Sample records for geodesic grid coupled

  1. Atmospheric Properties from the 2006 Niamey Deployment and Climate Simulation with a Geodesic Grid Coupled Climate Model Fourth Quarter 2008

    SciTech Connect (OSTI)

    JH Mather; DA Randall; CJ Flynn

    2008-09-30T23:59:59.000Z

    In 2008, the Atmospheric Radiation Measurement (ARM) Program and the Climate Change Prediction Program (CCPP) have been asked to produce joint science metrics. For CCPP, the metrics will deal with a decade-long control simulation using geodesic grid-coupled climate model. For ARM, the metrics will deal with observations associated with the 2006 deployment of the ARM Mobile Facility (AMF) to Niamey, Niger. Specifically, ARM has been asked to deliver data products for Niamey that describe cloud, aerosol, and dust properties. The first quarter milestone was the initial formulation of the algorithm for retrieval of these properties. The second quarter milestone included the time series of ARM-retrieved cloud properties and a year-long CCPP control simulation. The third quarter milestone included the time series of ARM-retrieved aerosol optical depth and a three-year CCPP control simulation. This final fourth quarter milestone includes the time-series of aerosol and dust properties and a decade-long CCPP control simulation.

  2. Analysis of grid imprinting on geodesic spherical icosahedral grids Pedro S. Peixoto, Saulo R. M. Barros

    E-Print Network [OSTI]

    Analysis of grid imprinting on geodesic spherical icosahedral grids Pedro S. Peixoto, Saulo R. M-090 S~ao Paulo, Brazil Abstract Numerical grid imprinting errors have often been observed in global atmospheric models on icosahedral grids. In this paper we analyse the sources of grid imprinting error related

  3. Coupling Electric Vehicles and Power Grid through Charging-In-Motion and Connected Vehicle Technology

    SciTech Connect (OSTI)

    Li, Jan-Mou [ORNL; Jones, Perry T [ORNL; Onar, Omer C [ORNL; Starke, Michael R [ORNL

    2014-01-01T23:59:59.000Z

    A traffic-assignment-based framework is proposed to model the coupling of transportation network and power grid for analyzing impacts of energy demand from electric vehicles on the operation of power distribution. Although the reverse can be investigated with the proposed framework as well, electricity flowing from a power grid to electric vehicles is the focus of this paper. Major variables in transportation network (including link flows) and power grid (including electricity transmitted) are introduced for the coupling. Roles of charging-in-motion technology and connected vehicle technology have been identified in the framework of supernetwork. A linkage (i.e. individual energy demand) between the two networks is defined to construct the supernetwork. To determine equilibrium of the supernetwork can also answer how many drivers are going to use the charging-in-motion services, in which locations, and at what time frame. An optimal operation plan of power distribution will be decided along the determination simultaneously by which we have a picture about what level of power demand from the grid is expected in locations during an analyzed period. Caveat of the framework and possible applications have also been discussed.

  4. The electron geodesic acoustic mode

    SciTech Connect (OSTI)

    Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Guzdar, P. N. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Kaw, P. K. [Institute for Plasma Research Bhat, Gandhinagar 382428 (India)

    2012-09-15T23:59:59.000Z

    In this report, a novel new mode, named the electron geodesic acoustic mode, is presented. This mode can occur in toroidal plasmas like the conventional geodesic acoustic mode (GAM). The frequency of this new mode is much larger than that of the conventional GAM by a factor equal to the square root of the ion to electron mass ratio.

  5. A mathematical basis for automated structured grid generation with close coupling to the flow solver

    SciTech Connect (OSTI)

    Barnette, D.W.

    1998-02-01T23:59:59.000Z

    The first two truncation error terms resulting from finite differencing the convection terms in the two-dimensional Navier-Stokes equations are examined for the purpose of constructing two-dimensional grid generation schemes. These schemes are constructed such that the resulting grid distributions drive the error terms to zero. Two sets of equations result, one for each error term, that show promise in generating grids that provide more accurate flow solutions and possibly faster convergence. One set results in an algebraic scheme that drives the first truncation term to zero, and the other a hyperbolic scheme that drives the second term to zero. Also discussed is the possibility of using the schemes in sequentially constructing a grid in an iterative algorithm involving the flow solver. In essence, the process is envisioned to generate not only a flow field solution but the grid as well, rendering the approach a hands-off method for grid generation

  6. Coupled fluid structure simulations for application to grid-to-rod fretting

    E-Print Network [OSTI]

    Tan-Torres, Sasha Angela

    2014-01-01T23:59:59.000Z

    Grid-to-rod fretting (GTRF) has been the major cause of fuel leakage in Pressurized Water Reactors (PWRs) for the past ten years. It is responsible for over 70% of the fuel leaking in PWRs in the United States. The Consortium ...

  7. Cascading of Fluctuations in Interdependent Energy Infrastructures: Gas-Grid Coupling

    E-Print Network [OSTI]

    Chertkov, Michael; Backhaus, Scott

    2014-01-01T23:59:59.000Z

    The revolution of hydraulic fracturing has dramatically increased the supply and lowered the cost of natural gas in the United States driving an expansion of natural gas-fired generation capacity in many electrical grids. Unrelated to the natural gas expansion, lower capital costs and renewable portfolio standards are driving an expansion of intermittent renewable generation capacity such as wind and photovoltaic generation. These two changes may potentially combine to create new threats to the reliability of these interdependent energy infrastructures. Natural gas-fired generators are often used to balance the fluctuating output of wind generation. However, the time-varying output of these generators results in time-varying natural gas burn rates that impact the pressure in interstate transmission pipelines. Fluctuating pressure impacts the reliability of natural gas deliveries to those same generators and the safety of pipeline operations. We adopt a partial differential equation model of natural gas pipeli...

  8. AUSTRIAN GRID AUSTRIAN GRID

    E-Print Network [OSTI]

    AUSTRIAN GRID 1/18 AUSTRIAN GRID THE INITIAL VERSION OF SEE-GRID Document Identifier: AG-DA1c-1) #12;AUSTRIAN GRID 2/18 Delivery Slip Name Partner Date Signature From Károly Bósa RISC 31 See cover on page 3 #12;AUSTRIAN GRID 3/18 THE INITIAL VERSION OF SEE-GRID Karoly Bosa Wolfgang

  9. Quantum frictionless trajectories versus geodesics

    E-Print Network [OSTI]

    Luis C. Barbado; Carlos Barceló; Luis J. Garay

    2015-05-15T23:59:59.000Z

    Moving particles outside a star will generally experience quantum friction caused by Unruh radiation reaction. There exist however radial trajectories that lack this effect (in the outgoing radiation sector, and ignoring back-scattering). They turn out to have the property that the variations of the Doppler and the gravitational shifts compensate each other. They are not geodesics, and their proper acceleration obeys an inverse square law, which means that could in principle be generated by outgoing stellar radiation. In the case of a black hole emitting Hawking radiation, this may lead to a buoyancy scenario. The ingoing radiation sector has little effect and seems to slow down the fall even further.

  10. Quantum frictionless trajectories versus geodesics

    E-Print Network [OSTI]

    Barbado, Luis C; Garay, Luis J

    2015-01-01T23:59:59.000Z

    Moving particles outside a star will generally experience quantum friction caused by Unruh radiation reaction. There exist however radial trajectories that lack this effect (in the outgoing radiation sector, and ignoring back-scattering). They turn out to have the property that the variations of the Doppler and the gravitational shifts compensate each other. They are not geodesics, and their proper acceleration obeys an inverse square law, which means that could in principle be generated by outgoing stellar radiation. In the case of a black hole emitting Hawking radiation, this may lead to a buoyancy scenario. The ingoing radiation sector has little effect and seems to slow down the fall even further.

  11. Separable geodesic action slicing in stationary spacetimes

    E-Print Network [OSTI]

    Donato Bini; Andrea Geralico; Robert T. Jantzen

    2014-08-22T23:59:59.000Z

    A simple observation about the action for geodesics in a stationary spacetime with separable geodesic equations leads to a natural class of slicings of that spacetime whose orthogonal geodesic trajectories represent freely falling observers. The time coordinate function can then be taken to be the observer proper time, leading to a unit lapse function. This explains some of the properties of the original Painlev\\'e-Gullstrand coordinates on the Schwarzschild spacetime and their generalization to the Kerr-Newman family of spacetimes, reproducible also locally for the G\\"odel spacetime. For the static spherically symmetric case the slicing can be chosen to be intrinsically flat with spherically symmetric geodesic observers, leaving all the gravitational field information in the shift vector field.

  12. Geodesic equations and algebro-geometric methods

    E-Print Network [OSTI]

    Hackmann, Eva

    2015-01-01T23:59:59.000Z

    For an investigation of the physical properties of gravitational fields the observation of massive test particles and light is very useful. The characteristic features of a given space-time may be decoded by studying the complete set of all possible geodesic motions. Such a thorough analysis can be accomplished most effectively by using analytical methods to solve the geodesic equation. In this contribution, the use of elliptic functions and their generalizations for solving the geodesic equation in a wide range of well known space-times, which are part of the general Pleba\\'nski-Demia\\'nski family of solutions, will be presented. In addition, the definition and calculation of observable effects like the perihelion shift will be presented and further applications of the presented methods will be outlined.

  13. Electromagnetic effects on geodesic acoustic modes

    SciTech Connect (OSTI)

    Bashir, M. F., E-mail: frazbashir@yahoo.com [Salam Chair in Physics, G. C. University Lahore, Katchery Road, Lahore 54000 (Pakistan); Department of Physics, G. C. University Lahore, Katchery Road, Lahore 54000 (Pakistan); Smolyakov, A. I. [University of Saskatchewan, 116 Science Place, Saskatoon S7N 5E2 (Canada); Institute of Tokamak Physics, NRC “Kurchatov Institute,” 123182 Moscow (Russian Federation); Elfimov, A. G. [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil); Melnikov, A. V. [Institute of Tokamak Physics, NRC “Kurchatov Institute,” 123182 Moscow (Russian Federation); National Research Nuclear University MEPhI, 115409, Moscow (Russian Federation); Murtaza, G. [Visiting Professor, Department of Physics, Quaid-e-Azam University, Islamabad (Pakistan)

    2014-08-15T23:59:59.000Z

    By using the full electromagnetic drift kinetic equations for electrons and ions, the general dispersion relation for geodesic acoustic modes (GAMs) is derived incorporating the electromagnetic effects. It is shown that m?=?1 harmonic of the GAM mode has a finite electromagnetic component. The electromagnetic corrections appear for finite values of the radial wave numbers and modify the GAM frequency. The effects of plasma pressure ?{sub e}, the safety factor q, and the temperature ratio ? on GAM dispersion are analyzed.

  14. Free of centrifugal acceleration spacetime - Geodesics

    E-Print Network [OSTI]

    Hristu Culetu

    2013-04-27T23:59:59.000Z

    A static spacetime with no centrifugal repulsion, previously studied by Dadhich, is investigate in this paper. The source of curvature is considered to be an anisotropic fluid with $\\rho = -p_{r}$ and constant angular pressures. The positive parameter from the line-element is interpreted as the invariant acceleration of a static observer. We found that the Tolman-Komar gravitational energy is finite everywhere. The timelike and null geodesics of the spacetime are examined.

  15. Applications (Grid Tools)

    E-Print Network [OSTI]

    Buyya, Rajkumar

    Grid Fabric Software Grid Applications Core Grid Middleware User-Level Middleware (Grid Tools) !"# $ %& ' ( ) * #& + '& ' , - . / # ) ) 0 # * 1 PDB CDB Grid Fabric Hardware &+ '' + ) , '1 '1 ' % - * # ( Grid Fabric Software Grid Applications Core Grid Middleware User-Level Middleware (Grid Tools) !"# $ %& ' ( ) * #& + '& ' , - . / # ) ) 0

  16. Anti-telephones in transformation optics: metamaterials with closed null geodesics

    E-Print Network [OSTI]

    Boston, S Reece

    2015-01-01T23:59:59.000Z

    We apply the methods of transformation optics to theoretical descriptions of spacetimes that support closed null geodesic curves. The metric used is based on frame dragging spacetimes, such as the van Stockum dust or the Kerr black hole. Through transformation optics, this metric is analogous to a material that in theory should allow for communication between past and future. Presented herein is a derivation and description of the spacetime and the resulting permeability, permittivity, and magneto-electric couplings that a material would need in order for light in the material to follow closed null geodesics. We also address the paradoxical implications of such a material, and demonstrate why such a material would not actually result in a violation of causality. A full derivation of the Plebanski equations is also included.

  17. Dark energy and extending the geodesic equations of motion: its construction and experimental constraints

    E-Print Network [OSTI]

    Speliotopoulos, Achilles D.

    2010-01-01T23:59:59.000Z

    3 RESEARCH ARTICLE Dark energy and extending the geodesicWith the discovery of Dark Energy, DE , there is now aextension is set. Keywords Dark energy · Geodesic equations

  18. Counting elements and geodesics in Thompson's group F

    E-Print Network [OSTI]

    Rechnitzer, Andrew

    Counting elements and geodesics in Thompson's group F Murray Elder School of Mathematics of Thompson's group F with standard generating set. The first of these requires exponential time . Key words: Group growth function, growth series, geodesic growth series, Thompson's group F 2008 MSC

  19. RETINAL BLOOD VESSEL SEGMENTATION USING GEODESIC VOTING METHODS Youssef Rouchdy

    E-Print Network [OSTI]

    Cohen, Laurent

    RETINAL BLOOD VESSEL SEGMENTATION USING GEODESIC VOTING METHODS Youssef Rouchdy and Laurent D to segment retinal blood vessels are presented. Many authors have used minimal cost paths, or similarly on the use of a set of such geodesic paths to extract retinal blood vessels, using minimal interaction

  20. The Hartle-Thorne circular geodesics

    E-Print Network [OSTI]

    M. A. Abramowicz; G. J. E. Almergren; W. Kluzniak; A. V. Thampan

    2003-12-15T23:59:59.000Z

    The Hartle-Thorne metric is an exact solution of vacuum Einstein field equations that describes the exterior of any slowly and rigidly rotating, stationary and axially symmetric body. The metric is given with accuracy up to the second order terms in the body's angular momentum, and first order in its quadrupole moment. We give, with the same accuracy, analytic formulae for circular geodesics in the Hartle-Thorne metrics. They describe angular velocity, angular momentum, energy, epicyclic frequencies, shear, vorticity and Fermi-Walker precession. These quantities are relevant to several astrophysical phenomena, in particular to the observed high frequency, kilohertz Quasi Periodic Oscillations (kHz QPOs) in the X-ray luminosity from black hole and neutron star sources. It is believed that kHz QPO data may be used to test the strong field regime of Einstein's general relativity, and the physics of super-dense matter of which neutron stars are made of.

  1. Grid Integration

    SciTech Connect (OSTI)

    Not Available

    2008-09-01T23:59:59.000Z

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its grid integration subprogram.

  2. Geodesic Distance in Fisher Information Space and Holographic Entropy Formula

    E-Print Network [OSTI]

    Hiroaki Matsueda

    2014-08-28T23:59:59.000Z

    In this short note, we examine geodesic distance in Fisher information space in which the metric is defined by the entanglement entropy in CFT_(1+1). It is obvious in this case that the geodesic distance at a constant time is a function of the entropy data embedded into the information space. In a special case, the geodesic equation can be solved analytically, and we find that the distance agrees well with the Ryu-Takayanagi formula. Then, we can understand how the distance looks at the embeded quantum information. The result suggests that the Fisher metric is an efficient tool for constructing the holographic spacetime.

  3. Inverting the local geodesic X-ray transform on tensors

    E-Print Network [OSTI]

    2014-12-18T23:59:59.000Z

    Oct 18, 2014 ... by the Hs norm of If restricted to the set of ?-local geodesics. ... This theorem, combined with Theorem 2 in [27] (with a minor change — the no- ...

  4. Grid Security

    E-Print Network [OSTI]

    Sinnott, R.O.

    Sinnott,R.O. National Centre for e-Social Science book, Grid Computing: Technology, Service and Application, CRC Press, November 2008.

  5. Smart Grid Investments Improve Grid Reliability, Resilience,...

    Office of Environmental Management (EM)

    Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November...

  6. Grid Architecture

    Broader source: Energy.gov (indexed) [DOE]

    Integration of Distributed Generation", John McDonald, et.al. Electrical Transmission and Smart Grids, Springer, 2013. 4.25 Figure 4.17. Common Distribution Looping Arrangements In...

  7. FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced

    E-Print Network [OSTI]

    FUTURE POWER GRID INITIATIVE GridPACK: Grid Parallel Advanced Computational Kernels OBJECTIVE The U of the power grid will also have to evolve to insure accurate and timely simulations. On the other hand, the software tools available for power grid simulation today are primarily sequential single core programs

  8. Geodesic Finite Elements of Higher Order Oliver Sander

    E-Print Network [OSTI]

    conditions. As a side product we can define geodesic finite elements for non-simplex reference elements of a simplex by the weighted average (v1, . . . , dd+1; w) := arg min qM d+1 i=1 wi dist(vi, q)2 , (1) where w are barycentric coordinates on the simplex. Based on this formula a finite element theory could be constructed

  9. Drilling long geodesics in hyperbolic 3-manifolds K. Bromberg

    E-Print Network [OSTI]

    Bromberg, Kenneth

    Drilling long geodesics in hyperbolic 3-manifolds K. Bromberg September 22, 2006 1 Introduction to such a deformation as drilling and results which compare the geometry of the original manifold to the geometry of the drilled manifold as drilling theorems. The first results of this type are due to Hodgson and Kerckhoff

  10. NATL Grid Map 50-Meter Grid

    E-Print Network [OSTI]

    Slatton, Clint

    NATL-east NATL Grid Map 50-Meter Grid Locations in NATL can be specified by reference to a grid intervals. Each gridline intersection ("grid point") is identified by its two gridlines (e.g., E5). Each 50x50-m block formed by the gridlines is identified by the grid point in its northwest corner (e

  11. Excitation of kinetic geodesic acoustic modes by drift waves in nonuniform plasmas

    SciTech Connect (OSTI)

    Qiu, Z. [Inst. Fusion Theory and Simulation, Zhejiang Univ., Hangzhou 310027 (China)] [Inst. Fusion Theory and Simulation, Zhejiang Univ., Hangzhou 310027 (China); Chen, L. [Inst. Fusion Theory and Simulation, Zhejiang Univ., Hangzhou 310027 (China) [Inst. Fusion Theory and Simulation, Zhejiang Univ., Hangzhou 310027 (China); Dept. Physics and Astronomy, Univ. of California, Irvine, California 92697-4575 (United States); Zonca, F. [Inst. Fusion Theory and Simulation, Zhejiang Univ., Hangzhou 310027 (China) [Inst. Fusion Theory and Simulation, Zhejiang Univ., Hangzhou 310027 (China); Associazione Euratom-ENEA sulla Fusione, C.P. 65 - I-00044 - Frascati (Italy)

    2014-02-15T23:59:59.000Z

    Effects of system nonuniformities and kinetic dispersiveness on the spontaneous excitation of Geodesic Acoustic Mode (GAM) by Drift Wave (DW) turbulence are investigated based on nonlinear gyrokinetic theory. The coupled nonlinear equations describing parametric decay of DW into GAM and DW lower sideband are derived and then solved both analytically and numerically to investigate the effects on the parametric decay process due to system nonuniformities, such as nonuniform diamagnetic frequency, finite radial envelope of DW pump, and kinetic dispersiveness. It is found that the parametric decay process is a convective instability for typical tokamak parameters when finite group velocities of DW and GAM associated with kinetic dispersiveness and finite radial envelope are taken into account. When, however, nonuniformity of diamagnetic frequency is taken into account, the parametric decay process becomes, time asymptotically, a quasi-exponentially growing absolute instability.

  12. Start | Grid View | Browse by Day OR Group/Topical | Author Index | Keyword Index | Personal Scheduler Active Vapor Split Control for Fully Coupled Columns: Experimental Studies

    E-Print Network [OSTI]

    Skogestad, Sigurd

    and Technology, Trondheim, Norway Abstract The idea of a 4-product fully coupled distillation column has existed, is rather rudimentary. However, even with such a simple valve design, we can ensure a stable column distillation columns." AIChE Journal 44(11): 2565-2568. Dejanovic, I., L. Matijasevic, et al. (2010). "Dividing

  13. Now Available: Smart Grid Investments Improve Grid Reliability...

    Energy Savers [EERE]

    Smart Grid Investments Improve Grid Reliability, Resilience, and Storm Responses (November 2014) Now Available: Smart Grid Investments Improve Grid Reliability, Resilience, and...

  14. Second harmonic effect on geodesic modes in tokamak plasmas

    SciTech Connect (OSTI)

    Elfimov, A. G.; Galvão, R. M. O. [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil)] [Institute of Physics, University of São Paulo, São Paulo 05508-090 (Brazil); Smolyakov, A. I. [University of Saskatchewan, 116 Science Place, Saskatoon S7N 5E2 (Canada) [University of Saskatchewan, 116 Science Place, Saskatoon S7N 5E2 (Canada); Institute of Tokamak Physics, NRC “Kurchatov Institute,” 123182 Moscow (Russian Federation); Melnikov, A. V. [Institute of Tokamak Physics, NRC “Kurchatov Institute,” 123182 Moscow (Russian Federation)] [Institute of Tokamak Physics, NRC “Kurchatov Institute,” 123182 Moscow (Russian Federation)

    2013-05-15T23:59:59.000Z

    Results of a kinetic treatment of Geodesic Acoustic Modes (GAMs) that fully takes into account ion parallel dynamics, including the magnetic field component, are presented. The finite-orbit-width (FOW) parameter is considered in the calculation of the second harmonic effect on GAMs. For larger values of the FOW parameter, it is shown that dispersive effects related to the m = 2 harmonics is the cause of the mode frequency splitting and the modes appear due to the interaction with the ion sound mode. Furthermore, the modes may have enhanced damping rates due to second harmonic Landau damping.

  15. Electron geodesic acoustic modes in electron temperature gradient mode turbulence

    SciTech Connect (OSTI)

    Anderson, Johan; Nordman, Hans [Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Goeteborg (Sweden); Singh, Raghvendra; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat 382428 (India)

    2012-08-15T23:59:59.000Z

    In this work, the first demonstration of an electron branch of the geodesic acoustic mode (el-GAM) driven by electron temperature gradient (ETG) modes is presented. The work is based on a fluid description of the ETG mode retaining non-adiabatic ions and the dispersion relation for el-GAMs driven nonlinearly by ETG modes is derived. A new saturation mechanism for ETG turbulence through the interaction with el-GAMs is found, resulting in a significantly enhanced ETG turbulence saturation level compared to the mixing length estimate.

  16. Aerosol Indirect Effect on the Grid-scale Clouds in the Two-way Coupled WRF-CMAQ: Model Description, Development, Evaluation and Regional Analysis

    SciTech Connect (OSTI)

    Yu, Shaocai; Mathur, Rohit; Pleim, Jonathan; Wong, David; Gilliam, R.; Alapaty, Kiran; Zhao, Chun; Liu, Xiaohong

    2014-10-24T23:59:59.000Z

    This study implemented first, second and glaciations aerosol indirect effects (AIE) on resolved clouds in the two-way coupled WRF-CMAQ modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQpredicted aerosol distributions and WRF meteorological conditions. The performance of the newly-developed WRF-CMAQ model, with alternate CAM and RRTMG radiation schemes, was evaluated with the observations from the CERES satellite and surface monitoring networks (AQS, IMPROVE, CASTNet, STN, and PRISM) over the continental U.S. (CONUS) (12-km resolution) and eastern Texas (4-km resolution) during August and September of 2006. The results at the AQS surface sites show that in August, the NMB values for PM2.5 over the eastern/western U.S (EUS/WUS) and western U.S. (WUS) are 5.3% (?0.1%) and 0.4% (-5.2%) for WRF-CMAQ/CAM (WRF-CMAQ/RRTMG), respectively. The evaluation of PM2.5 chemical composition reveals that in August, WRF-CMAQ/CAM (WRF-CMAQ/RRTMG) consistently underestimated the observed SO4 2? by -23.0% (-27.7%), -12.5% (-18.9%) and -7.9% (-14.8%) over the EUS at the CASTNet, IMPROVE and STN sites, respectively. Both models (WRF-CMAQ/CAM, WRF-CMAQ/RRTMG) overestimated the observed mean OC, EC and TC concentrations over the EUS in August at the IMPROVE sites. Both models generally underestimated the cloud field (SWCF) over the CONUS in August due to the fact that the AIE on the subgrid convective clouds was not considered when the model simulations were run at the 12 km resolution. This is in agreement with the fact that both models captured SWCF and LWCF very well for the 4-km simulation over the eastern Texas when all clouds were resolved by the finer domain. Both models generally overestimated the observed precipitation by more than 40% mainly because of significant overestimation in the southern part of the CONUS in August. The simulations of WRF-CMAQ/CAM and WRF-CMAQ/RRTMG show dramatic improvements for SWCF, LWCF, COD, cloud fractions and precipitation over the ocean relative to those of WRF default cases in August. The model performance in September is similar to that in August except for greater overestimation of PM2.5 due to the overestimations of SO4 2-, NH4 +, NO3 -, and TC over the EUS, less underestimation of clouds (SWCF) over the land areas due to about 10% lower SWCF values and less convective clouds in September.

  17. Effects of passing energetic particles on geodesic acoustic mode

    SciTech Connect (OSTI)

    Ren, Haijun, E-mail: hjren@ustc.edu.cn; Dong, Chao [Department of Modern Physics, The Collaborative Innovation Center for Advanced Fusion Energy and Plasma Science, University of Science and Technology of China, Hefei 230026 (China)

    2014-10-15T23:59:59.000Z

    Effects of passing energetic particles on geodesic acoustic modes (GAMs) are investigated using the hybrid kinetic-fluid model. The local dispersion relation of GAM is derived by adopting the equilibrium distribution function for slowing-down energetic ions with a single pitch angle. The dependence of the distribution function on the poloidal angle is first taken into account and shows to play a crucial role in determining the instability criterion as well as the frequency of GAM, although the poloidal asymmetry is of order O(?). A high frequency branch of GAM resonantly excited is always stable, and a low frequency branch could be unstable. The case of zero pitch angle is specifically discussed. This case is always responsible for stable modes when disregarding the poloidal asymmetry, but can be unstable when the poloidal asymmetry is considered.

  18. NREL: Transmission Grid Integration - Grid Simulation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL researchersGrid

  19. Smart Grid Consortium, Response of New York State Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Consortium, Response of New York State Smart Grid Addressing Policy and Logistical Challenges Smart Grid Consortium, Response of New York State Smart Grid Addressing Policy and...

  20. Grid Interaction Tech Team, and International Smart Grid Collaboration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Team, and International Smart Grid Collaboration Grid Interaction Tech Team, and International Smart Grid Collaboration 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

  1. 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Smart Grid Panel Discussion 2012 Smart Grid Peer Review Presentations - Day 2 Smart Grid Panel Discussion The Office of Electricity Delivery and Energy Reliability held its...

  2. TOTALLY GEODESIC HORIZONTALLY CONFORMAL MAPS (*) by M. T. MUSTAFA (in Trieste) (**)

    E-Print Network [OSTI]

    Mustafa, M. Tahir

    TOTALLY GEODESIC HORIZONTALLY CONFORMAL MAPS (*) by M. T. MUSTAFA (in Trieste) (**) SUMMARY.- We.O.box 586, 34100 Trieste. Email: mustafa@ictp.trieste.it. 1 #12;2 M. T. MUSTAFA The remaining part

  3. FUTURE POWER GRID INITIATIVE GridOPTICSTM

    E-Print Network [OSTI]

    of individual software products November 2012 PNNL-SA-90162 Ian Gorton Pacific Northwest National Laboratory (509) 375-3850 ian.gorton@pnnl.gov ABOUT FPGI The Future Power Grid Initiative (FPGI) will deliver next National Laboratory's (PNNL) national electric grid research facility, the FPGI will advance the science

  4. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis, News, Partnership, SMART Grid Vermont-a leader in energy efficiency and deployment of so-called smart-grid...

  5. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency, Grid Integration, Microgrid, Modeling & Analysis, News, Partnership, SMART Grid Vermont-a leader in energy efficiency and deployment of so-called smart-grid...

  6. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Integration Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration,...

  7. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SMART Grid Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration, Energy, Energy...

  8. Grid Logging: Best Practices Guide

    E-Print Network [OSTI]

    Tierney, Brian L

    2008-01-01T23:59:59.000Z

    Revision date: March 1, 2008 Grid Logging: Best Practicesis to help developers of Grid middleware and applicationlog files that will be useful to Grid administrators, users,

  9. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid...

  10. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    Data Injection Attacks on Power Grids”, IEEE Transactionson Smart Grid, vol. 2, no. 2, June [21] O. Kosut, L.Data Attacks on Smart Grid State Estimation: Attack

  11. Sandia National Laboratories: electric grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety, Facilities, Grid Integration,...

  12. Integration of geodesic flows on homogeneous spaces: the case of a wild lie group

    E-Print Network [OSTI]

    A. A. Magazev; I. V. Shirokov

    2007-03-21T23:59:59.000Z

    We obtain necessary and sufficient conditions for the integrability in quadratures of geodesic flows on homogeneous spaces $M$ with invariant and central metrics. The proposed integration algorithm consists in using a special canonical transformation in the space $T^*M$ based on constructing the canonical coordinates on the orbits of the coadjoint representation and on the simplectic sheets of the Poisson algebra of invariant functions. This algorithm is applicable to integrating geodesic flows on homogeneous spaces of a wild Lie group.

  13. Smart Grid Overview

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Overview Ben Kroposki, PhD, PE Director, Energy Systems IntegraLon NaLonal Renewable Energy Laboratory What is t he S mart Grid? and DER Source: NISTEPRI Architecture...

  14. Fuel rod support grid

    DOE Patents [OSTI]

    Downs, Robert E. (Monroeville, PA); Schwallie, Ambrose L. (Greensburg, PA)

    1985-01-01T23:59:59.000Z

    A grid for the support of nuclear fuel rods arranged in a triangular array. The grid is formed by concentric rings of strap joined by radially arranged web sections.

  15. The soft grid

    E-Print Network [OSTI]

    Kardasis, Ari (Ari David)

    2011-01-01T23:59:59.000Z

    The grid in architecture is a systematic organization of space. The means that architects use to organize space are, almost by definition, rigid and totalizing. The Cartesian grid, which will serve as the antagonist of the ...

  16. Method of grid generation

    DOE Patents [OSTI]

    Barnette, Daniel W. (Veguita, NM)

    2002-01-01T23:59:59.000Z

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  17. Gravitomagnetic effect and spin-torsion coupling

    E-Print Network [OSTI]

    A. A. Sousa; J. W. Maluf

    2003-10-30T23:59:59.000Z

    We study the gravitomagnetic effect in the context of absolute parallelism with the use of a modified geodesic equation via a free parameter b. We calculate the time difference in two atomic clocks orbiting the Earth in opposite directions and find a small correction due to the coupling between the torsion of the spacetime and the internal structure of atomic clocks measured by the free parameter.

  18. Understanding The Smart Grid

    SciTech Connect (OSTI)

    NONE

    2007-11-15T23:59:59.000Z

    The report provides an overview of what the Smart Grid is and what is being done to define and implement it. The electric industry is preparing to undergo a transition from a centralized, producer-controlled network to a decentralized, user-interactive one. Not only will the technology involved in the electric grid change, but the entire business model of the industry will change too. A major objective of the report is to identify the changes that the Smart Grid will bring about so that industry participants can be prepared to face them. A concise overview of the development of the Smart Grid is provided. It presents an understanding of what the Smart Grid is, what new business opportunities or risks might come about due to its introduction, and what activities are already taking place regarding defining or implementing the Smart Grid. This report will be of interest to the utility industry, energy service providers, aggregators, and regulators. It will also be of interest to home/building automation vendors, information technology vendors, academics, consultants, and analysts. The scope of the report includes an overview of the Smart Grid which identifies the main components of the Smart Grid, describes its characteristics, and describes how the Smart Grid differs from the current electric grid. The overview also identifies the key concepts involved in the transition to the Smart Grid and explains why a Smart Grid is needed by identifying the deficiencies of the current grid and the need for new investment. The report also looks at the impact of the Smart Grid, identifying other industries which have gone through a similar transition, identifying the overall benefits of the Smart Grid, and discussing the impact of the Smart Grid on industry participants. Furthermore, the report looks at current activities to implement the Smart Grid including utility projects, industry collaborations, and government initiatives. Finally, the report takes a look at key technology providers involved in the Smart Grid and provides profiles on them including contact information, company overviews, technology reviews, and key Smart Grid activities.

  19. Virtual Private Environments for Multiphysics Code Validation on Computing Grids

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Virtual Private Environments for Multiphysics Code Validation on Computing Grids Toan Nguyen-based computing environments and deploys, tests and analyzes multiphysics codes. A second approach executes model coupling, error correlations, alert definitions, best usage practices, code verification and code

  20. Verification of the coupled fluid/solid transfer in a CASL grid-to-rod-fretting simulation : a technical brief on the analysis of convergence behavior and demonstration of software tools for verification.

    SciTech Connect (OSTI)

    Copps, Kevin D.

    2011-12-01T23:59:59.000Z

    For a CASL grid-to-rod fretting problem, Sandia's Percept software was used in conjunction with the Sierra Mechanics suite to analyze the convergence behavior of the data transfer from a fluid simulation to a solid mechanics simulation. An analytic function, with properties relatively close to numerically computed fluid approximations, was chosen to represent the pressure solution in the fluid domain. The analytic pressure was interpolated on a sequence of grids on the fluid domain, and transferred onto a separate sequence of grids in the solid domain. The error in the resulting pressure in the solid domain was measured with respect to the analytic pressure. The error in pressure approached zero as both the fluid and solids meshes were refined. The convergence of the transfer algorithm was limited by whether the source grid resolution was the same or finer than the target grid resolution. In addition, using a feature coverage analysis, we found gaps in the solid mechanics code verification test suite directly relevant to the prototype CASL GTRF simulations.

  1. Grid Transformation Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3-03-Grid-Transformation-Workshop Sign In About | Careers | Contact | Investors | bpa.gov Search News & Us Expand News & Us Projects & Initiatives Expand Projects &...

  2. Exploiting the Computational Grid Lecture 1 Globus and the Grid

    E-Print Network [OSTI]

    Exploiting the Computational Grid Lecture 1 ­ Globus and the Grid · The grid needs middleware to enable things such as logins etc · The toolkit model for the grid is to define a set of standards for the grid and then develop applications on top. The low level stuff is then hidden from the user · Globus

  3. Mapping Unstructured Grids to Structured Grids and Multigrid

    E-Print Network [OSTI]

    Chapter 4 Mapping Unstructured Grids to Structured Grids and Multigrid Many problems based solution is to map the unstructured grid onto a structured grid and then apply multigrid to a sequence). We 65 #12; CHAPTER 4. MAPPING UNSTRUCTURED GRIDS 66 show that unless great care is taken

  4. Transdisciplinary electric power grid science Charles D. Brummitta,b,1

    E-Print Network [OSTI]

    D'Souza, Raissa

    storm damage or build distributed generation?). The "smart grid," which monitors and controls electrical to cities couples distant regions. Connections among regions of a power grid spread risk, like in otherOPINION Transdisciplinary electric power grid science Charles D. Brummitta,b,1 , Paul D. H. Hinesc

  5. Grid Architecture William E. Johnston

    E-Print Network [OSTI]

    Grid Architecture William E. Johnston Lawrence Berkeley National Lab and NASA Ames Research Center wejohnston@lbl.gov (These slides are available at grid.lbl.gov/~wej/Grids) #12;Distributed Resources Condor Internet optical networks space-based networks Grid Communication Functions Communications BasicGrid

  6. Smart Grid: Transforming the Electric System

    SciTech Connect (OSTI)

    Widergren, Steven E.

    2010-04-13T23:59:59.000Z

    This paper introduces smart grid concepts, summarizes the status of current smart grid related efforts, and explains smart grid priorities.

  7. Sandia Energy - Smart Grid Tools and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Tools and Technology Home Stationary Power Grid Modernization Renewable Energy Integration Smart Grid Tools and Technology Smart Grid Tools and TechnologyTara...

  8. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Framework and Roadmap for Smart Grid Interoperability Stan-

  9. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    IEEE Transactions on Smart Grid, vol. 2, no. 2, June [21] O.Malicious Data Attacks on Smart Grid State Estimation:Attack and Detection in Smart Grid,” to appear in IEEE

  10. Smart Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Meters, Conductor, Surge Protection Devices, Connectors, Lighting Controls, Grid-Scale Battery Storage, Grid-Scale Flywheel Energy for Frequency Regulation, Automation...

  11. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News, News & Events, Renewable Energy, SMART Grid, Systems Analysis, Transmission Grid Integration, Wind Energy Sandia finalized and submitted the updated "WECC Wind Power Plant...

  12. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IEC 61400-26 Availability Standard On June 12, 2014, in Analysis, Distribution Grid Integration, Energy, Grid Integration, Infrastructure Security, News, News & Events,...

  13. Sandia National Laboratories: grid modernization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid modernization Renewables, Other Energy Issues To Be Focus of Enhanced Sandia-SINTEF Collaboration On May 28, 2014, in Biofuels, CRF, Distribution Grid Integration, Energy,...

  14. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Storage Safety Workshop On April 7, 2014, in Capabilities, CINT, Distribution Grid Integration, Energy, Energy Storage, Energy Storage Systems, Facilities, Grid...

  15. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Offers Approach to Help Utilities Understand Effects of PV Variability on the Grid On March 7, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety,...

  16. Sandia National Laboratories: SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic Specialists (PVSC) Conference On August 14, 2013, in DETL, Distribution Grid Integration, Energy, Facilities, Grid Integration, News, News & Events, Photovoltaic,...

  17. Sandia National Laboratories: Grid Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    InfrastructureEnergy AssuranceGrid Capabilities Grid Capabilities Goal: To develop and implement a comprehensive Sandia program to support the modernization of the U.S. electric...

  18. Effect of toroidal rotation on the geodesic acoustic mode in magnetohydrodynamics

    SciTech Connect (OSTI)

    Ren Haijun [CAS Key Laboratory of Basic Plasma Physics, University of Science and Technology of China, Hefei 230026 (China)

    2012-09-15T23:59:59.000Z

    Theoretical research on the geodesic acoustic mode (GAM) induced by equilibrium toroidal rotation flow in the tokamak plasmas is approached by using ideal magnetohydrodynamic model. The dispersion relation of the GAM is presented by taking into account magnetic field perturbations. It is shown that {beta} can decrease the frequency of the GAM.

  19. Lens chains and the geodesic algorithm for conformal mapping Donald E. Marshall

    E-Print Network [OSTI]

    Lens chains and the geodesic algorithm for conformal mapping Donald E. Marshall Abstract. We. This modification while improving the accuracy also allows us to give a simpler proof than in Marshall and Rohde [MR of conformal maps is described in Marshall and Rohde[MR]. Briefly, if z0, . . . , zn are distinct points

  20. Non-trivial, static, geodesically complete, vacuum space-times with a negative cosmological constant

    E-Print Network [OSTI]

    Avignon et des Pays de Vaucluse, Université de

    Non-trivial, static, geodesically complete, vacuum space-times with a negative cosmological singularity-free static Lorentzian four- dimensional solutions of the vacuum Einstein equations of this paper is to show that such rigidity is false in this last situation. More precisely, for

  1. Non-trivial, static, geodesically complete, vacuum space-times with a negative cosmological constant

    E-Print Network [OSTI]

    Anderson, Michael

    Non-trivial, static, geodesically complete, vacuum space-times with a negative solutions of the vacuum Einstein equations with a negative cosmological constant. The new families of this paper is to show that such rigidity is false in this last situation. More precisely, for

  2. Non-trivial, static, geodesically complete, vacuum space-times with a negative cosmological constant

    E-Print Network [OSTI]

    Anderson, Michael

    Non-trivial, static, geodesically complete, vacuum space-times with a negative cosmological construct a large class of new singularity-free static Lorentzian four- dimensional solutions of the vacuum is false in this last situation. More precisely, for #3;

  3. Future Grid: The Environment Future Grid Initiative White Paper

    E-Print Network [OSTI]

    Future Grid: The Environment Future Grid Initiative White Paper Power Systems Engineering Research Center Empowering Minds to Engineer the Future Electric Energy System #12;Future Grid: The Environment Prepared for the Project "The Future Grid to Enable Sustainable Energy Systems" Funded by the U

  4. GridWise Alliance

    Broader source: Energy.gov [DOE]

    Presentation—given at the Spring 2009 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the GRIDWISE ALLIANCE including its mission, today and tomorrow's grid, membership, work groups, and key policy initiatives.

  5. Real Time Simulation of Power Grid Disruptions

    SciTech Connect (OSTI)

    Chinthavali, Supriya [ORNL; Dimitrovski, Aleksandar D [ORNL; Fernandez, Steven J [ORNL; Groer, Christopher S [ORNL; Nutaro, James J [ORNL; Olama, Mohammed M [ORNL; Omitaomu, Olufemi A [ORNL; Shankar, Mallikarjun [ORNL; Spafford, Kyle L [ORNL; Vacaliuc, Bogdan [ORNL

    2012-11-01T23:59:59.000Z

    DOE-OE and DOE-SC workshops (Reference 1-3) identified the key power grid problem that requires insight addressable by the next generation of exascale computing is coupling of real-time data streams (1-2 TB per hour) as the streams are ingested to dynamic models. These models would then identify predicted disruptions in time (2-4 seconds) to trigger the smart grid s self healing functions. This project attempted to establish the feasibility of this approach and defined the scientific issues, and demonstrated example solutions to important smart grid simulation problems. These objectives were accomplished by 1) using the existing frequency recorders on the national grid to establish a representative and scalable real-time data stream; 2) invoking ORNL signature identification algorithms; 3) modeling dynamically a representative region of the Eastern interconnect using an institutional cluster, measuring the scalability and computational benchmarks for a national capability; and 4) constructing a prototype simulation for the system s concept of smart grid deployment. The delivered ORNL enduring capability included: 1) data processing and simulation metrics to design a national capability justifying exascale applications; 2) Software and intellectual property built around the example solutions; 3) demonstrated dynamic models to design few second self-healing.

  6. Random array grid collimator

    DOE Patents [OSTI]

    Fenimore, E.E.

    1980-08-22T23:59:59.000Z

    A hexagonally shaped quasi-random no-two-holes touching grid collimator. The quasi-random array grid collimator eliminates contamination from small angle off-axis rays by using a no-two-holes-touching pattern which simultaneously provides for a self-supporting array increasng throughput by elimination of a substrate. The presentation invention also provides maximum throughput using hexagonally shaped holes in a hexagonal lattice pattern for diffraction limited applications. Mosaicking is also disclosed for reducing fabrication effort.

  7. Cyber Security & Smart Grid

    E-Print Network [OSTI]

    Shapiro, J.

    2011-01-01T23:59:59.000Z

    of the impacts of long-term power shortages from the destruction of critical electric infrastructure. ? A Hitachi factory north of Tokyo that makes 60% of the world?s supply of airflow sensors was shut down. This caused General Motors to shut a plant... at The University of Texas at Dallas ? Next Generation Control Systems ? Trustworthy Cyber Infrastructure for the Power Grid ? Active Defense Systems ? System Vulnerability Assessments ? Grid Test Bed ? Integrated Risk Analysis ? Modeling and Simulation...

  8. GRIDS: Grid-Scale Rampable Intermittent Dispatchable Storage

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    GRIDS Project: The 12 projects that comprise ARPA-E’s GRIDS Project, short for “Grid-Scale Rampable Intermittent Dispatchable Storage,” are developing storage technologies that can store renewable energy for use at any location on the grid at an investment cost less than $100 per kilowatt hour. Flexible, large-scale storage would create a stronger and more robust electric grid by enabling renewables to contribute to reliable power generation.

  9. Smart Grid Integration Laboratory

    SciTech Connect (OSTI)

    Wade Troxell

    2011-09-30T23:59:59.000Z

    The initial federal funding for the Colorado State University Smart Grid Integration Laboratory is through a Congressionally Directed Project (CDP), DE-OE0000070 Smart Grid Integration Laboratory. The original program requested in three one-year increments for staff acquisition, curriculum development, and instrumentation â?? all which will benefit the Laboratory. This report focuses on the initial phase of staff acquisition which was directed and administered by DOE NETL/ West Virginia under Project Officer Tom George. Using this CDP funding, we have developed the leadership and intellectual capacity for the SGIC. This was accomplished by investing (hiring) a core team of Smart Grid Systems engineering faculty focused on education, research, and innovation of a secure and smart grid infrastructure. The Smart Grid Integration Laboratory will be housed with the separately funded Integrid Laboratory as part of CSUâ??s overall Smart Grid Integration Center (SGIC). The period of performance of this grant was 10/1/2009 to 9/30/2011 which included one no cost extension due to time delays in faculty hiring. The Smart Grid Integration Laboratoryâ??s focus is to build foundations to help graduate and undergraduates acquire systems engineering knowledge; conduct innovative research; and team externally with grid smart organizations. Using the results of the separately funded Smart Grid Workforce Education Workshop (May 2009) sponsored by the City of Fort Collins, Northern Colorado Clean Energy Cluster, Colorado State University Continuing Education, Spirae, and Siemens has been used to guide the hiring of faculty, program curriculum and education plan. This project develops faculty leaders with the intellectual capacity to inspire its students to become leaders that substantially contribute to the development and maintenance of Smart Grid infrastructure through topics such as: (1) Distributed energy systems modeling and control; (2) Energy and power conversion; (3) Simulation of electrical power distribution system that integrates significant quantities of renewable and distributed energy resources; (4) System dynamic modeling that considers end-user behavior, economics, security and regulatory frameworks; (5) Best practices for energy management IT control solutions for effective distributed energy integration (including security with the underlying physical power systems); (6) Experimental verification of effects of various arrangements of renewable generation, distributed generation and user load types along with conventional generation and transmission. Understanding the core technologies for enabling them to be used in an integrated fashion within a distribution network remains is a benefit to the future energy paradigm and future and present energy engineers.

  10. Coupling an icosahedral model with OASIS E . Maisonnave

    E-Print Network [OSTI]

    Coupling an icosahedral model with OASIS E . Maisonnave WN/CMGC/14/8 #12;Abstract An icosahedral grid atmosphere (NICAM) was coupled to NEMO ocean using OASIS3-MCT. The implemented interface..........................................................................................................................4 OASIS auxiliary files

  11. NREL Smart Grid Projects

    SciTech Connect (OSTI)

    Hambrick, J.

    2012-01-01T23:59:59.000Z

    Although implementing Smart Grid projects at the distribution level provides many advantages and opportunities for advanced operation and control, a number of significant challenges must be overcome to maintain the high level of safety and reliability that the modern grid must provide. For example, while distributed generation (DG) promises to provide opportunities to increase reliability and efficiency and may provide grid support services such as volt/var control, the presence of DG can impact distribution operation and protection schemes. Additionally, the intermittent nature of many DG energy sources such as photovoltaics (PV) can present a number of challenges to voltage regulation, etc. This presentation provides an overview a number of Smart Grid projects being performed by the National Renewable Energy Laboratory (NREL) along with utility, industry, and academic partners. These projects include modeling and analysis of high penetration PV scenarios (with and without energy storage), development and testing of interconnection and microgrid equipment, as well as the development and implementation of advanced instrumentation and data acquisition used to analyze the impacts of intermittent renewable resources. Additionally, standards development associated with DG interconnection and analysis as well as Smart Grid interoperability will be discussed.

  12. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wholesale markets and regional transmission organizations * Regulatory programs such as Demand Response, interruptible rates, net metering, "de- coupling", etc. * Consumer...

  13. Vacuum non-expanding horizons and shear-free null geodesic congruences

    E-Print Network [OSTI]

    T. M. Adamo; E. T. Newman

    2009-08-05T23:59:59.000Z

    We investigate the geometry of a particular class of null surfaces in space-time called vacuum Non-Expanding Horizons (NEHs). Using the spin-coefficient equation, we provide a complete description of the horizon geometry, as well as fixing a canonical choice of null tetrad and coordinates on a NEH. By looking for particular classes of null geodesic congruences which live exterior to NEHs but have the special property that their shear vanishes at the intersection with the horizon, a good cut formalism for NEHs is developed which closely mirrors asymptotic theory. In particular, we show that such null geodesic congruences are generated by arbitrary choice of a complex world-line in a complex four dimensional space, each such choice induces a CR structure on the horizon, and a particular world-line (and hence CR structure) may be chosen by transforming to a privileged tetrad frame.

  14. Geodesic equation in Schwarzschild--(anti-)de Sitter space--times: Analytical solutions and applications

    E-Print Network [OSTI]

    Hackmann, Eva

    2015-01-01T23:59:59.000Z

    The complete set of analytic solutions of the geodesic equation in a Schwarzschild--(anti-)de Sitter space--time is presented. The solutions are derived from the Jacobi inversion problem restricted to the set of zeros of the theta function, called the theta divisor. In its final form the solutions can be expressed in terms of derivatives of Kleinian sigma functions. The different types of the resulting orbits are characterized in terms of the conserved energy and angular momentum as well as the cosmological constant. Using the analytical solution, the question whether the cosmological constant could be a cause of the Pioneer Anomaly is addressed. The periastron shift and its post--Schwarzschild limit is derived. The developed method can also be applied to the geodesic equation in higher dimensional Schwarzschild space--times.

  15. Circular geodesics and accretion disks in Janis-Newman-Winicour and Gamma metric

    E-Print Network [OSTI]

    Anirban N. Chowdhury; Mandar Patil; Daniele Malafarina; Pankaj S. Joshi

    2012-04-19T23:59:59.000Z

    We study here circular timelike geodesics in the Janis-Newman-Winicour and Gamma metric spacetimes which contain a strong curvature naked singularity and reduce to the Schwarzschild metric for a specific value of one of the parameters. We show that for both the metrics the range of allowed parameters can be divided into three regimes where structure of the circular geodesics is qualitatively different. It follows that the properties of the accretion disks around such naked singularities can be significantly different from those of disks around black holes. This adds to previous studies showing that if naked singularities exist in nature, their observational signature would be significantly different from that of the black hole.

  16. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments Home StationaryFAQs HomeProgramSCADASMART Grid

  17. Essential Grid Workflow Monitoring Elements

    SciTech Connect (OSTI)

    Gunter, Daniel K.; Jackson, Keith R.; Konerding, David E.; Lee,Jason R.; Tierney, Brian L.

    2005-07-01T23:59:59.000Z

    Troubleshooting Grid workflows is difficult. A typicalworkflow involves a large number of components networks, middleware,hosts, etc. that can fail. Even when monitoring data from all thesecomponents is accessible, it is hard to tell whether failures andanomalies in these components are related toa given workflow. For theGrid to be truly usable, much of this uncertainty must be elim- inated.We propose two new Grid monitoring elements, Grid workflow identifiersand consistent component lifecycle events, that will make Gridtroubleshooting easier, and thus make Grids more usable, by simplifyingthe correlation of Grid monitoring data with a particular Gridworkflow.

  18. Unlocking the smart grid

    SciTech Connect (OSTI)

    Rokach, Joshua Z.

    2010-10-15T23:59:59.000Z

    The country has progressed in a relatively short time from rotary dial phones to computers, cell phones, and iPads. With proper planning and orderly policy implementation, the same will happen with the Smart Grid. Here are some suggestions on how to proceed. (author)

  19. APEC Smart Grid Initiative

    SciTech Connect (OSTI)

    Bloyd, Cary N.

    2012-03-01T23:59:59.000Z

    This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

  20. Sandia National Laboratories: International Smart Grid Action...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Action Network Mesa del Sol Project Is Finalist for International Smart Grid Action Network 2014 Award of Excellence On July 31, 2014, in Distribution Grid Integration,...

  1. GROWDERS Demonstration of Grid Connected Electricity Systems...

    Open Energy Info (EERE)

    GROWDERS Demonstration of Grid Connected Electricity Systems (Smart Grid Project) (Spain) Jump to: navigation, search Project Name GROWDERS Demonstration of Grid Connected...

  2. Networked Loads in the Distribution Grid

    E-Print Network [OSTI]

    Wang, Zhifang; Li, Xiao; Muthukumar, Vishak; Scaglione, Anna; Peisert, Sean; McParland, Chuck

    2012-01-01T23:59:59.000Z

    Lu, and Deborah A. Frincke. Smart-Grid Security Issues. IEEELoads in the Distribution Grid Zhifang Wang ? , Xiao Li † ,Transformer   sensors   Grid   Cyber  system   Cooling    

  3. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    New England Outlook: Smart Grid is About Consumers,” Apr. [Transmission in the Smart Grid By Kory Walter Hedman ATransmission in the Smart Grid by Kory Walter Hedman Doctor

  4. Smart Grid | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Energy Usage Smart Grid Smart Grid October 21, 2014 Line workers get hands-on experience with an electrical pole as part of their training. | Photo courtesy of David Weaver....

  5. Stability of elastic grid shells

    E-Print Network [OSTI]

    Mesnil, Romain, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    The elastic grid shell is a solution that combines double curvature and ease of mounting. This structural system, based on the deformation of an initially at grid without shear stiffness was invented more than fifty years ...

  6. Cloud Computing for the Grid: GridControl: A Software Platform to Support the Smart Grid

    SciTech Connect (OSTI)

    None

    2012-02-08T23:59:59.000Z

    GENI Project: Cornell University is creating a new software platform for grid operators called GridControl that will utilize cloud computing to more efficiently control the grid. In a cloud computing system, there are minimal hardware and software demands on users. The user can tap into a network of computers that is housed elsewhere (the cloud) and the network runs computer applications for the user. The user only needs interface software to access all of the cloud’s data resources, which can be as simple as a web browser. Cloud computing can reduce costs, facilitate innovation through sharing, empower users, and improve the overall reliability of a dispersed system. Cornell’s GridControl will focus on 4 elements: delivering the state of the grid to users quickly and reliably; building networked, scalable grid-control software; tailoring services to emerging smart grid uses; and simulating smart grid behavior under various conditions.

  7. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Initiative GridWise Alliance GridWise Architecture Council European SmartGrid Technology Platform 19 MODERN GRID S T R A T E G Y Questions? Office of Electricity...

  8. GridMat: Matlab Toolbox for GridLAB-D to Analyse Grid Impact and Validate Residential Microgrid Level

    E-Print Network [OSTI]

    Al Faruque, Mohammad Abdullah

    GridMat: Matlab Toolbox for GridLAB-D to Analyse Grid Impact and Validate Residential Microgrid, in this paper, we present a new Matlab toolbox (GridMat) to integrate the capabilities of domain-specific modeling & simulation tools from power system (GridLAB-D) and control (Matlab). The GridMat tool supports

  9. Grid Transfer Remark 4.1 Contents of this chapter. Consider a grid with grid size h and the

    E-Print Network [OSTI]

    John, Volker

    Chapter 4 Grid Transfer Remark 4.1 Contents of this chapter. Consider a grid with grid size h that there might be an iterative method for solving this system efficiently, which uses also coarser grids way between the grids. 2 4.1 The Coarse Grid System and the Residual Equa- tion Remark 4.2 Basic idea

  10. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H.Rohit Prasankumar

  11. On the Role of Power-Grid and Communication-System Interdependencies on Cascading Failures

    E-Print Network [OSTI]

    Hayat, Majeed M.

    the fact that today's power grids are reliable and the control and communication systems have been deployed involved in the modeling of interactions between interdependent systems, modeling the coupled powerOn the Role of Power-Grid and Communication- System Interdependencies on Cascading Failures Mahshid

  12. Quantum brachistochrone curves as geodesics: obtaining accurate control protocols for time-optimal quantum gates

    E-Print Network [OSTI]

    Xiaoting Wang; Michele Allegra; Kurt Jacobs; Seth Lloyd; Cosmo Lupo; Masoud Mohseni

    2014-08-11T23:59:59.000Z

    Most methods of optimal control cannot obtain accurate time-optimal protocols. The quantum brachistochrone equation is an exception, and has the potential to provide accurate time-optimal protocols for essentially any quantum control problem. So far this potential has not been realized, however, due to the inadequacy of conventional numerical methods to solve it. Here, using differential geometry, we reformulate the quantum brachistochrone curves as geodesics on the unitary group. With this identification we are able to obtain a numerical method that efficiently solves the brachistochrone problem. We apply it to two examples demonstrating its power.

  13. Data Management in the GridRPC GridRPC Data Management API

    E-Print Network [OSTI]

    Caniou, Yves

    Data Management in the GridRPC Issues Conclusion GridRPC Data Management API Implementations, Le Mahec, Nakada GridRPC DM API: Implem. and Interop. Issues (1/13) #12;Data Management in the GridRPC Issues Conclusion Goal GridRPC DM types: Reminder 1 Data Management in the GridRPC Goal GridRPC DM types

  14. Grid Interaction Tech Team, and International Smart Grid Collaboration

    Broader source: Energy.gov (indexed) [DOE]

    Provider BAHNHOF POTSDAMER PLATZ Home Area Network (HAN) Grid Operations Coal Natural Gas Nuclear Hydro Renewable Fuel Oil Misc Generation Energy Service Interface (ESI)...

  15. Sandia Energy - Grid Modernization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear Press ReleasesInAppliedEnergyGeothermal HomeGrid

  16. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobal ClimateGrid

  17. Grid-based Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental AssessmentsGeoffrey(SC)Graphite ReactorGregGrid-Connected

  18. Sharing Smart Grid Experiences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9 SeptemberSetting the StageCanon! Shared Solar:Sharing

  19. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbon CaptureBiofuels

  20. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbon

  1. Sandia Energy - Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757 (1)Tara46EnergyPower SystemsCarbonEnergy Sandia

  2. Sandia Energy - SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757Kelley RuehlReportPeter H.Rohit Prasankumar HomeEnergy

  3. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed Services U.S.GregoryGrid6733

  4. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.NewofGeothermal Heaton Armed Services U.S.GregoryGrid6733141

  5. NERSC Grid Certificates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVA Portal: Submit2014 NERSCFranklinGrid

  6. Smart Grid - Transforming Power System Operations

    SciTech Connect (OSTI)

    Widergren, Steven E.; Kirkham, Harold

    2010-04-28T23:59:59.000Z

    Abstract—Electric power systems are entering a new realm of operations. Large amounts of variable generation tax our ability to reliably operate the system. Couple this with a greater reliance on the electricity network to serve consumer demand that is likely to rise significantly even as we drive for greater efficiency. Trade-offs between energy and environmental needs will be constantly negotiated, while a reliable supply of electricity needs even greater assurance in a world where threats of disruption have risen. Smart grid capabilities are being proposed to help address the challenges confronting system operations. This paper reviews the impact of smart grid functionality on transforming power system operations. It explores models for distributed energy resources (DER – generation, storage, and load) that are appearing on the system. It reviews the evolving nature of electricity markets to deal with this complexity and a change of emphasis on signals from these markets to affect power system control. Smart grid capabilities will also impact reliable operations, while cyber security issues must be addressed as a culture change that influences all system design, implementation, and maintenance. Lastly, the paper explores significant questions for further research and the need for a simulation environment that supports such investigation and informs deployments to mitigate operational issues as they arise.

  7. Analytical solutions of the geodesic equation in the spacetime of a black hole in f(R) gravity

    E-Print Network [OSTI]

    Soroushfar, Saheb; Kunz, Jutta; Lämmerzahl, Claus

    2015-01-01T23:59:59.000Z

    We consider the motion of test particles in the spacetime of a black hole in f(R) gravity. The complete set of analytic solutions of the geodesic equation in the spacetime of this black hole are presented. The geodesic equations are solved in terms of Weierstrass elliptic functions and derivatives of Kleinian sigma functions. The different types of the resulting orbits are characterized in terms of the conserved energy and angular momentum as well as the cosmological constant $\\Lambda$ and the real constant $\\beta$.

  8. Analytical solutions of the geodesic equation in the spacetime of a black hole in f(R) gravity

    E-Print Network [OSTI]

    Saheb Soroushfar; Reza Saffari; Jutta Kunz; Claus Lämmerzahl

    2015-04-29T23:59:59.000Z

    We consider the motion of test particles in the spacetime of a black hole in f(R) gravity. The complete set of analytic solutions of the geodesic equation in the spacetime of this black hole are presented. The geodesic equations are solved in terms of Weierstrass elliptic functions and derivatives of Kleinian sigma functions. The different types of the resulting orbits are characterized in terms of the conserved energy and angular momentum as well as the cosmological constant $\\Lambda$ and the real constant $\\beta$.

  9. Grid Integration of Robotic Telescopes

    E-Print Network [OSTI]

    F. Breitling; T. Granzer; H. Enke

    2009-03-23T23:59:59.000Z

    Robotic telescopes and grid technology have made significant progress in recent years. Both innovations offer important advantages over conventional technologies, particularly in combination with one another. Here, we introduce robotic telescopes used by the Astrophysical Institute Potsdam as ideal instruments for building a robotic telescope network. We also discuss the grid architecture and protocols facilitating the network integration that is being developed by the German AstroGrid-D project. Finally, we present three user interfaces employed for this purpose.

  10. Smart Grid Enabled EVSE

    SciTech Connect (OSTI)

    None, None

    2014-10-15T23:59:59.000Z

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  11. YNOGK: A NEW PUBLIC CODE FOR CALCULATING NULL GEODESICS IN THE KERR SPACETIME

    SciTech Connect (OSTI)

    Yang Xiaolin; Wang Jiancheng, E-mail: yangxl@ynao.ac.cn [National Astronomical Observatories, Yunnan Observatory, Chinese Academy of Sciences, Kunming 650011 (China)

    2013-07-01T23:59:59.000Z

    Following the work of Dexter and Agol, we present a new public code for the fast calculation of null geodesics in the Kerr spacetime. Using Weierstrass's and Jacobi's elliptic functions, we express all coordinates and affine parameters as analytical and numerical functions of a parameter p, which is an integral value along the geodesic. This is the main difference between our code and previous similar ones. The advantage of this treatment is that the information about the turning points does not need to be specified in advance by the user, and many applications such as imaging, the calculation of line profiles, and the observer-emitter problem, become root-finding problems. All elliptic integrations are computed by Carlson's elliptic integral method as in Dexter and Agol, which guarantees the fast computational speed of our code. The formulae to compute the constants of motion given by Cunningham and Bardeen have been extended, which allow one to readily handle situations in which the emitter or the observer has an arbitrary distance from, and motion state with respect to, the central compact object. The validation of the code has been extensively tested through applications to toy problems from the literature. The source FORTRAN code is freely available for download on our Web site http://www1.ynao.ac.cn/{approx}yangxl/yxl.html.

  12. LED Lighting Off the Grid

    Energy Savers [EERE]

    D. & Kammen, D. M. Decentralized energy systems for clean electricity access. Nature Climate Change accepted, in press, (2015). Off-Grid Status Quo : Fuel Based Lighting...

  13. 2014 Modern Power Grid Video

    SciTech Connect (OSTI)

    None

    2014-06-02T23:59:59.000Z

    A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

  14. Smart Grid | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers from Argonne National Laboratory modeled several scenarios to add more solar power to the electric grid, using real-world data from the southwestern power...

  15. Buildings to Grid Integration & Interoperability

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings to Grid Integration & Interoperability Joe Hagerman, Senior Advisor DOE Building Technologies Office March 11, 2013 EERE: Office of Energy Efficiency and Renewable Energy...

  16. Smart Grid Data Integrity Attack

    E-Print Network [OSTI]

    Poolla, Kameshwar

    2012-01-01T23:59:59.000Z

    Against Data Injection Attacks on Power Grids”, IEEER. Thomas, and L. Tong, “Malicious Data Attacks on SmartState Estimation: Attack Strategies and Countermeasures,”

  17. National Grid Energy Efficiency Plans

    Broader source: Energy.gov [DOE]

    Presentation covers the National Grid Energy Efficiency plans and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  18. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia-Electric Power Research Institute Partnership Publishes Photovoltaic Reliability Report On January 21, 2014, in Energy, Facilities, Grid Integration, Modeling & Analysis,...

  19. National Grid Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    Presentation covers the National Grid Energy Efficiency programs and is given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Providence, Rhode Island.

  20. Environmental Impacts of Smart Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a substantial number of pollutants. This paper focuses on the particulate and gaseous emission pollutants that are byproducts of electricity generation, and on how the Smart Grid...

  1. Sandia Energy - Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    reliability, efficiency, flexibility, and cost effectiveness. Smart-grid features include demand-response capabilities, advanced controls, DER integration, increased situational...

  2. 2014 Modern Power Grid Video

    ScienceCinema (OSTI)

    None

    2014-07-22T23:59:59.000Z

    A video from NETL that describes the details of a modern power grid and how it can help our nation save on energy costs.

  3. Smart-Grid Security Issues

    SciTech Connect (OSTI)

    Khurana, Himanshu; Hadley, Mark D.; Lu, Ning; Frincke, Deborah A.

    2010-01-29T23:59:59.000Z

    TITLE: Smart-Grid Security Issues (Editorial Material, English) IEEE SECURITY & PRIVACY 8 (1). JAN-FEB 2010. p.81-85 IEEE COMPUTER SOC, LOS ALAMITOS

  4. Sensor Grid: Integration of Wireless Sensor Networks and the Grid

    E-Print Network [OSTI]

    Teo, Yong-Meng

    Sensor Grid: Integration of Wireless Sensor Networks and the Grid Hock Beng Lim1 , Yong Meng Teo1 Microsystems, Inc. E-mail: [limhb, teoym]@comp.nus.edu.sg Abstract Wireless sensor networks have emerged to the sharing of sensor resources in wireless sensor networks. There are several issues and challenges

  5. Enhancing Power Grid Stability through Analytics

    E-Print Network [OSTI]

    Lakoba, Taras I.

    the "Smart" Grid? · Premise #1: the grid has long been pretty smart (Edison, Tesla, Steinmetz et al were of Vermont Seminar October 23, 2013 3 What Drives the "Smart" Grid? · Premise #2: As well operated as grid of Vermont Seminar October 23, 2013 4 What Drives the "Smart" Grid? · Premise #3: new technology is providing

  6. GridWise Alliance: Smart Grid RFI: Addressing Policy and Logistical...

    Office of Environmental Management (EM)

    Challenges More Documents & Publications QER - Comment of GridWise Alliance 1 SmartGrid Consortium: Smart Grid Roadmap for the State of New York Smart Grid: Enabler of the...

  7. Grid Integration and the Carrying Capacity of the U.S. Grid to...

    Energy Savers [EERE]

    Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate Variable Renewable Energy Grid Integration and the Carrying Capacity of the U.S. Grid to Incorporate...

  8. From the Grid to the Smart Grid, Topologically

    E-Print Network [OSTI]

    Pagani, Giuliano Andrea

    2013-01-01T23:59:59.000Z

    The Smart Grid is not just about the digitalization of the Power Grid. In its more visionary acceptation, it is a model of energy management in which the users are engaged in producing energy as well as consuming it, while having information systems fully aware of the energy demand-response of the network and of dynamically varying prices. A natural question is then: to make the Smart Grid a reality will the Distribution Grid have to be updated? We assume a positive answer to the question and we consider the lower layers of Medium and Low Voltage to be the most affected by the change. In our previous work, we have analyzed samples of the Dutch Distribution Grid in our previous work and we have considered possible evolutions of these using synthetic topologies modeled after studies of complex systems in other technological domains in another previous work. In this paper, we take an extra important further step by defining a methodology for evolving any existing physical Power Grid to a good Smart Grid model th...

  9. INFOGRAPHIC: Understanding the Grid | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    can I participate? Send us your questions about how the grid works using GridWeek on Facebook, Twitter and Google+. Join the GridWeek Twitter chat on Thursday, November 20 at 2PM...

  10. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01T23:59:59.000Z

    Life Cycle Assessment of Off-Grid Lighting Applications:Testing for Emerging Off-grid White-LED Illumination SystemsBudget: The Economics of Off-Grid Lighting for Small

  11. Artificial Intelligence for the Smart Grid

    E-Print Network [OSTI]

    Artificial Intelligence for the Smart Grid NICTA is developing technology to automate costs. The Future · Cover more of Smart Grid control (diagnosis, reconfiguration, protection, voltage) products for the Smart Grid. Contact Details: Technical Jussi Rintanen Canberra Research Laboratory Tel

  12. Parametrization-independent elliptic surface grid generation

    E-Print Network [OSTI]

    Rasmussen, Britt Bille

    2009-01-01T23:59:59.000Z

    The generation of computational grids on surfaces of three-dimensional configurations is an important component of many areas of computational research, both as a boundary grid for volume grid generation or to perform ...

  13. Considering Prefabulous and Almost Off the Grid

    E-Print Network [OSTI]

    Grenier, Lotus; Beba, Zoe; Gray, Art

    2013-01-01T23:59:59.000Z

    Prefabulous and Almost Off the Grid Introduction Two recentPrefabulous and Almost Off the Grid by Sheri Koones In herand Almost O?fz‘/Je Grid (Abrams, 2012), Sheri Koones pro?

  14. On Nonlinear Self-interaction of Geodesic Acoustic Mode Driven by Energetic Particles

    SciTech Connect (OSTI)

    G. Y. Fu

    2010-06-04T23:59:59.000Z

    It is shown that nonlinear self-interaction of energetic particle-driven Geodesic Acoustic Mode does not generate a second harmonic in radial electric field using the fluid model. However, kinetic effects of energetic particles can induce a second harmonic in the radial electric field. A formula for the second order plasma density perturbation is derived. It is shown that a second harmonic of plasma density perturbation is generated by the convective nonlinearity of both thermal plasma and energetic particles. Near the midplane of a tokamak, the second order plasma density perturbation (the sum of second harmonic and zero frequency sideband) is negative on the low field side with its size comparable to the main harmonic at low uctuation level. These analytic predictions are consistent with the recent experimental observation in DIII-D.

  15. On Nonlinear Self-interaction of Geodesic Acoustic Mode Driven By Energetic Particles

    SciTech Connect (OSTI)

    G.Y. Fu

    2010-10-01T23:59:59.000Z

    It is shown that nonlinear self-interaction of energetic particle-driven Geodesic Acoustic Mode does not generate a second harmonic in radial electric field using the fluid model. However, kinetic effects of energetic particles can induce a second harmonic in the radial electric field. A formula for the second order plasma density perturbation is derived. It is shown that a second harmonic of plasma density perturbation is generated by the convective nonlinearity of both thermal plasma and energetic particles. Near the midplane of a tokamak, the second order plasma density perturbation (the sum of second harmonic and zero frequency sideband) is negative on the low field side with its size comparable to the main harmonic at low fluctuation level. These analytic predictions are consistent with the recent experimental observation in DIII-D.

  16. Coordinate families for the Schwarzschild geometry based on radial timelike geodesics

    E-Print Network [OSTI]

    Tehani K. Finch

    2014-12-23T23:59:59.000Z

    We explore the connections between various coordinate systems associated with observers moving inwardly along radial geodesics in the Schwarzschild geometry. Painlev\\'e-Gullstrand (PG) time is adapted to freely falling observers dropped from rest from infinity; Lake-Martel-Poisson (LMP) time coordinates are adapted to observers who start at infinity with non-zero initial inward velocity; Gautreau-Hoffmann (GH) time coordinates are adapted to observers dropped from rest from a finite distance from the black hole horizon. We construct from these an LMP family and a proper-time family of time coordinates, the intersection of which is PG time. We demonstrate that these coordinate families are distinct, but related, one-parameter generalizations of PG time, and show linkage to Lema\\^itre coordinates as well.

  17. Geodesic Transport Barriers in Jupiter's Atmosphere: A Video-Based Analysis

    E-Print Network [OSTI]

    Alireza Hadjighasem; George Haller

    2014-08-24T23:59:59.000Z

    Jupiter's zonal jets and Great Red Spot are well known from still images. Yet the planet's atmosphere is highly unsteady, which suggests that the actual material transport barriers delineating its main features should be time-dependent. Rare video footages of Jupiter's clouds provide an opportunity to verify this expectation from optically reconstructed velocity fields. Available videos, however, provide short-time and temporally aperiodic velocity fields that defy classical dynamical systems analyses focused on asymptotic features. To this end, we use here the recent theory of geodesic transport barriers to uncover finite-time mixing barriers in the wind field extracted from a video captured by NASA's Cassini space mission. More broadly, the approach described here provides a systematic and frame-invariant way to extract dynamic coherent structures from time-resolved remote observations of unsteady continua.

  18. Smart Grid Status and Metrics Report

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Weimar, Mark R.; Kirkham, Harold

    2014-07-01T23:59:59.000Z

    To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. It measures 21 metrics to provide insight into the grid’s capacity to embody these characteristics. This report looks across a spectrum of smart grid concerns to measure the status of smart grid deployment and impacts.

  19. National Smart Water Grid

    SciTech Connect (OSTI)

    Beaulieu, R A

    2009-07-13T23:59:59.000Z

    The United States repeatedly experiences floods along the Midwest's large rivers and droughts in the arid Western States that cause traumatic environmental conditions with huge economic impact. With an integrated approach and solution these problems can be alleviated. Tapping into the Mississippi River and its tributaries, the world's third largest fresh water river system, during flood events will mitigate the damage of flooding and provide a new source of fresh water to the Western States. The trend of increased flooding on the Midwest's large rivers is supported by a growing body of scientific literature. The Colorado River Basin and the western states are experiencing a protracted multi-year drought. Fresh water can be pumped via pipelines from areas of overabundance/flood to areas of drought or high demand. Calculations document 10 to 60 million acre-feet (maf) of fresh water per flood event can be captured from the Midwest's Rivers and pumped via pipelines to the Colorado River and introduced upstream of Lake Powell, Utah, to destinations near Denver, Colorado, and used in areas along the pipelines. Water users of the Colorado River include the cities in southern Nevada, southern California, northern Arizona, Colorado, Utah, Indian Tribes, and Mexico. The proposed start and end points, and routes of the pipelines are documented, including information on right-of-ways necessary for state and federal permits. A National Smart Water Grid{trademark} (NSWG) Project will create thousands of new jobs for construction, operation, and maintenance and save billions in drought and flood damage reparations tax dollars. The socio-economic benefits of NWSG include decreased flooding in the Midwest; increased agriculture, and recreation and tourism; improved national security, transportation, and fishery and wildlife habitats; mitigated regional climate change and global warming such as increased carbon capture; decreased salinity in Colorado River water crossing the US-Mexico border; and decreased eutrophication (excessive plant growth and decay) in the Gulf of Mexico to name a few. The National Smart Water Grid{trademark} will pay for itself in a single major flood event.

  20. Numerical solution of plasma fluid equations using locally refined grids

    SciTech Connect (OSTI)

    Colella, P., LLNL

    1997-01-26T23:59:59.000Z

    This paper describes a numerical method for the solution of plasma fluid equations on block-structured, locally refined grids. The plasma under consideration is typical of those used for the processing of semiconductors. The governing equations consist of a drift-diffusion model of the electrons and an isothermal model of the ions coupled by Poisson's equation. A discretization of the equations is given for a uniform spatial grid, and a time-split integration scheme is developed. The algorithm is then extended to accommodate locally refined grids. This extension involves the advancement of the discrete system on a hierarchy of levels, each of which represents a degree of refinement, together with synchronization steps to ensure consistency across levels. A brief discussion of a software implementation is followed by a presentation of numerical results.

  1. Sandia Energy - Grid Cyber Vulnerability & Assessments

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Consequences and Impacts It's important to recognize that adopting these advanced grid-control technologies doesn't just have the potential to increase power grid reliability...

  2. Protecting Intelligent Distributed Power Grids Against Cyber...

    Broader source: Energy.gov (indexed) [DOE]

    will help protect intelligent distributed power grids from cyber attacks. Intelligent power grids are interdependent energy management systems-encompassing generation,...

  3. Sandia National Laboratories: smart-grid technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    smart-grid technologies New Jersey Transit FutureGrid MOU Signing On October 4, 2013, in Analysis, Energy Surety, Infrastructure Security, Microgrid, Modeling, Modeling & Analysis,...

  4. Sandia National Laboratories: energy resilient smart grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resilient smart grid Hoboken Hopes To Reduce Power Outages With New 'Smart Grid' System On June 20, 2013, in Energy, Energy Assurance, Energy Storage, Energy Storage Systems,...

  5. Conference Proceedings Available - The Smart Grid Experience...

    Energy Savers [EERE]

    the Grid Through Integration Conservation and Optimization via VoltVar Control Systems Driving the Integrated Grid - Including DMS, DA, DERMS, DRMS Communications and Cyber...

  6. Sandia National Laboratories: Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transmission Grid Integration Wind Generator Modeling On June 26, 2014, in Computational Modeling & Simulation, Energy, Energy Surety, Grid Integration, Infrastructure Security,...

  7. Tribal Renewable Energy Foundational Course: Electricity Grid...

    Office of Environmental Management (EM)

    Electricity Grid Basics Tribal Renewable Energy Foundational Course: Electricity Grid Basics Watch the U.S. Department of Energy Office of Indian Energy foundational course webinar...

  8. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self heals - acts as the grid's "immune system" Supports grid reliability, security, and power quality Today Tomorrow Protects assets following disruption (e.g. trip relay)...

  9. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modern Grid Wisconsin Public Utility Institute and UW Energy Institute Joe Miller, Steve Pullins, Steve Bossart - Modern Grid Team April 29, 2008 1 Conducted by the National Energy...

  10. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Supply Transformation Needed On February 20, 2013, in DETL, Distribution Grid Integration, Energy, Energy Assurance, Energy Surety, Grid Integration, Infrastructure...

  11. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Its Phase 1 Operational Demonstration in Late January On April 5, 2013, in Distribution Grid Integration, Energy Assurance, Energy Assurance, Energy Surety, Grid Integration,...

  12. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration Recent Sandia Secure, Scalable Microgrid Advanced Controls Research Accomplishments On March 3, 2015, in Capabilities, Distribution Grid Integration,...

  13. National Grid (Gas)- Commercial Energy Efficiency Programs

    Broader source: Energy.gov [DOE]

    National Grid’s Commercial Energy Efficiency Program provides support services and incentives to commercial customers who install energy efficient natural gas related measures. Prescriptive...

  14. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distribution Grid Integration ECIS-Princeton Power Systems, Inc.: Demand Response Inverter On March 19, 2013, in DETL, Distribution Grid Integration, Energy, Energy Surety,...

  15. Smart Grid | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here HomeSmart Grid Smart Grid Smart

  16. Grid Orientation Effect in coupled Finite Volume Schemes , C. Guichard

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ), in the framework of oil reservoir simulation. This effect is occurring in the simulation of viscous oil recovery by the injection of a very mobile fluid (water, steam water, miscible gas. . . ). In order to more precisely - K,L M(u) p·nK,Lds at the interface K,L at time step n (where nK,L is the unit normal vec

  17. Introduction to FireGrid 

    E-Print Network [OSTI]

    Welch, Stephen; Usmani, Asif; Upadhyay, Rochan; Berry, Dave; Potter, Stephen; Torero, Jose L

    2007-11-14T23:59:59.000Z

    FireGrid is an ambitious and innovative project, seeking to develop the technology to support a new way of managing emergency response in the modern built environment. Specific novel aspects include the integration of ...

  18. Grid Pricing of Fed Cattle

    E-Print Network [OSTI]

    Schroeder, Ted C.; Hogan, Robert J.; Anderson, David P.

    2009-03-02T23:59:59.000Z

    There are several value-based fed cattle pricing systems, including formula pricing, price grids and alliances. This publication describes the different cattle pricing methods and helps you decide which is best for you....

  19. Sandia National Laboratories: Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid relies on power transmission from the production source-be it a coal-fired plant, solar array, or wind farm-to the consumer. Long-distance transmission results in sizeable...

  20. Reinventing Batteries for Grid Storage

    ScienceCinema (OSTI)

    Banerjee, Sanjoy

    2013-05-29T23:59:59.000Z

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  1. Smart Wire Grid: Resisting Expectations

    ScienceCinema (OSTI)

    Ramsay, Stewart; Lowe, DeJim

    2014-04-09T23:59:59.000Z

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  2. Smart Wire Grid: Resisting Expectations

    SciTech Connect (OSTI)

    Ramsay, Stewart; Lowe, DeJim

    2014-03-03T23:59:59.000Z

    Smart Wire Grid's DSR technology (Discrete Series Reactor) can be quickly deployed on electrical transmission lines to create intelligent mesh networks capable of quickly rerouting electricity to get power where and when it's needed the most. With their recent ARPA-E funding, Smart Wire Grid has been able to move from prototype and field testing to building out a US manufacturing operation in just under a year.

  3. Reinventing Batteries for Grid Storage

    SciTech Connect (OSTI)

    Banerjee, Sanjoy

    2012-01-01T23:59:59.000Z

    The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

  4. NREL: Transmission Grid Integration - Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL researchers use

  5. NREL: Transmission Grid Integration - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecastingNews The following news

  6. NREL: Transmission Grid Integration - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecastingNews The

  7. NREL: Transmission Grid Integration - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecastingNews ThePublications

  8. NREL: Transmission Grid Integration - Webinars

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning and Analysis

  9. NREL: Transmission Grid Integration - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning and AnalysisWebmaster

  10. IEEE TRANSACTIONS ON SMART GRID, VOL. 2, NO. 4, DECEMBER 2011 835 Cyber Attack Exposure Evaluation Framework for

    E-Print Network [OSTI]

    Manimaran, Govindarasu

    . The coupling of the power infrastructure with complex computer networks substantially expand current cyber, that is, threats, vulnerabilities, and attack consequences for current and emerging power grid systems. The substantial attack surface presented by the advanced metering infrastructure (AMI) along

  11. Networks, smart grids: new model for synchronization

    E-Print Network [OSTI]

    - 1 - Networks, smart grids: new model for synchronization May 21, 2013 Networks of individual scenarios and in smart grid applications. "Smart grid" refers to technology to modernize utility electricity in a volatile smart grid scenario that included fluctuating loads with random power demand, renewable energy

  12. Benchmarking Grid Information Systems Laurence Field1

    E-Print Network [OSTI]

    Sakellariou, Rizos

    Benchmarking Grid Information Systems Laurence Field1 and Rizos Sakellariou2 1 CERN, Geneva. Grid information systems play a central role in today's pro- duction Grid infrastructures, enabling the discovery of a range of in- formation about the Grid services that exist in an infrastructure. As the number

  13. Grid Architecture Release 2.3

    E-Print Network [OSTI]

    Draft Grid Architecture Release 2.3 November 2014 Draft #12;Grid Architecture Release 2.3 November..................................................................................................... 2.1 3.0 Brief Introduction to Grid Architecture........................................................................................ 3.2 3.1 How Grid Architecture Can Be Used

  14. Evidential Grids Information Management in Dynamic Environments

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of Compiègne CNRS Heudiasyc UMR 7253, France Email: surname.name@utc.fr Abstract--An occupancy grid map conditions. The perception strategy involves map and scan grids [9], [10]. Indeed, an instantaneous scan grid-detections. The map grid acts as a filter that accumulate information and allows to detect moving objects. In dynamic

  15. Geodesics on the Torus and other Surfaces of Revolution Clarified Using Undergraduate Physics Tricks with Bonus: Nonrelativistic and Relativistic Kepler Problems

    E-Print Network [OSTI]

    Jantzen, Robert T

    2012-01-01T23:59:59.000Z

    In considering the mathematical problem of describing the geodesics on a torus or any other surface of revolution, there is a tremendous advantage in conceptual understanding that derives from taking the point of view of a physicist by interpreting parametrized geodesics as the paths traced out in time by the motion of a point in the surface, identifying the parameter with the time. Considering energy levels in an effective potential for the reduced motion then proves to be an extremely useful tool in studying the behavior and properties of the geodesics. The same approach can be easily tweaked to extend to both the nonrelativistic and relativistic Kepler problems. The spectrum of closed geodesics on the torus is analogous to the quantization of energy levels in models of atoms.

  16. Geodesics on the Torus and other Surfaces of Revolution Clarified Using Undergraduate Physics Tricks with Bonus: Nonrelativistic and Relativistic Kepler Problems

    E-Print Network [OSTI]

    Robert T. Jantzen

    2012-12-26T23:59:59.000Z

    In considering the mathematical problem of describing the geodesics on a torus or any other surface of revolution, there is a tremendous advantage in conceptual understanding that derives from taking the point of view of a physicist by interpreting parametrized geodesics as the paths traced out in time by the motion of a point in the surface, identifying the parameter with the time. Considering energy levels in an effective potential for the reduced motion then proves to be an extremely useful tool in studying the behavior and properties of the geodesics. The same approach can be easily tweaked to extend to both the nonrelativistic and relativistic Kepler problems. The spectrum of closed geodesics on the torus is analogous to the quantization of energy levels in models of atoms.

  17. Smart Grid e-Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Smart Grid Task Force Smart Grid e-Forum Smart Grid e-Forum DOE conducted a series of Smart Grid E-Forums to discuss various issues surrounding Smart Grid including...

  18. Smart Grid Information Security (IS) Functional Requirement

    E-Print Network [OSTI]

    Ling, Amy Poh Ai

    2011-01-01T23:59:59.000Z

    It is important to implement safe smart grid environment to enhance people's lives and livelihoods. This paper provides information on smart grid IS functional requirement by illustrating some discussion points to the sixteen identified requirements. This paper introduces the smart grid potential hazards that can be referred as a triggering factor to improve the system and security of the entire grid. The background of smart information infrastructure and the needs for smart grid IS is described with the adoption of hermeneutic circle as methodology. Grid information technology and security-s session discusses that grid provides the chance of a simple and transparent access to different information sources. In addition, the transformation between traditional versus smart grid networking trend and the IS importance on the communication field reflects the criticality of grid IS functional requirement identification is introduces. The smart grid IS functional requirements described in this paper are general and ...

  19. -1 -0.5 0 0.5 1 Left system with Double-Geodesic control law

    E-Print Network [OSTI]

    Murray, Richard M.

    ;#12;#12;#12;#12;#12;#12;#12;#12;-1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 x (cm) y(cm) Left system with Double-Geodesic control law -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 x (cm) y(cm) Left system with Log control law -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 x (cm) y(cm) Right system with Double-Geodesic control law -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 x (cm) y

  20. EconoGrid: A detailed Simulation Model of a Standards-based Grid Compute Economy

    E-Print Network [OSTI]

    EconoGrid: A detailed Simulation Model of a Standards-based Grid Compute Economy EconoGrid is a detailed simulation model, implemented in SLX1 , of a grid compute economy that implements selected of users. In a grid compute economy, computing resources are sold to users in a market where price

  1. A Core Grid Ontology for the Semantic Grid Wei Xing Marios D. Dikaiakos

    E-Print Network [OSTI]

    Pallis, George

    A Core Grid Ontology for the Semantic Grid Wei Xing Marios D. Dikaiakos Department of Computer, we propose a Core Grid Ontology (CGO) that defines fundamental Grid-specific concepts, and the re- lationships between them. One of the key goals is to make this Core Grid Ontology general enough and easily

  2. Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter

    E-Print Network [OSTI]

    Bak, Claus Leth

    Modeling and Grid impedance Variation Analysis of Parallel Connected Grid Connected Inverter based in the same grid interface conditions by means of impedance-based analysis and modeling. Unlike the single grid connected inverter, it is found that multiple parallel connected inverters and grid impedance can

  3. What is a Grid? Grid Today, AUGUST 12, 2002: VOL. 1 NO. 9

    E-Print Network [OSTI]

    What is a Grid? Grid Today, AUGUST 12, 2002: VOL. 1 NO. 9 (http://www.gridtoday.com/02/0812/020812.html) I would like to provide perspective on the question of what is a Grid - a perspective derived from several years of building production Grids. For a significant segment of the Grid community, most

  4. Voltage grid support of DFIG wind turbines during grid faults Anca D. Hansen1

    E-Print Network [OSTI]

    Voltage grid support of DFIG wind turbines during grid faults Anca D. Hansen1 , Gabriele Michalke2 Abstract The fault ride-through and grid support capabilities of the doubly fed induction generator (DFIG and their contribution to support the grid, i.e. to the voltage control in the power system, during grid faults

  5. International Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities and Solutions

    E-Print Network [OSTI]

    Aloul, Fadi

    to be able to communicate with smart meters via a Home Area Network (HAN) facilitating efficient powerInternational Journal of Smart Grid and Clean Energy Smart Grid Security: Threats, Vulnerabilities is currently evolving into the smart grid. Smart grid integrates the traditional electrical power grid

  6. GRID-Launcher v.1.0

    E-Print Network [OSTI]

    N. Deniskina; M. Brescia; S. Cavuoti; G. d'Angelo; O. Laurino; G. Longo

    2008-06-06T23:59:59.000Z

    GRID-launcher-1.0 was built within the VO-Tech framework, as a software interface between the UK-ASTROGRID and a generic GRID infrastructures in order to allow any ASTROGRID user to launch on the GRID computing intensive tasks from the ASTROGRID Workbench or Desktop. Even though of general application, so far the Grid-Launcher has been tested on a few selected softwares (VONeural-MLP, VONeural-SVM, Sextractor and SWARP) and on the SCOPE-GRID.

  7. Smart Grid Information Clearinghouse (SGIC)

    SciTech Connect (OSTI)

    Rahman, Saifur

    2014-08-31T23:59:59.000Z

    Since the Energy Independence and Security Act of 2007 was enacted, there has been a large number of websites that discusses smart grid and relevant information, including those from government, academia, industry, private sector and regulatory. These websites collect information independently. Therefore, smart grid information was quite scattered and dispersed. The objective of this work was to develop, populate, manage and maintain the public Smart Grid Information Clearinghouse (SGIC) web portal. The information in the SGIC website is comprehensive that includes smart grid information, research & development, demonstration projects, technical standards, costs & benefit analyses, business cases, legislation, policy & regulation, and other information on lesson learned and best practices. The content in the SGIC website is logically grouped to allow easily browse, search and sort. In addition to providing the browse and search feature, the SGIC web portal also allow users to share their smart grid information with others though our online content submission platform. The Clearinghouse web portal, therefore, serves as the first stop shop for smart grid information that collects smart grid information in a non-bias, non-promotional manner and can provide a missing link from information sources to end users and better serve users’ needs. The web portal is available at www.sgiclearinghouse.org. This report summarizes the work performed during the course of the project (September 2009 – August 2014). Section 2.0 lists SGIC Advisory Committee and User Group members. Section 3.0 discusses SGIC information architecture and web-based database application functionalities. Section 4.0 summarizes SGIC features and functionalities, including its search, browse and sort capabilities, web portal social networking, online content submission platform and security measures implemented. Section 5.0 discusses SGIC web portal contents, including smart grid 101, smart grid projects, deployment experience (i.e., use cases, lessons learned, cost-benefit analyses and business cases), in-depth information (i.e., standards, technology, cyber security, legislation, education and training and demand response), as well as international information. Section 6.0 summarizes SGIC statistics from the launch of the portal on July 07, 2010 to August 31, 2014. Section 7.0 summarizes publicly available information as a result of this work.

  8. POWER GRID RELIABILITY AND SECURITY

    SciTech Connect (OSTI)

    Bose, Anjan; Venkatasubramanian, Vaithianathan; Hauser, Carl; Bakken, David; Anderson, David; Zhao, Chuanlin; Liu, Dong; Yang, Tao; Meng, Ming; Zhang, Lin; Ning, Jiawei; Tashman, Zaid

    2014-09-30T23:59:59.000Z

    This project has led to the development of a real-time simulation platform for electric power grids called Grid Simulator or GridSim for simulating the dynamic and information network interactions of large- scale power systems. The platform consists of physical models of power system components including synchronous generators, loads and control, which are simulated using a modified commercial power simulator namely Transient Stability Analysis Tool (TSAT) [1] together with data cleanup components, as well as an emulated substation level and wide-area power analysis components. The platform also includes realistic representations of communication network middleware that can emulate the real-time information flow back and forth between substations and control centers in wide-area power systems. The platform has been validated on a realistic 6000-bus model of the western American power system. The simulator GridSim developed in this project is the first of its kind in its ability to simulate real-time response of large-scale power grids, and serves as a cost effective real-time stability and control simulation platform for power industry.

  9. Helix coupling

    DOE Patents [OSTI]

    Ginell, W.S.

    1982-03-17T23:59:59.000Z

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the U sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  10. Helix coupling

    DOE Patents [OSTI]

    Ginell, W.S.

    1989-04-25T23:59:59.000Z

    A coupling for connecting helix members in series, which consists of a pair of U-shaped elements, one of which is attached to each helix end with the "U" sections of the elements interlocked. The coupling is particularly beneficial for interconnecting helical Nitinol elements utilized in thermal actuators or engines. Each coupling half is attached to the associated helix at two points, thereby providing axial load while being easily removed from the helix, and reusable.

  11. The Vermont-Sandia Smart Grid Partnership Powering the Future: The Vermont Smart Grid and Beyond

    E-Print Network [OSTI]

    Hayden, Nancy J.

    The Vermont-Sandia Smart Grid Partnership Powering the Future: The Vermont Smart Grid and Beyond BURLINGTON SHERATON HOTEL & CONFERENCE CENTER MAY Laboratories 9:10-10:15 a.m. Opening Plenary: The Vermont-Sandia Smart Grid

  12. Fully Nonlinear Edge Gyrokinetic Simulations of Kinetic Geodesic-Acoustic Modes and Boundary Flows

    SciTech Connect (OSTI)

    Xu, X Q; Belli, E; Bodi, K; Candy, J; Chang, C S; Cohen, B I; Cohen, R H; Colella, P; Dimits, A M; Dorr, M R; Gao, Z; Hittinger, J A; Ko, S; Krasheninnikov, S; McKee, G R; Nevins, W M; Rognlien, T D; Snyder, P B; Suh, J; Umansky, M V

    2008-09-18T23:59:59.000Z

    We present edge gyrokinetic neoclassical simulations of tokamak plasmas using the fully nonlinear (full-f) continuum code TEMPEST. A nonlinear Boltzmann model is used for the electrons. The electric field is obtained by solving the 2D gyrokinetic Poisson Equation. We demonstrate the following: (1) High harmonic resonances (n > 2) significantly enhance geodesic-acoustic mode (GAM) damping at high-q (tokamak safety factor), and are necessary to explain both the damping observed in our TEMPEST q-scans and experimental measurements of the scaling of the GAM amplitude with edge q{sub 95} in the absence of obvious evidence that there is a strong q dependence of the turbulent drive and damping of the GAM. (2) The kinetic GAM exists in the edge for steep density and temperature gradients in the form of outgoing waves, its radial scale is set by the ion temperature profile, and ion temperature inhomogeneity is necessary for GAM radial propagation. (3) The development of the neoclassical electric field evolves through different phases of relaxation, including GAMs, their radial propagation, and their long-time collisional decay. (4) Natural consequences of orbits in the pedestal and scrape-off layer region in divertor geometry are substantial non-Maxwellian ion distributions and flow characteristics qualitatively like those observed in experiments.

  13. GENI: Grid Hardware and Software

    SciTech Connect (OSTI)

    None

    2012-01-09T23:59:59.000Z

    GENI Project: The 15 projects in ARPA-E’s GENI program, short for “Green Electricity Network Integration,” aim to modernize the way electricity is transmitted in the U.S. through advances in hardware and software for the electric grid. These advances will improve the efficiency and reliability of electricity transmission, increase the amount of renewable energy the grid can utilize, and provide energy suppliers and consumers with greater control over their power flows in order to better manage peak power demand and cost.

  14. Convectively cooled electrical grid structure

    DOE Patents [OSTI]

    Paterson, J.A.; Koehler, G.W.

    1980-11-10T23:59:59.000Z

    Undesirable distortions of electrical grid conductors from thermal cycling are minimized and related problems such as unwanted thermionic emission and structural failure from overheating are avoided by providing for a flow of fluid coolant within each conductor. The conductors are secured at each end to separate flexible support elements which accommodate to individual longitudinal expansion and contraction of each conductor while resisting lateral displacements, the coolant flow preferably being directed into and out of each conductor through passages in the flexible support elements. The grid may have a modular or divided construction which facilitates manufacture and repairs.

  15. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstituteThree-DimensionalTransmission Grid

  16. Sandia Energy - Grid Modernization Consortium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatingsUltra-High-Voltage SiliconEnergyFailureGlobal ClimateGridGrid

  17. Averaged Energy Inequalities for Non-Minimally Coupled Classical Scalar Fields

    E-Print Network [OSTI]

    Lutz W. Osterbrink

    2006-12-11T23:59:59.000Z

    The stress-energy tensor for the non-minimally coupled scalar field is known not to satisfy the pointwise energy conditions, even on the classical level. We show, however, that local averages of the classical stress-energy tensor satisfy certain inequalities and give bounds for averages along causal geodesics. It is shown that in vacuum background spacetimes, ANEC and AWEC are satisfied. Furthermore we use our result to show that in the classical situation we have an analogue to the so called quantum interest conjecture. These results lay the foundations for averaged energy inequalities for the quantised non-minimally coupled fields.

  18. Smart Grid Newsletter ? The Regulators Role in Grid Modernization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Title: "The Regulator's Role in Grid Modernization" Sponsor: The Modern Grid Strategy is a DOE-funded project conducted by the National Energy Technology Laboratory Leadership from...

  19. DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity

    E-Print Network [OSTI]

    DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity: Vol. 2, Privacy and the Smart Grid The Smart Grid Interoperability Panel ­ Smart Grid Cybersecurity Committee #12;DRAFT NISTIR 7628 Revision 1 Guidelines for Smart Grid Cybersecurity: Vol. 2, Privacy and the Smart Grid The Smart Grid

  20. LANL physicists discuss electrical grid in journal article

    E-Print Network [OSTI]

    - 1 - LANL physicists discuss electrical grid in journal article October 17, 2013 Electrical grids of distribution grids. Revolutionary changes to the electric grid will lead to grids that are more random that could make a major impact on the future grid: · probabilistic measures of electrical grid reliability

  1. Mastering Uncertainty and Risk at Multiple Time Scales in the Future Electrical Grid

    SciTech Connect (OSTI)

    Chertkov, Michael [Los Alamos National Laboratory; Bent, Russell W. [Los Alamos National Laboratory; Backhaus, Scott N. [Los Alamos National Laboratory

    2012-07-10T23:59:59.000Z

    Today's electrical grids enjoy a relatively clean separation of spatio-temporal scales yielding a compartmentalization of grid design, optimization, control and risk assessment allowing for the use of conventional mathematical tools within each area. In contrast, the future grid will incorporate time-intermittent renewable generation, operate via faster electrical markets, and tap the latent control capability at finer grid modeling scales; creating a fundamentally new set of couplings across spatiotemporal scales and requiring revolutionary advances in mathematics techniques to bridge these scales. One example is found in decade-scale grid expansion planning in which today's algorithms assume accurate load forecasts and well-controlled generation. Incorporating intermittent renewable generation creates fluctuating network flows at the hourly time scale, inherently linking the ability of a transmission line to deliver electrical power to hourly operational decisions. New operations-based planning algorithms are required, creating new mathematical challenges. Spatio-temporal scales are also crossed when the future grid's minute-scale fluctuations in network flows (due to intermittent generation) create a disordered state upon which second-scale transient grid dynamics propagate effectively invalidating today's on-line dynamic stability analyses. Addressing this challenge requires new on-line algorithms that use large data streams from new grid sensing technologies to physically aggregate across many spatial scales to create responsive, data-driven dynamic models. Here, we sketch the mathematical foundations of these problems and potential solutions.

  2. A regional model coupling with OASIS3-MCT

    E-Print Network [OSTI]

    A regional model coupling with OASIS3-MCT Eric Maisonnave WN/CMGC/13/34 #12;Table of Contents of an OASIS3-MCT based coupled model must be set up providing input informations (grid definition.base.define_clm_limits ), reducing to 1 the number of sub-domain dedicated to DATM, OASIS interpolates the COSMO domain limits

  3. Grid Applications Dr Gabrielle Allen

    E-Print Network [OSTI]

    Allen, Gabrielle

    of chemistry and other codes (www.gridchem.org) ! Petroleum Engineering " UCoMS: Grid-enabling reservoir ! Requires incredible mix of technologies & expertise! ! Many scientific/engineering components " Physics? Finite elements? " Elliptic equations: multigrid, Krylov subspace,... " Mesh refinement ! Many different

  4. ELECTRIC GRID PROTECTION THE INTERNATIONAL

    E-Print Network [OSTI]

    Schrijver, Karel

    interference, Electromagnetic Pulse (EMP), or Intentional Electromagnetic Interference (IEMI). See below the status of national electric grid evaluation and protection against electromagnetic threats in 11 counties sensitivity to the full range of electromagnetic threats1 . This historic and ongoing situation has resulted

  5. Grid Logging: Best Practices Guide

    SciTech Connect (OSTI)

    Tierney, Brian L; Tierney, Brian L; Gunter, Dan

    2008-04-01T23:59:59.000Z

    The purpose of this document is to help developers of Grid middleware and application software generate log files that will be useful to Grid administrators, users, developers and Grid middleware itself. Currently, most of the currently generated log files are only useful to the author of the program. Good logging practices are instrumental to performance analysis, problem diagnosis, and security auditing tasks such as incident tracing and damage assessment. This document does not discuss the issue of a logging API. It is assumed that a standard log API such as syslog (C), log4j (Java), or logger (Python) is being used. Other custom logging API or even printf could be used. The key point is that the logs must contain the required information in the required format. At a high level of abstraction, the best practices for Grid logging are: (1) Consistently structured, typed, log events; (2) A standard high-resolution timestamp; (3) Use of logging levels and categories to separate logs by detail and purpose; (4) Consistent use of global and local identifiers; and (5) Use of some regular, newline-delimited ASCII text format. The rest of this document describes each of these recommendations in detail.

  6. FermiGrid - experience and future plans

    SciTech Connect (OSTI)

    Chadwick, K.; Berman, E.; Canal, P.; Hesselroth, T.; Garzoglio, G.; Levshina, T.; Sergeev, V.; Sfiligoi, I.; Timm, S.; Yocum, D.; /Fermilab

    2007-09-01T23:59:59.000Z

    Fermilab supports a scientific program that includes experiments and scientists located across the globe. In order to better serve this community, Fermilab has placed its production computer resources in a Campus Grid infrastructure called 'FermiGrid'. The FermiGrid infrastructure allows the large experiments at Fermilab to have priority access to their own resources, enables sharing of these resources in an opportunistic fashion, and movement of work (jobs, data) between the Campus Grid and National Grids such as Open Science Grid and the WLCG. FermiGrid resources support multiple Virtual Organizations (VOs), including VOs from the Open Science Grid (OSG), EGEE and the Worldwide LHC Computing Grid Collaboration (WLCG). Fermilab also makes leading contributions to the Open Science Grid in the areas of accounting, batch computing, grid security, job management, resource selection, site infrastructure, storage management, and VO services. Through the FermiGrid interfaces, authenticated and authorized VOs and individuals may access our core grid services, the 10,000+ Fermilab resident CPUs, near-petabyte (including CMS) online disk pools and the multi-petabyte Fermilab Mass Storage System. These core grid services include a site wide Globus gatekeeper, VO management services for several VOs, Fermilab site authorization services, grid user mapping services, as well as job accounting and monitoring, resource selection and data movement services. Access to these services is via standard and well-supported grid interfaces. We will report on the user experience of using the FermiGrid campus infrastructure interfaced to a national cyberinfrastructure--the successes and the problems.

  7. EV-Smart Grid Research & Interoperability Activities 2014 DOE...

    Broader source: Energy.gov (indexed) [DOE]

    - Codes & Standards Support, Grid Connectivity R&D, International Cooperation and EV-Smart Grid Interoperability Center (funding began in FY 2013) Grid Integration * PEV J1772...

  8. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01T23:59:59.000Z

    services in many off-grid applications, come with first costassurance for off- grid applications in developing countriesand design for off-grid applications. • Train laboratory

  9. alloy battery grid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    power supply challenges Adverse trends associated with the grid- Costs, reliability, peak loads, asset underutilization, TLRs, grid divorce The benefits of a modernized grid...

  10. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    data  integration  for  Smart  Grid”,  B 2010  3rd  IEEE simulation  integration,  the  next generation smart grid the Smart Grid vision requires the efficient integration of 

  11. Enhancing the Smart Grid: Integrating Clean Distributed and Renewable...

    Energy Savers [EERE]

    Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Enhancing the Smart Grid: Integrating Clean Distributed and Renewable Generation Imagine a grid...

  12. Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical...

    Energy Savers [EERE]

    Okaloosa Gas District Smart Grid RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation Okaloosa Gas District Smart Grid RFI: Addressing Policy and...

  13. Articles about Grid Integration and Transmission | Department...

    Broader source: Energy.gov (indexed) [DOE]

    grid integration and transmission featured by the U.S. Department of Energy (DOE) Wind Program. May 18, 2015 New Report Says Western Grid Can Weather Disturbances with High Wind,...

  14. Structural Vulnerability Assessment of Electric Power Grids

    E-Print Network [OSTI]

    Koç, Yakup; Kooij, Robert E; Brazier, Frances M T

    2013-01-01T23:59:59.000Z

    Cascading failures are the typical reasons of black- outs in power grids. The grid topology plays an important role in determining the dynamics of cascading failures in power grids. Measures for vulnerability analysis are crucial to assure a higher level of robustness of power grids. Metrics from Complex Networks are widely used to investigate the grid vulnerability. Yet, these purely topological metrics fail to capture the real behaviour of power grids. This paper proposes a metric, the effective graph resistance, as a vulnerability measure to de- termine the critical components in a power grid. Differently than the existing purely topological measures, the effective graph resistance accounts for the electrical properties of power grids such as power flow allocation according to Kirchoff laws. To demonstrate the applicability of the effective graph resistance, a quantitative vulnerability assessment of the IEEE 118 buses power system is performed. The simulation results verify the effectiveness of the effect...

  15. Cybersecurity and the Smarter Grid (2014)

    Broader source: Energy.gov [DOE]

    An article by OE’s Carol Hawk and Akhlesh Kaushiva in The Electricity Journal discusses cybersecurity for the power grid and how DOE and the energy sector are partnering to keep the smart grid reliable and secure.

  16. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self heals - acts as the grid's "immune system" Supports grid reliability, security, and power quality The blackout of August 2003 took hours to build up. Once it breached the...

  17. Assistant Secretary Hoffman Discusses Grid Modernization with...

    Broader source: Energy.gov (indexed) [DOE]

    Assistant Secretary Hoffman Discusses Grid Modernization with the New York Times and E&E TV Assistant Secretary Hoffman Discusses Grid Modernization with the New York Times and E&E...

  18. Vids4Grids- Controls, Connectors & Surge Protectors

    Broader source: Energy.gov [DOE]

    Modernizing our grid means exciting new devices in the power sector. Find out how new lighting controls, connectors and surge protection will bring out electric grid to the next level.

  19. Past and future of grid shell structures

    E-Print Network [OSTI]

    Paoli, Céline (Céline Aude)

    2007-01-01T23:59:59.000Z

    Because of their original organic shape and the column free space that they provide, the design of grid shell structures challenges architects and structural engineers in more than one way. Very few grid shell building ...

  20. Energetic-particle-induced electromagnetic geodesic acoustic mode in tokamak plasmas

    SciTech Connect (OSTI)

    Wang, Lingfeng, E-mail: wanglf@swip.ac.cn; He, Zhixiong; He, Hongda; Shen, Y. [Southwestern Institute of Physics, Chengdu 610041 (China); Dong, J. Q. [Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Southwestern Institute of Physics, Chengdu 610041 (China)

    2014-07-15T23:59:59.000Z

    Energetic-particle-induced kinetic electromagnetic geodesic acoustic modes (EKEGAMs) are numerically studied in low ? (=plasma pressure/magnetic pressure) tokamak plasmas. The parallel component of the perturbed vector potential is considered along with the electrostatic potential perturbation. The effects of finite Larmor radius and finite orbit width of the bulk and energetic ions as well as electron parallel dynamics are all taken into account in the dispersion relation. Systematic harmonic and ordering analysis are performed for frequency and growth rate spectra of the EKEGAMs, assuming (k?{sub i})?q{sup ?3}???1, where q, k, and ?{sub i} are the safety factor, radial component of the EKEGAMs wave vector, and the Larmor radius of the ions, respectively. It is found that there exist critical ?{sub h}/?{sub i} values, which depend, in particular, on pitch angle of energetic ions and safety factor, for the mode to be driven unstable. The EKEGAMs may also be unstable for pitch angle ?{sub 0}B<0.4 in certain parameter regions. Finite ? effect of the bulk ions is shown to have damping effect on the EKEGAMs. Modes with higher radial wave vectors have higher growth rates. The damping from electron dynamics is found decreasing with decrease of the temperature ratio T{sub e}/T{sub i}. The modes are easily to be driven unstable in low safety factor q region and high temperature ratio T{sub h}/T{sub i} region. The harmonic features of the EKEGAMs are discussed as well.

  1. Embodied Energy and Off-Grid Lighting

    E-Print Network [OSTI]

    Alstone, Peter

    2012-01-01T23:59:59.000Z

    as a point of comparison with LED lighting product embodieda fairer comparison between off- grid LED lighting and other

  2. Articles about Grid Integration and Transmission

    Broader source: Energy.gov [DOE]

    Stories about grid integration and transmission featured by the U.S. Department of Energy (DOE) Wind Program.

  3. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    Planning . 102 vi Transmission Line Maintenance Scheduling 103 Just-in-time Transmission 103 Flexible Transmission in the Smart Grid

  4. Grid Connectivity Research, Development & Demonstration Projects...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connectivity Research, Development & Demonstration Projects Grid Connectivity Research, Development & Demonstration Projects 2013 DOE Hydrogen and Fuel Cells Program and Vehicle...

  5. Rethinking the Future Grid: Integrated Nuclear Renewable Energy Systems: Preprint

    SciTech Connect (OSTI)

    Bragg-Sitton, S. M.; Boardman, R.; Ruth, M.; Zinaman, O.; Forsberg, C.

    2015-01-01T23:59:59.000Z

    The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. One concept under consideration by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and transportation sectors. This integration concept has been referred to as a 'hybrid system' that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product.

  6. FUTURE POWER GRID INITIATIVE Next Generation Network

    E-Print Network [OSTI]

    designed by PNNL and currently being deployed in the AEP gridSMART Demonstration Project, and » developed that will position PNNL as the leader in modeling and planning power grid data communication networks. External users scenarios and testing of communication requirements with smart grid investments. November 2012 PNNL-SA-90012

  7. Criticality of the European Electricity Grid Network

    E-Print Network [OSTI]

    Arrowsmith, David

    1 Criticality of the European Electricity Grid Network MANMADE EU NEST FUNDING D.K. Arrowsmith (catastrophic failure of network components), functional (electricity grid blackouts, supply chain), volatility the qualitative characteristics of power disruptions from a large synchronously-connected electricity grid

  8. Cyber Security in Smart Grid Substations

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Cyber Security in Smart Grid Substations Thijs Baars Lucas van den Bemd Michail Theuns Robin van.089 3508 TB Utrecht The Netherlands #12;CYBER SECURITY IN SMART GRID SUBSTATIONS Thijs Baars T.Brinkkemper@uu.nl Abstract. This report describes the state of smart grid security in Europe, specifically the Netherlands

  9. Power Grid Vulnerability to Geographically Correlated Failures

    E-Print Network [OSTI]

    Shepard, Kenneth

    Power Grid Vulnerability to Geographically Correlated Failures ­ Analysis and Control Implications such as telecommunications networks [14]. The power grid is vulnerable to natural disasters, such as earthquakes, hurricanes [17], [34]. Thus, we focus on the vulnerability of the power grid to an outage of several lines

  10. Earth resistivity measurement near substation ground grids

    SciTech Connect (OSTI)

    Lodwig, S.G.; Mateja, S.A. [ComEd, Chicago, IL (United States)

    1996-11-01T23:59:59.000Z

    Proper substation grounding grid design requires good, accurate soil resistivity measurements. This data is essential to model the substation ground grid to design a safe ground grid with a satisfactory ground grid resistance at minimum cost. For substations with several decades of service, there is some concern that a grid may have deteriorated, been damaged during equipment installation or excavation, or that initial soil resistivity measurements were lost or may not have been correctly performed. Ground grid conductors change the substation surface voltage distribution. Any voltage measurements taken at the complete substation will also vary from the tests made without conductors present. During testing, current was injected in the soil by probes placed near the ground grid. The current tends to follow the ground grid conductors since copper is a far better conductor than the soil it is placed in. Resistance readings near grids will be lower than readings in undisturbed soil. Since computer models were unavailable for many years, analyzing the effect of the grid conductors on soil resistivity measurements was very difficult. As a result, soil resistivity measurements made close to substations were of little use to the engineer unless some means of correcting the measured values could be developed. This paper will present results of soil resistivity measurements near a substation ground grid before and after a ground grid has been installed and describes a means of calculating the undisturbed soil model.

  11. "Reliability, Resiliency, and Restoration for Smarter Grid

    E-Print Network [OSTI]

    Ohta, Shigemi

    "Reliability, Resiliency, and Restoration for Smarter Grid Workshop" Save the Date April 3 and 4 at mohlsen@bnl.gov "The Resilient Smart Grid" to be held at Brookhaven National Laboratory Upton, Long Island://www.bnl.gov/maps/. This is the 5th workshop that BNL is hosting on the Smart Grid. This Workshop will build on the previous

  12. Grid adaptation for multiscale plasma simulations

    E-Print Network [OSTI]

    Ito, Atsushi

    Grid adaptation for multiscale plasma simulations Gian Luca Delzanno Los Alamos National Laboratory In collaboration with L. Chacon and J.M. Finn #12;delzanno@lanl.gov Outline · Introduction and motivation · Grid tests · New directions · Conclusions #12;delzanno@lanl.gov Outline · Introduction and motivation · Grid

  13. GRID Technologies => `Education' = `Distance Michalis Xenos

    E-Print Network [OSTI]

    Boyer, Edmond

    GRID Technologies => `Education' = `Distance Education' Michalis Xenos 1,2 , Bill Vassiliadis 1 possibilities that Grid technologies create in education, presents current learning paradigms and makes a prediction about the way in which Grid technologies may affect the future of education. The case

  14. Distributing MCell Simulations on the Grid

    E-Print Network [OSTI]

    Sejnowski, Terrence J.

    Distributing MCell Simulations on the Grid Henri Casanova casanova@cs.ucsd.edu Tom Bartol The Computational Grid [21] is a promising platform for the deployment of large-scale scientific and engineering that structure, PSAs are particularly well suited to the Grid infrastructure and can be deployed on very large

  15. Programming, Composing, Deploying for the Grid

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Programming, Composing, Deploying for the Grid Laurent Baduel, Fran¸coise Baude, Denis Caromel FirstName.LastName@sophia.inria.fr Abstract. Grids raise new challenges in the following way: heterogene objects and components. We especially target Grid computing, but our approach also applies to application

  16. Anisotropic Grid Adaptation for Multiple Aerodynamic Outputs

    E-Print Network [OSTI]

    Peraire, Jaime

    Anisotropic Grid Adaptation for Multiple Aerodynamic Outputs David A. Venditti and David L Anisotropic grid­adaptive strategies are presented for viscous flow simulations in which the accurate estimation and Hessian-based anisotropic grid adaptation. Airfoil test cases are presented to demonstrate

  17. Multiprocessor computer overset grid method and apparatus

    DOE Patents [OSTI]

    Barnette, Daniel W. (Veguita, NM); Ober, Curtis C. (Los Lunas, NM)

    2003-01-01T23:59:59.000Z

    A multiprocessor computer overset grid method and apparatus comprises associating points in each overset grid with processors and using mapped interpolation transformations to communicate intermediate values between processors assigned base and target points of the interpolation transformations. The method allows a multiprocessor computer to operate with effective load balance on overset grid applications.

  18. Algorithms in grid classes Ruth Hoffmann

    E-Print Network [OSTI]

    St Andrews, University of

    signs c1, . . . , cs and row signs, r1, . . . , rt and let = {(k, ) : Mk, = 0}. The map : GridAlgorithms in grid classes Ruth Hoffmann University of St Andrews, School of Computer Science Permutation Patterns 2013 Universit´e Paris Diderot 2nd July 2013 Ruth Hoffmann Algorithms in grid classes 1

  19. Smart Grids: Fact or Fiction? A Discussion of Smart Grids in New Zealand

    E-Print Network [OSTI]

    Hickman, Mark

    May 2013 1 Smart Grids: Fact or Fiction? A Discussion of Smart Grids in New Zealand Dr Allan Miller. Introduction The term `smart grid' is used extensively today, even though there are diverse opinions on what to some extent, and the key questions should not be about what constitutes a `smart grid', but what

  20. EL Program: Smart Grid Program Manager: David Wollman, Smart Grid and Cyber-Physical Systems

    E-Print Network [OSTI]

    EL Program: Smart Grid Program Manager: David Wollman, Smart Grid and Cyber-Physical Systems Program Office, Associate Program Manager: Dean Prochaska, Smart Grid and Cyber- Physical Systems Program [updated August 23, 2013] Summary: This program develops and demonstrates smart grid measurement science

  1. Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave

    E-Print Network [OSTI]

    Politècnica de Catalunya, Universitat

    Smart Grids: Sectores y actividades clave | 1 Smart Grids: Sectores y actividades clave INFORME para la Sostenibilidad Energética y Ambiental, FUNSEAM. #12;Smart Grids: Sectores y actividades clave eléctrica y los diferentes sectores que forman la smart grid. 6 Figura 2. Evolución y previsión de

  2. Honeywell Parallon Grid-connect Tests Honeywell Grid-connect Tests

    E-Print Network [OSTI]

    Appendix C Honeywell Parallon Grid-connect Tests 12/20/2000 #12;Honeywell Grid-connect Tests 12 power Engine Speed Figure C-1: Ramp Down Tests ­ Power and Shaft Speed ­ 15 kW Steps #12;Honeywell Grid Figure C-2: Ramp Down Tests ­ Power and Turbine Exit Temperature ­ 15 kW Steps #12;Honeywell Grid

  3. The Adjustable Grid: A Grid-Based Cursor Control Solution using Speech Recognition

    E-Print Network [OSTI]

    Gray, Jeffrey G.

    The Adjustable Grid: A Grid-Based Cursor Control Solution using Speech Recognition Tarif Haque1 of grid-based cursor control systems using speech recognition have been developed. These systems typically overlay a numbered 3x3 grid on the screen and allow the user to recursively drill the cursor down

  4. Information GRID in the Corporate World Information GRID in the Corporate World

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Information GRID in the Corporate World Information GRID in the Corporate World .Bogonikolos Zeus Ontology Grid) project, an EU project funded under the Information Society Technologies programme and EAI Tools is discussed. The COG (Corporate Ontology Grid) project addresses the problem of accessing

  5. GridBank: A Grid Accounting Services Architecture (GASA) for Distributed Systems Sharing and Integration

    E-Print Network [OSTI]

    Buyya, Rajkumar

    GridBank: A Grid Accounting Services Architecture (GASA) for Distributed Systems Sharing Australia Nedlands, Western Australia, 6009 barmouta@csse.uwa.edu.au Rajkumar Buyya Grid Computing and Distributed Systems (GRIDS) Lab Dept. of Computer Science and Software Engineering The University of Melbourne

  6. GRID superscalar and SAGA: forming a high-level and platform-independent Grid

    E-Print Network [OSTI]

    Kielmann, Thilo

    GRID superscalar and SAGA: forming a high-level and platform-independent Grid programming Universiteit, Amsterdam, The Netherlands {merzky|kielmann}@cs.vu.nl Abstract. The Simple API for Grid Applications (SAGA), as currently standardized within GGF, aims to provide a simple yet powerful Grid API; its

  7. A Multi-solver Scheme for Viscous Flows Using Adaptive Cartesian Grids and Meshless Grid

    E-Print Network [OSTI]

    Jameson, Antony

    A Multi-solver Scheme for Viscous Flows Using Adaptive Cartesian Grids and Meshless Grid of an adaptive multi-solver approach for CFD sim- ulation of viscous flows. Curvilinear grids are used near solid bodies to capture boundary layers, and stuctured adaptive Cartesian grids are used away from the body

  8. Semantic-based Grid Resource Discovery and its Integration with the Grid Service Broker

    E-Print Network [OSTI]

    Melbourne, University of

    1 Semantic-based Grid Resource Discovery and its Integration with the Grid Service Broker Thamarai Chromepet, Chennai ­ 600044, India Email : stselvi@annauniv.edu 2 Grid Computing and Distributed Systems :mohanram@cdacb.ernet.in Abstract: This paper addresses the need of semantic component in the grid

  9. Using the GridSim Toolkit for Enabling Grid Computing Education Manzur Murshed

    E-Print Network [OSTI]

    Melbourne, University of

    with (Grid-enabled) resources or their agents using middleware services, map tasks to resources (schedulingUsing the GridSim Toolkit for Enabling Grid Computing Education Manzur Murshed Gippsland School: Grid Simulation; Education; Scheduling; Resource Management. Abstract Numerous research groups

  10. Grid Technology Overview and Status Geoffrey Fox1,2

    E-Print Network [OSTI]

    Grid Technology Overview and Status Geoffrey Fox1,2 , Alex Ho2 , Marlon Pierce1 1 Community Grids...................................................................................................................... 1 2 What is a Grid? ................................................................................................................ 1 3 Grid Technologies and Capabilities

  11. Vehicle to Grid Demonstration Project

    SciTech Connect (OSTI)

    Willett Kempton; Meryl Gardner; Michael Hidrue; Fouad Kamilev; Sachin Kamboj; Jon Lilley; Rodney McGee; George Parsons; Nat Pearre; Keith Trnka

    2010-12-31T23:59:59.000Z

    This report summarizes the activities and accomplishments of a two-year DOE-funded project on Grid-Integrated Vehicles (GIV) with vehicle to grid power (V2G). The project included several research and development components: an analysis of US driving patterns; an analysis of the market for EVs and V2G-capable EVs; development and testing of GIV components (in-car and in-EVSE); interconnect law and policy; and development and filing of patents. In addition, development activities included GIV manufacturing and licensing of technologies developed under this grant. Also, five vehicles were built and deployed, four for the fleet of the State of Delaware, plus one for the University of Delaware fleet.

  12. The transition from adiabatic inspiral to geodesic plunge for a compact object around a massive Kerr black hole: Generic orbits

    E-Print Network [OSTI]

    Pranesh A. Sundararajan

    2008-05-08T23:59:59.000Z

    The inspiral of a stellar mass compact object falling into a massive Kerr black hole can be broken into three different regimes: An adiabatic inspiral phase, where the inspiral timescale is much larger than the orbital period; a late-time radial infall, which can be approximated as a plunging geodesic; and a regime where the body transitions from the inspiral to plunge. In earlier work, Ori and Thorne have outlined a method to compute the trajectory during this transition for a compact object in a circular, equatorial orbit. We generalize this technique to include inclination and eccentricity.

  13. Transdisciplinary electric power grid science

    E-Print Network [OSTI]

    Brummitt, Charles D; Dobson, Ian; Moore, Cristopher; D'Souza, Raissa M

    2013-01-01T23:59:59.000Z

    The 20th-century engineering feat that most improved the quality of human life, the electric power system, now faces discipline-spanning challenges that threaten that distinction. So multilayered and complex that they resemble ecosystems, power grids face risks from their interdependent cyber, physical, social and economic layers. Only with a holistic understanding of the dynamics of electricity infrastructure and human operators, automatic controls, electricity markets, weather, climate and policy can we fortify worldwide access to electricity.

  14. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLongEnergy StorageB.

  15. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementing Nonlinear757KelleyEffectsonSandia's Stan AtcittyRenewables

  16. Sandia Energy » Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche This authorEnergy &EC,Team

  17. Sandia Energy » SMART Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitche ThisStrategicThird AnnualSandia

  18. Building the International Lattice Data Grid

    E-Print Network [OSTI]

    G. Beckett; B. Joo; C. M. Maynard; D. Pleiter; O. Tatebe; T. Yoshie

    2009-10-09T23:59:59.000Z

    We present the International Lattice Data Grid (ILDG), a loosely federated grid of grids for sharing data from Lattice Quantum Chromodynamics (LQCD) simulations. The ILDG comprises of metadata, file format and web-service standards, which can be used to wrap regional data-grid interfaces, allowing seamless access to catalogues and data in a diverse set of collaborating regional grids. We discuss the technological underpinnings of the ILDG, primarily the metadata and the middleware, and offer a critique of its various aspects with the hindsight of the design work and the first full year of production.

  19. Spacer grid assembly and locking mechanism

    DOE Patents [OSTI]

    Snyder, Jr., Harold J. (Rancho Santa Fe, CA); Veca, Anthony R. (San Diego, CA); Donck, Harry A. (San Diego, CA)

    1982-01-01T23:59:59.000Z

    A spacer grid assembly is disclosed for retaining a plurality of fuel rods in substantially parallel spaced relation, the spacer grids being formed with rhombic openings defining contact means for engaging from one to four fuel rods arranged in each opening, the spacer grids being of symmetric configuration with their rhombic openings being asymmetrically offset to permit inversion and relative rotation of the similar spacer grids for improved support of the fuel rods. An improved locking mechanism includes tie bars having chordal surfaces to facilitate their installation in slotted circular openings of the spacer grids, the tie rods being rotatable into locking engagement with the slotted openings.

  20. Fact Sheet: Protecting Intelligent Distributed Power Grids Against...

    Office of Environmental Management (EM)

    and hierarchical security layer specific to intelligent grid design Intelligent power grids are interdependent energy management systems- encompassing generation,...

  1. Deploying Systems Interoperability and Customer Choice within Smart Grid

    E-Print Network [OSTI]

    Ghatikar, Girish

    2014-01-01T23:59:59.000Z

    twiki- sggrid/bin/view/SmartGrid/PriorityActionPlanssggrid/bin/view/SmartGrid/TTMeetingOnPriceCommunications The

  2. Integration of Computing and Information on Grids Geoffrey Fox

    E-Print Network [OSTI]

    by Fran Berman, Tony Hey and myself. (http://www.grid2002.org/ ) · Grids support e-Science representing

  3. New Report Characterizes Existing Offshore Wind Grid Interconnection...

    Office of Environmental Management (EM)

    New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3,...

  4. Smart Grid Interoperability Maturity Model

    SciTech Connect (OSTI)

    Widergren, Steven E.; Levinson, Alex; Mater, J.; Drummond, R.

    2010-04-28T23:59:59.000Z

    The integration of automation associated with electricity resources (including transmission and distribution automation and demand-side resources operated by end-users) is key to supporting greater efficiencies and incorporating variable renewable resources and electric vehicles into the power system. The integration problems faced by this community are analogous to those faced in the health industry, emergency services, and other complex communities with many stakeholders. To highlight this issue and encourage communication and the development of a smart grid interoperability community, the GridWise Architecture Council (GWAC) created an Interoperability Context-Setting Framework. This "conceptual model" has been helpful to explain the importance of organizational alignment in addition to technical and informational interface specifications for "smart grid" devices and systems. As a next step to building a community sensitive to interoperability, the GWAC is investigating an interoperability maturity model (IMM) based on work done by others to address similar circumstances. The objective is to create a tool or set of tools that encourages a culture of interoperability in this emerging community. The tools would measure status and progress, analyze gaps, and prioritize efforts to improve the situation.

  5. North RTL grid scan'' studies

    SciTech Connect (OSTI)

    Emma, P.

    1990-10-17T23:59:59.000Z

    This study was made in response to screen measurements which indicated an emittance growth of nearly a factor of two within the North RTL or linac girder-1. Betatron oscillations are induced at the beginning of the North RTL to search for gross geometric aberrations arising within the RTL or sector-2 of the linac. The oscillations are induced horizontally and vertically with two X or two Y dipole correctors stepped in a nested loop fashion. In both cases the full set of RTL and first girder sector-2 linac beam position monitors (BPMs) are sampled in X and Y for each corrector setting. Horizontal (or vertical) data from pairs of BPMs are then transformed to phase space coordinates by the linear transformation constructed assuming the transport optics between the BPMs is known. A second transformation is then made to normalized phase space coordinates by using Twiss parameters consistent with the assumed transport optics. By careful choice of initial Twiss parameters the initial grid can be made square for convenience in graphical interpretation. A linear grid'' is then fitted to the transformed data points for each pair of BPMs. The area of each grid is calculated and linearity qualitatively evaluated. Furthermore, although not the focus of this study, the beta match at each BPM can be quantified. 6 figs.

  6. The CMS integration grid testbed

    SciTech Connect (OSTI)

    Graham, Gregory E.

    2004-08-26T23:59:59.000Z

    The CMS Integration Grid Testbed (IGT) comprises USCMS Tier-1 and Tier-2 hardware at the following sites: the California Institute of Technology, Fermi National Accelerator Laboratory, the University of California at San Diego, and the University of Florida at Gainesville. The IGT runs jobs using the Globus Toolkit with a DAGMan and Condor-G front end. The virtual organization (VO) is managed using VO management scripts from the European Data Grid (EDG). Gridwide monitoring is accomplished using local tools such as Ganglia interfaced into the Globus Metadata Directory Service (MDS) and the agent based Mona Lisa. Domain specific software is packaged and installed using the Distribution After Release (DAR) tool of CMS, while middleware under the auspices of the Virtual Data Toolkit (VDT) is distributed using Pacman. During a continuous two month span in Fall of 2002, over 1 million official CMS GEANT based Monte Carlo events were generated and returned to CERN for analysis while being demonstrated at SC2002. In this paper, we describe the process that led to one of the world's first continuously available, functioning grids.

  7. Grid artifact reduction for direct digital radiography detectors based on rotated stationary grids with homomorphic filtering

    SciTech Connect (OSTI)

    Kim, Dong Sik [Department of Electronics Engineering, Hankuk University of Foreign Studies, Gyeonggi-do 449-791 (Korea, Republic of); Lee, Sanggyun [R and D Center, DRTECH Co., Gyeonggi-do 463-782 (Korea, Republic of)

    2013-06-15T23:59:59.000Z

    Purpose: Grid artifacts are caused when using the antiscatter grid in obtaining digital x-ray images. In this paper, research on grid artifact reduction techniques is conducted especially for the direct detectors, which are based on amorphous selenium. Methods: In order to analyze and reduce the grid artifacts, the authors consider a multiplicative grid image model and propose a homomorphic filtering technique. For minimal damage due to filters, which are used to suppress the grid artifacts, rotated grids with respect to the sampling direction are employed, and min-max optimization problems for searching optimal grid frequencies and angles for given sampling frequencies are established. The authors then propose algorithms for the grid artifact reduction based on the band-stop filters as well as low-pass filters. Results: The proposed algorithms are experimentally tested for digital x-ray images, which are obtained from direct detectors with the rotated grids, and are compared with other algorithms. It is shown that the proposed algorithms can successfully reduce the grid artifacts for direct detectors. Conclusions: By employing the homomorphic filtering technique, the authors can considerably suppress the strong grid artifacts with relatively narrow-bandwidth filters compared to the normal filtering case. Using rotated grids also significantly reduces the ringing artifact. Furthermore, for specific grid frequencies and angles, the authors can use simple homomorphic low-pass filters in the spatial domain, and thus alleviate the grid artifacts with very low implementation complexity.

  8. Smart Grid Status and Metrics Report Appendices

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Antonopoulos, Chrissi A.; Clements, Samuel L.; Gorrissen, Willy J.; Kirkham, Harold; Ruiz, Kathleen A.; Smith, David L.; Weimar, Mark R.; Gardner, Chris; Varney, Jeff

    2014-07-01T23:59:59.000Z

    A smart grid uses digital power control and communication technology to improve the reliability, security, flexibility, and efficiency of the electric system, from large generation through the delivery systems to electricity consumers and a growing number of distributed generation and storage resources. To convey progress made in achieving the vision of a smart grid, this report uses a set of six characteristics derived from the National Energy Technology Laboratory Modern Grid Strategy. The Smart Grid Status and Metrics Report defines and examines 21 metrics that collectively provide insight into the grid’s capacity to embody these characteristics. This appendix presents papers covering each of the 21 metrics identified in Section 2.1 of the Smart Grid Status and Metrics Report. These metric papers were prepared in advance of the main body of the report and collectively form its informational backbone.

  9. Solving Partial Differential Equations on Overlapping Grids

    SciTech Connect (OSTI)

    Henshaw, W D

    2008-09-22T23:59:59.000Z

    We discuss the solution of partial differential equations (PDEs) on overlapping grids. This is a powerful technique for efficiently solving problems in complex, possibly moving, geometry. An overlapping grid consists of a set of structured grids that overlap and cover the computational domain. By allowing the grids to overlap, grids for complex geometries can be more easily constructed. The overlapping grid approach can also be used to remove coordinate singularities by, for example, covering a sphere with two or more patches. We describe the application of the overlapping grid approach to a variety of different problems. These include the solution of incompressible fluid flows with moving and deforming geometry, the solution of high-speed compressible reactive flow with rigid bodies using adaptive mesh refinement (AMR), and the solution of the time-domain Maxwell's equations of electromagnetism.

  10. Simulating Buoyancy-Driven Airflow in Buildings by1 Coarse-Grid Fast Fluid Dynamics2

    E-Print Network [OSTI]

    Chen, Qingyan "Yan"

    1 Simulating Buoyancy-Driven Airflow in Buildings by1 Coarse-Grid Fast Fluid Dynamics2 Mingang Jin1. Introduction33 Whole-building airflow simulations are required in applications such as natural ventilation34 design, coupled building airflow and energy simulation, smoke control, and air quality diagnosis35

  11. Buildings-to-Grid Technical Opportunities: From the Grid Perspective

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy FutureDepartment ofBUILDING-TO-GRID TECHNICAL OPPORTUNITIES From

  12. Smart Grid Week: Working to Modernize the Nation's Electric Grid |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment of Energy Ready,Smart Grid RFI PublicDepartmentDepartment

  13. Smart Grid Primer (Smart Grid Books) | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here Home »SmallNew

  14. EcoGrid EU (Smart Grid Project) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand JumpConceptual Model,DOEHazel Crest, Illinois: EnergyEastport, Maine:EauEcoFactor Inc Jump(Smart Grid

  15. Grid Interaction Tech Team, and International Smart Grid Collaboration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGrid Integration and the Carrying Capacity of the

  16. Smart Grid Savings and Grid Integration of Renewables in Idaho

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014,Zaleski - PolicyWork Force withNonprofit---5---12DOESmartthe 1 Smart Grid

  17. Energy System Development inAfrica: The case of grid and off-grid power inKenya

    E-Print Network [OSTI]

    de Weck, Olivier L.

    Energy System Development inAfrica: The case of grid and off-grid power inKenya By Katherine Deaton Development inAfrica: The case of grid and off-grid power inKenya Energy System Development inAfrica: The case of grid and off-grid power in Kenya by Katherine Steel Submitted to the Engineering Systems Division

  18. Kerr black hole parameters in terms of red/blue shifts of photons emitted by geodesic particles

    E-Print Network [OSTI]

    Herrera-Aguilar, Alfredo

    2015-01-01T23:59:59.000Z

    We are motivated by the recently reported dynamical evidence of stars with short orbital periods moving around the center of the Milky Way and the corresponding hypothesis about the existence of a supermassive black hole hosted at its center. In this paper we show how the mass and rotation parameters of a Kerr black hole (assuming that the putative supermassive black hole is of this type), as well as the distance that separates the black hole from the Earth, can be estimated in a relativistic way in terms of i) the red and blue shifts of photons that are emitted by geodesic massive particles (stars and galactic gas) and travel along null geodesics towards a distant observer, and ii) the radius of these star/gas orbits. As a concrete example and as a first step towards a full relativistic analysis of the above mentioned star orbits around the center of our galaxy, we consider stable equatorial circular orbits of stars and express their corresponding red/blue shifts in terms of the metric parameters (mass and a...

  19. Improved design of a direct-coupled electronic titrimeter

    E-Print Network [OSTI]

    Parker, Lonzie Albert

    1957-01-01T23:59:59.000Z

    Figure 1. DIRECT-COUPLED AMPLIFIER The cathode and grid of a tube (Fig. 1) may be employed as input terminals. Ths single-ends 1 output volta-s is much more sensitive to changes in difference of cathode and grid potent1als than to changes 1n... 21Q volts, and vill change by only 4 volts as the level of the inputs to the grids is changed from 0 to lSQ volts, thc chan c bein caused by a 5, 5 per cent va. iation of the total current, The volts. , e sensitivity, using the meter as a null...

  20. Insightful Workflow For Grid Computing

    SciTech Connect (OSTI)

    Dr. Charles Earl

    2008-10-09T23:59:59.000Z

    We developed a workflow adaptation and scheduling system for Grid workflow. The system currently interfaces with and uses the Karajan workflow system. We developed machine learning agents that provide the planner/scheduler with information needed to make decisions about when and how to replan. The Kubrick restructures workflow at runtime, making it unique among workflow scheduling systems. The existing Kubrick system provides a platform on which to integrate additional quality of service constraints and in which to explore the use of an ensemble of scheduling and planning algorithms. This will be the principle thrust of our Phase II work.

  1. Mapping on the HEALPix grid

    E-Print Network [OSTI]

    M. R. Calabretta

    2004-12-23T23:59:59.000Z

    The natural spherical projection associated with the Hierarchical Equal Area and isoLatitude Pixelisation, HEALPix, is described and shown to be one of an infinite class not previously documented in the cartographic literature. Projection equations are derived for the class in general and it is shown that the HEALPix projection suggests a simple method (a) of storing, and (b) visualising data sampled on the grid of the HEALPix pixelisation, and also suggests an extension of the pixelisation that is better suited for these purposes. Potentially useful properties of other members of the class are described. Finally, the formalism is defined for representing any member of the class in the FITS data format.

  2. Grid Integration | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently20,000 RussianBy: Thomas P. D'Agostino,Glen WattmanInvestigationsandGrid Integration The

  3. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcomeLongEnergy StorageB.DETL Permalink

  4. Sandia Energy - Smart Grid Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstitute ofSiting and Barrier MitigationSmart

  5. Sandia Energy - Transmission Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocumentsInstituteThree-Dimensional

  6. Sandia Energy - Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand RequirementsCoatings Initiated at PNNL's SequimReactors ToDecisionDistribution Grid

  7. Smart Grid | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125EnergyIdaho | Department of Energy SmallSmart Grid

  8. ARPA-E: Advancing the Electric Grid

    ScienceCinema (OSTI)

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2014-03-13T23:59:59.000Z

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  9. ARPA-E: Advancing the Electric Grid

    SciTech Connect (OSTI)

    Lemmon, John; Ruiz, Pablo; Sommerer, Tim; Aziz, Michael

    2014-02-24T23:59:59.000Z

    The electric grid was designed with the assumption that all energy generation sources would be relatively controllable, and grid operators would always be able to predict when and where those sources would be located. With the addition of renewable energy sources like wind and solar, which can be installed faster than traditional generation technologies, this is no longer the case. Furthermore, the fact that renewable energy sources are imperfectly predictable means that the grid has to adapt in real-time to changing patterns of power flow. We need a dynamic grid that is far more flexible. This video highlights three ARPA-E-funded approaches to improving the grid's flexibility: topology control software from Boston University that optimizes power flow, gas tube switches from General Electric that provide efficient power conversion, and flow batteries from Harvard University that offer grid-scale energy storage.

  10. FINAL REPORT - CENTER FOR GRID MODERNIZATION

    SciTech Connect (OSTI)

    Markiewicz, Daniel R

    2008-06-30T23:59:59.000Z

    The objective of the CGM was to develop high-priority grid modernization technologies in advanced sensors, communications, controls and smart systems to enable use of real-time or near real-time information for monitoring, analyzing and managing distribution and transmission grid conditions. The key strategic approach to carry out individual CGM research and development (R&D) projects was through partnerships, primarily with the GridApp™ Consortium utility members.

  11. Energy Storage for the Power Grid

    SciTech Connect (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-04-23T23:59:59.000Z

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  12. What is the Smart Grid Anyway

    Broader source: Energy.gov [DOE]

    Presentation covers what is the smart grid at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  13. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Management Time of Use Rates Customer Information System IT upgrades Customer Education Demand Response CE empowers the customer and supports grid operations Office of...

  14. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Time of Use Rates Customer Information System IT upgrades and SOA Customer Education Demand Response and DER CE empowers the customer and supports grid operations Office of...

  15. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y AMI Demand Response Distribution Management Systems Advanced OMS Distribution Automation...

  16. Platform for a modern grid: customer engagement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stories engaging the customer when deploying new technologies in the nation's largest smart grid demonstration. Related Articles (by tag) Energy Smart Industrial: five years of...

  17. Value of a Smart Grid System

    Broader source: Energy.gov (indexed) [DOE]

    2 - Section 1: Smart Grid Opportunities Remarkable things happen when economic forces and new technology converge. Consider how the the Internet -- combined with new, affordable...

  18. The Quest for Sustainable Smart Grids

    E-Print Network [OSTI]

    Nardelli, Pedro H J; Cardieri, Paulo; Latva-aho, Matti

    2013-01-01T23:59:59.000Z

    This paper is a reply to the opinion paper: Transdisciplinary electric power grid science (PNAS), 2013 [arXiv:1307.7305].

  19. Panel 3, Electrolysis for Grid Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolysis for Grid Energy Storage DOE-Industry Canada Workshop May 15, 2014 INTRODUCTION HYDROGEN ENERGY SYSTEMS FOR ENERGY STORAGE AND CLEAN FUEL PRODUCTION ITM POWER INC. ITM...

  20. Energy Storage for the Power Grid

    ScienceCinema (OSTI)

    Wang, Wei; Imhoff, Carl; Vaishnav, Dave

    2014-06-12T23:59:59.000Z

    The iron vanadium redox flow battery was developed by researchers at Pacific Northwest National Laboratory as a solution to large-scale energy storage for the power grid.

  1. Spherical Harmonic Decomposition on a Cubic Grid

    E-Print Network [OSTI]

    Charles W. Misner

    1999-10-12T23:59:59.000Z

    A method is described by which a function defined on a cubic grid (as from a finite difference solution of a partial differential equation) can be resolved into spherical harmonic components at some fixed radius. This has applications to the treatment of boundary conditions imposed at radii larger than the size of the grid, following Abrahams, Rezzola, Rupright et al.(gr-qc/9709082}. In the method described here, the interpolation of the grid data to the integration 2-sphere is combined in the same step as the integrations to extract the spherical harmonic amplitudes, which become sums over grid points. Coordinates adapted to the integration sphere are not needed.

  2. The Virtual Observatory and Grid in Spain

    E-Print Network [OSTI]

    J. D. Santander-Vela

    2008-07-08T23:59:59.000Z

    The Virtual Observatory (VO) is nearing maturity, and in Spain the Spanish VO (SVO) exists since June 2004. There have also been numerous attempts at providing more or less encompassing grid initiatives at the national level, and finally Spain has an official National Grid Initiative (NGI). In this article we will show the VO and Grid development status of nationally funded initiatives in Spain, and we will hint at potential joint VO-Grid use-cases to be developed in Spain in the near future.

  3. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Some Technical Challenges Symposium on Modeling & Control of Alternative Energy Systems Joe Miller - Modern Grid Team Lead April 2, 2009 1 Conducted by the National Energy...

  4. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Viability and Business Case of Alternative Smart Grid Scenarios 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department of Energy, Office of...

  5. Microsoft Word - Smart Grid Economic Impact Report

    Office of Environmental Management (EM)

    benefits include real estate, wholesale trade, financial services, restaurants, and health care. Smart Grid ARRA investments also supported employment in personal service...

  6. Effects of grids in drift tubes

    SciTech Connect (OSTI)

    Okamura M.; Yamauchi, H.

    2012-05-20T23:59:59.000Z

    In 2011, we upgraded a 201 MHz buncher in the proton injector for the alternating gradient synchrotron (AGS) - relativistic heavy ion collider (RHIC) complex. In the buncher we installed four grids made of tungsten to improve the transit time factor. The grid installed drift tubes have 32 mm of inner diameter and the each grid consists of four quadrants. The quadrants were cut out precisely from 1mm thick tungsten plates by a computerized numerically controlled (CNC) wire cutting electrical discharge machining (EDM). The 3D electric field of the grid was simulated.

  7. Sandia National Laboratories: Distribution Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Second Annual Electric Power Research InstituteSandia Photovoltaic Systems Symposium On April 15, 2014, in Concentrating Solar Power, Distribution Grid Integration, Energy,...

  8. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is an essential component of the modern grid: IC creates a dynamic, interactive "mega-infrastructure" for real-time information and power exchange IC allows the various...

  9. Vehicle-Grid Interoperability | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vehicle-Grid Interoperability Charging a test vehicle using the laboratory's solar-powered charging station. Charging a test vehicle using the laboratory's solar-powered charging...

  10. Sandia National Laboratories: Distributed Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed Grid Integration Federal Electric Regulatory Commission Revised Its Small Generator Interconnection Procedure and Small Generator Interconnection Agreement On March 4,...

  11. Sandia National Laboratories: electric grid resilience

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART Grid, Systems Analysis, Systems Engineering Mayor Says New System Will 'Keep Everyone...

  12. Sandia National Laboratories: electric grid stabilization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART Grid, Systems Analysis, Systems Engineering Mayor Says New System Will 'Keep Everyone...

  13. Sandia National Laboratories: modernize the electric grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Microgrid, Modeling & Analysis, News, News & Events, Partnership, Renewable Energy, SMART Grid, Systems Analysis, Systems Engineering Mayor Says New System Will 'Keep Everyone...

  14. Ion mobility spectrometer with virtual aperture grid

    DOE Patents [OSTI]

    Pfeifer, Kent B. (Los Lunas, NM); Rumpf, Arthur N. (Albuquerque, NM)

    2010-11-23T23:59:59.000Z

    An ion mobility spectrometer does not require a physical aperture grid to prevent premature ion detector response. The last electrodes adjacent to the ion collector (typically the last four or five) have an electrode pitch that is less than the width of the ion swarm and each of the adjacent electrodes is connected to a source of free charge, thereby providing a virtual aperture grid at the end of the drift region that shields the ion collector from the mirror current of the approaching ion swarm. The virtual aperture grid is less complex in assembly and function and is less sensitive to vibrations than the physical aperture grid.

  15. Smart Grid Demonstration Funding Opportunity Announcement DE...

    Broader source: Energy.gov (indexed) [DOE]

    Frequently asked questions about the Smart Grid Demonstration and Energy Storage Funding Opportunity Announcement released as part of the American Recovery and Reinvestment Act,...

  16. Optimization Online - Compressed Sensing Off the Grid

    E-Print Network [OSTI]

    Gongguo Tang

    2012-09-13T23:59:59.000Z

    Sep 13, 2012 ... Compressed Sensing Off the Grid. Gongguo Tang(gtang5 ***at*** wisc.edu) Badri Narayan Bhaskar(bnbhaskar ***at*** wisc.edu) Parikshit ...

  17. Opening Remarks, Grid Integration Initiative Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Loads Power Systems Integration Lab PV and Grid Simulators Energy Systems Integration Lab Fuel Cells, Electrolyzers Outdoor Test Area EVs, MV equipment Rooftop PV & Wind Energy...

  18. What will the Smart Grid Look Like?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and education they need to effectively utilize the new options provided by the Smart Grid. CE includes solutions such as Advanced Metering Infrastructure (AMI), home...

  19. Smart Grid Publications Archive | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    July 2009 The Smart Grid Stakeholder Roundtable Group Perspectives (September 2009) Demand Response and Smart Metering Policy Actions Since the Energy Policy Act of 2005: A...

  20. file://P:\\Smart Grid\\Smart Grid RFI Policy and Logistical Comme

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Status: Tracking No. Comments Due: Submission Type: Page 1 of 2 1182010 file:P:Smart GridSmart Grid RFI Policy and Logistical CommentsDraft Comments for DOE-H... I...

  1. Quantifying the Impact of Adverse Events on the Electricity Grid as a Function of Grid Topology

    SciTech Connect (OSTI)

    Coles, Garill A.; Sadovsky, Artyom; Du, Pengwei

    2011-11-30T23:59:59.000Z

    Abstract--Traditional approaches to the study of grid vulnerability have taken an asset based approach, which seeks to identify those assets most likely to result in grid-wide failures or disruptions in the event that they are compromised. We propose an alternative approach to the study of grid vulnerability, one based on the topological structure of the entire grid. We propose a method that will identify topological parameters most closely related to the ability of the grid to withstand an adverse event. We compare these topological parameters in terms of their impact on the vulnerability metric we have defined, referred to as the grid’s “survivability”. Our approach is motivated by Paul Baran’s work on communications networks, which also studied vulnerability in terms of network-wide parameters. Our approach is useful both as a planning model for evaluating proposed changes to a grid and as a risk assessment tool.

  2. An Ontology for Scientific Information in a Grid Environment: the Earth System Grid.

    E-Print Network [OSTI]

    Chervenak, Ann

    An Ontology for Scientific Information in a Grid Environment: the Earth System Grid. Line Pouchard.S. Department of Energy Scientific Discovery through Advanced Computing (SciDAC) program. The Earth System Grid, 5 Carl Kesselman,5 Arie Shoshani, 6 Alex Sim6 [1] Oak Ridge National Laboratory, [2] Argonne

  3. Browse > Journals> Smart Grid, IEEE Transactions ...> Top Accessed Articles 1. Smart Transmission Grid: Vision and Framework

    E-Print Network [OSTI]

    Tennessee, University of

    Browse > Journals> Smart Grid, IEEE Transactions ...> Top Accessed Articles 1. Smart Transmission.2080328 3. A Reliability Perspective of the Smart Grid Moslehi, K. Kumar, R. Page(s): 57 - 64 Digital Object Consumption Scheduling for the Future Smart Grid Mohsenian-Rad, A. Wong, V.W.S. Jatskevich, J. Schober, R

  4. SensorGrid: Integrating Sensor Networks and Grid Computing Chen-Khong Tham1

    E-Print Network [OSTI]

    Melbourne, University of

    SensorGrid: Integrating Sensor Networks and Grid Computing Chen-Khong Tham1 and Rajkumar Buyya2 Keywords: Sensors, Sensor Networks, Grid computing, SensorML, SensorWeb. 1. Introduction Recent advances in electronic circuit miniaturization and micro-electromechanical systems (MEMS) have led to the creation

  5. Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project

    E-Print Network [OSTI]

    customers to choose to control their energy usage ­ Smart meters ­ Home/building/industrial energy controls and displays · Automated home energy use 4 #12;The End-user is the Centerpiece of the Smart Grid 5Pacific Northwest Smart GridPacific Northwest Smart Grid Demonstration ProjectDemonstration Project

  6. Green Energy Workshop Student Posters Semantic Complex Event Processing for Smart Grid Information

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    for Smart Grid Information Integration and Demand Management Qunzhi Zhou, Yogesh of the power grid to a Smart Grid. The benefits of Smart Grid include demand Grid Demonstration Project. We define an ontology model for Smart Grid

  7. Grid-independent Issue in Numerical Heat Transfer

    E-Print Network [OSTI]

    Yao Wei; Wang Jian; Liao Guangxuan

    2006-09-26T23:59:59.000Z

    Grid independent is associated with the accuracy or even rationality of numerical results. This paper takes two-dimensional steady heat transfer for example to reveal the effect of grid resolution on numerical results. The law of grid dependence is obtained and a simple mathematical formula is presented. The production acquired here can be used as the guidance in choosing grid density in numerical simulation and get exact grid independent value without using infinite fine grid. Through analyzing grid independent, we can find the minimum number of grid cells that is needed to get grid-independent results. Such strategy can save computational resource while ensure a rational computational result.

  8. Cyber-Physical Systems Security for Smart Grid

    E-Print Network [OSTI]

    Cyber-Physical Systems Security for Smart Grid Future Grid Initiative White Paper Power Systems-Physical Systems Security for Smart Grid Prepared for the Project "The Future Grid to Enable Sustainable Energy as one of nine white papers in the project "The Future Grid to Enable Sustainable Energy Systems

  9. Cyber-Physical Systems Security for Smart Grid

    E-Print Network [OSTI]

    Cyber-Physical Systems Security for Smart Grid Future Grid Initiative White Paper Power Systems-Physical Systems Security for Smart Grid Prepared for the Project "The Future Grid to Enable Sustainable Energy Acknowledgements This white paper was developed as one of nine white papers in the project "The Future Grid

  10. Computation and Information Hierarchy for a Future Grid

    E-Print Network [OSTI]

    Computation and Information Hierarchy for a Future Grid Future Grid Initiative White Paper Power;#12;Computation and Information Hierarchy for a Future Grid Prepared for the Project "The Future Grid to Enable This white paper was developed as one of nine white papers in the project "The Future Grid to Enable

  11. Towards a Grid Information Knowledge Base , Marios D. Dikaiakos1

    E-Print Network [OSTI]

    Pallis, George

    Towards a Grid Information Knowledge Base Wei Xing1 , Marios D. Dikaiakos1 , and Rizos Sakellariou2 present our work on building a Grid infor- mation knowledge base, which is a key component of a semantic Grid information system. A Core Grid Ontology (CGO) is developed for build- ing a Grid knowledge base

  12. A CHARACTERIZATION OF MAPPING UNSTRUCTURED GRIDS ONTO STRUCTURED

    E-Print Network [OSTI]

    Douglas, Craig C.

    BIT 1997 A CHARACTERIZATION OF MAPPING UNSTRUCTURED GRIDS ONTO STRUCTURED GRIDS AND USING MULTIGRID solution is to map the unstructured grid onto a structured grid and then apply multigrid to a sequence 06520-8285, USA. email: schultz-martin@cs.yale.edu Abstract. Many problems based on unstructured grids

  13. Kerr black hole parameters in terms of red/blue shifts of photons emitted by geodesic particles

    E-Print Network [OSTI]

    Alfredo Herrera-Aguilar; Ulises Nucamendi

    2015-06-17T23:59:59.000Z

    We are motivated by the recently reported dynamical evidence of stars with short orbital periods moving around the center of the Milky Way and the corresponding hypothesis about the existence of a supermassive black hole hosted at its center. In this paper we show how the mass and rotation parameters of a Kerr black hole (assuming that the putative supermassive black hole is of this type), as well as the distance that separates the black hole from the Earth, can be estimated in a relativistic way in terms of i) the red and blue shifts of photons that are emitted by geodesic massive particles (stars and galactic gas) and travel along null geodesics towards a distant observer, and ii) the radius of these star/gas orbits. As a concrete example and as a first step towards a full relativistic analysis of the above mentioned star orbits around the center of our galaxy, we consider stable equatorial circular orbits of stars and express their corresponding red/blue shifts in terms of the metric parameters (mass and angular momentum per unit mass) and the orbital radii of both the emitter star (and/or galactic gas) and the distant observer. In principle, these expressions allow one to statistically estimate the mass and rotation parameters of the Kerr black hole, and the radius of our orbit, through a Bayesian fitting, i.e., with the aid of observational data: the red/blue shifts measured at certain points of stars' orbits and their radii, with their respective errors, a task that we hope to perform in the near future. We also point to several astrophysical phenomena, like accretion discs of rotating black holes, binary systems and active galactic nuclei, among others, to which this formalism can be applied.

  14. Demand Response and Electric Grid Reliability

    E-Print Network [OSTI]

    Wattles, P.

    2012-01-01T23:59:59.000Z

    Demand Response and Electric Grid Reliability Paul Wattles Senior Analyst, Market Design & Development, ERCOT CATEE Conference, Galveston October 10, 2012 2 North American Bulk Power Grids CATEE Conference October 10, 2012 ? The ERCOT... adequacy ? ?Achieving more DR participation would . . . displace some generation investments, but would achieve the same level of reliability... ? ?Achieving this ideal requires widespread demand response and market structures that enable loads...

  15. Stretched-Grid Model Intercomparison Project

    E-Print Network [OSTI]

    Gruner, Daniel S.

    - Land-sea differences - Surface parameters Applications (besides regional climate variability and change, Russia #12;OUTLINE 1. INTRODUCTION: Exploring the variable- resolution stretched-grid approach (for grid- point models: Staniforth and Mitchell 1978, and for spectral models: Schmidt 1977) to regional climate

  16. SMART WATER GRID PLAN B TECHNICAL REPORT

    E-Print Network [OSTI]

    Julien, Pierre Y.

    SMART WATER GRID PLAN B TECHNICAL REPORT FALL 2014 PREPARED BY: OLGA MARTYUSHEVA IN PARTIAL of water resources is currently under stress due to climatic changes, and continuous increase in water demand linked to the global population increase. A Smart Water Grid (SWG) is a two-way real time network

  17. Brookhaven National Laboratory Smarter Grid Centers

    E-Print Network [OSTI]

    Homes, Christopher C.

    1. Sustainable Chemical Conversion 2. Electric Grid Infrastructure · De-carbonized Generation Distribution Infrastructure - How does Smarter Electric Grid Research, Innovation, Development, Demonstration ­ SGRID3 SGRID3 Goals · Lower the cost of electric power by 5-10% · Improve the quality and reliability

  18. Decentralized Grid Scheduling with Evolutionary Fuzzy Systems

    E-Print Network [OSTI]

    Feitelson, Dror

    - increasing demand for computing power and storage space. While well-established approaches such as the EGEEDecentralized Grid Scheduling with Evolutionary Fuzzy Systems Alexander F¨olling, Christian Grimme of finding workload exchange policies for decentralized Computational Grids using an Evo- lutionary Fuzzy

  19. Grid Security: Expecting the Mingchao Ma

    E-Print Network [OSTI]

    University College London

    of a communications line; Power failure; Internet connection failure; Mis-configuration; · Security incidents ­ SystemGrid Security: Expecting the Unexpected Mingchao Ma STFC ­ Rutherford Appleton Laboratory, UK #12;Slide 2 Overview · Security Service Challenges (SSC) Review · Grid Security Incident ­ What had happened

  20. Algorithmic Decision Theory and the Smart Grid

    E-Print Network [OSTI]

    1 Algorithmic Decision Theory and the Smart Grid Fred Roberts Rutgers University #12;2 Algorithmic Conference on ADT ­ probably Belgium in Fall 2013. #12;9 ADT and Smart Grid ·Many of the following ideas and planning dating at least to World War II. ·But: algorithms to speed up and improve real-time decision

  1. Polish grid infrastructure for science and research

    E-Print Network [OSTI]

    Ryszard Gokieli; Krzysztof Nawrocki; Adam Padee; Dorota Stojda; Karol Wawrzyniak; Wojciech Wislicki

    2007-10-07T23:59:59.000Z

    Structure, functionality, parameters and organization of the computing Grid in Poland is described, mainly from the perspective of high-energy particle physics community, currently its largest consumer and developer. It represents distributed Tier-2 in the worldwide Grid infrastructure. It also provides services and resources for data-intensive applications in other sciences.

  2. Security on the US Fusion Grid

    SciTech Connect (OSTI)

    Burruss, Justin R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01T23:59:59.000Z

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  3. Data security on the national fusion grid

    SciTech Connect (OSTI)

    Burruss, Justine R.; Fredian, Tom W.; Thompson, Mary R.

    2005-06-01T23:59:59.000Z

    The National Fusion Collaboratory project is developing and deploying new distributed computing and remote collaboration technologies with the goal of advancing magnetic fusion energy research. This work has led to the development of the US Fusion Grid (FusionGrid), a computational grid composed of collaborative, compute, and data resources from the three large US fusion research facilities and with users both in the US and in Europe. Critical to the development of FusionGrid was the creation and deployment of technologies to ensure security in a heterogeneous environment. These solutions to the problems of authentication, authorization, data transfer, and secure data storage, as well as the lessons learned during the development of these solutions, may be applied outside of FusionGrid and scale to future computing infrastructures such as those for next-generation devices like ITER.

  4. X-ray grid-detector apparatus

    DOE Patents [OSTI]

    Boone, John M. (Folsom, CA); Lane, Stephen M. (Oakland, CA)

    1998-01-27T23:59:59.000Z

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  5. Physics from Angular Projection of Rectangular Grids

    E-Print Network [OSTI]

    Singh, Ashmeet

    2015-01-01T23:59:59.000Z

    In this paper, we present a mathematical model for the angular projection of a rectangular arrangement of points in a grid. This simple, yet interesting problem, has both a scholarly value and applications for data extraction techniques to study the physics of various systems. Our work can interest undergraduate students to understand subtle points in the angular projection of a grid and describes various quantities of interest in the projection with completeness and sufficient rigour. We show that for certain angular ranges, the projection has non-distinctness, and calculate the details of such angles, and correspondingly, the number of distinct points and the total projected length. We focus on interesting trends obtained for the projected length of the grid elements and present a simple application of the model to determine the geometry of an unknown grid whose spatial extensions are known, using measurement of the grid projection at two angles only. Towards the end, our model is shown to have potential ap...

  6. GridOPTICS(TM): A Design for Plug-and-Play Smart Grid Software Architecture

    SciTech Connect (OSTI)

    Gorton, Ian; Liu, Yan; Yin, Jian

    2012-06-03T23:59:59.000Z

    As the smart grid becomes reality, software architectures for integrating legacy systems with new innovative approaches for grid management are needed. These architectures must exhibit flexibility, extensibility, interoperability and scalability. In this position paper, we describe our preliminary work to design such an architecture, known as GridOPTICS, that will enable the deployment and integration of new software tools in smart grid operations. Our preliminary design is based upon use cases from PNNL’s Future Power Grid Initiative, which is a developing a collection of advanced software technologies for smart grid management and control. We describe the motivations for GridOPTICS, and the preliminary design that we are currently prototyping for several distinct use cases.

  7. Barriers to Electrification for "Under Grid" Households in Rural Kenya

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    of the unelectrified are “off grid,” or too far away toand small, stand-alone off-grid solutions will be requiredgrowing support for off-grid, distributed energy approaches,

  8. Measured Off-Grid LED Lighting System Performance

    E-Print Network [OSTI]

    Granderson, Jessica

    2009-01-01T23:59:59.000Z

    Budget: The Economics of Off-Grid Lighting for SmallA. Jacobson. 2007. "The Off-Grid Lighting Market in WesternTesting for Emerging Off-grid White-LED Illumination Systems

  9. Product Quality Assurance for Off-Grid Lighting in Africa

    E-Print Network [OSTI]

    Mills, Evan; World Bank

    2008-01-01T23:59:59.000Z

    of technological options for off-grid light provision thatQuality Assurance for Off-Grid Lighting in Africa Conferencemarkets for high efficiency off-grid lighting technologies

  10. Barriers to Electrification for "Under Grid" Households in Rural Kenya

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    small, stand-alone off-grid solutions will be required forand commercialize off-grid solutions that can provide ruralof organizations promote off-grid solutions—such as solar

  11. In the OSTI Collections: Keeping Power Grids Stable | OSTI, US...

    Office of Scientific and Technical Information (OSTI)

    -pp. 14-15 (pp. 18-19 of 48), "The Smart Grid: An Introduction"U. S. Department of Energy Figure 2. Test model of a transmission grid. (a) The model grid is composed of 81...

  12. Are You a Smart Grid Champion? | Department of Energy

    Energy Savers [EERE]

    just of the grid, but of our entire energy economy. Watch this video from Con Edison of New York (recipient of two DOE Smart Grid Recovery grants) on the Smart Grid (it's about 2...

  13. Efficient Bulk Data Replication for the Earth System Grid

    E-Print Network [OSTI]

    Sim, Alex

    2010-01-01T23:59:59.000Z

    Bulk Data Replication for the Earth System Grid Alex Sim 1 ,CA 94720, USA Abstract The Earth System Grid (ESG) communityNetLogger 1. Introduction The Earth System Grid (ESG) [1

  14. West Virginia Smart Grid Implementation Plan (WV SGIP) Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    West Virginia Smart Grid Implementation Plan (WV SGIP) Project APERC Report on Assessment of As-Is Grid by Non-Utility Stakeholders Introduction One goal of this grid...

  15. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01T23:59:59.000Z

    system planning, renewable energy, smart grids, storage planning projects will become even more critical as the smart grid planning  models.   Some  of  these  objectives  are  not  well  defined,  like  smart?grid 

  16. Assessing the Usefulness of Distributed Measurements in the Smart Grid

    E-Print Network [OSTI]

    Framhein, Theodore Anthony

    2012-01-01T23:59:59.000Z

    Kezunovic, M. ; , "Smart Fault Location for Smart Grids,"Smart Grid, IEEE Transactions on , vol.2, no.1, pp.11-22,Measurements in the Smart Grid A thesis submitted in partial

  17. Integrating Grid Services into the Cray XT4 Environment

    E-Print Network [OSTI]

    Cholia, Shreyas

    2010-01-01T23:59:59.000Z

    with the system side of the grid work. Before joining NERSC,Franklin login node for grid access. This will simplify thethe feasibility of grid VO based project accounts to share

  18. Efficient Bulk Data Replication for the Earth System Grid

    E-Print Network [OSTI]

    Sim, Alex

    2010-01-01T23:59:59.000Z

    for the Earth System Grid Alex Sim 1 , Dan Gunter 1 , VijayaUSA Abstract The Earth System Grid (ESG) community faces theIntroduction The Earth System Grid (ESG) [1] community faces

  19. WISDOM: A Grid-Enabled Drug Discovery Initiative Against Malaria

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    14 WISDOM: A Grid-Enabled Drug Discovery Initiative Against Malaria Vincent Breton, Doman Kim ................................................................................ 354 14.2 Grid-Enabled Drug Discovery .................................................. 354 14.2.1 In Silico Drug Discovery: Requirements and Grid Added Value

  20. Nested-grid simulation of mercury over North America

    E-Print Network [OSTI]

    2012-01-01T23:59:59.000Z

    Chemistry and Physics Nested-grid simulation of mercury overY. Zhang et al. : Nested-grid simulation of mercury overand Chen, S. -Y. : Plume-in-grid modeling of atmospheric

  1. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01T23:59:59.000Z

    in the context of regional grid structure and operations,and Regional U.S. Power Grids. Part 1: Technical Analysis;ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-In

  2. Thermoacoustic couple

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-10-04T23:59:59.000Z

    An apparatus and method for determining acoustic power density level and its direction in a fluid using a single sensor are disclosed. The preferred embodiment of the apparatus, which is termed a thermoacoustic couple, consists of a stack of thin, spaced apart polymeric plates, selected ones of which include multiple bimetallic thermocouple junctions positioned along opposite end edges thereof. The thermocouple junctions are connected in series in the nature of a thermopile, and are arranged so as to be responsive to small temperature differences between the opposite edges of the plates. The magnitude of the temperature difference, as represented by the magnitude of the electrical potential difference generated by the thermopile, is found to be directly related to the level of acoustic power density in the gas.

  3. Scalable Real Time Data Management for Smart Grid

    SciTech Connect (OSTI)

    Yin, Jian; Kulkarni, Anand V.; Purohit, Sumit; Gorton, Ian; Akyol, Bora A.

    2011-12-16T23:59:59.000Z

    This paper presents GridMW, a scalable and reliable data middleware for smart grids. Smart grids promise to improve the efficiency of power grid systems and reduce green house emissions through incorporating power generation from renewable sources and shaping demand to match the supply. As a result, power grid systems will become much more dynamic and require constant adjustments, which requires analysis and decision making applications to improve the efficiency and reliability of smart grid systems.

  4. ECE 437/537 -Smart Grid Catalog Description: Fundamentals of smart power grids. Technology advances in transmission

    E-Print Network [OSTI]

    . · Smart generation. Energy storage. Microgrids. · Substation intelligence. · Transmission systems. PhasorECE 437/537 - Smart Grid Catalog Description: Fundamentals of smart power grids. Technology Cotilla-Sanchez Course content: · Introduction to smart power grids. Technology and policy background

  5. Smart Grid Outreach and Communication Strategy: Next Steps -...

    Broader source: Energy.gov (indexed) [DOE]

    grid techniques and technologies to quickly find the results and benefits of smart grid case studies that are comparable to their situation. Data needs to be classified and...

  6. Basis for the US Modern Grid Strategy - A Changing World

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Metering Infrastructure, distributed generation, wind turbine farms, and a few Demand Response programs. Value of the Electricity Grid The electric grid plays an...

  7. Smart Grid RFI: Addressing Policy and Logistical Challenges

    Broader source: Energy.gov (indexed) [DOE]

    efficiency of grid operations and more optimal deployment of generation resources. Demand response activities may be able to improve grid efficiency as well. On the consumer...

  8. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    State - Updated November 2011 Recovery Act Selections for Smart Grid Investment Grant Awards - By State - Updated November 2011 List of selections for the Smart Grid Investment...

  9. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    Category Updated November 2011 Recovery Act Selections for Smart Grid Investment Grant Awards - By Category Updated November 2011 List of selections for the Smart Grid Investment...

  10. Addressing Policy and Logistical Challenges to Smart Grid Implementati...

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Implementation: Comments by the Office of the Ohio Consumers' Counsel Addressing Policy and Logistical Challenges to Smart Grid Implementation: Comments by the Office of...

  11. Questions and Answers for the Smart Grid Investment Grant Program...

    Energy Savers [EERE]

    Questions and Answers for the Smart Grid Investment Grant Program: Applicability of Buy American Provision of Section 1605 of the Recovery Act to Projects Under the Smart Grid...

  12. Recovery Act Selections for Smart Grid Invesment Grant Awards...

    Broader source: Energy.gov (indexed) [DOE]

    Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Invesment Grant Awards- By Category Updated July...

  13. Addressing Policy and Logistical Challenges to Smart Grid Implementati...

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Implementation: Federal Register Notice Volume 75, No. 180 - Sep. 17, 2010 Addressing Policy and Logistical Challenges to Smart Grid Implementation: Federal Register...

  14. Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical...

    Broader source: Energy.gov (indexed) [DOE]

    Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company: DOE Smart Grid RFI Addressing Policy and Logistical Challenges Southern Company:...

  15. Davis Bacon Act Applicability to Smart Grid Investment Grant...

    Broader source: Energy.gov (indexed) [DOE]

    Davis Bacon Act Applicability to Smart Grid Investment Grant (SGIG) Program Grants Davis Bacon Act Applicability to Smart Grid Investment Grant (SGIG) Program Grants Letter to...

  16. Presentation to the EAC - Smart Grid Subcommittee Work Plan Status...

    Broader source: Energy.gov (indexed) [DOE]

    Electricity Advisory Committee Smart Grid Subcommittee Work Plan Status Joe Paladino - DOE Wanda Reder - EAC Smart Grid Sub- Committee Chair June 12, 2012 * Considerations: - Build...

  17. automated volumetric grid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mentations use orchestration Turner, Ken 9 An automated energy management system in a smart grid context MIT - DSpace Summary: The ongoing transformation of electric grids into...

  18. Now Available: Pacific Northwest Smart Grid Demonstration Project...

    Energy Savers [EERE]

    Now Available: Pacific Northwest Smart Grid Demonstration Project - Technology Performance Report Volume 1 Now Available: Pacific Northwest Smart Grid Demonstration Project -...

  19. A National Grid Energy Storage Strategy - Electricity Advisory...

    Energy Savers [EERE]

    A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 A National Grid Energy Storage Strategy - Electricity Advisory Committee - January 2014 The...

  20. Smart Grid Conceptual Actors/Data Flow Diagram- Cross Domain...

    Energy Savers [EERE]

    Documents & Publications Report to NIST on the Smart Grid Interoperability Standards Roadmap SG Network System Requirements Specification- Interim Release 3 Buildings-to-Grid...

  1. Questions and Answers for the Smart Grid Investment Grant Program...

    Energy Savers [EERE]

    Questions and Answers for the Smart Grid Investment Grant Program: Buy American Questions and Answers for the Smart Grid Investment Grant Program: Buy American Additional questions...

  2. City Utilities of Springfield Missouri Comments on Smart Grid...

    Energy Savers [EERE]

    Utilities of Springfield Missouri Comments on Smart Grid RFI: Addressing Policy and Logistical Challenges City Utilities of Springfield Missouri Comments on Smart Grid RFI:...

  3. Electricity Grid Basics Webinar Presentation Slides and Text...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Grid Basics Webinar Presentation Slides and Text Version Electricity Grid Basics Webinar Presentation Slides and Text Version Download presentation slides and a text...

  4. Request for Comments on the Electric Grid Integration Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comments on the Electric Grid Integration Technical Workshops Summaries: Federal Register Notice Volume 78, No. 35 - Feb. 21, 2013 Request for Comments on the Electric Grid...

  5. Integration Technology for PHEV-Grid-Connectivity, with Support...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards Integration Technology for PHEV-Grid-Connectivity, with Support for SAE Electrical Standards 2010...

  6. Recovery Act: Smart Grid Interoperability Standards and Framework...

    Energy Savers [EERE]

    The development of the grid will create jobs and spur the development of innovative products that can be exported. Once implemented, the Smart Grid is expected to save...

  7. Vehicle Technologies Office Merit Review 2014: EV-Smart Grid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EV-Smart Grid Research & Interoperability Activities Vehicle Technologies Office Merit Review 2014: EV-Smart Grid Research & Interoperability Activities Presentation given by...

  8. Smart Grid EV Communication (SpEC) Module | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid EV Communication (SpEC) Module Technology available for licensing: Argonne's direct current charging digital communication controller, the Smart Grid EV Communication (SpEC)...

  9. Smart Grid Outreach and Communication Strategy: Next Steps -...

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Outreach and Communication Strategy: Next Steps - EAC Recommendations for DOE Action, approved at the October 15-16, 2012 EAC Meeting. Smart Grid Outreach and...

  10. Renewable Generation and Interconnection to the Electrical Grid...

    Broader source: Energy.gov (indexed) [DOE]

    Generation and Interconnection to the Electrical Grid in Southern California Renewable Generation and Interconnection to the Electrical Grid in Southern California Presentation...

  11. Secretary Chu to Discuss Importance of Electric Grid Modernization...

    Energy Savers [EERE]

    Discuss Importance of Electric Grid Modernization to U.S. Competitiveness at Gridwise Global Forum Secretary Chu to Discuss Importance of Electric Grid Modernization to U.S....

  12. Innovative Energy Efficiency, Renewable Energy, and Grid Technology...

    Energy Savers [EERE]

    Innovative Energy Efficiency, Renewable Energy, and Grid Technology Update Innovative Energy Efficiency, Renewable Energy, and Grid Technology Update April 29, 2015 11:00AM to...

  13. New York Independent System Operator, Smart Grid RFI: Addressing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Independent System Operator, Smart Grid RFI: Addressing Policy and Logistical Challenges. New York Independent System Operator, Smart Grid RFI: Addressing Policy and Logistical...

  14. Sandia National Laboratories: How a Grid Manager Meets Demand...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demand (Load) How a Grid Manager Meets Demand (Load) In the "historical" electric grid, power-generating plants fell into three categories: No daily electrical demand data plot...

  15. Grid-Interactive Renewable Water Heating Economic and Environmental...

    Broader source: Energy.gov (indexed) [DOE]

    1 Grid-Interactive Renewable Water Heating Economic and Environmental Value Grid-interactive renewable water heaters have smart controls that quickly change their charge rate and...

  16. STEPS: A Grid Search Methodology for Optimized Peptide Identification...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Grid Search Methodology for Optimized Peptide Identification Filtering of MSMS Database Search Results. STEPS: A Grid Search Methodology for Optimized Peptide Identification...

  17. Progress Energy draft regarding Smart Grid RFI: Addressing Policy...

    Office of Environmental Management (EM)

    Policy and Logistical Challenges in Implementing Smart Grid Solutions COMMENTS OF THE MICHIGAN PUBLIC SERVICE COMMISSION STAFF TO REQUEST FOR INFORMATION REGARDING SMART GRID...

  18. Microsoft Word - Understanding Smart Grid Benefits_final.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    done with today's grid. These new smart grid capabilities will generate significant emission reductions over BAU. Electricity Supplier Benefits New opportunities for...

  19. Addressing Policy and Logistical Challenges to smart grid Implementati...

    Energy Savers [EERE]

    Addressing Policy and Logistical Challenges to smart grid Implementation: eMeter Response to Department of Energy RFI Addressing Policy and Logistical Challenges to smart grid...

  20. 2014 International Workshop on Grid Simulator Testing | Department...

    Broader source: Energy.gov (indexed) [DOE]

    the second International Workshop on Grid Simulator Testing of Energy Systems and Wind Turbine Powertrains at the Duke Energy Electric Grid Research, Innovations and Development...

  1. Optimization Online - Achieving Cost-Effective Power Grid ...

    E-Print Network [OSTI]

    Wei Yuan

    2014-12-29T23:59:59.000Z

    Dec 29, 2014 ... Abstract: Vulnerability of power grid is a critical issue in power industry. In order to understand and reduce power grid vulnerability under ...

  2. Protecting the Grid from All Hazards | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protecting the Grid from All Hazards Protecting the Grid from All Hazards October 31, 2014 - 2:10pm Addthis Patricia Hoffman Patricia Hoffman Assistant Secretary The Energy...

  3. Recovery Act Selections for Smart Grid Investment Grant Awards...

    Office of Environmental Management (EM)

    Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated July 2010 Recovery Act Selections for Smart Grid Investment Grant Awards- By Category Updated...

  4. Smart Grid Investment Grant Program (SGIG) Recipient Workshop...

    Broader source: Energy.gov (indexed) [DOE]

    Smart Grid Investment Grant (SGIG) Kickoff Welcome and Overview: Familiarize SGIG selectees with Grant Award Process. Smart Grid Investment Grant Program (SGIG) Recipient Workshop:...

  5. The Smart Grid Experience: Applying Results, Reaching Beyond...

    Energy Savers [EERE]

    Grid Experience: Applying Results, Reaching Beyond - Summary of Conference Proceedings (December 2014) The Smart Grid Experience: Applying Results, Reaching Beyond - Summary of...

  6. Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical...

    Energy Savers [EERE]

    Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical Challenges Steffes Corporation Smart Grid RFI: Addressing Policy and Logistical Challenges Steffes Corporation...

  7. Questions and Answers for the Smart Grid Investment Grant Program...

    Office of Environmental Management (EM)

    Questions and Answers for the Smart Grid Investment Grant Program: Frequently Asked Questions Questions and Answers for the Smart Grid Investment Grant Program: Frequently Asked...

  8. Smart Grid Technology Interactive Model | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smart Grid Technology Interactive Model Share Description As our attention turns to new cars that run partially or completely on electricity, how can we redesign our electric grid...

  9. Smart Grid RFI: Addressing Policy and Logistical Challenges....

    Broader source: Energy.gov (indexed) [DOE]

    of DRSG to DOE Smart Grid RFI: Addressing Policy and Logistical Challenges Association of Home Appliance Manufacturers Comments on Smart Grid RFI Addressing Policy and Logistical...

  10. Secretary Chu Announces $620 Million for Smart Grid Demonstration...

    Office of Environmental Management (EM)

    620 Million for Smart Grid Demonstration and Energy Storage Projects: Recovery Act Funding Will Upgrade the Electrical Grid, Save Energy, and Create Jobs Secretary Chu Announces...

  11. Cosmological simulations with disformally coupled symmetron fields

    E-Print Network [OSTI]

    R. Hagala; C. Llinares; D. F. Mota

    2015-04-27T23:59:59.000Z

    We use N-body simulations to study the matter distribution in disformal gravity. The disformal model studied here is a conformally coupled symmetron field with an additional exponential disformal term. We conduct cosmological simulations with the aim to find the impact of the new disformal terms in the matter power spectrum, halo mass function and radial profile of the scalar field. This is done by calculating the disformal geodesic equation and the equation of motion for the scalar field, then implementing them into the N-body code ISIS, which is a modified gravity version of the code RAMSES. The presence of a conformal symmetron field increases both the power spectrum and mass function compared to standard gravity on small scales. Our main result is that the newly added disformal terms tend to counteract this effects and can make the evolution slightly closer to standard gravity. We finally show that the disformal terms give rise to oscillations of the scalar field in the centre of the dark matter haloes.

  12. For the Grid and Through the Grid: The Role of Power Line Communications in the Smart Grid

    E-Print Network [OSTI]

    Galli, Stefano; Wang, Zhifang

    2010-01-01T23:59:59.000Z

    Is Power Line Communication (PLC) a good candidate for Smart Grid applications? The objective of this paper is to address this important question. To do so we provide an overview of what PLC can deliver today by surveying its history and describing the most recent technological advances in the area. We then address Smart Grid applications as instances of sensor networking and network control problems and discuss the main conclusion one can draw from the literature on these subjects. The application scenario of PLC within the Smart Grid is then analyzed in detail. Since a necessary ingredient of network planning is modeling, we also discuss two aspects of engineering modeling that relate to our question. The first aspect is modeling the PLC channel through fading models. The second aspect we review is the Smart Grid control and traffic modeling problem which allows us to achieve a better understanding of the communications requirements. Finally, this paper reports recent studies on the electrical and topologic...

  13. Proposal for grid computing for nuclear applications

    SciTech Connect (OSTI)

    Idris, Faridah Mohamad; Ismail, Saaidi; Haris, Mohd Fauzi B.; Sulaiman, Mohamad Safuan B.; Aslan, Mohd Dzul Aiman Bin.; Samsudin, Nursuliza Bt.; Ibrahim, Maizura Bt.; Ahmad, Megat Harun Al Rashid B. Megat; Yazid, Hafizal B.; Jamro, Rafhayudi B.; Azman, Azraf B.; Rahman, Anwar B. Abdul; Ibrahim, Mohd Rizal B. Mamat; Muhamad, Shalina Bt. Sheik; Hassan, Hasni [Malaysian Nuclear Agency, Bangi, 43000 Kajang, Selangor (Malaysia); Abdullah, Wan Ahmad Tajuddin Wan; Ibrahim, Zainol Abidin; Zolkapli, Zukhaimira; Anuar, Afiq Aizuddin; Norjoharuddeen, Nurfikri [Physics Department, University of Malaya, 56003 Kuala Lumpur (Malaysia); and others

    2014-02-12T23:59:59.000Z

    The use of computer clusters for computational sciences including computational physics is vital as it provides computing power to crunch big numbers at a faster rate. In compute intensive applications that requires high resolution such as Monte Carlo simulation, the use of computer clusters in a grid form that supplies computational power to any nodes within the grid that needs computing power, has now become a necessity. In this paper, we described how the clusters running on a specific application could use resources within the grid, to run the applications to speed up the computing process.

  14. Cloud feedback studies with a physics grid

    SciTech Connect (OSTI)

    Dipankar, Anurag [Max Planck Institute for Meteorology Hamburg; Stevens, Bjorn [Max Planck Institute for Meteorology Hamburg

    2013-02-07T23:59:59.000Z

    During this project the investigators implemented a fully parallel version of dual-grid approach in main frame code ICON, implemented a fully conservative first-order interpolation scheme for horizontal remapping, integrated UCLA-LES micro-scale model into ICON to run parallely in selected columns, and did cloud feedback studies on aqua-planet setup to evaluate the classical parameterization on a small domain. The micro-scale model may be run in parallel with the classical parameterization, or it may be run on a "physics grid" independent of the dynamics grid.

  15. Interoperable PKI Data Distribution in Computational Grids

    SciTech Connect (OSTI)

    Pala, Massimiliano; Cholia, Shreyas; Rea, Scott A.; Smith, Sean W.

    2008-07-25T23:59:59.000Z

    One of the most successful working examples of virtual organizations, computational grids need authentication mechanisms that inter-operate across domain boundaries. Public Key Infrastructures(PKIs) provide sufficient flexibility to allow resource managers to securely grant access to their systems in such distributed environments. However, as PKIs grow and services are added to enhance both security and usability, users and applications must struggle to discover available resources-particularly when the Certification Authority (CA) is alien to the relying party. This article presents how to overcome these limitations of the current grid authentication model by integrating the PKI Resource Query Protocol (PRQP) into the Grid Security Infrastructure (GSI).

  16. SmartGrid Information | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9MorganYou are here HomeSmart Grid SmartSmartGrid

  17. Synchronization in Complex Oscillator Networks and Smart Grids

    E-Print Network [OSTI]

    Florian Dörfler; Michael Chertkov; Francesco Bullo

    2012-07-31T23:59:59.000Z

    The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A coupled oscillator network is characterized by a population of heterogeneous oscillators and a graph describing the interaction among them. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here we present a novel, concise, and closed-form condition for synchronization of the fully nonlinear, non-equilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters, or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters, they are statistically correct for almost all networks, and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks such as electric power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex networks scenarios and in smart grid applications.

  18. Synchronization in Complex Oscillator Networks and Smart Grids

    SciTech Connect (OSTI)

    Dorfler, Florian [Los Alamos National Laboratory; Chertkov, Michael [Los Alamos National Laboratory; Bullo, Francesco [Center for Control, Dynamical Systems and Computation, University of California at Santa Babara, Santa Barbara CA

    2012-07-24T23:59:59.000Z

    The emergence of synchronization in a network of coupled oscillators is a fascinating topic in various scientific disciplines. A coupled oscillator network is characterized by a population of heterogeneous oscillators and a graph describing the interaction among them. It is known that a strongly coupled and sufficiently homogeneous network synchronizes, but the exact threshold from incoherence to synchrony is unknown. Here we present a novel, concise, and closed-form condition for synchronization of the fully nonlinear, non-equilibrium, and dynamic network. Our synchronization condition can be stated elegantly in terms of the network topology and parameters, or equivalently in terms of an intuitive, linear, and static auxiliary system. Our results significantly improve upon the existing conditions advocated thus far, they are provably exact for various interesting network topologies and parameters, they are statistically correct for almost all networks, and they can be applied equally to synchronization phenomena arising in physics and biology as well as in engineered oscillator networks such as electric power networks. We illustrate the validity, the accuracy, and the practical applicability of our results in complex networks scenarios and in smart grid applications.

  19. PNNL Future Power Grid Initiative-developed GridOPTICS Software System (GOSS)

    SciTech Connect (OSTI)

    None

    2014-11-03T23:59:59.000Z

    The power grid is changing and evolving. One aspect of this change is the growing use of smart meters and other devices, which are producing large volumes of useful data. However, in many cases, the data can’t be translated quickly into actionable guidance to improve grid performance. There's a need for innovative tools. The GridOPTICS(TM) Software System, or GOSS, developed through PNNL's Future Power Grid Initiative, is open source and became publicly available in spring 2014. The value of this middleware is that it easily integrates grid applications with sources of data and facilitates communication between them. Such a capability provides a foundation for developing a range of applications to improve grid management.

  20. An engineering-economic analysis of combined heat and power technologies in a (mu)grid application

    SciTech Connect (OSTI)

    Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

    2002-03-01T23:59:59.000Z

    This report describes an investigation at Ernesto Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) of the potential for coupling combined heat and power (CHP) with on-site electricity generation to provide power and heating, and cooling services to customers. This research into distributed energy resources (DER) builds on the concept of the microgrid (mGrid), a semiautonomous grouping of power-generating sources that are placed and operated by and for the benefit of its members. For this investigation, a hypothetical small shopping mall (''Microgrid Oaks'') was developed and analyzed for the cost effectiveness of installing CHP to provide the mGrid's energy needs. A mGrid consists of groups of customers pooling energy loads and installing a combination of generation resources that meets the particular mGrid's goals. This study assumes the mGrid is seeking to minimize energy costs. mGrids could operate independently of the macrogrid (the wider power network), but they are usually assumed to be connected, through power electronics, to the macrogrid. The mGrid in this study is assumed to be interconnected to the macrogrid, and can purchase some energy and ancillary services from utility providers.

  1. Case Study - Minnesota Power - Accelerating Grid Modernization...

    Broader source: Energy.gov (indexed) [DOE]

    Power (MP) serves approximately 144,000 customers and manages almost 9,000 miles of power lines and over 160 substations. Grid modernization is a top corporate priority and...

  2. BPA Study of Smart Grid Economics ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with low and high values ranging from 0.6B to 7.1B. The NPV is expected to surpass zero (i.e., producing a net benefit) with 96 percent confidence. Figure 2. Smart Grid...

  3. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    decision making by agents vs. operator Moving to a more de-centralized model Office of Electricity Delivery and Energy Reliability MODERN GRID S T R A T E G Y 8 Culture Change A...

  4. GridFTP with NERSC HPSS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GridFTP transfers to HPSS. It accomplishes this by using a special GSI enabled pftp server. Data transfers are multi-threaded but are handled with a single FTP server....

  5. Arnold Schwarzenegger REAL-TIME GRID RELIABILITY

    E-Print Network [OSTI]

    Energy Research (PIER) California Energy Commission Beth Chambers Contract Manager Jamie Patterson (VSA) prototype to monitor system voltage conditions and provide real time dispatchers with reliabilityArnold Schwarzenegger Governor REAL-TIME GRID RELIABILITY MANAGEMENT California ISO Real

  6. Sandia National Laboratories: national electricity grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid relies on power transmission from the production source-be it a coal-fired plant, solar array, or wind farm-to the consumer. Long-distance transmission results in...

  7. Sandia National Laboratories: transmission grid integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grid relies on power transmission from the production source-be it a coal-fired plant, solar array, or wind farm-to the consumer. Long-distance transmission results in...

  8. Optimization on the Computational Grid Jeff Linderoth

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    programming Quadratic Assignment Problem Theme of the Talk Fit your algorithm to your computational platform Solving large optimization problem instances on the Computational Grid Two-stage stochastic linear

  9. Sandia National Laboratories: smart grid integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Test Center (RTC). The RTC will enable research on integrating solar panels into the statewide smart grid and help reduce the cost of solar power. The Vermont RTC...

  10. Principal Characteristics of a Modern Grid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PSC Missouri - Utility Meeting Joe Miller, Steve Pullins - Modern Grid Team January 9, 2008 1 Conducted by the National Energy Technology Laboratory Funded by the U.S. Department...

  11. REAP Islanded Grid Wind Power Conference

    Broader source: Energy.gov [DOE]

    Hosted by Renewable Energy Alaska Project, this three-day conference will show attendees how to learn, network, and share information on wind systems in island and islanded grid environments through expert panel discussions, stakeholder dialogue, and training.

  12. Anisotropic Grid Adaptation for Multiple Aerodynamic Outputs

    E-Print Network [OSTI]

    Venditti, David A.

    Anisotropic grid–adaptive strategies are presented for viscous flow simulations in which the accurate prediction of multiple aerodynamic outputs (such as the lift, drag, and moment coefficients) is required from a single ...

  13. Tube support grid and spacer therefor

    DOE Patents [OSTI]

    Ringsmuth, Richard J. (Solano Beach, CA); Kaufman, Jay S. (Del Mar, CA)

    1986-01-01T23:59:59.000Z

    A tube support grid and spacers therefor provide radially inward preloading of heat exchange tubes to minimize stress upon base welds due to differential thermal expansion. The grid comprises a concentric series of rings and spacers with opposing concave sides for conforming to the tubes and V-shaped ends to provide resilient flexibility. The flexibility aids in assembly and in transmitting seismic vibrations from the tubes to a shroud. The tube support grid may be assembled in place to achieve the desired inwardly radial preloading of the heat exchange tubes. Tab and slot assembly further minimizes stresses in the system. The radii of the grid rings may be preselected to effect the desired radially inward preloading.

  14. FUTURE POWER GRID INITIATIVE Intelligent Networked Sensors

    E-Print Network [OSTI]

    , demand- response, and plug-in electric vehicles. It: » Lays the software platform groundwork and planning and ensure a more secure, efficient and reliable future grid. Building on the Electricity

  15. Game Theoretic Methods for the Smart Grid

    E-Print Network [OSTI]

    Saad, Walid; Poor, H Vincent; Ba?ar, Tamer

    2012-01-01T23:59:59.000Z

    The future smart grid is envisioned as a large-scale cyber-physical system encompassing advanced power, communications, control, and computing technologies. In order to accommodate these technologies, it will have to build on solid mathematical tools that can ensure an efficient and robust operation of such heterogeneous and large-scale cyber-physical systems. In this context, this paper is an overview on the potential of applying game theory for addressing relevant and timely open problems in three emerging areas that pertain to the smart grid: micro-grid systems, demand-side management, and communications. In each area, the state-of-the-art contributions are gathered and a systematic treatment, using game theory, of some of the most relevant problems for future power systems is provided. Future opportunities for adopting game theoretic methodologies in the transition from legacy systems toward smart and intelligent grids are also discussed. In a nutshell, this article provides a comprehensive account of the...

  16. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    S. S. Oren, “Smart flexible just-in-time transmission andFlexible Transmission in the Smart Grid By Kory WalterAll rights reserved. A BSTRACT Flexible Transmission in the

  17. Flexible Transmission in the Smart Grid

    E-Print Network [OSTI]

    Hedman, Kory Walter

    2010-01-01T23:59:59.000Z

    and utilize the generation as a flexible asset. With theflexible topology that can be co-optimized along with generationflexible grid from the supply side, i.e. , the generation,

  18. Future asymptotics and geodesic completeness of polarized T2-symmetric spacetimes with weak regularity

    E-Print Network [OSTI]

    Philippe G. LeFloch; Jacques Smulevici

    2014-08-09T23:59:59.000Z

    We investigate the late-time asymptotics of future expanding, polarized vacuum Einstein spacetimes with T2-symmetry on T3, which, by definition, admit two spacelike Killing fields. Our main result is the existence of a stable asymptotic regime within this class, that is, we provide here a full description of the late-time asymptotics of the solutions to the Einstein equations when the initial data set is close to the asymptotic regime. Our proof is based on several energy functionals with lower order corrections (as is standard for such problems) and the derivation of a simplified model which we exhibit here. Roughly speaking, the Einstein equations in the symmetry class under consideration consists of a system of wave equations coupled to constraint equations plus a system of ordinary differential equations. The unknowns involved in the system of ordinary equations are blowing up in the future timelike directions. One of our main contributions is the derivation of novel effective equations for suitably renormalized unknowns. Interestingly, this renormalization is not performed with respect to a fixed background, but does involve the energy of the coupled system of wave equations. In addition, we construct an open set of initial data which are arbitrarily close to the expected asymptotic behavior. We emphasize that, in comparison, the class of Gowdy spacetimes exhibits a very different dynamical behavior to the one we uncover in the present work for general polarized T2-symmetric spacetimes. Furthermore, all the conclusions of this paper are valid within the framework of weakly T2-symmetric spacetimes previously introduced by the authors.

  19. Interlocking egg-crate type grid assembly

    DOE Patents [OSTI]

    Kast, S.J.

    1985-03-15T23:59:59.000Z

    Disclosed is an interlocking egg-crate hexagonal grid for supporting a nuclear fuel pin in a hexagonal array. The grid is formed from strips bent at an angle of about 120/sup 0/ at each vertex. Over some faces of each hexagonal cell the strips are coplanar but are arranged, by stacking interlocking, to avoid any double thickness of metal in that plane. Springs and dimples are formed in the faces of each cell to hold the fuel pin substantially centered.

  20. Interlocking egg-crate type grid assembly

    DOE Patents [OSTI]

    Kast, Steven J. (Niskayuna, NY)

    1987-01-01T23:59:59.000Z

    Disclosed is an interlocking egg-crate hexagonal grid for supporting a nuclear fuel pin in a hexagonal array. The grid is formed from strips bent at an angle of about 120.degree. at each vertex. Over some faces of each hexagonal cell the strips are coplanar but are arranged, by stacking and interlocking, to avoid any double thickness of metal in that plane. Springs and dimples are formed in the faces of each cell to hold the fuel pin substantially centered.

  1. NREL: Transmission Grid Integration - Active Power Controls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport Available forVoucherPossibleNew

  2. NREL: Transmission Grid Integration - Eastern Renewable Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport Available forVoucherPossibleNewData

  3. NREL: Transmission Grid Integration - FESTIV Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport Available

  4. NREL: Transmission Grid Integration - Generator Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL researchers

  5. NREL: Transmission Grid Integration - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecastingNews

  6. NREL: Transmission Grid Integration - Wholesale Electricity Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning andStudy Phase

  7. NREL: Transmission Grid Integration - Working With Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning andStudy

  8. NREL: Transmission Grid Integration Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission Planning andStudyPhoto of

  9. NREL: Transportation Research - Electric Vehicle Grid Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmission PlanningCapabilities

  10. Sandia National Laboratories - Grid Integration Collaborations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiationImplementingnpitche Home About npitcheSandian Wins Award inPHOTOVOLTAIC- Grid

  11. Invariant definition of rest mass and dynamics of particles in 4D from bulk geodesics in brane-world and non-compact Kaluza-Klein theories

    E-Print Network [OSTI]

    J. Ponce de Leon

    2003-01-24T23:59:59.000Z

    In the Randall-Sundrum brane-world scenario and other non-compact Kaluza-Klein theories, the motion of test particles is higher-dimensional in nature. In other words, all test particles travel on five-dimensional geodesics but observers, who are bounded to spacetime, have access only to the 4D part of the trajectory. Conventionally, the dynamics of test particles as observed in 4D is discussed on the basis of the splitting of the geodesic equation in 5D. However, this procedure is {\\em not} unique and therefore leads to some problems. The most serious one is the ambiguity in the definition of rest mass in 4D, which is crucial for the discussion of the dynamics. We propose the Hamilton-Jacobi formalism, instead of the geodesic one, to study the dynamics in 4D. On the basis of this formalism we provide an unambiguous expression for the rest mass and its variation along the motion as observed in 4D. It is independent of the coordinates and any parameterization used along the motion. Also, we are able to show a comprehensive picture of the various physical scenarios allowed in 4D, without having to deal with the subtle details of the splitting formalism. Moreover we study the extra non-gravitational forces perceived by an observer in 4D who describes the geodesic motion of a bulk test particle in 5D. Firstly, we show that the so-called fifth force fails to account for the variation of rest mass along the particle's worldline. Secondly, we offer here a new definition that correctly takes into account the change of mass observed in 4D.

  12. Electron gas grid semiconductor radiation detectors

    DOE Patents [OSTI]

    Lee, Edwin Y. (Livermore, CA); James, Ralph B. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  13. Feedback" An Article for Smart Grid News The Smart Grid Transition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by sharing the progress of the Smart Grid transition through the communication of key performance indicators, stakeholders can see what progress is being made. When progress is...

  14. Smart Grid Newsletter ? The Regulators Role in Grid Modernization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of the Smart Grid by providing them with information, control and options. AMI includes smart meters for advanced measurement, an integrated two- way communications...

  15. The Impact of Distributed Generation on Power Transmission Grid Dynamics D. E. Newman B. A. Carreras M. Kirchner I. Dobson

    E-Print Network [OSTI]

    Dobson, Ian

    on the robustness of the power transmission grid using a dynamic model of the power transmission system (OPA renewable, power sources, coupled with a drive for decentralization, the fraction of electric power and the engineering responses to failure. In this model, the power demand is increased at a constant rate and is also

  16. Ensemble Scheduling: Resource CoAllocation on the Computational Grid

    E-Print Network [OSTI]

    Weissman, Jon

    a standard part of production Grids, and ensemble applications will become more commonplace. We also believe

  17. NREL's Controllable Grid Interface for Testing Renewable Energy Technologies (Presentation)

    SciTech Connect (OSTI)

    Gevorgian, V.

    2014-09-01T23:59:59.000Z

    This presentation is an overview of NREL's Controllable Grid Interface capabilities for testing renewable energy technologies.

  18. Technology Challenges in Designing the Future Grid to Enable

    E-Print Network [OSTI]

    Technology Challenges in Designing the Future Grid to Enable Sustainable Energy Systems Future Grid the Future Electric Energy System #12;Technology Challenges in Designing the Future Grid to Enable Summary This white paper synthesizes technology challenges for reaching a vision of the future grid that

  19. Chimera Grids for Water Simulation R. Elliot English

    E-Print Network [OSTI]

    Fedkiw, Ron

    Chimera Grids for Water Simulation R. Elliot English Stanford University Linhai Qiu Stanford propellers. Abstract We introduce a new method for large scale water simulation using Chimera grid embedding level set method in order to adapt it to Chimera grids including particle treatment across grid

  20. National Grid (Electric)- Large Commercial Energy Efficiency Incentive Programs

    Broader source: Energy.gov [DOE]

    National Grid offers electric energy efficiency programs for large commercial and industrial customers.

  1. Scheduling for Electricity Cost in Smart Grid Mihai Burcea1,

    E-Print Network [OSTI]

    Wong, Prudence W.H.

    Scheduling for Electricity Cost in Smart Grid Mihai Burcea1, , Wing-Kai Hon2 , Hsiang-Hsuan Liu2 arising in "demand response manage- ment" in smart grid [7, 9, 18]. The electrical smart grid is one of electricity. Peak demand hours happen only for a short duration, yet makes existing electrical grid less

  2. Proposing a roadmap for HealthGrids Vincent Breton1

    E-Print Network [OSTI]

    Boyer, Edmond

    Proposing a roadmap for HealthGrids Vincent Breton1 , Ignacio Blanquer2 , Vicente Hernandez2 bottlenecks and to define a roadmap for the wide adoption of grids for healthcare. This article presents project dedicated to the definition of a roadmap for HealthGrids. 1. Introduction The emergence of grid

  3. Alleviating Solar Energy Congestion in the Distribution Grid via Smart

    E-Print Network [OSTI]

    Ansari, Nirwan

    metering. Ç 1 INTRODUCTION THE electric power grid is one of the national critical infrastructures electric facilities and equipment in the grid are based on old technologies. While the power grid operation]. The conventional power grid has been built under a centralized infrastructure such that a single far-end power

  4. Grid Computing and its Applications in the Biomedical Informatics Domain

    E-Print Network [OSTI]

    Demurjian, Steven A.

    to the electric power grid which supplies virtually unlimited electric power to an individual or entity the resources of the computer grid (the appliance is turned on consuming power from the electric power grid of the Grid there would be a cost per CPU hour charged for usage. Currently Sun Micro systems charges $1

  5. Machine Learning for the New York City Power Grid

    E-Print Network [OSTI]

    Rudin, Cynthia

    1 Machine Learning for the New York City Power Grid Cynthia Rudin, David Waltz, Roger N. Anderson are sufficiently accurate to assist in maintaining New York City's electrical grid. Index Terms--applications of machine learning, electrical grid, smart grid, knowledge discovery, supervised ranking, computational

  6. IMPLEMENTING ENTORHINAL GRID FIELDS IN BIOPHYSICAL NEURONAL MODELS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    IMPLEMENTING ENTORHINAL GRID FIELDS IN BIOPHYSICAL NEURONAL MODELS Michiel W.H. Remme Group entorhinal cortical neurons form characteristic grid patterns as a function of the ani- mal's position neurons form characteristic grid patterns as a function of the an- imal's position [1]. The hexagonal grid

  7. Grid Computing for Fire Evolution Simulation Diploma Thesis

    E-Print Network [OSTI]

    Toronto, University of

    - p. 1/41 Grid Computing for Fire Evolution Simulation Diploma Thesis Thomas Diamantis University of Thessaly July 15, 2005 #12;Outline Grid computing overview Middleware overview Fire Dynamics Simulator Experiments and Results - p. 2/41 Outline Fire Dynamics Simulatior (FDS) and Grid Computing s Grid computing

  8. The Grid Workloads Archive Alexandru Iosup a,, Hui Li b

    E-Print Network [OSTI]

    Iosup, Alexandru

    The Grid Workloads Archive Alexandru Iosup a,, Hui Li b , Mathieu Jan a , Shanny Anoep a , Catalin, The Netherlands Abstract While large grids are currently supporting the work of thousands of scientists, very or no traces of grid workloads available to the grid researcher and practitioner. To address this problem

  9. The Number of Hamiltonian Paths in a Rectangular Grid

    E-Print Network [OSTI]

    Collins, Karen L.

    The Number of Hamiltonian Paths in a Rectangular Grid@wesleyan.edu Abstract It is easy to find out which rectangular m vertex by n vertex grids have answers for grids with fixed m for m = 1, 2, 3, 4, 5. 1 Introduction Given a grid with m vertices

  10. Grid Load Balancing Using Intelligent Agents Junwei Cao1

    E-Print Network [OSTI]

    Jarvis, Stephen

    - 1 - Grid Load Balancing Using Intelligent Agents Junwei Cao1 , Daniel P. Spooner* , Stephen A for grid computing. The management and scheduling of dynamic grid resources in a scalable way requires new technologies to implement a next generation intelligent grid environment. This work demonstrates that AI

  11. 1 A Grid based distributed simulation of Plasma Turbulence

    E-Print Network [OSTI]

    Vlad, Gregorio

    1 A Grid based distributed simulation of Plasma Turbulence Beniamino Di Martino and Salvatore- cati, Rome, Italy Grid technology is widespreading, but most grid-enabled applications just exploit of Grid platforms. In this paper the porting on a Globus equipped platform of a hierarchically distributed

  12. Quantum grid infrared photodetectors L. P. Rokhinson,a)

    E-Print Network [OSTI]

    Rokhinson, Leonid

    Quantum grid infrared photodetectors L. P. Rokhinson,a) C. J. Chen, and D. C. Tsui Department to as the quantum grid infrared photodetector QGIP . In an ideal structure, a grid pattern with very narrow to as the quantum grid infrared photodetector QGIP . This approach may produce a more uniform and optimized detector

  13. Feasibility Grids for Localization and Mapping in Crowded Urban Scenes

    E-Print Network [OSTI]

    Wang, Chieh-Chih "Bob"

    Feasibility Grids for Localization and Mapping in Crowded Urban Scenes Shao-Wen Yang and Chieh mapping method is the occupancy grid mapping algorithm [1] which represents maps by a collection of fine-grained grid cells that model the occupancy states of the environment. Occupancy grid mapping representation

  14. An accuracy study of mesh refinement on mapped grids

    E-Print Network [OSTI]

    Calhoun, Donna

    An accuracy study of mesh refinement on mapped grids D. Calhoun and R. J. LeVeque, October, 2003 on a highly skewed portion of a mapped grid. Smooth and shock-wave solutions to the Euler equations are used interface. Key words: gas dynamics, finite-volume, finite-difference, Cartesian grid, mapped grids

  15. Coupling coefficients for coupled-cavity lasers

    SciTech Connect (OSTI)

    Lang, R.J.; Yariv, A.

    1987-03-01T23:59:59.000Z

    The authors derive simple, analytic formulas for the field coupling coefficients in a two-section coupled-cavity laser using a local field rate equation treatment. They show that there is a correction to the heuristic formulas based on power flow calculated by Marcuse; the correction is in agreement with numerical calculations from a coupled-mode approach.

  16. RETHINKING THE FUTURE GRID: INTEGRATED NUCLEAR-RENEWABLE ENERGY SYSTEMS

    SciTech Connect (OSTI)

    S.M. Bragg-Sitton; R. Boardman

    2014-12-01T23:59:59.000Z

    The 2013 electricity generation mix in the United States consisted of ~13% renewables (hydropower, wind, solar, geothermal), 19% nuclear, 27% natural gas, and 39% coal. In the 2011 State of the Union Address, President Obama set a clean energy goal for the nation: “By 2035, 80 percent of America’s electricity will come from clean energy sources. Some folks want wind and solar. Others want nuclear, clean coal and natural gas. To meet this goal we will need them all.” The U.S. Department of Energy (DOE) Offices of Nuclear Energy (NE) and Energy Efficiency and Renewable Energy (EERE) recognize that “all of the above” means that we are called to best utilize all available clean energy sources. To meet the stated environmental goals for electricity generation and for the broader energy sector, there is a need to transform the energy infrastructure of the U.S. and elsewhere. New energy systems must be capable of significantly reducing environmental impacts in an efficient and economically viable manner while utilizing both hydrocarbon resources and clean energy generation sources. The U.S. DOE is supporting research and development that could lead to more efficient utilization of clean energy generation sources, including renewable and nuclear options, to meet both grid demand and thermal energy needs in the industrial sector. A concept being advanced by the DOE-NE and DOE-EERE is tighter coupling of nuclear and renewable energy sources in a manner that better optimizes energy use for the combined electricity, industrial manufacturing, and the transportation sectors. This integration concept has been referred to as a “hybrid system” that is capable of apportioning thermal and electrical energy to first meet the grid demand (with appropriate power conversion systems), then utilizing excess thermal and, in some cases, electrical energy to drive a process that results in an additional product. For the purposes of the present work, the hybrid system would integrate two or more energy resources to generate two or more products, one of which must be an energy commodity, such as electricity or transportation fuel. Subsystems would be integrated ‘‘behind’’ the electrical transmission bus and would be comprised of two or more energy conversion subsystems that have traditionally been separate or isolated. Energy flows would be dynamically apportioned as necessary to meet grid demand via a single, highly responsive connection to the grid that provides dispatchable electricity while capital-intensive generation assets operate at full capacity. Candidate region-specific hybrid energy systems selected for further study and figures of merit that will be used to assess system performance will be presented.

  17. Grid Cryptographic Simulation: A Simulator to Evaluate the Scalability of the X.509 Standard in the Smart Grid

    E-Print Network [OSTI]

    -granularity management of the power grid. The basic unit of the consumer-side smart grid is the electric meter. A meter from many meters to make intelligent service decisions. Visions of the smart grid range from at minimum in the Smart Grid Tucker L. Ward Senior Honors Thesis Dartmouth College, Hanover, NH, USA Dartmouth Computer

  18. Practical Session -Grid'5000 Spring School 2010 Thursday, 8th April 2010 Put some Green in your Grid'5000 experiments

    E-Print Network [OSTI]

    Lefèvre, Laurent

    Practical Session - Grid'5000 Spring School 2010 Thursday, 8th April 2010 Put some Green in your Grid'5000 experiments https://www.grid5000.fr/mediawiki/index.php/Put_Some_Green_In_Your_Experiments Introduction This practical session is focused on energy aspects in Grid'5000. This session is based on the 150

  19. 9/10/2002 Internet/Grid Computing -Fall 2002 1 What is Performance for Internet/Grid Computation?

    E-Print Network [OSTI]

    Browne, James C.

    - Fall 2002 7 What is Performance for Internet/Grid Computation? Relative Speed/Cost of Computation is Performance for Internet/Grid Computation? Speed up for distributed parallel execution 1. Parallelizability9/10/2002 Internet/Grid Computing - Fall 2002 1 What is Performance for Internet/Grid Computation

  20. 738 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 2, JUNE 2012 Utilizing a Smart Grid Monitoring System to Improve

    E-Print Network [OSTI]

    Simões, Marcelo Godoy

    738 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 2, JUNE 2012 Utilizing a Smart Grid Monitoring, Senior Member, IEEE Abstract--The implementation of smart grids will fundamen- tally change the approach that relies upon customer complaints. The monitoring capabilities of a smart grid will allow utilities