Powered by Deep Web Technologies
Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Site Characterization of Promising Geologic Formations for CO2 Storage |  

Broader source: Energy.gov (indexed) [DOE]

Site Characterization of Promising Geologic Formations for CO2 Site Characterization of Promising Geologic Formations for CO2 Storage Site Characterization of Promising Geologic Formations for CO2 Storage In September 2009, the U.S. Department of Energy announced the award of 11 projects with a total project value of $75.5 million* to conduct site characterization of promising geologic formations for CO2 storage. These Recovery Act projects will increase our understanding of the potential for these formations to safely and permanently store CO2. The information gained from these projects (detailed below) will further DOE's efforts to develop a national assessment of CO2 storage capacity in deep geologic formations. Site Characterization of Promising Geologic Formations for CO2 Storage * Subsequently, the Board of Public Works project in Holland, MI has been

2

Optimal Geological Enviornments for Carbon Dioxide Storage in Saline Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

susan D. Hovorka susan D. Hovorka Principal Investigator University of Texas at Austin Bureau of Economic Geology 10100 Burnet Road, Bldg. 130 P.O. Box X Austin, TX 78713 512-471-4863 susan.hovorka@beg.utexas.edu Optimal GeOlOGical envirOnments fOr carbOn DiOxiDe stOraGe in saline fOrmatiOns Background For carbon dioxide (CO 2 ) sequestration to be a successful component of the United States emissions reduction strategy, there will have to be a favorable intersection of a number of factors, such as the electricity market, fuel source, power plant design and operation, capture technology, a suitable geologic sequestration site, and a pipeline right-of-way from the plant to the injection site. The concept of CO 2 sequestration in saline water-bearing formations (saline reservoirs), isolated at

3

DOE Manual Studies 11 Major CO2 Geologic Storage Formations | Department of  

Broader source: Energy.gov (indexed) [DOE]

Manual Studies 11 Major CO2 Geologic Storage Formations Manual Studies 11 Major CO2 Geologic Storage Formations DOE Manual Studies 11 Major CO2 Geologic Storage Formations October 5, 2010 - 1:00pm Addthis Washington, DC - A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy (DOE). Geologic Storage Formation Classifications: Understanding Its Importance and Impact onCCS Opportunities in the United States [click on imageto link to the publication]Using data from DOE's Regional Carbon Sequestration Partnerships (RCSP) and other sponsored research activities, the Office of Fossil Energy's National Energy Technology Laboratory (NETL) developed the manual to better understand the characteristics of geologic formations

4

NETL: Carbon Storage - Geologic Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

5

DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test |  

Broader source: Energy.gov (indexed) [DOE]

DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test DOE Targets Rural Indiana Geologic Formation for CO2 Storage Field Test November 12, 2009 - 12:00pm Addthis Washington, DC - A U.S. Department of Energy (DOE) team of regional partners has begun injecting 8,000 tons of carbon dioxide (CO2) to evaluate the carbon storage potential and test the enhanced oil recovery (EOR) potential of the Mississippian-aged Clore Formation in Posey County, Ind. Carbon capture and storage (CCS) is seen as a key technology for reducing greenhouse gas emissions and helping to mitigate climate change. The injection, which is expected to last 6-8 months, is an integral step in DOE's Regional Carbon Sequestration Partnership program. The Midwest Geological Sequestration Consortium (MGSC) is conducting the field test to

6

Comparison of methods for geologic storage of carbon dioxide in saline formations  

SciTech Connect (OSTI)

Preliminary estimates of CO{sub 2} storage potential in geologic formations provide critical information related to Carbon Capture, Utilization, and Storage (CCUS) technologies to mitigate CO{sub 2} emissions. Currently multiple methods to estimate CO{sub 2} storage and multiple storage estimates for saline formations have been published, leading to potential uncertainty when comparing estimates from different studies. In this work, carbon dioxide storage estimates are compared by applying several commonly used methods to general saline formation data sets to assess the impact that the choice of method has on the results. Specifically, six CO{sub 2} storage methods were applied to thirteen saline formation data sets which were based on formations across the United States with adaptations to provide the geologic inputs required by each method. Methods applied include those by (1) international efforts – the Carbon Sequestration Leadership Forum (Bachu et al., 2007); (2) United States government agencies – U.S. Department of Energy – National Energy Technology Laboratory (US-DOE-NETL, 2012) and United States Geological Survey (Brennan et al., 2010); and (3) the peer-reviewed scientific community – Szulczewski et al. (2012) and Zhou et al. (2008). A statistical analysis of the estimates generated by multiple methods revealed that assessments of CO{sub 2} storage potential made at the prospective level were often statistically indistinguishable from each other, implying that the differences in methodologies are small with respect to the uncertainties in the geologic properties of storage rock in the absence of detailed site-specific characterization.

Goodman, Angela L. [U.S. DOE; Bromhal, Grant S. [U.S. DOE; Strazisar, Brian [U.S. DOE; Rodosta, Traci D. [U.S. DOE; Guthrie, William J. [U.S. DOE; Allen, Douglas E. [ORISE; Guthrie, George D. [U.S. DOE

2013-01-01T23:59:59.000Z

7

Carbon capture and storage in geologic formations has been proposed as a global warming mitigation strategy  

E-Print Network [OSTI]

Abstract Carbon capture and storage in geologic formations has been proposed as a global warming mitigation strategy that can contribute to stabilize the atmospheric concentration of carbon dioxide to maintain adsorbed methane in the coalbed formation. But now carbon dioxide will replace the methane

Mohaghegh, Shahab

8

Leveraging Regional Exploration to Develop Geologic Framework for CO2 Storage in Deep Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Leveraging regionaL expLoration Leveraging regionaL expLoration to DeveLop geoLogic Framework For co 2 Storage in Deep FormationS Background The Midwestern region encompasses numerous coal-fired power plants that could be adversely impacted by carbon dioxide (CO 2 ) emission control restrictions. Geologic sequestration could be a viable option to mitigate the CO 2 emissions within this region. Unfortunately, the understanding of rock properties within deep forma- tions in the region is poorly understood due to lack of deep well data. Under this project, regional geologic characterization is being refined with new rock property data being collected in collaboration with regional oil and gas drilling companies. Description The project is designed to develop an improved understanding of the geologic frame-

9

The Cost of Carbon Dioxide Capture and Storage in Geologic Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CosT of Carbon DioxiDe CapTure CosT of Carbon DioxiDe CapTure anD sTorage in geologiC formaTions The sequestration of carbon dioxide (CO 2 ) in geologic formations is a viable option for achieving deep reductions in greenhouse gas emissions without hindering economic prosperity. Due to the abundance of fossil fuels in the United States and around the globe as compared to other energy sources, there is strong interest in geologic sequestration, but cost is a key issue. The volume of CO 2 emitted from power plants and other energy systems is enormous compared to other emissions of concern. For example, a pulverized coal (PC) boiler operating on Illinois #6 coal (2.5 percent sulfur) may generate 0.03 pounds of sulfur dioxide per kilowatt hour (kWh) and emit CO 2 at a rate of 1.7 pounds per kWh.

10

NETL: Carbon Storage - Geologic Characterization Efforts  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

RCSP Geologic Characterization Efforts RCSP Geologic Characterization Efforts The U.S. Department of Energy created a nationwide network of seven Regional Carbon Sequestration Partnerships (RCSP) in 2003 to help determine and implement the technology, infrastructure, and regulations most appropriate to promote carbon storage in different regions of the United States and Canada. The RCSP Initiative is being implemented in three phases: (1) Characterization Phase (2003-2005) to collect data on CO2 stationary sources and geologic formations and develop the human capital to support and enable future carbon storage field tests, (2) Validation Phase (2005-2011) to evaluate promising CO2 storage opportunities through a series of small-scale (<1 million metric tons of CO2) field tests, and (3) Development Phase (2008-2018+) that involves the injection of 1 million metric tons or more of CO2 by each RCSP into regionally significant geologic formations. In addition to working toward developing human capital, encouraging stakeholder networking, and enhancing public outreach and education on carbon capture and storage (CCS), the RCSPs are conducting extensive geologic characterization across all three project phases, as well as CO2 stationary source identification and re-evaluation over time.

11

Carbon dioxide capture and geological storage  

Science Journals Connector (OSTI)

...Blundell and Fraser Armstrong Carbon dioxide capture and geological storage Sam...Nottingham NG12 5GG, UK Carbon dioxide capture and geological storage is a...80-90%. It involves the capture of carbon dioxide at a large industrial...

2007-01-01T23:59:59.000Z

12

Recovery Act: Site Characterization of Promising Geologic Formations...  

Broader source: Energy.gov (indexed) [DOE]

Geologic Formations for CO2 Storage A Report on the The Department of Energy's (DOE's) Carbon Sequestration Program within the Office of Fossil Energy's (FE's) Coal Program...

13

DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic  

Broader source: Energy.gov (indexed) [DOE]

Applications for Tracking Carbon Dioxide Storage in Applications for Tracking Carbon Dioxide Storage in Geologic Formations DOE Seeks Applications for Tracking Carbon Dioxide Storage in Geologic Formations February 19, 2009 - 12:00pm Addthis Washington, DC -- The U.S. Department of Energy (DOE) today issued a Funding Opportunity Announcement (FOA) to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide (CO2) storage in geologic formations. Geologic storage is considered to be a key technological solution to mitigate CO2 emissions and combat climate change. DOE anticipates making multiple project awards under this FOA and, depending on fiscal year 2009 appropriations, may be able to provide up to $24 million to be distributed among selected recipients. This investment is

14

NETL: NATCARB - CO2 Storage Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Formations Storage Formations NATCARB CO2 Storage Formations CO2 Storage Resource Methodology NATCARB Viewer The NATCARB Viewer is available at: http://www.natcarbviewer.com. 2012 Atlas IV DOE's Regional Carbon Sequestration Partnerships (RCSPs) were charged with providing a high-level, quantitative estimate of carbon dioxide (CO2) storage resource available in subsurface environments of their regions. Environments considered for CO2 storage were categorized into five major geologic systems: oil and gas reservoirs, unmineable coal areas, saline formations, shale, and basalt formations. Where possible, CO2 storage resource estimates have been quantified for oil and gas reservoirs, saline formations, and unmineable coal in the fourth edition of the United States Carbon Utilization and Storage Atlas (Atlas IV). Shale and basalt

15

Microsoft Word - CCS Geologic Storage-Intro_2011l.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geologic Storage Geologic Storage Geologic carbon sequestration involves the storage of carbon dioxide (CO 2 ) in deep underground geologic formations. The majority of geologic formations considered for CO 2 storage, deep saline or depleted oil and gas reservoirs, are layers of subsurface porous rock that are overlain by a layer or multiple layers of low-permeability rock. Under high pressures, CO 2 is a supercritical fluid, with the high- density characteristics of a liquid but behaves like a gas by filling all available volume. Coal seams are also a viable option for geologic storage. When CO 2 is injected into a coal formation it is adsorbed onto the coal surfaces and methane gas is released and produced in adjacent wells. NETL's Core R&D research is focused on developing the ability to characterize a geologic formation

16

On Leakage from Geologic Storage Reservoirs of CO2  

SciTech Connect (OSTI)

Large amounts of CO2 would need to be injected underground to achieve a significant reduction of atmospheric emissions. The large areal extent expected for CO2 plumes makes it likely that caprock imperfections will be encountered, such as fault zones or fractures, which may allow some CO2 to escape from the primary storage reservoir. Leakage of CO2 could also occur along wellbores. Concerns with escape of CO2 from a primary geologic storage reservoir include (1) acidification of groundwater resources, (2) asphyxiation hazard when leaking CO2 is discharged at the land surface, (3) increase in atmospheric concentrations of CO2, and (4) damage from a high-energy, eruptive discharge (if such discharge is physically possible). In order to gain public acceptance for geologic storage as a viable technology for reducing atmospheric emissions of CO2, it is necessary to address these issues and demonstrate that CO2 can be injected and stored safely in geologic formations.

Pruess, Karsten

2006-02-14T23:59:59.000Z

17

NETL: News Release - DOE Manual Studies 11 Major CO2 Geologic Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5, 2010 5, 2010 DOE Manual Studies 11 Major CO2 Geologic Storage Formations Information in Comprehensive Report Important to Carbon Capture and Storage Research Washington, D.C. - A comprehensive study of 11 geologic formations suitable for permanent underground carbon dioxide (CO2) storage is contained in a new manual issued by the U.S. Department of Energy (DOE). Geologic Storage Formation Classifications: Understanding Its Importance and Impact on CCS Opportunities in the United States Geologic Storage Formation Classifications: Understanding Its Importance and Impact on CCS Opportunities in the United States [click on image to link to the publication] Using data from DOE's Regional Carbon Sequestration Partnerships (RCSP) and other sponsored research activities, the Office of Fossil Energy's

18

System-level modeling for geological storage of CO2  

SciTech Connect (OSTI)

One way to reduce the effects of anthropogenic greenhousegases on climate is to inject carbon dioxide (CO2) from industrialsources into deep geological formations such as brine formations ordepleted oil or gas reservoirs. Research has and is being conducted toimprove understanding of factors affecting particular aspects ofgeological CO2 storage, such as performance, capacity, and health, safetyand environmental (HSE) issues, as well as to lower the cost of CO2capture and related processes. However, there has been less emphasis todate on system-level analyses of geological CO2 storage that considergeological, economic, and environmental issues by linking detailedrepresentations of engineering components and associated economic models.The objective of this study is to develop a system-level model forgeological CO2 storage, including CO2 capture and separation,compression, pipeline transportation to the storage site, and CO2injection. Within our system model we are incorporating detailedreservoir simulations of CO2 injection and potential leakage withassociated HSE effects. The platform of the system-level modelingisGoldSim [GoldSim, 2006]. The application of the system model is focusedon evaluating the feasibility of carbon sequestration with enhanced gasrecovery (CSEGR) in the Rio Vista region of California. The reservoirsimulations are performed using a special module of the TOUGH2 simulator,EOS7C, for multicomponent gas mixtures of methane and CO2 or methane andnitrogen. Using this approach, the economic benefits of enhanced gasrecovery can be directly weighed against the costs, risks, and benefitsof CO2 injection.

Zhang, Yingqi; Oldenburg, Curtis M.; Finsterle, Stefan; Bodvarsson, Gudmundur S.

2006-04-24T23:59:59.000Z

19

Method of fracturing a geological formation  

DOE Patents [OSTI]

An improved method of fracturing a geological formation surrounding a well bore is disclosed. A relatively small explosive charge is emplaced in a well bore and the bore is subsequently hydraulically pressurized to a pressure less than the formation breakdown pressure and preferably greater than the fracture propagation pressure of the formation. The charge is denoted while the bore is so pressurized, resulting in the formation of multiple fractures in the surrounding formation with little or no accompanying formation damage. Subsequent hydraulic pressurization can be used to propagate and extend the fractures in a conventional manner. The method is useful for stimulating production of oil, gas and possibly water from suitable geologic formations.

Johnson, James O. (2679-B Walnut, Los Alamos, NM 87544)

1990-01-01T23:59:59.000Z

20

Seismic modeling to monitor CO2 geological storage: The Atzbach ...  

E-Print Network [OSTI]

Jun 8, 2012 ... greenhouse effect. In order to avoid these emissions, one of the options is the geological storage of carbon dioxide in depleted hydrocarbon ...

2012-05-30T23:59:59.000Z

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOE Selects Projects to Monitor and Evaluate Geologic CO2 Storage |  

Broader source: Energy.gov (indexed) [DOE]

Monitor and Evaluate Geologic CO2 Storage Monitor and Evaluate Geologic CO2 Storage DOE Selects Projects to Monitor and Evaluate Geologic CO2 Storage August 24, 2009 - 1:00pm Addthis Washington, D.C. -- The U.S. Department of Energy (DOE) today announced the selection of 19 projects to enhance the capability to simulate, track, and evaluate the potential risks of carbon dioxide (CO2) storage in geologic formations. The projects' total value is approximately $35.8 million over four years, with $27.6 million of DOE funding and $8.2 million of non-Federal cost sharing. The work will be managed by the Office of Fossil Energy's National Energy Technology Laboratory. Coal is the Nation's most abundant energy resource, supplying nearly 50 percent of domestic electricity. In order for low-cost electricity from

22

CO2 Geologic Storage (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 12, 2013. EZFeed Policy Place Kentucky Name CO2 Geologic Storage (Kentucky) Policy Category Other Policy Policy Type Industry Recruitment/Support , Technical Feasibility Projects Affected Technologies Coal with CCS Active Policy Yes Implementing Sector State/Province Program Administrator Brandon Nutall, Division of Carbon Management Primary Website http://energy.ky.gov/carbon/Pages/default.aspx Summary Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon dioxide (CO2) in Kentucky. In

23

CO2 Geologic Storage (Kentucky) | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) CO2 Geologic Storage (Kentucky) < Back Eligibility Industrial Program Info State Kentucky Program Type Industry Recruitment/Support Provider Consultant, Division of Carbon Management Division staff, in partnership with the Kentucky Geological Survey (KGS), continued to support projects to investigate and demonstrate the technical feasibility of geologic storage of carbon dioxide (CO2) in Kentucky. In 2012, KGS conducted a test of carbon dioxide enhanced natural gas recovery in the Devonian Ohio Shale, Johnson County, east Kentucky. During the test, 87 tons of CO2 were injected through perforations in a cased, shut-in shale gas well. Industry partners for this research included Crossrock Drilling, Advanced Resources International, Schlumberger, Ferus Industries, and

24

DOE Research Projects to Examine Promising Geologic Formations for CO2  

Broader source: Energy.gov (indexed) [DOE]

Research Projects to Examine Promising Geologic Formations for Research Projects to Examine Promising Geologic Formations for CO2 Storage DOE Research Projects to Examine Promising Geologic Formations for CO2 Storage September 16, 2009 - 1:00pm Addthis Washington, DC - The Department of Energy today announced 11 projects valued at $75.5 million aimed at increasing scientific understanding about the potential of promising geologic formations to safely and permanently store carbon dioxide (CO2). View Project Details Funding for the projects includes $49.75 million from the 2009 American Reinvestment and Recovery Act and will result in substantial employment opportunities for local and regional organizations over the next three years while providing hands-on scientific experience for individuals looking to be employed in the carbon capture and storage (CCS) industry.

25

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's  

Broader source: Energy.gov (indexed) [DOE]

Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Background: The U.S. DOE's Sequestration Program began with a small appropriation of $1M in 1997 and has grown to be the largest most comprehensive CCS R&D program in the world. The U.S. DOE's sequestration program has supported a number of projects implementing CO2 injection in the United States and other countries including, Canada, Algeria, Norway, Australia, and Germany. The program has also been supporting a number of complementary R&D projects investigating the science of storage, simulation, risk assessment, and monitoring the fate of the injected CO2 in the subsurface.

26

An Industry Perspective on Geologic Storage & Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

5, 2001, NETL's 1st National Conference on Carbon Sequestration 5, 2001, NETL's 1st National Conference on Carbon Sequestration 1 An Industry Perspective on Geologic Storage & Sequestration Gardiner Hill, BP Craig Lewis, Chevron 15 th May'01 1 st National Conference on Carbon Sequestration 2 Disclaimer * The following may not be the only Industry Perspective on Storage & Sequestration * It represents the opinions of BP and Chevron and some other energy companies that we have talked to 15 th May'01 1 st National Conference on Carbon Sequestration 3 Overview * Potential New Business Impact * Business Drivers for R&D * Technology Objectives * Definitions of Storage & Sequestration * Break-down of Geologic Storage R&D Categories * Where We Think Industry (and others) are already strong * Where We Think Additional R&D Gaps Still

27

Predictions of long-term behavior of a large-volume pilot test for CO2 geological storage in a saline formation in the Central Valley, California  

SciTech Connect (OSTI)

The long-term behavior of a CO{sub 2} plume injected into a deep saline formation is investigated, focusing on mechanisms that lead to plume stabilization. Key measures are plume migration distance and the time evolution of CO{sub 2} phase-partitioning, which are examined by developing a numerical model of the subsurface at a proposed power plant with CO{sub 2} capture in the San Joaquin Valley, California, where a large-volume pilot test of CO{sub 2} injection will be conducted. The numerical model simulates a four-year CO{sub 2} injection period and the subsequent evolution of the CO{sub 2} plume until it stabilizes. Sensitivity studies are carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual gas saturation.

Doughty, Christine; Myer, Larry R.; Oldenburg, Curtis M.

2008-11-01T23:59:59.000Z

28

Development of Geologic Storage Estimates for Carbon Dioxide  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Methodology for the Methodology for Development of Geologic Storage Estimates for Carbon Dioxide Prepared for U.S. Department of Energy National Energy Technology Laboratory Carbon Storage Program September 2010 Summary of the Methodology for Development of Geologic Storage Estimates for Carbon Dioxide 2 Authors: U.S. Department of Energy, National Energy Technology Laboratory/ Strategic Center for Coal/Office of Coal and Power R&D John Litynski U.S. Department of Energy, National Energy Technology Laboratory/ Strategic Center for Coal/Office of Coal and Power R&D/Sequestration Division Dawn Deel Traci Rodosta U. S. Department of Energy, National Energy Technology Laboratory/ Office of Research and Development George Guthrie U. S. Department of Energy, National Energy Technology Laboratory/

29

Investigation of CO2 plume behavior for a large-scale pilot test of geologic carbon storage in a saline formation  

SciTech Connect (OSTI)

The hydrodynamic behavior of carbon dioxide (CO{sub 2}) injected into a deep saline formation is investigated, focusing on trapping mechanisms that lead to CO{sub 2} plume stabilization. A numerical model of the subsurface at a proposed power plant with CO{sub 2} capture is developed to simulate a planned pilot test, in which 1,000,000 metric tons of CO{sub 2} is injected over a four-year period, and the subsequent evolution of the CO{sub 2} plume for hundreds of years. Key measures are plume migration distance and the time evolution of the partitioning of CO{sub 2} between dissolved, immobile free-phase, and mobile free-phase forms. Model results indicate that the injected CO{sub 2} plume is effectively immobilized at 25 years. At that time, 38% of the CO{sub 2} is in dissolved form, 59% is immobile free phase, and 3% is mobile free phase. The plume footprint is roughly elliptical, and extends much farther up-dip of the injection well than down-dip. The pressure increase extends far beyond the plume footprint, but the pressure response decreases rapidly with distance from the injection well, and decays rapidly in time once injection ceases. Sensitivity studies that were carried out to investigate the effect of poorly constrained model parameters permeability, permeability anisotropy, and residual CO{sub 2} saturation indicate that small changes in properties can have a large impact on plume evolution, causing significant trade-offs between different trapping mechanisms.

Doughty, C.

2009-04-01T23:59:59.000Z

30

A life cycle cost analysis framework for geologic storage of hydrogen : a user's tool.  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) has an interest in large scale hydrogen geostorage, which could offer substantial buffer capacity to meet possible disruptions in supply or changing seasonal demands. The geostorage site options being considered are salt caverns, depleted oil/gas reservoirs, aquifers and hard rock caverns. The DOE has an interest in assessing the geological, geomechanical and economic viability for these types of geologic hydrogen storage options. This study has developed an economic analysis methodology and subsequent spreadsheet analysis to address costs entailed in developing and operating an underground geologic storage facility. This year the tool was updated specifically to (1) incorporate more site-specific model input assumptions for the wells and storage site modules, (2) develop a version that matches the general format of the HDSAM model developed and maintained by Argonne National Laboratory, and (3) incorporate specific demand scenarios illustrating the model's capability. Four general types of underground storage were analyzed: salt caverns, depleted oil/gas reservoirs, aquifers, and hard rock caverns/other custom sites. Due to the substantial lessons learned from the geological storage of natural gas already employed, these options present a potentially sizable storage option. Understanding and including these various geologic storage types in the analysis physical and economic framework will help identify what geologic option would be best suited for the storage of hydrogen. It is important to note, however, that existing natural gas options may not translate to a hydrogen system where substantial engineering obstacles may be encountered. There are only three locations worldwide that currently store hydrogen underground and they are all in salt caverns. Two locations are in the U.S. (Texas), and are managed by ConocoPhillips and Praxair (Leighty, 2007). The third is in Teeside, U.K., managed by Sabic Petrochemicals (Crotogino et al., 2008; Panfilov et al., 2006). These existing H{sub 2} facilities are quite small by natural gas storage standards. The second stage of the analysis involved providing ANL with estimated geostorage costs of hydrogen within salt caverns for various market penetrations for four representative cities (Houston, Detroit, Pittsburgh and Los Angeles). Using these demand levels, the scale and cost of hydrogen storage necessary to meet 10%, 25% and 100% of vehicle summer demands was calculated.

Kobos, Peter Holmes; Lord, Anna Snider; Borns, David James; Klise, Geoffrey T.

2011-09-01T23:59:59.000Z

31

Modeling geologic storage of carbon dioxide: Comparison ofnon-hysteretic chracteristic curves  

SciTech Connect (OSTI)

TOUGH2 models of geologic storage of carbon dioxide (CO2) in brine-bearing formations use characteristic curves to represent the interactions of non-wetting-phase CO2 and wetting-phase brine. When a problem includes both injection of CO2 (a drainage process) and its subsequent post-injection evolution (a combination of drainage and wetting), hysteretic characteristic curves are required to correctly capture the behavior of the CO2 plume. In the hysteretic formulation, capillary pressure and relative permeability depend not only on the current grid-block saturation, but also on the history of the saturation in the grid block. For a problem that involves only drainage or only wetting, a nonhysteretic formulation, in which capillary pressure and relative permeability depend only on the current value of the grid-block saturation, is adequate. For the hysteretic formulation to be robust computationally, care must be taken to ensure the differentiability of the characteristic curves both within and beyond the turning-point saturations where transitions between branches of the curves occur. Two example problems involving geologic CO2 storage are simulated using non-hysteretic and hysteretic models, to illustrate the applicability and limitations of non-hysteretic methods: the first considers leakage of CO2 from the storage formation to the ground surface, while the second examines the role of heterogeneity within the storage formation.

Doughty, Christine

2006-04-28T23:59:59.000Z

32

Constructing Hydraulic Barriers in Deep Geologic Formations  

SciTech Connect (OSTI)

Many construction methods have been developed to create hydraulic barriers to depths of 30 to 50 meters, but few have been proposed for depths on the order of 500 meters. For these deep hydraulic barriers, most methods are potentially feasible for soil but not for hard rock. In the course of researching methods of isolating large subterranean blocks of oil shale, the authors have developed a wax thermal permeation method for constructing hydraulic barriers in rock to depths of over 500 meters in competent or even fractured rock as well as soil. The technology is similar to freeze wall methods, but produces a permanent barrier; and is potentially applicable in both dry and water saturated formations. Like freeze wall barriers, the wax thermal permeation method utilizes a large number of vertical or horizontal boreholes around the perimeter to be contained. However, instead of cooling the boreholes, they are heated. After heating these boreholes, a specially formulated molten wax based grout is pumped into the boreholes where it seals fractures and also permeates radially outward to form a series of columns of wax-impregnated rock. Rows of overlapping columns can then form a durable hydraulic barrier. These barriers can also be angled above a geologic repository to help prevent influx of water due to atypical rainfall events. Applications of the technique to constructing containment structures around existing shallow waste burial sites and water shutoff for mining are also described. (authors)

Carter, E.E.; Carter, P.E. [Technologies Co, Texas (United States); Cooper, D.C. [Ph.D. Idaho National Laboratory, Idaho Falls, ID (United States)

2008-07-01T23:59:59.000Z

33

Projects Selected for Safe and Permanent Geologic Storage of Carbon Dioxide  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy announced the selection of 13 projects to develop technologies and methodologies for geologic storage of carbon dioxide.

34

The low cost of geological assessment for underground CO2 storage: Policy and economic implication  

SciTech Connect (OSTI)

The costs for carbon dioxide (CO2) capture and storage (CCS) in geologic formations is estimated to be $6–75/t CO2. In the absence of a mandate to reduce greenhouse gas emissions or some other significant incentive for CCS deployment, this cost effectively limits CCS technology deployment to small niche markets and stymies the potential for further technological development through learning by doing until these disincentives for the free venting of CO2 are in place. By far, the largest current fraction of these costs is capture (including compression and dehydration), commonly estimated at $25–60/t CO2 for power plant applications, followed byCO2 transport and storage, estimated at $0–15/tCO2.Of the storage costs, only a small fraction of the cost will go to accurate geological characterization. These one time costs are probably on the order of $0.1/t CO2 or less as these costs are spread out over the many millions of tons likely to be injected into a field over many decades. Geologic assessments include information central to capacity prediction, risk estimation for the target intervals and development facilities engineering. Since assessment costs are roughly two orders of magnitude smaller than capture costs, and assessment products carry other tangible societal benefits, such as improved accuracy in fossil fuel and ground water reserves estimates, government or joint private–public funding of major assessment initiatives should underpin early policy choices regarding CO2 storage deployment and should serve as a point of entry for policy makers and regulators. Early assessment is also likely to improve the knowledge base upon which the first commercial CCS deployments will rest.

Friedmann, S. J.; Dooley, James J.; Held, Herman; Ottmar, Edenhofer

2006-08-31T23:59:59.000Z

35

Subtask 2.17 - CO{sub 2} Storage Efficiency in Deep Saline Formations  

SciTech Connect (OSTI)

As the field of carbon capture and storage (CCS) continues to advance, and large-scale implementation of geologic carbon dioxide (CO{sub 2}) storage progresses, it will be important to understand the potential of geologic formations to store meaningful amounts of CO{sub 2}. Geologic CO{sub 2} storage in deep saline formations (DSFs) has been suggested as one of the best potential methods for reducing anthropogenic CO{sub 2} emission to the atmosphere, and as such, updated storage resource estimation methods will continue to be an important component for the widespread deployment of CCS around the world. While there have been several methodologies suggested in the literature, most of these methods are based on a volumetric calculation of the pore volume of the DSF multiplied by a storage efficiency term and do not consider the effect of site-specific dynamic factors such as injection rate, injection pattern, timing of injection, pressure interference between injection locations, and overall formation pressure buildup. These volumetric methods may be excellent for comparing the potential between particular formations or basins, but they have not been validated through real-world experience or full-formation injection simulations. Several studies have also suggested that the dynamic components of geologic storage may play the most important role in storing CO{sub 2} in DSFs but until now have not directly compared CO{sub 2} storage resource estimates made with volumetric methodologies to estimates made using dynamic CO{sub 2} storage methodologies. In this study, two DSFs, in geographically separate areas with geologically diverse properties, were evaluated with both volumetric and dynamic CO{sub 2} storage resource estimation methodologies to compare the results and determine the applicability of both approaches. In the end, it was determined that the dynamic CO{sub 2} storage resource potential is timedependent and it asymptotically approaches the volumetric CO{sub 2} storage resource potential over very long periods of time in the two systems that were evaluated. These results indicate that the volumetric assessments can be used as long as the appropriate storage efficiency terms are used and it is understood that it will take many wells over very long periods of time to fully realize the storage potential of a target formation. This subtask was funded through the Energy & Environmental Research Center (EERC)– U.S. Department of Energy (DOE) Joint Program on Research and Development for Fossil Energy-Related Resources Cooperative Agreement No. DE-FC26-08NT43291. Nonfederal funding was provided by the IEA Greenhouse Gas R&D Programme.

Gorecki, Charles; Liu, Guoxiang; Braunberger, Jason; Klenner, Robert; Ayash, Scott; Dotzenrod, Neil; Steadman, Edward; Harju, John

2014-02-01T23:59:59.000Z

36

Geologic Study of the Coso Formation | Open Energy Information  

Open Energy Info (EERE)

Study of the Coso Formation Study of the Coso Formation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Geologic Study of the Coso Formation Details Activities (1) Areas (1) Regions (0) Abstract: There have been great advances in the last 20 years in understanding the volcanic, structural, geophysical, and petrologic development of the Coso Range and Coso geothermal field. These studies have provided a wealth of knowledge concerning the geology of the area, including general structural characteristics and kinematic history. One element missing from this dataset was an understanding of the sedimentology and stratigraphy of well-exposed Cenozoic sedimentary strata - the Coso Formation. A detailed sedimentation and tectonics study of the Coso Formation was undertaken to provide a more complete picture of the

37

Estimating Plume Volume for Geologic Storage of CO2 in Saline Aquifers  

SciTech Connect (OSTI)

Typically, when a new subsurface flow and transport problem is first being considered, very simple models with a minimal number of parameters are used to get a rough idea of how the system will evolve. For a hydrogeologist considering the spreading of a contaminant plume in an aquifer, the aquifer thickness, porosity, and permeability might be enough to get started. If the plume is buoyant, aquifer dip comes into play. If regional groundwater flow is significant or there are nearby wells pumping, these features need to be included. Generally, the required parameters tend to be known from pre-existing studies, are parameters that people working in the field are familiar with, and represent features that are easy to explain to potential funding agencies, regulators, stakeholders, and the public. The situation for geologic storage of carbon dioxide (CO{sub 2}) in saline aquifers is quite different. It is certainly desirable to do preliminary modeling in advance of any field work since geologic storage of CO{sub 2} is a novel concept that few people have much experience with or intuition about. But the parameters that control CO{sub 2} plume behavior are a little more daunting to assemble and explain than those for a groundwater flow problem. Even the most basic question of how much volume a given mass of injected CO{sub 2} will occupy in the subsurface is non-trivial. However, with a number of simplifying assumptions, some preliminary estimates can be made, as described below. To make efficient use of the subsurface storage volume available, CO{sub 2} density should be large, which means choosing a storage formation at depths below about 800 m, where pressure and temperature conditions are above the critical point of CO{sub 2} (P = 73.8 bars, T = 31 C). Then CO{sub 2} will exist primarily as a free-phase supercritical fluid, while some CO{sub 2} will dissolve into the aqueous phase.

Doughty, Christine

2008-07-11T23:59:59.000Z

38

Adapting Dry Cask Storage for Aging at a Geologic Repository  

SciTech Connect (OSTI)

A Spent Nuclear Fuel (SNF) Aging System is a crucial part of operations at the proposed Yucca Mountain repository in the United States. Incoming commercial SNF that does not meet thermal limits for emplacement will be aged on outdoor pads. U.S. Department of Energy SNF will also be managed using the Aging System. Proposed site-specific designs for the Aging System are closely based upon designs for existing dry cask storage (DCS) systems. This paper evaluates the applicability of existing DCS systems for use in the SNF Aging System at Yucca Mountain. The most important difference between existing DCS facilities and the Yucca Mountain facility is the required capacity. Existing DCS facilities typically have less than 50 casks. The current design for the aging pad at Yucca Mountain calls for a capacity of over 2,000 casks (20,000 MTHM) [1]. This unprecedented number of casks poses some unique problems. The response of DCS systems to off-normal and accident conditions needs to be re-evaluated for multiple storage casks. Dose calculations become more complicated, since doses from multiple or very long arrays of casks can dramatically increase the total boundary dose. For occupational doses, the geometry of the cask arrays and the order of loading casks must be carefully considered in order to meet ALARA goals during cask retrieval. Due to the large area of the aging pad, skyshine must also be included when calculating public and worker doses. The expected length of aging will also necessitate some design adjustments. Under 10 CFR 72.236, DCS systems are initially certified for a period of 20 years [2]. Although the Yucca Mountain facility is not intended to be a storage facility under 10 CFR 72, the operational life of the SNF Aging System is 50 years [1]. Any cask system selected for use in aging will have to be qualified to this design lifetime. These considerations are examined, and a summary is provided of the adaptations that must be made in order to use DCS technologies successfully at a geologic repository.

C. Sanders; D. Kimball

2005-08-02T23:59:59.000Z

39

NOVEL CONCEPTS RESEARCH IN GEOLOGIC STORAGE OF CO2 PHASE III  

SciTech Connect (OSTI)

As part of the Department of Energy's (DOE) initiative on developing new technologies for storage of carbon dioxide in geologic reservoirs, Battelle has been investigating the feasibility of CO{sub 2} sequestration in the deep saline reservoirs in the Ohio River Valley region. In addition to the DOE, the project is being sponsored by American Electric Power (AEP), BP, The Ohio Coal Development Office (OCDO) of the Ohio Air Quality Development Authority, Schlumberger, and Battelle. The main objective of the project is to demonstrate that CO{sub 2} sequestration in deep formations is feasible from engineering and economic perspectives, as well as being an inherently safe practice and one that will be acceptable to the public. In addition, the project is designed to evaluate the geology of deep formations in the Ohio River Valley region in general and in the vicinity of AEP's Mountaineer Power Plant in particular, in order to determine their potential use for conducting a long-term test of CO{sub 2} disposal in deep saline formations. The current technical progress report summarizes activities completed for the January-March 2006 period of the project. As discussed in the following report, the main accomplishments were analysis of Copper Ridge ''B-zone'' reservoir test results from the AEP No.1 well and design and feasibility support tasks. Reservoir test results indicate injection potential in the Copper Ridge ''B-zone'' may be significantly higher than anticipated for the Mountaineer site. Work continued on development of injection well design options, engineering assessment of CO{sub 2} capture systems, permitting, and assessment of monitoring technologies as they apply to the project site. In addition, organizational and scheduling issues were addressed to move the project toward an integrated carbon capture and storage system at the Mountaineer site. Overall, the current design feasibility phase project is proceeding according to plans.

Neeraj Gupta

2006-05-18T23:59:59.000Z

40

"Technologies to Ensure Permanent Geologic Carbon Storage,"  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of carbon dioxide (CO of carbon dioxide (CO 2 ). DE-FOA-0000652, titled, "Technologies to Ensure Permanent Geologic Carbon Storage," addresses key geologic storage challenges and uncertainties that include improving and validating containment, improving injection operations, increasing reservoir storage efficiency, and mitigating potential releases of CO 2 from the engineered containment system. The following four technical areas of interest are addressed: Area of Interest 1 - Studies of Existing Wellbores Exposed to CO 2 ; Area of Interest 2 - Advanced Wellbore Integrity Technologies; Area of Interest 3 - Field Methods to Optimize Capacity and Ensure Storage Containment; and Area of Interest 4 - Enhanced Simulation Tools to Improve Predictions and

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Coal laboratory characterisation for CO2 geological storage E.C. Gaucher1  

E-Print Network [OSTI]

Coal laboratory characterisation for CO2 geological storage E.C. Gaucher1 *, P.D.C. Défossez1 storage of CO2 in unmineable coal seams could be a very interesting option in the sustainable management of coal basins. However, the various chemical and physical parameters that determine the success

Paris-Sud XI, Université de

42

Modeling the Sequestration of CO2 in Deep Geological Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Sequestration of CO the Sequestration of CO 2 in Deep Geological Formations K. Prasad Saripalli, B. Peter McGrail, and Mark D. White Pacific Northwest National Laboratory, Richland, Washington 99352 corresponding author Prasad Saripalli Senior Research Scientist Pacific Northwest National Laboratory 1313 Sigma V Complex (K6-81) Richland, WA 99352 ph: (509) 376-1667 fax: (509) 376-5368 prasad.saripalli@pnl.gov 2 Modeling the Sequestration of CO 2 in Deep Geological Formations K. Prasad Saripalli, B. Peter McGrail, and Mark D. White Pacific Northwest National Laboratory, Richland, Washington 99352 Modeling the injection of CO 2 and its sequestration will require simulations of a multi- well injection system in a large reservoir field. However, modeling at the injection well

43

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

host hydrocarbon reservoirs and oil and gas produc- tionthroat radius mm Radius (m) Reservoirs Oil Gas um GeologicalIn each of these reservoirs, oil fields have been dis-

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

44

Hydrogeophysical methods for analyzing aquifer storage and recovery systems  

E-Print Network [OSTI]

1995. Hydrogeology of the Dammam formation in Umm GudairGeology and hydrogeology of the Dammam formation in Kuwait.freshwater storage in the Dammam formation, Kuwait. Arabian

Minsley, B.J.

2010-01-01T23:59:59.000Z

45

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

Watrous Formation, Williston Basin, Canada: a preliminaryaccumulation in the northern Williston Basin. The Watrous

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

46

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

FEASIBILITY: TEAPOT DOME EOR PILOT L. Chiaramonte, M.TO IDENTIFY OPTIMAL CO 2 EOR STORAGE SITES V. Núñez Lopez,from a carbon dioxide EOR/sequestration project. Energy

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

47

SIMULATION FRAMEWORK FOR REGIONAL GEOLOGIC CO{sub 2} STORAGE ALONG ARCHES PROVINCE OF MIDWESTERN UNITED STATES  

SciTech Connect (OSTI)

This report presents final technical results for the project Simulation Framework for Regional Geologic CO{sub 2} Storage Infrastructure along Arches Province of the Midwest United States. The Arches Simulation project was a three year effort designed to develop a simulation framework for regional geologic carbon dioxide (CO{sub 2}) storage infrastructure along the Arches Province through development of a geologic model and advanced reservoir simulations of large-scale CO{sub 2} storage. The project included five major technical tasks: (1) compilation of geologic, hydraulic and injection data on Mount Simon, (2) development of model framework and parameters, (3) preliminary variable density flow simulations, (4) multi-phase model runs of regional storage scenarios, and (5) implications for regional storage feasibility. The Arches Province is an informal region in northeastern Indiana, northern Kentucky, western Ohio, and southern Michigan where sedimentary rock formations form broad arch and platform structures. In the province, the Mount Simon sandstone is an appealing deep saline formation for CO{sub 2} storage because of the intersection of reservoir thickness and permeability. Many CO{sub 2} sources are located in proximity to the Arches Province, and the area is adjacent to coal fired power plants along the Ohio River Valley corridor. Geophysical well logs, rock samples, drilling logs, and geotechnical tests were evaluated for a 500,000 km{sup 2} study area centered on the Arches Province. Hydraulic parameters and historical operational information was also compiled from Mount Simon wastewater injection wells in the region. This information was integrated into a geocellular model that depicts the parameters and conditions in a numerical array. The geologic and hydraulic data were integrated into a three-dimensional grid of porosity and permeability, which are key parameters regarding fluid flow and pressure buildup due to CO{sub 2} injection. Permeability data were corrected in locations where reservoir tests have been performed in Mount Simon injection wells. The geocellular model was used to develop a series of numerical simulations designed to support CO2 storage applications in the Arches Province. Variable density fluid flow simulations were initially run to evaluate model sensitivity to input parameters. Two dimensional, multiple-phase simulations were completed to evaluate issues related to arranging injection fields in the study area. A basin-scale, multiple-phase model was developed to evaluate large scale injection effects across the region. Finally, local scale simulations were also completed with more detailed depiction of the Eau Claire formation to investigate to the potential for upward migration of CO2. Overall, the technical work on the project concluded that injection large-scale injection may be achieved with proper field design, operation, siting, and monitoring. Records from Mount Simon injection wells were compiled, documenting more than 20 billion gallons of injection into the Mount Simon formation in the Arches Province over the past 40 years, equivalent to approximately 60 million metric tons CO2. The multi-state team effort was useful in delineating the geographic variability in the Mount Simon reservoir properties. Simulations better defined potential well fields, well field arrangement, CO2 pipeline distribution system, and operational parameters for large-scale injection in the Arches Province. Multiphase scoping level simulations suggest that injection fields with arrays of 9 to 50+ wells may be used to accommodate large injection volumes. Individual wells may need to be separated by 3 to 10 km. Injection fields may require spacing of 25 to 40 km to limit pressure and saturation front interference. Basin-scale multiple-phase simulations in STOMP reflect variability in the Mount Simon. While simulations suggest a total injection rate of 100 million metric tons per year (approximately to a 40% reduction of CO2 emissions from large point sources across the Arches Province) may be feasible,

Sminchak, Joel

2012-09-30T23:59:59.000Z

48

SIMULATION FRAMEWORK FOR REGIONAL GEOLOGIC CO{sub 2} STORAGE ALONG ARCHES PROVINCE OF MIDWESTERN UNITED STATES  

SciTech Connect (OSTI)

This report presents final technical results for the project Simulation Framework for Regional Geologic CO{sub 2} Storage Infrastructure along Arches Province of the Midwest United States. The Arches Simulation project was a three year effort designed to develop a simulation framework for regional geologic carbon dioxide (CO{sub 2}) storage infrastructure along the Arches Province through development of a geologic model and advanced reservoir simulations of large-scale CO{sub 2} storage. The project included five major technical tasks: (1) compilation of geologic, hydraulic and injection data on Mount Simon, (2) development of model framework and parameters, (3) preliminary variable density flow simulations, (4) multi-phase model runs of regional storage scenarios, and (5) implications for regional storage feasibility. The Arches Province is an informal region in northeastern Indiana, northern Kentucky, western Ohio, and southern Michigan where sedimentary rock formations form broad arch and platform structures. In the province, the Mount Simon sandstone is an appealing deep saline formation for CO{sub 2} storage because of the intersection of reservoir thickness and permeability. Many CO{sub 2} sources are located in proximity to the Arches Province, and the area is adjacent to coal fired power plants along the Ohio River Valley corridor. Geophysical well logs, rock samples, drilling logs, and geotechnical tests were evaluated for a 500,000 km{sup 2} study area centered on the Arches Province. Hydraulic parameters and historical operational information was also compiled from Mount Simon wastewater injection wells in the region. This information was integrated into a geocellular model that depicts the parameters and conditions in a numerical array. The geologic and hydraulic data were integrated into a three-dimensional grid of porosity and permeability, which are key parameters regarding fluid flow and pressure buildup due to CO{sub 2} injection. Permeability data were corrected in locations where reservoir tests have been performed in Mount Simon injection wells. The geocellular model was used to develop a series of numerical simulations designed to support CO{sub 2} storage applications in the Arches Province. Variable density fluid flow simulations were initially run to evaluate model sensitivity to input parameters. Two dimensional, multiple-phase simulations were completed to evaluate issues related to arranging injection fields in the study area. A basin-scale, multiple-phase model was developed to evaluate large scale injection effects across the region. Finally, local scale simulations were also completed with more detailed depiction of the Eau Claire formation to investigate to the potential for upward migration of CO{sub 2}. Overall, the technical work on the project concluded that injection large-scale injection may be achieved with proper field design, operation, siting, and monitoring. Records from Mount Simon injection wells were compiled, documenting more than 20 billion gallons of injection into the Mount Simon formation in the Arches Province over the past 40 years, equivalent to approximately 60 million metric tons CO2. The multi-state team effort was useful in delineating the geographic variability in the Mount Simon reservoir properties. Simulations better defined potential well fields, well field arrangement, CO{sub 2} pipeline distribution system, and operational parameters for large-scale injection in the Arches Province. Multiphase scoping level simulations suggest that injection fields with arrays of 9 to 50+ wells may be used to accommodate large injection volumes. Individual wells may need to be separated by 3 to 10 km. Injection fields may require spacing of 25 to 40 km to limit pressure and saturation front interference. Basin-scale multiple-phase simulations in STOMP reflect variability in the Mount Simon. While simulations suggest a total injection rate of 100 million metric tons per year (approximately to a 40% reduction of CO{sub 2} emissions from large point sources across the Arches Pr

Sminchak, Joel

2012-09-30T23:59:59.000Z

49

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

and limestone; extensive halite beds in SE Black Mesa basindeposits include gypsum and halite. The fine-grained unitsParadox Formation shale, halite, and anhydrite serve as

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

50

Geologic Storage of Carbon Dioxide: Risk Analyses and Implications for Public Acceptance  

E-Print Network [OSTI]

Geologic Storage of Carbon Dioxide: Risk Analyses and Implications for Public Acceptance by Gregory of Carbon Dioxide: Risk Analyses and Implications for Public Acceptance by Gregory R. Singleton Submitted of Political Science Thesis Supervisor Accepted by Roger D. Petersen Associate Professor of Political Science

51

Geologic Sequestration Software Suite (GS3): a collaborative approach to the management of geological GHG storage projects  

SciTech Connect (OSTI)

Geologic storage projects associated with large anthropogenic sources of greenhouse gases (GHG) will have lifecycles that may easily span a century, involve several numerical simulation cycles, and have distinct modeling teams. The process used for numerical simulation of the fate of GHG in the subsurface follows a generally consistent sequence of steps that often are replicated by scientists and engineers around the world. Site data is gathered, assembled, interpreted, and assimilated into conceptualizations of a solid-earth model; assumptions are made about the processes to be modeled; a computational domain is specified and spatially discretized; driving forces and initial conditions are defined; the conceptual models, computational domain, and driving forces are translated into input files; simulations are executed; and results are analyzed. Then, during and after the GHG injection, a continuous monitoring of the reservoir is done and models are updated with the newly collected data. Typically the working files generated during all these steps are maintained on workstations with local backups and archived once the project has concluded along with any modeling notes and records. We are proposing a new concept for supporting the management of full-scale GHG storage projects where collaboration, flexibility, accountability and long-term access will be essential features: the Geologic Sequestration Software Suite, GS3.

Bonneville, Alain; Black, Gary D.; Gorton, Ian; Hui, Peter SY; Murphy, Ellyn M.; Murray, Christopher J.; Rockhold, Mark L.; Schuchardt, Karen L.; Sivaramakrishnan, Chandrika; White, Mark D.; Williams, Mark D.; Wurstner, Signe K.

2011-01-23T23:59:59.000Z

52

Natural iodine in a clay formation: Implications for iodine fate in geological disposals  

E-Print Network [OSTI]

a significant contribution to potential overall long-term dose resulting from the waste storage (Altmann, 2008 Laboratory of Environmental Geology, Research Group of Geoenvironmental/Engineering Division of Solid Waste problematic radioisotopes in the context of nuclear waste geological disposal due to its high mobility

Paris-Sud XI, Université de

53

CO2/EOR and Geological Carbon Storage Resource Potential in the Niagaran Pinnacle Reef Trend, Lower Michigan, USA  

Science Journals Connector (OSTI)

Abstract Early Silurian age, Niagaran pinnacle reef trend (NPRT) oil fields in the Guelph Formation in Northern Lower Michigan (NNPRT) comprise a giant oil province with nearly 63.6 million cubic meters (Mm3) of cumulative petroleum and 680 billion cubic meters (Bm3) of natural gas production (through 2010) from over 700 discrete reservoirs at depths of 800-2100 m. Several NNPRT fields are the main target of a proposed, DOE-NETL funded, large scale carbon dioxide (CO2) utilization and sequestration project. The NNPRT comprises closely-spaced, but highly geologically compartmentalized and laterally discontinuous oil and gas fields many of which have either reached or are nearing their economic limit in primary production mode. Total oil production from the largest 207 oil fields in the NNPRT, each with more than 80,000 m3 of cumulative oil production per field, constitutes 86% or 54.6 Mm3 of trend oil production totals and are considered most likely targets for CO2/EOR activities in the future. We have evaluated regional CO2/Enhanced Oil Recovery (EOR) potential in these NNPRT fields from historic production data in addition to recovery efficiencies observed in seven, on-going, commercial CO2/EOR projects and determined that incremental CO2/EOR potential in these fields ranges from 22-33 Mm3. We have also evaluated trend-wide Geological Storage Resource (GSR) potential using 2 different approaches: 1) a produced fluid volumes approach, and 2) a gross storage capacity approach using petrophysical well log estimates of net, effective porosity in NNPRT field wells and estimates of reservoir acreage from GIS data. These approaches provide robust low and high estimates of more than 200 Mmt but less than 500 Mmt (respectively) for Geological Storage Resource (GSR) potential in the NNPRT.

David Barnes; Bill Harrison; G. Michael Grammer; Jason Asmus

2013-01-01T23:59:59.000Z

54

Development of experimental methods for intermediate scale testing of deep geologic CO2 sequestration trapping processes at ambient laboratory conditions.  

E-Print Network [OSTI]

??Carbon Capture and Storage (CCS) is a potential strategy to reduce CO2 emissions into the atmosphere. Deep geological formations provide a viable storage site for… (more)

Vargas-Johnson, Javier

2014-01-01T23:59:59.000Z

55

Relevance of underground natural gas storage to geologic sequestration of carbon dioxide  

SciTech Connect (OSTI)

The practice of underground natural gas storage (UNGS), which started in the USA in 1916, provides useful insight into the geologic sequestration of carbon dioxide--the dominant anthropogenic greenhouse gas released into the atmosphere. In many ways, UNGS is directly relevant to geologic CO{sub 2} storage because, like CO{sub 2}, natural gas (essentially methane) is less dense than water. Consequently, it will tend to rise to the top of any subsurface storage structure located below the groundwater table. By the end of 2001 in the USA, about 142 million metric tons of natural gas were stored underground in depleted oil and gas reservoirs and brine aquifers. Based on their performance, UNGS projects have shown that there is a safe and effective way of storing large volumes of gases in the subsurface. In the small number of cases where failures did occur (i.e., leakage of the stored gas into neighboring permeable layers), they were mainly related to improper well design, construction, maintenance, and/or incorrect project operation. In spite of differences in the chemical and physical properties of the gases, the risk-assessment, risk-management, and risk-mitigation issues relevant to UNGS projects are also pertinent to geologic CO{sub 2} sequestration.

Lippmann, Marcelo J.; Benson, Sally M.

2002-07-01T23:59:59.000Z

56

On scale and magnitude of pressure build-up induced by large-scale geologic storage of CO2  

SciTech Connect (OSTI)

The scale and magnitude of pressure perturbation and brine migration induced by geologic carbon sequestration is discussed assuming a full-scale deployment scenario in which enough CO{sub 2} is captured and stored to make relevant contributions to global climate change mitigation. In this scenario, the volumetric rates and cumulative volumes of CO{sub 2} injection would be comparable to or higher than those related to existing deep-subsurface injection and extraction activities, such as oil production. Large-scale pressure build-up in response to the injection may limit the dynamic storage capacity of suitable formations, because over-pressurization may fracture the caprock, may drive CO{sub 2}/brine leakage through localized pathways, and may cause induced seismicity. On the other hand, laterally extensive sedimentary basins may be less affected by such limitations because (i) local pressure effects are moderated by pressure propagation and brine displacement into regions far away from the CO{sub 2} storage domain; and (ii) diffuse and/or localized brine migration into overlying and underlying formations allows for pressure bleed-off in the vertical direction. A quick analytical estimate of the extent of pressure build-up induced by industrial-scale CO{sub 2} storage projects is presented. Also discussed are pressure perturbation and attenuation effects simulated for two representative sedimentary basins in the USA: the laterally extensive Illinois Basin and the partially compartmentalized southern San Joaquin Basin in California. These studies show that the limiting effect of pressure build-up on dynamic storage capacity is not as significant as suggested by Ehlig-Economides and Economides, who considered closed systems without any attenuation effects.

Zhou, Q.; Birkholzer, J. T.

2011-05-01T23:59:59.000Z

57

Microsoft Word - NETL-TRS-1-2013_Geologic Storage Estimates for Carbon Dioxide_20130312.electronic.docx  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Comparison of Publicly Available Comparison of Publicly Available Methods for Development of Geologic Storage Estimates for Carbon Dioxide in Saline Formations 12 March 2013 Office of Fossil Energy NETL-TRS-1-2013 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its

58

Evaluating variable switching and flash methods in modeling carbon sequestration in deep geologic formations  

E-Print Network [OSTI]

Evaluating variable switching and flash methods in modeling carbon sequestration in deep geologic performance computing to assess the risks involved in carbon sequestration in deep geologic formations-thermal- chemical processes in variably saturated, non-isothermal porous media is applied to sequestration

Mills, Richard

59

Natural Analogs for Geologic Storage of CO2: An Integrated Global Research Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

JAF21006.DOC JAF21006.DOC First National Conference on Carbon Sequestration U.S. Department of Energy National Energy Technology Laboratory May 15-17, 2001 Washington, D.C. Natural Analogs for Geologic Storage of CO 2 : An Integrated Global Research Program S. H. Stevens (sstevens@adv-res.com, (703) 528 8420) Advanced Resources International, Inc. 1110 N. Glebe Road, Suite 600 Arlington, VA USA 22201 703-528-8420 J. M. Pearce (jmpe@bgs.ac.uk, (0)115 9363 222) British Geological Survey Nottingham, NG12 5GG, United Kingdom. A. A. J. Rigg (a.rigg@petroleum.crc.org.au, 61-2-9490 8225) Australian Petroleum Cooperative Research Centre Sydney, NSW Australia ABSTRACT Coordinated research efforts are underway on three continents (North America, Europe,

60

Physical and Economic Potential of Geological CO2 Storage in Saline Aquifers  

Science Journals Connector (OSTI)

Physical and Economic Potential of Geological CO2 Storage in Saline Aquifers ... To put this result in context, a minimum of approximately 0.7 km3 of reservoir volume at the optimal depth would be required to store the emissions from a typical 500 MW coal plant capturing 7389 tons of CO2 per day for 20 years with an 80% capacity factor (2). ... Since our analysis is performed on a single-well basis, though, we do not account for possible economies of scale in a multiwell system. ...

Jordan K. Eccles; Lincoln Pratson; Richard G. Newell; Robert B. Jackson

2009-02-06T23:59:59.000Z

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Commercial-Scale Tests Demonstrate Secure CO2 Storage in Underground Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CommerCial-SCale TeSTS DemonSTraTe CommerCial-SCale TeSTS DemonSTraTe SeCure Co 2 STorage in unDergrounD FormaTionS Two industry-led commercial-scale projects, the Sleipner Project off the coast of Norway and the Weyburn Project in Ontario, Canada, have enhanced the option of sequestering carbon dioxide (CO 2 ) in underground geologic formations. The United States Department of Energy (DOE) collaborated in both projects, primarily by providing rigorous monitoring of the injected CO 2 and studying CO 2 behavior to a greater extent than the project operators would have pursued on their own - creating a mutually beneficial public/private partnership. The most significant outcome from both field projects is that CO 2 leakage has not been observed, nor is there any indication that CO 2 will leak in the future.

62

NETL: Carbon Storage - Reference Shelf  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

63

Variable Density Flow Modeling for Simulation Framework for Regional Geologic CO{sub 2} Storage Along Arches Province of Midwestern United States  

SciTech Connect (OSTI)

The Arches Province in the Midwestern U.S. has been identified as a major area for carbon dioxide (CO{sub 2}) storage applications because of the intersection of Mt. Simon sandstone reservoir thickness and permeability. To better understand large-scale CO{sub 2} storage infrastructure requirements in the Arches Province, variable density scoping level modeling was completed. Three main tasks were completed for the variable density modeling: Single-phase, variable density groundwater flow modeling; Scoping level multi-phase simulations; and Preliminary basin-scale multi-phase simulations. The variable density modeling task was successful in evaluating appropriate input data for the Arches Province numerical simulations. Data from the geocellular model developed earlier in the project were translated into preliminary numerical models. These models were calibrated to observed conditions in the Mt. Simon, suggesting a suitable geologic depiction of the system. The initial models were used to assess boundary conditions, calibrate to reservoir conditions, examine grid dimensions, evaluate upscaling items, and develop regional storage field scenarios. The task also provided practical information on items related to CO{sub 2} storage applications in the Arches Province such as pressure buildup estimates, well spacing limitations, and injection field arrangements. The Arches Simulation project is a three-year effort and part of the United States Department of Energy (U.S. DOE)/National Energy Technology Laboratory (NETL) program on innovative and advanced technologies and protocols for monitoring/verification/accounting (MVA), simulation, and risk assessment of CO{sub 2} sequestration in geologic formations. The overall objective of the project is to develop a simulation framework for regional geologic CO{sub 2} storage infrastructure along the Arches Province of the Midwestern U.S.

Joel Sminchak

2011-09-30T23:59:59.000Z

64

in three types of geological formations found in the United States  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

in three types of geological formations found in the United States in three types of geological formations found in the United States and Canada: saline formations, unmineable coal seams, and oil and gas reservoirs. The methodologies are based on widely accepted assumptions associated with fluid distribution and displacement processes commonly applied in petroleum and groundwater science. Leadership for this document was provided by the Capacity and Fairways Subgroup, a subcommittee convened in 2006 by the Regional Carbon Sequestration Partnerships' (RCSP) Geological Working Group to develop the first carbon sequestration atlas. The document will be presented as an appendix in Atlas II, which DOE expects to release later this year. The Atlas recently won an APEX Grand Award for publication

65

ENVIRONMENTAL ASSESSMENT OF GEOLOGIC STORAGE OF CO2 Jason J. Heinrich, Howard J. Herzog, David M. Reiner  

E-Print Network [OSTI]

into petroleum reservoirs for Enhanced Oil Recovery (EOR) since the 1970's. By 2000, there were a total of 84 of reducing CO2 emissions. The storage of CO2 in underground geologic reservoirs is one such idea that employs techniques developed for oil and gas production and transmission. For example, CO2 has been injected

66

Author's personal copy Formation and hydrogen storage properties of in situ  

E-Print Network [OSTI]

Author's personal copy Formation and hydrogen storage properties of in situ prepared Mg­Cu alloy and surface defects. The maximal hydrogen storage contents of Mg­Cu alloy nanoparticles can reach 2.05 � 0. Introduction The storage of hydrogen gas is presently accomplished with the stainless steel cylinders under

Cao, Guozhong

67

Methods and apparatus for measurement of electronic properties of geological formations through borehole casing  

DOE Patents [OSTI]

Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

Vail, III, William B. (Bothell, WA)

1989-01-01T23:59:59.000Z

68

Methods and apparatus for measurement of electronic properties of geological formations through borehole casing  

DOE Patents [OSTI]

Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas present. Lithological characteristics of the formation such as the pressence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes.

Vail, III, William B. (Bothell, WA)

1991-01-01T23:59:59.000Z

69

Methods and apparatus for measurement of electronic properties of geological formations through borehole casing  

DOE Patents [OSTI]

Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the differential current conducted into the formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figures.

Vail, W.B. III.

1991-08-27T23:59:59.000Z

70

Methods and apparatus for measurement of electronic properties of geological formations through borehole casing  

DOE Patents [OSTI]

Methods and apparatus are provided for measuring electronic properties of geological formations and cement layers adjacent to cased boreholes including resistivities, polarization phenomena and dielectric constants. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. At least three voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of differential current conducted into formation in the vicinity of those electrodes. These measurements facilitate calculation of the resistivities of the adjacent geological formations as well as an indication of whether cement is present. Measurements of the differential voltage response to transient currents provide a measurement of the polarization phenomena in formation as well as the capacitance of the casing in contact with the formation which is useful for determining whether oil and gas are present. Lithological characteristics of the formation such as the presence or absence of clay can also be determined. A calibration procedure is provided for minimizing errors induced by variations in the casing. The device also may be placed within the pipe attached to a drill bit while drilling open holes. 48 figs.

Vail, W.B. III.

1989-11-21T23:59:59.000Z

71

Site Characterization for CO2 Geologic Storage and Vice Versa -The Frio Brine Pilot as a Case Study  

SciTech Connect (OSTI)

Careful site characterization is critical for successfulgeologic sequestration of CO2, especially for sequestration inbrine-bearing formations that have not been previously used for otherpurposes. Traditional site characterization techniques such asgeophysical imaging, well logging, core analyses, interference welltesting, and tracer testing are all valuable. However, the injection andmonitoring of CO2 itself provides a wealth of additional information.Rather than considering a rigid chronology in which CO2 sequestrationoccurs only after site characterization is complete, we recommend thatCO2 injection and monitoring be an integral part of thesite-characterization process. The advantages of this approach arenumerous. The obvious benefit of CO2 injection is to provide informationon multi-phase flow properties, which cannot be obtained from traditionalsitecharacterization techniques that examine single-phase conditions.Additionally, the low density and viscosity of CO2 compared to brinecauses the two components to flow through the subsurface differently,potentially revealing distinct features of the geology. Finally, tounderstand sequestered CO2 behavior in the subsurface, there is nosubstitute for studying the movement of CO2 directly. Making CO2injection part of site characterization has practical benefits as well.The infrastructure for surface handling of CO2 (compression, heating,local storage) can be developed, the CO2 injection process can bedebugged, and monitoring techniques can be field-tested. Prior to actualsequestration, small amounts of CO2 may be trucked in. Later, monitoringaccompanying the actual sequestration operations may be used tocontinually refine and improve understanding of CO2 behavior in thesubsurface.

Doughty, Christine

2006-02-14T23:59:59.000Z

72

Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site  

SciTech Connect (OSTI)

The microbial diversity in subsurface sediments at the Hanford Site's 300 Area in southeastern Washington State was investigated by analyzing 21 samples recovered from depths that ranged from 9 to 52 m. Approximately 8000 non-chimeric Bacterial and Archaeal 16S rRNA gene sequences were analyzed across geological strata that contain a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (Operational Taxonomic Units, defined at the 97% identity level). Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (based upon Chao1 estimator) was highest (>700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic transition zone, richness was about 325 and declined to less than 50 in the deeper reduced zones. The Bacterial community in the oxic Hanford and Ringold Formations contained members of 9 major well-recognized phyla as well 30 as unusually high proportions of 3 candidate divisions (GAL15, NC10, and SPAM). The deeper Ringold strata were characterized by low OTU richness and a very high preponderance (ca. 90%) of Proteobacteria. The study has greatly expanded the intralineage phylogenetic diversity within some major divisions. These subsurface sediments have been shown to contain a large number of phylogenetically novel microbes, with substantial heterogeneities between sediment samples from the same geological formation.

Lin, Xueju; Kennedy, David W.; Fredrickson, Jim K.; Bjornstad, Bruce N.; Konopka, Allan

2012-02-01T23:59:59.000Z

73

Heterogeneous rock mass classification by means of the geological strength index: the San Mauro formation (Cilento, Italy)  

Science Journals Connector (OSTI)

This paper describes an application of the geological strength index (GSI) method to the San Mauro formation, which is characterized by sandstones alternating with argillaceous marls. The Sandstone/Pelite (S/P) r...

P. Budetta; M. Nappi

2011-11-01T23:59:59.000Z

74

Assessing health impacts of CO2 leakage from a geological storage site into buildings: role of attenuation in the unsaturated zone and building foundation  

E-Print Network [OSTI]

a) Title Assessing health impacts of CO2 leakage from a geological storage site into buildings of the greenhouse gas CO2 has the potential to be a widespread and effective option to mitigate climate change. As any industrial activity, CO2 storage may lead to adverse impact on human health and the environment

Paris-Sud XI, Université de

75

Vertical stratification of subsurface microbial community composition across geological formations at the Hanford Site  

SciTech Connect (OSTI)

Microbial diversity in subsurface sediments at the Hanford Site 300 Area near Richland, Washington State (USA) was investigated by analyzing samples recovered from depths of 9 to 52 m. Approximately 8000 near full-length 16S rRNA gene sequences were analyzed across geological strata that include a natural redox transition zone. These strata included the oxic coarse-grained Hanford formation, fine-grained oxic and anoxic Ringold Formation sediments, and the weathered basalt group. We detected 1233 and 120 unique bacterial and archaeal OTUs (Operational Taxonomic Units at the 97% identity level), respectively. Microbial community structure and richness varied substantially across the different geological strata. Bacterial OTU richness (Chao1 estimator) was highest (>700) in the upper Hanford formation, and declined to about 120 at the bottom of the Hanford formation. Just above the Ringold oxic-anoxic interface, richness was about 325 and declined to less than 50 in the deeper reduced zones. The deeper Ringold strata were characterized by a preponderance (ca. 90%) of Proteobacteria. The Bacterial community in the oxic sediments contained not only members of 9 well-recognized phyla but also an unusually high proportion of 3 candidate divisions (GAL15, NC10, and SPAM). Additionally, novel phylogenetic orders were identified within the Delta-proteobacteria, a clade rich in microbes that carry out redox transformations of metals that are important contaminants on the Hanford Site.

Lin, Xueju; Kennedy, David W.; Fredrickson, Jim K.; Bjornstad, Bruce N.; Konopka, Allan

2011-11-29T23:59:59.000Z

76

New Natural Gas Storage and Transportation Capabilities Utilizing Rapid Methane Hydrate Formation Techniques  

SciTech Connect (OSTI)

Natural gas (methane as the major component) is a vital fossil fuel for the United States and around the world. One of the problems with some of this natural gas is that it is in remote areas where there is little or no local use for the gas. Nearly 50 percent worldwide natural gas reserves of ~6,254.4 trillion ft3 (tcf) is considered as stranded gas, with 36 percent or ~86 tcf of the U.S natural gas reserves totaling ~239 tcf, as stranded gas [1] [2]. The worldwide total does not include the new estimates by U.S. Geological Survey of 1,669 tcf of natural gas north of the Arctic Circle, [3] and the U.S. ~200,000 tcf of natural gas or methane hydrates, most of which are stranded gas reserves. Domestically and globally there is a need for newer and more economic storage, transportation and processing capabilities to deliver the natural gas to markets. In order to bring this resource to market, one of several expensive methods must be used: 1. Construction and operation of a natural gas pipeline 2. Construction of a storage and compression facility to compress the natural gas (CNG) at 3,000 to 3,600 psi, increasing its energy density to a point where it is more economical to ship, or 3. Construction of a cryogenic liquefaction facility to produce LNG, (requiring cryogenic temperatures at <-161 °C) and construction of a cryogenic receiving port. Each of these options for the transport requires large capital investment along with elaborate safety systems. The Department of Energy's Office of Research and Development Laboratories at the National Energy Technology Laboratory (NETL) is investigating new and novel approaches for rapid and continuous formation and production of synthetic NGHs. These synthetic hydrates can store up to 164 times their volume in gas while being maintained at 1 atmosphere and between -10 to -20°C for several weeks. Owing to these properties, new process for the economic storage and transportation of these synthetic hydrates could be envisioned for stranded gas reserves. The recent experiments and their results from the testing within NETL's 15-Liter Hydrate Cell Facility exhibit promising results. Introduction of water at the desired temperature and pressure through an NETL designed nozzle into a temperature controlled methane environment within the 15-Liter Hydrate Cell allowed for instantaneous formation of methane hydrates. The instantaneous and continuous hydrate formation process was repeated over several days while varying the flow rate of water, its' temperature, and the overall temperature of the methane environment. These results clearly indicated that hydrates formed immediately after the methane and water left the nozzle at temperatures above the freezing point of water throughout the range of operating conditions. [1] Oil and Gas Journal Vol. 160.48, Dec 22, 2008. [2] http://www.eia.doe.gov/oiaf/servicerpt/natgas/chapter3.html and http://www.eia.doe.gov/oiaf/servicerpt/natgas/pdf/tbl7.pdf [3] U.S. Geological Survey, “Circum-Arctic Resource Appraisal: Estimates of Undiscovered Oil and Gas North of the Arctic Circle,” May 2008.

Brown, T.D.; Taylor, C.E.; Bernardo, M.

2010-01-01T23:59:59.000Z

77

Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon Dioxide Sequestration in Geological Reservoirs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Maximizing Storage Rate and Capacity and Insuring the Environmental Maximizing Storage Rate and Capacity and Insuring the Environmental Integrity of Carbon dioxide Sequestration in Geological Reservoirs L. A. Davis Lorne.Davis@coe.ttu.edu Department of Petroleum Engineering A. L. Graham Alan.Graham@coe.ttu.edu H. W. Parker** Harry.Parker@coe.ttu.edu Department of Chemical Engineering Texas Tech University Lubbock, Texas 79409 M. S. Ingber ingber@me.unm.edu A. A. Mammoli mammoli@me.unm.edu Department of Mechanical Engineering University of New Mexico Albuquerque, New Mexico 87131 L. A. Mondy lamondy@engsci.sandia.gov Energetic and Multiphase Processes Department Sandia National Laboratories Albuquerque, New Mexico 87185-0834 Quanxin Guo quan@advantekinternational.com Ahmed Abou-Sayed a.abou-sayed@att.net

78

Spent fuel test-climax: a test of geologic storage of high-level waste in granite  

SciTech Connect (OSTI)

A test of retrievable geologic storage of spent fuel assemblies from an operating commercial nuclear reactor is underway at the Nevada Test Site (NTS) of the US Department of Energy. This generic test is located 420 m below the surface in the Climax granitic stock. Eleven canisters of spent fuel approximately 2.5 years out of reactor core (about 1.6 kW/canister thermal output) were emplaced in a storage drift along with 6 electrical simulator canisters. Two adjacent drifts contain electrical heaters, which are operated to simulate within the test array the thermal field of a large repository. Fuel was loaded during April to May 1980 and initial results of the test will be presented.

Ramspott, L.D.; Ballou, L.B.; Patrick, W.C.

1981-01-01T23:59:59.000Z

79

The Potential for Increased Atmospheric CO2 Emissions and Accelerated Consumption of Deep Geologic CO2 Storage Resources Resulting from the Large-Scale Deployment of a CCS-Enabled Unconventional Fossil Fuels Industry in the U.S.  

SciTech Connect (OSTI)

Desires to enhance the energy security of the United States have spurred significant interest in the development of abundant domestic heavy hydrocarbon resources including oil shale and coal to produce unconventional liquid fuels to supplement conventional oil supplies. However, the production processes for these unconventional fossil fuels create large quantities of carbon dioxide (CO2) and this remains one of the key arguments against such development. Carbon dioxide capture and storage (CCS) technologies could reduce these emissions and preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited within the U.S. indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. Nevertheless, even assuming wide-scale availability of cost-effective CO2 capture and geologic storage resources, the emergence of a domestic U.S. oil shale or coal-to-liquids (CTL) industry would be responsible for significant increases in CO2 emissions to the atmosphere. The authors present modeling results of two future hypothetical climate policy scenarios that indicate that the oil shale production facilities required to produce 3MMB/d from the Eocene Green River Formation of the western U.S. using an in situ retorting process would result in net emissions to the atmosphere of between 3000-7000 MtCO2, in addition to storing potentially 900-5000 MtCO2 in regional deep geologic formations via CCS in the period up to 2050. A similarly sized, but geographically more dispersed domestic CTL industry could result in 4000-5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000-22,000 MtCO2 stored in regional deep geologic formations over the same period. While this analysis shows that there is likely adequate CO2 storage capacity in the regions where these technologies are likely to deploy, the reliance by these industries on large-scale CCS could result in an accelerated rate of utilization of the nation’s CO2 storage resource, leaving less high-quality storage capacity for other carbon-producing industries including electric power generation.

Dooley, James J.; Dahowski, Robert T.; Davidson, Casie L.

2009-11-02T23:59:59.000Z

80

Method of detecting leakage from geologic formations used to sequester CO.sub.2  

DOE Patents [OSTI]

The invention provides methods for the measurement of carbon dioxide leakage from sequestration reservoirs. Tracer moieties are injected along with carbon dioxide into geological formations. Leakage is monitored by gas chromatographic analyses of absorbents. The invention also provides a process for the early leak detection of possible carbon dioxide leakage from sequestration reservoirs by measuring methane (CH.sub.4), ethane (C.sub.2H.sub.6), propane (C.sub.3H.sub.8), and/or radon (Rn) leakage rates from the reservoirs. The invention further provides a method for branding sequestered carbon dioxide using perfluorcarbon tracers (PFTs) to show ownership.

White, Curt (Pittsburgh, PA); Wells, Arthur (Bridgeville, PA); Diehl, J. Rodney (Pittsburgh, PA); Strazisar, Brian (Venetia, PA)

2010-04-27T23:59:59.000Z

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Hydro-mechanical modelling of geological CO2 storage and the study of possible caprock fracture mechanisms  

E-Print Network [OSTI]

to tensile stresses is treated. The stress intensity factor is used as the driving parameter describing mechanisms N. Guy,1-2 D.M. Seyedi,1 F. Hild2 BRGM, Natural Risks & CO2 Storage Safety Division, 3 av. Claude studies have shown that gas injection into deep permeable formations induce changes of the total

82

Simulating Geologic Co-sequestration of Carbon Dioxide and Hydrogen Sulfide in a Basalt Formation  

SciTech Connect (OSTI)

Co-sequestered CO2 with H2S impurities could affect geologic storage, causing changes in pH and oxidation state that affect mineral dissolution and precipitation reactions and the mobility of metals present in the reservoir rocks. We have developed a variable component, non-isothermal simulator, STOMP-COMP (Water, Multiple Components, Salt and Energy), which simulates multiphase flow gas mixtures in deep saline reservoirs, and the resulting reactions with reservoir minerals. We use this simulator to model the co-injection of CO2 and H2S into brecciated basalt flow top. A 1000 metric ton injection of these supercritical fluids, with 99% CO2 and 1% H2S, is sequestered rapidly by solubility and mineral trapping. CO2 is trapped mainly as calcite within a few decades and H2S is trapped as pyrite within several years.

Bacon, Diana H.; Ramanathan, Ramya; Schaef, Herbert T.; McGrail, B. Peter

2014-01-15T23:59:59.000Z

83

The Pex16p Homolog SSE1 and Storage Organelle Formation in Arabidopsis Seeds  

Science Journals Connector (OSTI)

...Reaction Saccharomycetales chemistry genetics metabolism Seeds metabolism ultrastructure Starch metabolism The Pex16p Homolog SSE1 and Storage Organelle Formation in Arabidopsis Seeds Yun Lin, 1 Lin Sun, 1* Long V. Nguyen...

Yun Lin; Lin Sun; Long V. Nguyen; Richard A. Rachubinski; Howard M. Goodman

1999-04-09T23:59:59.000Z

84

Geologic Characterization of the South Georgia Rift Basin for Source Proximal CO2 Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Georgia Rift Basin for Source Proximal CO 2 Storage Michael G. Waddell and John M. Shafer Earth Sciences and Resources Institute University of South Carolina - Columbia Carbon Storage Program Infrastructure Annual Review Meeting Pittsburgh, PA November 15-17, 2011 Carbon Storage Program Infrastructure Annual Review Meeting - November 15-17, 2011 Research Team Carbon Storage Program Infrastructure Annual Review Meeting - November 15-17, 2011 John Shafer and Michael Waddell James Knapp and Camelia Knapp Lee Kurtzweil and Phil VanHollebeke C.W. "Bill" Clendenin Richard Berg James Rine Integrated Services Contract for Drilling/Coring/Logging - TBD Study Area Carbon Storage Program Infrastructure Annual Review Meeting - November 15-17, 2011

85

Research project on CO2 geological storage and groundwaterresources: Large-scale hydrological evaluation and modeling of impact ongroundwater systems  

SciTech Connect (OSTI)

If carbon dioxide capture and storage (CCS) technologies areimplemented on a large scale, the amounts of CO2 injected and sequesteredunderground could be extremely large. The stored CO2 then replaces largevolumes of native brine, which can cause considerable pressureperturbation and brine migration in the deep saline formations. Ifhydraulically communicating, either directly via updipping formations orthrough interlayer pathways such as faults or imperfect seals, theseperturbations may impact shallow groundwater or even surface waterresources used for domestic or commercial water supply. Possibleenvironmental concerns include changes in pressure and water table,changes in discharge and recharge zones, as well as changes in waterquality. In compartmentalized formations, issues related to large-scalepressure buildup and brine displacement may also cause storage capacityproblems, because significant pressure buildup can be produced. Toaddress these issues, a three-year research project was initiated inOctober 2006, the first part of which is summarized in this annualreport.

Birkholzer, Jens; Zhou, Quanlin; Rutqvist, Jonny; Jordan,Preston; Zhang,K.; Tsang, Chin-Fu

2007-10-24T23:59:59.000Z

86

3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines  

Science Journals Connector (OSTI)

In a wide range of applications involving geological modelling, geological data available at low cost usually consist of documents such as cross-sections or geological maps and punctual data like borehole logs or outcrop descriptions. In order to build ... Keywords: 3D geological modelling, Data structuration, GIS, Geomodeler

Olivier Kaufmann; Thierry Martin

2008-03-01T23:59:59.000Z

87

Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater  

SciTech Connect (OSTI)

One promising approach to reduce greenhouse gas emissions is injecting CO{sub 2} into suitable geologic formations, typically depleted oil/gas reservoirs or saline formations at depth larger than 800 m. Proper site selection and management of CO{sub 2} storage projects will ensure that the risks to human health and the environment are low. However, a risk remains that CO{sub 2} could migrate from a deep storage formation, e.g. via local high-permeability pathways such as permeable faults or degraded wells, and arrive in shallow groundwater resources. The ingress of CO{sub 2} is by itself not typically a concern to the water quality of an underground source of drinking water (USDW), but it will change the geochemical conditions in the aquifer and will cause secondary effects mainly induced by changes in pH, in particular the mobilization of hazardous inorganic constituents present in the aquifer minerals. Identification and assessment of these potential effects is necessary to analyze risks associated with geologic sequestration of CO{sub 2}. This report describes a systematic evaluation of the possible water quality changes in response to CO{sub 2} intrusion into aquifers currently used as sources of potable water in the United States. Our goal was to develop a general understanding of the potential vulnerability of United States potable groundwater resources in the event of CO{sub 2} leakage. This goal was achieved in two main tasks, the first to develop a comprehensive geochemical model representing typical conditions in many freshwater aquifers (Section 3), the second to conduct a systematic reactive-transport modeling study to quantify the effect of CO{sub 2} intrusion into shallow aquifers (Section 4). Via reactive-transport modeling, the amount of hazardous constituents potentially mobilized by the ingress of CO{sub 2} was determined, the fate and migration of these constituents in the groundwater was predicted, and the likelihood that drinking water standards might be exceeded was evaluated. A variety of scenarios and aquifer conditions was considered in a sensitivity evaluation. The scenarios and conditions simulated in Section 4, in particular those describing the geochemistry and mineralogy of potable aquifers, were selected based on the comprehensive geochemical model developed in Section 3.

Birkholzer, Jens; Apps, John; Zheng, Liange; Zhang, Yingqi; Xu, Tianfu; Tsang, Chin-Fu

2008-10-01T23:59:59.000Z

88

Chemical and Hydrodynamic Mechanisms for Long-Term Geological Carbon Storage  

Science Journals Connector (OSTI)

Peter Eichhubl is a Research Scientist at the Bureau of Economic Geology and John A. and Katherine G. Jackson School of Geosciences, The University of Texas at Austin. ... Arbogast, T.; Cowsar, L. C.; Wheeler, M. F.; Yotov, I.Mixed Finite Element Methods on Nonmatching Multiblock Grids Siam Journal on Numerical Analysis 2000, 37, 1295– 1315 ...

Susan J. Altman; Behdad Aminzadeh; Matthew T. Balhoff; Philip C. Bennett; Steven L. Bryant; M. Bayani Cardenas; Kuldeep Chaudhary; Randall T. Cygan; Wen Deng; Thomas Dewers; David A. DiCarlo; Peter Eichhubl; Marc A. Hesse; Chun Huh; Edward N. Matteo; Yashar Mehmani; Craig M. Tenney; Hongkyu Yoon

2014-05-28T23:59:59.000Z

89

Geologic Storage of carbon dioxide : risk analyses and implications for public acceptance  

E-Print Network [OSTI]

Carbon Capture and Storage (CCS) technology has the potential to enable large reductions in global greenhouse gas emissions, but one of the unanswered questions about CCS is whether it will be accepted by the public. In ...

Singleton, Gregory R. (Gregory Randall)

2007-01-01T23:59:59.000Z

90

The geomechanics of CO2 storage in deep sedimentary formations  

E-Print Network [OSTI]

formations, including oil and gas reservoirs and deep salineGCS consist mainly of oil and gas reservoirs and deep salinebelow the caprock in oil and gas reservoirs and deep saline

Rutqvist, J.

2013-01-01T23:59:59.000Z

91

Microsoft Word - NETL-TRS-1-2013_Geologic Storage Estimates for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and gas reservoirs, saline formations, and coal beds that were assessed by the Regional Carbon Sequestration Partnerships and other sources and compiled by NATCARB. Suggested...

92

Geological conditions of safe long-term storage and disposal of depleted uranium hexafluoride  

Science Journals Connector (OSTI)

The production of enriched uranium used in nuclear weapons and fuel for ... power plants is accompanied by the formation of depleted uranium (DU), the amount of which annually ... DU mass is stored as environ-men...

N. P. Laverov; V. I. Velichkin; B. I. Omel’yanenko…

2010-08-01T23:59:59.000Z

93

A Comparative Review of Hydrologic Issues Involved in Geologic Storage of CO2 and Injection Disposal of Liquid Waste  

SciTech Connect (OSTI)

The paper presents a comparison of hydrologic issues and technical approaches used in deep-well injection and disposal of liquid wastes, and those issues and approaches associated with injection and storage of CO{sub 2} in deep brine formations. These comparisons have been discussed in nine areas: (1) Injection well integrity; (2) Abandoned well problems; (3) Buoyancy effects; (4) Multiphase flow effects; (5) Heterogeneity and flow channeling; (6) Multilayer isolation effects; (7) Caprock effectiveness and hydrogeomechanics; (8) Site characterization and monitoring; and (9) Effects of CO{sub 2} storage on groundwater resources There are considerable similarities, as well as significant differences. Scientifically and technically, these two fields can learn much from each other. The discussions presented in this paper should help to focus on the key scientific issues facing deep injection of fluids. A substantial but by no means exhaustive reference list has been provided for further studies into the subject.

Tsang, C.-F.; Birkholzer, J.; Rutqvist, J.

2008-04-15T23:59:59.000Z

94

Carbon Storage R&D | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

R&D R&D Carbon Storage R&D Carbon dioxide storage in geologic formations includes oil and gas reservoirs, unmineable coal seams, and deep saline reservoirs. These are structures that have stored crude oil, natural gas, brine and CO2 over millions of years. The primary goal of our carbon storage research is to understand the behavior of CO2 when stored in geologic formations. For example, studies are being conducted to determine the extent to which the CO2 moves within the geologic formation, and when CO2 is injected, what physical and chemical changes occur within the formation. This information is key to ensure that carbon storage will not affect the structural integrity of an underground formation, and that CO2 storage is secure and environmentally

95

Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

96

Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

97

Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.  

SciTech Connect (OSTI)

A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes for strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

Ehgartner, Brian L. (Sandia National Laboratories, Albuquerque, NM); Park, Byoung Yoon

2009-03-01T23:59:59.000Z

98

Sensitivity of storage field performance to geologic and cavern design parameters in salt domes.  

SciTech Connect (OSTI)

A sensitivity study was performed utilizing a three dimensional finite element model to assess allowable cavern field sizes in strategic petroleum reserve salt domes. A potential exists for tensile fracturing and dilatancy damage to salt that can compromise the integrity of a cavern field in situations where high extraction ratios exist. The effects of salt creep rate, depth of salt dome top, dome size, caprock thickness, elastic moduli of caprock and surrounding rock, lateral stress ratio of surrounding rock, cavern size, depth of cavern, and number of caverns are examined numerically. As a result, a correlation table between the parameters and the impact on the performance of a storage field was established. In general, slower salt creep rates, deeper depth of salt dome top, larger elastic moduli of caprock and surrounding rock, and a smaller radius of cavern are better for structural performance of the salt dome.

Ehgartner, Brian L.; Park, Byoung Yoon; Herrick, Courtney Grant

2010-06-01T23:59:59.000Z

99

Evaluation of Brine-Bearing Sands of the Frio Formation, Upper Texas Gulf Coast for Geological Sequestration of CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Evaluation of Brine-Bearing Sands of the Evaluation of Brine-Bearing Sands of the Frio Formation, Upper Texas Gulf Coast for Geological Sequestration of CO 2 S. D. Hovorka (susan.hovorka@beg.utexas.edu; 512-471-4863) Bureau of Economic Geology, P.O. Box X, The University of Texas at Austin, Austin, TX 78713 C. Doughty (CADoughty@lbl.gov; 510-486-6453 ) Lawrence Berkeley National Lab, 1 Cyclotron Road Mailstop 90-1116, Berkeley, CA 94720 P. R. Knox (paul.knox@beg.utexas.edu; 512-471-7313), Bureau of Economic Geology, P.O. Box X, The University of Texas at Austin, Austin, TX 78713 C. T. Green (ctgreen@ucdavis.edu; 510-495-2461) University of California, Hydrologic Sciences, One Shields Ave., Davis, CA 95616 K. Pruess(K_Pruess@lbl.gov; 510-486-6732) Lawrence Berkeley National Lab, 1 Cyclotron Road Mailstop 90-1116,

100

Investigating the Fundamental Scientific Issues Affecting the Long-term Geologic Storage of Carbon Dioxide  

SciTech Connect (OSTI)

The Zero Emissions Research and Technology (ZERT) collaborative was formed to address basic science and engineering knowledge gaps relevant to geologic carbon sequestration. The original funding round of ZERT (ZERT I) identified and addressed many of these gaps. ZERT II has focused on specific science and technology areas identified in ZERT I that showed strong promise and needed greater effort to fully develop. Specific focal areas of ZERT II included: ? Continued use of the unique ZERT field site to test and prove detection technologies and methods developed by Montana State University, Stanford, University of Texas, several private sector companies, and others. Additionally, transport in the near surface was modelled. ? Further development of near-surface detection technologies that cover moderate area at relatively low cost (fiber sensors and compact infrared imagers). ? Investigation of analogs for escape mechanisms including characterization of impact of CO2 and deeper brine on groundwater quality at a natural analog site in Chimayo, NM and characterization of fracture systems exposed in outcrops in the northern Rockies. ? Further investigation of biofilms and biomineralization for mitigation of small aperture leaks focusing on fundamental studies of rates that would allow engineered control of deposition in the subsurface. ? Development of magnetic resonance techniques to perform muti-phase fluid measurements in rock cores. ? Laboratory investigation of hysteretic relative permeability and its effect on residual gas trapping in large-scale reservoir simulations. ? Further development of computational tools including a new version (V2) of the LBNL reactive geochemical transport simulator, TOUGHREACT, extension of the coupled flow and stress simulation capabilities in LANL’s FEHM simulator and an online gas-mixtureproperty estimation tool, WebGasEOS Many of these efforts have resulted in technologies that are being utilized in other field tests or demonstration projects.

Spangler, Lee; Cunningham, Alfred; Barnhart, Elliot; Lageson, David; Nall, Anita; Dobeck, Laura; Repasky, Kevin; Shaw, Joseph; Nugent, Paul; Johnson, Jennifer; Hogan, Justin; Codd, Sarah; Bray, Joshua; Prather, Cody; McGrail, B.; Oldenburg, Curtis; Wagoner, Jeff; Pawar, Rajesh

2014-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage in Carbon Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Wednesday, 28 June 2006 00:00 Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store hydrogen in electric power plants and vehicles is a major research focus for materials scientists and chemists. To realize hydrogen-powered transport, for example, it is necessary to find ways to store hydrogen onboard vehicles efficiently and safely. Nanotechnology in the form of single-walled carbon nanotubes provides a candidate storage medium. A U.S., German, and Swedish collaboration led by researchers from the Stanford Synchrotron Radiation Laboratory (SSRL) used ALS Beamline 11.0.2 and SSRL Beamline 5-1 to investigate the chemical interaction of hydrogen with single-walled carbon nanotubes (SWCNs). Their findings demonstrate substantial hydrogen storage is both feasible and reversible.

102

Developing a Comprehensive Risk Assessment Framework for Geological Storage CO2  

SciTech Connect (OSTI)

The operational risks for CCS projects include: risks of capturing, compressing, transporting and injecting CO?; risks of well blowouts; risk that CO? will leak into shallow aquifers and contaminate potable water; and risk that sequestered CO? will leak into the atmosphere. This report examines these risks by using information on the risks associated with analogue activities such as CO2 based enhanced oil recovery (CO2-EOR), natural gas storage and acid gas disposal. We have developed a new analysis of pipeline risk based on Bayesian statistical analysis. Bayesian theory probabilities may describe states of partial knowledge, even perhaps those related to non-repeatable events. The Bayesian approach enables both utilizing existing data and at the same time having the capability to adsorb new information thus to lower uncertainty in our understanding of complex systems. Incident rates for both natural gas and CO2 pipelines have been widely used in papers and reports on risk of CO2 pipelines as proxies for the individual risk created by such pipelines. Published risk studies of CO2 pipelines suggest that the individual risk associated with CO2 pipelines is between 10-3 and 10-4, which reflects risk levels approaching those of mountain climbing, which many would find unacceptably high. This report concludes, based on a careful analysis of natural gas pipeline failures, suggests that the individual risk of CO2 pipelines is likely in the range of 10-6 to 10-7, a risk range considered in the acceptable to negligible range in most countries. If, as is commonly thought, pipelines represent the highest risk component of CCS outside of the capture plant, then this conclusion suggests that most (if not all) previous quantitative- risk assessments of components of CCS may be orders of magnitude to high. The potential lethality of unexpected CO2 releases from pipelines or wells are arguably the highest risk aspects of CO2 enhanced oil recovery (CO2-EOR), carbon capture, and storage (CCS). Assertions in the CCS literature, that CO2 levels of 10% for ten minutes, or 20 to 30% for a few minutes are lethal to humans, are not supported by the available evidence. The results of published experiments with animals exposed to CO2, from mice to monkeys, at both normal and depleted oxygen levels, suggest that lethal levels of CO2 toxicity are in the range 50 to 60%. These experiments demonstrate that CO2 does not kill by asphyxia, but rather is toxic at high concentrations. It is concluded that quantitative risk assessments of CCS have overestimated the risk of fatalities by using values of lethality a factor two to six lower than the values estimated in this paper. In many dispersion models of CO2 releases from pipelines, no fatalities would be predicted if appropriate levels of lethality for CO2 had been used in the analysis.

Duncan, Ian

2014-08-31T23:59:59.000Z

103

Capacity Investigation of Brine-Bearing Sands of the Frio Formation for Geologic Sequestration of CO2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Capacity Investigation of Brine-Bearing Sands of the Frio Capacity Investigation of Brine-Bearing Sands of the Frio Formation for Geologic Sequestration of CO 2 Christine Doughty (cadoughty@lbl.gov; 510-486-6453) Karsten Pruess (k_pruess@lbl.gov; 510-486-6732) Sally M. Benson (smbenson@lbl.gov; 510-486-5875) Lawrence Berkeley National Laboratory 1 Cyclotron Rd, MS 90-1116 Berkeley, CA 94720 Susan D. Hovorka (susan.hovorka@beg.utexas.edu; 512-471-4863) Paul R. Knox (paul.knox@beg.utexas.edu; 512-471-7313) Bureau of Economic Geology P.O. Box X, The University of Texas Austin, TX 78713 Christopher T. Green (ctgreen@ucdavis.edu; 530-752-1372) University of California, Hydrologic Sciences 1 Shields Ave. Davis, CA 95616 Abstract The capacity of fluvial brine-bearing formations to sequester CO 2 is investigated using numerical simulations of CO

104

Volumetrics of CO{sub 2} Storage in Deep Saline Formations  

SciTech Connect (OSTI)

Concern about the role of greenhouse gases in global climate change has generated interest in sequestering CO{sub 2} from fossil-fuel combustion in deep saline formations. Pore space in these formations is initially filled with brine, and space to accommodate injected CO{sub 2} must be generated by displacing brine, and to a lesser extent by compression of brine and rock. The formation volume required to store a given mass of CO{sub 2} depends on the storage mechanism. We compare the equilibrium volumetric requirements of three end-member processes: CO{sub 2} stored as a supercritical fluid (structural or stratigraphic trapping); CO{sub 2} dissolved in pre-existing brine (solubility trapping); and CO{sub 2} solubility enhanced by dissolution of calcite. For typical storage conditions, storing CO{sub 2} by solubility trapping reduces the volume required to store the same amount of CO{sub 2} by structural or stratigraphic trapping by about 50%. Accessibility of CO{sub 2} to brine determines which storage mechanism (structural/stratigraphic versus solubility) dominates at a given time, which is a critical factor in evaluating CO{sub 2} volumetric requirements and long-term storage security.

Steele-MacInnis, Matthew; Capobianco, Ryan M.; Dilmore, Robert; Goodman, Angela; Guthrie, George; Rimstidt, J. Donald; Bodnar, Robert J.

2013-01-01T23:59:59.000Z

105

Effect of Fatty Acids on Formation, Distribution, Storage, and Release of Benzo(a)pyrene Phenols and Glucuronides in the Isolated Perfused Rat Liver  

Science Journals Connector (OSTI)

...Formation, Distribution, Storage, and Release of Benzo...pyrene and conjugation, storage, and release of benzo...a)pyrene and on the storage and release of metabolites...in a nonrecirculating system. Fluid was pumped via a cannula placed...

Zhi Zhong; Wenyi Gao; Frederick C. Kauffman; and Ronald G. Thurman

1989-04-15T23:59:59.000Z

106

Consistent geological-simulation modeling in carbonate reservoirs, a case study from the Khuff Formation, Persian Gulf  

Science Journals Connector (OSTI)

Abstract The Khuff Formation constitutes reservoir body in many gas producer fields of the Persian Gulf and Arabian plate. This carbonate reservoir represents a complex character which strongly affects reservoir modeling and prediction of its reservoir performance. This paper examines construction of a reservoir model for this formation by the use of an integrated approach and shows how geological and simulation grids can perform consistently. This approach shows that in case of proper data integration, loss of value in z-dimension after grid scale-up would be ignorable and will not affect actual reservoir performance. The presented approach uses sequence stratigraphic framework (SSF) as the basis of reservoir zonation and permeability prediction. This is resulted to consistent poro/perm models that help accurate prediction of reservoir performance in simulation model. SSF also helped propagation of reservoir bodies in geological model. A seismic derived effective porosity (SPHIE) cube is used in conjunction with core and log data to distribute porosity. Hydraulic flow units (HFUs) which are assessed by the use of core and log data are used as the basis of grid scale-up. Our findings showed that if data integration is properly done, strong correlation of \\{HFUs\\} and SSF will be obtained which results to consistent geological and simulation models. Permeability should be populated into the 3D grid by the use of functions derived from SSF zonation and water saturation modeling should be upon capillary pressure curves assigned to each reservoir rock type (RRT) so that the final geological model and coarse simulation grid would be consistent. The presented approach in this study explains how various visions and different scale data could be properly used in a reservoir model. It also provides ideas about ideal consistent reservoir modeling for the Khuff Formation and similar heterogeneous carbonate reservoirs.

Ashkan Asadi-Eskandar; Hossein Rahimpour-Bonab; Shahab Hejri; Khalil Afsari; Alireza Mardani

2013-01-01T23:59:59.000Z

107

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store hydrogen in electric power plants and vehicles is a major research focus for materials scientists and chemists. To realize hydrogen-powered transport, for example, it is necessary to find ways to store hydrogen onboard vehicles efficiently and safely. Nanotechnology in the form of single-walled carbon nanotubes provides a candidate storage medium. A U.S., German, and Swedish collaboration led by researchers from the Stanford Synchrotron Radiation Laboratory (SSRL) used ALS Beamline 11.0.2 and SSRL Beamline 5-1 to investigate the chemical interaction of hydrogen with single-walled carbon nanotubes (SWCNs). Their findings demonstrate substantial hydrogen storage is both feasible and reversible.

108

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store hydrogen in electric power plants and vehicles is a major research focus for materials scientists and chemists. To realize hydrogen-powered transport, for example, it is necessary to find ways to store hydrogen onboard vehicles efficiently and safely. Nanotechnology in the form of single-walled carbon nanotubes provides a candidate storage medium. A U.S., German, and Swedish collaboration led by researchers from the Stanford Synchrotron Radiation Laboratory (SSRL) used ALS Beamline 11.0.2 and SSRL Beamline 5-1 to investigate the chemical interaction of hydrogen with single-walled carbon nanotubes (SWCNs). Their findings demonstrate substantial hydrogen storage is both feasible and reversible.

109

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store hydrogen in electric power plants and vehicles is a major research focus for materials scientists and chemists. To realize hydrogen-powered transport, for example, it is necessary to find ways to store hydrogen onboard vehicles efficiently and safely. Nanotechnology in the form of single-walled carbon nanotubes provides a candidate storage medium. A U.S., German, and Swedish collaboration led by researchers from the Stanford Synchrotron Radiation Laboratory (SSRL) used ALS Beamline 11.0.2 and SSRL Beamline 5-1 to investigate the chemical interaction of hydrogen with single-walled carbon nanotubes (SWCNs). Their findings demonstrate substantial hydrogen storage is both feasible and reversible.

110

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store hydrogen in electric power plants and vehicles is a major research focus for materials scientists and chemists. To realize hydrogen-powered transport, for example, it is necessary to find ways to store hydrogen onboard vehicles efficiently and safely. Nanotechnology in the form of single-walled carbon nanotubes provides a candidate storage medium. A U.S., German, and Swedish collaboration led by researchers from the Stanford Synchrotron Radiation Laboratory (SSRL) used ALS Beamline 11.0.2 and SSRL Beamline 5-1 to investigate the chemical interaction of hydrogen with single-walled carbon nanotubes (SWCNs). Their findings demonstrate substantial hydrogen storage is both feasible and reversible.

111

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Hydrogen Storage in Carbon Nanotubes Through Formation of C-H Bonds Print Two of the major challenges for humanity in the next 20 years are the shrinking availability of fossil fuels and the global warming and potential climate changes that result from their ever-increasing use. One possible solution to these problems is to use an energy carrier such as hydrogen, and ways to produce and store hydrogen in electric power plants and vehicles is a major research focus for materials scientists and chemists. To realize hydrogen-powered transport, for example, it is necessary to find ways to store hydrogen onboard vehicles efficiently and safely. Nanotechnology in the form of single-walled carbon nanotubes provides a candidate storage medium. A U.S., German, and Swedish collaboration led by researchers from the Stanford Synchrotron Radiation Laboratory (SSRL) used ALS Beamline 11.0.2 and SSRL Beamline 5-1 to investigate the chemical interaction of hydrogen with single-walled carbon nanotubes (SWCNs). Their findings demonstrate substantial hydrogen storage is both feasible and reversible.

112

Measurement and Accounting of CO2 Stored in Deep Geologic Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Program Storage Program John Litynski, PE Carbon Storage Technology Manager Carbon Storage Program Infrastructure Annual Review Meeting Nov 15-17, 2011 2 Sources: U.S. data from EIA, Annual Energy Outlook 2011; World data from IEA, World Energy Outlook 2010, Current Policies Scenario 716 QBtu / Year 79% Fossil Energy 114 QBtu / Year 78% Fossil Energy + 14% Energy Demand 2008 100 QBtu / Year 84% Fossil Energy 487 QBtu / Year 81% Fossil Energy 29,259 mmt CO 2 42,589 mmt CO 2 5,838 mmt CO 2 6,311 mmt CO 2 Energy Demand 2035 United States World + 47% * Primarily traditional biomass, wood, and waste. 3 U.S. DEPARTMENT OF ENERGY * OFFICE OF FOSSIL ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY CARBON STORAGE PROGRAM with ARRA Projects 2012 Structure Benefits

113

DOE/EA-1482: Environmental Assessment for Pilot Experiment for Geological Sequestration of Carbon Dioxide in Saline Aquifer Brine Formations (October 2003)  

Broader source: Energy.gov (indexed) [DOE]

82 82 ENVIRONMENTAL ASSESSMENT PILOT EXPERIMENT FOR GEOLOGICAL SEQUESTRATION OF CARBON DIOXIDE IN SALINE AQUIFER BRINE FORMATIONS FRIO FORMATION, LIBERTY COUNTY, TEXAS OCTOBER 2003 U.S. DEPARTMENT OF ENERGY NATIONAL ENERGY TECHNOLOGY LABORATORY ii iii National Environmental Policy Act (NEPA) Compliance Cover Sheet Proposed Action: The U.S. Department of Energy (DOE) proposes to provide funds for a field test of the geological sequestration of carbon dioxide (CO 2 ). The Bureau of Economic Geology (BEG) at The University of Texas at Austin, under contract with DOE, has studied the potential for sequestration of CO 2 in geologic formations of the United States as part of a broader series of DOE-sponsored research projects to

114

Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics  

E-Print Network [OSTI]

shales. THE DEVELOPMENT OF CORRELATIONS TO ASSESS FORMATION PROPERTIES AND CONDITIONS Treatment of Anisotropic

Dobson, Patrick

2014-01-01T23:59:59.000Z

115

Simulation of production and injection performance of gas storage caverns in salt formations  

SciTech Connect (OSTI)

This paper presents a simple yet comprehensive mathematical model for simulation of injection and production performance of gas storage caverns in salt formations. The model predicts the pressure and temperature of the gas in the cavern and at the wellhead for an arbitrary sequence of production and injection cycles. The model incorporates nonideal gas properties, thermodynamic heat effects associated with gas expansion and compression in the cavern and tubing, heat exchange with the surrounding salt formation, and non-uniform initial temperatures but does not include rock-mechanical effects. The model is based on a mass and energy balance for the gas-filled cavern and on the Bernoulli equation and energy balance for flow in the wellbore. Cavern equations are solved iteratively at successive timesteps, and wellbore equations are solved within an iteration cycle of the cavern equations. Gas properties are calculated internally with generally accepted correlations and basic thermodynamic relations. Example calculations show that the initial temperature distribution has a strong effect on production performance of a typical gas storage cavern. The primary application of the model is in the design, planning, and operation of gas storage projects.

Hagoort, J. (Delft Univ. of Technology (Netherlands))

1994-11-01T23:59:59.000Z

116

Regional geological assessment of the Devonian-Mississippian shale sequence of the Appalachian, Illinois, and Michigan basins relative to potential storage/disposal of radioactive wastes  

SciTech Connect (OSTI)

The thick and regionally extensive sequence of shales and associated clastic sedimentary rocks of Late Devonian and Early Mississippian age has been considered among the nonsalt geologies for deep subsurface containment of high-level radioactive wastes. This report examines some of the regional and basin-specific characteristics of the black and associated nonblack shales of this sequence within the Appalachian, Illinois, and Michigan basins of the north-central and eastern United States. Principal areas where the thickness and depth of this shale sequence are sufficient to warrant further evaluation are identified, but no attempt is made to identify specific storage/disposal sites. Also identified are other areas with less promise for further study because of known potential conflicts such as geologic-hydrologic factors, competing subsurface priorities involving mineral resources and groundwater, or other parameters. Data have been compiled for each basin in an effort to indicate thickness, distribution, and depth relationships for the entire shale sequence as well as individual shale units in the sequence. Included as parts of this geologic assessment are isopach, depth information, structure contour, tectonic elements, and energy-resource maps covering the three basins. Summary evaluations are given for each basin as well as an overall general evaluation of the waste storage/disposal potential of the Devonian-Mississippian shale sequence,including recommendations for future studies to more fully characterize the shale sequence for that purpose. Based on data compiled in this cursory investigation, certain rock units have reasonable promise for radioactive waste storage/disposal and do warrant additional study.

Lomenick, T.F.; Gonzales, S.; Johnson, K.S.; Byerly, D.

1983-01-01T23:59:59.000Z

117

Supercritical CO2-Corrosion in Heat Treated Steel Pipes during Carbon Capture and Storage CCS  

Science Journals Connector (OSTI)

Heat treatment of steels used for engineering a saline aquifer Carbon Capture and Storage (CCS) site may become...2...) into deep geological rock formations. 13% Chromium steel injection pipes heat treated differ...

Anja Pfennig; Phillip Zastrow…

2013-01-01T23:59:59.000Z

118

Preliminary Geologic Characterization of West Coast States for Geologic Sequestration  

SciTech Connect (OSTI)

Characterization of geological sinks for sequestration of CO{sub 2} in California, Nevada, Oregon, and Washington was carried out as part of Phase I of the West Coast Regional Carbon Sequestration Partnership (WESTCARB) project. Results show that there are geologic storage opportunities in the region within each of the following major technology areas: saline formations, oil and gas reservoirs, and coal beds. The work focused on sedimentary basins as the initial most-promising targets for geologic sequestration. Geographical Information System (GIS) layers showing sedimentary basins and oil, gas, and coal fields in those basins were developed. The GIS layers were attributed with information on the subsurface, including sediment thickness, presence and depth of porous and permeable sandstones, and, where available, reservoir properties. California offers outstanding sequestration opportunities because of its large capacity and the potential of value-added benefits from enhanced oil recovery (EOR) and enhanced gas recovery (EGR). The estimate for storage capacity of saline formations in the ten largest basins in California ranges from about 150 to about 500 Gt of CO{sub 2}, depending on assumptions about the fraction of the formations used and the fraction of the pore volume filled with separate-phase CO{sub 2}. Potential CO{sub 2}-EOR storage was estimated to be 3.4 Gt, based on a screening of reservoirs using depth, an API gravity cutoff, and cumulative oil produced. The cumulative production from gas reservoirs (screened by depth) suggests a CO{sub 2} storage capacity of 1.7 Gt. In Oregon and Washington, sedimentary basins along the coast also offer sequestration opportunities. Of particular interest is the Puget Trough Basin, which contains up to 1,130 m (3,700 ft) of unconsolidated sediments overlying up to 3,050 m (10,000 ft) of Tertiary sedimentary rocks. The Puget Trough Basin also contains deep coal formations, which are sequestration targets and may have potential for enhanced coal bed methane recovery (ECBM).

Larry Myer

2005-09-29T23:59:59.000Z

119

YOUNG GEOLOGY GEOLOGY OF THE  

E-Print Network [OSTI]

for the 1962 meetings of the Rocky Mountain Section of the Geological Society of America held on the Brigham University Provo, Utah Part I partially supported by the Rocky Mountaln Section. Officers of the Rocky ....................................................................Blackhawk Formation 56 Castlegate Sandstone and South Flat Formation ............................ 56

Seamons, Kent E.

120

Geological sequestration of carbon dioxide by hydrous carbonate formation in steelmaking slag .  

E-Print Network [OSTI]

??"The formation of carbonate solids from the alkaline earth oxide phases in steelmaking slag was investigated in dry and aqueous conditions as a vehicle for… (more)

Rawlins, C. Hank, 1968-

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Numerical Modeling of CO2 Sequestration in Geologic Formations - Recent Results and Open Challenges  

E-Print Network [OSTI]

developed for oil and gas reservoirs, and for vadose zoneor depleting oil and gas reservoirs, unmineable coal seams,formations. While oil and gas reservoirs may provide some

Pruess, Karsten

2006-01-01T23:59:59.000Z

122

Active Management of Integrated Geothermal-CO2 Storage Reservoirs in Sedimentary Formations  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The purpose of phase 1 is to determine the feasibility of integrating geologic CO2 storage (GCS) with geothermal energy production. Phase 1 includes reservoir analyses to determine injector/producer well schemes that balance the generation of economically useful flow rates at the producers with the need to manage reservoir overpressure to reduce the risks associated with overpressure, such as induced seismicity and CO2 leakage to overlying aquifers. Based on a range of well schemes, techno-economic analyses of the levelized cost of electricity (LCOE) are conducted to determine the economic benefits of integrating GCS with geothermal energy production. In addition to considering CO2 injection, reservoir analyses are conducted for nitrogen (N2) injection to investigate the potential benefits of incorporating N2 injection with integrated geothermal-GCS, as well as the use of N2 injection as a potential pressure-support and working-fluid option. Phase 1 includes preliminary environmental risk assessments of integrated geothermal-GCS, with the focus on managing reservoir overpressure. Phase 1 also includes an economic survey of pipeline costs, which will be applied in Phase 2 to the analysis of CO2 conveyance costs for techno-economics analyses of integrated geothermal-GCS reservoir sites. Phase 1 also includes a geospatial GIS survey of potential integrated geothermal-GCS reservoir sites, which will be used in Phase 2 to conduct sweet-spot analyses that determine where promising geothermal resources are co-located in sedimentary settings conducive to safe CO2 storage, as well as being in adequate proximity to large stationary CO2 sources.

Buscheck, Thomas A.

123

Geologic CO2 Sequestration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geologic CO2 Sequestration Geologic CO2 Sequestration Geologic reservoirs offer promising option for long- term storage of captured CO 2 Accumulations of gases (including CO 2 ) in geologic reservoirs, by natural processes or through enhanced oil recovery operations, demonstrate that gas can be stored for long periods of time and provide insights to the efficacy and impacts of geological gas storage. Los Alamos scientists in the Earth and Environmental Sciences (EES) Division have been involved in geologic CO 2 storage research for over a decade. Research Highlights * Led first-ever US field test on CO 2 sequestration in depleted oil reservoirs * Participant in two Regional Carbon Sequestration Partnerships (Southwest Regional and Big Sky) * Part of the National Risk Assessment Partnership (NRAP) for CO

124

Potential for future development of salt cavern storage in the upper Silurian Syracuse Formation of south-central New York  

SciTech Connect (OSTI)

Although depleted reservoirs remain the dominant structures used for storage fulfilling the demand for base load gas supply during the heating season, the current general surge in storage projects, nationwide, takes advantage of opportunities in Order 636, and makes greater use of salt caverns for gas storage. This reflects the increasing need by gas users, local distribution companies in particular, to quickly cycle a storage facility`s gas supply for services such as peak shaving, emergency supply, and system balancing to meet hourly swings. Occurrence of thick deposits of bedded salt deposits provides New York the capability to develop high deliverability salt cavern storage facilities. Furthermore, New York is uniquely positioned at the gateway to major northeastern markets to provide peak load storage services of natural gas supply. The thickest units of bedded salt in New York occur in the {open_quotes}F{close_quotes} horizon of the Upper Silurian Syracuse Formation. Three bedded salt cavern storage facilities have been recently proposed in New York. Two of these projects is much larger (with 5 Bcfg ultimate capacity), is under construction, and will provide valuable storage service to the Ellisburg-Leidy market center hub in Pennsylvania. Identification of possible sites for future salt cavern storage projects has been achieved chiefly by defining areas of thick beds of salt at sufficient depths close to gas transmission lines, with access to a freshwater supply for leaching, and possessing an acceptable method of brine disposal.

Bass, J.P.; Sarwar, G.; Guo, B. [Brooklyn College of the City Univ. of New York, Troy, NY (United States)] [and others

1995-09-01T23:59:59.000Z

125

No geologic evidence that seismicity causes fault leakage that would render large-scale carbon capture and storage unsuccessful  

E-Print Network [OSTI]

In a recent Perspective (1), Zoback and Gorelick argued that carbon capture and storage (CCS) is likely not a viable strategy for reducing CO[subscript 2] emissions to the atmosphere. They argued that maps of earthquake ...

Juanes, Ruben

126

Uncertainty analysis of capacity estimates and leakage potential for geologic storage of carbon dioxide in saline aquifers  

E-Print Network [OSTI]

The need to address climate change has gained political momentum, and Carbon Capture and Storage (CCS) is a technology that is seen as being feasible for the mitigation of carbon dioxide emissions. However, there is ...

Raza, Yamama

2009-01-01T23:59:59.000Z

127

Brine flow up a borehole caused by pressure perturbation from CO2 storage: Static and dynamic evaluations  

E-Print Network [OSTI]

10.1007/s12665-009-0401-1. NETL (National Energy Technologyfor Storage of CO 2 in Deep Geologic Formations, NETL ReportDOE/NETL-401/090808, November 2010. Nicot, J.P. , 2008.

Birkholzer, J.T.

2012-01-01T23:59:59.000Z

128

Well blowout rates and consequences in California Oil and Gas District 4 from 1991 to 2005: Implications for geological storage of carbon dioxide  

SciTech Connect (OSTI)

Well blowout rates in oil fields undergoing thermally enhanced recovery (via steam injection) in California Oil and Gas District 4 from 1991 to 2005 were on the order of 1 per 1,000 well construction operations, 1 per 10,000 active wells per year, and 1 per 100,000 shut-in/idle and plugged/abandoned wells per year. This allows some initial inferences about leakage of CO2 via wells, which is considered perhaps the greatest leakage risk for geological storage of CO2. During the study period, 9% of the oil produced in the United States was from District 4, and 59% of this production was via thermally enhanced recovery. There was only one possible blowout from an unknown or poorly located well, despite over a century of well drilling and production activities in the district. The blowout rate declined dramatically during the study period, most likely as a result of increasing experience, improved technology, and/or changes in safety culture. If so, this decline indicates the blowout rate in CO2-storage fields can be significantly minimized both initially and with increasing experience over time. Comparable studies should be conducted in other areas. These studies would be particularly valuable in regions with CO2-enhanced oil recovery (EOR) and natural gas storage.

Jordan, Preston; Jordan, Preston D.; Benson, Sally M.

2008-05-15T23:59:59.000Z

129

Inventory of Shale Formations in the US, Including Geologic, Hydrological, and Mechanical Characteristics  

SciTech Connect (OSTI)

The objective of this report is to build upon previous compilations of shale formations within many of the major sedimentary basins in the US by developing GIS data delineating isopach and structural depth maps for many of these units. These data are being incorporated into the LANL digital GIS database being developed for determining host rock distribution and depth/thickness parameters consistent with repository design. Methods were developed to assess hydrological and geomechanical properties and conditions for shale formations based on sonic velocity measurements.

Dobson, Patrick; Houseworth, James

2013-11-22T23:59:59.000Z

130

Geological Sequestration of CO2 by Hydrous Carbonate Formation with Reclaimed Slag  

SciTech Connect (OSTI)

The concept of this project is to develop a process that improves the kinetics of the hydrous carbonate formation reaction enabling steelmakers to directly remove CO2 from their furnace exhaust gas. It is proposed to bring the furnace exhaust stream containing CO2 in contact with reclaimed steelmaking slag in a reactor that has an environment near the unit activity of water resulting in the production of carbonates. The CO2 emissions from the plant would be reduced by the amount sequestered in the formation of carbonates. The main raw materials for the process are furnace exhaust gases and specially prepared slag.

Von L. Richards; Kent Peaslee; Jeffrey Smith

2008-02-06T23:59:59.000Z

131

Evaluation of the geological relationships to gas hydrate formation and stability  

SciTech Connect (OSTI)

The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

Krason, J.; Finley, P.

1988-01-01T23:59:59.000Z

132

Radioactive Waste Management: Study of Spent Fuel Dissolution Rates in Geological Storage Using Dosimetry Modeling and Experimental Verification  

SciTech Connect (OSTI)

This research will provide improved predictions into the mechanisms and effects of radiolysis on spent nuclear fuel dissolution in a geological respository through accurate dosimetry modeling of the dose to water, mechanistic chemistry modeling of the resulting radiolytic reactions and confirmatory experimental measurements. This work will combine effort by the Nuclear Science and Engineering Institute (NSEI) and the Missouri University Research Reactor (MURR) at the University of Missouri-Columbia, and the expertise and facilities at the Pacific Northwest National Laboratory (PNNL).

Brady Hansen; William Miller

2011-10-28T23:59:59.000Z

133

Geological Characterization of California's Offshore  

E-Print Network [OSTI]

Geological Characterization of California's Offshore Carbon Dioxide Storage Capacity ENVIRONMENTAL offshore onto the continental shelf, and these offshore sections constitute additional storage capacity potential of Californias offshore subsurface environment. California offshore sedimentary basins (in green

134

Physical Constraints on Geologic CO2 Sequestration in Low-Volume Basalt Formations  

SciTech Connect (OSTI)

Deep basalt formations within large igneous provinces have been proposed as target reservoirs for carbon capture and sequestration on the basis of favorable CO2-water-rock reaction kinetics that suggest carbonate mineralization rates on the order of 102–103 d. Although these results are encouraging, there exists much uncertainty surrounding the influence of fracture-controlled reservoir heterogeneity on commercial-scale CO2 injections in basalt formations. This work investigates the physical response of a low-volume basalt reservoir to commercial-scale CO2 injections using a Monte Carlo numerical modeling experiment such that model variability is solely a function of spatially distributed reservoir heterogeneity. Fifty equally probable reservoirs are simulated using properties inferred from the deep eastern Snake River Plain aquifer in southeast Idaho, and CO2 injections are modeled within each reservoir for 20 yr at a constant mass rate of 21.6 kg s–1. Results from this work suggest that (1) formation injectivity is generally favorable, although injection pressures in excess of the fracture gradient were observed in 4% of the simulations; (2) for an extensional stress regime (as exists within the eastern Snake River Plain), shear failure is theoretically possible for optimally oriented fractures if Sh is less than or equal to 0.70SV; and (3) low-volume basalt reservoirs exhibit sufficient CO2 confinement potential over a 20 yr injection program to accommodate mineral trapping rates suggested in the literature.

Ryan M. Pollyea; Jerry P. Fairley; Robert K. Podgorney; Travis L. McLing

2014-03-01T23:59:59.000Z

135

Geological Sequestration of CO2: The GEO-SEQ Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

GeoloGical SequeStration of co GeoloGical SequeStration of co 2 : the Geo-Seq Project Background Growing concern over the potential adverse effects of carbon dioxide (CO 2 ) buildup in the atmosphere leading to global climate change may require reductions in carbon emissions from industrial, transportation, and other sources. One promising option is the capture of CO 2 from large point sources and subsequent sequestration in geologic formations. For this approach to achieve wide acceptance, t assurances that safe, permanent, and verifiable CO 2 geologic storage is attained during sequestration operations must be made. Project results are made available to potential CO 2 storage operators and other interested stakeholders. The primary performing organizations of the GEO-SEQ project team are Lawrence

136

Reprint of "3D geological modelling from boreholes, cross-sections and geological maps, application over former natural gas storages in coal mines" [Comput. Geosci. 34 (2008) 278-290  

Science Journals Connector (OSTI)

In a wide range of applications involving geological modelling, geological data available at low cost usually consist of documents such as cross-sections or geological maps and punctual data like borehole logs or outcrop descriptions. In order to build ... Keywords: 3D geological modelling, Data structuration, GIS, Geomodeler

Olivier Kaufmann; Thierry Martin

2009-01-01T23:59:59.000Z

137

A method for quick assessment of CO2 storage capacity in closedand semi-closed saline formations  

SciTech Connect (OSTI)

Saline aquifers of high permeability bounded by overlying/underlying seals may be surrounded laterally by low-permeability zones, possibly caused by natural heterogeneity and/or faulting. Carbon dioxide (CO{sub 2}) injection into and storage in such 'closed' systems with impervious seals, or 'semi-closed' systems with nonideal (low-permeability) seals, is different from that in 'open' systems, from which the displaced brine can easily escape laterally. In closed or semi-closed systems, the pressure buildup caused by continuous industrial-scale CO{sub 2} injection may have a limiting effect on CO{sub 2} storage capacity, because geomechanical damage caused by overpressure needs to be avoided. In this research, a simple analytical method was developed for the quick assessment of the CO{sub 2} storage capacity in such closed and semi-closed systems. This quick-assessment method is based on the fact that native brine (of an equivalent volume) displaced by the cumulative injected CO{sub 2} occupies additional pore volume within the storage formation and the seals, provided by pore and brine compressibility in response to pressure buildup. With nonideal seals, brine may also leak through the seals into overlying/underlying formations. The quick-assessment method calculates these brine displacement contributions in response to an estimated average pressure buildup in the storage reservoir. The CO{sub 2} storage capacity and the transient domain-averaged pressure buildup estimated through the quick-assessment method were compared with the 'true' values obtained using detailed numerical simulations of CO{sub 2} and brine transport in a two-dimensional radial system. The good agreement indicates that the proposed method can produce reasonable approximations for storage-formation-seal systems of various geometric and hydrogeological properties.

Zhou, Q.; Birkholzer, J.; Tsang, C.F.; Rutqvist, J.

2008-02-10T23:59:59.000Z

138

NETL: Carbon Storage FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

different options for CO2 storage? different options for CO2 storage? Oil and gas reservoirs, many containing carbon dioxide (CO2), as well as natural deposits of almost pure CO2, can be found in many places in the United States and around the world. These are examples of long-term storage of CO2 by nature, where "long term" means millions of years. Their existence demonstrates that naturally occurring geologic formations and structures of various kinds are capable of securely storing CO2 deep in the subsurface for very long periods of time. Because of the economic importance of oil and gas, scientists and engineers have studied these natural deposits for many decades in order to understand the physical and chemical processes which led to their formation. There are also many decades of engineering experience in subsurface operations similar to those needed for CO2 storage. The most directly applicable experience comes from the oil industry, which, for 40 years, has injected CO2 in depleted oil reservoirs for the recovery of additional product through enhanced oil recovery (EOR). Additional experience comes from natural gas storage operations, which have utilized depleted gas reservoirs, as well as reservoirs containing only water. Scientists and engineers are now combining the knowledge obtained from study of natural deposits with experience from analogous operations as a basis for studying the potential for large-scale storage of CO2 in the deep subsurface.

139

Strategic use of the underground in an energy mix plan: Synergies among CO2, CH4 geological storage and geothermal energy. Latium Region case study (Central Italy)  

Science Journals Connector (OSTI)

Abstract In recent decades, the worldwide demand for energy has been increasing, with an associated rise in CO2 emissions being observed. In such conditions, the development of “low carbon energy technologies” and strategic energy-mix plans is necessary, and an evaluation of the underground energy potential may be a useful step in developing these plans. This evaluation involves the synergic development of such technologies as: coal combustion in combination with CO2 geological storage (CCS), natural gas geological storage (CH4-GS) and geothermal energy (GE), especially in densely populated countries, such as Italy. Currently, 13.7% of Italian energy demand is met by foreign providers. Most of the Italian regions have energy deficits, and the Latium Region (in Central Italy) represents one of those in the worst conditions. This work proposes a methodology to develop energy-mix scenarios, starting in Latium, to identify areas that are potentially suitable for CCS, CH4-GS and GE. Six geothermal systems and one CO2/CH4 storage potential area were identified. Three main scenarios are proposed: (A) a combination of CH4-GS with methane as cushion gas and GE; (B) a combination of CH4-GS with CO2 as cushion gas and GE; (C) a combination of CCS and GE. Scenario A results in a reduction of the regional energy deficit that ranges from 21.8% to 45.6%. In Scenario B, the regional energy deficit reduction ranges from 30.8% to 80.7% and the CO2 emissions reduction ranges from 1.4% to 5.6%, supposing an injection of 20 years. Scenario C shows a decrease in the regional energy deficit that ranges from 15.9% to 22.1%, while the CO2 emissions reduction ranges from 7.1% to 31.3%, over the same time period. The proposed scenarios may be useful not only for the scientific community but also for policymakers as they identify the most reliable energetic strategies. Thus, this case study could be extended to the entire Italian territory with the ultimate goal of reaching energy autonomy in each region.

M. Procesi; B. Cantucci; M. Buttinelli; G. Armezzani; F. Quattrocchi; E. Boschi

2013-01-01T23:59:59.000Z

140

Geologic and hydrologic controls on coalbed methane producibility, Williams Fork Formation, Piceance Basin, Colorado  

SciTech Connect (OSTI)

Structural and depositional setting, coal rank, gas content, permeability, hydrodynamics, and reservoir heterogeneity control the producibility of coalbed methane in the Piceance Basin. The coal-rich Upper Cretaceous, Williams Fork Formation is genetically defined and regionally correlated to the genetic sequences in the Sand Wash Basin, to the north. Net coal is thickest in north-south oriented belts which accumulated on a coastal plain, behind west-east prograding shoreline sequences. Face cleats of Late Cretaceous age strike E-NE and W-NW in the southern and northern parts of the basin, respectively, normal to the Grand Hogback thrust front. Parallelism between face-cleat strike and present-day maximum horizontal stresses may enhance or inhibit coal permeability in the north and south, respectively. Geopressure and hydropressure are both present in the basin with regional hydrocarbon overpressure dominant in the central part of the basin and hydropressure limited to the basin margins. The most productive gas wells in the basin are associated with structural terraces, anticlines, and/or correspond to Cameo-Wheeler-Fairfield coal-sandstone development, reflecting basement detached thrust-faulting, fracture-enhanced permeability, and reservoir heterogeneity. Depositional heterogeneties and thrusts faults isolate coal reservoirs along the Grand Hogback from the subsurface by restricting meteoric recharge and basinward flow of ground water. An evolving coalbed methane producibility model predicts that in the Piceance Basin extraordinary coalbed methane production is precluded by low permeability and by the absence of dynamic ground-water flow.

Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G. [Univ. of Texas, Austin, TX (United States)

1996-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Geologic and hydrologic controls on coalbed methane producibility, Williams Fork Formation, Piceance Basin, Colorado  

SciTech Connect (OSTI)

Structural and depositional setting, coal rank, gas content, permeability, hydrodynamics, and reservoir heterogeneity control the producibility of coalbed methane in the Piceance Basin. The coal-rich Upper Cretaceous, Williams Fork Formation is genetically defined and regionally correlated to the genetic sequences in the Sand Wash Basin, to the north. Net coal is thickest in north-south oriented belts which accumulated on a coastal plain, behind west-east prograding shoreline sequences. Face cleats of Late Cretaceous age strike E-NE and W-NW in the southern and northern parts of the basin, respectively, normal to the Grand Hogback thrust front. Parallelism between face-cleat strike and present-day maximum horizontal stresses may enhance or inhibit coal permeability in the north and south, respectively. Geopressure and hydropressure are both present in the basin with regional hydrocarbon overpressure dominant in the central part of the basin and hydropressure limited to the basin margins. The most productive gas wells in the basin are associated with structural terraces, anticlines, and/or correspond to Cameo-Wheeler-Fairfield coal-sandstone development, reflecting basement detached thrust-faulting, fracture-enhanced permeability, and reservoir heterogeneity. Depositional heterogeneties and thrusts faults isolate coal reservoirs along the Grand Hogback from the subsurface by restricting meteoric recharge and basinward flow of ground water. An evolving coalbed methane producibility model predicts that in the Piceance Basin extraordinary coalbed methane production is precluded by low permeability and by the absence of dynamic ground-water flow.

Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G. (Univ. of Texas, Austin, TX (United States))

1996-01-01T23:59:59.000Z

142

Geologic setting and natural gas potential of Niobrara formation, Williston Basin  

SciTech Connect (OSTI)

Chalk units in the Niobrara Formation (Upper Cretaceous) have potential for generation and accumulation of shallow, biogenic gas in the central and eastern Williston basin. Similar to area of Niobrara gas production in the eastern Denver basin, Niobrara chalks in South and North Dakota were deposited on carbonate ramps sloping westward off the stable eastern platform of the Western Interior seaway. Within the Williston basin, the Niobrara of the western Dakotas, eastern North Dakota, and central South Dakota has different stratigraphic relationships. These three areas can be further subdivided and ranked into six areas that have different exploration potential. The south margin of the Williston basin in central South Dakota is the most attractive exploration area. Niobrara chalk reservoirs, source rocks, and structural traps in the southern Williston basin are similar to those in the eastern Denver basin. Chalk porosities are probably adequate for gas production, although porosity is controlled by burial depth. Organic carbon content of the chalk is high and shows of biogenic gas are reported. Large, low-relief structural features, which could serve as traps, are present.

Shurr, G.W.; Rice, D.D.

1985-05-01T23:59:59.000Z

143

Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 6, Basin analysis, formation and stability of gas hydrates in the Panama Basin  

SciTech Connect (OSTI)

This report presents a geological description of the Panama Basin, including regional and local structural settings, geomorphology, geological history, stratigraphy, and physical properties. It provides the necessary regional and geological background for more in-depth research of the area. Detailed discussion of bottom simulating acoustic reflectors, sediment acoustic properties, distribution of hydrates within the sediments, and the relation of hydrate distribution to other features such as salt diapirism are also included. The formation and stabilization of gas hydrates in sediments are considered in terms of phase relations, nucleation, and crystallization constraints, gas solubility, pore fluid chemistry, inorganic diagenesis, and sediment organic content. Together with a depositional analysis of the area, this report is a better understanding of the thermal evolution of the locality. It should lead to an assessment of the potential for both biogenic and thermogenic hydrocarbon generation. 63 refs., 38 figs., 7 tabs.

Krason, J.; Ciesnik, M.

1986-03-01T23:59:59.000Z

144

Geological evolution and analysis of confirmed or suspected gas hydrate localities: Volume 9, Formation and stability of gas hydrates of the Middle America Trench  

SciTech Connect (OSTI)

This report presents a geological description of the Pacific margin of Mexico and Central America, including regional and local structural settings, geomorphology, geological history, stratigraphy, and physical properties. It provides the necessary regional and geological background for more in-depth research of the area. Detailed discussion of bottom simulating acoustic reflectors, sediment acoustic properties, and distribution of hydrates within the sediments are also included in this report. The formation and stabilization of gas hydrates in sediments are considered in terms of phase relations, nucleation, and crystallization constraints, gas solubility, pore fluid chemistry, inorganic diagenesis, and sediment organic content. Together with a depositional analysis of the area, this report is a better understanding of the thermal evolution of the locality. It should lead to an assessment of the potential for both biogenic and thermogenic hydrocarbon generation. 150 refs., 84 figs., 17 tabs.

Finley, P.; Krason, J.

1986-12-01T23:59:59.000Z

145

Geologic and climatic controls on the formation of the Permian coal measures in the Sohagpur coal field, Madhya Pradesh, India  

SciTech Connect (OSTI)

The U.S. Geological Survey (USGS) and the Geological Survey of India (GSI) are concluding a cooperative study of the coking coal deposits in the Sohagpur coal field in central India. Because of the importance of coal in India's economy, the Coal Wing of the Geological Survey of India has studied the area intensely since the early 1980's. This report summarizes the overall stratigraphic, tectonic, and sedimentologic framework of the Sohagpur coal field area, and the interpretations of the geologic and climatic environments required for the accumulation of the thick Gondwana coal deposits, both coking and non-coking.

Milici, R.C.; Warwick, P.D.; Mukhopadhyah, A.; Adhikari, S.; Roy, S.P.; Bhattacharyya, S.

1999-07-01T23:59:59.000Z

146

Geological SciencesGeological Sciences Geological EngineeringGeological Engineering  

E-Print Network [OSTI]

Geological SciencesGeological Sciences Geological EngineeringGeological Engineering Geosciences Careers in the ik ou ve n ver see t b f rel e y ' e n i e o ! Department of Geological Sciences and Geological Engineering Queen's University See the World Geological Sciences Arts and Science Faculty

Ellis, Randy

147

Potential for Natural Gas Storage in Deep Basalt Formations at Canoe Ridge, Washington State: A Hydrogeologic Assessment  

SciTech Connect (OSTI)

Between 1999 and 2002, Pacific Gas Transmission Company (PGT) (now TransCanada Pipeline Company) and AVISTA Corporation, together with technical support provided by the Pacific Northwest National Laboratory and the U.S. Department of Energy (DOE) examined the feasibility of developing a subsurface, natural gas-storage facility in deep, underlying Columbia River basalt in south-central Washington state. As part of this project, the 100 Circles #1 well was drilled and characterized in addition to surface studies. This report provides data and interpretations of the geology and hydrology collected specific to the Canoe Ridge site as part of the U.S. DOE funding to the Pacific Northwest National Laboratory in support of this project.

Reidel, Steve P.; Spane, Frank A.; Johnson, Vernon G.

2005-09-24T23:59:59.000Z

148

Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection |  

Broader source: Energy.gov (indexed) [DOE]

Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection August 13, 2013 - 1:59pm Addthis Photo by J.D. Griggs, courtesy of U.S.Geological Survey Photo by J.D. Griggs, courtesy of U.S.Geological Survey For Additional Information To learn more about the carbon storage projects in which NETL is involved, please visit the NETL Carbon Storage website How can a prehistoric volcanic eruption help us reduce the amount of CO2 released into the atmosphere today? The answer is found in the basalt formations created by the lava - formations that can be used as sites for injecting carbon dioxide (CO2) captured from industrial sources in a process called carbon capture and storage (CCS).

149

Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection |  

Broader source: Energy.gov (indexed) [DOE]

Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection Ancient Lava Flows Trap CO2 for Long-Term Storage in Big Sky Injection August 13, 2013 - 1:59pm Addthis Photo by J.D. Griggs, courtesy of U.S.Geological Survey Photo by J.D. Griggs, courtesy of U.S.Geological Survey For Additional Information To learn more about the carbon storage projects in which NETL is involved, please visit the NETL Carbon Storage website How can a prehistoric volcanic eruption help us reduce the amount of CO2 released into the atmosphere today? The answer is found in the basalt formations created by the lava - formations that can be used as sites for injecting carbon dioxide (CO2) captured from industrial sources in a process called carbon capture and storage (CCS).

150

A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage  

E-Print Network [OSTI]

Chapter 31 in Carbon Dioxide Capture for Storage in DeepChapter 14 in Carbon Dioxide Capture for Storage in DeepSummary. Chapter 25 in Carbon Dioxide Capture for Storage in

Apps, J.A.

2006-01-01T23:59:59.000Z

151

Assessment of Brine Management for Geologic Carbon Sequestration  

E-Print Network [OSTI]

Economic  Geology Billion  Gallons  per  Year Brine  Use  Sequence Carbon  dioxide  Capture  and  Storage Carbon  Dioxide Coal-­?

Breunig, Hanna M.

2014-01-01T23:59:59.000Z

152

NETL: Carbon Storage Technology R&D  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Program Technology Areas Geologic Storage, Simulation, and Risk Assessment Regional Carbon Sequestration Partnerships Initiative NATCARB Monitoring, Verification, Accounting,...

153

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

SciTech Connect (OSTI)

It has been suggested that enhanced geothermal systems (EGS) may be operated with supercritical CO{sub 2} instead of water as heat transmission fluid (D.W. Brown, 2000). Such a scheme could combine recovery of geothermal energy with simultaneous geologic storage of CO{sub 2}, a greenhouse gas. At geothermal temperature and pressure conditions of interest, the flow and heat transfer behavior of CO{sub 2} would be considerably different from water, and chemical interactions between CO{sub 2} and reservoir rocks would also be quite different from aqueous fluids. This paper summarizes our research to date into fluid flow and heat transfer aspects of operating EGS with CO{sub 2}. (Chemical aspects of EGS with CO{sub 2} are discussed in a companion paper; Xu and Pruess, 2010.) Our modeling studies indicate that CO{sub 2} would achieve heat extraction at larger rates than aqueous fluids. The development of an EGS-CO{sub 2} reservoir would require replacement of the pore water by CO{sub 2} through persistent injection. We find that in a fractured reservoir, CO{sub 2} breakthrough at production wells would occur rapidly, within a few weeks of starting CO{sub 2} injection. Subsequently a two-phase water-CO{sub 2} mixture would be produced for a few years,followed by production of a single phase of supercritical CO{sub 2}. Even after single-phase production conditions are reached,significant dissolved water concentrations will persist in the CO{sub 2} stream for many years. The presence of dissolved water in the production stream has negligible impact on mass flow and heat transfer rates.

Pruess, K.; Spycher, N.

2009-05-01T23:59:59.000Z

154

Preliminary formation analysis for compressed air energy storage in depleted natural gas reservoirs : a study for the DOE Energy Storage Systems Program.  

SciTech Connect (OSTI)

The purpose of this study is to develop an engineering and operational understanding of CAES performance for a depleted natural gas reservoir by evaluation of relative permeability effects of air, water and natural gas in depleted natural gas reservoirs as a reservoir is initially depleted, an air bubble is created, and as air is initially cycled. The composition of produced gases will be evaluated as the three phase flow of methane, nitrogen and brine are modeled. The effects of a methane gas phase on the relative permeability of air in a formation are investigated and the composition of the produced fluid, which consists primarily of the amount of natural gas in the produced air are determined. Simulations of compressed air energy storage (CAES) in depleted natural gas reservoirs were carried out to assess the effect of formation permeability on the design of a simple CAES system. The injection of N2 (as a proxy to air), and the extraction of the resulting gas mixture in a depleted natural gas reservoir were modeled using the TOUGH2 reservoir simulator with the EOS7c equation of state. The optimal borehole spacing was determined as a function of the formation scale intrinsic permeability. Natural gas reservoir results are similar to those for an aquifer. Borehole spacing is dependent upon the intrinsic permeability of the formation. Higher permeability allows increased injection and extraction rates which is equivalent to more power per borehole for a given screen length. The number of boreholes per 100 MW for a given intrinsic permeability in a depleted natural gas reservoir is essentially identical to that determined for a simple aquifer of identical properties. During bubble formation methane is displaced and a sharp N2methane boundary is formed with an almost pure N2 gas phase in the bubble near the borehole. During cycling mixing of methane and air occurs along the boundary as the air bubble boundary moves. The extracted gas mixture changes as a function of time and proximity of the bubble boundary to the well. For all simulations reported here, with a formation radius above 50 m the maximum methane composition in the produced gas phase was less than 0.5%. This report provides an initial investigation of CAES in a depleted natural gas reservoir, and the results will provide useful guidance in CAES system investigation and design in the future.

Gardner, William Payton

2013-06-01T23:59:59.000Z

155

Current Status of The Romanian National Deep Geological Repository Program  

SciTech Connect (OSTI)

Construction of a deep geological repository is a very demanding and costly task. By now, countries that have Candu reactors, have not processed the spent fuel passing to the interim storage as a preliminary step of final disposal within the nuclear fuel cycle back-end. Romania, in comparison to other nations, represents a rather small territory, with high population density, wherein the geological formation areas with radioactive waste storage potential are limited and restricted not only from the point of view of the selection criteria due to the rocks natural characteristics, but also from the point of view of their involvement in social and economical activities. In the framework of the national R and D Programs, series of 'Map investigations' have been made regarding the selection and preliminary characterization of the host geological formation for the nation's spent fuel deep geological repository. The fact that Romania has many deposits of natural gas, oil, ore and geothermal water, and intensively utilizes soil and also is very forested, cause some of the apparent acceptable sites to be rejected in the subsequent analysis. Currently, according to the Law on the spent fuel and radioactive waste management, including disposal, The National Agency of Radioactive Waste is responsible and coordinates the national strategy in the field and, subsequently, further actions will be decided. The Romanian National Strategy, approved in 2004, projects the operation of a deep geological repository to begin in 2055. (authors)

Radu, M.; Nicolae, R.; Nicolae, D. [Center of Technology and Engineering for Nuclear Objectives (CITON), ILFOV County (Romania)

2008-07-01T23:59:59.000Z

156

Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources  

DOE Patents [OSTI]

Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation.

Vail, III, William B. (Bothell, WA)

1991-01-01T23:59:59.000Z

157

Carbon Storage in Basalt  

Science Journals Connector (OSTI)

...immobile and thus the storage more secure, though...continental margins have huge storage capacities adjacent...unlimited supplies of seawater. On the continents...present in the target storage formation can be pumped up and used to dissolve...

Sigurdur R. Gislason; Eric H. Oelkers

2014-04-25T23:59:59.000Z

158

DOE Best Practices Manual Focuses on Site Selection for CO2 Storage |  

Broader source: Energy.gov (indexed) [DOE]

Best Practices Manual Focuses on Site Selection for CO2 Storage Best Practices Manual Focuses on Site Selection for CO2 Storage DOE Best Practices Manual Focuses on Site Selection for CO2 Storage January 5, 2011 - 12:00pm Addthis Washington, DC - The most promising methods for assessing potential carbon dioxide (CO2) geologic storage sites - a crucial component of Carbon Capture and Storage (CCS) technology - is the focus of the latest in a series of U.S. Department of Energy (DOE) CCS "best practices" manuals. Developed by the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), the manual - Site Screening, Site Selection and Initial Characterization for Storage of CO2 in Deep Geologic Formations - is a resource for future project developers and CO2 producers and transporters. It can also be used to apprise government agencies of the

159

DOE Best Practices Manual Focuses on Site Selection for CO2 Storage |  

Broader source: Energy.gov (indexed) [DOE]

Best Practices Manual Focuses on Site Selection for CO2 Storage Best Practices Manual Focuses on Site Selection for CO2 Storage DOE Best Practices Manual Focuses on Site Selection for CO2 Storage January 5, 2011 - 12:00pm Addthis Washington, DC - The most promising methods for assessing potential carbon dioxide (CO2) geologic storage sites - a crucial component of Carbon Capture and Storage (CCS) technology - is the focus of the latest in a series of U.S. Department of Energy (DOE) CCS "best practices" manuals. Developed by the Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), the manual - Site Screening, Site Selection and Initial Characterization for Storage of CO2 in Deep Geologic Formations - is a resource for future project developers and CO2 producers and transporters. It can also be used to apprise government agencies of the

160

Modeling CO{sub 2}-Brine-Rock Interaction Including Mercury and H{sub 2}S Impurities in the Context of CO{sub 2} Geologic Storage  

SciTech Connect (OSTI)

This study uses modeling and simulation approaches to investigate the impacts on injectivity of trace amounts of mercury (Hg) in a carbon dioxide (CO{sub 2}) stream injected for geologic carbon sequestration in a sandstone reservoir at ~2.5 km depth. At the range of Hg concentrations expected (7-190 ppbV, or ~ 0.06-1.6 mg/std.m{sup 3}CO{sub 2}), the total volumetric plugging that could occur due to complete condensation of Hg, or due to complete precipitation of Hg as cinnabar, results in a very small porosity change. In addition, Hg concentration much higher than the concentrations considered here would be required for Hg condensation to even occur. Concentration of aqueous Hg by water evaporation into CO{sub 2} is also unlikely because the higher volatility of Hg relative to H{sub 2}O at reservoir conditions prevents the Hg concentration from increasing in groundwater as dry CO{sub 2} sweeps through, volatilizing both H{sub 2}O and Hg. Using a model-derived aqueous solution to represent the formation water, batch reactive geochemical modeling show that the reaction of the formation water with the CO{sub 2}-Hg mixture causes the pH to drop to about 4.7 and then become buffered near 5.2 upon reaction with the sediments, with a negligible net volume change from mineral dissolution and precipitation. Cinnabar (HgS(s)) is found to be thermodynamically stable as soon as the Hg-bearing CO{sub 2} reacts with the formation water which contains small amounts of dissolved sulfide. Liquid mercury (Hg(l)) is not found to be thermodynamically stable at any point during the simulation. Two-dimensional radial reactive transport simulations of CO{sub 2} injection at a rate of 14.8 kg/s into a 400 m-thick formation at isothermal conditions of 106°C and average pressure near 215 bar, with varying amounts of Hg and H{sub 2}S trace gases, show generally that porosity changes only by about ±0.05% (absolute, i.e., new porosity = initial porosity ±0.0005) with Hg predicted to readily precipitate from the CO{sub 2} as cinnabar in a zone mostly matching the single-phase CO{sub 2} plume. The precipitation of minerals other than cinnabar, however, dominates the evolution of porosity. Main reactions include the replacement of primarily Fe-chlorite by siderite, of calcite by dolomite, and of K-feldspar by muscovite. Chalcedony is also predicted to precipitate from the dissolution of feldspars and quartz. Although the range of predicted porosity change is quite small, the amount of dissolution and precipitation predicted for these individual minerals is not negligible. These reactive transport simulations assume that Hg gas behaves ideally. To examine effects of non-ideality on these simulations, approximate calculations of the fugacity coefficient of Hg in CO{sub 2} were made. Results suggest that Hg condensation could be significantly overestimated when assuming ideal gas behavior, making our simulation results conservative with respect to impacts on injectivity. The effect of pressure on Henry’s constant for Hg is estimated to yield Hg solubilities about 10% lower than when this effect is not considered, a change that is considered too small to affect the conclusions of this report. Although all results in this study are based on relatively mature data and modeling approaches, in the absence of experimental data and more detailed site-specific information, it is not possible to fully validate the results and conclusions.

Spycher, N.; Oldenburg, C.M.

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

NETL: Carbon Storage - Small-Scale Field Tests  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Small-Scale Field Tests Small-Scale Field Tests Carbon Storage Small-Scale Field Tests The U.S. Department of Energy (DOE) is supporting a number of small-scale field tests (injection of less than 500,000 million metric tons of CO2 per year) to explore various geologic CO2 storage opportunities within the United States and portions of Canada. DOE's small-scale field test efforts are designed to demonstrate that regional reservoirs have the capability to store thousands of years of CO2 emissions and provide the basis for larger volume, commercial-scale CO2 tests. The field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The data gathered during these small-scale tests provides valuable information regarding specific formations that have historically not been evaluated for the purpose of CO2 storage. The Carbon Storage Program strategy includes an established set of field test objectives applicable to the small-scale projects:

162

Petrophysical properties and geology of selected intervals in the Frio Formation, Stratton field, South Texas for modeling interwell seismic logging response  

SciTech Connect (OSTI)

Seismic or continuity logging consists of locating a seismic source in one borehole near or in a low-velocity layer and deploying a detector array in a second borehole. Detection of guided waves transmitted between the two wells indicates bed connectivity. The guided wave signatures are either leaky modes or normal modes (or both). The technique has numerous applications in various types of heterogeneous geological environments, including many Gulf Coast gas reservoirs. It can be used to determine the continuity of beds between wells, estimate and locate variations in the thickness of beds, and estimate the average rock physical properties of the beds. Stratton field was selected as the Gulf-Coast-gas-play type field for a project to model interwell seismic logging responses. Stratton is a mature gas field located in the south Texas Gulf Coast, about 30 miles southwest of Corpus Christi. It encompasses over 120,000 acres in portions of Kleberg, Nueces, and Jim Wells counties. Stratton is one of 29 fields in the Frio Formation fluvial-deltaic lay associated with the Vicksburg fault zone along the Texas Gulf Coast Basin. This poster presentation explains the technique of interwell seismic logging, documents the petrophysical properties and geology of intervals in the upper and middle Frio, and presents the results of the forward modeling tests.

Collier, H.A. [Tarleton State Univ., Stephenville, TX (United States); Parra, J.O. [Southwest Research Inst., San Antonio, TX (United States)

1996-09-01T23:59:59.000Z

163

NETL: Carbon Storage - Infrastructure  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

164

Carbon Capture and Storage Poster | Department of Energy  

Office of Environmental Management (EM)

Carbon Capture and Storage - In Depth (poster) More Documents & Publications Geologic Carbon Dioxide Storage Field Projects Supported by DOE's Sequestration Program Training...

165

Numerical Modeling of Hydrate Formation in Sand Sediment Simulating Sub-Seabed CO2 Storage in the form of Gas Hydrate  

Science Journals Connector (OSTI)

Abstract Among several methods for CO2 capture and storage, we focus on CO2 sequestration in the form of gas hydrate under the seafloor, mainly for many sequestration sites offshore Japan and for little risk of CO2 leakage from the sediment. However, it is difficult to evaluate the precise storage potential and cost of this method due to the lack of the relevant information. Here, in order to do feasibility studies of this technique so as to make an effective storage method, we made a 3-dimentional gas water flow simulator with kinetic hydrate formation. The new design of CO2 hydrate formation in porous media under two-phase flow condition was implemented in this simulator, and unknown parameters in necessary mathematical models for gas-water flow in sand sediments were verified from the comparison between the results of the numerical simulations and the experimental measurements from the previous study.

Takuya Nakashima; Toru Sato; Masayuki Inui

2013-01-01T23:59:59.000Z

166

Evaluation of the geological relationships to gas hydrate formation and stability. Progress report, June 16--September 30, 1988  

SciTech Connect (OSTI)

The summaries of regional basin analyses document that potentially economic accumulations of gas hydrates can be formed in both active and passive margin settings. The principal requirement for gas hydrate formation in either setting is abundant methane. Passive margin sediments with high sedimentation rates and sufficient sedimentary organic carbon can generate large quantities of biogenic methane for hydrate formation. Similarly, active margin locations near a terrigenous sediment source can also have high methane generation potential due to rapid burial of adequate amounts of sedimentary organic matter. Many active margins with evidence of gas hydrate presence correspond to areas subject to upwelling. Upwelling currents can enhance methane generation by increasing primary productivity and thus sedimentary organic carbon. Structural deformation of the marginal sediments at both active and passive sites can enhance gas hydrate formation by providing pathways for migration of both biogenic and thermogenic gas to the shallow gas hydrate stability zone. Additionally, conventional hydrocarbon traps may initially concentrate sufficient amounts of hydrocarbons for subsequent gas hydrate formation.

Krason, J.; Finley, P.

1988-12-31T23:59:59.000Z

167

Measuring resistivity changes from within a first cased well to monitor fluids injected into oil bearing geological formations from a second cased well while passing electrical current between the two cased wells  

DOE Patents [OSTI]

A.C. current is conducted through geological formations separating two cased wells in an oil field undergoing enhanced oil recovery operations such as water flooding operations. Methods and apparatus are disclosed to measure the current leakage conducted into a geological formation from within a first cased well that is responsive to fluids injected into formation from a second cased well during the enhanced oil production activities. The current leakage and apparent resistivity measured within the first cased well are responsive to fluids injected into formation from the second cased well provided the distance of separation between the two cased wells is less than, or on the order of, a Characteristic Length appropriate for the problem.

Vail, W.B. III.

1993-02-16T23:59:59.000Z

168

Fact Sheet: Isothermal Compressed Air Energy Storage (October 2012)  

Broader source: Energy.gov (indexed) [DOE]

SustainX SustainX American Recovery and Reinvestment Act (ARRA) Isothermal Compressed Air Energy Storage Demonstrating a modular, market-ready energy storage system that uses compressed air as a storage medium SustainX will demonstrate an isothermal compressed air energy storage (ICAES) system. Energy can be stored in compressed air, with minimal energy losses, and released when the air is later allowed to expand. Many traditional compressed air energy storage (CAES) projects store energy in underground geological formations such as salt caverns. However, in these systems, the air warms when it is compressed and cools when it is expanded. CAES systems generally use gas combustion turbines to reheat the cooled air before expansion. This process creates inefficiencies and emissions.

169

A seismic modeling methodology for monitoring CO2 geological ...  

E-Print Network [OSTI]

May 20, 2011 ... possible causes of the greenhouse effect. In order to avoid these emissions, one of the. 30 options is the geological storage of carbon dioxide ...

2011-05-20T23:59:59.000Z

170

United States National Waste Terminal Storage argillaceous rock studies  

SciTech Connect (OSTI)

The past and present argillaceous rock studies for the US National Waste Terminal Storage Program consist of: (1) evaluation of the geological characteristics of several widespread argillaceous formations in the United States; (2) laboratory studies of the physical and chemical properties of selected argillaceous rock samples; and (3) two full-scale in situ surface heater experiments that simulate the emplacement of heat-generating radioactive waste in argillaceous rock.

Brunton, G.D.

1981-01-01T23:59:59.000Z

171

MIDWEST GEOLOGICAL SEQUESTRATION CONSORTIUM THE UNITED S T A  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MIDWEST GEOLOGICAL SEQUESTRATION CONSORTIUM THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE Midwest Geological Sequestration Consortium The Midwest Geological Sequestration Consortium (MGSC) is a consortium of the geologic surveys of Illinois, Indiana, and Kentucky joined by private corporations, professional business associations, the Interstate Oil and Gas Compact Commission, three Illinois state agencies, and university researchers to assess carbon capture, transportation, and geologic storage processes and their costs and viability in the Illinois Basin region. The Illinois State Geological Survey is the Lead Technical Contractor for MGSC, which covers all of Illinois, southwest Indiana, and western Kentucky. To avoid atmospheric release of CO

172

Coupling geothermal energy capture with carbon dioxide sequestration in naturally permeable, porous geologic formations  – a novel approach for expanding geothermal energy utilization.  

E-Print Network [OSTI]

??This thesis research presents a new method to harness geothermal energy by combining it with geologic carbon dioxide (CO2) sequestration. CO2 is injected into deep,… (more)

Randolph, Jimmy Bryan

2011-01-01T23:59:59.000Z

173

Formation of Iron Oxyfluoride Phase on the Surface of Nano-Fe3O4 Conversion Compound for Electrochemical Energy Storage  

Science Journals Connector (OSTI)

Formation of Iron Oxyfluoride Phase on the Surface of Nano-Fe3O4 Conversion Compound for Electrochemical Energy Storage ... (21) In this work we aim to follow an alternate route for converting iron oxides to oxyfluorides using a controlled fluorination process. ... The FBR method used in this study for conversion of iron oxide to oxyfluorides using low pressure fluorine gas mixed with an inert carrier gas (He) is a relatively simple and safe process used routinely for fluorination studies. ...

Hui Zhou; Jagjit Nanda; Surendra K. Martha; Jamie Adcock; Juan C. Idrobo; Loïc Baggetto; Gabriel M. Veith; Sheng Dai; Sreekanth Pannala; Nancy J. Dudney

2013-10-21T23:59:59.000Z

174

Structural and stratigraphic evolution of the central Mississippi Canyon Area: interaction of salt tectonics and slope processes in the formation of engineering and geologic hazards  

E-Print Network [OSTI]

. The analysis focused on salt tectonics and sequence stratigraphy to develop a geologic model for the study area and its potential impact on engineering and geologic hazards. Salt in the study area was found to be established structural end-members derived from...

Brand, John Richard

2006-04-12T23:59:59.000Z

175

Integration of Pipeline Operations Sourced with CO2 Captured at a Coal-fired Power Plant and Injected for Geologic Storage: SECARB Phase III CCS Demonstration  

Science Journals Connector (OSTI)

Abstract This paper presents a case study of the design and operation of a fit-for-purpose pipeline sourced with anthropogenic carbon dioxide (CO2) associated with a large-scale carbon capture and storage (CCS) Research & Demonstration Program located in Alabama, USA. A 10.2 centimeter diameter pipeline stretches approximately 19 kilometers from the outlet of the CO2 capture facility, located at Alabama Power Company's James M. Barry 2,657 - megawatt coal-fired electric generating plant, to the point of injection into a saline reservoir within Citronelle Dome. The CO2 pipeline has a 6.5 meter wide easement that primarily parallels an existing high-voltage electric transmission line in undulating terrain with upland timber, stream crossings, and approximately 61,000 square meters of various wetland types. In addition to wetlands, the route transects protected habitat of the Gopher Tortoise. Construction methods included horizontal drilling under utilities, wetlands, and tortoise habitat and ‘open cutting’ trenching where vegetation is removed and silt/storm-water management structures are employed to limit impacts to water quality and ecosystems. A total of 18 horizontal directional borings, approximately 8 kilometers, were used to avoid sensitive ecosystems, roads, and utilities. The project represents one of the first and the largest fully-integrated pulverized coal-fired CCS demonstration projects in the USA and provides a test bed of the operational reliability and risk management for future pipelines sourced with utility CO2 capture and compression operations sole-sourced to injection operations. An update on status of the project is presented, covering the permitting of the pipeline, risk analysis, design, construction, commissioning, and integration with compression at the capture plant and underground injection at the storage site.

R. Esposito; C. Harvick; R. Shaw; D. Mooneyhan; R. Trautz; G. Hill

2013-01-01T23:59:59.000Z

176

FE Carbon Capture and Storage News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

March 17, 2009 March 17, 2009 DOE Releases Report on Techniques to Ensure Safe, Effective Geologic Carbon Sequestration The Office of Fossil Energy's National Energy Technology Laboratory has created a comprehensive new document that examines existing and emerging techniques to monitor, verify, and account for carbon dioxide stored in geologic formations. March 10, 2009 DOE Regional Partnership Initiates CO2 Injection in Lignite Coal Seam A U.S. Department of Energy/National Energy Technology Laboratory team of regional partners has begun injecting CO2 into a deep lignite coal seam in Burke County, North Dakota, to demonstrate the economic and environmental viability of geologic CO2 storage in the U.S. Great Plains region. February 27, 2009 DOE Partner Begins Injecting 50,000 Tons of CO2 in Michigan Basin

177

Synergic and conflicting issues in planning underground use to produce energy in densely populated countries, as Italy: Geological storage of CO2, natural gas, geothermics and nuclear waste disposal  

Science Journals Connector (OSTI)

In densely populated countries there is a growing and compelling need to use underground for different and possibly coexisting technologies to produce “low carbon” energy. These technologies include (i) clean coal combustion merged with CO2 Capture and Storage (CCS); (ii) last-generation nuclear power or, in any case, safe nuclear wastes disposal, both “temporary” and “geological” somewhere in Europe (at least in one site): Nuclear wastes are not necessarily associated to nuclear power plants; (iii) safe natural gas (CH4) reserves to allow consumption also when the foreign pipelines are less available or not available for geopolitical reasons and (iv) “low-space-consuming” renewables in terms of Energy Density Potential in Land (EDPL measured in [GW h/ha/year]) as geothermics. When geothermics is exploited as low enthalpy technology, the heat/cool production could be associated, where possible, to increased measures of “building efficiency”, low seismic risks building reworking and low-enthalpy heat managing. This is undispensable to build up “smart cities”. In any case the underground geological knowledge is prerequisite. All these technologies have been already proposed and defined by the International Energy Agency (IEA) Road Map 2009 as priorities for worldwide security: all need to use underground in a rational and safe manner. The underground is not renewable in most of case histories [10,11]. IEA recently matched and compared different technologies in a unique “Clean Energy Economy” improved document (Paris, November 16–17, 2011), by the contribution of this vision too (see reference). In concert with “energy efficiency” improvement both for plants and buildings, in the frame of the “smart cities” scenarios, and the upstanding use of “energy savings”, the energetic planning on regional scale where these cities are located, are strategic for the year 2050: this planning is strongly depending by the underground availability and typology. Therefore, if both literature and European Policy are going fast to improve the concept of “smart cities” this paper stresses the concept of “smart regions”, more strategic than “smart cities”, passing throughout a discussion on the synergic and conflicting use of underground to produce energy for the “smart regions” as a whole. The paper highlights the research lines which are urgent to plan the soundest energy mix for each region by considering the underground performances case by case: a worldwide mapping, by GIS tools of this kind of information could be strategic for all the “world energy management” authorities, up to ONU, with its Intergovernmental Panel on Climate Change (IPCC), the G20, the Carbon Sequestration Leadership Forum (CSLF) and the European Platforms such as the “Zero Emissions Fossil Fuel Power Plants” (EU-ZEP Platform), the Steel Platform, the Biomass Platform too. All of these organizations agree on the need for synergistic and coexistent uses of underground for geological storage of CO2, CH4, nuclear waste and geothermic exploitation. The paper is therefore a discussion of the tools, methods and approaches to these underground affecting technologies, after a gross view of the different uses of underground to produce energy for each use, with their main critical issues (i.e. public acceptance in different cases). The paper gives some gross evaluation for the Lazio Region and some hints from the Campania Region, located in Central Italy. Energy Density Potential in Land (EDPL), is calculated for each renewable energy technology (solar, wind, geothermal) highlighting the potentiality of the last. Why the Italian case history among the densely populated countries? on the Italian territory is hard to find suitable areas (mostly if greenfields) to use the own underground, with respect to other European countries, due to the presence of seismotectonic activity and many faulted areas characterized by Diffuse Degassing Structures (DDSs, which are rich in CO2 and CH4). In this cases, public acceptan

Fedora Quattrocchi; Enzo Boschi; Angelo Spena; Mauro Buttinelli; Barbara Cantucci; Monia Procesi

2013-01-01T23:59:59.000Z

178

First U.S. Large-Scale CO2 Storage Project Advances | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

First U.S. Large-Scale CO2 Storage Project Advances First U.S. Large-Scale CO2 Storage Project Advances First U.S. Large-Scale CO2 Storage Project Advances April 6, 2009 - 1:00pm Addthis Washington, DC - Drilling nears completion for the first large-scale carbon dioxide (CO2) injection well in the United States for CO2 sequestration. This project will be used to demonstrate that CO2 emitted from industrial sources - such as coal-fired power plants - can be stored in deep geologic formations to mitigate large quantities of greenhouse gas emissions. The Archer Daniels Midland Company (ADM) hosted an event April 6 for a CO2 injection test at their Decatur, Ill. ethanol facility. The injection well is being drilled into the Mount Simon Sandstone to a depth more than a mile beneath the surface. This is the first drilling into the sandstone geology

179

New DOE Best Practices Manual Features Top Strategies for Carbon Storage  

Broader source: Energy.gov (indexed) [DOE]

DOE Best Practices Manual Features Top Strategies for Carbon DOE Best Practices Manual Features Top Strategies for Carbon Storage Wells New DOE Best Practices Manual Features Top Strategies for Carbon Storage Wells June 7, 2012 - 1:00pm Addthis Washington, DC - Best practices for managing wells used to store carbon dioxide (CO2) in geologic formations are the focus of a publication just released by the U.S. Department of Energy (DOE)'s National Energy Technology Laboratory (NETL). The newest manual in the Department's series on current best practices associated with carbon capture, utilization, and storage (CCUS), Carbon Storage Systems and Well Management Activities covers the planning, permitting, design, drilling, implementation, and decommissioning of CO2 storage wells. The manual builds on lessons learned through NETL research,

180

New DOE Best Practices Manual Features Top Strategies for Carbon Storage  

Broader source: Energy.gov (indexed) [DOE]

New DOE Best Practices Manual Features Top Strategies for Carbon New DOE Best Practices Manual Features Top Strategies for Carbon Storage Wells New DOE Best Practices Manual Features Top Strategies for Carbon Storage Wells June 7, 2012 - 1:00pm Addthis Washington, DC - Best practices for managing wells used to store carbon dioxide (CO2) in geologic formations are the focus of a publication just released by the U.S. Department of Energy (DOE)'s National Energy Technology Laboratory (NETL). The newest manual in the Department's series on current best practices associated with carbon capture, utilization, and storage (CCUS), Carbon Storage Systems and Well Management Activities covers the planning, permitting, design, drilling, implementation, and decommissioning of CO2 storage wells. The manual builds on lessons learned through NETL research,

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Geologic and hydrologic controls critical to coalbed methane producibility and resource assessment: Williams Fork Formation, Piceance Basin, Northwest Colorado. Topical report, December 1, 1993-November 30, 1995  

SciTech Connect (OSTI)

The objectives of this report are: To further evaluate the interplay of geologic and hydrologic controls on coalbed methane production and resource assessment; to refine and validate our basin-scale coalbed methane producibility model; and to analyze the economics of coalbed methane exploration and development in the Piceance Basin.

Tyler, R.; Scott, A.R.; Kaiser, W.R.; Nance, H.S.; McMurry, R.G.

1996-03-01T23:59:59.000Z

182

INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO  

SciTech Connect (OSTI)

The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 2 of the project has been reservoir characterization, 3-D modeling and technology transfer. This effort has included six tasks: (1) the study of rockfluid interactions, (2) petrophysical and engineering characterization, (3) data integration, (4) 3-D geologic modeling, (5) 3-D reservoir simulation and (6) technology transfer. This work was scheduled for completion in Year 2. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions is near completion. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been essentially completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The model represents an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic model served as the framework for the simulations. A technology workshop on reservoir characterization and modeling at Appleton and Vocation Fields was conducted to transfer the results of the project to the petroleum industry.

Ernest A. Mancini

2002-09-25T23:59:59.000Z

183

INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO  

SciTech Connect (OSTI)

The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling that utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 3 of the project has been reservoir characterization, 3-D modeling, testing of the geologic-engineering model, and technology transfer. This effort has included six tasks: (1) the study of seismic attributes, (2) petrophysical characterization, (3) data integration, (4) the building of the geologic-engineering model, (5) the testing of the geologic-engineering model and (6) technology transfer. This work was scheduled for completion in Year 3. Progress on the project is as follows: geoscientific reservoir characterization is completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been completed. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization has been completed. Porosity and permeability data at Appleton and Vocation Fields have been analyzed, and well performance analysis has been conducted. Data integration is up to date, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database. 3-D geologic modeling of the structures and reservoirs at Appleton and Vocation Fields has been completed. The models represent an integration of geological, petrophysical and seismic data. 3-D reservoir simulation of the reservoirs at Appleton and Vocation Fields has been completed. The 3-D geologic models served as the framework for the simulations. The geologic-engineering models of the Appleton and Vocation Field reservoirs have been developed. These models are being tested. The geophysical interpretation for the paleotopographic feature being tested has been made, and the study of the data resulting from drilling of a well on this paleohigh is in progress. Numerous presentations on reservoir characterization and modeling at Appleton and Vocation Fields have been made at professional meetings and conferences and a short course on microbial reservoir characterization and modeling based on these fields has been prepared.

Ernest A. Mancini

2003-09-25T23:59:59.000Z

184

Porous wall hollow glass microspheres as a medium or substrate for storage and formation of novel materials  

DOE Patents [OSTI]

Porous wall hollow glass microspheres are provided as a template for formation of nanostructures such as carbon nanotubes, In addition, the carbon nanotubes in combination with the porous wall hollow glass microsphere provides an additional reaction template with respect to carbon nanotubes.

Wicks, George G; Serkiz, Steven M.; Zidan, Ragaiy; Heung, Leung K.

2014-06-24T23:59:59.000Z

185

Carbon Capture and Storage  

SciTech Connect (OSTI)

Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

Friedmann, S

2007-10-03T23:59:59.000Z

186

Carbon dioxide capture and geological storage  

Science Journals Connector (OSTI)

...generated by a column of water of equal height to...commonly filled with water and is connected...tortuously, to the ground surface. However...integrity and the remediation of abandoned wells...flux through the ground surface or seabed...build-up in lake waters can be monitored...

2007-01-01T23:59:59.000Z

187

Carbon Storage Monitoring, Verification and Accounting Research |  

Broader source: Energy.gov (indexed) [DOE]

Monitoring, Verification and Accounting Research Monitoring, Verification and Accounting Research Carbon Storage Monitoring, Verification and Accounting Research Reliable and cost-effective monitoring, verification and accounting (MVA) techniques are an important part of making geologic sequestration a safe, effective, and acceptable method for greenhouse gas control. MVA of geologic storage sites is expected to serve several purposes, including addressing safety and environmental concerns; inventory verification; project and national accounting of greenhouse gas emissions reductions at geologic storage sites; and evaluating potential regional, national, and international greenhouse gas reduction goals. The goal of our program area is to develop and demonstrate a broad portfolio of technologies, applications, and accounting requirements that

188

GEOLOGY O F THE NORTHERN PCIRT O F DRY MOUNTAXN,  

E-Print Network [OSTI]

;BRIGHAM YOUNG UNIVERSITY RESEARCH STUDIES Geology Seri,es Vol. 3 No. 2 April, 1956 GEOLOGY OF THE NORTHERN Dolomite Pine Canyon Limestone Humbug Formation Tertiary System North Horn Formation Moroni Formation Quaternary System Pre-Lake Bonneville Fanglomerate Lake Bonneville Sediments Recent Lake Sediments Igneous

Seamons, Kent E.

189

Assessment of Brine Management for Geologic Carbon Sequestration  

E-Print Network [OSTI]

Fired  Power  Plants”,  DOE/NETL,  2010.   Chelme-­?Ayala,  Capture. ”   RADS  LLC,  DOE/NETL.  2011.   Gong,  Y.  and  Geologic   Formations. ”  NETL.  2009.   Texas  Water  

Breunig, Hanna M.

2014-01-01T23:59:59.000Z

190

EIA - Will carbon capture and storage reduce the world's carbon dioxide  

Gasoline and Diesel Fuel Update (EIA)

Will carbon capture and storage reduce the world's carbon dioxide emissions? Will carbon capture and storage reduce the world's carbon dioxide emissions? International Energy Outlook 2010 Will carbon capture and storage reduce the world'ss carbon dioxide emissions? The pursuit of greenhouse gas reductions has the potential to reduce global coal use significantly. Because coal is the most carbon-intensive of all fossil fuels, limitations on carbon dioxide emissions will raise the cost of coal relative to the costs of other fuels. Under such circumstances, the degree to which energy use shifts away from coal to other fuels will depend largely on the costs of reducing carbon dioxide emissions from coal-fired plants relative to the costs of using other, low-carbon or carbon-free energy sources. The continued widespread use of coal could rely on the cost and availability of carbon capture and storage (CCS) technologies that capture carbon dioxide and store it in geologic formations.

191

INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO  

SciTech Connect (OSTI)

The University of Alabama in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company are undertaking an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary objective of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. The principal research effort for Year 1 of the project has been reservoir description and characterization. This effort has included four tasks: (1) geoscientific reservoir characterization, (2) the study of rock-fluid interactions, (3) petrophysical and engineering characterization and (4) data integration. This work was scheduled for completion in Year 1. Overall, the project work is on schedule. Geoscientific reservoir characterization is essentially completed. The architecture, porosity types and heterogeneity of the reef and shoal reservoirs at Appleton and Vocation Fields have been characterized using geological and geophysical data. The study of rock-fluid interactions has been initiated. Observations regarding the diagenetic processes influencing pore system development and heterogeneity in these reef and shoal reservoirs have been made. Petrophysical and engineering property characterization is progressing. Data on reservoir production rate and pressure history at Appleton and Vocation Fields have been tabulated, and porosity data from core analysis has been correlated with porosity as observed from well log response. Data integration is on schedule, in that, the geological, geophysical, petrophysical and engineering data collected to date for Appleton and Vocation Fields have been compiled into a fieldwide digital database for reservoir characterization, modeling and simulation for the reef and carbonate shoal reservoirs for each of these fields.

Ernest A. Mancini

2001-09-14T23:59:59.000Z

192

INTEGRATED GEOLOGIC-ENGINEERING MODEL FOR REEF AND CARBONATE SHOAL RESERVOIRS ASSOCIATED WITH PALEOHIGHS: UPPER JURASSIC SMACKOVER FORMATION, NORTHEASTERN GULF OF MEXICO  

SciTech Connect (OSTI)

The University of Alabama, in cooperation with Texas A&M University, McGill University, Longleaf Energy Group, Strago Petroleum Corporation, and Paramount Petroleum Company, has undertaken an integrated, interdisciplinary geoscientific and engineering research project. The project is designed to characterize and model reservoir architecture, pore systems and rock-fluid interactions at the pore to field scale in Upper Jurassic Smackover reef and carbonate shoal reservoirs associated with varying degrees of relief on pre-Mesozoic basement paleohighs in the northeastern Gulf of Mexico. The project effort includes the prediction of fluid flow in carbonate reservoirs through reservoir simulation modeling which utilizes geologic reservoir characterization and modeling and the prediction of carbonate reservoir architecture, heterogeneity and quality through seismic imaging. The primary goal of the project is to increase the profitability, producibility and efficiency of recovery of oil from existing and undiscovered Upper Jurassic fields characterized by reef and carbonate shoals associated with pre-Mesozoic basement paleohighs. Geoscientific reservoir property, geophysical seismic attribute, petrophysical property, and engineering property characterization has shown that reef (thrombolite) and shoal reservoir lithofacies developed on the flanks of high-relief crystalline basement paleohighs (Vocation Field example) and on the crest and flanks of low-relief crystalline basement paleohighs (Appleton Field example). The reef thrombolite lithofacies have higher reservoir quality than the shoal lithofacies due to overall higher permeabilities and greater interconnectivity. Thrombolite dolostone flow units, which are dominated by dolomite intercrystalline and vuggy pores, are characterized by a pore system comprised of a higher percentage of large-sized pores and larger pore throats. Rock-fluid interactions (diagenesis) studies have shown that although the primary control on reservoir architecture and geographic distribution of Smackover reservoirs is the fabric and texture of the depositional lithofacies, diagenesis (chiefly dolomitization) is a significant factor that preserves and enhances reservoir quality. The evaporative pumping mechanism is favored to explain the dolomitization of the thrombolite doloboundstone and dolostone reservoir flow units at Appleton and Vocation Fields. Geologic modeling, reservoir simulation, and the testing and applying the resulting integrated geologic-engineering models have shown that little oil remains to be recovered at Appleton Field and a significant amount of oil remains to be recovered at Vocation Field through a strategic infill drilling program. The drive mechanisms for primary production in Appleton and Vocation Fields remain effective; therefore, the initiation of a pressure maintenance program or enhanced recovery project is not required at this time. The integrated geologic-engineering model developed for a low-relief paleohigh (Appleton Field) was tested for three scenarios involving the variables of present-day structural elevation and the presence/absence of potential reef thrombolite lithofacies. In each case, the predictions based upon the model were correct. From this modeling, the characteristics of the ideal prospect in the basement ridge play include a low-relief paleohigh associated with dendroidal/chaotic thrombolite doloboundstone and dolostone that has sufficient present-day structural relief so that these carbonates rest above the oil-water contact. Such a prospect was identified from the modeling, and it is located northwest of well Permit No. 3854B (Appleton Field) and south of well No. Permit No.11030B (Northwest Appleton Field).

Ernest A. Mancini

2004-02-25T23:59:59.000Z

193

On leakage and seepage from geological carbon sequestration sites  

SciTech Connect (OSTI)

Geologic carbon sequestration is one strategy for reducing the rate of increase of global atmospheric carbon dioxide (CO{sub 2} ) concentrations (IEA, 1997; Reichle, 2000). As used here, the term geologic carbon sequestration refers to the direct injection of supercritical CO{sub 2} deep into subsurface target formations. These target formations will typically be either depleted oil and gas reservoirs, or brine-filled permeable formations referred to here as brine formations. Injected CO{sub 2} will tend to be trapped by one or more of the following mechanisms: (1) permeability trapping, for example when buoyant supercritical CO{sub 2} rises until trapped by a confining caprock; (2) solubility trapping, for example when CO{sub 2} dissolves into the aqueous phase in water-saturated formations, or (3) mineralogic trapping, such as occurs when CO{sub 2} reacts to produce stable carbonate minerals. When CO{sub 2} is trapped in the subsurface by any of these mechanisms, it is effectively sequestered away from the atmosphere where it would otherwise act as a greenhouse gas. The purpose of this report is to summarize our work aimed at quantifying potential CO{sub 2} seepage due to leakage from geologic carbon sequestration sites. The approach we take is to present first the relevant properties of CO{sub 2} over the range of conditions from the deep subsurface to the vadose zone (Section 2), and then discuss conceptual models for how leakage might occur (Section 3). The discussion includes consideration of gas reservoir and natural gas storage analogs, along with some simple estimates of seepage based on assumed leakage rates. The conceptual model discussion provides the background for the modeling approach wherein we focus on simulating transport in the vadose zone, the last potential barrier to CO{sub 2} seepage (Section 4). Because of the potentially wide range of possible properties of actual future geologic sequestration sites, we carry out sensitivity analyses by means of numerical simulation and derive the trends in seepage flux and near-surface CO{sub 2} concentrations that will arise from variations in fundamental hydrogeological properties.

Oldenburg, C.M.; Unger, A.J.A.; Hepple, R.P.; Jordan, P.D.

2002-07-18T23:59:59.000Z

194

Carbon Storage Review 2012  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sequestration Options in the Illinois Basin - Phase III DE-FC26-05NT42588 Robert J. Finley and the MGSC Project Team Illinois State Geological Survey (University of Illinois) and Schlumberger Carbon Services U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 * The Midwest Geological Sequestration Consortium is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) via the Regional Carbon Sequestration Partnership Program (contract number DE-FC26-05NT42588) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal

195

Underground natural gas storage reservoir management  

SciTech Connect (OSTI)

The objective of this study is to research technologies and methodologies that will reduce the costs associated with the operation and maintenance of underground natural gas storage. This effort will include a survey of public information to determine the amount of natural gas lost from underground storage fields, determine the causes of this lost gas, and develop strategies and remedial designs to reduce or stop the gas loss from selected fields. Phase I includes a detailed survey of US natural gas storage reservoirs to determine the actual amount of natural gas annually lost from underground storage fields. These reservoirs will be ranked, the resultant will include the amount of gas and revenue annually lost. The results will be analyzed in conjunction with the type (geologic) of storage reservoirs to determine the significance and impact of the gas loss. A report of the work accomplished will be prepared. The report will include: (1) a summary list by geologic type of US gas storage reservoirs and their annual underground gas storage losses in ft{sup 3}; (2) a rank by geologic classifications as to the amount of gas lost and the resultant lost revenue; and (3) show the level of significance and impact of the losses by geologic type. Concurrently, the amount of storage activity has increased in conjunction with the net increase of natural gas imports as shown on Figure No. 3. Storage is playing an ever increasing importance in supplying the domestic energy requirements.

Ortiz, I.; Anthony, R.

1995-06-01T23:59:59.000Z

196

Regional Geologic Map  

SciTech Connect (OSTI)

Shaded relief base with Hot Pot project area, generalized geology, selected mines, and major topographic features

Lane, Michael

2013-06-28T23:59:59.000Z

197

Regional Geologic Map  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Shaded relief base with Hot Pot project area, generalized geology, selected mines, and major topographic features

Lane, Michael

198

Investigating leaking underground storage tanks  

E-Print Network [OSTI]

INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August 1989... Major Subject: Geology INVESTIGATING LEAKING UNDERGROUND STORAGE TANKS A Thesis by DAVID THOMPSON UPTON Approved as to sty)e and content by: P. A, Domenico (Chair of Committee) jj K. W. Brown (Member) C. C Mathewson (Member) J. H. S ng Head...

Upton, David Thompson

1989-01-01T23:59:59.000Z

199

Geological Constraints on High-Level Nuclear Waste Disposal and their Relationship to Possible  

E-Print Network [OSTI]

to Possible Long Term Storage Solutions- A Case Study of the Yucca Mountain Project Teresa Dunn 2013 #12;Dunn systems and geologic composition in the selection and development of a secure, long-term storage facilityDunn 1 Geological Constraints on High-Level Nuclear Waste Disposal and their Relationship

Polly, David

200

NETL: Carbon Storage Best Practices Manuals  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Best Practices Manuals Best Practices Manuals Developing best practices - or reliable and consistent standards and operational characteristics for CO2 collection, injection and storage - is essential for providing the basis for a legal and regulatory framework and encouraging widespread global CCS deployment. The lessons learned during the Regional Carbon Sequestration Partnerships' (RCSP) Validation Phase small-scale field tests are being utilized to generate a series of Best Practices Manuals (BPMs) that serve as the basis for the design and implementation of both large-scale field tests and commercial carbon capture and storage (CCS) projects. NETL has released six BPMS: NETL's "Monitoring, Verification, and Accounting (MVA) of CO2 Stored in Deep Geologic Formations - 2012 Update" BPM provides an overview of MVA techniques that are currently in use or are being developed; summarizes DOE's MVA R&D program; and presents information that can be used by regulatory organizations, project developers, and policymakers to ensure the safety and efficacy of carbon storage projects.

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Risk assessment framework for geologic carbon sequestration sites  

SciTech Connect (OSTI)

We have developed a simple and transparent approach for assessing CO{sub 2} and brine leakage risk associated with CO{sub 2} injection at geologic carbon sequestration (GCS) sites. The approach, called the Certification Framework (CF), is based on the concept of effective trapping, which takes into account both the probability of leakage from the storage formation and impacts of leakage. The effective trapping concept acknowledges that GCS can be safe and effective even if some CO{sub 2} and brine were to escape from the storage formation provided the impact of such leakage is below agreed-upon limits. The CF uses deterministic process models to calculate expected well- and fault-related leakage fluxes and concentrations. These in turn quantify the impacts under a given leakage scenario to so-called 'compartments,' which comprise collections of vulnerable entities. The probabilistic part of the calculated risk comes from the likelihood of (1) the intersections of injected CO{sub 2} and related pressure perturbations with well or fault leakage pathways, and (2) intersections of leakage pathways with compartments. Two innovative approaches for predicting leakage likelihood, namely (1) fault statistics, and (2) fuzzy rules for fault and fracture intersection probability, are highlighted here.

Oldenburg, C.; Jordan, P.; Zhang, Y.; Nicot, J.-P.; Bryant, S.L.

2010-02-01T23:59:59.000Z

202

Fossil Energy Research Benefits Carbon Capture and Storage  

Broader source: Energy.gov (indexed) [DOE]

Through Office of Fossil Energy (FE) Through Office of Fossil Energy (FE) research and development (R&D), the United States has become a world leader in carbon capture and storage (CCS) science and technology. CCS is a group of technologies for effectively capturing, compressing and transporting, and permanently injecting and storing in geologic formations carbon dioxide (CO 2 ) from industrial or power plants. It is one part of a wider portfolio strategy (including greater use of renewable and nuclear energy, and higher efficiencies) that many scientists and nations favor for achieving significant cuts in atmospheric CO 2 emissions. Fossil Energy Research Benefits Carbon Capture and Storage FE and its research facility, the National Energy Technology

203

Sensitivity study of CO2 storage capacity in brine aquifers withclosed boundaries: Dependence on hydrogeologic properties  

SciTech Connect (OSTI)

In large-scale geologic storage projects, the injected volumes of CO{sub 2} will displace huge volumes of native brine. If the designated storage formation is a closed system, e.g., a geologic unit that is compartmentalized by (almost) impermeable sealing units and/or sealing faults, the native brine cannot (easily) escape from the target reservoir. Thus the amount of supercritical CO{sub 2} that can be stored in such a system depends ultimately on how much pore space can be made available for the added fluid owing to the compressibility of the pore structure and the fluids. To evaluate storage capacity in such closed systems, we have conducted a modeling study simulating CO{sub 2} injection into idealized deep saline aquifers that have no (or limited) interaction with overlying, underlying, and/or adjacent units. Our focus is to evaluate the storage capacity of closed systems as a function of various reservoir parameters, hydraulic properties, compressibilities, depth, boundaries, etc. Accounting for multi-phase flow effects including dissolution of CO{sub 2} in numerical simulations, the goal is to develop simple analytical expressions that provide estimates for storage capacity and pressure buildup in such closed systems.

Zhou, Q.; Birkholzer, J.; Rutqvist, J.; Tsang, C-F.

2007-02-07T23:59:59.000Z

204

Hanford Site Guidelines for Preparation and Presentation of Geologic Information  

SciTech Connect (OSTI)

A complex geology lies beneath the Hanford Site of southeastern Washington State. Within this geology is a challenging large-scale environmental cleanup project. Geologic and contaminant transport information generated by several U.S. Department of Energy contractors must be documented in geologic graphics clearly, consistently, and accurately. These graphics must then be disseminated in formats readily acceptable by general graphics and document producing software applications. The guidelines presented in this document are intended to facilitate consistent, defensible, geologic graphics and digital data/graphics sharing among the various Hanford Site agencies and contractors.

Lanigan, David C.; Last, George V.; Bjornstad, Bruce N.; Thorne, Paul D.; Webber, William D.

2010-04-30T23:59:59.000Z

205

Geologic spatial analysis  

SciTech Connect (OSTI)

This report describes the development of geologic spatial analysis research which focuses on conducting comprehensive three-dimensional analysis of regions using geologic data sets that can be referenced by latitude, longitude, and elevation/depth. (CBS)

Thiessen, R.L.; Eliason, J.R.

1989-01-01T23:59:59.000Z

206

Geology of Natural Gas  

Science Journals Connector (OSTI)

... to an accepted plan have produced a most comprehensive geological account of the occurrence of natural ...naturalgas ...

E. F. A.

1936-01-04T23:59:59.000Z

207

AASG State Geological Survey  

Broader source: Energy.gov [DOE]

presentation at the April 2013 peer review meeting held in Denver, Colorado.Contributions to the NGDSAASG State Geological Survey

208

Advanced Technologies for Monitoring CO2 Saturation and Pore Pressure in Geologic Formations: Linking the Chemical and Physical Effects to Elastic and Transport Properties  

SciTech Connect (OSTI)

Ultrasonic P- and S-wave velocities were measured over a range of confining pressures while injecting CO2 and brine into the samples. Pore fluid pressure was also varied and monitored together with porosity during injection. Effective medium models were developed to understand the mechanisms and impact of observed changes and to provide the means for implementation of the interpretation methodologies in the field. Ultrasonic P- and S-wave velocities in carbonate rocks show as much as 20-50% decrease after injection of the reactive CO2-brine mixture; the changes were caused by permanent changes to the rock elastic frame associated with dissolution of mineral. Velocity decreases were observed under both dry and fluid-saturated conditions, and the amount of change was correlated with the initial pore fabrics. Scanning Electron Microscope images of carbonate rock microstructures were taken before and after injection of CO2-rich water. The images reveal enlargement of the pores, dissolution of micrite (micron-scale calcite crystals), and pitting of grain surfaces caused by the fluid- solid chemical reactivity. The magnitude of the changes correlates with the rock microtexture – tight, high surface area samples showed the largest changes in permeability and smallest changes in porosity and elastic stiffness compared to those in rocks with looser texture and larger intergranular pore space. Changes to the pore space also occurred from flow of fine particles with the injected fluid. Carbonates with grain-coating materials, such as residual oil, experienced very little permanent change during injection. In the tight micrite/spar cement component, dissolution is controlled by diffusion: the mass transfer of products and reactants is thus slow and the fluid is expected to be close to thermodynamical equilibrium with the calcite, leading to very little dissolution, or even precipitation. In the microporous rounded micrite and macropores, dissolution is controlled by advection: because of an efficient mass transfer of reactants and products, the fluid remains acidic, far from thermodynamical equilibrium and the dissolution of calcite is important. These conclusions are consistent with the lab observations. Sandstones from the Tuscaloosa formation in Mississippi were also subjected to injection under representative in situ stress and pore pressure conditions. Again, both P- and S-wave velocities decreased with injection. Time-lapse SEM images indicated permanent changes induced in the sandstone microstructure by chamosite dissolution upon injection of CO2-rich brine. After injection, the sandstone showed an overall cleaner microstructure. Two main changes are involved: (a) clay dissolution between grains and at the grain contact and (b) rearrangement of grains due to compaction under pressure Theoretical and empirical models were developed to quantify the elastic changes associated with injection. Permanent changes to the rock frame resulted in seismic velocity-porosity trends that mimic natural diagenetic changes. Hence, when laboratory measurments are not available for a candidate site, these trends can be estimated from depth trends in well logs. New theoretical equations were developed to predict the changes in elastic moduli upon substitution of pore-filling material. These equations reduce to Gassmann’s equations for the case of constant frame properties, low seismic frequencies, and fluid changes in the pore space. The new models also predict the change dissolution or precipitation of mineral, which cannot be described with the conventional Gassmann theory.

Mavko, G.; Vanorio, T.; Vialle, S.; Saxena, N.

2014-03-31T23:59:59.000Z

209

Gas hydrate cool storage system  

DOE Patents [OSTI]

The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

Ternes, M.P.; Kedl, R.J.

1984-09-12T23:59:59.000Z

210

Physical and geological processes of delta formation  

E-Print Network [OSTI]

.r-4y 0gs Mrs24MyT2Fg-r 2FFTM2rg 0M 0g-8 80.19 M6 4s2T8gMTs rM41-0-M48f 0gs 2.0gMT M6 0g-8 1-88sT020-M4f Dg2T5s8 D2TFs40sT R20s8f 1-8rMisTs1 25M4y 0gs s280sT4 6524k M6 0gs FTs8s40b129 h-88-88-FF- 1s502 .4.8.25 5M4y8gMTs 241 M668gMTs 1-80T-o.0-M48 M....8s8 M6 1s5028f R20s8 g2i-4y 6MTu.520s1 2 rMuFTsgs48-is 0gsMT9 M6 1s502 6MTu20-M4bz, Ags jp;bWMT1 bz Ags TM5s M6 65Mrr.520-M4 241 0gs ysMyT2Fg9 M6 0gs 1sFM8-0-M4 M6 65Mrr.020s8 -8 4M0 -4is80-y20s1 28 0gs8s 1sFM8-08 8ssu 0M 2rr.u.520s 52Tys59 os9M41...

Bates, Charles Carpenter

2013-10-04T23:59:59.000Z

211

Certification Framework Based on Effective Trapping for Geologic Carbon Sequestration  

SciTech Connect (OSTI)

We have developed a certification framework (CF) for certifying the safety and effectiveness of geologic carbon sequestration (GCS) sites. Safety and effectiveness are achieved if CO{sub 2} and displaced brine have no significant impact on humans, other living things, resources, or the environment. In the CF, we relate effective trapping to CO{sub 2} leakage risk which takes into account both the impact and probability of leakage. We achieve simplicity in the CF by using (1) wells and faults as the potential leakage pathways, (2) compartments to represent environmental resources that may be impacted by leakage, (3) CO{sub 2} fluxes and concentrations in the compartments as proxies for impact to vulnerable entities, (4) broad ranges of storage formation properties to generate a catalog of simulated plume movements, and (5) probabilities of intersection of the CO{sub 2} plume with the conduits and compartments. We demonstrate the approach on a hypothetical GCS site in a Texas Gulf Coast saline formation. Through its generality and flexibility, the CF can contribute to the assessment of risk of CO{sub 2} and brine leakage as part of the certification process for licensing and permitting of GCS sites around the world regardless of the specific regulations in place in any given country.

Oldenburg, Curtis M.; Bryant, Steven L.; Nicot, Jean-Philippe

2009-01-15T23:59:59.000Z

212

Radionuclide Interaction and Transport in Representative Geologic Media |  

Broader source: Energy.gov (indexed) [DOE]

Radionuclide Interaction and Transport in Representative Geologic Radionuclide Interaction and Transport in Representative Geologic Media Radionuclide Interaction and Transport in Representative Geologic Media The report presents information related to the development of a fundamental understanding of disposal-system performance in a range of environments for potential wastes that could arise from future nuclear fuel cycle alternatives. It addresses selected aspects of the development of computational modeling capability for the performance of storage and disposal options. Topics include radionuclide interaction with geomedia, colloid-facilitated radionuclide transport (Pu colloids), interaction between iodide (accumulate in the interlayer regions of clay minerals) and a suite of clay minerals, adsorption of uranium onto granite and bentonite,

213

NETL: News Release - First U.S. Large-Scale CO2 Storage Project Advances  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

April 6, 2009 April 6, 2009 First U.S. Large-Scale CO2 Storage Project Advances One Million Metric Tons of Carbon to be Injected at Illinois Site Washington, DC -Drilling nears completion for the first large-scale carbon dioxide (CO2) injection well in the United States for CO2 sequestration. This project will be used to demonstrate that CO2 emitted from industrial sources - such as coal-fired power plants - can be stored in deep geologic formations to mitigate large quantities of greenhouse gas emissions. MORE INFO Link to the Midwest Geological Sequestration Consortium web site The Archer Daniels Midland Company (ADM) hosted an event April 6 for a CO2 injection test at their Decatur, Ill. ethanol facility. The injection well is being drilled into the Mount Simon Sandstone to a depth more than a mile

214

Assessing the Effect of Timing of Availability for Carbon Dioxide Storage in the Largest Oil and Gas Pools in the Alberta Basin: Description of Data and Methodology  

SciTech Connect (OSTI)

Carbon dioxide capture from large stationary sources and storage in geological media is a technologically-feasible mitigation measure for the reduction of anthropogenic emissions of CO2 to the atmosphere in response to climate change. Carbon dioxide (CO2) can be sequestered underground in oil and gas reservoirs, in deep saline aquifers, in uneconomic coal beds and in salt caverns. The Alberta Basin provides a very large capacity for CO2 storage in oil and gas reservoirs, along with significant capacity in deep saline formations and possible unmineable coal beds. Regional assessments of potential geological CO2 storage capacity have largely focused so far on estimating the total capacity that might be available within each type of reservoir. While deep saline formations are effectively able to accept CO2 immediately, the storage potential of other classes of candidate storage reservoirs, primarily oil and gas fields, is not fully available at present time. Capacity estimates to date have largely overlooked rates of depletion in these types of storage reservoirs and typically report the total estimated storage capacity that will be available upon depletion. However, CO2 storage will not (and cannot economically) begin until the recoverable oil and gas have been produced via traditional means. This report describes a reevaluation of the CO2 storage capacity and an assessment of the timing of availability of the oil and gas pools in the Alberta Basin with very large storage capacity (>5 MtCO2 each) that are being looked at as likely targets for early implementation of CO2 storage in the region. Over 36,000 non-commingled (i.e., single) oil and gas pools were examined with effective CO2 storage capacities being individually estimated. For each pool, the life expectancy was estimated based on a combination of production decline analysis constrained by the remaining recoverable reserves and an assessment of economic viability, yielding an estimated depletion date, or year that it will be available for CO2 storage. The modeling framework and assumptions used to assess the impact of the timing of CO2 storage resource availability on the region’s deployment of CCS technologies is also described. The purpose of this report is to describe the data and methodology for examining the carbon dioxide (CO2) storage capacity resource of a major hydrocarbon province incorporating estimated depletion dates for its oil and gas fields with the largest CO2 storage capacity. This allows the development of a projected timeline for CO2 storage availability across the basin and enables a more realistic examination of potential oil and gas field CO2 storage utilization by the region’s large CO2 point sources. The Alberta Basin of western Canada was selected for this initial examination as a representative mature basin, and the development of capacity and depletion date estimates for the 227 largest oil and gas pools (with a total storage capacity of 4.7 GtCO2) is described, along with the impact on source-reservoir pairing and resulting CO2 transport and storage economics. The analysis indicates that timing of storage resource availability has a significant impact on the mix of storage reservoirs selected for utilization at a given time, and further confirms the value that all available reservoir types offer, providing important insights regarding CO2 storage implementation to this and other major oil and gas basins throughout North America and the rest of the world. For CCS technologies to deploy successfully and offer a meaningful contribution to climate change mitigation, CO2 storage reservoirs must be available not only where needed (preferably co-located with or near large concentrations of CO2 sources or emissions centers) but also when needed. The timing of CO2 storage resource availability is therefore an important factor to consider when assessing the real opportunities for CCS deployment in a given region.

Dahowski, Robert T.; Bachu, Stefan

2007-03-05T23:59:59.000Z

215

Geology of the South Mason-Llano River area, Texas  

E-Print Network [OSTI]

Mountain formation and located and redes- cribed many of Roemer's type localities (Bridge 1937). Bridge and Girty (1937) redescribed Roemer" s Paleozoic fossils and included notes on the geology of the region. Ventifacts of the basal Hickory sandstone... Mountain formation and located and redes- cribed many of Roemer's type localities (Bridge 1937). Bridge and Girty (1937) redescribed Roemer" s Paleozoic fossils and included notes on the geology of the region. Ventifacts of the basal Hickory sandstone...

Duvall, Victor Martin

2012-06-07T23:59:59.000Z

216

Strategic Petroleum Reserve (SPR) geological site characterization report, Big Hill Salt Dome  

SciTech Connect (OSTI)

Geological and geophysical analyses of the Big Hill Salt Dome were performed to determine the suitability of this site for use in the Strategic Petroleum Reserve (SPR). Development of 140 million barrels (MMB) of storage capacity in the Big Hill Salt Dome is planned as part of the SPR expansion to achieve 750 MMB of storage capacity. Objectives of the study were to: (1) Acquire, evaluate, and interpret existing data pertinent to geological characterization of the Big Hill Dome; (2) Characterize the surface and near-surface geology and hydrology; (3) Characterize the geology and hydrology of the overlying cap rock; (4) Define the geometry and geology of the dome; (5) Determine the feasibility of locating and constructing 14 10-MMB storage caverns in the south portion of the dome; and (6) Assess the effects of natural hazards on the SPR site. Recommendations are included. (DMC)

Hart, R.J.; Ortiz, T.S.; Magorian, T.R.

1981-09-01T23:59:59.000Z

217

CO{sub 2} Injectivity, Storage Capacity, Plume Size, and Reservoir and Seal Integrity of the Ordovician St. Peter Sandstone and the Cambrian Potosi Formation in the Illnois Basin  

SciTech Connect (OSTI)

The Cambro-Ordovician strata of the Illinois and Michigan Basins underlie most of the states of Illinois, Indiana, Kentucky, and Michigan. This interval also extends through much of the Midwest of the United States and, for some areas, may be the only available target for geological sequestration of CO{sub 2}. We evaluated the Cambro-Ordovician strata above the basal Mt. Simon Sandstone reservoir for sequestration potential. The two targets were the Cambrian carbonate intervals in the Knox and the Ordovician St. Peter Sandstone. The evaluation of these two formations was accomplished using wireline data, core data, pressure data, and seismic data from the USDOE-funded Illinois Basin â?? Decatur Project being conducted by the Midwest Geological Sequestration Consortium in Macon County, Illinois. Interpretations were completed using log analysis software, a reservoir flow simulator, and a finite element solver that determines rock stress and strain changes resulting from the pressure increase associated with CO{sub 2} injection. Results of this research suggest that both the St. Peter Sandstone and the Potosi Dolomite (a formation of the Knox) reservoirs may be capable of storing up to 2 million tonnes of CO{sub 2} per year for a 20-year period. Reservoir simulation results for the St. Peter indicate good injectivity and a relatively small CO{sub 2} plume. While a single St. Peter well is not likely to achieve the targeted injection rate of 2 million tonnes/year, results of this study indicate that development with three or four appropriately spaced wells may be sufficient. Reservoir simulation of the Potosi suggest that much of the CO{sub 2} flows into and through relatively thin, high permeability intervals, resulting in a large plume diameter compared with the St. Peter.

Hannes Leetaru; Alan Brown; Donald Lee; Ozgur Senel; Marcia Coueslan

2012-05-01T23:59:59.000Z

218

Energy Storage  

SciTech Connect (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-03T23:59:59.000Z

219

Energy Storage  

ScienceCinema (OSTI)

ORNL Distinguished Scientist Parans Paranthaman is discovering new materials with potential for greatly increasing batteries' energy storage capacity and bring manufacturing back to the US.

Paranthaman, Parans

2014-06-23T23:59:59.000Z

220

Principles of Historical Geology Geology 331  

E-Print Network [OSTI]

in West Virginia. #12;Original Lateral Continuity #12;Geology Field Camp in the Badlands of South Dakota surface of igneous or metamorphic rocks. #12;Crystalline Rocks #12;James Hutton, 18th Century founder Smith, the first 19th Century geologist to understand stratigraphy and make correlations. #12

Kammer, Thomas

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

An Assessment of the Commercial Availability of Carbon Dioxide Capture and Storage Technologies as of June 2009  

SciTech Connect (OSTI)

Currently, there is considerable confusion within parts of the carbon dioxide capture and storage (CCS) technical and regulatory communities regarding the maturity and commercial readiness of the technologies needed to capture, transport, inject, monitor and verify the efficacy of carbon dioxide (CO2) storage in deep, geologic formations. The purpose of this technical report is to address this confusion by discussing the state of CCS technological readiness in terms of existing commercial deployments of CO2 capture systems, CO2 transportation pipelines, CO2 injection systems and measurement, monitoring and verification (MMV) systems for CO2 injected into deep geologic structures. To date, CO2 has been captured from both natural gas and coal fired commercial power generating facilities, gasification facilities and other industrial processes. Transportation via pipelines and injection of CO2 into the deep subsurface are well established commercial practices with more than 35 years of industrial experience. There are also a wide variety of MMV technologies that have been employed to understand the fate of CO2 injected into the deep subsurface. The four existing end-to-end commercial CCS projects – Sleipner, Snøhvit, In Salah and Weyburn – are using a broad range of these technologies, and prove that, at a high level, geologic CO2 storage technologies are mature and capable of deploying at commercial scales. Whether wide scale deployment of CCS is currently or will soon be a cost-effective means of reducing greenhouse gas emissions is largely a function of climate policies which have yet to be enacted and the public’s willingness to incur costs to avoid dangerous anthropogenic interference with the Earth’s climate. There are significant benefits to be had by continuing to improve through research, development, and demonstration suite of existing CCS technologies. Nonetheless, it is clear that most of the core technologies required to address capture, transport, injection, monitoring, management and verification for most large CO2 source types and in most CO2 storage formation types, exist.

Dooley, James J.; Davidson, Casie L.; Dahowski, Robert T.

2009-06-26T23:59:59.000Z

222

Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Storage  

Broader source: Energy.gov (indexed) [DOE]

Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Storage Potential in U.S. and Portions of Canada Third Carbon Sequestration Atlas Estimates Up to 5,700 Years of CO2 Storage Potential in U.S. and Portions of Canada December 1, 2010 - 12:00pm Addthis Washington, DC - There could be as much as 5,700 years of carbon dioxide (CO2) storage potential available in geologic formations in the United States and portions of Canada, according to the latest edition of the U.S. Department of Energy's (DOE) Carbon Sequestration Atlas (Atlas III). The updated preliminary estimate, based on current emission rates, documents 1,800 billion to more than 20,000 billion metric tons of CO2 storage potential in saline formations, oil and gas reservoirs, and unmineable coal areas. This suggests the availability of approximately

223

Deep Geologic Nuclear Waste Disposal - No New Taxes - 12469  

SciTech Connect (OSTI)

To some, the perceived inability of the United States to dispose of high-level nuclear waste justifies a moratorium on expansion of nuclear power in this country. Instead, it is more an example of how science yields to social pressure, even on a subject as technical as nuclear waste. Most of the problems, however, stem from confusion on the part of the public and their elected officials, not from a lack of scientific knowledge. We know where to put nuclear waste, how to put it there, how much it will cost, and how well it will work. And it's all about the geology. The President's Blue Ribbon Commission on America's Nuclear Future has drafted a number of recommendations addressing nuclear energy and waste issues (BRC 2011) and three recommendations, in particular, have set the stage for a new strategy to dispose of high-level nuclear waste and to manage spent nuclear fuel in the United States: 1) interim storage for spent nuclear fuel, 2) resumption of the site selection process for a second repository, and 3) a quasi-government entity to execute the program and take control of the Nuclear Waste Fund in order to do so. The first two recommendations allow removal and storage of spent fuel from reactor sites to be used in the future, and allows permanent disposal of actual waste, while the third controls cost and administration. The Nuclear Waste Policy Act of 1982 (NPWA 1982) provides the second repository different waste criteria, retrievability, and schedule, so massive salt returns as the candidate formation of choice. The cost (in 2007 dollars) of disposing of 83,000 metric tons of heavy metal (MTHM) high-level waste (HLW) is about $ 83 billion (b) in volcanic tuff, $ 29 b in massive salt, and $ 77 b in crystalline rock. Only in salt is the annual revenue stream from the Nuclear Waste Fund more than sufficient to accomplish this program without additional taxes or rate hikes. The cost is determined primarily by the suitability of the geologic formation, i.e., how well it performs on its own for millions of years with little engineering assistance from humans. It is critical that the states most affected by this issue (WA, SC, ID, TN, NM and perhaps others) develop an independent multi-state agreement in order for a successful program to move forward. Federal approval would follow. Unknown to most, the United States has a successful operating deep permanent geologic nuclear repository for high and low activity waste, called the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. Its success results from several factors, including an optimal geologic and physio-graphic setting, a strong scientific basis, early regional community support, frequent interactions among stakeholders at all stages of the process, long-term commitment from the upper management of the U.S. Department of Energy (DOE) over several administrations, strong New Mexico State involvement and oversight, and constant environmental monitoring from before nuclear waste was first emplaced in the WIPP underground (in 1999) to the present. WIPP is located in the massive bedded salts of the Salado Formation, whose geological, physical, chemical, redox, thermal, and creep-closure properties make it an ideal formation for long-term disposal, long-term in this case being greater than 200 million years. These properties also mean minimal engineering requirements as the rock does most of the work of isolating the waste. WIPP has been operating for twelve years, and as of this writing, has disposed of over 80,000 m{sup 3} of nuclear weapons waste, called transuranic or TRU waste (>100 nCurie/g but <23 Curie/1000 cm{sup 3}) including some high activity waste from reprocessing of spent fuel from old weapons reactors. All nuclear waste of any type from any source can be disposed in this formation better, safer and cheaper than in any other geologic formation. At the same time, it is critical that we complete the Yucca Mountain license application review so as not to undermine the credibility of the Nuclear Regulatory Commission and the scientific commun

Conca, James [RJLee Group, Inc., Pasco WA 509.205.7541 (United States); Wright, Judith [UFA Ventures, Inc., Richland, WA (United States)

2012-07-01T23:59:59.000Z

224

DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 Storage  

Broader source: Energy.gov (indexed) [DOE]

Field Test Demonstrates Viability of Simultaneous CO2 Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs DOE-Sponsored Field Test Demonstrates Viability of Simultaneous CO2 Storage and Enhanced Oil Recovery in Carbonate Reservoirs June 28, 2010 - 1:00pm Addthis Washington, DC - A field test conducted by a U.S. Department of Energy (DOE) team of regional partners has demonstrated that using carbon dioxide (CO2) in an enhanced oil recovery method dubbed "huff-and-puff" can help assess the carbon sequestration potential of geologic formations while tapping America's valuable oil resources. The Plains CO2 Reduction (PCOR) Partnership, one of seven in DOE's Regional Carbon Sequestration Partnership program, collaborated with Eagle Operating Inc. to complete the test in the Northwest McGregor Oil Field in Williams

225

Geologic flow characterization using tracer techniques  

SciTech Connect (OSTI)

A new tracer flow-test system has been developed for in situ characterization of geologic formations. This report describes two sets of test equipment: one portable and one for testing in deep formations. Equations are derived for in situ detector calibration, raw data reduction, and flow logging. Data analysis techniques are presented for computing porosity and permeability in unconfined isotropic media, and porosity, permeability and fracture characteristics in media with confined or unconfined two-dimensional flow. The effects of tracer pulse spreading due to divergence, dispersion, and porous formations are also included.

Klett, R. D.; Tyner, C. E.; Hertel, Jr., E. S.

1981-04-01T23:59:59.000Z

226

Geological Development of Panama  

Science Journals Connector (OSTI)

The Panama that geologists see today is a young ... /early Tertiary time. The geological development of Panama is a consequence of the relative motions ... igneous rocks that comprise much of present-day Panama f...

Russell S.Harmon

2005-01-01T23:59:59.000Z

227

Natural gas cavern storage regulation  

SciTech Connect (OSTI)

Investigation of an incident at an LPG storage facility in Texas by U.S. Department of Transportation resulted in recommendation that state regulation of natural gas cavern storage might be improved. Interstate Oil & Gas Compact Commission has established a subcommittee to analyze the benefits and risks associated with natural gas cavern storage, and to draft a regulation model which will suggest engineering and performance specifications. The resulting analysis and regulatory language will be reviewed by I.O.G.C.C., and if approved, distributed to member states (including New York) for consideration. Should the states desire assistance in modifying the language to reflect local variables, such as policy and geology, I.O.G.C.C. may offer assistance. The proposed presentation will review the I.O.G.C.C. product (if published at that date), and discuss implications of its application in New York.

Heneman, H.

1995-09-01T23:59:59.000Z

228

Summary Report on CO{sub 2} Geologic Sequestration & Water Resources Workshop  

SciTech Connect (OSTI)

The United States Environmental Protection Agency (EPA) and Lawrence Berkeley National Laboratory (LBNL) jointly hosted a workshop on “CO{sub 2} Geologic Sequestration and Water Resources” in Berkeley, June 1–2, 2011. The focus of the workshop was to evaluate R&D needs related to geological storage of CO{sub 2} and potential impacts on water resources. The objectives were to assess the current status of R&D, to identify key knowledge gaps, and to define specific research areas with relevance to EPA’s mission. About 70 experts from EPA, the DOE National Laboratories, industry, and academia came to Berkeley for two days of intensive discussions. Participants were split into four breakout session groups organized around the following themes: Water Quality and Impact Assessment/Risk Prediction; Modeling and Mapping of Area of Potential Impact; Monitoring and Mitigation; Wells as Leakage Pathways. In each breakout group, participants identified and addressed several key science issues. All groups developed lists of specific research needs; some groups prioritized them, others developed short-term vs. long-term recommendations for research directions. Several crosscutting issues came up. Most participants agreed that the risk of CO{sub 2} leakage from sequestration sites that are properly selected and monitored is expected to be low. However, it also became clear that more work needs to be done to be able to predict and detect potential environmental impacts of CO{sub 2} storage in cases where the storage formation may not provide for perfect containment and leakage of CO{sub 2}–brine might occur.

Varadharajan, C.; Birkholzer, J.; Kraemer, S.; Porse, S.; Carroll, S.; Wilkin, R.; Maxwell, R.; Bachu, S.; Havorka, S.; Daley, T.; Digiulio, D.; Carey, W.; Strasizar, B.; Huerta, N.; Gasda, S.; Crow, W.

2012-02-15T23:59:59.000Z

229

Geographic information systems (GIS) for geologic mapping  

SciTech Connect (OSTI)

The computer-based Geographic Information System (GIS) is a powerful and versatile tool for preparation of geologic maps. Using GIS different types of geographically oriented information can be displayed on a common base in a flexible format that facilitates examination of relationships between the types of information. In addition, text-based and graphic information (attributes) from separate databases can be attached to points, lines or areas within the different map layers. Although GIS has enormous potential for geologic mapping, it must be used with care. Key considerations when using GIS include realistic representation of the geology, choice of an appropriate scale for the maps, and comparison of the computer-generated maps with field observations to maintain quality control. In building multilayer GIS maps, the data sources must be at a scale appropriate to the intended use. Information derived from diverse sources must be examined carefully to assure that it is valid at the scale of representation required. Examples of GIS products created for one purpose, but potentially misused for a different purpose, include formation contacts (lines) on a regional geologic map scaled up for a facility siting study or well locations on a small-scale location map subsequently contoured for contaminant plume prediction at a very large scale. In using GIS to prepare geologic maps, it is essential to have a clear rationale for the map and use an appropriate scale to depict the various layers of information. The authors of GIS-based geologic maps must be aware that the attractive, polished appearance of their products may tempt some end users to stretch and misinterpret the information displayed.

Schock, S.C. (Environmental Protection Agency, Cincinnati, OH (United States). Center for Environmental Research Information)

1993-03-01T23:59:59.000Z

230

Challenges and opportunities for the emerging carbon capture, utilisation and storage innovation system in the United Arab Emirates  

Science Journals Connector (OSTI)

Beginning 2006, the United Arab Emirates (UAE) has embarked on the carbon capture, utilisation and storage (CCUS) sector to enhance its oil production through enhanced oil recovery whilst sealing future carbon-dioxide emissions in geological formations. We apply the systems of innovation framework to assess the innovation related performance within the emerging CCUS sector in the UAE. We determine that the lack of CCUS related regulations, limited financial and human resources poses significant challenges for development of the CCUS sector. Findings from this study could offer policymakers relevant insights into how best to develop the CCUS sector in the GCC region.

Vijo Varkey Theeyattuparampil; Georgeta Vidican; Yasser Al-Saleh

2013-01-01T23:59:59.000Z

231

42nd Annual Virginia Geological Field Conference, September 28-29, 2012  

E-Print Network [OSTI]

Geology of Page Valley: Stratigraphy, Structure, and Landscape Evolution #12;Luray Elkton Shenandoah 0 2/ Swift Run Formations Cambrian Chilhowee Group Cambrian - Ordovician carbonates undivided Ordovician Beekmantown Group Ordovician Edinburg Formation, Lincolnshire, New Market Limestones Ordovician Martinsburg

Whitmeyer, Steven J.

232

1 Kilometers Base map modified from Oregon Department of Geology and Mineral Industries  

E-Print Network [OSTI]

Troutdale Formation Working river profile diagram (Jim O'Connor,in slow progress) #12;Geological thumbnail create large fans, locally overlying old Columbia River sand and gravels of the Troutdale Formation

233

Geology of Damon Mound Salt Dome, Texas  

SciTech Connect (OSTI)

Geological investigation of the stratigraphy, cap-rock characteristics, deformation and growth history, and growth rate of a shallow coastal diapir. Damon Mound salt dome, located in Brazoria County, has salt less than 600 feet and cap rock less than 100 feet below the surface; a quarry over the dome provides excellent exposures of cap rock as well as overlying Oligocene to Pleistocene strata. These conditions make it ideal as a case study for other coastal diapirs that lack bedrock exposures. Such investigations are important because salt domes are currently being considered by chemical waste disposal companies as possible storage and disposal sites. In this book, the author reviews previous research, presents additional data on the subsurface and surface geology at Damon Mound, and evaluates Oligocene to post-Pleistocene diapir growth.

Collins, E.W.

1989-01-01T23:59:59.000Z

234

cryogenic storage  

Science Journals Connector (OSTI)

Storage in which (a) the superconductive property of materials is used to store data and (b) use is made of the phenomenon that superconductivity is destroyed in the presence of a magnetic field, thus enabling...

2001-01-01T23:59:59.000Z

235

Hydrogen Storage  

Broader source: Energy.gov [DOE]

On-board hydrogen storage for transportation applications continues to be one of the most technically challenging barriers to the widespread commercialization of hydrogen-fueled vehicles. The EERE...

236

Geologic Sequestration Training and Research Projects | Department of  

Broader source: Energy.gov (indexed) [DOE]

Geologic Sequestration Training and Research Projects Geologic Sequestration Training and Research Projects Geologic Sequestration Training and Research Projects In September 2009, the U.S. Department of Energy announced more than $12.7 million in funding for geologic sequestration training and research projects. The 43 projects will offer training opportunities for graduate and undergraduate students that will provide the human capital and skills required for implementing and deploying carbon capture and storage technologies. The results of these projects (detailed below) will make a vital contribution to the scientific, technical, and institutional knowledge necessary to establish frameworks for the development of commercial CCS projects. These projects will produce a trained workforce necessary for the

237

formation at the Riley Ridge Unit on the LaBarge Platform in Southwest  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

formation at the Riley Ridge Unit on the LaBarge Platform in Southwest formation at the Riley Ridge Unit on the LaBarge Platform in Southwest Wyoming. The test will demonstrate the ability of a geological formation to safely, permanently, and economically store more than 2 million tons of carbon dioxide (CO 2 ); examine the entire CO 2 injection process from pre-injection characterization, injection process monitoring, and post-injection monitoring; and provide the groundwork for future carbon capture and storage (CCS) opportunities in the region. The eolian sandstone formations present throughout the region offer the opportunity to store more than 100 years of CO 2 emissions from regional point sources. BSCSP plans to drill a CO 2 injection well and inject up to 1 million tons of CO 2 per year into the Nugget Sandstone

238

Regulatory Issues Controlling Carbon Capture and Storage B.S. Environmental Science  

E-Print Network [OSTI]

Regulatory Issues Controlling Carbon Capture and Storage by Adam Smith B.S. Environmental Science and Astronautics #12;2 Regulatory Issues Controlling Carbon Capture and Storage by Adam Smith Submitted, terrestrial CO2 sequestration, and geologic CO2 capture and storage (CCS) are the major efforts underway

239

Geological Carbon Sequestration, Spelunking and You | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You August 11, 2010 - 2:45pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this project do? Develops and tests technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts Here's a riddle for you: What do spelunkers, mineralogists and the latest Carbon Capture and Sequestration (CCS) awardees have in common? They're all experts in tapping into projects of geological proportions! Today, Secretary Chu announced the selection of 15 projects aimed at developing and testing technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts (just to name a few). Funded with $21.3

240

Geological Carbon Sequestration, Spelunking and You | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You Geological Carbon Sequestration, Spelunking and You August 11, 2010 - 2:45pm Addthis Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this project do? Develops and tests technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts Here's a riddle for you: What do spelunkers, mineralogists and the latest Carbon Capture and Sequestration (CCS) awardees have in common? They're all experts in tapping into projects of geological proportions! Today, Secretary Chu announced the selection of 15 projects aimed at developing and testing technologies to store CO2 in oil and gas reservoirs, deep saline formations, and basalts (just to name a few). Funded with $21.3

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Geology and Temperature Gradient Surveys Blue Mountain Geothermal  

Open Energy Info (EERE)

Geology and Temperature Gradient Surveys Blue Mountain Geothermal Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology and Temperature Gradient Surveys Blue Mountain Geothermal Discovery, Humboldt County, Nevada Abstract Triassic argillite and sandstone of the Grass Valley Formation and phyllitic mudstone of the overlying Raspberry Formation, also of Triassic age, host a blind geothermal system under exploration by Blue Mountain Power Company Inc. with assistance from the Energy & Geoscience Institute. Geologically young, steeply dipping, open fault sets, striking N50-60°E,N50-60°W, and N-S intersect in the geothermal zone providing deep permeability over a wide area. Extensive silicification andhydro

242

Cigeo, the French Geological Repository Project - 13022  

SciTech Connect (OSTI)

The Cigeo industrial-scale geological disposal centre is designed for the disposal of the most highly-radioactive French waste. It will be built in an argillite formation of the Callovo-Oxfordian dating back 160 million years. The Cigeo project is located near the Bure village in the Paris Basin. The argillite formation was studied since 1974, and from the Meuse/Haute-Marne underground research laboratory since end of 1999. Most of the waste to be disposed of in the Cigeo repository comes from nuclear power plants and from reprocessing of their spent fuel. (authors)

Labalette, Thibaud; Harman, Alain; Dupuis, Marie-Claude; Ouzounian, Gerald [ANDRA, 1-7, rue Jean Monnet, 92298 Chatenay-Malabry Cedex (France)] [ANDRA, 1-7, rue Jean Monnet, 92298 Chatenay-Malabry Cedex (France)

2013-07-01T23:59:59.000Z

243

Underground pumped hydroelectric storage  

SciTech Connect (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

244

GEOLOGY, November 2008 871 INTRODUCTION  

E-Print Network [OSTI]

GEOLOGY, November 2008 871 INTRODUCTION A number of geodetic and morphotectonic techniques. 2). Geology, November 2008; v. 36; no. 11; p. 871­874; doi: 10.1130/G25073A.1; 3 figures; Data

Avouac, Jean-Philippe

245

Geological Media and Factors for the Long-Term Emplacement and Isolation of Carbon Dioxide and Radioactive Waste  

Science Journals Connector (OSTI)

In this context, carbon capture and storage means the removal of CO2 directly from anthropogenic sources and its emplacement in geological media for long periods of time. From an engineering point of view, this i...

Stefan Bachu; Tim McEwen

2011-01-01T23:59:59.000Z

246

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

247

NETL: Carbon Storage - Regional Partnership Validation Phase (Phase II)  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Validation Phase (Phase II) Projects Validation Phase (Phase II) Projects The Regional Carbon Sequestration Partnerships' (RCSP) Validation Phase focuses on validating the most promising regional opportunities to deploy CCS technologies by building upon the accomplishments of the Characterization Phase. Two different CO2 storage approaches are being pursued in this phase: geologic and terrestrial carbon storage. The Validation Phase includes 20 geologic and 11 terrestrial CO2 storage projects. Efforts are being conducted to: Validate and refine current reservoir simulations for CO2 storage projects. Collect physical data to confirm CO2 storage potential and injectivity estimates. Demonstrate the effectiveness of monitoring, verification, and accounting (MVA) technologies. Develop guidelines for well completion, operations, and abandonment.

248

Underground Storage of Natural Gas (Kansas)  

Broader source: Energy.gov [DOE]

Any natural gas public utility may appropriate for its use for the underground storage of natural gas any subsurface stratum or formation in any land which the commission shall have found to be...

249

Storage of Carbon Dioxide in Offshore Sediments  

Science Journals Connector (OSTI)

...year into a sandstone reservoir that lies 1000 m below...formation requires a good reservoir with adequate porosity and permeability and thick, impermeable cap rocks that will prevent the...storage sites require reservoirs with high permeability...

Daniel P. Schrag

2009-09-25T23:59:59.000Z

250

Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

251

Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

Development Concept Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010 Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Full Air Breathing Battery Concept * Concept is to use O 2 and N 2 as the electrodes in a battery * Novel because N 2 is considered inert * Our group routinely reacts N 2 electrochemically

252

Hydrological/Geological Studies  

Office of Legacy Management (LM)

.\ .8.2 .\ .8.2 Hydrological/Geological Studies Book 1. Radiochemical Analyses of Water Samples from SelectedT" Streams Wells, Springs and Precipitation Collected During Re-Entry Drilling, Project Rulison-7, 197 1 HGS 8 This page intentionally left blank . . . ... . . . . . . . . , : . . . . . . . . . ' . r - . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... . . . . . ..... . - x ..:; . , ' , . . ' . . . . . . !' r:.::. _. . : _ . . : . . . . \ . . ' - \ , : , . . . . . . . . . . . . . il.'; , . . y,.:.: . . . . . . . . ., ' . . ' . , . . . . . . . . . - . . . . . ... . . . . . : . . - . . . . . . . . . . . . . . . . . . . . . . .,. . . . . . . . .. 2 . . . . . . . . . . . ..... . . . . . . . . . . . . , .- , . : , . , . . . . ......... ... ) . . i - . . . . . . . . . . . . . . . . . . Prepared. Under . . . ~ ~ r e e m e n t - No. AT(29-2) -474 for the ~ e v a d a - - Operations Office U. S .. Atomic. ,Energy Commi~ssion

253

Geologic Carbon Dioxide Storage Field Projects Supported by DOE...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

United States and other countries including, Canada, Algeria, Norway, Australia, and Germany. The program has also been supporting a number of complementary R&D projects...

254

On Leakage from Geologic Storage Reservoirs of CO2  

E-Print Network [OSTI]

Feedback between Fluid Flow and Heat Transfer, Geophys. Res.of varying fluid phase composition, due to heat transfer

Pruess, Karsten

2006-01-01T23:59:59.000Z

255

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

and A.M. Jessop, Hydraulic fracturing experiment at theor pressures at which hydraulic fracturing of the cap rocka high potential for hydraulic fracturing occurs in the case

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

256

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

experiment at Teapot Dome, WY, NETL 3rd Annual Carbon Se-CAPTURE AND SEQUESTRATION DOE/NETL, 2005. Span, R. and W.Canada Grant Bromhal, NETL Mike Celia, Princeton University

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

257

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

EOR) and enhanced coalbed methane recovery (ECBMR) becauseand potential for coalbed methane. The Mannville coals areCO 2 injectivity and coalbed methane producibility. Thus,

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

258

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

in Table 2. Portlandite, jennite, ettringite and calciummonosulfoalumi- nate and ettringite) and by the alkalidissolution and ettringite pre- cipitation. The dissolution

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

259

International Symposium on Site Characterization for CO2 Geological Storage  

E-Print Network [OSTI]

INJECTION FEASIBILITY: TEAPOT DOME EOR PILOT L. Chiaramonte,of an engineered leak at the Teapot Dome field experimentalleakage experiment at Teapot Dome, WY, NETL 3rd Annual

Tsang, Chin-Fu

2006-01-01T23:59:59.000Z

260

CO2 geological storage safety assessment: methodological developments , G. Bellenfanta  

E-Print Network [OSTI]

in an early phase or for reviewing a risk assessment. Though not a complete risk assessment workflow, it thus Agency (IEA) recently evaluated the contribution of CCS to emissions reductions by 2050 to one fifth this result, the IEA concludes that the implementation of the technology should reach 100 projects in 2020

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

FE Carbon Capture and Storage News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Carbon Capture and Storage News Carbon Capture and Storage News FE Carbon Capture and Storage News RSS June 9, 2010 Award-Winning DOE Technology Scores Success in Carbon Storage Project The ability to detect and track the movement of carbon dioxide in underground geologic storage reservoirs -- an important component of carbon capture and storage technology -- has been successfully demonstrated at a U.S. Department of Energy New Mexico test site. April 20, 2010 Research Experience in Carbon Sequestration 2010 Now Accepting Applications Students and early career professionals can gain hands-on experience in areas related to carbon capture and storage by participating in the Research Experience in Carbon Sequestration program. March 15, 2010 Illinois CO2 Injection Project Moves Another Step Forward

262

Monitored Retrievable Storage Background | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Monitored Retrievable Storage Background Monitored Retrievable Storage Background Monitored Retrievable Storage Background `The U.S. Government is seeking a site for a monitored retrievable storage facility (MRS). Employing proven technologies used in this country and abroad, the MRS will be an Integral part of the Federal system for safe and permanent disposal of the nation's high-level radioactive wastes. The MRS will accept shipments of spent fuel from commercial nuclear power plants, temporarily store the spent fuel above ground, and stage shipments of it to a geologic repository for permanent disposal. The law authorizing the MRS provides an opportunity for a State or an Indian Tribe to volunteer to host the MRS. The law establishes the Office of the Nuclear Waste Negotiator, who Is 10 seek a State or an Indian Tribe

263

Geological well log analysis. Third ed  

SciTech Connect (OSTI)

Until recently, well logs have mainly been used for correlation, structural mapping, and quantitive evaluation of hydrocarbon bearing formations. This third edition of Geologic Well Log Analysis, however, describes how well logs can be used for geological studies and mineral exploration. This is done by analyzing well logs for numerous parameters and indices of significant mineral accumulation, primarily in sediments. Contents are: SP and Eh curves as redoxomorphic logs; sedimentalogical studies by log curve shapes; exploration for stratigraphic traps; continuous dipmeter as a structural tool; continuous dipmeter as a sedimentation tool; Paleo-facies logging and mapping; hydrogeology 1--hydrodynamics of compaction; hydrogeology 2--geostatic equilibrium; and hydrogeology 3--hydrodynamics of infiltration. Appendixes cover: Computer program for calculating the dip magnitude, azimuth, and the degree and orientation of the resistivity anisotrophy; a lithology computer program for calculating the curvature of a structure; and basic log analysis package for HP-41CV programmable calculator.

Pirson, S.J.

1983-01-01T23:59:59.000Z

264

Carbon dioxide capture and storage—liability for non-permanence under the UNFCCC  

Science Journals Connector (OSTI)

Carbon capture and storage (CCS) has recently been...2 may re-enter the atmosphere after injection into geological reservoirs, the question of long-term liability has to be considered if an environmentally sound ...

Sven Bode; Martina Jung

2006-06-01T23:59:59.000Z

265

Rutherford backscattering for measuring corrosion layers on glasses for long-term storage of radioactive waste  

Science Journals Connector (OSTI)

The method considered safest for isolation of nuclear waste is vitrification (solidification in a glass or glassceramic matrix) with long-term storage in stable geological repositories. Borosilicate glasses are ....

Hj. Matzke

1984-01-01T23:59:59.000Z

266

Process for structural geologic analysis of topography and point data  

DOE Patents [OSTI]

A quantitative method of geologic structural analysis of digital terrain data is described for implementation on a computer. Assuming selected valley segments are controlled by the underlying geologic structure, topographic lows in the terrain data, defining valley bottoms, are detected, filtered and accumulated into a series line segments defining contiguous valleys. The line segments are then vectorized to produce vector segments, defining valley segments, which may be indicative of the underlying geologic structure. Coplanar analysis is performed on vector segment pairs to determine which vectors produce planes which represent underlying geologic structure. Point data such as fracture phenomena which can be related to fracture planes in 3-dimensional space can be analyzed to define common plane orientation and locations. The vectors, points, and planes are displayed in various formats for interpretation.

Eliason, Jay R. (Richland, WA); Eliason, Valerie L. C. (Richland, WA)

1987-01-01T23:59:59.000Z

267

Gas storage materials, including hydrogen storage materials  

DOE Patents [OSTI]

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material, such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2014-11-25T23:59:59.000Z

268

Comparison of carbon dioxide and nuclear waste storage costs in Lithuania  

Science Journals Connector (OSTI)

Nuclear power and carbon capture and storage (CCS) are key greenhouse gas mitigation options under consideration across the world. Both technologies imply long-term waste management challenge. Geological storage of carbon dioxide (CO2) and nuclear waste has much in common, and valuable lessons can be learnt from a comparison. Seeking to compare these technologies economic, social and environmental criteria need to be selected and expressed in terms of indicators. Very important issue is costs and economics of geological storage of carbon dioxide and nuclear waste. The costs of storage are one of the main indicators for assessment of technologies in terms of economic criteria. The paper defines the costs of the geological storage of CO2 and nuclear waste in Lithuania, drawing also on insights from other parts of the world. The costs of carbon dioxide and nuclear waste storage are evaluated in UScnt/kWh and compared. The paper critically compares the characteristics and location of the both sources of and storage options for CO2 and nuclear waste in Lithuania. It discusses the main costs categories for carbon dioxide and nuclear waste storage. The full range of potential geological storage options is considered and the most reliable options for carbon dioxide and nuclear waste are selected for the comparative costs assessment.

Dalia Streimikiene

2012-01-01T23:59:59.000Z

269

Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Solid-State Hydrogen Storage: Storage Capacity,Thermodynamics and Kinetics. Abstract: Solid-state reversible...

270

Abstract, Institute of Lake Superior Geology, 2011 Mtg. Neoarchean magmatism in the NW Superior Craton  

E-Print Network [OSTI]

Abstract, Institute of Lake Superior Geology, 2011 Mtg. Neoarchean magmatism in the NW Superior in an attempt to understand the magmatic history and processes involved in batholith formation. Mapping

271

Regional Geology: GIS Database for Alternative Host Rocks and Potential Siting Guidelines  

Broader source: Energy.gov [DOE]

The objective of this work is to develop a spatial database that integrates both geologic data for alternative host-rock formations and information that has been historically used for siting...

272

Geologic Framework Model (GFM2000)  

SciTech Connect (OSTI)

The purpose of this report is to document the geologic framework model, version GFM2000 with regard to input data, modeling methods, assumptions, uncertainties, limitations, and validation of the model results, and the differences between GFM2000 and previous versions. The version number of this model reflects the year during which the model was constructed. This model supersedes the previous model version, documented in Geologic Framework Model (GFM 3.1) (CRWMS M&O 2000 [DIRS 138860]). The geologic framework model represents a three-dimensional interpretation of the geology surrounding the location of the monitored geologic repository for spent nuclear fuel and high-level radioactive waste at Yucca Mountain. The geologic framework model encompasses and is limited to an area of 65 square miles (168 square kilometers) and a volume of 185 cubic miles (771 cubic kilometers). The boundaries of the geologic framework model (shown in Figure 1-1) were chosen to encompass the exploratory boreholes and to provide a geologic framework over the area of interest for hydrologic flow and radionuclide transport modeling through the unsaturated zone (UZ). The upper surface of the model is made up of the surface topography and the depth of the model is constrained by the inferred depth of the Tertiary-Paleozoic unconformity. The geologic framework model was constructed from geologic map and borehole data. Additional information from measured stratigraphic sections, gravity profiles, and seismic profiles was also considered. The intended use of the geologic framework model is to provide a geologic framework over the area of interest consistent with the level of detailed needed for hydrologic flow and radionuclide transport modeling through the UZ and for repository design. The model is limited by the availability of data and relative amount of geologic complexity found in an area. The geologic framework model is inherently limited by scale and content. The grid spacing used in the geologic framework model (200 feet [61 meters]), discussed in Section 6.4.2, limits the size of features that can be resolved by the model but is appropriate for the distribution of data available and its intended use. Uncertainty and limitations are discussed in Section 6.6 and model validation is discussed in Section 7.

T. Vogt

2004-08-26T23:59:59.000Z

273

Reservoir Characterization, Formation Evaluation, and 3D Geologic Modeling of the Upper Jurassic Smackover Microbial Carbonate Reservoir and Associated Reservoir Facies at Little Cedar Creek Field, Northeastern Gulf of Mexico  

E-Print Network [OSTI]

., 2001). Basin subsidence and erosion of the southern Appalachian Mountain chain during the Callovian and Oxfordian stages of the Upper Jurassic resulted in the widespread deposition of the Norphlet Formation (Mancini et al., 1985; Salvador, 1987... of the offshore Gulf of Mexico shelf area. The Norphlet is approximately 30 meters (98 feet) thick along the northern and northwestern rims of the basin (Mancini et al., 1985; Salvador, 1987). On a carbonate ramp surface, intertidal to subtidal laminated lime...

Al Haddad, Sharbel

2012-10-19T23:59:59.000Z

274

AZ CO2 Storage Pilot  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO2 Storage Pilot Regional Carbon Sequestration Partnerships Initiative Review Meeting Pittsburgh, Pennsylvania October 7, 2008 John Henry Beyer, Ph.D. WESTCARB Program Manager, Geophysicist 510-486-7954, jhbeyer@lbl.gov Lawrence Berkeley National Laboratory Earth Sciences Division, MS 90-1116 Berkeley, CA 94720 2 WESTCARB region has major CO2 point sources 3 WESTCARB region has many deep saline formations - candidates for CO2 storage WESTCARB also created GIS layers for oil/gas fields and deep coal basins Source: DOE Carbon Sequestration Atlas of the United States and Canada 4 - Aspen Environmental - Bevilacqua-Knight, Inc. Arizona Utilities CO2 Storage Pilot Contracting and Funding Flow Department of Energy National Energy Technology Laboratory Lawrence Berkeley National

275

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

and Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Aquifer Storage of Hot Water from Solar Energy Collectors,"with solar energy systems, aquifer energy storage provides a

Tsang, C.-F.

2011-01-01T23:59:59.000Z

276

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network [OSTI]

Zakhidov, 1971. "Storage of Solar Energy in a Sandy-Gravelwith solar energy systems, aquifer energy storage provides aAquifer Storage of Hot Water from Solar Energy Collectors,"

Tsang, C.-F.

2011-01-01T23:59:59.000Z

277

Seasonal thermal energy storage  

SciTech Connect (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

278

Solar Thermal Energy Storage  

Science Journals Connector (OSTI)

Various types of thermal energy storage systems are introduced and their importance and desired characteristics are outlined. Sensible heat storage, which is one of the most commonly used storage systems in pract...

E. Paykoç; S. Kakaç

1987-01-01T23:59:59.000Z

279

Long-term Variations of CO2 Trapped in Different Mechanisms in Deep Saline Formations: A Case Study of the Songliao Basin, China  

SciTech Connect (OSTI)

The geological storage of CO{sub 2} in deep saline formations is increasing seen as a viable strategy to reduce the release of greenhouse gases to the atmosphere. There are numerous sedimentary basins in China, in which a number of suitable CO{sub 2} geologic reservoirs are potentially available. To identify the multi-phase processes, geochemical changes and mineral alteration, and CO{sub 2} trapping mechanisms after CO{sub 2} injection, reactive geochemical transport simulations using a simple 2D model were performed. Mineralogical composition and water chemistry from a deep saline formation of Songliao Basin were used. Results indicate that different storage forms of CO{sub 2} vary with time. In the CO{sub 2} injection period, a large amount of CO{sub 2} remains as a free supercritical phase (gas trapping), and the amount dissolved in the formation water (solubility trapping) gradually increases. Later, gas trapping decreases, solubility trapping increases significantly due to migration and diffusion of the CO{sub 2} plume, and the amount trapped by carbonate minerals increases gradually with time. The residual CO{sub 2} gas keeps dissolving into groundwater and precipitating carbonate minerals. For the Songliao Basin sandstone, variations in the reaction rate and abundance of chlorite, and plagioclase composition affect significantly the estimates of mineral alteration and CO{sub 2} storage in different trapping mechanisms. The effect of vertical permeability and residual gas saturation on the overall storage is smaller compared to the geochemical factors. However, they can affect the spatial distribution of the injected CO{sub 2} in the formations. The CO{sub 2} mineral trapping capacity could be in the order of ten kilogram per cubic meter medium for the Songliao Basin sandstone, and may be higher depending on the composition of primary aluminosilicate minerals especially the content of Ca, Mg, and Fe.

Zhang, Wei; Li, Yilian; Xu, Tianfu; Cheng, Huilin; Zheng, Yan; Xiong, Peng

2008-06-10T23:59:59.000Z

280

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network [OSTI]

hydro, compressed air, and battery energy storage are allenergy storage sys tem s suc h as pumped hydro and compressed air.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

DOE Releases Report on Techniques to Ensure Safe, Effective Geologic Carbon  

Broader source: Energy.gov (indexed) [DOE]

Releases Report on Techniques to Ensure Safe, Effective Releases Report on Techniques to Ensure Safe, Effective Geologic Carbon Sequestration DOE Releases Report on Techniques to Ensure Safe, Effective Geologic Carbon Sequestration March 17, 2009 - 1:00pm Addthis Washington, DC -- The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has created a comprehensive new document that examines existing and emerging techniques to monitor, verify, and account for carbon dioxide (CO2) stored in geologic formations. The report, titled Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations, should prove to be an invaluable tool in reducing greenhouse gas emissions to the atmosphere through geologic sequestration. The report was prepared by NETL with input from the seven Regional Carbon

282

Chinese Geological Survey | Open Energy Information  

Open Energy Info (EERE)

Geological Survey Place: China Sector: Geothermal energy Product: Chinese body which is involved in surveys of geothermal sites. References: Chinese Geological Survey1 This...

283

Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program:  

Open Energy Info (EERE)

Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Closing Long-Term CO2 Geological Storage Gaps Relevant to Regulatory and Policy Development Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Carbon Dioxide (CO2) Capture Project Phase 2 (CCP2) - Storage Program: Closing Long-Term CO2 Geological Storage Gaps Relevant to Regulatory and Policy Development Focus Area: Clean Fossil Energy Topics: System & Application Design Website: www.sciencedirect.com/science?_ob=MiamiImageURL&_cid=277910&_user=10&_ Equivalent URI: cleanenergysolutions.org/content/carbon-dioxide-co2-capture-project-ph Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This paper describes results of Phase 2 of the Storage Program of the

284

Building a three-dimensional near-surface geologic and petrophysical model based on borehole data: A case study from Chémery, Paris Basin, France  

Science Journals Connector (OSTI)

...or away from the gas storage facility), the model...using 3-D modeling tools: Society of Petroleum...using 3-D modeling tools: Society of Petroleum...approach to some basic mine valuation problems on the Witwatersrand...geology, geology of energy sources Applied geophysics...

Paola Sala; Marcel Frehner; Nicola Tisato; O. Adrian Pfiffner

285

A quantitative comparison of the cost of employing EOR-coupled CSS supplemented with secondary DSF storage for two large CO2 point sources  

SciTech Connect (OSTI)

This paper explores the impact of the temporally dynamic demand for CO2 for enhanced hydrocarbon recovery with CO2 storage. Previous evaluations of economy-wide CO2 capture and geologic storage (CCS) deployment have typically applied a simplifying assumption that 100% of the potential storage capacity for a given formation is available on the first day of the analysis, and that the injection rate impacts only the number of wells required to inject a given volume of fluid per year, making it a cost driver rather than a technical one. However, as discussed by Dahowski and Bachu [1], storing CO2 in a field undergoing CO2 flooding for enhanced oil recovery (EOR) is subject to a set of constraints to which storage in DSFs is not, and these constraints combined with variable demand for CO2 may strongly influence the ability of an EOR field to serve as a baseload storage formation for commercial scale CCS projects undertaken as a means of addressing climate change mitigation targets. This analysis assumes that CCS is being undertaken in order to reduce CO2 emissions from the industrial sources evaluated and that there is enough of a disincentive associated with venting CO2 to the atmosphere that any CO2 not used within the EOR field will be stored in a suitable nearby deep saline formation (DSF). The authors have applied a CO2 demand profile to two cases chosen to illustrate the differences in cost impacts of employing EOR-based CCS as a part of a given source’s CCS portfolio. The first scenario is a less-than-ideal case in which a single EOR field is used for storage and all CO2 not demanded by the EOR project is stored in a DSF; the second scenario is designed to optimize costs by minimizing storage in the DSF and maximizing lower-cost EOR-based storage. Both scenarios are evaluated for two facilities emitting 3 and 6 MtCO2/y, corresponding to a natural gas processing facility and an IGCC electric power plant, respectively. Annual and lifetime average CO2 transport and storage costs are presented, and the impact of added capture and compression costs on overall project economics is examined.

Davidson, Casie L.; Dahowski, Robert T.; Dooley, James J.

2011-04-18T23:59:59.000Z

286

Carbon Trading Protocols for Geologic Sequestration  

E-Print Network [OSTI]

H. , 2005, IPCC: Carbon Capture and Storage: Technical05CH11231. INTRODUCTION Carbon capture and storage (CCS)Development Mechanism CCS: Carbon Capture and Storage C02e:

Hoversten, Shanna

2009-01-01T23:59:59.000Z

287

Potential impact of CO2 leakage from Carbon Capture and Storage (CCS) systems on growth and yield in maize  

Science Journals Connector (OSTI)

Anthropogenic release of CO2...is an important factor in the continuing rise in mean global temperature. Carbon capture and storage (CCS) offers a promising technology to capture and sequester CO2 in deep geologi...

Manal Al-Traboulsi; Sofie Sjögersten; Jeremy Colls; Michael Steven…

2013-04-01T23:59:59.000Z

288

Enhanced CO2 Storage and Sequestration in Deep Saline Aquifers by Nanoparticles: Commingled Disposal of Depleted Uranium and CO2  

Science Journals Connector (OSTI)

Geological storage of anthropogenic CO2 emissions in deep saline aquifers has recently received tremendous attention in the scientific literature. Injected buoyant CO2 accumulates at the top part of the aquifer u...

Farzam Javadpour; Jean-Philippe Nicot

2011-09-01T23:59:59.000Z

289

Storage | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more. Energy storage isn't just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more.

290

Assessing leakage detectability at geologic CO2 sequestration sites using the probabilistic collocation method  

E-Print Network [OSTI]

for reducing greenhouse gas emission. A primary goal of geologic carbon sequestration is to ensure, tested, monitored, funded, and closed [2]. Recently, the US Department of Energy releases best practice manuals on risk analysis and management activities related to CO2 storage projects [3,4]. Anothe

Lu, Zhiming

291

NETL: Geological and Environmental Science  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geological & Environmental Systems Geological & Environmental Systems Onsite Research Geological and Environmental Sciences Geological and Environmental Sciences (GES) is a focus area of the National Energy Technology Laboratory's Office of Research and Development (ORD). ORD's other focus areas are Energy System Dynamics, Computational and Basic Sciences, and Materials Science and Engineering. Scientists and engineers in ORD conduct research at NETL's advanced research facilities in Morgantown, WV; Pittsburgh, PA; and Albany, OR, and at various offsite locations. GES tackles the challenge of clean energy production from fossil energy sources by focusing on the behavior of natural systems at both the earth's surface and subsurface, including prediction, control, and monitoring of fluid flow in porous and fractured media. Efforts include

292

Central American geologic map project  

SciTech Connect (OSTI)

During the Northeast Quadrant Panel meeting of the Circum-Pacific Map Project held in Mexico City, February 1985, Central American panel members proposed and adopted plans for compiling a geologic map of Central America, probably at a scale of 1:500,000. A local group with participants from each country was organized and coordinated by Rolando Castillo, director, Central American School of Geology, University of Costa Rica, for the geologic aspects, and Fernando Rudin, director, Geographic Institute of Costa Rica, for the topographic base. In 1956, the US Geological Survey published a geologic map of the region at a scale of 1:1 million. Subsequent topographic and geologic mapping projects have provided a large amount of new data. The entire area is now covered by topographic maps at a scale of 1:50,000, and these maps have been used in several countries as a base for geologic mapping. Another regional map, the Metallogenic Map of Central America (scale = 1:2 million), was published in 1969 by the Central American Research Institute for Industry (ICAITI) with a generalized but updated geologic base map. Between 1969 and 1980, maps for each country were published by local institutions: Guatemala-Belize at 1:500,000, Honduras at 1:500,000, El Salvador at 1:100,000, Nicaragua at 1:1 million, Costa Rica at 1:200,000, and Panama at 1:1 million. This information, in addition to that of newly mapped areas, served as the base for the Central American part of the Geologic-Tectonic Map of the Caribbean Region (scale = 1:2.5 million), published by the US Geological Survey in 1980, and also fro the Northeast Quadrant Maps of the Circum-Pacific Region. The new project also involves bathymetric and geologic mapping of the Pacific and Caribbean margins of the Central American Isthmus. A substantial amount of new information of the Middle America Trench has been acquired through DSDP Legs 67 and 84.

Dengo, G.

1986-07-01T23:59:59.000Z

293

Thermal energy storage  

Science Journals Connector (OSTI)

Various types of thermal stares for solar systems are surveyed which include: long-term water stores for solar systems; ground storage using soil as an interseasonal energy store; ground-water aquifers; pebble or rock bed storage; phase change storage; solar ponds; high temperature storage; and cold stores for solar air conditioning system. The use of mathematical models for analysis of the storage systems is considered

W.E.J. Neal

1981-01-01T23:59:59.000Z

294

Injection and Reservoir Hazard Management: Mechanical Deformation and Geochemical Alteration at the InSalah CO2 Storage Project  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Injection and Reservoir Hazard Injection and Reservoir Hazard Management: Mechanical Deformation and Geochemical Alteration at the In Salah CO 2 Storage Project Background Safe and permanent storage of carbon dioxide (CO 2 ) in geologic reservoirs is critical to geologic sequestration. The In Salah Project (joint venture of British Petroleum (BP), Sonatrach, and StatoilHydro) has two fundamental goals: (1) 25-30 years of 9 billion cubic feet per year (bcfy) natural gas production from 8 fields in the Algerian

295

Large Scale U.S. Unconventional Fuels Production and the Role of Carbon Dioxide Capture and Storage Technologies in Reducing Their Greenhouse Gas Emissions  

SciTech Connect (OSTI)

This paper examines the role that carbon dioxide capture and storage technologies could play in reducing greenhouse gas emissions if a significant unconventional fuels industry were to develop within the United States. Specifically, the paper examines the potential emergence of a large scale domestic unconventional fuels industry based on oil shale and coal-to-liquids (CTL) technologies. For both of these domestic heavy hydrocarbon resources, this paper models the growth of domestic production to a capacity of 3 MMB/d by 2050. For the oil shale production case, we model large scale deployment of an in-situ retorting process applied to the Eocene Green River formation of Colorado, Utah, and Wyoming where approximately 75% of the high grade oil shale resources within the United States lies. For the CTL case, we examine a more geographically dispersed coal-based unconventional fuel industry. This paper examines the performance of these industries under two hypothetical climate policies and concludes that even with the wide scale availability of cost effective carbon dioxide capture and storage technologies, these unconventional fuels production industries would be responsible for significant increases in CO2 emissions to the atmosphere. The oil shale production facilities required to produce 3MMB/d would result in net emissions to the atmosphere of between 3000-7000 MtCO2 in addition to storing potentially 1000 to 5000 MtCO2 in regional deep geologic formations in the period up to 2050. A similarly sized domestic CTL industry could result in 4000 to 5000 MtCO2 emitted to the atmosphere in addition to potentially 21,000 to 22,000 MtCO2 stored in regional deep geologic formations over the same period up to 2050. Preliminary analysis of regional CO2 storage capacity in locations where such facilities might be sited indicates that there appears to be sufficient storage capacity, primarily in deep saline formations, to accommodate the CO2 from these industries. However, additional analyses plus detailed regional and site characterization is needed, along with a closer examination of competing storage demands.

Dooley, James J.; Dahowski, Robert T.

2008-11-18T23:59:59.000Z

296

Dry Cask Storage Study Feb 1989 | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Dry Cask Storage Study Feb 1989 Dry Cask Storage Study Feb 1989 Dry Cask Storage Study Feb 1989 This report on the use of dry-cask-storage technologies at the sites of civilian nuclear power reactors has been prepared by the U.S. Department of Energy (DOE} in response to the requirements of the Nuclear Waste Policy Amendments Act of 1987 (P.L. 100-203). In particular, Section 5064 of the Amendments Act directs the Secretary of Energy to conduct a study and evaluation of using these technologies for the temporary storage of spent nuclear fuel until such time as a permanent geologic repository has been constructed and licensed by the Nuclear Regulatory Commission (NRC). In conducting this study, the DOE is required to consider such factors as costs, effects on human health and the environment, effects on the costs

297

CO2 Storage and Sink Enhancements: Developing Comparable Economics  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage and Sink Enhancements: Storage and Sink Enhancements: Developing Comparable Economics Richard G. Rhudy (rrhudy@epri.com; 650-855-2421) Electric Power Research Institute P.O. Box 10412 Palo Alto, CA 94303-0813 Bert R. Bock (brbock@tva.gov; 256-386-3095) David E. Nichols (denichols@tva.gov; 256-386-2489) Tennessee Valley Authority P.O. Box 1010 Muscle Shoals, AL 35662-1010 Abstract One of the major difficulties in evaluating CO 2 sequestration technologies and practices, both geologic storage of captured CO 2 and storage in biological sinks, is obtaining consistent, transparent, accurate, and comparable economics. This paper reports on a project that compares the economics of major technologies and practices under development for CO 2 sequestration, including captured CO 2 storage options, such as active oil reservoirs, depleted oil and gas

298

Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |  

Broader source: Energy.gov (indexed) [DOE]

Large-Scale Industrial Carbon Capture, Storage Plant Begins Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration project funded by the American Recovery and Reinvestment Act (ARRA) to move into the construction phase. Led by the Archer Daniels Midland Company (ADM), a member of DOE's Midwest Geological Sequestration Consortium, the Illinois-ICCS project is designed to sequester approximately 2,500 metric tons of carbon dioxide

299

DOE Partner Begins Carbon Storage Test | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Partner Begins Carbon Storage Test Partner Begins Carbon Storage Test DOE Partner Begins Carbon Storage Test June 25, 2009 - 1:00pm Addthis Washington, D.C. -- A Department of Energy sponsored project in Hopkins County, Kentucky has begun injecting carbon dioxide (CO2) into a mature oil field to assess the region's CO2 storage capacity and feasibility for enhanced oil recovery. The project is part of DOE's Regional Carbon Sequestration Partnership (RCSP) program and is being conducted by The Midwest Geological Sequestration Consortium (MGSC). The project is part of the RCSP's "validation phase," where field tests are being conducted nationwide to assess the most promising sites to deploy carbon capture and storage technologies. This project is expected to create 13 full time jobs which will be

300

Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |  

Broader source: Energy.gov (indexed) [DOE]

Large-Scale Industrial Carbon Capture, Storage Plant Begins Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration project funded by the American Recovery and Reinvestment Act (ARRA) to move into the construction phase. Led by the Archer Daniels Midland Company (ADM), a member of DOE's Midwest Geological Sequestration Consortium, the Illinois-ICCS project is designed to sequester approximately 2,500 metric tons of carbon dioxide

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

14 - Hydrogen storage in hydride-forming materials  

Science Journals Connector (OSTI)

Abstract: Hydrogen storage technologies are playing a significant and critical role in the so-called ‘hydrogen economy’: they are used to buffer primary energy sources for time-delayed end-uses. The purpose of this chapter is to review the main hydrogen storage processes and materials, with a special emphasis on chemical storage (metal and chemical hydrides). First, the main hydrogen processes (physical, chemical, electrochemical, geological) are reviewed. Then, reversible hydrogen storage in hydride-forming metals and intermetallics is discussed. Basic principles (thermodynamic properties, sorption mechanisms, kinetics) are presented and the properties of the main materials are listed and compared. Irreversible hydrogen storage in the main classes of chemical hydrides is then described. In the last section, specifications for automotive and stationary applications are reviewed and discussed.

P. Millet

2014-01-01T23:59:59.000Z

302

Relationship of regional water quality to aquifer thermal energy storage  

SciTech Connect (OSTI)

Ground-water quality and associated geologic characteristics may affect the feasibility of aquifer thermal energy storage (ATES) system development in any hydrologic region. This study sought to determine the relationship between ground-water quality parameters and the regional potential for ATES system development. Information was collected from available literature to identify chemical and physical mechanisms that could adversely affect an ATES system. Appropriate beneficiation techniques to counter these potential geochemical and lithologic problems were also identified through the literature search. Regional hydrology summaries and other sources were used in reviewing aquifers of 19 drainage regions in the US to determine generic geochemical characteristics for analysis. Numerical modeling techniques were used to perform geochemical analyses of water quality from 67 selected aquifers. Candidate water resources regions were then identified for exploration and development of ATES. This study identified six principal mechanisms by which ATES reservoir permeability may be impaired: (1) particulate plugging, (2) chemical precipitation, (3) liquid-solid reactions, (4) formation disaggregation, (5) oxidation reactions, and (6) biological activity. Specific proven countermeasures to reduce or eliminate these effects were found. Of the hydrologic regions reviewed, 10 were identified as having the characteristics necessary for ATES development: (1) Mid-Atlantic, (2) South-Atlantic Gulf, (3) Ohio, (4) Upper Mississippi, (5) Lower Mississippi, (6) Souris-Red-Rainy, (7) Missouri Basin, (8) Arkansas-White-Red, (9) Texas-Gulf, and (10) California.

Allen, R.D.

1983-11-01T23:59:59.000Z

303

CO2 CAPTURE PROJECT-AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION  

SciTech Connect (OSTI)

The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union (DG Res & DG Tren), Norway (Klimatek) and the U.S.A. (Department of Energy)). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion--technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel--where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with wet high concentrations of CO{sub 2} for storage. (4) Capture Technology, Pre-Combustion--in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening--analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV)--providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies have completed their 2003 stagegate review and are reported here. Some will proceed to the next stagegate review in 2004. Some technologies are emerging as preferred over others. Pre-combustion De-carbonization (hydrogen fuel) technologies are showing excellent results and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. The workscopes planned for the next key stagegates are under review before work begins based on the current economic assessment of their performance. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options but even so some significant potential reductions in cost have been identified and will continue to be explored. Storage, measurement, and verification studies are moving rapidly forward and suggest that geologic sequestration can be a safe form of long-term CO{sub 2} storage. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along old wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Wells are also easy to monitor and intervention is possible if needed. The project will continue to evaluate and bring in novel studies and ideas within the project scope as requested by the DOE. The results to date are summarized in the attached report and presented in detail in the attached appendices.

Helen Kerr

2004-04-01T23:59:59.000Z

304

Gas Hydrate Storage of Natural Gas  

SciTech Connect (OSTI)

Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a lower heat transfer rate in the internal heat exchanger than was designed. It is believed that the fins on the heat-exchanger tubes did not make proper contact with the tubes transporting the chilled glycol, and pairs of fins were too close for interior areas of fins to serve as hydrate collection sites. A correction of the fabrication fault in the heat exchanger fin attachments could be easily made to provide faster formation rates. The storage success with the POC process provides valuable information for making the process an economically viable process for safe, aboveground natural-gas storage.

Rudy Rogers; John Etheridge

2006-03-31T23:59:59.000Z

305

CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION  

SciTech Connect (OSTI)

The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making substantial progress towards their goals. Some technologies are emerging as preferred over others. Pre-combustion Decarbonization (hydrogen fuel) technologies are showing good progress and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options that may have niche roles. Storage, measurement, and verification studies are moving rapidly forward. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Many studies are nearing completion or have been completed. Their preliminary results are summarized in the attached report and presented in detail in the attached appendices.

Dr. Helen Kerr

2003-08-01T23:59:59.000Z

306

Announcements Science Policy Geology Technology Terrestrial/Ocean  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

what'S inSide? what'S inSide? Sequestration in the News Announcements Science Policy Geology Technology Terrestrial/Ocean Trading Recent Publications Events Subscription Information hiGhliGhtS Fossil Energy Techline, "Climate Technology: DOE Readies First Big U.S. Projects in CO 2 Capture and Storage. The US Department of Energy (DOE) is currently reviewing Phase III proposals for large-scale geologic sequestration projects in support of the Regional Carbon Sequestration Partnership Program. The program, which was formed in 2003 to research the best approaches to capture and permanently store the greenhouse gas, carbon dioxide (CO 2 ), will enter its next phase in October with announcements of Phase III deployment projects. The new stage of the Regional Partnerships' work will follow as a logical extension of work

307

Geologic mapping of the air intake shaft at the Waste Isolation Pilot Plant  

SciTech Connect (OSTI)

The air intake shaft (AS) was geologically mapped from the surface to the Waste Isolation Pilot Plant (WIPP) facility horizon. The entire shaft section including the Mescalero Caliche, Gatuna Formation, Santa Rosa Formation, Dewey Lake Redbeds, Rustler Formation, and Salado Formation was geologically described. The air intake shaft (AS) at the Waste Isolation Pilot Plant (WIPP) site was constructed to provide a pathway for fresh air into the underground repository and maintain the desired pressure balances for proper underground ventilation. It was up-reamed to minimize construction-related damage to the wall rock. The upper portion of the shaft was lined with slip-formed concrete, while the lower part of the shaft, from approximately 903 ft below top of concrete at the surface, was unlined. As part of WIPP site characterization activities, the AS was geologically mapped. The shaft construction method, up-reaming, created a nearly ideal surface for geologic description. Small-scale textures usually best seen on slabbed core were easily distinguished on the shaft wall, while larger scale textures not generally revealed in core were well displayed. During the mapping, newly recognized textures were interpreted in order to refine depositional and post-depositional models of the units mapped. The objectives of the geologic mapping were to: (1) provide confirmation and documentation of strata overlying the WIPP facility horizon; (2) provide detailed information of the geologic conditions in strata critical to repository sealing and operations; (3) provide technical basis for field adjustments and modification of key and aquifer seal design, based upon the observed geology; (4) provide geological data for the selection of instrument borehole locations; (5) and characterize the geology at geomechanical instrument locations to assist in data interpretation. 40 refs., 27 figs., 1 tab.

Holt, R.M.; Powers, D.W. (IT Corporation (USA))

1990-12-01T23:59:59.000Z

308

NREL: Energy Storage - Energy Storage Thermal Management  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Thermal Management Infrared image of rectangular battery cell. Infrared thermal image of a lithium-ion battery cell with poor terminal design. Graph of relative...

309

NREL: Energy Storage - Energy Storage Systems Evaluation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Systems Evaluation Photo of man standing between two vehicles and plugging the vehicle on the right into a charging station. NREL system evaluation has confirmed...

310

Carbon Storage Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Related Research between NETL and UNDEERC. Geologic Playbooks and Database of the Permian Basin Made Publicly Available (2009). In cooperation with NETL, researchers at the...

311

Industrial CO2 Removal: CO2 Capture from Ambient Air and Geological Sequestration  

SciTech Connect (OSTI)

This abstract and its accompanying presentation will provide an overview of two distinct industrial processes for removing carbon dioxide (CO2) from the atmosphere as a means of addressing anthropogenic climate change. The first of these is carbon dioxide capture and storage (CCS) coupled with large scale biomass production (hereafter referred to as bioCCS). The second is CO2 capture from ambient air via industrial systems (hereafter referred to as direct air capture (DAC)). In both systems, the captured CO2 would be injected into deep geologic formations so as to isolate it from the atmosphere. The technical literature is clear that both of these technologies are technically feasible as of today (IPCC, 2005; Keith, 2009; Lackner, 2009; Luckow et al., 2010; Ranjan and Herzog, 2011). What is uncertain is the relative cost of these industrial ambient-air CO2 removal systems when compared to other emissions mitigation measures, the ultimate timing and scale of their deployment, and the resolution of potential site specific constraints that would impact their ultimate commercial deployment.

Dooley, James J.

2011-06-08T23:59:59.000Z

312

Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data  

SciTech Connect (OSTI)

Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross?sections in Adobe Illustrator format. Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics.

Faulds, James E.

2013-12-31T23:59:59.000Z

313

Geologic Map and Cross Sections of the McGinness Hills Geothermal Area - GIS Data  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Geologic map data in shapefile format that includes faults, unit contacts, unit polygons, attitudes of strata and faults, and surficial geothermal features. 5 cross?sections in Adobe Illustrator format. Comprehensive catalogue of drill?hole data in spreadsheet, shapefile, and Geosoft database formats. Includes XYZ locations of well heads, year drilled, type of well, operator, total depths, well path data (deviations), lithology logs, and temperature data. 3D model constructed with EarthVision using geologic map data, cross?sections, drill?hole data, and geophysics.

James E. Faulds

314

The united kingdom's changing requirements for spent fuel storage  

SciTech Connect (OSTI)

The UK is adopting an open fuel cycle, and is necessarily moving to a regime of long term storage of spent fuel, followed by geological disposal once a geological disposal facility (GDF) is available. The earliest GDF receipt date for legacy spent fuel is assumed to be 2075. The UK is set to embark on a programme of new nuclear build to maintain a nuclear energy contribution of 16 GW. Additionally, the UK are considering a significant expansion of nuclear energy in order to meet carbon reduction targets and it is plausible to foresee a scenario where up to 75 GW from nuclear power production could be deployed in the UK by the mid 21. century. Such an expansion, could lead to spent fuel storage and its disposal being a dominant issue for the UK Government, the utilities and the public. If the UK were to transition a closed fuel cycle, then spent fuel storage should become less onerous depending on the timescales. The UK has demonstrated a preference for wet storage of spent fuel on an interim basis. The UK has adopted an approach of centralised storage, but a 16 GW new build programme and any significant expansion of this may push the UK towards distributed spent fuel storage at a number of reactors station sites across the UK.

Hodgson, Z.; Hambley, D.I.; Gregg, R.; Ross, D.N. [National Nuclear Laboratory, Chadwick House, Birchwood Park, Warrington, Cheshire WA3 6AE (United Kingdom)

2013-07-01T23:59:59.000Z

315

Underground Natural Gas Storage by Storage Type  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1973-2014 Withdrawals 43,752 63,495 73,368 47,070 52,054 361,393 1973-2014 Salt Cavern Storage Fields Natural Gas in Storage 381,232 399,293 406,677 450,460 510,558 515,041...

316

A Short History of Engineering Geology and Geophysics at the British Geological Survey  

Science Journals Connector (OSTI)

Engineering geology in the British Geological Survey (BGS) began, in a formal sense, with the creation of the Engineering Geology Unit in 1967. Virtually since its inception, despite changing research prioriti...

M. G. Culshaw; K. J. Northmore; D. M. McCann

2014-01-01T23:59:59.000Z

317

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

New Mexico Renewable Energy Storage Task Force On January 28, 2014, in Energy, Energy Storage, Energy Storage Systems, Infrastructure Security, News, News & Events, Partnership,...

318

U.S. Geological Survey Data Series 140 | Open Energy Information  

Open Energy Info (EERE)

Geological Survey Data Series 140 Geological Survey Data Series 140 Jump to: navigation, search Name U.S. Geological Society Data Series 140 Data Format Excel Spreadsheets Geographic Scope United States TODO: Import actual dataset contents into OpenEI "The US Minerals Databrowser (USGS DS140) is a collection of Excel spreadsheets which contain United States' historical consumption, production, imports and exports of various minerals. [1] It is produced by the United States Geological Survey. Many of the minerals it covers are important to the energy industry. Data from DS140 is used in various tools, including the US Minerals Databrowser.[2]" References ↑ "USGS DS140 Homepage" ↑ "US Minerals Databrowser" Retrieved from "http://en.openei.org/w/index.php?title=U.S._Geological_Survey_Data_Series_140&oldid=381562"

319

Onboard Storage Tank Workshop  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) and Sandia National Laboratories co-hosted the Onboard Storage Tank Workshop on April 29th, 2010. Onboard storage tank experts gathered to share lessons learned...

320

Solar Energy Storage  

Science Journals Connector (OSTI)

The intermittent nature of the solar energy supply makes the provision of adequate energy storage essential for the majority of practical applications. Thermal storage is needed for both low-temperature and high-...

Brian Norton BSc; MSc; PhD; F Inst E; C Eng

1992-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Storage of Solar Energy  

Science Journals Connector (OSTI)

Energy storage provides a means for improving the performance and efficiency of a wide range of energy systems. It also plays an important role in energy conservation. Typically, energy storage is used when there...

H. P. Garg

1987-01-01T23:59:59.000Z

322

Chemical Energy Storage  

Science Journals Connector (OSTI)

The oldest and most commonly practiced method to store solar energy is sensible heat storage. The underlying technology is well developed and the basic storage materials, water and rocks, are available ... curren...

H. P. Garg; S. C. Mullick; A. K. Bhargava

1985-01-01T23:59:59.000Z

323

Cool Storage Performance  

E-Print Network [OSTI]

Utilities have promoted the use of electric heat and thermal storage to increase off peak usage of power. High daytime demand charges and enticing discounts for off peak power have been used as economic incentives to promote thermal storage systems...

Eppelheimer, D. M.

1985-01-01T23:59:59.000Z

324

Safe Home Food Storage  

E-Print Network [OSTI]

Proper food storage can preserve food quality and prevent spoilage and food/borne illness. The specifics of pantry, refrigerator and freezer storage are given, along with helpful information on new packaging, label dates, etc. A comprehensive table...

Van Laanen, Peggy

2002-08-22T23:59:59.000Z

325

Database (Report) of U.S. CHP Installations Incorporating Thermal Energy Storage (TES) and/or Turbine Inlet Cooling (TIC), 2004  

Broader source: Energy.gov [DOE]

Development of a database, in Excel format, listing CHP installations incorporating thermal energy storage or turbine inlet cooling.

326

Thermochemical Energy Storage  

Broader source: Energy.gov [DOE]

This presentation summarizes the introduction given by Christian Sattler during the Thermochemical Energy Storage Workshop on January 8, 2013.

327

Energy Storage Systems  

SciTech Connect (OSTI)

Energy Storage Systems – An Old Idea Doing New Things with New Technology article for the International Assoication of ELectrical Inspectors

Conover, David R.

2013-12-01T23:59:59.000Z

328

CO2 Capture Project-An Integrated, Collaborative Technology Development Project for Next Generation CO2 Separation, Capture and Geologic Sequestration  

SciTech Connect (OSTI)

The CO{sub 2} Capture Project (CCP) was a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, ENI, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union [DG RES & DG TREN], the Norwegian Research Council [Klimatek Program] and the U.S. Department of Energy [NETL]). The project objective was to develop new technologies that could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies were to be developed to ''proof of concept'' stage by the end of 2003. Certain promising technology areas were increased in scope and the studies extended through 2004. The project budget was approximately $26.4 million over 4 years and the work program is divided into eight major activity areas: Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. Capture Technology, Pre-Combustion: in which, natural gas and petroleum cokes are converted to hydrogen and CO{sub 2} in a reformer/gasifier. Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Pre-combustion De-carbonization (hydrogen fuel) technologies showed excellent results and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. Post-combustion technologies emerged as higher cost options that may only have niche roles. Storage, measurement, and verification studies suggest that geologic sequestration will be a safe form of long-term CO{sub 2} storage. Economic modeling shows that options to reduce costs by 50% exist. A rigorous methodology for technology evaluation was developed. Public acceptance and awareness were enhanced through extensive communication of results to the stakeholder community (scientific, NGO, policy, and general public). Two volumes of results have been published and are available to all. Well over 150 technical papers were produced. All funded studies for this phase of the CCP are complete. The results are summarized in this report and all final reports are presented in the attached appendices.

Helen Kerr; Linda M. Curran

2005-04-15T23:59:59.000Z

329

BNL Gas Storage Achievements, Research Capabilities, Interests...  

Broader source: Energy.gov (indexed) [DOE]

BNL Gas Storage Achievements, Research Capabilities, Interests, and Project Team Metal hydride gas storage Cryogenic gas storage Compressed gas storage Adsorbed gas storage...

330

081001 CA CO2 Storage Pilot  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

California California CO2 Storage Pilot Regional Carbon Sequestration Partnerships Initiative Review Meeting Pittsburgh, Pennsylvania October 7, 2008 John Henry Beyer, Ph.D. WESTCARB Program Manager, Geophysicist 510-486-7954, jhbeyer@lbl.gov Lawrence Berkeley National Laboratory Earth Sciences Division, MS 90-1116 Berkeley, CA 94720 2 Industry Partner: Shell Oil Company Committed to reducing global CO2 emissions Extensive technical expertise in: - Geologic evaluation - Well log analysis - Porosity and permeability evaluation - Geophysics - Deep well drilling - CO2 injection A welcome industry partner 3 - Bevilacqua-Knight, Inc. (DOE/PIER) - Lawrence Berkeley National Lab (PIER) - Sandia Technologies, LLC (DOE/PIER) - Terralog (DOE) Northern California CO2 Storage Pilot Contracting and Funding Flow

331

Impact of Sorption Isotherms on the Simulation of CO2-Enhanced Gas Recovery and Storage Process in Marcellus Shale  

E-Print Network [OSTI]

reservoirs, natural gas occurs as free gas in the intergranular and fracture porosity and is adsorbed on clay Continuous, low-permeability, fractured, organic-rich gas shale units are widespread and are possible geologic storage targets .The Marcellus could act as a storage reservoir for captured CO2. In this scenario

Mohaghegh, Shahab

332

Fact Sheet: Energy Storage Database (October 2012)  

Broader source: Energy.gov (indexed) [DOE]

Sandia National Laboratories Sandia National Laboratories List of projects, including technology details and status Interactive map of search result project locations Multiple sort options (e.g., state, type, size) to ease navigation Energy storage projects and policies across the United States are rapidly evolving and expanding. A publicly accessible central archive is increasingly essential to document these developments; to facilitate future projects; and to ease cross-sector, national, and international coordination. The U.S. Department of Energy (DOE) and Sandia National Laboratories contracted Strategen Consulting LLC to develop a database of energy storage projects and policies. When completed, the database will present current information about energy storage projects worldwide and U.S. energy storage policy in an easy-to-use and intuitive format. The database will be research-grade, unbiased,

333

Storage Sub-committee  

Broader source: Energy.gov (indexed) [DOE]

Storage Sub-committee Storage Sub-committee 2012 Work Plan Confidential 1 2012 Storage Subcommittee Work Plan * Report to Congress. (legislative requirement) - Review existing and projected research and funding - Review existing DOE, Arpa-e projects and the OE 5 year plan - Identify gaps and recommend additional topics - Outline distributed (review as group) * Develop and analysis of the need for large scale storage deployment (outline distributed again) * Develop analysis on regulatory issues especially valuation and cost recovery Confidential 2 Large Scale Storage * Problem Statement * Situation Today * Benefits Analysis * Policy Issues * Technology Gaps * Recommendations * Renewables Variability - Reserves and capacity requirements - Financial impacts - IRC Response to FERC NOI and update

334

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

335

Chemical Storage-Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage - Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 Hydrogen Fuel - Attributes * H 2 +½ O 2 → H 2 O (1.23 V) * High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g * 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η FC = 57%) * Li ion cells: 130-150 Wh/kg Chemical Hydrides - Definition * They are considered secondary storage methods in which the storage medium is expended - primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH 2 & LH 2 storage Chemical Hydrides - Definition (cont.) * The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation

336

NETL: Carbon Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

337

FE Carbon Capture and Storage News | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

August 24, 2011 August 24, 2011 Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. July 6, 2011 Confirming CCS Security and Environmental Safety Aim of Newly Selected Field Projects The U.S. Department of Energy's portfolio of field projects aimed at confirming that long-term geologic carbon dioxide storage is safe and environmentally secure has been expanded by three projects selected to collectively receive $34.5 million over four years. June 28, 2011 Redesigned CCS Website Offers Wealth of Information on Worldwide Technology, Projects A wealth of information about worldwide carbon capture and storage technologies and projects is available on the newly launched, updated and

338

Geological pattern formation by growth and dissolution in aqueous systems  

Science Journals Connector (OSTI)

...high, and vegetation arcs and litter dams may be...all these-systems, micro-organisms are abundant...the composition of the micro-organism community...terraces formed by the oxidation of iron in highly acidic...from the atmosphere and micro-organism photosynthesis...

2010-01-01T23:59:59.000Z

339

Hawaii geologic map data | Open Energy Information  

Open Energy Info (EERE)

geologic map data Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Hawaii geologic map data Published USGS, Date Not Provided DOI Not Provided Check for...

340

Hanford Borehole Geologic Information System (HBGIS)  

SciTech Connect (OSTI)

This is a user's guide for viewing and downloading borehold geologic data through a web-based interface.

Last, George V.; Mackley, Rob D.; Saripalli, Ratna R.

2005-09-26T23:59:59.000Z

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Storing carbon dioxide in saline formations : analyzing extracted water treatment and use for power plant cooling.  

SciTech Connect (OSTI)

In an effort to address the potential to scale up of carbon dioxide (CO{sub 2}) capture and sequestration in the United States saline formations, an assessment model is being developed using a national database and modeling tool. This tool builds upon the existing NatCarb database as well as supplemental geological information to address scale up potential for carbon dioxide storage within these formations. The focus of the assessment model is to specifically address the question, 'Where are opportunities to couple CO{sub 2} storage and extracted water use for existing and expanding power plants, and what are the economic impacts of these systems relative to traditional power systems?' Initial findings indicate that approximately less than 20% of all the existing complete saline formation well data points meet the working criteria for combined CO{sub 2} storage and extracted water treatment systems. The initial results of the analysis indicate that less than 20% of all the existing complete saline formation well data may meet the working depth, salinity and formation intersecting criteria. These results were taken from examining updated NatCarb data. This finding, while just an initial result, suggests that the combined use of saline formations for CO{sub 2} storage and extracted water use may be limited by the selection criteria chosen. A second preliminary finding of the analysis suggests that some of the necessary data required for this analysis is not present in all of the NatCarb records. This type of analysis represents the beginning of the larger, in depth study for all existing coal and natural gas power plants and saline formations in the U.S. for the purpose of potential CO{sub 2} storage and water reuse for supplemental cooling. Additionally, this allows for potential policy insight when understanding the difficult nature of combined potential institutional (regulatory) and physical (engineered geological sequestration and extracted water system) constraints across the United States. Finally, a representative scenario for a 1,800 MW subcritical coal fired power plant (amongst other types including supercritical coal, integrated gasification combined cycle, natural gas turbine and natural gas combined cycle) can look to existing and new carbon capture, transportation, compression and sequestration technologies along with a suite of extracting and treating technologies for water to assess the system's overall physical and economic viability. Thus, this particular plant, with 90% capture, will reduce the net emissions of CO{sub 2} (original less the amount of energy and hence CO{sub 2} emissions required to power the carbon capture water treatment systems) less than 90%, and its water demands will increase by approximately 50%. These systems may increase the plant's LCOE by approximately 50% or more. This representative example suggests that scaling up these CO{sub 2} capture and sequestration technologies to many plants throughout the country could increase the water demands substantially at the regional, and possibly national level. These scenarios for all power plants and saline formations throughout U.S. can incorporate new information as it becomes available for potential new plant build out planning.

Dwyer, Brian P.; Heath, Jason E.; Borns, David James; Dewers, Thomas A.; Kobos, Peter Holmes; Roach, Jesse D.; McNemar, Andrea; Krumhansl, James Lee; Klise, Geoffrey T.

2010-10-01T23:59:59.000Z

342

Geological carbon sequestration: critical legal issues  

E-Print Network [OSTI]

Geological carbon sequestration: critical legal issues Ray Purdy and Richard Macrory January 2004 Tyndall Centre for Climate Change Research Working Paper 45 #12;1 Geological carbon sequestration an integrated assessment of geological carbon sequestration (Project ID code T2.21). #12;2 1 Introduction

Watson, Andrew

343

Geological and geotechnical databases and developments  

E-Print Network [OSTI]

Geological and geotechnical databases and developments in the Netherlands Robert Hack & Wiebke Tegtmeier Namur, Belgium, 9 October 2007 #12;9 October 2007 Geological and geotech databases in NL - Hack 2007 Geological and geotech databases in NL - Hack & Tegtmeier 3 Surface data: · Climate · Vegetation

Hack, Robert

344

11 Years Engineering Geology Fieldwork in  

E-Print Network [OSTI]

;14 dec 2001 11 years engineering geology in Falset - science from fieldwork - hack 2 What did we Produce ? Why did we ? #12;14 dec 2001 11 years engineering geology in Falset - science from fieldwork - hack 3 happy #12;14 dec 2001 11 years engineering geology in Falset - science from fieldwork - hack 4 Why keep

Hack, Robert

345

NETL: Carbon Storage - Midwest Regional Carbon Sequestration Partnership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MRCSP MRCSP Carbon Storage Midwest Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing MRCSP efforts can be found on their website. The Midwest Regional Carbon Sequestration Partnership (MRCSP) was established to assess the technical potential, economic viability, and public acceptability of carbon storage within a region consisting of nine contiguous states: Indiana, Kentucky, Maryland, Michigan, New Jersey, New York, Ohio, Pennsylvania, and West Virginia. A group of leading universities, state geological surveys, non-governmental organizations and private companies, led by Battelle Memorial Institute, has been assembled to carry out this research. The MRCSP currently consists of nearly 40 members; each contributing technical knowledge, expertise and cost sharing.

346

NETL Publications: Carbon Storage Program Infrastructure Annual Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Carbon Storage Program Infrastructure Annual Review Meeting Carbon Storage Program Infrastructure Annual Review Meeting November 15-17, 2011 Table of Contents Disclaimer Presentations PRESENTATIONS Tuesday, November 15, 2011 Welcoming Remarks [PDF-2.18MB] Sean Plasynski, DOE/NETL Keynote Session 1 - Regulatory Issues Moderator: Traci Rodosta, DOE/NETL EPA's Greenhouse Gas Reporting Program: Geological Sequestration and Injection of Carbon Dioxide [PDF-604KB] Mark Defigueiredo, U.S. Environmental Protection Agency Update on Implementation of EPA's Class VI GS Program [PDF-420KB] Bruce Kobelski, U.S. Environmental Protection Agency CCS on the OCS: Sub-Seabed Geologic CO2 Sequestration Authorities and Ongoing Actions Covering the Outer Continental Shelf [PDF-MB] Melissa Batum, , U. S. Bureau of Ocean Energy Management, Regulation, and Enforcement

347

Seawater pumped-storage power plant in Okinawa island, Japan  

Science Journals Connector (OSTI)

The authors describe the characteristics, problems and treatment of a seawater pumped-storage power plant which is the first high headtype power plant in the world. The authors propose a general geologic investigation program using boreholes for underground projects. The effectiveness of the investigations conducted by EPDC are evaluated before construction of the vertical shaft of the seawater pumped-storage power plant in Okinawa island, Japan. In the investigation stage of the project, no adit was excavated and all geological and geotechnical information about the underground facilities were obtained efficiently from exploration by drill holes including logging and geotechnical tests such as observation by borehole scanner, prospecting by VSP, initial stress measurement by sleeve fracturing method and JFT test.

Akitaka Hiratsuka; Takashi Arai; Tsukasa Yoshimura

1993-01-01T23:59:59.000Z

348

Evaluation of residue drum storage safety risks  

SciTech Connect (OSTI)

A study was conducted to determine if any potential safety problems exist in the residue drum backlog at the Rocky Flats Plant. Plutonium residues stored in 55-gallon drums were packaged for short-term storage until the residues could be processed for plutonium recovery. These residues have now been determined by the Department of Energy to be waste materials, and the residues will remain in storage until plans for disposal of the material can be developed. The packaging configurations which were safe for short-term storage may not be safe for long-term storage. Interviews with Rocky Flats personnel involved with packaging the residues reveal that more than one packaging configuration was used for some of the residues. A tabulation of packaging configurations was developed based on the information obtained from the interviews. A number of potential safety problems were identified during this study, including hydrogen generation from some residues and residue packaging materials, contamination containment loss, metal residue packaging container corrosion, and pyrophoric plutonium compound formation. Risk factors were developed for evaluating the risk potential of the various residue categories, and the residues in storage at Rocky Flats were ranked by risk potential. Preliminary drum head space gas sampling studies have demonstrated the potential for formation of flammable hydrogen-oxygen mixtures in some residue drums.

Conner, W.V.

1994-06-17T23:59:59.000Z

349

Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring | Open  

Open Energy Info (EERE)

Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Book: Hyperspectral Geobotanical Remote Sensing For Co2 Storage Monitoring Details Activities (1) Areas (1) Regions (0) Abstract: This project's goal is to develop remote sensing methods for early detection and spatial mapping, over whole regions simultaneously, of any surface areas under which there are significant CO2 leaks from deep underground storage formations. If large amounts of CO2 gas percolated up from a storage formation below to within plant root depth of the surface, the CO2 soil concentrations near the surface would become elevated and would affect individual plants and their local plant ecologies. Excessive soil CO2 concentrations are observed to significantly affect local plant

350

MSc STUDY PROGRAMME IN THE FACULTY OF GEOLOGY AND GEOENVIRONMENT, UNIVERSITY OF ATHENS 201314 Geology and Geoenvironment  

E-Print Network [OSTI]

1 Geology and Geoenvironment MSc Programme STUDENT HANDBOOK Applied Environmental Geology Environmental Geology 3 3. Specialization in Stratigraphy and Palaeontology 5 4. Specialization programme leading to MSc degree in the following specializations (majors): · Applied Environmental Geology

Kouroupetroglou, Georgios

351

WS Reallocated-30Aug07.doc MODEL FORMAT FOR REALLOCATED  

E-Print Network [OSTI]

from storage currently allocated to another project purpose (ie. flood control pool, conservation pool1 WS Reallocated-30Aug07.doc MODEL FORMAT FOR REALLOCATED WATER SUPPLY STORAGE AGREEMENTS AUGUST 30, 2007 APPLICABILITY: This is one of four types of agreements typically used for water supply storage

US Army Corps of Engineers

352

Geology and alteration of the Raft River geothermal system, Idaho | Open  

Open Energy Info (EERE)

alteration of the Raft River geothermal system, Idaho alteration of the Raft River geothermal system, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geology and alteration of the Raft River geothermal system, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: analcime; Cassia County Idaho; Cenozoic; chlorite; chlorite group; clay minerals; economic geology; exploration; framework silicates; geothermal energy; Idaho; illite; kaolinite; laumontite; montmorillonite; Neogene; Precambrian; Raft Formation; Raft River KGRA; Salt Lake Formation; sheet silicates; silicates; Tertiary; United States; wairakite; wells; zeolite group Author(s): Blackett, R.E.; Kolesar, P.T. Published: Geothermal Resource Council Transactions 1983, 1/1/1983 Document Number: Unavailable DOI: Unavailable

353

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Broader source: Energy.gov (indexed) [DOE]

International Energy International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - DOE-CEC Energy Storage Program FY07 Projects - Daniel Borneo, SNL.pdf ESS 2007 Peer Review - Joint NYSERDA-DOE Energy Storage Initiative Projects

354

Sorption Storage Technology Summary  

Broader source: Energy.gov [DOE]

Presented at the R&D Strategies for Compressed, Cryo-Compressed and Cryo-Sorbent Hydrogen Storage Technologies Workshops on February 14 and 15, 2011.

355

Storage of solar energy  

Science Journals Connector (OSTI)

A framework is presented for identifying appropriate systems for storage of electrical, mechanical, chemical, and thermal energy in solar energy supply systems. Classification categories include the nature ... su...

Theodore B. Taylor

1979-09-01T23:59:59.000Z

356

HEATS: Thermal Energy Storage  

SciTech Connect (OSTI)

HEATS Project: The 15 projects that make up ARPA-E’s HEATS program, short for “High Energy Advanced Thermal Storage,” seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

357

Geological/geophysical study progresses  

SciTech Connect (OSTI)

Robertson Research (U.S.) Inc. of Houston is working on the second of a planned three-phase regional geological and geochemical study of Paleozoic rocks in the Williston Basin. The studies cover the entire Williston Basin in North Dakota, South Dakota, Montana, Saskatchewan and Manitoba. Each report is based largely on original petrographic, well log, and geochemical data that were developed by Robertson.

Savage, D.

1983-10-01T23:59:59.000Z

358

Alabama Project Testing Potential for Combining CO2 Storage with Enhanced  

Broader source: Energy.gov (indexed) [DOE]

Alabama Project Testing Potential for Combining CO2 Storage with Alabama Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery Alabama Project Testing Potential for Combining CO2 Storage with Enhanced Methane Recovery June 16, 2010 - 1:00pm Addthis Washington, DC -- Field testing the potential for combining geologic carbon dioxide (CO2) storage with enhanced methane recovery is underway at a site in Alabama by a U.S. Department of Energy (DOE) team of regional partners. Members of the Southeast Regional Carbon Sequestration Partnership (SECARB) are injecting CO2 into a coalbed methane well in Tuscaloosa County to assess the capability of mature coalbed methane reservoirs to receive and adsorb significant volumes of carbon dioxide (CO2). Southern Company, El Paso Exploration & Production, the Geological Survey of Alabama, and the

359

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

Analysis > The Basics of Underground Natural Gas Storage Analysis > The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Printer-Friendly Version Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and maintenance costs, deliverability rates, and cycling capability), which govern its suitability to particular applications. Two of the most important characteristics of an underground storage reservoir are its capacity to hold natural gas for future use and the rate at which gas inventory can be withdrawn-its deliverability rate (see Storage Measures, below, for key definitions).

360

NERSC Visualization and Analysis for Nanoscale Control of Geologic Carbon  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nanocontrol of CO2 Nanocontrol of CO2 Visualization and Analysis for Nanoscale Control of Geologic Carbon Dioxide Goals * Collect experimental 2D-3D imaging data in order to investigate fluid-fluid and fluid-rock interactions; * Provide algorithms for better understanding of processes governing fluid-fluid and fluid-rock systems, related to geologic sequestration of CO2; * Develop image processing methods for analyzing experimental data and comparing it to simulations; * Detect/reconstruct material interfaces, quantify contact angles, derive contact angle distribution, etc. Impact * Unveil knowledge required for developing technology to store CO2 safely in deep surface rock formations, thus reducing amount of CO2 in atmosphere; More Personnel * CRD: Wes Bethel, Dani Ushizima, Gunther Weber (SciDAC-e award)

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Geological Research in France - The Dossier 2005 Argile  

SciTech Connect (OSTI)

At the end of fifteen years of research defined by the French act of December 30, 1991 on radwaste management, ANDRA gave a report, 'Dossier Argile 2005', which concluded with the feasibility of a reversible disposal in the argillaceous Callovo-Oxfordian formation studied by means of an underground research laboratory at the Meuse/Haute-Marne site. Starting from source data like the characteristics of the geological medium and the waste inventory, the process followed by ANDRA to achieve this conclusion is of a sequential type, and iterative between concept design, scientific knowledge, in particular that of the phenomenological evolution of the repository and its geological environment from operating period to long term, and safety assessment. The 'Dossier Argile 2005' covers a broad radwaste inventory, ILLW, HLW and Spent Fuel, so that it makes it possible to cover the whole of the technological, scientific and safety topics. This article will give an overview of the geological disposal studies in France and draw the main conclusion of the Dossier 2005 Argile. It will be focused on the near field (engineering components and near field host rock), while considering, if necessary, its integration within the whole system. After a short description of the concepts (including waste inventory and the characteristics of the Meuse/Haute the Marne site) and the functions of the components of repository and geological medium, one will describe, successively, the broad outline of the phenomenological evolution of repository and the geological medium in near field, in particular, by releasing the time scales of processes and uncertainties of knowledge. On this basis, one will indicate the safety scenarios that were considered and the broad outline of performance and dose calculations. Lessons learn from the Dossier 2005 Argile will be discussed and perspectives and priorities for future will be indicated. (authors)

Plas, Frederic; Wendling, Jacques [DS/IT, Andra, Parc de la Croix Blanche, 1-7 rue Jean Monnet, Chatenay-Malabry, 92298 (France)

2007-07-01T23:59:59.000Z

362

1 BASEMENT STORAGE 3 MICROSCOPE LAB  

E-Print Network [OSTI]

MECHANICAL ROOM 13 SHOWER ROOMSAIR COMPRESSOR 14 NITROGEN STORAGE 15 DIESEL FUEL STORAGE 16 ACID NEUT. TANK 17a ACID STORAGE 17b INERT GAS STORAGE 17c BASE STORAGE 17d SHELVES STORAGE * KNOCK-OUT PANEL

Boonstra, Rudy

363

CO2 Sequestration in Basalt Formations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CO CO 2 SequeStratiOn in BaSalt FOrmatiOnS Background There is growing concern that buildup of greenhouse gases, especially carbon dioxide (CO 2 ), in the atmosphere is contributing to global climate change. One option for mitigating this effect is to sequester CO 2 in geologic formations. Numerous site assessments for geologic sequestration of CO 2 have been conducted in virtually every region of the United States. For the most part, these studies have involved storing CO 2 in saline formation, deep coal seams, and depleted oil and gas reservoirs. Another option, however, is basalt formations. Basalt is a dark-colored, silica-rich, volcanic rock that contains cations-such as calcium, magnesium, and iron-that can combine with CO 2 to form carbonate minerals. Basalt formations have not received much

364

Hydrogen Storage Materials Database Demonstration | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Materials Database Demonstration Hydrogen Storage Materials Database Demonstration Presentation slides from the Fuel Cell Technologies Office webinar "Hydrogen Storage...

365

Solid-state hydrogen storage: Storage capacity, thermodynamics, and kinetics  

Science Journals Connector (OSTI)

Solid-state reversible hydrogen storage systems hold great promise for onboard applications. ... key criteria for a successful solid-state reversible storage material are high storage capacity, suitable thermodyn...

William Osborn; Tippawan Markmaitree; Leon L. Shaw; Ruiming Ren; Jianzhi Hu…

2009-04-01T23:59:59.000Z

366

Large Scale Energy Storage  

Science Journals Connector (OSTI)

This work is mainly an experimental investigation on the storage of solar energy and/or the waste heat of a ... lake or a ground cavity. A model storage unit of (1×2×0.75)m3 size was designed and constructed. The...

F. Çömez; R. Oskay; A. ?. Üçer

1987-01-01T23:59:59.000Z

367

Today: Live from the Carbon Capture and Storage Forum | Department of  

Broader source: Energy.gov (indexed) [DOE]

Today: Live from the Carbon Capture and Storage Forum Today: Live from the Carbon Capture and Storage Forum Today: Live from the Carbon Capture and Storage Forum September 8, 2010 - 10:10am Addthis John Schueler John Schueler Former New Media Specialist, Office of Public Affairs Earlier this week Secretary Chu announced $575 Million dollars in funding for 22 projects across 15 states, projects that will accelerate carbon capture and storage research and development for industrial sources. The selections include projects from four different areas of carbon capture and storage (CCS) research and development: 1) Large scale testing of advanced gasification technologies; 2) advanced turbo-machinery to lower emissions from industrial sources; 3) post-combustion CO2 capture with increased efficiencies and decreased costs; and 4) geologic storage site

368

Geology, mineralogy, and human welfare  

Science Journals Connector (OSTI)

...touted as a major energy source for the...relate to the spatial distribution and chemical signatures...the chemistry of electric storage batteries...long-life Pb; high-energy Li, etc...science, and economic planning procedures. To conclude...population and use of energy is beginning to...

Joseph V. Smith

1999-01-01T23:59:59.000Z

369

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

370

Sandia National Laboratories: evaluate energy storage opportunity  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy storage opportunity 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid...

371

Sandia National Laboratories: implement energy storage projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

implement energy storage projects 2013 Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety,...

372

Hydrogen Storage Fact Sheet | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Storage Fact Sheet Hydrogen Storage Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen storage. Hydrogen Storage More Documents & Publications...

373

Compressed Air Storage Strategies | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Storage Strategies Compressed Air Storage Strategies This tip sheet briefly discusses compressed air storage strategies. COMPRESSED AIR TIP SHEET 9 Compressed Air Storage...

374

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

375

Identification of major rock-water interactions on either side of a hydrologic barrier in the Wanapum Formation, Washington  

E-Print Network [OSTI]

-level radioactive waste storage facility prompted intensive research into the geology, hydrogeology, and ground-water chemistry of the basalt aquifers. The Basalt Waste Isolation Project (BWIP) was undertaken to investigate the suitability of a deep basalt flow...-level radioactive waste storage facility prompted intensive research into the geology, hydrogeology, and ground-water chemistry of the basalt aquifers. The Basalt Waste Isolation Project (BWIP) was undertaken to investigate the suitability of a deep basalt flow...

Dean, Warren Theodore

2012-06-07T23:59:59.000Z

376

,"Underground Natural Gas Storage - Storage Fields Other than...  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Storage Fields Other than Salt Caverns",8,"Monthly","102014","115...

377

The Basics of Underground Natural Gas Storage  

Gasoline and Diesel Fuel Update (EIA)

The Basics of Underground Natural Gas Storage The Basics of Underground Natural Gas Storage Latest update: August 2004 Natural gas-a colorless, odorless, gaseous hydrocarbon-may be stored in a number of different ways. It is most commonly held in inventory underground under pressure in three types of facilities. These are: (1) depleted reservoirs in oil and/or gas fields, (2) aquifers, and (3) salt cavern formations. (Natural gas is also stored in liquid form in above-ground tanks. A discussion of liquefied natural gas (LNG) is beyond the scope of this report. For more information about LNG, please see the EIA report, The Global Liquefied Natural Gas Market: Status & Outlook.) Each storage type has its own physical characteristics (porosity, permeability, retention capability) and economics (site preparation and

378

Federal Control of Geological Carbon Sequestration  

SciTech Connect (OSTI)

The United States has economically recoverable coal reserves of about 261 billion tons, which is in excess of a 250-­?year supply based on 2009 consumption rates. However, in the near future the use of coal may be legally restricted because of concerns over the effects of its combustion on atmospheric carbon dioxide concentrations. In response, the U.S. Department of Energy is making significant efforts to help develop and implement a commercial scale program of geologic carbon sequestration that involves capturing and storing carbon dioxide emitted from coal-­?burning electric power plants in deep underground formations. This article explores the technical and legal problems that must be resolved in order to have a viable carbon sequestration program. It covers the responsibilities of the United States Environmental Protection Agency and the Departments of Energy, Transportation and Interior. It discusses the use of the Safe Drinking Water Act, the Clean Air Act, the National Environmental Policy Act, the Endangered Species Act, and other applicable federal laws. Finally, it discusses the provisions related to carbon sequestration that have been included in the major bills dealing with climate change that Congress has been considering in 2009 and 2010. The article concludes that the many legal issues that exist can be resolved, but whether carbon sequestration becomes a commercial reality will depend on reducing its costs or by imposing legal requirements on fossil-­?fired power plants that result in the costs of carbon emissions increasing to the point that carbon sequestration becomes a feasible option.

Reitze, Arnold

2011-04-11T23:59:59.000Z

379

Ultrafine hydrogen storage powders  

DOE Patents [OSTI]

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

380

Sandia National Laboratories: Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Molten Salt Energy-Storage Demonstration On May 21, 2014, in Capabilities, Concentrating Solar Power, Energy, Energy Storage, Facilities, National Solar Thermal Test Facility,...

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NREL: Transportation Research - Energy Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Energy Storage Transportation Research Cutaway image of an automobile showing the location of energy storage components (battery and inverter), as well as electric motor, power...

382

Hydrogen Storage Materials Database Demonstration  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

| Fuel Cell Technologies Program Source: US DOE 4252011 eere.energy.gov Hydrogen Storage Materials Database Demonstration FUEL CELL TECHNOLOGIES PROGRAM Ned Stetson Storage Tech...

383

Hydrogen storage gets new hope  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen storage gets new hope Hydrogen storage gets new hope A new method for "recycling" hydrogen-containing fuel materials could open the door to economically viable...

384

Energy Storage | Department of Energy  

Energy Savers [EERE]

Energy Storage Energy Storage One of the distinctive characteristics of the electric power sector is that the amount of electricity that can be generated is relatively fixed over...

385

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

386

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

387

Geological Aspects of the Port Hacking Estuary  

Science Journals Connector (OSTI)

The geology of Port Hacking, a small estuary on Australia’s east ... construction sand that could be dredged from Port Hacking.

Alberto D. Albani; Peter C. Rickwood…

1983-01-01T23:59:59.000Z

388

GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION GEOLOGIC CARBON SEQUESTRATION STRATEGIES FOR CALIFORNIA to extend our thanks to the authors of various West Coast Regional Carbon Sequestration Partnership

389

geologic-sequestration | netl.doe.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Geological Sequestration Training and Research Program in Capture and Transport: Development of the Most Economical Separation Method for CO2 Capture Project No.: DE-FE0001953 NETL...

390

Handbook of the Geology of Ireland  

Science Journals Connector (OSTI)

... THE work is based on the late Prof. Cole's contributions to the "Handbook of Regional Geology," published some years ago in Heidelberg, and revised and brought ...

1925-05-30T23:59:59.000Z

391

Regional geophysics, Cenozoic tectonics and geologic resources...  

Open Energy Info (EERE)

and adjoining regions Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: Regional geophysics, Cenozoic tectonics and geologic resources of...

392

3D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological  

Open Energy Info (EERE)

D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological Survey Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 3D Geological Modelling In Bavaria - State-Of-The-Art At A State Geological Survey Details Activities (0) Areas (0) Regions (0) Abstract: Many Geological Survey Organisations (GSOs) are using 3D modelling software technology for a vast variety of applications. Initially many 3D tools were designed for the exploitation of digital seismic mass data existing in hydrocarbon exploration industry. Accordingly, GSOs have to adapt available software and to modify it to their special requirements, defining their own best practice. The Geological Survey of the Bavarian Environment Agency has developed procedures and workflows for a variety of

393

Regional assessment of aquifers for thermal energy storage. Volume 1. Regions 1 through 6  

SciTech Connect (OSTI)

This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: the Western Mountains; Alluvial Basins; Columbia LAVA Plateau; Colorado Plateau; High Plains; and Glaciated Central Region. (LCL)

Not Available

1981-06-01T23:59:59.000Z

394

Regional assessment of aquifers for thermal-energy storage. Volume 2. Regions 7 through 12  

SciTech Connect (OSTI)

This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: Unglaciated Central Region; Glaciated Appalachians, Unglaciated Appalachians; Coastal Plain; Hawaii; and Alaska. (LCL)

Not Available

1981-06-01T23:59:59.000Z

395

doi: 10.1130/focus012012.1 2012;40;95-96Geology  

E-Print Network [OSTI]

Geological Society of America on December 26, 2011geology.gsapubs.orgDownloaded from #12;GEOLOGY, January

396

Hydrogen Storage- Overview  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

- - Overview George Thomas, Hydrogen Consultant to SNL * and Jay Keller, Hydrogen Program Manager Sandia National Laboratories H 2 Delivery and Infrastructure Workshop May 7-8, 2003 * Most of this presentation has been extracted from George Thomas' invited BES Hydrogen Workshop presentation (May 13-14, 2003) Sandia National Laboratories 4/14/03 2 Sandia National Laboratories From George Thomas, BES workshop 5/13/03 H 2 storage is a critical enabling technology for H 2 use as an energy carrier The low volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen storage systems are inherently more complex than liquid fuels. Storage technologies are needed in all aspects of hydrogen utilization. production distribution utilization

397

NETL: Carbon Storage FAQs  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Where is CO2 storage happening today? Where is CO2 storage happening today? Sleipner Project (Norway) Sleipner Project (Norway) Carbon dioxide (CO2) storage is currently happening across the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway, the Weyburn-Midale CO2 Project in Canada, and the In Salah project in Algeria, have been injecting CO2 for many years. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, too. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. Additionally, a multitude of pilot efforts are underway in different parts of the world to determine suitable locations and technologies for future

398

Carbon Capture and Storage  

Science Journals Connector (OSTI)

The main object of the carbon capture and storage (CCS) technologies is the...2...emissions produced in the combustion of fossil fuels such as coal, oil, or natural gas. CCS involves first the capture of the emit...

Ricardo Guerrero-Lemus; José Manuel Martínez-Duart

2013-01-01T23:59:59.000Z

399

Multiported storage devices  

E-Print Network [OSTI]

In the past decade the demand for systems that can process and deliver massive amounts of storage has increased. Traditionally, large disk farms have been deployed by connecting several disks to a single server. A problem with this configuration...

Grande, Marcus Bryan

2012-06-07T23:59:59.000Z

400

Petroleum Geology Conference series doi: 10.1144/0070921  

E-Print Network [OSTI]

Petroleum Geology Conference series doi: 10.1144/0070921 2010; v. 7; p. 921-936Petroleum Geology Collection to subscribe to Geological Society, London, Petroleum Geologyhereclick Notes on January 5, 2011Downloaded by by the Geological Society, London © Petroleum Geology Conferences Ltd. Published #12;An

Demouchy, Sylvie

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Simulation and Risk Assessment for Carbon Storage | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Carbon Capture and Storage » Simulation Carbon Capture and Storage » Simulation and Risk Assessment for Carbon Storage Simulation and Risk Assessment for Carbon Storage Research in simulation and risk assessment is focused on development of advanced simulation models of the subsurface and integration of the results into a risk assessment that includes both technical and programmatic risks. Simulation models are critical for predicting the flow of the CO2 in the target formations, chemical changes that may occur in the reservoir, and geomechanical effects that increased pressures might have on the target formation and seal(s). Improved models that can simulate faults/fractures, the subsurface behavior of system fluids, and geochemical/mechanical/flow effects are needed. Research continues to develop innovative, advanced

402

Notice of Weekly Natural Gas Storage Report Changes  

Weekly Natural Gas Storage Report (EIA)

Released: September 23, 2013 Released: September 23, 2013 EIA to Modify Format of the Weekly Natural Gas Storage Report to Better Serve Customers The U.S. Energy Information Administration (EIA) is announcing changes to the format of its Weekly Natural Gas Storage Report (WNGSR) to better serve its customers who make use of automated computer systems to collate information on changes in natural gas storage. Specifically, EIA intends to enhance the WNGSR summary table. In addition to what is currently presented, EIA plans to provide an estimate of the "implied flow" of working natural gas into or out of underground natural gas storage facilities that excludes reportable reclassifications-those totaling 7 billion cubic feet (Bcf) or more-from the weekly "net change" in

403

Process for safe underground storage of materials and apparatus for storage of such materials  

SciTech Connect (OSTI)

A method is disclosed for the formation of a safe storage area to hold materials, where the storage area is in the form of an underground storage cavern in a preferably rock formation maintained at a different temperature from the natural temperature of the environs surrounding the walls, floor, and the ceiling of said storage cavern. The inside of the storage cavern is with or without insulation and an inner first circulation system surrounds the cavern. The circulation system has a plurality of channels regularly distributed around the cavern and near its surface parallel to the axis of the storage space. The system of tunnels formed of the channels together encloses and surrounds the cavern. Further away from the cavern and on the outside of and in working relation to the first inner circulation system is a second outer circulation system, consisting of a plurality of regularly distributed channels formed either from the said inner tunnel system or between a second outer system of surrounding tunnels parallel to the axis of the storage space and together with said last mentioned channels enclosing the cavern and the inner circulation system. A circulating drying heat exchange medium for exchanging heat between the circulating medium and the surroundings around the first inner circulation system is introduced into the first inner circulation system and a circulating heat exchange drying medium for exchanging heat between the circulating medium and the surroundings around the second outer circulation system is also employed by maintaining heat exchange with the surroundings of first inner circulation system keeping its walls, floor, and ceiling of the cavern at a predetermined temperature above a temperature of the stored materials when storing hot materials below the temperature of the hot materials to form a temperature barrier envelope about said cavern.

Grennard, A.H.

1980-09-30T23:59:59.000Z

404

Preliminary geology of eastern Umtanum Ridge, South-Central Washington  

SciTech Connect (OSTI)

The basalt stratigraphy and geologic structures of eastern Umtanum Ridge have been mapped and studied in detail to help assess the feasibility of nuclear waste terminal storage on the Hanford Site in southeastern Washington State. Eastern Umtanum Ridge is an asymmetric east-west-trending anticline of Columbia River basalt that plunges 5 degrees eastward into the Pasco Basin. Geologic mapping and determination of natural remanent magnetic polarity and chemical composition reveal that flows of the Pomona and Umatilla Members (Saddle Mountains Basalt), Priest Rapids and Frenchman Springs Members (Wanapum Basalt), and Grande Ronde Basalt were erupted as fairly uniform sheets. The Wahluke and Huntzinger flows (Saddle Mountains Basalt) fill a paleovalley cut into Wanapum Basalt. No evidence was found to indicate Quaternary-age movement on any structures in the map area. The basalt strata on the south limb of the Umtanum anticline display relatively little tectonic deformation since Miocene-Pliocene time. Thus, the buried south flank of Umtanum Ridge may provide an excellent location for a nuclear waste repository beneath the Hanford Site.

Goff, F.E.

1981-01-01T23:59:59.000Z

405

Carbon-based Materials for Energy Storage  

E-Print Network [OSTI]

Architectures for Solar Energy Production, Storage andArchitectures for Solar Energy Production, Storage and

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

406

Geology, Society and the Environmental health  

E-Print Network [OSTI]

management Environmental analysis Sustainability Learning Objectives #12; As members of the biological The water we drink The air we breathe Geologic factors in environmental health #12; Health can be definedChapter 19 Geology, Society and the Future #12; Environmental health Air pollution Waste

Pan, Feifei

407

Careers in Geology Department of Geosciences  

E-Print Network [OSTI]

, coal, and water. Environmental geology ­ study of problems associated with pollution, waste disposal ­ study of earth materials of economic interest, including metals, minerals, building stone, petroleum Army Corps of Engineers, state geological surveys Industry Oil companies, environmental firms, mining

Logan, David

408

Sandhills Geology Response by Professor James Goeke  

E-Print Network [OSTI]

. As it turns out, a good portion of the pipeline is not in the Sandhills and doesn't overlie the Ogallala1 Sandhills Geology Response by Professor James Goeke Providing a short, succinct description of the sandhills geology is a difficult and nebulous request. The sandhills themselves are primarily eolian

Nebraska-Lincoln, University of

409

GEOLOGICAL SURVEY OF CANADA OPEN FILE 7462  

E-Print Network [OSTI]

and the McArthur River uranium deposit, Athabasca Basin; Geological Survey of Canada, Open File 7462, 35 pGEOLOGICAL SURVEY OF CANADA OPEN FILE 7462 Alteration within the basement rocks associated with the P2 fault and the McArthur River uranium deposit, Athabasca Basin E.E. Adlakha, K. Hattori, G

410

Savannah River Hydrogen Storage Technology  

Broader source: Energy.gov [DOE]

Presentation from the Hydrogen Storage Pre-Solicitation Meeting held June 19, 2003 in Washington, DC.

411

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

412

Gas Storage Technology Consortium  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

413

FCT Hydrogen Storage: Current Technology  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

414

DOE Global Energy Storage Database  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

The DOE International Energy Storage Database has more than 400 documented energy storage projects from 34 countries around the world. The database provides free, up-to-date information on grid-connected energy storage projects and relevant state and federal policies. More than 50 energy storage technologies are represented worldwide, including multiple battery technologies, compressed air energy storage, flywheels, gravel energy storage, hydrogen energy storage, pumped hydroelectric, superconducting magnetic energy storage, and thermal energy storage. The policy section of the database shows 18 federal and state policies addressing grid-connected energy storage, from rules and regulations to tariffs and other financial incentives. It is funded through DOE’s Sandia National Laboratories, and has been operating since January 2012.

415

Application of Synchrotron Radiation in the Geological and Environmental Sciences  

SciTech Connect (OSTI)

A survey of some of the different ways that synchrotrons x-ray beams can be used to study geological materials is presented here. This field developed over a period of about 30 years, and it is clear that the geological community has made major use of the many synchrotrons facilities operating around the world during this time period. This was a time of rapid change in the operational performance of the synchrotrons facilities and this in itself has made it possible for geologists to develop new and more refined types of experiments that have yielded many important results. The advance in experimental techniques has proceeded in parallel with a revolution in computing techniques that has made it possible to cope with the great amount of data accumulated in the experiments. It is reasonable, although risky, to speculate about what might be expected to develop in the field during the next five- to ten-year period. It does seem plausible that the rate of change in the performance of what might now be called conventional x-ray storage rings will slow. There are no new facilities that are superior to the ESRF, ALS, APS, or SPring8 facilities under construction or about to come into operation. Thus, performance increments in the characteristics of the x-ray sources may come through the introduction of specialized devices in existing storage rings. The free electron laser is one example of a developing new technology that should take us into new regions of performance for radiation sources and stimulate new types of experimental applications. It is also likely that major advances will come through the introduction of more sophisticated experimental devices developed for use with the very recently operational undulator or wiggler sources at the newer rings. Improved x-ray optics and x-ray detectors and more powerful computation and high-speed data transmission can bring about more refined experiments and make the synchrotrons facilities more widely available to the experimental community. The next years should therefore be a time of high productivity and great excitement quite comparable to the previous era of synchrotron-based geological research.

Jones, Keith W.

1999-09-01T23:59:59.000Z

416

A socio-technical framework for assessing the viability of carbon capture and storage technology  

Science Journals Connector (OSTI)

Carbon capture and storage (CCS) is seen as a key technology to tackle climate change. The principal idea of CCS is to remove carbon from the flue gases arising from burning fuels for electricity generation or industrial applications and to store the carbon in geological formations to prevent it from entering the atmosphere. Policy makers in several countries are supportive of the technology, but a number of uncertainties hamper its further development and deployment. The paper makes three related contributions to the literatures on socio-technical systems and technology assessment: 1) It systematically develops an interdisciplinary framework to assess the main uncertainties of CCS innovation. These include technical, economic, financial, political and societal issues. 2) It identifies important linkages between these uncertainties. 3) It develops qualitative and quantitative indicators for assessing these uncertainties. This framework aims to help decision making on CCS by private and public actors and is designed to be applicable to a wider range of low carbon technologies. The paper is based on a systematic review of the social science literature on CCS and on insights from innovation studies, as well as on interviews about assessment of new technologies with experts from a range of organisations and sectors.

Nils Markusson; Florian Kern; Jim Watson; Stathis Arapostathis; Hannah Chalmers; Navraj Ghaleigh; Philip Heptonstall; Peter Pearson; David Rossati; Stewart Russell

2012-01-01T23:59:59.000Z

417

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

418

Radioactive waste storage issues  

SciTech Connect (OSTI)

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

419

Data Formats  

Science Journals Connector (OSTI)

This chapter provides a taxonomy of existing data formats for power power system analysis. These include most commonly used formats of free and proprietary software packages as well as the IEC common informati...

Federico Milano

2010-01-01T23:59:59.000Z

420

Summary of geology of Colorado related to geothermal potential...  

Open Energy Info (EERE)

Journal Article: Summary of geology of Colorado related to geothermal potential Author L.T. Grose Published Journal Colorado Geological Survey Bulletin, 1974 DOI Not Provided...

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Geothermal Well Logging: Geological Wireline Logs and Fracture...  

Open Energy Info (EERE)

Logging: Geological Wireline Logs and Fracture Imaging Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Well Logging: Geological...

422

Idaho Geological Survey and University of Idaho Explore for Geothermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Idaho Geological Survey and University of Idaho Explore for Geothermal Energy Idaho Geological Survey and University of Idaho Explore for Geothermal Energy January 11, 2013 -...

423

Radiometric Ages- Compilation 'B', U.S. Geological Survey | Open...  

Open Energy Info (EERE)

Geological Survey Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Radiometric Ages- Compilation 'B', U.S. Geological Survey Abstract Abstract...

424

Underground Natural Gas Storage by Storage Type  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History All Operators Net Withdrawals 192,093 33,973 -348,719 -17,009 -347,562 -7,279 1967-2012 Injections 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Withdrawals 3,325,013 3,374,338 2,966,180 3,274,385 3,074,251 2,818,148 1944-2012 Salt Cavern Storage Fields Net Withdrawals 20,001 -42,044 -56,010 -58,295 -92,413 -19,528 1994-2012 Injections 400,244 440,262 459,330 510,691 532,893 465,005 1994-2012 Withdrawals 420,245 398,217 403,321 452,396 440,480 445,477 1994-2012 Nonsalt Cavern Storage Net Withdrawals 172,092 76,017 -292,710 41,286 -255,148 12,249 1994-2012 Injections 2,732,676 2,900,103 2,855,667 2,780,703 2,888,920 2,360,422 1994-2012 Withdrawals

425

Underground Natural Gas Storage by Storage Type  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History All Operators Net Withdrawals 192,093 33,973 -348,719 -17,009 -347,562 -7,279 1967-2012 Injections 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Withdrawals 3,325,013 3,374,338 2,966,180 3,274,385 3,074,251 2,818,148 1944-2012 Salt Cavern Storage Fields Net Withdrawals 20,001 -42,044 -56,010 -58,295 -92,413 -19,528 1994-2012 Injections 400,244 440,262 459,330 510,691 532,893 465,005 1994-2012 Withdrawals 420,245 398,217 403,321 452,396 440,480 445,477 1994-2012 Nonsalt Cavern Storage Net Withdrawals 172,092 76,017 -292,710 41,286 -255,148 12,249 1994-2012 Injections 2,732,676 2,900,103 2,855,667 2,780,703 2,888,920 2,360,422 1994-2012 Withdrawals

426

Reference Design Description for a Geologic Repository  

SciTech Connect (OSTI)

One of the current major national environmental problems is the safe disposal of large quantities of spent nuclear fuel and high-level radioactive waste materials, which are rapidly accumulating throughout the country. These radioactive byproducts are generated as the result of national defense activities and from the generation of electricity by commercial nuclear power plants. At present, spent nuclear fuel is accumulating at over 70 power plant sites distributed throughout 33 states. The safe disposal of these high-level radioactive materials at a central disposal facility is a high national priority. This Reference Design Description explains the current design for a potential geologic repository that may be located at Yucca Mountain in Nevada for the disposal of spent nuclear fuel and high-level radioactive waste materials. This document describes a possible design for the three fundamental parts of a repository: a surface facility, subsurface repository, and waste packaging. It also presents the current conceptual design of the key engineering systems for the final four phases of repository processes: operations, monitoring, closure, and postclosure. In accordance with current law, this design does not include an interim storage option. In addition, this Reference Design Description reviews the expected long-term performance of the potential repository. It describes the natural barrier system which, together with the engineered systems, achieves the repository objectives. This design will protect the public and the environment by allowing the safe disposal of radioactive waste received from government-owned custodial spent fuel sites, high-level radioactive waste sites, and commercial power reactor sites. All design elements meet or exceed applicable regulations governing the disposal of high-level radioactive waste. The design will provide safe disposal of waste materials for at least a 10,000 year period. During this time interval, natural radioactive decay of the waste materials will result in fission products that pose a minimal radiological hazard to the public afterward. For example, after 100 years, the relative hazard from the waste fission products will have diminished approximately 90 percent. After 1,000 years, the hazard will have diminished 99 percent, and after 10,000 years it will have diminished 99.9 percent. The resulting radiological hazard after 10,000 years is minimal, being of the same order of magnitude as that posed by 0.2 percent uranium ore, which is equivalent to that which was used to originally produce the nuclear fuel. Because developing such a repository is extremely complex, the design will move forward in three stages: Site Recommendation, License Application, and Construction. This document presents the design as it will be submitted in the Site Recommendation Consideration Report; the design will be updated as the design process moves forward. As more cost-effective solutions, technical advancements, or changes to requirements occur, the design may evolve. The U.S. Department of Energy's (DOE) Office of Civilian Radioactive Waste Management is developing a system that includes this potential repository. This waste management system integrates acceptance, transportation, storage, and disposal of spent nuclear fuel and high-level radioactive waste. Acceptance and transportation will be handled by regional servicing contractors under contract to the DOE. The U.S. Nuclear Regulatory Commission will conduct an in-depth and thorough licensing review to determine the acceptability of the proposed waste management system. Eight sections of this document follow. Section 2 discusses the design requirements for the proposed repository. Section 3 describes the physical layout of the proposed repository. Section 4 describes the evolutionary phases of the development of the proposed repository. Section 5 describes the receipt of waste. Section 6 details the various systems that will package the waste and move it below ground, as well as safety monitoring and closure. Section 7 describes the syst

NA

2000-10-07T23:59:59.000Z

427

An Assessment of Geological Carbon Sequestration Options in the Illinois Basin  

SciTech Connect (OSTI)

The Midwest Geological Sequestration Consortium (MGSC) has investigated the options for geological carbon dioxide (CO{sub 2}) sequestration in the 155,400-km{sup 2} (60,000-mi{sup 2}) Illinois Basin. Within the Basin, underlying most of Illinois, western Indiana, and western Kentucky, are relatively deeper and/or thinner coal resources, numerous mature oil fields, and deep salt-water-bearing reservoirs that are potentially capable of storing CO{sub 2}. The objective of this Assessment was to determine the technical and economic feasibility of using these geological sinks for long-term storage to avoid atmospheric release of CO{sub 2} from fossil fuel combustion and thereby avoid the potential for adverse climate change. The MGSC is a consortium of the geological surveys of Illinois, Indiana, and Kentucky joined by six private corporations, five professional business associations, one interstate compact, two university researchers, two Illinois state agencies, and two consultants. The purpose of the Consortium is to assess carbon capture, transportation, and storage processes and their costs and viability in the three-state Illinois Basin region. The Illinois State Geological Survey serves as Lead Technical Contractor for the Consortium. The Illinois Basin region has annual emissions from stationary anthropogenic sources exceeding 276 million metric tonnes (304 million tons) of CO{sub 2} (>70 million tonnes (77 million tons) carbon equivalent), primarily from coal-fired electric generation facilities, some of which burn almost 4.5 million tonnes (5 million tons) of coal per year. Assessing the options for capture, transportation, and storage of the CO{sub 2} emissions within the region has been a 12-task, 2-year process that has assessed 3,600 million tonnes (3,968 million tons) of storage capacity in coal seams, 140 to 440 million tonnes (154 to 485 million tons) of capacity in mature oil reservoirs, 7,800 million tonnes (8,598 million tons) of capacity in saline reservoirs deep beneath geological structures, and 30,000 to 35,000 million tonnes (33,069 to 38,580 million tons) of capacity in saline reservoirs on a regional dip >1,219 m (4,000 ft) deep. The major part of this effort assessed each of the three geological sinks: coals, oil reservoirs, and saline reservoirs. We linked and integrated options for capture, transportation, and geological storage with the environmental and regulatory framework to define sequestration scenarios and potential outcomes for the region. Extensive use of Geographic Information Systems (GIS) and visualization technology was made to convey results to project sponsors, other researchers, the business community, and the general public. An action plan for possible technology validation field tests involving CO{sub 2} injection was included in a Phase II proposal (successfully funded) to the U.S. Department of Energy with cost sharing from Illinois Clean Coal Institute.

Robert Finley

2005-09-30T23:59:59.000Z

428

Flywheel Energy Storage Module  

Broader source: Energy.gov (indexed) [DOE]

kWh/100 kW kWh/100 kW Flywheel Energy Storage Module * 100KWh - 1/8 cost / KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft / Hub (which limits surface speed) * Flexible Motor Magnets on Rim ID * Develop Touch-down System for Earthquake Flying Rim Eliminate Shaft and Hub Levitate on Passive Magnetic Bearings Increase Rim Tip Speed Larger Diameter Thinner Rim Stores More Energy 4 X increase in Stored Energy with only 60% Increase in Weight Development of a 100 kWh/100 kW Flywheel Energy Storage Module High Speed, Low Cost, Composite Ring with Bore-Mounted Magnetics Current State of the Art Flywheel Limitations of Existing Flywheel * 15 Minutes of storage * Limited to Frequency Regulation Application * Rim Speed (Stored Energy) Limited by Hub Strain and Shaft Dynamics

429

NREL: Learning - Hydrogen Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hydrogen Storage Hydrogen Storage On the one hand, hydrogen's great asset as a renewable energy carrier is that it is storable and transportable. On the other hand, its very low natural density requires storage volumes that are impractical for vehicles and many other uses. Current practice is to compress the gas in pressurized tanks, but this still provides only limited driving range for vehicles and is bulkier than desirable for other uses as well. Liquefying the hydrogen more than doubles the fuel density, but uses up substantial amounts of energy to lower the temperature sufficiently (-253°C at atmospheric pressure), requires expensive insulated tanks to maintain that temperature, and still falls short of desired driving range. One possible way to store hydrogen at higher density is in the spaces within the crystalline

430

Storage Ring Operation Modes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Longitudinal bunch profile and Up: APS Storage Ring Parameters Longitudinal bunch profile and Up: APS Storage Ring Parameters Previous: Source Parameter Table Storage Ring Operation Modes Standard Operating Mode, top-up Fill pattern: 102 mA in 24 singlets (single bunches) with a nominal current of 4.25 mA and a spacing of 153 nanoseconds between singlets. Lattice configuration: Low emittance lattice with effective emittance of 3.1 nm-rad and coupling of 1%. Bunch length (rms): 33.5 ps. Refill schedule: Continuous top-up with single injection pulses occurring at a minimum of two minute intervals, or a multiple of two minute intervals. Special Operating Mode - 324 bunches, non top-up Fill pattern: 102 mA in 324 uniformly spaced singlets with a nominal single bunch current of 0.31 mA and a spacing of 11.37 nanoseconds between singlets.

431

FOREST CENTRE STORAGE BUILDING  

E-Print Network [OSTI]

FOREST CENTRE STORAGE BUILDING 3 4 5 6 7 8 UniversityDr. 2 1 G r e n f e l l D r i v e MULTI BUILDING STORAGE BUILDING LIBRARY & COMPUTING FINE ARTS FOREST CENTRE ARTS &SCIENCE BUILDING ARTS &SCIENCE BUILDING A&S BUILDING EXTENSIO N P7 P5.1 P5 P2 P3.1 P3.2 P6 P8 P4 P2 P2 P4 P8 P2.4 PARKING MAP GRENFELL

deYoung, Brad

432

Marketing Cool Storage Technology  

E-Print Network [OSTI]

storage has been substantiated. bv research conducted by Electric Power Research Institute, and by numerous installations, it has become acknowledged that cool stora~e can provide substantial benefits to utilities and end-users alike. A need was reco...~ned to improve utility load factors, reduce peak electric demands, and other-wise mana~e the demand-side use of electricity. As a result of these many pro~rams, it became apparent that the storage of coolin~, in the form of chilled water, ice, or other phase...

McCannon, L.

433

Storage Business Model White Paper  

Broader source: Energy.gov (indexed) [DOE]

Storage Business Model White Paper Storage Business Model White Paper Summary June 11 2013 Storage Business Model White Paper - Purpose  Identify existing business models for investors/operators, utilities, end users  Discuss alignment of storage "value proposition" with existing market designs and regulatory paradigms  Difficulties in realizing wholesale market product revenue streams for distributed storage - the "bundled applications" problem  Discuss risks/barriers to storage adoption and where existing risk mitigation measures fall down  Recommendations for policy/research steps - Alternative business models - Accelerated research into life span and failure modes

434

Spent-fuel-storage alternatives  

SciTech Connect (OSTI)

The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

Not Available

1980-01-01T23:59:59.000Z

435

Global Warming in Geologic Time  

ScienceCinema (OSTI)

The notion is pervasive in the climate science community and in the public at large that the climate impacts of fossil fuel CO2 release will only persist for a few centuries. This conclusion has no basis in theory or models of the atmosphere / ocean carbon cycle, which we review here. The largest fraction of the CO2 recovery will take place on time scales of centuries, as CO2 invades the ocean, but a significant fraction of the fossil fuel CO2, ranging in published models in the literature from 20-60%, remains airborne for a thousand years or longer. Ultimate recovery takes place on time scales of hundreds of thousands of years, a geologic longevity typically associated in public perceptions with nuclear waste. The glacial / interglacial climate cycles demonstrate that ice sheets and sea level respond dramatically to millennial-timescale changes in climate forcing. There are also potential positive feedbacks in the carbon cycle, including methane hydrates in the ocean, and peat frozen in permafrost, that are most sensitive to the long tail of the fossil fuel CO2 in the atmosphere.

David Archer

2010-01-08T23:59:59.000Z

436

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles, for Large Scale Geologic Storage of CO 2 Background Carbon capture and storage...

437

Albany, OR * Anchorage, AK * Morgantown, WV * Pittsburgh, PA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

being developed for geologic carbon storage are focused on five storage types: (1) oil and natural gas reservoirs; (2) saline formations; (3) unmineable coal seams; (4)...

438

Albany, OR * Anchorage, AK * Morgantown...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

being developed for geologic carbon storage are focused on five storage types: oil and gas reservoirs, saline formations, unmineable coal seams, basalts, and...

439

Solar Energy Storage Methods  

Science Journals Connector (OSTI)

Solar Energy Storage Methods ... Conducting polymers have superior specific energies to the carbon-based supercapacitors and have greater power capability, compared to inorganic battery material. ... The question of load redistribution for better energetic usage is of vital importance since these new renewable energy sources are often intermittent. ...

Yu Hou; Ruxandra Vidu; Pieter Stroeve

2011-06-09T23:59:59.000Z

440

Seed Cotton Handling & Storage  

E-Print Network [OSTI]

Seed Cotton Handling & Storage #12;S.W. Searcy Texas A&M University College Station, Texas M) Lubbock, Texas E.M. Barnes Cotton Incorporated Cary, North Carolina Acknowledgements: Special thanks for the production of this document has been provided by Cotton Incorporated, America's Cotton Producers

Mukhtar, Saqib

Note: This page contains sample records for the topic "geologic storage formations" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

NV Energy Electricity Storage Valuation  

SciTech Connect (OSTI)

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

442

Utah Geological Survey | Open Energy Information  

Open Energy Info (EERE)

Utah Geological Survey Utah Geological Survey Name Utah Geological Survey Address 1594 W. North Temple Place Salt Lake City, Utah Zip 84114-6100 Phone number 801.537.3300 Website http://geology.utah.gov/ Coordinates 40.7713859°, -111.9367973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7713859,"lon":-111.9367973,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

443

Geology of Kilauea Volcano | Open Energy Information  

Open Energy Info (EERE)

Geology of Kilauea Volcano Geology of Kilauea Volcano Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Geology of Kilauea Volcano Abstract This paper summarizes studies of the structure, stratigraphy, petrology, drill holes, eruption frequency, and volcanic and seismic hazards of Kilauea volcano. All the volcano is discussed, bul the focus is on its lower east rift zone (LERZ) because active exploration for geothermal energy is concentrated in that area. Kilauea probably has several separate hydrothermal-convection systems lhat develop in response to the dynamic behavior of the volcano and the influx of abundant meteoric water, of some of these hydrothermal convection systems are known through studies of surface geology,and drill holes. Observations of eruptions during the past

444

Property:AreaGeology | Open Energy Information  

Open Energy Info (EERE)

AreaGeology AreaGeology Jump to: navigation, search Property Name AreaGeology Property Type String Description A description of the area geology This is a property of type String. Subproperties This property has the following 22 subproperties: A Amedee Geothermal Area B Beowawe Hot Springs Geothermal Area Blue Mountain Geothermal Area Brady Hot Springs Geothermal Area C Chena Geothermal Area Coso Geothermal Area D Desert Peak Geothermal Area D cont. Dixie Valley Geothermal Area E East Mesa Geothermal Area G Geysers Geothermal Area K Kilauea East Rift Geothermal Area L Lightning Dock Geothermal Area Long Valley Caldera Geothermal Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area S Salt Wells Geothermal Area Salton Sea Geothermal Area San Emidio Desert Geothermal Area

445

Geology of the Athabasca Oil Sands  

Science Journals Connector (OSTI)

...only when reservoir condi-tions...geological at-rocks, cap rocks, oil migration...subsurface reservoir and supplying...reservoir quality of the sands. Porosity. High-grade...reservoir sandstones (5 to 20...the oil. Permeability. The permeability...

Grant D. Mossop

1980-01-11T23:59:59.000Z

446

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

for Electrochemical Energy Storage Nanostructured Electrodesof Electrode Design for Energy Storage and Generation .batteries and their energy storage efficiency. vii Contents

Khan, Javed Miller

2012-01-01T23:59:59.000Z

447

Recommendation 212: Evaluate additional storage and disposal...  

Office of Environmental Management (EM)

212: Evaluate additional storage and disposal options Recommendation 212: Evaluate additional storage and disposal options The ORSSAB encourages DOE to evaluate additional storage...

448

Sandia National Laboratories: Energy Storage Systems  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electricity Storage Handbook Published On July 31, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems, Energy Surety, Grid Integration, Infrastructure...

449

Storage/Handling | Department of Energy  

Energy Savers [EERE]

StorageHandling StorageHandling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management...

450

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

Survey of Thermal Energy Storage in Aquifers Coupled withLow Temperature Thermal Energy Storage Program of Oak Ridgefor Seasonal Thermal Energy Storage: An Overview of the DOE-

Authors, Various

2011-01-01T23:59:59.000Z

451

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network [OSTI]

1974. Geothermal Storage of Solar Energy, in "Governors1976. "Geothermal Storage of Solar Energy for Electric PowerUnderground Longterm Storage of Solar Energy - An Overview,"

Authors, Various