Sites, Vadose Zoneseepage from geologic carbon sequestration sites may occur.

Oldenburg, Curt M.; Lewicki, Jennifer L.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geology cosmological chemistry" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Time-windows-based filtering method for near-surface detection of leakage from geologic carbon sequestration sites  

E-Print Network (OSTI)

verification of geologic carbon sequestration, Geophys. Res.Leakage from Geologic Carbon Sequestration Sites Lehua Pan,of CO 2 from geologic carbon sequestration sites from within

Pan, L.

2010-01-01T23:59:59.000Z

482

Chemistry Impacts in Gasoline HCCI  

SciTech Connect

The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its shortcomings, and its relevance to HCCI. Section 3 discusses the effects of fuel volatility on fuel and air mixing and the consequences it has on HCCI. The effects of alcohol fuels on HCCI performance, and specifically the effects that they have on the operable speed/load range, are reviewed in Section 4. Finally, conclusions are drawn in Section 5.

Szybist, James P [ORNL; Bunting, Bruce G [ORNL

2006-09-01T23:59:59.000Z

483

Status report on the geology of the Oak Ridge Reservation  

SciTech Connect

This report provides an introduction to the present state of knowledge of the geology of the Oak Ridge Reservation (ORR) and a cursory introduction to the hydrogeology. An important element of this work is the construction of a modern detailed geologic map of the ORR (Plate 1), which remains in progress. An understanding of the geologic framework of the ORR is essential to many current and proposed activities related to land-use planning, waste management, environmental restoration, and waste remediation. Therefore, this report is also intended to convey the present state of knowledge of the geologic and geohydrologic framework of the ORR and vicinity and to present some of the available data that provide the basic framework for additional geologic mapping, subsurface geologic, and geohydrologic studies. In addition, some recently completed, detailed work on soils and other surficial materials is included because of the close relationships to bedrock geology and the need to recognize the weathered products of bedrock units. Weathering processes also have some influence on hydrologic systems and processes at depth.

Hatcher, R.D. Jr.; Lemiszki, P.J.; Foreman, J.L. (Tennessee Univ., Knoxville, TN (United States). Dept. of Geological Sciences); Dreier, R.B.; Ketelle, R.H.; Lee, R.R.; Lee, Suk Young (Oak Ridge National Lab., TN (United States)); Lietzke, D.A. (Lietzke (David A.), Rutledge, TN (United States)); McMaster, W.M. (McMaster (William M.), Heiskell, TN (United States))

1992-10-01T23:59:59.000Z

484

Cultural Influences on the Discipline of Chemistry  

E-Print Network (OSTI)

Over the history of humankind, people have engaged in activities we associate in some way with chemistry. But people have done so within a framework of their own culture, not within a Western science cultural framework in which the discipline of chemistry exists. To understand the cultural framework of chemistry taught in universities today, we need to step out of the comfort of our own scientific culture we live in today. In other words, the cultural influences on chemistry are found by looking at alternative cultures. I am following the old adage, If you want to learn about water, dont ask a fish. History is a convenient vehicle to help us understand cultural influences. Because our scientific culture today has strong Greek roots, let me first explore Aristotles ideas about matter and then follow those ideas when they are placed in a different culture, Arabic culture, for instance. We shall then see what gets lost in translation between Greek and Arabic cultures. This discovery will shed light on some cultural influences on todays chemistry and will have direct implications for the instruction of students. Greek Culture Aristotles ideas about matter rejected an atomic-like model of matter in favour of a continuum model. His model is summarized by Figure 1, representing the four elements, which when combined in various proportions produce different qualities of matter.

Dr. Glen; S. Aikenhead

2005-01-01T23:59:59.000Z

485

Radionuclide Interaction and Transport in Representative Geologic Media |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Radionuclide Interaction and Transport in Representative Geologic Radionuclide Interaction and Transport in Representative Geologic Media Radionuclide Interaction and Transport in Representative Geologic Media The report presents information related to the development of a fundamental understanding of disposal-system performance in a range of environments for potential wastes that could arise from future nuclear fuel cycle alternatives. It addresses selected aspects of the development of computational modeling capability for the performance of storage and disposal options. Topics include radionuclide interaction with geomedia, colloid-facilitated radionuclide transport (Pu colloids), interaction between iodide (accumulate in the interlayer regions of clay minerals) and a suite of clay minerals, adsorption of uranium onto granite and bentonite,

486

Geologic mapping of tunnels using photogrammetry: Camera and target positioning  

SciTech Connect

A photogrammetric method has been developed by the US Geological Survey and the US Bureau of Reclamation for the use in geologic mapping of tunnels (drifts). The method requires photographing the tunnel walls and roof with a calibrated small-format camera to obtain stereo pairs of photos which are then oriented in an analytical stereo plotter for measurement of geologic features. The method was tested in G-tunnel at Rainier Mesa on the Nevada Test Site. Calculations necessary to determine camera and target positions and problems encountered during testing were used to develop a set of generic formulas that can be applied to any tunnel. 7 figs.

Coe, J.A. [Geological Survey, Denver, CO (United States); Dueholm, K.S. [Danmarks Tekniske Hoejskole, Lyngby (Denmark). Inst. of Surveying and Photogrammetry

1991-09-01T23:59:59.000Z

487

COSMOLOGICAL MAGNETOHYDRODYNAMIC SIMULATIONS OF CLUSTER FORMATION WITH ANISOTROPIC THERMAL CONDUCTION  

SciTech Connect

The intracluster medium (ICM) has been suggested to be buoyantly unstable in the presence of magnetic field and anisotropic thermal conduction. We perform first cosmological simulations of galaxy cluster formation that simultaneously include magnetic fields, radiative cooling, and anisotropic thermal conduction. In isolated and idealized cluster models, the magnetothermal instability (MTI) tends to reorient the magnetic fields radially whenever the temperature gradient points in the direction opposite to gravitational acceleration. Using cosmological simulations of cluster formation we detect radial bias in the velocity and magnetic fields. Such radial bias is consistent with either the inhomogeneous radial gas flows due to substructures or residual MTI-driven field rearrangements that are expected even in the presence of turbulence. Although disentangling the two scenarios is challenging, we do not detect excess bias in the runs that include anisotropic thermal conduction. The anisotropy effect is potentially detectable via radio polarization measurements with LOFAR and the Square Kilometer Array and future X-ray spectroscopic studies with the International X-ray Observatory. We demonstrate that radiative cooling boosts the amplification of the magnetic field by about two orders of magnitude beyond what is expected in the non-radiative cases. This effect is caused by the compression of the gas and frozen-in magnetic field as it accumulates in the cluster center. At z = 0 the field is amplified by a factor of about 10{sup 6} compared to the uniform magnetic field that evolved due to the universal expansion alone. Interestingly, the runs that include both radiative cooling and thermal conduction exhibit stronger magnetic field amplification than purely radiative runs. In these cases, buoyant restoring forces depend on the temperature gradients rather than the steeper entropy gradients. Thus, the ICM is more easily mixed and the winding up of the frozen-in magnetic field is more efficient, resulting in stronger magnetic field amplification. We also demonstrate that thermal conduction partially reduces the gas accretion driven by overcooling despite the fact that the effective conductivity is suppressed below the Spitzer-Braginskii value.

Ruszkowski, M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109 (United States); Lee, D. [Department of Astronomy, ASC/Flash Center, University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Brueggen, M. [School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen 05233 (Germany); Parrish, I. [Astronomy Department and Theoretical Astrophysics Center, 601 Campbell Hall, University of California, Berkeley, CA 94720 (United States); Oh, S. Peng, E-mail: mateuszr@umich.edu, E-mail: dongwook@flash.uchicago.edu, E-mail: m.brueggen@jacobs-university.de, E-mail: iparrish@astro.berkeley.edu, E-mail: peng@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)

2011-10-20T23:59:59.000Z

488

3D Geological Modelling In Bavaria - State-Of-The-Art At A State...  

Open Energy Info (EERE)

with form History Facebook icon Twitter icon 3D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological Survey Jump to: navigation, search GEOTHERMAL...

489

LUCI: A facility at DUSEL for large-scale experimental study of geologic carbon sequestration  

E-Print Network (OSTI)

study of geologic carbon sequestration Catherine A. Petersleakage at geologic carbon sequestration sites. Env EarthDOE) Conference on Carbon Sequestration, 2005. Alexandria,

Peters, C. A.

2011-01-01T23:59:59.000Z

490

Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal...  

Open Energy Info (EERE)

Geology of Injection Well 46A-19RD in the Coso Enhanced Geothermal Systems Experiment Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geology...

491

Geological characterization report, Waste Isolation Pilot Plant (WIPP) site, Southeastern New Mexico  

SciTech Connect

Geotechnical information is presented relevant to the WIPP site in the Delaware Basin in SE New Mexico. This volume covers regional geology, site geology, and seismology. (DLC)

Powers, D.W.; Lambert, S.J.; Shaffer, S.E.; Hill, L.R.; Weart, W.D. (eds.)

1978-08-01T23:59:59.000Z

492

Categorical Exclusion 4497: Lithium Wet Chemistry Project  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8/2012 07:36 8/2012 07:36 8655749041 ENVIRONMENTAL COMPL U.S. Department of Energy Categorical Exclusion Detennination Form Proposed Action Tills: Lithium W@t Chemistry Project (4597) Program or Fi~ld Oftke: Y-12 Site Office L&cationfs) (CiWLCount:r/State): Oak Ridge, Anderson County; Tennessee Proposed Action Description: PAGE 03/04 r: :;: :: !: s .a : brnl, i ~ y. : $ ~-rtl~il : t·:~::;J The proposed action is to develop a small lithium wet chemistry operation for the following purposes: (1) to capture wet chemistry operations, (2) to provide processing path for Lithium materials such as machine dust, (3) to provide lithium based materials, and (4) to produce the littlium hydroxide needed to support production. CategQrj~l Exclusion(s) Applied

493

Advanced fuel chemistry for advanced engines.  

SciTech Connect

Autoignition chemistry is central to predictive modeling of many advanced engine designs that combine high efficiency and low inherent pollutant emissions. This chemistry, and especially its pressure dependence, is poorly known for fuels derived from heavy petroleum and for biofuels, both of which are becoming increasingly prominent in the nation's fuel stream. We have investigated the pressure dependence of key ignition reactions for a series of molecules representative of non-traditional and alternative fuels. These investigations combined experimental characterization of hydroxyl radical production in well-controlled photolytically initiated oxidation and a hybrid modeling strategy that linked detailed quantum chemistry and computational kinetics of critical reactions with rate-equation models of the global chemical system. Comprehensive mechanisms for autoignition generally ignore the pressure dependence of branching fractions in the important alkyl + O{sub 2} reaction systems; however we have demonstrated that pressure-dependent 'formally direct' pathways persist at in-cylinder pressures.

Taatjes, Craig A.; Jusinski, Leonard E.; Zador, Judit; Fernandes, Ravi X.; Miller, James A.

2009-09-01T23:59:59.000Z

494

Chemistry of Low Mass Substellar Objects  

E-Print Network (OSTI)

"Brown dwarfs" is the collective name for objects more massive than giant planets such as Jupiter but less massive than M dwarf stars. This review gives a brief description of the classification and chemistry of low mass dwarfs. The current spectral classification of stars includes L and T dwarfs that encompass the coolest known stars and substellar objects. The relatively low atmospheric temperatures and high total pressures in substellar dwarfs lead to molecular gas and condensate chemistry. The chemistry of elements such as C, N, O, Ti, V, Fe, Cr, and the alkali elements play a dominant role in shaping the optical and infrared spectra of the "failed" stars. Chemical diagnostics for the subclassifications are described.

Katharina Lodders; Bruce Fegley, Jr

2006-01-17T23:59:59.000Z

495

Prototype Geologic Database and Users Guide  

Science Conference Proceedings (OSTI)

The work described here is aimed at assembling a prototype database of raw geologic data typically used to identify and differentiate hydrologically significant lithostratigraphic units. The domain of the prototype database was focused on the T, TX, TY Tank farm area and the 216-Z-9 Trench area in 200 West Area and focused on ''orphan'' data that was not already captured in existing databases, as well as new data coming from core projects. A total of 86 boreholed-wells (78 in the T, TX, TY Tank Farm Area, and 8 in the immediate vicinity of 216-Z-9) are included in the initial prototype database. The prototype database currently consists as a series of Excel workbooks, one for each borehole/well, with multiple worksheets representing the different data tables. The number and complexity of the worksheets is dependent on the type and complexity of the data available for a given borehole. By far the most available data sets for these boreholes were as built drawings (pdf files), geophysical log data (internet links and/or depth specific numerical array), and/or ROCSAN data (particle-size, calcium-carbonate, and Folk/Wentworth Classification). Note that secondary data tables that required manual entry of data were completed only for the eight 216-Z-9 Trench boreholes. Note also, that data tables dealing with the sample, laboratory, and/or analytical information needed to qualify the data also have also not yet been completed, as this requires a greater level of effort than originally planned for this initial exercise.

FOGWELL, T.W.

2003-06-01T23:59:59.000Z

496

Chemistry of atmospheric aerosol particles and their resulting warm cloud-nucleation properties  

E-Print Network (OSTI)

CCN activation, Atmospheric Chemistry and Physics, 10, 5241-precipitation, Atmospheric Chemistry and Physics, 9, 3223-particles. Atmospheric Chemistry and Physics, 2009, 9, A. P.

Moore, Meagan Julia Kerry

2011-01-01T23:59:59.000Z

497

Research and ecology semiannual progress report, January--June 1972. Chemistry research and development  

SciTech Connect

Research progress is reported in the following areas: chemistry research and development, chemistry instrumentation, process chemistry, chemical technology, and environmental research. (DHM)

Thompson, M.A.

1973-08-30T23:59:59.000Z

498

FISICA: The Florida Image Slicer for Infrared Cosmology & Astrophysics  

E-Print Network (OSTI)

We report on the design, fabrication, and on-sky performance of the Florida Image Slicer for Infrared Cosmology and Astrophysics (FISICA)- a fully-cryogenic all-reflective image-slicing integral field unit for the FLAMINGOS near-infrared spectrograph. Designed to accept input beams near f/15, FISICA with FLAMINGOS provides R \\sim 1300 spectra over a 16x33-arcsec field-of-view on the Cassegrain f/15 focus of the KPNO 4-meter telescope, or a 6x12-arcsec field-of-view on the Nasmyth or Bent Cassegrain foci of the Gran Telescopio Canarias 10.4-meter telescope. FISICA accomplishes this using three sets of "monolithic" powered mirror arrays, each with 22 mirrored surfaces cut into a single piece of aluminum. We review the optical and opto-mechanical design and fabrication of FISICA, as well as laboratory test results for FISICA integrated with the FLAMINGOS instrument. Finally, we present performance results from observations with FISICA at the KPNO 4-m telescope and comparisons of FISICA performance to other available IFUs on 4-m to 8-m-class telescopes.

Stephen Eikenberry; S. Nicholas Raines; Nicolas Gruel; Richard Elston; Rafael Guzman; Jeff Julian; Glenn Boreman; Paul Glenn; Greg Hull-Allen; Jeff Hoffmann; Michael Rodgers; Kevin Thompson; Scott Flint; Lovell Comstock; Bruce Myrick

2006-04-27T23:59:59.000Z

499

Integrable Scalar Cosmologies I. Foundations and links with String Theory  

E-Print Network (OSTI)

We build a number of integrable one--scalar spatially flat cosmologies, which play a natural role in inflationary scenarios, examine their behavior in several cases and draw from them some general lessons on this type of systems, whose potentials involve combinations of exponential functions, and on similar non--integrable ones. These include the need for the scalar to emerge from the initial singularity while climbing up sufficiently steep exponential potentials ("climbing phenomenon") and the inevitable collapse in a big Crunch whenever the scalar tries to settle at negative extrema of the potential. We also elaborate on the links between these types of potentials and "brane supersymmetry breaking", a mechanism that ties together string scale and scale of supersymmetry breaking in a class of orientifold models. We show that, under some assumptions that are spelled out in the text, the extended objects of these vacua can inject inflationary phases with discrete values of the spectral index that are determined by the number of unwrapped dimensions of the branes and by the inverse power with which the string coupling $g_s$ enters their world--volume actions. An NS fivebrane, which is interestingly unstable in this class of models, when wrapped on a small internal cycle would yield a spectral index that is amusingly close to the experimentally favored PLANCK value ns ~ 0.96.

P. Fr; A. Sagnotti; A. S. Sorin

2013-07-07T23:59:59.000Z

500

Eyes Wide Open - Optimising Cosmological Surveys in a Crowded Market  

E-Print Network (OSTI)

Optimising the major next-generation cosmological surveys (such as {\\em SNAP, KAOS etc...}) is a key problem given our ignorance of the physics underlying cosmic acceleration and the plethora of surveys planned. We propose a Bayesian design framework which (1) maximises the discrimination power of a survey without assuming any underlying dark energy model, (2) finds the best niche survey geometry given current data and future competing experiments, (3) maximises the cross-section for serendipitous discoveries and (4) can be adapted to answer specific questions (such as `is dark energy dynamical?'). Integrated Parameter Space Optimisation (IPSO) is a design framework that integrates projected parameter errors over an entire dark energy parameter space and then extremises a figure of merit (such as Shannon entropy gain which we show is stable to off-diagonal covariance matrix perturbations) as a function of survey parameters using analytical, grid or MCMC techniques. We discuss examples where the optimisation can be performed analytically. IPSO is thus a general, model-independent and scalable framework that allows us to appropriately use prior information to design the best possible surveys.

Bruce A. Bassett

2004-07-12T23:59:59.000Z