Sample records for geochemical groundwater geochemical

  1. Mercury Geochemical, Groundwater Geochemical, And Radiometric...

    Open Energy Info (EERE)

    Prospects In Northern Nevada Abstract Ground water sampling, desorbed mercury soil geochemical surveys and a radiometric geophysical survey was conducted in conjunction...

  2. Geochemical responses in peat groundwater over Attawapiskat kimberlites, James Bay Lowlands, Canada and their application to

    E-Print Network [OSTI]

    Geochemical responses in peat groundwater over Attawapiskat kimberlites, James Bay Lowlands, Canada.sader@mmg.com) ABSTRACT: Peat groundwater compositions at depths of 0.4 and 1.1 m below ground surface in the Attawapiskat on hydrogeological measurements and variations in peat groundwater geochemical parameters (pH and EC are high

  3. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    SciTech Connect (OSTI)

    J.M. Thomas; F.C. Benedict, Jr.; T.P. Rose; R.L. Hershey; J.B. Paces; Z.E. Peterman; I.M. Farnham; K.H. Johannesson; A.K. Singh; K.J. Stetzenbach; G.B. Hudson; J.M. Kenneally; G.F. Eaton; D.K. Smith

    2003-01-08T23:59:59.000Z

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units.

  4. HBH-GEOCHEM-GEOPHY

    Energy Science and Technology Software Center (OSTI)

    003015WKSTN00 Hiereachical Bayesian Model for Combining Geochemical and Geophysical Data for Environmental Applications Software   

  5. Geochemical, mineralogical and microbiological characteristics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium Geochemical, mineralogical and microbiological characteristics...

  6. Novel Coupled Thermochronometric and Geochemical Investigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners Novel Coupled Thermochronometric and Geochemical...

  7. NUREG/CR-6870 Consideration of Geochemical

    E-Print Network [OSTI]

    in Groundwater Restoration at Uranium In-Situ Leach Mining Facilities Manuscript Completed: December 2006 Date associated with uranium mining sites throughout the United States are also included in this report. A tableNUREG/CR-6870 Consideration of Geochemical Issues in Groundwater Restoration at Uranium In

  8. Geochemical and isotopic variations in shallow groundwater in areas of the Fayetteville Shale development, north-central Arkansas q

    E-Print Network [OSTI]

    Jackson, Robert B.

    similar to the brine in the Fayetteville Shale. Nonetheless, no spatial relationship was found between CH4. The integration of multiple geochemical and isoto- pic proxies shows no direct evidence of contamination

  9. Geochemical and isotopic results for groundwater, drainage waters, snowmelt, permafrost, precipitation in Barrow, Alaska (USA) 2012-2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Wilson, Cathy; Newman, Brent; Heikoop, Jeff

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  10. Environmental isotope and geochemical investigation of groundwater in Big Bend National Park, Texas

    E-Print Network [OSTI]

    Lopez Sepulveda, Hector Javier

    1984-01-01T23:59:59.000Z

    are useful in delineating groundwater source and transit or residence time. In an attempt to correlate groundwater chemistry with subsurface lithology, rock samples were collected and subjected to dissolution experiments. Petrographical study of the same..., limiting rock exposures to topo- graphic highs. Climate and Vegetation In a study where stable isotopes are used in an attempt to delin- eate sources of groundwater recharge, it is imperative that the local climatological regime be described...

  11. Abstract, International Applied Geochemistry Symposium, 2009 Peat groundwater as a medium for surficial geochemical exploration

    E-Print Network [OSTI]

    Abstract, International Applied Geochemistry Symposium, 2009 1 Peat groundwater as a medium-mail: stew.hamilton@ontario.ca) ABSTRACT: Kimberlite-specific chemical responses are visible in shallow peat and migrated through the Tyrell Sea sediment into shallow peat groundwater. The presence of elevated values

  12. Evapotranspiration And Geochemical Controls On Groundwater Plumes At Arid Sites: Toward Innovative Alternate End-States For Uranium Processing And Tailings Facilities

    SciTech Connect (OSTI)

    Looney, Brian B.; Denham, Miles E.; Eddy-Dilek, Carol A.; Millings, Margaret R.; Kautsky, Mark

    2014-01-08T23:59:59.000Z

    Management of legacy tailings/waste and groundwater contamination are ongoing at the former uranium milling site in Tuba City AZ. The tailings have been consolidated and effectively isolated using an engineered cover system. For the existing groundwater plume, a system of recovery wells extracts contaminated groundwater for treatment using an advanced distillation process. The ten years of pump and treat (P&T) operations have had minimal impact on the contaminant plume – primarily due to geochemical and hydrological limits. A flow net analysis demonstrates that groundwater contamination beneath the former processing site flows in the uppermost portion of the aquifer and exits the groundwater as the plume transits into and beneath a lower terrace in the landscape. The evaluation indicates that contaminated water will not reach Moenkopi Wash, a locally important stream. Instead, shallow groundwater in arid settings such as Tuba City is transferred into the vadose zone and atmosphere via evaporation, transpiration and diffuse seepage. The dissolved constituents are projected to precipitate and accumulate as minerals such as calcite and gypsum in the deep vadose zone (near the capillary fringe), around the roots of phreatophyte plants, and near seeps. The natural hydrologic and geochemical controls common in arid environments such as Tuba City work together to limit the size of the groundwater plume, to naturally attenuate and detoxify groundwater contaminants, and to reduce risks to humans, livestock and the environment. The technical evaluation supports an alternative beneficial reuse (“brownfield”) scenario for Tuba City. This alternative approach would have low risks, similar to the current P&T scenario, but would eliminate the energy and expense associated with the active treatment and convert the former uranium processing site into a resource for future employment of local citizens and ongoing benefit to the Native American Nations.

  13. GIS Regional Spatial Data from the Great Basin Center for Geothermal Energy: Geochemical, Geodesic, Geologic, Geophysical, Geothermal, and Groundwater Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Great Basin Center for Geothermal Energy, part of the University of Nevada, Reno, conducts research towards the establishment of geothermal energy as an economically viable energy source within the Great Basin. The Center specializes in collecting and synthesizing geologic, geochemical, geodetic, geophysical, and tectonic data, and using Geographic Information System (GIS) technology to view and analyze this data and to produce favorability maps of geothermal potential. The center also makes its collections of spatial data available for direct download to the public. Data are in Lambert Conformable Conic Projection.

  14. Geochemical aspects of Michigan waterfloods

    SciTech Connect (OSTI)

    Tinker, G.E.; Barnes, P.F.; Olson, E.E.

    1983-10-01T23:59:59.000Z

    Waterflooding started in the carbonate oil reservoirs of the Northern Michigan Niagaran reef trend in 1978 with Shell's Chester 18 waterflood. Ten projects had been installed by the end of 1982 so that significant operational results are available for evaluation. The design and operating programs initially planned for the projects have been proven successful. Operating data from some of the more mature projects indicate that the understanding and proper management of the geochemical systems for these projects will be crucial to the success of the project. The intent of this paper is to present what is currently known and understood about the geochemistry of Michigan waterfloods. The geochemical system is here defined as all the various interconnected fluid environments constituting the project, namely the fresh water source system, the injection well system, the reservoir, the production wells, the production facilities, and the produced water disposal or reinjection facilities. Problem areas have been identified and corrective action has been taken or planned to counteract the detrimental effects of disruptions to the geochemical system. These upsets are brought about by injection of water into the reservoir where an equilibrium condition had existed between the formation fluids and the rock.

  15. Geochemical and Isotopic Evaluation of Groundwater Movement in Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Farnham, Irene

    2006-02-01T23:59:59.000Z

    This report describes the results of a comprehensive geochemical evaluation of the groundwater flow system in the Yucca Flat/Climax Mine Corrective Action Unit (CAU). The main objectives of this study are to identify probable pathways for groundwater flow within the study area and to develop constraints on groundwater transit times between selected data collection sites. This work provides an independent means of testing and verifying predictive flow models being developed for this CAU using finite element methods. The Yucca Flat/Climax Mine CAU constitutes the largest of six underground test areas on the Nevada Test Site (NTS) specified for remedial action in the ''Federal Facility Agreement and Consent Order''. A total of 747 underground nuclear detonations were conducted in this CAU. Approximately 23 percent of these detonations were conducted below or near the water table, resulting in groundwater contamination in the vicinity and possibly downgradient of these underground test locations. Therefore, a rigorous evaluation of the groundwater flow system in this CAU is necessary to assess potential long-term risks to the public water supply at downgradient locations.

  16. Mercury Geochemical, Groundwater Geochemical, And Radiometric Geophysical

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat JumpIncMAKGalwayHydrothermalMcFarlandSurvey Professional Paper 713 |

  17. Geochemical Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: EnergySector: SolarGenoa is aGeoGeochemical

  18. Geochemical aspects of Michigan waterfloods

    SciTech Connect (OSTI)

    Tinker, G.E.; Barnes, P.F.; Olson, E.E.; Wright, M.P.

    1983-01-01T23:59:59.000Z

    Waterflooding started in the carbonate oil reservoirs of the N. Michigan Niagaran reef trend in 1978 with Shell's Chester 18 waterflood. Ten projects had been installed by the end of 1982 so that significant operational results are available for evaluation. This study presents what is currently known and understood about the geochemistry of Michigan waterfloods. Project monitoring procedures, established to control and optimize waterflood operations, have made it possible to develop the proper approach to the geochemical disruptions. The more important items in this program are the measurement of produced and injected volumes, transient pressure analyses, injection well profile surveys, chemical analysis of the injection and production fluid samples, radioactive injection tracers, and continuous bottom-hole pressures from submersible pumps. 15 references.

  19. ENZYME ACTIVITY PROBE AND GEOCHEMICAL ASSESSMENT FOR POTENTIAL AEROBIC COMETABOLISM OF TRICHLOROETHENE IN GROUNDWATER OF THE NORTHWEST PLUME, PADUCAH GASEOUS DIFFUSION PLANT, KENTUCKY

    SciTech Connect (OSTI)

    Looney, B; M. Hope Lee, M; S. K. Hampson, S

    2008-06-27T23:59:59.000Z

    The overarching objective of the Paducah Gaseous Diffusion Plant (PGDP) enzyme activity probe (EAP) effort is to determine if aerobic cometabolism is contributing to the attenuation of trichloroethene (TCE) and other chlorinated solvents in the contaminated groundwater beneath PGDP. The site-specific objective for the EAP assessment is to identify if key metabolic pathways are present and expressed in the microbial community--namely the pathways that are responsible for degradation of methane and aromatic (e.g. toluene, benzene, phenol) substrates. The enzymes produced to degrade methane and aromatic compounds also break down TCE through a process known as cometabolism. EAPs directly measure if methane and/or aromatic enzyme production pathways are operating and, for the aromatic pathways, provide an estimate of the number of active organisms in the sampled groundwater. This study in the groundwater plumes at PGDP is a major part of a larger scientific effort being conducted by Interstate Technology and Regulatory Council (ITRC), U.S. Department of Energy (DOE) Office of Environmental Management (EM), Savannah River National Laboratory (SRNL), and North Wind Inc. in which EAPs are being applied to contaminated groundwater from diverse hydrogeologic and plume settings throughout the U.S. to help standardize their application as well as their interpretation. While EAP data provide key information to support the site specific objective for PGDP, several additional lines of evidence are being evaluated to increase confidence in the determination of the occurrence of biodegradation and the rate and sustainability of aerobic cometabolism. These complementary efforts include: (1) Examination of plume flowpaths and comparison of TCE behavior to 'conservative' tracers in the plume (e.g., {sup 99}Tc); (2) Evaluation of geochemical conditions throughout the plume; and (3) Evaluation of stable isotopes in the contaminants and their daughter products throughout the plume. If the multiple lines of evidence support the occurrence of cometabolism and the potential for the process to contribute to temporal and spatial attenuation of TCE in PGDP groundwater, then a follow-up enzyme probe microcosm study to better estimate biological degradation rate(s) is warranted.

  20. Hanford 100-N Area In Situ Apatite and Phosphate Emplacement by Groundwater and Jet Injection: Geochemical and Physical Core Analysis

    SciTech Connect (OSTI)

    Szecsody, James E.; Vermeul, Vincent R.; Fruchter, Jonathan S.; Williams, Mark D.; Rockhold, Mark L.; Qafoku, Nikolla; Phillips, Jerry L.

    2010-07-01T23:59:59.000Z

    The purpose of this study is to evaluate emplacement of phosphate into subsurface sediments in the Hanford Site 100-N Area by two different technologies: groundwater injection of a Ca-citrate-PO4 solution and water-jet injection of sodium phosphate and/or fish-bone apatite. In situ emplacement of phosphate and apatite adsorbs, then incorporates Sr-90 into the apatite structure by substitution for calcium. Overall, both technologies (groundwater injection of Ca-citrate-PO4) and water-jet injection of sodium phosphate/fish-bone apatite) delivered sufficient phosphate to subsur¬face sediments in the 100-N Area. Over years to decades, additional Sr-90 will incorporate into the apatite precipitate. Therefore, high pressure water jetting is a viable technology to emplace phosphate or apatite in shallow subsurface sediments difficult to emplace by Ca-citrate-PO4 groundwater injections, but further analysis is needed to quantify the relevant areal extent of phosphate deposition (in the 5- to 15-ft distance from injection points) and cause of the high deposition in finer grained sediments.

  1. Geochemical engineering and materials program plan

    SciTech Connect (OSTI)

    None

    1982-08-01T23:59:59.000Z

    The Department of Energy (DOE) was designated as lead agency in discharging the overall legislative mandate for federal R&D to assist the private sector in developing appropriate technology for exploiting geothermal energy resources. The Geochemical Engineering and Materials (GEM) Program was conceived, as part of DOE'S overall strategy, to address specific and plant-wide problems and uncertainties in the use of materials and in geochemical engineering. This program assists industry in the conduct of long-term,high-risk R&D needed to overcome the significant technical and economic GEM-related obstacles faced by developers and potential developers of this alternative energy source. The program focuses on: (1) Increasing the knowledge about the properties of materials and their performance under geothermal energy system conditions; (2) Developing and utilizing more reliable and/or cost-effective materials than previously available; and (3) Developing a greater understanding of and control over geochemical processes during fluid production and transport, energy conversion, and waste management. As a stand-alone program and as support to other DOE geothermal technology development programs, the GEM Program contributes to the feasibility of designing and operating efficient, reliable, and safe fluid handling and energy conversion systems.

  2. Trace Element Geochemical Zoning in the Roosevelt Hot Springs...

    Open Energy Info (EERE)

    in the development of distinctive trace element signatures. Geochemical analysis of soil sample, shallow temperature gradient drill hole cuttings and deep drill hole cutting...

  3. Geochemical and Geophysical Changes during Ammonia Gas Treatment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geophysical Changes during Ammonia Gas Treatment of Vadose Zone Sediments for Uranium Remediation. Geochemical and Geophysical Changes during Ammonia Gas Treatment of Vadose Zone...

  4. Geochemical Controls on Contaminant Uranium in Vadose Hanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Controls on Contaminant Uranium in Vadose Hanford Formation Sediments at the 200 Area and 300 Area, Hanford Site, Geochemical Controls on Contaminant Uranium in Vadose Hanford...

  5. Merging High Resolution Geophysical and Geochemical Surveys to...

    Open Energy Info (EERE)

    Buttes, Oregon Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Merging High Resolution Geophysical and Geochemical Surveys to Reduce...

  6. DNA-based methods of geochemical prospecting

    DOE Patents [OSTI]

    Ashby, Matthew (Mill Valley, CA)

    2011-12-06T23:59:59.000Z

    The present invention relates to methods for performing surveys of the genetic diversity of a population. The invention also relates to methods for performing genetic analyses of a population. The invention further relates to methods for the creation of databases comprising the survey information and the databases created by these methods. The invention also relates to methods for analyzing the information to correlate the presence of nucleic acid markers with desired parameters in a sample. These methods have application in the fields of geochemical exploration, agriculture, bioremediation, environmental analysis, clinical microbiology, forensic science and medicine.

  7. Category:Geochemical Techniques | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade SierraStatusGeothermalpower.jpgGasGeochemical

  8. Microbiological and Geochemical Heterogeneity in an In Situ

    E-Print Network [OSTI]

    Uranium Bioremediation; Field Site; Helen A. Vrionis; Robert T. Anderson; Irene Ortiz-bernad; Kathleen R. O’neill; Philip E. Long; Derek R. Lovley

    2005-01-01T23:59:59.000Z

    The geochemistry and microbiology of a uranium-contaminated subsurface environment that had undergone two seasons of acetate addition to stimulate microbial U(VI) reduction was examined. There were distinct horizontal and vertical geochemical gradients that could be attributed in large part to the manner in which acetate was distributed in the aquifer, with more reduction of Fe(III) and sulfate occurring at greater depths and closer to the point of acetate injection. Clone libraries of 16S rRNA genes derived from sediments and groundwater indicated an enrichment of sulfate-reducing bacteria in the order Desulfobacterales in sediment and groundwater samples. These samples were collected nearest the injection gallery where microbially reducible Fe(III) oxides were highly depleted, groundwater sulfate concentrations were low, and increases in acid volatile sulfide were observed in the sediment. Further down-gradient, metal-reducing conditions were present as indicated by intermediate Fe(II)/Fe(total) ratios, lower acid volatile sulfide values, and increased abundance of 16S rRNA gene sequences belonging to the dissimilatory Fe(III)- and U(VI)-reducing family Geobacteraceae. Maximal Fe(III) and U(VI) reduction correlated with maximal recovery of Geobacteraceae 16S rRNA gene sequences in both groundwater and sediment; however, the sites at which these maxima occurred were spatially separated within the aquifer. The substantial microbial and geochemical heterogeneity at this site demonstrates that attempts should be made to deliver acetate in a more uniform manner and that closely

  9. Exploring Frontiers in Kinetics and Mechanisms of Geochemical Processes at the Mineral/Water Interface

    E-Print Network [OSTI]

    Sparks, Donald L.

    Exploring Frontiers in Kinetics and Mechanisms of Geochemical Processes at the Mineral in the Earth's Critical Zone is the kinetics. The timescales for geochemical processes range from milliseconds geochemical processes including surface complexation, mineral transformations, and oxidation

  10. Upscaling geochemical reaction rates using pore-scale network modeling

    E-Print Network [OSTI]

    Peters, Catherine A.

    . To examine the scaling behavior of reaction kinetics, these continuum-scale rates from the network model as a valuable research tool for examining upscaling of geochemical kinetics. The pore-scale model allowsUpscaling geochemical reaction rates using pore-scale network modeling Li Li, Catherine A. Peters

  11. Hydrological and geochemical investigations of selenium behavior at Kesterson Reservoir

    SciTech Connect (OSTI)

    Benson, S.M.; Tokunaga, T.K.; Zawislanski, P.; Yee, A.W.; Daggett, J.S.; Oldfather, J.M.; Tsao, L.; Johannis, P.W.

    1990-10-01T23:59:59.000Z

    From 1985 to the present we have studied the behavior of selenium in various habitats and environments at Kesterson reservoir, shifting emphasis as remedial actions altered the physical setting. Investigations have evaluated the efficacy of several remedial alternatives, from innovative techniques relying on the complex geochemical behavior of selenium alternatives, from innovative techniques relying on the complex geochemical behavior of selenium in aquatic environments to conventional excavation schemes. Results of these studies supported two cost-effective remedial measures; drain water deliveries were terminated in 1986 and, in 1988, 1 million cubic yards of soil were imported and used to fill the low lying areas of the former Kesterson Reservoir. To date, these two actions appear to have eliminated the aquatic habitat that caused waterfowl death and deformity at Kesterson from the early 1980's to 1987. Biological, surface water and groundwater monitoring data collected by the USBR indicate that Kesterson is now a much safer environment than in past years when drainage water containing 300{mu}g/l of selenium was delivered to the Reservoir. The continued presence of a large inventory of selenium within the upper portions of unfilled areas of Kesterson Reservoir and immediately below the fill material requires that a continued awareness of the status of this inventory be maintained and improved upon. 83 refs., 130 figs., 19 tabs.

  12. Geochemical factors affecting radionuclide transport through near and far fields at a Low-Level Waste Disposal Site

    SciTech Connect (OSTI)

    Kaplan, D.I.; Seme, R.J. [Pacific Northwest Lab., Richland, WA (United States); Piepkho, M.G. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-03-01T23:59:59.000Z

    The concentration of low-level waste (LLW) contaminants in groundwater is determined by the amount of contaminant present in the solid waste, rate of release from the waste and surrounding barriers, and a number of geochemical processes including adsorption, desorption, diffusion, precipitation, and dissolution. To accurately predict radionuclide transport through the subsurface, it is essential that the important geochemical processes affecting radionuclide transport be identified and, perhaps more importantly, accurately quantified and described in a mathematically defensible manner.

  13. Microbiological and geochemical characterization of fluvially deposited sulfidic mine tailings

    SciTech Connect (OSTI)

    Wielinga, B.; Lucy, J.K.; Moore, J.N.; Seastone, O.F.; Gannon, J.E. [Univ. of Montana, Missoula, MT (United States)

    1999-04-01T23:59:59.000Z

    The fluvial deposition of mine tailings generated from historic mining operations near Butte, Montana, has resulted in substantial surface and shallow groundwater contamination along Silver Bow Creek. Biogeochemical processes in the sediment and underlying hyporheic zone were studied in an attempt to characterize interactions consequential to heavy-metal contamination of shallow groundwater. Sediment cores were extracted and fractionated based on sediment stratification. Subsamples of each fraction were assayed for culturable heterotrophic microbiota, specific microbial guilds involved in metal redox transformations, and both aqueous- and solid-phase geochemistry. Populations of cultivable Fe(III)-reducing bacteria were most prominent in the anoxic, circumneutral pH regions associated with a ferricrete layer or in an oxic zone high in organic carbon and soluble iron. Sulfur- and iron-oxidizing bacteria were distributed in discrete zones throughout the tailings and were often recovered from sections at and below the anoxic groundwater interface. Sulfate-reducing bacteria were also widely distributed in the cores and often occurred in zones overlapping iron and sulfur oxidizers. Sulfate-reducing bacteria were consistently recovered from oxic zones that contained high concentrations of metals in the oxidizable fraction. Altogether, these results suggest a highly varied and complex microbial ecology within a very heterogeneous geochemical environment. Such physical and biological heterogeneity has often been overlooked when remediation strategies for metal contaminated environments are formulated.

  14. Temporal Geochemical Variations In Volatile Emissions From Mount...

    Open Energy Info (EERE)

    Temporal Geochemical Variations In Volatile Emissions From Mount St Helens, Usa, 1980-1994 Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  15. Geochemical Data on Waters, Gases, Scales, and Rocks from the...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Region, Nevada (1996-1999)...

  16. A Reconnaissance Geochemical Study Of La Primavera Geothermal...

    Open Energy Info (EERE)

    Study Of La Primavera Geothermal Area, Jalisco, Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Reconnaissance Geochemical Study Of La...

  17. A general-purpose, geochemical reservoir simulator

    SciTech Connect (OSTI)

    Liu, X.; Ortoleva, P.

    1996-12-31T23:59:59.000Z

    A geochemical simulator for the analysis of coupled reaction and transport processes is presented. The simulator is based on the numerical solution of the equations of coupled multi-phase fluid flow, species transport, energy balance and rock/fluid reactions. It also accounts for the effects of grain growth/dissolution and the alteration of porosity and permeability due to mineral reactions. The simulator can be used to analyze core floods, single-well scenarios and multiple production/injection well systems on the reservoir scale. Additionally, the simulator provides two flow options: the Darcy law for fluid flow in porous media and the Brinkman law that subsumes both free and porous medium flows. The simulator was tested using core acidizing data and results were in good agreement with laboratory observations. The simulator was applied to analyze matrix acidizing treatments for a horizontal well. The evolution of the skin factor was predicted and the optimal volume of acid required to remove the near-wellbore damage was determined. Reactive fluid infiltration was shown to lead to reaction-front fingering under certain conditions. Viscosity contrast in multiphase flow could also result in viscous fingering. Examples in this study also address these nonlinear fingering phenomena. A waterflood on the reservoir scale was analyzed and simulation results show that scale formation during waterfloods can occur far beyond injection wells. Two cases of waste disposal by deep well injection were evaluated and our simulation results were consistent with field measured data.

  18. Crustal melting in the Himalayan orogen : field, geochemical and geochronological studies in the Everest region, Nepal

    E-Print Network [OSTI]

    Viskupic, Karen M. (Karen Marie), 1975-

    2003-01-01T23:59:59.000Z

    A combination of field studies and geochemical techniques were used to investigate the timing and processes involved in leucogranite generation in the Everest region of the Himalayan orogen. Geochemical investigations ...

  19. GEOCHEMICAL MODELING OF F AREA SEEPAGE BASIN COMPOSITION AND VARIABILITY

    SciTech Connect (OSTI)

    Millings, M.; Denham, M.; Looney, B.

    2012-05-08T23:59:59.000Z

    From the 1950s through 1989, the F Area Seepage Basins at the Savannah River Site (SRS) received low level radioactive wastes resulting from processing nuclear materials. Discharges of process wastes to the F Area Seepage Basins followed by subsequent mixing processes within the basins and eventual infiltration into the subsurface resulted in contamination of the underlying vadose zone and downgradient groundwater. For simulating contaminant behavior and subsurface transport, a quantitative understanding of the interrelated discharge-mixing-infiltration system along with the resulting chemistry of fluids entering the subsurface is needed. An example of this need emerged as the F Area Seepage Basins was selected as a key case study demonstration site for the Advanced Simulation Capability for Environmental Management (ASCEM) Program. This modeling evaluation explored the importance of the wide variability in bulk wastewater chemistry as it propagated through the basins. The results are intended to generally improve and refine the conceptualization of infiltration of chemical wastes from seepage basins receiving variable waste streams and to specifically support the ASCEM case study model for the F Area Seepage Basins. Specific goals of this work included: (1) develop a technically-based 'charge-balanced' nominal source term chemistry for water infiltrating into the subsurface during basin operations, (2) estimate the nature of short term and long term variability in infiltrating water to support scenario development for uncertainty quantification (i.e., UQ analysis), (3) identify key geochemical factors that control overall basin water chemistry and the projected variability/stability, and (4) link wastewater chemistry to the subsurface based on monitoring well data. Results from this study provide data and understanding that can be used in further modeling efforts of the F Area groundwater plume. As identified in this study, key geochemical factors affecting basin chemistry and variability included: (1) the nature or chemistry of the waste streams, (2) the open system of the basins, and (3) duration of discharge of the waste stream types. Mixing models of the archetype waste streams indicated that the overall basin system would likely remain acidic much of the time. Only an extended periods of predominantly alkaline waste discharge (e.g., >70% alkaline waste) would dramatically alter the average pH of wastewater entering the basins. Short term and long term variability were evaluated by performing multiple stepwise modeling runs to calculate the oscillation of bulk chemistry in the basins in response to short term variations in waste stream chemistry. Short term (1/2 month and 1 month) oscillations in the waste stream types only affected the chemistry in Basin 1; little variation was observed in Basin 2 and 3. As the largest basin, Basin 3 is considered the primary source to the groundwater. Modeling showed that the fluctuation in chemistry of the waste streams is not directly representative of the source term to the groundwater (i.e. Basin 3). The sequence of receiving basins and the large volume of water in Basin 3 'smooth' or nullify the short term variability in waste stream composition. As part of this study, a technically-based 'charge-balanced' nominal source term chemistry was developed for Basin 3 for a narrow range of pH (2.7 to 3.4). An example is also provided of how these data could be used to quantify uncertainty over the long term variations in waste stream chemistry and hence, Basin 3 chemistry.

  20. Geochemical Modeling of ILAW Lysimeter Water Extracts

    SciTech Connect (OSTI)

    Cantrell, Kirk J.

    2014-12-22T23:59:59.000Z

    Geochemical modeling results of water extracts from simulated immobilized low-activity waste (ILAW) glasses, placed in lysimeters for eight years suggest that the secondary phase reaction network developed using product consistency test (PCT) results at 90°C may need to be modified for field conditions. For sediment samples that had been collected from near the glass samples, the impact of glass corrosion could be readily observed based upon the pH of their water extracts. For unimpacted sediments the pH ranged from 7.88 to 8.11 with an average of 8.04. Sediments that had observable impacts from glass corrosion exhibited elevated pH values (as high as 9.97). For lysimeter sediment samples that appear to have been impacted by glass corrosion to the greatest extent, saturation indices determined for analcime, calcite, and chalcedony in the 1:1 water extracts were near equilibrium and were consistent with the secondary phase reaction network developed using PCT results at 90°C. Fe(OH)3(s) also appears to be essentially at equilibrium in extracts impacted by glass corrosion, but with a solubility product (log Ksp) that is approximately 2.13 units lower than that used in the secondary phase reaction network developed using PCT results at 90°C. The solubilities of TiO2(am) and ZrO2(am) also appear to be much lower than that assumed in the secondary phase reaction network developed using PCT results at 90°C. The extent that the solubility of TiO2(am) and ZrO2(am) were reduced relative to that assumed in the secondary phase reaction network developed using PCT results at 90°C could not be quantified because the concentrations of Ti and Zr in the extracts were below the estimated quantification limit. Gibbsite was consistently highly oversaturated in the extract while dawsonite was at or near equilibrium. This suggests that dawsonite might be a more suitable phase for the secondary phase reaction network than gibbsite under field conditions. This may be due to the availability of carbonate that exists in the Hanford sediments as calcite. A significant source of carbonate was not available in the PCTs and this may account for why this phase did not appear in the PCTs. Sepiolite was consistently highly undersaturated, suggesting that another phase controls the solubility of magnesium. For samples that were most impacted by the effects of glass corrosion, magnesite appears to control glass corrosion. For samples that show less impacts from glass corrosion, clinochlore-7A or saponite-Mg appears to control the magnesium concentrations. For zinc, it appears that zincite is a better candidate than Zn(OH)2-? for controlling zinc concentrations in the extracts; however, in some samples all zinc phases considered were highly oversaturated. As a result the phase that controls zinc concentrations in the lysimeter extracts remains uncertain.

  1. U.S. Geological Survey National Produced Waters Geochemical Database v2.0 (PROVISIONAL)

    E-Print Network [OSTI]

    Torgersen, Christian

    U.S. Geological Survey National Produced Waters Geochemical Database v2.0 (PROVISIONAL (USGS) National Produced Waters Geochemical Database v2.0 are provisional and subject to revision Produced Waters Geochemical Database v2.0 should be used with careful consideration of its limitations

  2. Synthesis of organic geochemical data from the Eastern Gas Shales

    SciTech Connect (OSTI)

    Zielinski, R.E.; McIver, R.D.

    1982-01-01T23:59:59.000Z

    Over 2400 core and cuttings samples of Upper Devonian shales from wells in the Appalachian, Illinois, and Michigan Basins have been characterized by organic geochemical methods to provide a basis for accelerating the exploitation of this unconventional, gas-rich resource. This work was part of a program initiated to provide industry with criteria for locating the best areas for future drilling and for the development of stimulation methods that will make recovery of the resource economically attractive. The geochemical assessment shows that the shale, in much of the Appalachian, Illinois, and Michigan Basins is source rock that is capable of generating enormous quantities of gas. In some areas the shales are also capable of generating large quantities of oil as well. The limiting factors preventing these sources from realizing most of their potential are their very low permeabilities and the paucity of potential reservoir rocks. This geochemical data synthesis gives direction to future selection of sites for stimulation research projects in the Appalachian Basin by pinpointing those areas where the greatest volumes of gas are contained in the shale matrix. Another accomplishment of the geochemical data synthesis is a new estimate of the total resource of the Appalachian Basin. The new estimate of 2500 TCF is 25 percent greater than the highest previous estimates. This gives greater incentive to government and industry to continue the search for improved stimulation methods, as well as for improved methods for locating the sites where those improved stimulation methods can be most effectively applied.

  3. argentina mineralogical geochemical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    argentina mineralogical geochemical First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 A shocking state:...

  4. ORIGINAL PAPER Geochemical Evolution of Great Salt Lake, Utah, USA

    E-Print Network [OSTI]

    Discipline, US Geological Survey, 2329 Orton Circle, Salt Lake City, UT 84119, USA R. J. Spencer GeoscienceORIGINAL PAPER Geochemical Evolution of Great Salt Lake, Utah, USA Blair F. Jones Ă? David L. Naftz Ă? Ronald J. Spencer Ă? Charles G. Oviatt Received: 13 June 2008 / Accepted: 10 November 2008

  5. Geophysical Monitoring of Coupled Microbial and Geochemical

    E-Print Network [OSTI]

    Hubbard, Susan

    , University of Bonn, 53115 Bonn, Germany, Department of Environmental Science, Policy and Management with measurement frequency (0.125and1Hz)andwasdependentuponthedominantmetabolic process. The spectral effect Groundwater contamination by industrial sources and nuclear weapons programs has promoted research

  6. Argonne Geothermal Geochemical Database v2.0

    SciTech Connect (OSTI)

    Harto, Christopher

    2013-05-22T23:59:59.000Z

    A database of geochemical data from potential geothermal sources aggregated from multiple sources as of March 2010. The database contains fields for the location, depth, temperature, pH, total dissolved solids concentration, chemical composition, and date of sampling. A separate tab contains data on non-condensible gas compositions. The database contains records for over 50,000 wells, although many entries are incomplete. Current versions of source documentation are listed in the dataset.

  7. Argonne Geothermal Geochemical Database v2.0

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Harto, Christopher

    A database of geochemical data from potential geothermal sources aggregated from multiple sources as of March 2010. The database contains fields for the location, depth, temperature, pH, total dissolved solids concentration, chemical composition, and date of sampling. A separate tab contains data on non-condensible gas compositions. The database contains records for over 50,000 wells, although many entries are incomplete. Current versions of source documentation are listed in the dataset.

  8. Asphaltenes as indicators of the geochemical history of oil

    SciTech Connect (OSTI)

    Aref'yev, O.A.; Makushina, V.M.; Petrov, A.A.

    1982-06-01T23:59:59.000Z

    A method of decomposition of native asphaltenes from naphthenic oils is proposed as a source of information on the geochemical history of the oils. It is demonstrated that formation of naphthenic oils occurs in nature through biodegradation of primary paraffinic oils. The relative abundances of structural groups and individual saturated hydrocarbons obtained from the asphaltenes in naphthenic oils is similar to the relative abundance of hydrocarbons in paraffinic oils, which are their genetic precursors. (JMT)

  9. Geochemical Prospecting of Hydrocarbons in Frontier Basins of India* By

    E-Print Network [OSTI]

    B. Kumar; D. J. Patil; G. Kalpana; C. Vishnu Vardhan

    India has 26 sedimentary basins with a basinal area of approximately 1.8x 10 6 km 2 (excluding deep waters), out of which seven are producing basins and two have proven potential. Exploration efforts in other basins, called “frontier basins ” are in progress. These basins are characterized by varied geology, age, tectonics, and depositional environments. Hydrocarbon shows in many of these basins are known, and in few basins oil and gas have flowed in commercial /non-commercial quantities. Within the framework of India Hydrocarbon Vision – 2025 and New Exploration Licensing Policy, there is a continuous increase in area under active exploration. The asset management concept with multi-disciplinary teams has created a demand for synergic application of risk-reduction technologies, including surface geochemical surveys. National Geophysical Research Institute (NGRI), Hyderabad, India has initiated/planned surface geochemical surveys composed of gas chromatographic and carbon isotopic analyses in few of the frontier basins of India. The adsorbed soil gas data in one of the basins (Saurashtra basin, Gujarat) has shown varied concentrations of CH4 to C4H10. The C1 concentration varies between 3 to 766 ppb and ??C2+, 1 to 543 ppb. This basin has thin soil cover and the Mesozoic sediments (probable source rocks) are overlain by thick cover of Deccan Traps. The scope and perspective of geochemical surveys in frontier basins of India are presented here.

  10. INEEL Subregional Conceptual Model Report Volume 2: Summary of Existing Knowledge of Geochemical Influences on the Fate and Transport of Contaminants in the Subsurface at the INEEL

    SciTech Connect (OSTI)

    Paul L. Wichlacz; Robert C. Starr; Brennon Orr

    2003-09-01T23:59:59.000Z

    This document summarizes previous descriptions of geochemical system conceptual models for the vadose zone and groundwater zone (aquifer) beneath the Idaho National Engineering and Environmental Laboratory (INEEL). The primary focus is on groundwater because contaminants derived from wastes disposed at INEEL are present in groundwater, groundwater provides a pathway for potential migration to receptors, and because geochemical characteristics in and processes in the aquifer can substantially affect the movement, attenuation, and toxicity of contaminants. The secondary emphasis is perched water bodies in the vadose zone. Perched water eventually reaches the regional groundwater system, and thus processes that affect contaminants in the perched water bodies are important relative to the migration of contaminants into groundwater. Similarly, processes that affect solutes during transport from nearsurface disposal facilities downward through the vadose zone to the aquifer are relevant. Sediments in the vadose zone can affect both water and solute transport by restricting the downward migration of water sufficiently that a perched water body forms, and by retarding solute migration via ion exchange. Geochemical conceptual models have been prepared by a variety of researchers for different purposes. They have been published in documents prepared by INEEL contractors, the United States Geological Survey (USGS), academic researchers, and others. The documents themselves are INEEL and USGS reports, and articles in technical journals. The documents reviewed were selected from citation lists generated by searching the INEEL Technical Library, the INEEL Environmental Restoration Optical Imaging System, and the ISI Web of Science databases. The citation lists were generated using the keywords ground water, groundwater, chemistry, geochemistry, contaminant, INEL, INEEL, and Idaho. In addition, a list of USGS documents that pertain to the INEEL was obtained and manually searched. The documents that appeared to be the most pertinent were selected from further review. These documents are tabulated in the citation list. This report summarizes existing geochemical conceptual models, but does not attempt to generate a new conceptual model or select the ''right'' model. This document is organized as follows. Geochemical models are described in general in Section 2. Geochemical processes that control the transport and fate of contaminants introduced into groundwater are described in Section 3. The natural geochemistry of the Eastern Snake River Plain Aquifer (SRPA) is described in Section 4. The effect of waste disposal on the INEEL subsurface is described in Section 5. The geochemical behavior of the major contaminants is described in Section 6. Section 7 describes the site-specific geochemical models developed for various INEEL facilities.

  11. E-Print Network 3.0 - aquifers geochemical results Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for: aquifers geochemical results Page: << < 1 2 3 4 5 > >> 1 Treated domestic wastewater traditionally has been discharged offshore in coastal areas via ocean outfalls. In...

  12. Review of geochemical measurement techniques for a nuclear waste repository in bedded salt

    SciTech Connect (OSTI)

    Knauss, K.G.; Steinborn, T.L.

    1980-05-22T23:59:59.000Z

    A broad, general review is presented of geochemical measurement techniques that can provide data necessary for site selection and repository effectiveness assessment for a radioactive waste repository in bedded salt. The available measurement techniques are organized according to the parameter measured. The list of geochemical parameters include all those measurable geochemical properties of a sample whole values determine the geochemical characteristics or behavior of the system. For each technique, remarks are made pertaining to the operating principles of the measurement instrument and the purpose for which the technique is used. Attention is drawn to areas where further research and development are needed.

  13. MULTI-SCALE ANALYSIS OF MULTIPARAMETER GEOPHYSICAL AND GEOCHEMICAL DATA FROM

    E-Print Network [OSTI]

    Williams-Jones, Glyn

    MULTI-SCALE ANALYSIS OF MULTIPARAMETER GEOPHYSICAL AND GEOCHEMICAL DATA FROM ACTIVE VOLCANIC Name: MAURI Guillaume Degree: PhD of Science Title of Thesis: Multi-scale analysis of multiparameter geophysical and geochemical data from active volcanic systems Examining Committee: Chair: Dr John Clague

  14. Surface and Subsurface Geochemical Monitoring of an EOR-CO2 Field: Buracica, Brazil

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Surface and Subsurface Geochemical Monitoring of an EOR-CO2 Field: Buracica, Brazil C. Magnier1, V Monitoring of an EOR-CO2 Field: Buracica, Brazil -- This paper presents a surface and subsurface geochemical survey of the Buracica EOR-CO2 field onshore Brazil. We adopted a methodology coupling the stable

  15. The hydrogeologic-geochemical model of Cerro Prieto revisited

    SciTech Connect (OSTI)

    Lippmann, M.J.; Halfman, S.E.; Truesdell, A.H.; Manon M., A.

    1989-01-01T23:59:59.000Z

    As the exploitation of the Cerro Prieto, Mexico, geothermal field continues, there is increasing evidence that the hydrogeologic model developed by Halfman et al. (1984, 1986) presents the basic features controlling the movement of geothermal fluids in the system. At the present time the total installed capacity at Cerro Prieto is 620 MWe requiring the production of more than 10,500 tonnes/hr of a brine-steam mixture. This significant rate of fluid production has resulted in changes in reservoir thermodynamic conditions and in the chemistry of the produced fluids. After reviewing the hydrogeologic-geochemical model of Cerro Prieto, some of the changes observed in the field due to its exploitation are discussed and interpreted on the basis of the model. 21 refs., 11 figs., 1 tab.

  16. WATEQ3 geochemical model: thermodynamic data for several additional solids

    SciTech Connect (OSTI)

    Krupka, K.M.; Jenne, E.A.

    1982-09-01T23:59:59.000Z

    Geochemical models such as WATEQ3 can be used to model the concentrations of water-soluble pollutants that may result from the disposal of nuclear waste and retorted oil shale. However, for a model to competently deal with these water-soluble pollutants, an adequate thermodynamic data base must be provided that includes elements identified as important in modeling these pollutants. To this end, several minerals and related solid phases were identified that were absent from the thermodynamic data base of WATEQ3. In this study, the thermodynamic data for the identified solids were compiled and selected from several published tabulations of thermodynamic data. For these solids, an accepted Gibbs free energy of formation, ..delta..G/sup 0//sub f,298/, was selected for each solid phase based on the recentness of the tabulated data and on considerations of internal consistency with respect to both the published tabulations and the existing data in WATEQ3. For those solids not included in these published tabulations, Gibbs free energies of formation were calculated from published solubility data (e.g., lepidocrocite), or were estimated (e.g., nontronite) using a free-energy summation method described by Mattigod and Sposito (1978). The accepted or estimated free energies were then combined with internally consistent, ancillary thermodynamic data to calculate equilibrium constants for the hydrolysis reactions of these minerals and related solid phases. Including these values in the WATEQ3 data base increased the competency of this geochemical model in applications associated with the disposal of nuclear waste and retorted oil shale. Additional minerals and related solid phases that need to be added to the solubility submodel will be identified as modeling applications continue in these two programs.

  17. The dynamics of oceanic transform faults : constraints from geophysical, geochemical, and geodynamical modeling

    E-Print Network [OSTI]

    Gregg, Patricia Michelle Marie

    2008-01-01T23:59:59.000Z

    Segmentation and crustal accretion at oceanic transform fault systems are investigated through a combination of geophysical data analysis and geodynamical and geochemical modeling. Chapter 1 examines the effect of fault ...

  18. Do geochemical estimates of sediment focusing pass the sediment test in the equatorial Pacific?

    E-Print Network [OSTI]

    Kurapov, Alexander

    Do geochemical estimates of sediment focusing pass the sediment test in the equatorial Pacific] The paleoceanographic recording fidelity of pelagic sediments is limited by chemical diagenesis and physical mixing (bioturbation and horizontal sediment transport). Diagenesis and bioturbation are relatively well

  19. A Geological and Hydro-Geochemical Study of the Animas Geothermal...

    Open Energy Info (EERE)

    Hydro-Geochemical Study of the Animas Geothermal Area, Hidalgo County, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Geological...

  20. Migratory patterns of American shad (Alosa sapidissima) revealed by natural geochemical tags in otoliths

    E-Print Network [OSTI]

    Walther, Benjamin (Benjamin Dwaine)

    2007-01-01T23:59:59.000Z

    Geochemical signatures in the otoliths of diadromous fishes may allow for retrospective analyses of natal origins. In an assessment of river-specific signatures in American shad (Alosa sapidissima), an anadromous clupeid ...

  1. Geochemical Behaviour of S, Cl and Fe in Silicate Melts/Glasses...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geochemical Behaviour of S, Cl and Fe in Silicate MeltsGlasses Simulating Natural Magmas Monday, March 26, 2012 - 11:00am SSRL Conference Room 137-322 G. Giuli, R. Alonso-Mori, E....

  2. UPb and geochemical evidence for a Cryogenian magmatic arc in central Novaya Zemlya, Arctic Russia

    E-Print Network [OSTI]

    Svensen, Henrik

    U­Pb and geochemical evidence for a Cryogenian magmatic arc in central Novaya Zemlya, Arctic Russia-0349 Oslo, Norway Introduction The High Arctic of Scandinavia and Russia consists of a collage

  3. Geochemical heterogeneity in the Hawaiian plume : constraints from Hawaiian volcanoes and Emperor seamounts

    E-Print Network [OSTI]

    Huang, Shichun

    2005-01-01T23:59:59.000Z

    The 6000-km long, age-progressive linear Hawaii-Emperor Chain is one of the best defined hotspot tracks. This hotspot track plays an important role in the plume hypothesis. In this research, geochemical data on the ...

  4. MINTEQ2 geochemical code: provisionary organic data base

    SciTech Connect (OSTI)

    Morrey, J.R.; Krupka, K.M.; Dove, F.H.

    1985-10-01T23:59:59.000Z

    Organic components in aqueous radioactive chemical sources, surface waters, and ground waters could substantially alter the mobility of radioactive and other important nonradioactive elements released from a defense waste disposal system. It is therefore important to be able to predict, as accurately as possible, the effects of selected organic components on the solubilities of radionuclides and important nonradioactive elements. The geochemical code MINTEQ2 can be used to assess solubilities provided that appropriate thermochemical data for organic and inorganic aqueous species and solids are available for its use. The code accepts an assemblage of gaseous and solid phases in contact with an aqueous phase and calculates the thermochemical equilibrium between these phases. Unlike typical hydrologic flow and transport codes where the data base is entirely site specific (i.e., parameters particular to the specific site), MINTEQ2 requires an additional generic thermochemical data base. This report discusses the addition of provisionary organic reactions and associated equilibrium constants to the generic data base that can be used by MINTEQ2 in scoping calculations or preliminary performance assessments.

  5. Geochemical information for sites contaminated with low-level radioactive wastes. III. Weldon Spring Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1985-02-01T23:59:59.000Z

    The Weldon Spring Storage Site (WSSS), which includes both the chemical site and the quarry, became radioactively contaminated as the result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy (DOE) is considering various remedial action options for the WSSS. This report describes the results of geochemical investigations carried out at Oak Ridge National Laboratory (ORNL) to support these activities and to help quantify various remedial action options. Soil and groundwater samples were characterized, and uranium and radium sorption ratios were measured in site soil/groundwater systems by batch contact methodology. Soil samples from various locations around the raffinate pits were found to contain major amounts of silica, along with illite as the primary clay constituent. Particle sizes of the five soil samples were variable (50% distribution point ranging from 12 to 81 ..mu..m); the surface areas varied from 13 to 62 m/sup 2//g. Elemental analysis of the samples showed them to be typical of sandy clay and silty clay soils. Groundwater samples included solution from Pit 3 and well water from Well D. Anion analyses showed significant concentrations of sulfate and nitrate (>350 and >7000 mg/L, respectively) in the solution from Pit 3. These anions were also present in the well water, but in lower concentrations. Uranium sorption ratios for four of the soil samples contacted with the solution from Pit 3 were moderate to high (approx. 300 to approx. 1000 mL/g). The fifth sample had a ratio of only 12 mL/g. Radium sorption ratios for the five samples were moderate to high (approx. 600 to approx. 1000 mL/g). These values indicate that soil at the WSSS may show favorable retardation of uranium and radium in the groundwater. 13 references, 13 figures, 10 tables.

  6. HYDROGEOCHEM: A coupled model of HYDROlogic transport and GEOCHEMical equilibria in reactive multicomponent systems

    SciTech Connect (OSTI)

    Yeh, G.T.; Tripathi, V.S.

    1990-11-01T23:59:59.000Z

    This report presents the development of a hydrogeochemical transport model for multicomponent systems. The model is designed for applications to proper hydrological setting, accommodation of complete suite of geochemical equilibrium processes, easy extension to deal with chemical kinetics, and least constraints of computer resources. The hydrological environment to which the model can be applied is the heterogeneous, anisotropic, saturated-unsaturated subsurface media under either transient or steady state flow conditions. The geochemical equilibrium processes included in the model are aqueous complexation, adsorption-desorption, ion exchange, precipitation-dissolution, redox, and acid-base reactions. To achieve the inclusion of the full complement of these geochemical processes, total analytical concentrations of all chemical components are chosen as the primary dependent variables in the hydrological transport equations. Attendant benefits of this choice are to make the extension of the model to deal with kinetics of adsorption-desorption, ion exchange, precipitation-dissolution, and redox relatively easy. To make the negative concentrations during the iteration between the hydrological transport and geochemical equilibrium least likely, an implicit form of transport equations are proposed. To alleviate severe constraints of computer resources in terms of central processing unit (CPU) time and CPU memory, various optional numerical schemes are incorporated in the model. The model consists of a hydrological transport module and geochemical equilibrium module. Both modules were thoroughly tested in code consistency and were found to yield plausible results. The model is verified with ten examples. 79 refs., 21 figs., 17 tabs.

  7. Soil Iodine Determination in Deccan Syneclise, India: Implications for Near Surface Geochemical Hydrocarbon Prospecting

    SciTech Connect (OSTI)

    Mani, Devleena, E-mail: devleenatiwari@ngri.res.in [National Geophysical Research Institute (Council of Scientific and Industrial Research) (India); Kumar, T. Satish [Oil India Limited (India); Rasheed, M. A.; Patil, D. J.; Dayal, A. M.; Rao, T. Gnaneshwar; Balaram, V. [National Geophysical Research Institute (Council of Scientific and Industrial Research) (India)

    2011-03-15T23:59:59.000Z

    The association of iodine with organic matter in sedimentary basins is well documented. High iodine concentration in soils overlying oil and gas fields and areas with hydrocarbon microseepage has been observed and used as a geochemical exploratory tool for hydrocarbons in a few studies. In this study, we measure iodine concentration in soil samples collected from parts of Deccan Syneclise in the west central India to investigate its potential application as a geochemical indicator for hydrocarbons. The Deccan Syneclise consists of rifted depositional sites with Gondwana-Mesozoic sediments up to 3.5 km concealed under the Deccan Traps and is considered prospective for hydrocarbons. The concentration of iodine in soil samples is determined using ICP-MS and the values range between 1.1 and 19.3 ppm. High iodine values are characteristic of the northern part of the sampled region. The total organic carbon (TOC) content of the soil samples range between 0.1 and 1.3%. The TOC correlates poorly with the soil iodine (r{sup 2} < 1), indicating a lack of association of iodine with the surficial organic matter and the possibility of interaction between the seeping hydrocarbons and soil iodine. Further, the distribution pattern of iodine compares well with two surface geochemical indicators: the adsorbed light gaseous hydrocarbons (methane through butane) and the propane-oxidizing bacterial populations in the soil. The integration of geochemical observations show the occurrence of elevated values in the northern part of the study area, which is also coincident with the presence of exposed dyke swarms that probably serve as conduits for hydrocarbon microseepage. The corroboration of iodine with existing geological, geophysical, and geochemical data suggests its efficacy as one of the potential tool in surface geochemical exploration of hydrocarbons. Our study supports Deccan Syneclise to be promising in terms of its hydrocarbon prospects.

  8. Geochemical characterization of geothermal systems in the Great...

    Open Energy Info (EERE)

    insights into the possible contributions of geothermal systems to groundwater chemistry and development of mitigation strategies for attendant environmental issues....

  9. Geochemical composition and provenance discrimination of coastal sediments around Cheju Island in the southeastern Yellow Sea

    E-Print Network [OSTI]

    Yang, Shouye

    in the southeastern Yellow Sea S.Y. Yanga,b,*, D.I. Lima , H.S. Junga , B.C. Ohc a Marine Environment and Climate Change Laboratory, Korea Ocean Research and Development Institute, Ansan P.O. Box 29, Seoul 425) compositions and geochemical discrimination diagrams were revealed to be useful indices for identifying

  10. Microscale geochemical gradients in Hanford 300 Area sediment biofilms and influence of uranium

    SciTech Connect (OSTI)

    Nguyen, Hung D.; Cao, Bin; Mishra, Bhoopesh; Boyanov, Maxim I.; Kemner, Kenneth M.; Fredrickson, Jim K.; Beyenal, Haluk

    2012-01-01T23:59:59.000Z

    The presence and importance of microenvironments in the subsurface at contaminated sites were suggested by previous geochemical studies. However, no direct quantitative characterization of the geochemical microenvironments had been reported. We quantitatively characterized microscale geochemical gradients (dissolved oxygen (DO), H(2), pH, and redox potential) in Hanford 300A subsurface sediment biofilms. Our results revealed significant differences in geochemical parameters across the sediment biofilm/water interface in the presence and absence of U(VI) under oxic and anoxic conditions. While the pH was relatively constant within the sediment biofilm, the redox potential and the DO and H(2) concentrations were heterogeneous at the microscale (<500-1000 ?m). We found microenvironments with high DO levels (DO hotspots) when the sediment biofilm was exposed to U(VI). On the other hand, we found hotspots (high concentrations) of H(2) under anoxic conditions both in the presence and in the absence of U(VI). The presence of anoxic microenvironments inside the sediment biofilms suggests that U(VI) reduction proceeds under bulk oxic conditions. To test this, we operated our biofilm reactor under air-saturated conditions in the presence of U(VI) and characterized U speciation in the sediment biofilm. U L(III)-edge X-ray absorption spectroscopy (XANES and EXAFS) showed that 80-85% of the U was in the U(IV) valence state.

  11. 22th International Meeting on org. geochem. The fate of organic matter in mangrove sediments

    E-Print Network [OSTI]

    Boyer, Edmond

    22th International Meeting on org. geochem. The fate of organic matter in mangrove sediments and the unvegetated sediments, and various vascular plants specific to these swamps. An elemental, pyrolytic sediments characterised by great changes in the redox conditions. Several specific results have already been

  12. Laghi di Monticchio (Southern Italy, Region Basilicata): genesis of sediments--a geochemical study

    E-Print Network [OSTI]

    Boyer, Edmond

    Laghi di Monticchio (Southern Italy, Region Basilicata): genesis of sediments--a geochemical study and Sediments, Telegrafenberg C328, 14473 Potsdam, Germany (2) Institut des Sciences de la Terre d'Orléans (ISTO Cedex 2, France Abstract The sedimentation record of Lago Grande di Monticchio (LGM) is one of the most

  13. Discrimination of geochemical compositions between the Changjiang and the Huanghe sediments and

    E-Print Network [OSTI]

    Yang, Shouye

    Discrimination of geochemical compositions between the Changjiang and the Huanghe sediments and its application for the identi¢cation of sediment source in the Jiangsu coastal plain, China S.Y. Yang a;b;� , C 2002 Abstract Concentrations of 25 elements in the fine-grained fraction ( 6 63 Wm) of bottom sediments

  14. Continental Shelf Research 26 (2006) 1524 Geochemical compositions of river and shelf sediments in the

    E-Print Network [OSTI]

    Yang, Shouye

    Continental Shelf Research 26 (2006) 15­24 Geochemical compositions of river and shelf sediments in the Yellow Sea: Grain-size normalization and sediment provenance D.I. Lima,�, H.S. Jungb , J.Y. Choic , S 14 November 2005 Abstract The geochemistry of sediment samples from Korean and Chinese rivers

  15. Measuring prehistoric mobility strategies based on obsidian geochemical and technological signatures in the Owens Valley, California

    E-Print Network [OSTI]

    Measuring prehistoric mobility strategies based on obsidian geochemical and technological; Lithic technology; LA-ICP-MS; Mobility strategies; Owens Valley 1. Introduction Obsidian studies compare the organization of obsidian flaked stone technologies in two different time periods at CA-INY-30

  16. Assessing XRF for the geochemical characterization of radiolarian chert artifacts from northeastern North America

    E-Print Network [OSTI]

    Long, Bernard

    Assessing XRF for the geochemical characterization of radiolarian chert artifacts from northeastern 2012 Keywords: Chert XRF Geochemistry Non-destructive Weathering Quarries Quebec a b s t r a c-ray fluorescence (ED-XRF) as a first-order technique to determine chert whole-rock geochemistry for archaeological

  17. Geochemical assessment of nuclear waste isolation. Report of activities during fiscal year 1982

    SciTech Connect (OSTI)

    Not Available

    1983-07-01T23:59:59.000Z

    The status of the following investigations is reported: canister/overpack-backfill chemical interactions and mechanisms; backfill and near-field host rock chemical interactions mechanisms; far-field host rock geochemical interactions; verification and improvement of predictive algorithms for radionuclide migration; and geologic systems as analogues for long-term radioactive waste isolation.

  18. Geochemical evidence for possible natural migration of Marcellus Formation brine to

    E-Print Network [OSTI]

    as the potential for contamination from toxic substances in hydraulic fracturing fluid and/or pro- duced brinesGeochemical evidence for possible natural migration of Marcellus Formation brine to shallow of stray gas, metal-rich formation brines, and hydrau- lic fracturing and/or flowback fluids to drinking

  19. Inferring dispersal and migrations from incomplete geochemical baselines: analysis of population structure

    E-Print Network [OSTI]

    Shima, Jeff

    . 2008). Trace element tags as well as stable iso- topes contained within inert structures, such as fish baseline or reference atlas. Individuals of unknown origin are then assigned to one of the sources in this reference atlas based on their geochemical signature. The identifiability of potential sources is

  20. CAN THE GEOCHEMICAL TOPSOIL ATLAS BE USED TO PREDICT TRACE METAL DEFICIENCY IN CATTLE?

    E-Print Network [OSTI]

    Nottingham, University of

    CAN THE GEOCHEMICAL TOPSOIL ATLAS BE USED TO PREDICT TRACE METAL DEFICIENCY IN CATTLE? By: Emily courtesy LTSN Bioscience. http://bio.ltsn.ac.uk/imagebank/ Just as trace metals are important to humans to the structural stability of molecules and membranes. For these reasons, incorrect trace metal levels can

  1. Organic geochemical evidence for pine tar production in middle Eastern Sweden during the Roman Iron Age

    E-Print Network [OSTI]

    Organic geochemical evidence for pine tar production in middle Eastern Sweden during the Roman Iron Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden b Upplands muse´et, St: Eriks gra¨nd 6, SE-753 10 Uppsala, Sweden Received 21 September 2004; received in revised form 15 June 2005; accepted 21

  2. Geochemical Constraints on the Origin of a Shallow Ash Occurrence: in the Mahanadi Basin, offshore India

    E-Print Network [OSTI]

    New Hampshire, University of

    Geochemical Constraints on the Origin of a Shallow Ash Occurrence: in the Mahanadi Basin, offshore sampled in the continental margins offshore India (Fig 1). A volcanic ash layer was recovered below seafloor Surrounding Sediments: Grey sediment in A is a nannofossil and plant debris bearing clay

  3. A GEOCHEMICAL MODULE FOR "AMDTreat" TO COMPUTE CAUSTIC QUANTITY, EFFLUENT QUALITY, AND SLUDGE VOLUME1

    E-Print Network [OSTI]

    1413 A GEOCHEMICAL MODULE FOR "AMDTreat" TO COMPUTE CAUSTIC QUANTITY, EFFLUENT QUALITY, AND SLUDGE with the quantities of chemical added and sludge produced. The pH and metals concentrations do not change linearlyH and the corresponding effluent composition and sludge volume can not be accurately determined without empirical

  4. Large sedimentary aquifer system and sustainable management: investigations of hydrogeological and geochemical variations in

    E-Print Network [OSTI]

    Boyer, Edmond

    is roughly half a meter per year. Furthermore, in the south part, around two sites of gas storage and geochemical variations in Eocene sand aquifer, south western France E. MALCUIT 1 , Ph. NEGREL 2 , E. PETELET-GIRAUD 3 , P. DURST 1 1 BRGM, Regional Geological Survey Service Bordeaux, France, 2 BRGM, Metrology

  5. The impact of local geochemical variability on quantifying hillslope soil production and chemical weathering

    E-Print Network [OSTI]

    Heimsath, Arjun M.

    the physical and chemical processes of soil production and erosion and revisit three granitic study areas on the hillslope-scale physical and chemical soil production and erosion processes. To explain why understandingThe impact of local geochemical variability on quantifying hillslope soil production and chemical

  6. Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation to seeping fluids

    E-Print Network [OSTI]

    Mazzini, Adriano

    Methane-related authigenic carbonates from the Black Sea: geochemical characterisation and relation of carbon derived from the anaerobic oxidation of methane (AOM), the oxidation of organic matter and from sea water. Methane is the dominant component among other hydrocarbon gases in these sediments. Its

  7. Geochemical anomalies in soil and sandstone overlying the Phoenix uranium deposit, Athabasca Basin Natural Resources

    E-Print Network [OSTI]

    Co Mo Ni UU Geochemical anomalies in soil and sandstone overlying the Phoenix uranium deposit, Athabasca Basin Natural Resources Canada Geological Survey of Canada with Provincial and Territorial Collaboration Introduction The Wheeler River Property, host of Denison Mine's Phoenix uranium deposit

  8. Paper #194973 GEOCHEMICAL CHARACTERIZATION OF THE RESERVOIR HOSTING SHALE-GAS AND OIL in

    E-Print Network [OSTI]

    Paper #194973 GEOCHEMICAL CHARACTERIZATION OF THE RESERVOIR HOSTING SHALE-GAS AND OIL a reservoir for shale-gas and oil. We examined organic-rich black shale, known as Macasty shale, of Upper SHALE-GAS AND OIL in THE SUBSURFACE OF ANTICOSTI ISLAND, CANADA Key Words: Provenance, Anticosti Island

  9. Geochemical Data Package for the 2005 Hanford Integrated Disposal Facility Performance Assessment

    SciTech Connect (OSTI)

    Krupka, Kenneth M.; Serne, R JEFFREY.; Kaplan, D I.

    2004-09-30T23:59:59.000Z

    CH2M HILL Hanford Group, Inc. (CH2M HILL) is designing and assessing the performance of an integrated disposal facility (IDF) to receive low-level waste (LLW), mixed low-level waste (MLLW), immobilized low-activity waste (ILAW), and failed or decommissioned melters. The CH2M HILL project to assess the performance of this disposal facility is the Hanford IDF Performance Assessment (PA) activity. The goal of the Hanford IDF PA activity is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface-water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities, and the consequent transport of dissolved contaminants in the vadose zone to groundwater where contaminants may be re-introduced to receptors via drinking water wells or mixing in the Columbia River. Pacific Northwest National Laboratory (PNNL) assists CH2M HILL in their performance assessment activities. One of the PNNL tasks is to provide estimates of the geochemical properties of the materials comprising the IDF, the disturbed region around the facility, and the physically undisturbed sediments below the facility (including the vadose zone sediments and the aquifer sediments in the upper unconfined aquifer). The geochemical properties are expressed as parameters that quantify the adsorption of contaminants and the solubility constraints that might apply for those contaminants that may exceed solubility constraints. The common parameters used to quantify adsorption and solubility are the distribution coefficient (Kd) and the thermodynamic solubility product (Ksp), respectively. In this data package, we approximate the solubility of contaminants using a more simplified construct, called the solution concentration limit, a constant value. The Kd values and solution concentration limits for each contaminant are direct inputs to subsurface flow and transport codes used to predict the performance of the IDF system. In addition to the best-estimate Kd values, a reasonable conservative value and a range are provided. The data package does not list estimates for the range in solubility limits or their uncertainty. However, the data package does provide different values for both the Kd values and solution concentration limits for different spatial zones in the IDF system and does supply time-varying Kd values for the cement solidified waste. The Kd values and solution concentration limits presented for each contaminant were previously presented in a report prepared by Kaplan and Serne (2000) for the 2001 ILAW PA, and have been updated to include applicable data from investigations completed since the issuance of that report and improvements in our understanding of the geochemistry specific to Hanford. A discussion is also included of the evolution of the Kd values recommended from the original 1999 ILAW PA through the 2001 ILAW and 2003 Supplement PAs to the current values to be used for the 2005 IDF PA for the key contaminants of concern: Cr(VI), nitrate, 129I, 79Se, 99Tc, and U(VI). This discussion provides the rationale for why certain Kd have changed with time.

  10. Model-Based Analysis of the Role of Biological, Hydrological and Geochemical Factors Affecting Uranium Bioremediation

    SciTech Connect (OSTI)

    Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan

    2011-01-24T23:59:59.000Z

    Uranium contamination is a serious concern at several sites motivating the development of novel treatment strategies such as the Geobacter-mediated reductive immobilization of uranium. However, this bioremediation strategy has not yet been optimized for the sustained uranium removal. While several reactive-transport models have been developed to represent Geobacter-mediated bioremediation of uranium, these models often lack the detailed quantitative description of the microbial process (e.g., biomass build-up in both groundwater and sediments, electron transport system, etc.) and the interaction between biogeochemical and hydrological process. In this study, a novel multi-scale model was developed by integrating our recent model on electron capacitance of Geobacter (Zhao et al., 2010) with a comprehensive simulator of coupled fluid flow, hydrologic transport, heat transfer, and biogeochemical reactions. This mechanistic reactive-transport model accurately reproduces the experimental data for the bioremediation of uranium with acetate amendment. We subsequently performed global sensitivity analysis with the reactive-transport model in order to identify the main sources of prediction uncertainty caused by synergistic effects of biological, geochemical, and hydrological processes. The proposed approach successfully captured significant contributing factors across time and space, thereby improving the structure and parameterization of the comprehensive reactive-transport model. The global sensitivity analysis also provides a potentially useful tool to evaluate uranium bioremediation strategy. The simulations suggest that under difficult environments (e.g., highly contaminated with U(VI) at a high migration rate of solutes), the efficiency of uranium removal can be improved by adding Geobacter species to the contaminated site (bioaugmentation) in conjunction with the addition of electron donor (biostimulation). The simulations also highlight the interactive effect of initial cell concentration and flow rate on U(VI) reduction.

  11. Origin of geochemical heterogeneity in the mantle : constraints from volcanism associated with Hawaiian and Kerguelen mantle plumes

    E-Print Network [OSTI]

    Xu, Guangping

    2007-01-01T23:59:59.000Z

    Lavas derived from long-lived mantle plumes provide important information of mantle compositions and the processes that created the geochemical heterogeneity within the mantle. Kerguelen and Hawaii are two long-lived mantle ...

  12. Geologic and geochemical studies of the New Albany Shale Group (Devonian-Mississippian) in Illinois. Final report

    SciTech Connect (OSTI)

    Bergstrom, R.E.; Shimp, N.F.

    1980-06-30T23:59:59.000Z

    The Illinois State Geological Survey is conducting geological and geochemical investigations to evaluate the potential of New Albany Group shales as a source of hydrocarbons, particularly natural gas. Geological studies include stratigraphy and structure, mineralogic and petrographic characterization; analyses of physical properties; and development of a computer-based resources evaluation system. Geochemical studies include organic carbon content and trace elements; hydrocarbon content and composition; and adsorption/desorption studies of gas through shales. Separate abstracts have been prepared for each task reported.

  13. Hydrological and geochemical monitoring for a CO2 sequestration pilot in a brine formation

    SciTech Connect (OSTI)

    Doughty, Christine; Pruess, Karsten; Benson, Sally M.; Freifeld, Barry M.; Gunter, William D.

    2004-05-17T23:59:59.000Z

    Hydrological and geochemical monitoring are key components of site characterization and CO2 plume monitoring for a pilot test to inject CO2 into a brine-bearing sand of the fluvial-deltaic Frio formation in the upper Texas Gulf Coast. In situ, injected CO2 forms a supercritical phase that has gas-like properties (low density and viscosity) compared to the surrounding brine, while some CO2 dissolves in the brine. The pilot test employs one injection well and one monitor well, with continuous pressure and flow-rate monitoring in both wells, and continuous surface fluid sampling and periodic down-hole fluid sampling from the monitor well. Pre-injection site-characterization includes pump tests with pressure-transient analysis to estimate single-phase flow properties, establish hydraulic connectivity between the wells, determine appropriate boundary conditions, and analyze ambient phase conditions within the formation. Additionally, a pre-injection tracer test furnishes estimates of kinematic porosity and the geometry of flow paths between injection and monitor wells under single-phase conditions. Pre-injection geochemical sampling provides a baseline for subsequent geochemical monitoring and helps determine the optimal tracers to accompany CO2 injection. During CO2 injection, hydrological monitoring enables estimation of two-phase flow properties and helps track the movement of the injected CO2 plume, while geochemical sampling provides direct evidence of the arrival of CO2 and tracers at the monitor well. Furthermore, CO2-charged water acts as a weak acid, and reacts to some extent with the minerals in the aquifer, producing a distinct chemical signature in the water collected at the monitor well. Comparison of breakthrough curves for the single-phase tracer test and the CO2 (and its accompanying tracers) illuminates two-phase flow processes between the supercritical CO2 and native brine, an area of current uncertainty that must be better understood to effectively sequester CO2 in saline aquifers.

  14. Geochemical Processes Data Package for the Vadose Zone in the Single-Shell Tank Waste Management Areas at the Hanford Site

    SciTech Connect (OSTI)

    Cantrell, Kirk J.; Zachara, John M.; Dresel, P. Evan; Krupka, Kenneth M.; Serne, R. Jeffrey

    2007-09-28T23:59:59.000Z

    This data package discusses the geochemistry of vadose zone sediments beneath the single-shell tank farms at the U.S. Department of Energy’s (DOE’s) Hanford Site. The purpose of the report is to provide a review of the most recent and relevant geochemical process information available for the vadose zone beneath the single-shell tank farms and the Integrated Disposal Facility. Two companion reports to this one were recently published which discuss the geology of the farms (Reidel and Chamness 2007) and groundwater flow and contamination beneath the farms (Horton 2007).

  15. Geochemical Data Package for Performance Assessment Calculations Related to the Savannah River Site

    SciTech Connect (OSTI)

    Kaplan, D

    2006-02-28T23:59:59.000Z

    The Savannah River Site disposes of certain types of radioactive waste within subsurface-engineered facilities. One of the tools used to establish the capacity of a given site to safely store radioactive waste (i.e., that a site does not exceed its Waste Acceptance Criteria) is the Performance Assessment (PA). The objective of this document is to provide the geochemical values for the PA calculations. This work is being conducted as part of the on-going maintenance program that permits the PA to periodically update existing calculations when new data becomes available. Because application of values without full understanding of their original purpose may lead to misuse, this document also provides the geochemical conceptual model, approach used for selecting the values, the justification for selecting data, and the assumptions made to assure that the conceptual and numerical geochemical models are reasonably conservative (i.e., reflect conditions that will tend to predict the maximum risk to the hypothetical recipient). The geochemical parameters describe transport processes for 38 elements (>90 radioisotopes) potentially occurring within eight disposal units (Slit Trenches, Engineered Trenches, Low Activity Waste (LAW) Vault, Intermediate Level (ILV) Vaults, TRU-Pad-1, Naval Reactor Waste Pads, Components-in-Grout Trenches, and Saltstone Facility). This work builds upon well-documented work from previous PA calculations (McDowell-Boyer et al. 2000). The new geochemical concepts introduced in this data package are: (1) In the past, solubility products were used only in a few conditions (element existing in a specific environmental setting). This has been expanded to >100 conditions. (2) Radionuclide chemistry in cementitious environments is described through the use of both the Kd and apparent solubility concentration limit. Furthermore, the solid phase is assumed to age during the assessment period (thousands of years), resulting in three main types of controlling solid phases, each possessing a unique set of radionuclide sorption parameters (Kd and solubility concentration limit). (3) A large amount of recent site-specific sorption research has been conducted since the last PA (McDowell-Boyer et al. 2000). These new data have replaced previous Kd values derived from literature values, thus reducing uncertainty and improving accuracy. Finally, because this document will be used by future PA calculations and external acceptance of the document will eventually be required, this document was extensively reviewed. The review process, including the internal review, site review, and external review process is described.

  16. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    SciTech Connect (OSTI)

    Krupka, Kenneth M.; Cantrell, Kirk J.; McGrail, B. Peter

    2010-09-28T23:59:59.000Z

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ?fG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than approximately one-third of these compounds. Because the temperatures of host formations that will be used for CO2 injection and sequestration will be at tempera¬tures in the range of 50şC to 100şC or greater, the lack of high temperature thermodynamic values for key carbonate compounds especially minerals, will impact the accuracy of some modeling calculations.

  17. Analysis and Geochemical Modeling of Vanadium Contamination in Groundwater

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation andEnergy|thermoelectricDepartmentNew

  18. Geochemical information for sites contaminated with low-level radioactive wastes: II. St. Louis Airport Storage Site

    SciTech Connect (OSTI)

    Seeley, F.G.; Kelmers, A.D.

    1985-01-01T23:59:59.000Z

    The St. Louis Airport Storage Site (SLASS) became radioactively contaminated as a result of wastes that were being stored from operations to recover uranium from pitchblende ores in the 1940s and 1950s. The US Department of Energy is considering various remedial action options for the SLASS under the Formerly Utilized Site Remedial Action Program (FUSRAP). This report describes the results of geochemical investigations, carried out to support the FUSRAP activities and to aid in quantifying various remedial action options. Soil and groundwater samples from the site were characterized, and sorption ratios for uranium and radium and apparent concentration limit values for uranium were measured in soil/groundwater systems by batch contact methodology. The uranium and radium concentrations in soil samples were significantly above background near the old contaminated surface horizon (now at the 0.3/sup -/ to 0.9/sup -/m depth); the maximum values were 1566 ..mu..g/g and 101 pCi/g, respectively. Below about the 6/sup -/m depth, the concentrations appeared to be typical of those naturally present in soils of this area (3.8 +- 1.2 ..mu..g/g and 3.1 +- 0.6 pCi/g). Uranium sorption ratios showed stratigraphic trends but were generally moderate to high (100 to 1000 L/kg). The sorption isotherm suggested an apparent uranium concentration limit of about 200 mg/L. This relatively high solubility can probably be correlated with the carbonate content of the soil/groundwater systems. The lower sorption ratio values obtained from the sorption isotherm may have resulted from changes in the experimental procedure or the groundwater used. The SLASS appears to exhibit generally favorable behavior for the retardation of uranium solubilized from waste in the site. Parametric tests were conducted to estimate the sensitivity of uranium sorption and solubility to the pH and carbonate content of the system.

  19. Remote Raman - laser induced breakdown spectroscopy (LIBS) geochemical investigation under Venus atmospheric conditions

    SciTech Connect (OSTI)

    Clegg, Sanuel M [Los Alamos National Laboratory; Barefield, James E [Los Alamos National Laboratory; Humphries, Seth D [Los Alamos National Laboratory; Wiens, Roger C [Los Alamos National Laboratory; Vaniman, D. T. [Los Alamos National Laboratory; Sharma, S. K. [UNIV OF HAWAII; Misra, A. K. [UNIV OF HAWAII; Dyar, M. D. [MT. HOLYOKE COLLEGE; Smrekar, S. E. [JET PROPULSION LAB.

    2010-12-13T23:59:59.000Z

    The extreme Venus surface temperatures ({approx}740 K) and atmospheric pressures ({approx}93 atm) create a challenging environment for surface missions. Scientific investigations capable of Venus geochemical observations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS (Laser Induced Breakdown Spectroscopy) instrument is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. and Sharma et al. demonstrated that both analytical techniques can be integrated into a single instrument capable of planetary missions. The focus of this paper is to explore the capability to probe geologic samples with Raman - LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of detecting both the mineralogical and geochemical composition of Venus surface materials. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from Soviet Venera and VEGA landers that collectively suggest a surface composition that is primarily tholeiitic basaltic with some potentially more evolved compositions and, in some locations, K-rich trachyandesite. These landers were not equipped to probe the surface mineralogy as can be accomplished with Raman spectroscopy. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, 15 samples were chosen to constitute a Venus-analog suite for this study, including five basalts, two each of andesites, dacites, and sulfates, and single samples of a foidite, trachyandesite, rhyolite, and basaltic trachyandesite under Venus conditions. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to quantitatively determine the major elemental abundance of the remaining samples. PLS analysis suggests that the major element compositions can be determined with root mean square errors ca. 5% (absolute) for SiO{sub 2}, Al{sub 2}O{sub 3}, Fe{sub 2}O{sub 3}(total), MgO, and CaO, and ca. 2% or less for TiO{sub 2}, Cr{sub 2}O{sub 3}, MnO, K{sub 2}O, and Na{sub 2}O. Finally, the Raman experiments have been conducted under supercritical CO{sub 2} involving single-mineral and mixed-mineral samples containing talc, olivine, pyroxenes, feldspars, anhydrite, barite, and siderite. The Raman data have shown that the individual minerals can easily be identified individually or in mixtures.

  20. Geochemical Characterization of Chromate Contamination in the 100 Area Vadose Zone at the Hanford Site

    SciTech Connect (OSTI)

    Dresel, P. Evan; Qafoku, Nikolla; McKinley, James P.; Fruchter, Jonathan S.; Ainsworth, Calvin C.; Liu, Chongxuan; Ilton, Eugene S.; Phillips, J. L.

    2008-07-16T23:59:59.000Z

    The major objectives of the proposed study were to: 1.) determine the leaching characteristics of hexavalent chromium [Cr(VI)] from contaminated sediments collected from 100 Area spill sites; 2.) elucidate possible Cr(VI) mineral and/or chemical associations that may be responsible for Cr(VI) retention in the Hanford Site 100 Areas through the use of i.) macroscopic leaching studies and ii.) microscale characterization of contaminated sediments; and 3.) provide information to construct a conceptual model of Cr(VI) geochemistry in the Hanford 100 Area vadose zone. In addressing these objectives, additional benefits accrued were: (1) a fuller understanding of Cr(VI) entrained in the vadose zone that will that can be utilized in modeling potential Cr(VI) source terms, and (2) accelerating the Columbia River 100 Area corridor cleanup by providing valuable information to develop remedial action based on a fundamental understanding of Cr(VI) vadose zone geochemistry. A series of macroscopic column experiments were conducted with contaminated and uncontaminated sediments to study Cr(VI) desorption patterns in aged and freshly contaminated sediments, evaluate the transport characteristics of dichromate liquid retrieved from old pipelines of the 100 Area; and estimate the effect of strongly reducing liquid on the reduction and transport of Cr(VI). Column experiments used the < 2 mm fraction of the sediment samples and simulated Hanford groundwater solution. Periodic stop-flow events were applied to evaluate the change in elemental concentration during time periods of no flow and greater fluid residence time. The results were fit using a two-site, one dimensional reactive transport model. Sediments were characterized for the spatial and mineralogical associations of the contamination using an array of microscale techniques such as XRD, SEM, EDS, XPS, XMP, and XANES. The following are important conclusions and implications. Results from column experiments indicated that most of contaminant Cr travels fast through the sediments and appears as Cr(VI) in the effluents. The significance of this for groundwater concentrations would, however, depend on the mass flux of recharge to the water table. adsorption of Cr(VI) to sediments from spiked Cr(VI) solution is low; calculated retardation coefficients are close to one. Calcium polysulfide solutions readily reduced Cr(VI) to Cr(III) in column experiments. However a significant amount of the Cr(VI) was mobilized ahead of the polysulfide solution front. This has significant implications for in-situ reductive remediation techniques. The experiments suggest that it would be difficult to design a remedial measure using infiltration of liquid phase reductants without increasing transport of Cr(VI) toward the water table. The microscopic characterization results are consistent with the column studies. Cr(VI) is found as ubiquitous coatings on sediment grain surfaces. Small, higher concentration, chromium sites are associated with secondary clay mineral inclusions, with occasional barium chromate minerals, and reduced to Cr(III) in association with iron oxides that are most likely magnetite primary minerals. Within the restricted access domains of sediment matrix, ferrous iron could also diffuse from in situ, high-surface-area minerals to cause the reductive immobilization of chromate. This process may be favored at microscale geochemical zones where ferrous iron could be supplied. Once nucleated, micrometer-scale precipitates are favored as growing locales for further accumulation, causing the formation of discrete zones of Cr(III).

  1. Geochemical Implications of CO2 Leakage Associated with Geologic Storage: A Review

    SciTech Connect (OSTI)

    Harvey, Omar R.; Qafoku, Nikolla; Cantrell, Kirk J.; Brown, Christopher F.

    2012-07-09T23:59:59.000Z

    Leakage from deep storage reservoirs is a major risk factor associated with geologic sequestration of carbon dioxide (CO2). Different scientific theories exist concerning the potential implications of such leakage for near-surface environments. The authors of this report reviewed the current literature on how CO2 leakage (from storage reservoirs) would likely impact the geochemistry of near surface environments such as potable water aquifers and the vadose zone. Experimental and modeling studies highlighted the potential for both beneficial (e.g., CO2 re sequestration or contaminant immobilization) and deleterious (e.g., contaminant mobilization) consequences of CO2 intrusion in these systems. Current knowledge gaps, including the role of CO2-induced changes in redox conditions, the influence of CO2 influx rate, gas composition, organic matter content and microorganisms are discussed in terms of their potential influence on pertinent geochemical processes and the potential for beneficial or deleterious outcomes. Geochemical modeling was used to systematically highlight why closing these knowledge gaps are pivotal. A framework for studying and assessing consequences associated with each factor is also presented in Section 5.6.

  2. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    SciTech Connect (OSTI)

    Lindquist, W Brent

    2009-03-03T23:59:59.000Z

    The overall goal of the project was to bridge the gap between our knowledge of small-scale geochemical reaction rates and reaction rates meaningful for modeling transport at core scales. The working hypothesis was that reaction rates, determined from laboratory measurements based upon reactions typically conducted in well mixed batch reactors using pulverized reactive media may be significantly changed in in situ porous media flow due to rock microstructure heterogeneity. Specifically we hypothesized that, generally, reactive mineral surfaces are not uniformly accessible to reactive fluids due to the random deposition of mineral grains and to the variation in flow rates within a pore network. Expected bulk reaction rates would therefore have to be correctly up-scaled to reflect such heterogeneity. The specific objective was to develop a computational tool that integrates existing measurement capabilities with pore-scale network models of fluid flow and reactive transport. The existing measurement capabilities to be integrated consisted of (a) pore space morphology, (b) rock mineralogy, and (c) geochemical reaction rates. The objective was accomplished by: (1) characterizing sedimentary sandstone rock morphology using X-ray computed microtomography, (2) mapping rock mineralogy using back-scattered electron microscopy (BSE), X-ray dispersive spectroscopy (EDX) and CMT, (3) characterizing pore-accessible reactive mineral surface area, and (4) creating network models to model acidic CO{sub 2} saturated brine injection into the sandstone rock samples.

  3. Geochemical fluid characteristics and main achievements about tracer tests at Soultz-sous-Forts (France) 1 EC Contract SES6-CT-2003-502706

    E-Print Network [OSTI]

    Boyer, Edmond

    Geochemical fluid characteristics and main achievements about tracer tests at Soultz Related with Work Package WP1a (Short term fluid circulation tests) and WP1c (Data acquisition) GEOCHEMICAL FLUID CHARACTERISTICS AND MAIN ACHIEVEMENTS ABOUT TRACER TESTS AT SOULTZ-SOUS-FORĂ?TS (FRANCE

  4. Characterization of the geochemical and physical properties of wetland soils on the Savannah River Site: Field sampling activities. Final report

    SciTech Connect (OSTI)

    Dixon, K.L. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1992-11-01T23:59:59.000Z

    There are 36,000 acres of wetlands on the Savannah River Site (SRS) and an additional 5,000 acres of floodplain. Recent studies of wetland soils near various waste sites at SRS have shown that some wetlands have been contaminated with pollutants resulting from SRS operations. In general, releases of contaminants to wetland areas have been indirect. These releases may have originated at disposal lagoons or waste facilities located in the vicinity of the wetland areas. Transport mechanisms such as surface runoff, soil erosion, sediment transport, and groundwater seepage into downgradient wetland areas are responsible for the indirect discharges to the wetland areas. The SRS determined that a database of background geochemical and physical properties for wetland soils on the SRS was needed to facilitate future remedial investigations, human health and ecological risk assessments, treatability studies, and feasibility studies for the wetland areas. These data are needed for comparison to contaminant data collected from wetland soils that have been affected by contamination from SRS operations. This report describes the efforts associated with the collection of soil cores, preparation of a lithologic log for each core, and the processing and packaging of individual soil samples for shipment to analytical laboratory facilities.

  5. Elucidating geochemical response of shallow heterogeneous aquifers to CO2 leakage using high-performance computing: Implications for monitoring of CO2 sequestration

    SciTech Connect (OSTI)

    Navarre-Sitchler, Alexis K.; Maxwell, Reed M.; Siirila, Erica R.; Hammond, Glenn E.; Lichtner, Peter C.

    2013-03-01T23:59:59.000Z

    Predicting and quantifying impacts of potential carbon dioxide (CO2) leakage into shallow aquifers that overlie geologic CO2 storage formations is an important part of developing reliable carbon storage techniques. Leakage of CO2 through fractures, faults or faulty wellbores can reduce groundwater pH, inducing geochemical reactions that release solutes into the groundwater and pose a risk of degrading groundwater quality. In order to help quantify this risk, predictions of metal concentrations are needed during geologic storage of CO2. Here, we present regional-scale reactive transport simulations, at relatively fine-scale, of CO2 leakage into shallow aquifers run on the PFLOTRAN platform using high-performance computing. Multiple realizations of heterogeneous permeability distributions were generated using standard geostatistical methods. Increased statistical anisotropy of the permeability field resulted in more lateral and vertical spreading of the plume of impacted water, leading to increased Pb2+ (lead) concentrations and lower pH at a well down gradient of the CO2 leak. Pb2+ concentrations were higher in simulations where calcite was the source of Pb2+ compared to galena. The low solubility of galena effectively buffered the Pb2+ concentrations as galena reached saturation under reducing conditions along the flow path. In all cases, Pb2+ concentrations remained below the maximum contaminant level set by the EPA. Results from this study, compared to natural variability observed in aquifers, suggest that bicarbonate (HCO3) concentrations may be a better geochemical indicator of a CO2 leak under the conditions simulated here.

  6. Geochemical evidence of a near-surface history for source rocks of the central Coast Mountains Batholith, British Columbia

    E-Print Network [OSTI]

    Wetmore, Paul H.

    Geochemical evidence of a near-surface history for source rocks of the central Coast Mountains to ,50 Ma, indicate that the source regions for these rocks were relatively uniform and typical abundance of deep crustal or upper-mantle source rocks (DePaolo 1981; Kistler 1990; Chen and Tilton 1991; De

  7. Coupled Geochemical and Hydrological Processes Governing the Fate and Transport of Radionuclides and Toxic Metals Beneath the Hanford Tank Farms

    SciTech Connect (OSTI)

    Scott Fendorf; Phil Jardine

    2006-07-21T23:59:59.000Z

    The goal of this research was to provide an improved understanding and predictive capability of coupled hydrological and geochemical mechanisms that are responsible for the accelerated migration and immobilization of radionuclides and toxic metals in the badose zone beneath the Hanford Tank Farms.

  8. PUBLISHED ONLINE: 19 JUNE 2011 | DOI: 10.1038/NGEO1183 Influence of subsurface biosphere on geochemical

    E-Print Network [OSTI]

    Girguis, Peter R.

    estimate the net flux of methane, carbon dioxide and hydrogen from diffuse and focused hydrothermal vents on geochemical fluxes from diffuse hydrothermal fluids Scott D. Wankel1 , Leonid N. Germanovich2 , Marvin D. Girguis1 * Hydrothermal vents along mid-ocean systems host unique, highly productive biological

  9. Assessment of peat quality by molecular and bulk geochemical analysis: Application to the Holocene record of the Chautagne

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Assessment of peat quality by molecular and bulk geochemical analysis: Application to the Holocene in general from a limited variety of local plants, peat is however sensitive to physicochemical changes the information on peat quality provided by various families of biochemical components (lipids, lignin, sugars

  10. Oxygen is a key element for biology and the cycling of geochemical elements, and has shaped the chemical

    E-Print Network [OSTI]

    Handy, Todd C.

    Oxygen is a key element for biology and the cycling of geochemical elements, and has shaped the chemical and biological evolution of Earth. The oceans appear to be loosing oxygen due to on-going climate change, with resulting impacts on marine ecosystems and global biogeochemical cycles. As oxygen levels

  11. Geochemical Impacts of Leaking CO2 from Subsurface Storage Reservoirs to Unconfined and Confined Aquifers

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Brown, Christopher F.; Wang, Guohui; Sullivan, E. C.; Lawter, Amanda R.; Harvey, Omar R.; Bowden, Mark

    2013-04-15T23:59:59.000Z

    Experimental research work has been conducted and is undergoing at Pacific Northwest National Laboratory (PNNL) to address a variety of scientific issues related with the potential leaks of the carbon dioxide (CO2) gas from deep storage reservoirs. The main objectives of this work are as follows: • Develop a systematic understanding of how CO2 leakage is likely to influence pertinent geochemical processes (e.g., dissolution/precipitation, sorption/desorption and redox reactions) in the aquifer sediments. • Identify prevailing environmental conditions that would dictate one geochemical outcome over another. • Gather useful information to support site selection, risk assessment, policy-making, and public education efforts associated with geological carbon sequestration. In this report, we present results from experiments conducted at PNNL to address research issues related to the main objectives of this effort. A series of batch and column experiments and solid phase characterization studies (quantitative x-ray diffraction and wet chemical extractions with a concentrated acid) were conducted with representative rocks and sediments from an unconfined, oxidizing carbonate aquifer, i.e., Edwards aquifer in Texas, and a confined aquifer, i.e., the High Plains aquifer in Kansas. These materials were exposed to a CO2 gas stream simulating CO2 gas leaking scenarios, and changes in aqueous phase pH and chemical composition were measured in liquid and effluent samples collected at pre-determined experimental times. Additional research to be conducted during the current fiscal year will further validate these results and will address other important remaining issues. Results from these experimental efforts will provide valuable insights for the development of site-specific, generation III reduced order models. In addition, results will initially serve as input parameters during model calibration runs and, ultimately, will be used to test model predictive capability and competency. The results from these investigations will provide useful information to support site selection, risk assessment, and public education efforts associated with geological, deep subsurface CO2 storage and sequestration.

  12. Geochemical Characterization Using Geophysical Data and Markov Chain Monte Carolo methods: A Case Study at the South Oyster Bacterial Transport Site in Virginia

    SciTech Connect (OSTI)

    Chen, Jinsong; Hubbard, Susan; Rubin, Yoram; Murray, Chris; Roden, Eric; Majer, Ernest

    2003-11-18T23:59:59.000Z

    The spatial distribution of field-scale geochemical parameters, such as extractable Fe(II) and Fe(III), influences microbial processes and thus the efficacy of bioremediation. Because traditional characterization of those parameters is invasive and laborious, it is rarely performed sufficiently at the field-scale. Since both geochemical and geophysical parameters often correlate to some common physical properties (such as lithofacies), we investigated the utility of tomographic radar attenuation data for improving estimation of geochemical parameters using a Markov Chain Monte Carlo (MCMC) approach. The data used in this study included physical, geophysical, and geochemical measurements collected in and between several boreholes at the DOE South Oyster Bacterial Transport Site in Virginia. Results show that geophysical data, constrained by physical data, provided field-scale information about extractable Fe(II) and Fe(III) in a minimally invasive manner and with a resolution unparalleled by other geochemical characterization methods. This study presents our estimation framework for estimating Fe(II) and Fe(III), and its application to a specific site. Our hypothesis--that geochemical parameters and geophysical attributes can be linked through their mutual dependence on physical properties--should be applicable for estimating other geochemical parameters at other sites.

  13. Up-Scaling Geochemical Reaction Rates for Carbon Dioxide (CO2) in Deep Saline Aquifers

    SciTech Connect (OSTI)

    Peters, Catherine A

    2013-02-28T23:59:59.000Z

    Geochemical reactions in deep subsurface environments are complicated by the consolidated nature and mineralogical complexity of sedimentary rocks. Understanding the kinetics of these reactions is critical to our ability to make long-term predictions about subsurface processes such as pH buffering, alteration in rock structure, permeability changes, and formation of secondary precipitates. In this project, we used a combination of experiments and numerical simulation to bridge the gap between our knowledge of these reactions at the lab scale and rates that are meaningful for modeling reactive transport at core scales. The focus is on acid-driven mineral dissolution, which is specifically relevant in the context of CO2-water-rock interactions in geological sequestration of carbon dioxide. The project led to major findings in three areas. First, we modeled reactive transport in pore-network systems to investigate scaling effects in geochemical reaction rates. We found significant scaling effects when CO2 concentrations are high and reaction rates are fast. These findings indicate that the increased acidity associated with geological sequestration can generate conditions for which proper scaling tools are yet to be developed. Second, we used mathematical modeling to investigate the extent to which SO2, if co-injected with CO2, would acidify formation brines. We found that there exist realistic conditions in which the impact on brine acidity will be limited due to diffusion rate-limited SO2 dissolution from the CO2 phase, and the subsequent pH shift may also be limited by the lack of availability of oxidants to produce sulfuric acid. Third, for three Viking sandstones (Alberta sedimentary basin, Canada), we employed backscattered electron microscopy and energy dispersive X-ray spectroscopy to statistically characterize mineral contact with pore space. We determined that for reactive minerals in sedimentary consolidated rocks, abundance alone is not a good predictor of mineral accessible surface area, and should not be used in reactive transport modeling. Our work showed that reaction rates would be overestimated by three to five times.

  14. Geologic, geophysical, and geochemical aspects of site-specific studies of the geopressured-geothermal energy resource of southern Louisiana. Final report

    SciTech Connect (OSTI)

    Pilger, R.H. Jr. (ed.)

    1985-01-01T23:59:59.000Z

    The report consists of four sections dealing with progress in evaluating geologic, geochemical, and geophysical aspects of geopressured-geothermal energy resources in Louisiana. Separate abstracts have been prepared for the individual sections. (ACR)

  15. Preburn versus postburn mineralogical and geochemical characteristics of overburden and coal at the Hanna, Wyoming underground coal gasification site

    SciTech Connect (OSTI)

    Oliver, R.L.; Youngberg, A.D.

    1983-12-01T23:59:59.000Z

    Hundreds of mineralogic and geochemical tests were done under US Department of Energy contracts on core samples taken from the Hanna underground coal gasification site. These tests included x-ray diffraction studies of minerals in coal ash, overburden rocks, and heat-altered rocks; x-ray fluorescence analyses of oxides in coal ash and heat-altered rocks; semi-quantitative spectrographic analyses of elements in coal, overburden, and heat-altered rocks; chemical analyses of elements and compounds in coal, overburden, and heat-altered rocks and ASTM proximate and ultimate analyses of coal and heat-altered coal. These data sets were grouped, averaged, and analyzed to provide preburn and postburn mineralogic and geochemical characteristics of rock units at the site. Where possible, the changes in characteristics from the preburn to the postburn state are related to underground coal gasification processes. 11 references, 13 figures, 8 tables.

  16. Microbial distributions detected by an oligonucleotide microarray across geochemical zones associated with methane in marine sediments from the Ulleung Basin

    SciTech Connect (OSTI)

    Briggs, Brandon R.; Graw, Michael; Brodie, Eoin L.; Bahk, Jang-Jun; Kim, Sung-Han; Hyun, Jung-Ho; Kim, Ji-Hoon; Torres, Marta; Colwell, Frederick S.

    2013-11-01T23:59:59.000Z

    The biogeochemical processes that occur in marine sediments on continental margins are complex; however, from one perspective they can be considered with respect to three geochemical zones based on the presence and form of methane: sulfate–methane transition (SMTZ), gas hydrate stability zone (GHSZ), and free gas zone (FGZ). These geochemical zones may harbor distinct microbial communities that are important in biogeochemical carbon cycles. The objective of this study was to describe the microbial communities in sediments from the SMTZ, GHSZ, and FGZ using molecular ecology methods (i.e. PhyloChip microarray analysis and terminal restriction fragment length polymorphism (T-RFLP)) and examining the results in the context of non-biological parameters in the sediments. Non-metric multidimensional scaling and multi-response permutation procedures were used to determine whether microbial community compositions were significantly different in the three geochemical zones and to correlate samples with abiotic characteristics of the sediments. This analysis indicated that microbial communities from all three zones were distinct from one another and that variables such as sulfate concentration, hydrate saturation of the nearest gas hydrate layer, and depth (or unmeasured variables associated with depth e.g. temperature, pressure) were correlated to differences between the three zones. The archaeal anaerobic methanotrophs typically attributed to performing anaerobic oxidation of methane were not detected in the SMTZ; however, the marine benthic group-B, which is often found in SMTZ, was detected. Within the GHSZ, samples that were typically closer to layers that contained higher hydrate saturation had indicator sequences related to Vibrio-type taxa. These results suggest that the biogeographic patterns of microbial communities in marine sediments are distinct based on geochemical zones defined by methane.

  17. Enhanced Land Subsidence and Seidment Dynamics in Galveston Bay- Implications for Geochemical Processes and Fate and Transport of Contaminants

    E-Print Network [OSTI]

    Almukaimi, Mohammad E

    2013-07-05T23:59:59.000Z

    ENHANCED LAND SUBSIDENCE AND SEDIMENT DYNAMICS IN GALVESTON BAY- IMPLICATIONS FOR GEOCHEMICAL PROCESSES AND FATE AND TRANSPORT OF CONTAMINANTS A Thesis by MOHAMMAD ALMUKAIMI Submitted to the Office of Graduate Studies of Texas A... August 2013 Major Subject: Oceanography Copyright 2013 Mohammad Almukaimi ii ABSTRACT Galveston Bay is the second largest estuary in the Gulf of Mexico. The bay?s watershed and shoreline contains one of the largest concentrations...

  18. GEOCHEMICAL APPROACHES TO THE STUDY OF LIFE AND DEATH OF DINOSAURS FROM THE EARLY CRETACEOUS CEDAR MOUNTAIN FORMATION, UTAH

    E-Print Network [OSTI]

    Suarez, Celina Angelica

    2010-04-22T23:59:59.000Z

    ___________________________ G.L. Macpherson ___________________________ Larry D. Martin Date defended:_______________ iii ABSTRACT Celina A. Suarez, Ph.D. Department of Geology, April 2010 University of Kansas In this dissertation, geochemical analysis..., it can be determined that the proximity of the Western Interior Seaway and the rise of the Sevier Mountains were the cause of isotopic variability and dominant control on regional climate during the Cedar Mountain Formation time. iv...

  19. Use of iodine surface geochemical surveys in the Lodgepole and Minnelusa plays, U.S. northern Rockies

    SciTech Connect (OSTI)

    Tedesco, S.A.; Bretz, S. [Atoka Geochemical Services Corp., Englewood, CO (United States)

    1995-06-05T23:59:59.000Z

    The use of surface geochemistry is becoming more prevalent in oil exploration, especially for focusing specific target areas for 2D and 3D seismic surveys. Presented here are two surface geochemical surveys utilizing the iodine method in delineating Upper Minnelusa sands of Permian age in the Powder River basin and Lodgepole Waulsortian-like mounds of Mississippian age in the Williston basin. Iodine is an indirect indicator of a petroleum accumulation at depth. Increases in iodine anomalies are caused by the presence of petroleum seepage in the upper part of the soil section. In the very shallow surface, less than 10 ft, a reaction occurs between hydrocarbons and iodine under sunlight forming inorganic compounds. The source of the iodine is either from minerals in the soil and/or from the atmosphere with ultraviolet light as the initiator of the reaction. Any iodine in the subsurface could not migrate far in the presence of hydrocarbons and due to its large molecular size. The compounds that form in the soil remain solid and are relatively difficult to remove. Any surface geochemical anomaly needs to be followed by seismic in order to provide a specific drilling target. If a surface geochemical survey is properly designed and implemented, when no anomaly is present, then to date regardless of the type of method used the results have been dry holes. If a surface geochemical anomaly is present, the intensity, areal extent, and quality of the anomaly cannot determine the economic viability of the accumulation of depth, but there is a significant increase in the success rate. The best utilization of these methods is to determine areas where there is no possibility of finding petroleum and focusing on areas that do. In the case of the Lodgepole and Minnelusa plays, surface geochemistry allows a low cost approach and helps focus and minimize 2D and 3D survey costs.

  20. The application of iodine and magnetic susceptibility surface geochemical surveys in the Lodgepole Play, Eastern Williston Basin, North Dakota

    SciTech Connect (OSTI)

    Tedesco, S.A. [Atoka Geochemical Services Corp., Englewood, CO (United States)

    1996-06-01T23:59:59.000Z

    The use of surface geochemistry as a first pass exploration tool is becoming more prevalent in petroleum exploration. This is especially true due to the high cost of 2-D and 3-D surveys in defining small targets such as the Waulsortian mounds of the Lodgepole Formation. Surface geochemical surveys are very effective in pinpointing specific target areas for seismic surveying and thus reducing costs. Presented are examples of surface geochemical surveys utilizing magnetic susceptibility and iodine methods in delineating reservoirs in the Lodgepole, Mission Canyon and Red River formations. The types of surveys presented vary from reconnaissance to detail and examples of how to define a grid will be discussed. Surface geochemical surveys can be very effective when the areal extent of the target(s) and the purpose of the survey are clearly defined prior to implementation. By determining which areas have microseepage and which areas do not, surface geochemistry can be a very effective tool in focusing exploration efforts and maximizing exploration dollars.

  1. Geochemical evaluation of oils and source rocks from the Western Siberian basin, U. S. S. R

    SciTech Connect (OSTI)

    Peters, K.E.; Huizinga, B.J. (Chevron Overseas Petroleum, Inc., San Ramon, CA (United States)); Moldowan, J.M. (Chevron Oil Field Research Co., Richmond, CA (United States)); Kontorovich, A.E.; Stasova, O. (Siberian Scientific Research Institute for Geology, Geophysics and Mineral Resources, Novobsibirsk (Russian Federation)); Demaison, G.J.

    1991-03-01T23:59:59.000Z

    Although the Western Siberian basin is among the most prolific in the world, there has been disagreement among Soviet geoscientists on the origin of the petroleum within this basin. Screening geochemical analyses were used to select several oils and potential source rocks for a preliminary study using detailed biomarker and supporting geochemistry. Possible sources for this petroleum include rocks of Middle Jurassic, Upper Jurassic, and Lower Cretaceous age. Results indicate that most of the analyzed Western Siberian oils, occurring in reservoirs from Middle Jurassic to Late Cretaceous in age, are derived from the Upper Jurassic Bazhenov Formation. The locations of the samples in the study generally correspond to the distribution of the most effective oil-generative parts of the Bazhenov Formation. Analyses show that the Bazhenov rock samples contain abundant marine algal and bacterial organic matter, preserved under anoxic depositional conditions. Biomarkers show that thermal maturities of the samples range from the early to late oil-generative window and that some are biodegraded. For example, the Salym No. 114 oil, which flowed directly from the Bazhenov Formation, shows a maturity equivalent to the late oil window. The Van-Egan no. 110 oil shows maturity equivalent to the early oil window and is biodegraded. This oil shows preferential microbial conversion of lower homologs of the 17{alpha}, 21{beta}(H)-hopanes to 25-nor-17{alpha}(H)-hopanes.

  2. Geochemical Fingerprinting of Coltan Ores by Machine Learning on Uneven Datasets

    SciTech Connect (OSTI)

    Savu-Krohn, Christian, E-mail: christian.savu-krohn@unileoben.ac.at; Rantitsch, Gerd, E-mail: gerd.rantitsch@unileoben.ac.at [Montanuniversitaet Leoben, Department of Applied Geosciences and Geophysics (Austria); Auer, Peter, E-mail: auer@unileoben.ac.at [Chair for Information Technology, Montanuniversitaet Leoben (Austria); Melcher, Frank, E-mail: frank.melcher@bgr.de; Graupner, Torsten, E-mail: torsten.graupner@bgr.de [Federal Institute for Geosciences and Natural Resources (Germany)

    2011-09-15T23:59:59.000Z

    Two modern machine learning techniques, Linear Programming Boosting (LPBoost) and Support Vector Machines (SVMs), are introduced and applied to a geochemical dataset of niobium-tantalum ('coltan') ores from Central Africa to demonstrate how such information may be used to distinguish ore provenance, i.e., place of origin. The compositional data used include uni- and multivariate outliers and elemental distributions are not described by parametric frequency distribution functions. The 'soft margin' techniques of LPBoost and SVMs can be applied to such data. Optimization of their learning parameters results in an average accuracy of up to c. 92%, if spot measurements are assessed to estimate the provenance of ore samples originating from two geographically defined source areas. A parameterized performance measure, together with common methods for its optimization, was evaluated to account for the presence of uneven datasets. Optimization of the classification function threshold improves the performance, as class importance is shifted towards one of those classes. For this dataset, the average performance of the SVMs is significantly better compared to that of LPBoost.

  3. Geochemical and physical properties of soils and shallow sediments at the Savannah River Site

    SciTech Connect (OSTI)

    Looney, B.B.; Eddy, C.A.; Ramdeen, M.; Pickett, J. (Savannah River Lab., Aiken, SC (USA)); Rogers, V. (Soil Conservation Service, Aiken, SC (USA). Savannah River Site Savannah River Lab., Aiken, SC (USA)); Scott, M.T.; Shirley, P.A. (Sirrine Environmental Consultants, Greenville, SC (USA))

    1990-08-31T23:59:59.000Z

    A program to characterize the geochemical and physical properties of the unimpacted soils and shallow sediments at the Savannah River Site (SRS) has been completed. The maximum, minimum, median, standard deviation, and mean values for metals, radionuclides, inorganic anions, organic compounds, and agricultural indicator parameters are summarized for six soil series that were identified as representative of the 29 soil series at SRS. The soils from unimpacted areas of SRS are typical of soils found in moderately aggressive weathering environments, including the southeastern United States. Appendix 8 organic compounds were detected in all samples. Since these constituents are not generally present in soil, this portion of the investigation was intended to assess possible laboratory artifacts. An additional objective of the SRS Soil Study was to determine if the composition of the split spoon sampler biased chemical analysis of the soils. Twenty-five duplicate samples were analyzed for a number of metals, radiological and agricultural parameters, and organics by two laboratories currently contracted with to analyze samples during waste site characterization. In all cases, the absolute values of the average differences are relatively small compared to the overall variability in the population. 31 refs., 14 figs., 48 tabs.

  4. Sampling designs for geochemical baseline studies in the Colorado oil shale region: a manual for practical application

    SciTech Connect (OSTI)

    Klusman, R. W.; Ringrose, C. D.; Candito, R. J.; Zuccaro, B.; Rutherford, D. W.; Dean, W. E.

    1980-06-01T23:59:59.000Z

    This manual presents a rationale for sampling designs, and results of geochemical baseline studies in the Colorado portion of the oil-shale region. The program consists of a systematic trace element study of soils, stream sediments, and plants carried out in a way to be conservative of human and financial resources and yield maximum information. Extension of this approach to other parameters, other locations, and to environmental baseline studies in general is a primary objective. A baseline for any geochemical parameter can be defined as the concentration of that parameter in a given medium such as soil, the range of its concentration, and the geographic scale of variability. In air quality studies, and to a lesser extent for plants, the temporal scale of variability must also be considered. In studies of soil, the temporal variablility does not become a factor until such time that a study is deemed necessary to evaluate whether or not there have been changes in baseline levels as a result of development. The manual is divided into five major parts. The first is a suggested sampling protocol which is presented in an outline form for guiding baseline studies in this area. The second section is background information on the physical features of the area of study, trace elements of significance occurring in oil shale, and the sample media used in these studies. The third section is concerned primarily with sampling design and its application to the geochemical studies of the oil shale region. The last sections, in the form of appendices, provide actual data and illustrate in a systematic manner, the calculations performed to obtain the various summary data. The last segment of the appendices is a more academic discussion of the geochemistry of trace elements and the parameters of importance influencing their behavior in natural systems.

  5. Final Report: Molecular Basis for Microbial Adhesion and Geochemical Surface Reactions: A Study Across Scales

    SciTech Connect (OSTI)

    Dixon, David Adams [The University of Alabama

    2013-06-27T23:59:59.000Z

    Computational chemistry was used to help provide a molecular level description of the interactions of Gram-negative microbial membranes with subsurface materials. The goal is to develop a better understanding of the molecular processes involved in microbial metal binding, microbial attachment to mineral surfaces, and, eventually, oxidation/reduction reactions (electron transfer) that can occur at these surfaces and are mediated by the bacterial exterior surface. The project focused on the interaction of the outer microbial membrane, which is dominated by an exterior lipopolysaccharide (LPS) portion, of Pseudomonas aeruginosa with the mineral goethite and with solvated ions in the environment. This was originally a collaborative project with T.P. Straatsma and B. Lowery of the Pacific Northwest National Laboratory. The University of Alabama effort used electronic structure calculations to predict the molecular behavior of ions in solution and the behavior of the sugars which form a critical part of the LPS. The interactions of the sugars with metal ions are expected to dominate much of the microscopic structure and transport phenomena in the LPS. This work, in combination with the molecular dynamics simulations of Straatsma and the experimental electrochemistry and microscopy measurements of Lowry, both at PNNL, is providing new insights into the detailed molecular behavior of these membranes in geochemical environments. The effort at The University of Alabama has three components: solvation energies and structures of ions in solution, prediction of the acidity of the critical groups in the sugars in the LPS, and binding of metal ions to the sugar anions. An important aspect of the structure of the LPS membrane as well as ion transport in the LPS is the ability of the sugar side groups such as the carboxylic acids and the phosphates to bind positively charged ions. We are studying the acidity of the acidic side groups in order to better understand the ability of these groups to bind metal ions. We need to understand the solvation properties of the metal ions in solution and their ability to bind not only to the sugars but to proteins and to other anions. Our goal is then to be able to predict the ability of the side groups to bind metal ions. One result from the earlier molecular dynamics simulations is the exclusion of water from the inner hydrophobic part of the membrane. We thus need to investigate the binding of the cations in media with different dielectric constants.

  6. Geochemical characteristics of the Bulgarmarse Granite of the Fall River Pluton in the Avalonian Superterrane of southeastern New England

    SciTech Connect (OSTI)

    Mancuso, C.I.; Puffer, J.H. (Rutgers, The State Univ. of New Jersey, Newark, NJ (United States). Dept. of Geological Sciences)

    1993-03-01T23:59:59.000Z

    The 600 m.y. Bulgarmarsh Granite of the Fall River Pluton crops out along the SE margin of the Pennsylvanian-age Narragansett Basin in the Dedham terrane of the New England Avalonian Superterrane. The Bulgarmarsh is a coarse-grained, quartz-rich, very leucooratic granite, in which mafic minerals, generally less than 5--8%, occur chiefly as chlorite, biotite and garnet disequilibrium intergrowths. Most of the granite is very slightly deformed, but there are many localized zones of deformation, both brittle and plastic, that vary in degree of intensity. The Bulgarmarsh intrudes Basin margin metavolcanics similar to those of Price Neck Formation that crop out within the Basin in Newport and on Gould Island. The Bulgarmarsh Granite has many of the mineralogical and geochemical characteristics of an A-type granite. Its geochemistry places it in the post-orogenic classification of Maniar and Piccoli (1989). New major and minor element geochemical data clearly discriminate between the Bulgarmarsh Granite and the adjacent calc-alkaline Metacom Granite Gneiss. Avalonian Orogeny, occupying a place in geologic history similar to that of the Newport Granite.

  7. Preliminary delineation of natural geochemical reactions, Snake River Plain aquifer system, Idaho National Engineering Laboratory and vicinity, Idaho

    SciTech Connect (OSTI)

    Knobel, L.L.; Bartholomay, R.C.; Orr, B.R.

    1997-05-01T23:59:59.000Z

    The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, is conducting a study to determine the natural geochemistry of the Snake River Plain aquifer system at the Idaho National Engineering Laboratory (INEL), Idaho. As part of this study, a group of geochemical reactions that partially control the natural chemistry of ground water at the INEL were identified. Mineralogy of the aquifer matrix was determined using X-ray diffraction and thin-section analysis and theoretical stabilities of the minerals were used to identify potential solid-phase reactants and products of the reactions. The reactants and products that have an important contribution to the natural geochemistry include labradorite, olivine, pyroxene, smectite, calcite, ferric oxyhydroxide, and several silica phases. To further identify the reactions, analyses of 22 representative water samples from sites tapping the Snake River Plain aquifer system were used to determine the thermodynamic condition of the ground water relative to the minerals in the framework of the aquifer system. Principal reactions modifying the natural geochemical system include congruent dissolution of olivine, diopside, amorphous silica, and anhydrite; incongruent dissolution of labradorite with calcium montmorillonite as a residual product; precipitation of calcite and ferric oxyhydroxide; and oxidation of ferrous iron to ferric iron. Cation exchange reactions retard the downward movement of heavy, multivalent waste constituents where infiltration ponds are used for waste disposal.

  8. Geologic, geochemical, and geographic controls on NORM in produced water from Texas oil, gas, and geothermal reservoirs. Final report

    SciTech Connect (OSTI)

    Fisher, R.

    1995-08-01T23:59:59.000Z

    Water from Texas oil, gas, and geothermal wells contains natural radioactivity that ranges from several hundred to several thousand Picocuries per liter (pCi/L). This natural radioactivity in produced fluids and the scale that forms in producing and processing equipment can lead to increased concerns for worker safety and additional costs for handling and disposing of water and scale. Naturally occurring radioactive materials (NORM) in oil and gas operations are mainly caused by concentrations of radium-226 ({sup 226}Ra) and radium-228 ({sup 228}Ra), daughter products of uranium-238 ({sup 238}U) and thorium-232 ({sup 232}Th), respectively, in barite scale. We examined (1) the geographic distribution of high NORM levels in oil-producing and gas-processing equipment, (2) geologic controls on uranium (U), thorium (Th), and radium (Ra) in sedimentary basins and reservoirs, (3) mineralogy of NORM scale, (4) chemical variability and potential to form barite scale in Texas formation waters, (5) Ra activity in Texas formation waters, and (6) geochemical controls on Ra isotopes in formation water and barite scale to explore natural controls on radioactivity. Our approach combined extensive compilations of published data, collection and analyses of new water samples and scale material, and geochemical modeling of scale Precipitation and Ra incorporation in barite.

  9. Development and Application of a Paleomagnetic/Geochemical Method for Constraining the Timing of Burial Diagenetic and Fluid

    SciTech Connect (OSTI)

    Elmore, Richard D.; Engel, Michael H.

    2005-03-10T23:59:59.000Z

    Studies of diagenesis caused by fluid migration or other events are commonly hindered by a lack of temporal control. Our results to date demonstrate that a paleomagnetic/geochemical approach can be used to date fluid migration as well as burial diagenetic events. Our principal working hypothesis is that burial diagenetic processes (e.g., maturation of organic-rich sediments and clay diagenesis) and the migration of fluids can trigger the authigenesis of magnetic mineral phases. The ages of these events can be constrained by comparing chemical remanent magnetizations (CRMs) to independently established Apparent Polar Wander Paths. While geochemical (e.g. stable isotope and organic analyses) and petrographic studies provide important clues for establishing these relationships, the ultimate test of this hypothesis requires the application of independent dating methods to verify the paleomagnetic ages. Towards this end, we have used K-Ar dating of illitization as an alternative method for constraining the ages of magnetic mineral phases in our field areas.

  10. SciTech Connect: Reduced-Order Model for the Geochemical Impacts...

    Office of Scientific and Technical Information (OSTI)

    to divide the system into components, including injection target reservoirs, wellbores, natural pathways including faults and fractures, groundwater and the atmosphere. Next,...

  11. AQUIFER BIOTHERMOREMEDIATION USING HEAT PUMPS: SOUND THEORETICAL BASIS AND RESULTS ON THERMAL, GEOCHEMICAL AND

    E-Print Network [OSTI]

    Boyer, Edmond

    example, the long-term use of groundwater heat pumps for air conditioning of homes or buildings can induce and hydrogeological background. The presence of organic pollutants in the aquifer can amplify these phenomena/or the well productivity, (ii) an inappropriate temperature for the use of groundwater heat pumps for air

  12. Geochemical monitoring at Soultz-sous-Forts (France) between October 2006 and March 2007 1 EC Contract SES6-CT-2003-502706

    E-Print Network [OSTI]

    Boyer, Edmond

    presents the main results obtained during the geochemical monitoring of the fluids and deposits collected of the fractured areas, and recovering significant amounts of drilling wastes (grease, rests of cuttings), rock was initiated in 2001. Three wells, drilled at a depth of about 5000 m, must make up the heat exchanger. GPK-3

  13. Electrical characterization of non-Fickian transport in groundwater and hyporheic systems

    E-Print Network [OSTI]

    Singha, Kamini

    Electrical characterization of non-Fickian transport in groundwater and hyporheic systems Kamini be quantified by combining electrical geophysical methods and electrically conductive tracers. Whereas direct geochemical measurements of solute preferentially sample the mobile domain, electrical geophysical methods

  14. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1

    SciTech Connect (OSTI)

    Xu, Tianfu; Sonnenthal, Eric; Spycher, Nicolas; Pruess, Karsten

    2008-09-29T23:59:59.000Z

    Coupled modeling of subsurface multiphase fluid and heat flow, solute transport, and chemical reactions can be applied to many geologic systems and environmental problems, including geothermal systems, diagenetic and weathering processes, subsurface waste disposal, acid mine drainage remediation, contaminant transport, and groundwater quality. TOUGHREACT has been developed as a comprehensive non-isothermal multi-component reactive fluid flow and geochemical transport simulator to investigate these and other problems. A number of subsurface thermo-physical-chemical processes are considered under various thermohydrological and geochemical conditions of pressure, temperature, water saturation, and ionic strength. TOUGHREACT can be applied to one-, two- or three-dimensional porous and fractured media with physical and chemical heterogeneity. The code can accommodate any number of chemical species present in liquid, gas and solid phases. A variety of equilibrium chemical reactions are considered, such as aqueous complexation, gas dissolution/exsolution, and cation exchange. Mineral dissolution/precipitation can take place subject to either local equilibrium or kinetic controls, with coupling to changes in porosity and permeability and capillary pressure in unsaturated systems. Chemical components can also be treated by linear adsorption and radioactive decay. The first version of the non-isothermal reactive geochemical transport code TOUGHREACT was developed (Xu and Pruess, 1998) by introducing reactive geochemistry into the framework of the existing multi-phase fluid and heat flow code TOUGH2 (Pruess, 1991). TOUGHREACT was further enhanced with the addition of (1) treatment of mineral-water-gas reactive-transport under boiling conditions, (2) an improved HKF activity model for aqueous species, (3) gas species diffusion coefficients calculated as a function of pressure, temperature, and molecular properties, (4) mineral reactive surface area formulations for fractured and porous media, and (5) porosity, permeability, and capillary pressure changes owing to mineral precipitation/dissolution (Sonnenthal et al., 1998, 2000, 2001; Spycher et al., 2003a). Subsequently, TOUGH2 V2 was released with additional EOS modules and features (Pruess et al., 1999). The present version of TOUGHREACT includes all of the previous extensions to the original version, along with the replacement of the original TOUGH2 (Pruess, 1991) by TOUGH2 V2 (Pruess et al., 1999). TOUGHREACT has been applied to a wide variety of problems, some of which are included as examples, such as: (1) Supergene copper enrichment (Xu et al., 2001); (2) Mineral alteration in hydrothermal systems (Xu and Pruess, 2001a; Xu et al., 2004b; Dobson et al., 2004); (3) Mineral trapping for CO{sub 2} disposal in deep saline aquifers (Xu et al., 2003b and 2004a); (4) Coupled thermal, hydrological, and chemical processes in boiling unsaturated tuff for the proposed nuclear waste emplacement site at Yucca Mountain, Nevada (Sonnenthal et al., 1998, 2001; Sonnenthal and Spycher, 2000; Spycher et al., 2003a, b; Xu et al., 2001); (5) Modeling of mineral precipitation/dissolution in plug-flow and fracture-flow experiments under boiling conditions (Dobson et al., 2003); (6) Calcite precipitation in the vadose zone as a function of net infiltration (Xu et al., 2003); and (7) Stable isotope fractionation in unsaturated zone pore water and vapor (Singleton et al., 2004). The TOUGHREACT program makes use of 'self-documenting' features. It is distributed with a number of input data files for sample problems. Besides providing benchmarks for proper code installation, these can serve as a self-teaching tutorial in the use of TOUGHREACT, and they provide templates to help jump-start new applications. The fluid and heat flow part of TOUGHREACT is derived from TOUGH2 V2, so in addition to the current manual, users must have the manual of the TOUGH2 V2 (Pruess et al., 1999). The present version of TOUGHREACT provides the following TOUGH2 fluid property or 'EOS' (equation-of-state) modules: (1) EOS1 for

  15. Actualistic and Geochemical Modeling of Reservoir Rock, CO2 and Formation Fluid Interaction, Citronelle Oil Field, Alabama

    SciTech Connect (OSTI)

    Weislogel, Amy

    2014-01-31T23:59:59.000Z

    This report includes description of the Citronelle field study area and the work carried out in the project to characterize the geology and composition of reservoir rock material and to collect an analyze the geochemical composition of produced fluid waters from the Citronelle field. Reservoir rock samples collected from well bore core were made into thin-sections and assessed for textural properties, including pore types and porosity distribution. Compositional framework grain modal data were collected via point-counting, and grain and cement mineralogy was assessed using SEM-EDS. Geochemistry of fluid samples is described and modeled using PHREEQC. Composition of rock and produced fluids were used as inputs for TOUGHREACT reactive transport modeling, which determined the rock-fluid system was in disequilibrium.

  16. Data Package of Samples Collected for Hydrogeologic and Geochemical Characterization: 300 Area RI/FS Sediment Cores

    SciTech Connect (OSTI)

    Lindberg, Michael J.; Bjornstad, Bruce N.; Lanigan, David C.; Williams, Benjamin D.

    2011-05-01T23:59:59.000Z

    This is a data package for sediment samples received from the 300 FF 5 OU. This report was prepared for CHPRC. Between August 16, 2010 and April 25, 2011 sediment samples were received from 300-FF-5 for geochemical studies. The analyses for this project were performed at the 331 building located in the 300 Area of the Hanford Site. The analyses were performed according to Pacific Northwest National Laboratory (PNNL) approved procedures and/or nationally recognized test procedures. The data sets include the sample identification numbers, analytical results, estimated quantification limits (EQL), and quality control data. The preparatory and analytical quality control requirements, calibration requirements, acceptance criteria, and failure actions are defined in the on-line QA plan 'Conducting Analytical Work in Support of Regulatory Programs' (CAW). This QA plan implements the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD) for PNNL.

  17. Hydrologic and geochemical controls on soluble benzene migration in sedimentary basins

    E-Print Network [OSTI]

    Polly, David

    , a coupled ground- water flow and heat transfer model computes the hydraulic head, stream function, and temperature in the basin. A coupled mass transport model simulates water washing of benzene from an oil reservoir and its miscible, advective/dispersive transport by groundwater. Benzene mass transfer at the oil­water

  18. Geochemical and hydrodynamic controls on arsenic and trace metal cycling in a seasonally stratified US

    E-Print Network [OSTI]

    Louchouarn, Patrick

    .O. Box 1000, 61 Route 9W, Palisades, NY 10964-8000, USA c Department of Geology and Geophysics, Texas A, and U, which suggested reductive precipitation in the pond's hypolimnion. Uranium levels, however, were between surface and groundwaters with U- and As-rich geological formations rather than large- scale

  19. Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep saline arenaceous aquifers

    SciTech Connect (OSTI)

    Xu, Tianfu; Apps, John A.; Pruess, Karsten

    2002-04-01T23:59:59.000Z

    A reactive fluid flow and geochemical transport numerical model for evaluating long-term CO{sub 2} disposal in deep aquifers has been developed. Using this model, we performed a number of sensitivity simulations under CO{sub 2} injection conditions for a commonly encountered Gulf Coast sediment to analyze the impact of CO{sub 2} immobilization through carbonate precipitation. Geochemical models are needed because alteration of the predominant host rock aluminosilicate minerals is very slow and is not amenable to laboratory experiment under ambient deep-aquifer conditions. Under conditions considered in our simulations, CO{sub 2} trapping by secondary carbonate minerals such as calcite (CaCO{sub 3}), dolomite (CaMg(CO{sub 3}){sub 2}), siderite (FeCO{sub 3}), and dawsonite (NaAlCO{sub 3}(OH){sub 2}) could occur in the presence of high pressure CO{sub 2}. Variations in precipitation of secondary carbonate minerals strongly depend on rock mineral composition and their kinetic reaction rates. Using the data presented in this paper, CO{sub 2} mineral-trapping capability after 10,000 years is comparable to CO{sub 2} dissolution in pore waters (2-5 kg CO{sub 2} per cubic meter of formation). Under favorable conditions such as increase of the Mg-bearing mineral clinochlore (Mg{sub 5}Al{sub 2}Si{sub 3}O{sub 10}(OH){sub 8}) abundance, the capacity can be larger (10 kg CO{sub 2} per cubic meter of formation) due to increase of dolomite precipitation. Carbon dioxide-induced rock mineral alteration and the addition of CO{sub 2} mass as secondary carbonates to the solid matrix results in decreases in porosity. A maximum 3% porosity decrease is obtained in our simulations. A small decrease in porosity may result in a significant decrease in permeability. The numerical simulations described here provide useful insight into sequestration mechanisms, and their controlling conditions and parameters.

  20. Water information bulletin No. 30: geothermal investigations in Idaho. Part 11. Geological, hydrological, geochemical and geophysical investigations of the Nampa-Caldwell and adjacent areas, southwestern Idaho

    SciTech Connect (OSTI)

    Mitchell, J.C. (ed.)

    1981-12-01T23:59:59.000Z

    The area under study included approximately 925 sq km (357 sq mi) of the Nampa-Caldwell portion of Canyon County, an area within the central portion of the western Snake River Plain immediately west of Boise, Idaho. Geologic mapping, hydrologic, geochemical, geophysical, including detailed gravity and aeromagnetic surveys, were run to acquire needed data. In addition, existing magnetotelluric and reflection seismic data were purchased and reinterpreted in light of newly acquired data.

  1. Petrographic, geochemical, and paleohydrologic evidence of nature of petroleum migration in Illinois basin

    SciTech Connect (OSTI)

    Bethke, C.M.; Pruitt, J.D.; Barrows, M.H.

    1984-04-01T23:59:59.000Z

    Detailed studies of the petrography and geochemistry of petroleum source rocks, the geochemistry of petroleum accumulations, and the paleohydrology of the Illinois basin suggest an episode of long-range migration of Devonian-sourced petroleum during a period of regional ground water flow. Petrographic analyses of samples of the New Albany Shale group (Devonian/Mississippian) were used to define lateral and vertical variation in composition and thermal maturity of organic matter within the basin. These data delineate likely New Albany Shale group petroleum source areas. GC, GCMS, and carbon isotopic analyses of thermally mature New Albany Shale in southeastern Illinois and Silurian-reservoired petroleum samples from central Illinois were used in making oil-oil and oil-source rock correlations. These correlations indicate long-range lateral and downward cross-stratigraphic net migration. Compaction-driven and elevation head-driven ground-water flows within the basin were numerically modeled using available stratigraphic, structural, and hydrologic data. Calculations based on compaction-driven flow show the possibility of down-stratigraphic migration. Compaction-driven flow, however, cannot explain the amount of lateral transport inferred. Regional ground-water flow due to the uplift of the Pascola arch could explain the long-range lateral migration. Calculations of the effects of advective heat transport by elevation head-driven flow agree with estimates of temperatures made from fluid inclusions in basin mineralization.

  2. 1 INTRODUCTION Groundwater with a high F concentration is encountered in many places around the world and

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 INTRODUCTION Groundwater with a high F concentration is encountered in many places around composition of groundwater under paddy fields in the Maheshwaram watershed and supported by chemical modeling watershed, where groundwater is intensively abstracted for paddy irrigation. A reactive1-D geochemical model

  3. Geochemical and Mineralogical Investigation of Uranium in Multi–element Contaminated, Organic–rich Subsurface Sediment

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Gartman, Brandy N.; Kukkadapu, Ravi K.; Arey, Bruce W.; Williams, Kenneth H.; Mouser, Paula J.; Heald, Steve M.; Bargar, John R.; Janot, Noemie; Yabusaki, Steven B.; Long, Philip E.

    2014-03-02T23:59:59.000Z

    Alluvial sediments characterized by an abundance of refractory or lignitic organic carbon compounds and reduced Fe and S bearing mineral phases have been identified through drilling activities at the U.S. Department of Energy’s (DOE) Integrated Field Research Challenge (IFRC) site at Rifle, CO. Regions of the subsurface from which such sediments are derived are referred to as Naturally Reduced Zones (NRZ). We conducted a study with NRZ sediments with the objective to: i.) Characterize solid phase contamination of U and other co-contaminants; ii.) Document the occurrence of potential U host minerals; iii.) Determine U valence state and micron scale spatial association with co-contaminants. Macroscopic (wet chemical batch extractions and a column experiment), microscopic (SEM-EDS), and spectroscopic (Mössbauer, µ-XRF and XANES) techniques were employed. Results showed that sediments’ solid phase had significant concentrations of U, S, As, Zn, V, Cr, Cu and Se, and a remarkable assortment of potential U hosts (sorbents and/or electron donors), such as Fe oxides (hematite, magnetite, Al-substituted goethite), siderite, reduced Fe(II) bearing clays, sulfides of different types, Zn sulfide framboids and multi – element sulfides. Multi-contaminants, micron size (ca. 5 to 30 µm) areas of mainly U(IV) and some U(VI), and/or other electron scavengers or donors such as Se, As, Cr, and V were discovered in the sediments, suggesting complex micron-scale system responses to transient redox conditions, and different extent and rates of competing U redox reactions than those of single contaminant systems. Collectively, the results improve our understanding and ability to predict U and NRZ’s complex behavior and will delineate future research directions to further study both the natural attenuation and persistence of contaminant plumes and their contribution to groundwater contamination.

  4. Detailed geochemical study of the Dan River-Danville Triassic Basin, North Carolina and Virginia. National Uranium Resource Evaluation Program

    SciTech Connect (OSTI)

    Thayer, P. A.; Cook, J. R.

    1982-08-01T23:59:59.000Z

    This abbreviated data report presents results of surface geochemical reconnaissance in the Dan River-Danville Triassic Basin of north-central North Carolina and south-central Virginia. Unweathered rock samples were collected at 380 sites within the basin at a nominal sampling density of one site per square mile. Field measurements and observations are reported for each site; analytical data and field measurements are presented in tables and maps. A detailed four-channel spectrometric survey was conducted, and the results are presented as a series of symbol plot maps for eU, eTh, and eU/eTh. Data from rock sample sites (on microfiche in pocket) include rock type and color and elemental analyses for U, Th, Hf, Al, Ce, Dy, Eu, Fe, La, Lu, Mn, Na, Sc, Sm, Ti, V, and Yb. Elemental uranium in 362 sedimentary rock samples from the Dan River-Danville Basin ranges from a low of 0.1 to a maximum of 13.3 parts per million (ppM). The log mean uranium concentration for these same samples is 0.37 ppM, and the log standard deviation is 0.24 ppM. Elemental uranium in 10 diabase dike samples from within the basin is in the range 0.1 to 0.7 ppM. The log mean uranium concentration for diabase samples is -.65 ppM, and the log standard deviation is 0.27. This report is issued in draft form, without detailed technical and copy editing. This was done to make the report available to the public before the end of the NURE program.

  5. CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH

    SciTech Connect (OSTI)

    Lauren P. Birgenheier; Michael D. Vanden Berg,

    2011-04-11T23:59:59.000Z

    An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.

  6. Geochemical Rate/RNA Integration Study (GRIST): A Pilot Field Experiment for Inter-Calibration of Biogeochemistry and Nucleic Acid Measurements Final Report

    SciTech Connect (OSTI)

    Bronk, Deborah

    2007-01-08T23:59:59.000Z

    The Geochemical Rate/RNA Integration Study (GRIST) project sought to correlate biogeochemical flux rates with measurements of gene expression and mRNA abundance to demonstrate the application of molecular approaches to estimate the presence and magnitude of a suite of biogeochemical processes. The study was headed by Lee Kerkhoff of Rutgers University. In this component of the GRIST study, we characterized ambient nutrient concentrations and measured uptake rates for dissolved inorganic nitrogen (DIN, ammonium, nitrate and nitrite) and dissolved organic nitrogen (urea and dissolved free amino acids) during two diel studies at the Long-Term Ecosystem Observatory (LEO-15) on the New Jersey continental shelf.

  7. GEOCHEMICAL CHARACTERIZATION OF GÜRÜN

    E-Print Network [OSTI]

    Stratigraphic Mineralogic

    A Middle Miocene playa-lake sedimentary sequence containing oil shales and trona is divided into the Gökp?nar (the lower oil shale unit) and the Terzio?lu (the upper oil shale unit) Members in the Gürün Basin in eastern Turkey. Thermal decomposition of Gürün oil shales was studied by thermo

  8. Geochemical engineering reference manual

    SciTech Connect (OSTI)

    Owen, L.B.; Michels, D.E.

    1984-01-01T23:59:59.000Z

    The following topics are included in this manual: physical and chemical properties of geothermal brine and steam, scale and solids control, processing spent brine for reinjection, control of noncondensable gas emissions, and goethermal mineral recovery. (MHR)

  9. / http://www.sciencemag.org/content/early/recent / 17 April 2014 / Page 1/ 10.1126/science.1249047 A diverse set of geochemical records has been developed from ice re-

    E-Print Network [OSTI]

    Napp, Nils

    silty ice. This isotope is contin- uously produced by cosmic rays in the atmosphere, is delivered.1249047 A diverse set of geochemical records has been developed from ice re- covered in the 3054-m Greenland Ice Sheet Project 2 (GISP2) core. These data provide a detailed history of climate and ice

  10. Pre-test geological and geochemical evaluation of the Caprock, St. Peter Sandstone and formation fluids, Yakley Field, Pike County, Illinois

    SciTech Connect (OSTI)

    Not Available

    1983-03-01T23:59:59.000Z

    The goal of these studies is to ensure long-term stable containment of air in the underground reservoirs used in conjunction with compressed air energy storage (CAES) plants. The specific objective is to develop stability criteria and engineering guidelines for designing CAES reservoirs in each of the three major reservoir types, including aquifers, salt cavities, and mined hard rock caverns. This document characterizes the geologic nature of porous media constituents native to the aquifer field test site near Pittsfield, Illinois. The geologic samples were subjected to geochemical evaluations to determine anticipated responses to cyclic air injection, heating and moisture - conditions typical of an operating CAES reservoir. This report documents the procedures used and results obtained from these analyses.

  11. Hydrological and geochemical investigations of selenium behavior at Kesterson Reservoir. Progress report, October 1, 1994--September 30, 1996

    SciTech Connect (OSTI)

    Zawislanski, P.; Tokunaga, T.; Benson, S.M. [and others

    1997-10-01T23:59:59.000Z

    This report describes research relevant to selenium (Se) speciation, fractionation, physical redistribution, reduction and oxidation, and spatial distribution as related to Kesterson Reservoir. The work was carried out by scientists and engineers from the Earth Sciences Division of the Lawrence Berkeley Laboratory over a two year period from October 1994 to September 1996. Much of the focus of this research was on long-term, Reservoir-wide changes in Se concentrations and distribution; estimation and prediction of the physical extent ephemeral pools; and the quantification and prediction of Se levels in ephemeral pools waters and underlying sediments. Chapter 2 contains descriptions of field monitoring of soil processes. In Section 2.1, elevated Se concentrations observed in groundwater in the northern part of Pond 9 are investigated. The past removal of the original surface soil in the northern Pond 9 area resulted in the enhancement of Se transport into the shallow groundwater in this area. Removal of the most organic-rich surface soil horizon left the remaining profile with a lower capacity to generate and sustain reducing conditions needed to immobilize Se. Furthermore, removal of the lower permeability surface soil left the remaining profile more hydraulically conductive since sands are encountered at fairly shallow depths. These conditions result in Se remaining oxidized down to the 2.00 m depth throughout the year.

  12. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations: Theoretical manual, user`s guide, and related documentation (Version 7.0); Part 3

    SciTech Connect (OSTI)

    Wolery, T.J.

    1992-09-14T23:59:59.000Z

    EQ3NR is an aqueous solution speciation-solubility modeling code. It is part of the EQ3/6 software package for geochemical modeling. It computes the thermodynamic state of an aqueous solution by determining the distribution of chemical species, including simple ions, ion pairs, and complexes, using standard state thermodynamic data and various equations which describe the thermodynamic activity coefficients of these species. The input to the code describes the aqueous solution in terms of analytical data, including total (analytical) concentrations of dissolved components and such other parameters as the pH, pHCl, Eh, pe, and oxygen fugacity. The input may also include a desired electrical balancing adjustment and various constraints which impose equilibrium with special pure minerals, solid solution end-member components (of specified mole fractions), and gases (of specified fugacities). The code evaluates the degree of disequilibrium in terms of the saturation index (SI = 1og Q/K) and the thermodynamic affinity (A = {minus}2.303 RT log Q/K) for various reactions, such as mineral dissolution or oxidation-reduction in the aqueous solution itself. Individual values of Eh, pe, oxygen fugacity, and Ah (redox affinity) are computed for aqueous redox couples. Equilibrium fugacities are computed for gas species. The code is highly flexible in dealing with various parameters as either model inputs or outputs. The user can specify modification or substitution of equilibrium constants at run time by using options on the input file.

  13. Sedimentological, mineralogical and geochemical definition of oil-shale facies in the lower Parachute Creek Member of Green River Formation, Colorado

    SciTech Connect (OSTI)

    Cole, R.D.

    1984-04-01T23:59:59.000Z

    Sedimentological, mineralogical and geochemical studies of two drill cores penetrating the lower Saline zone of the Parachute Creek Member (middle L-4 oil-shale zone through upper R-2 zone) of the Green River Formation in north-central Piceance Creek basin, Colorado, indicate the presence of two distinct oil-shale facies. The most abundant facies has laminated stratification and frequently occurs in the L-4, L-3 and L-2 oil-shale zones. The second, and subordinate facies, has ''streaked and blebby'' stratification and is most abundant in the R-4, R-3 and R-2 zones. Laminated oil shale originated by slow, regular sedimentation during meromictic phases of ancient Lake Uinta, whereas streaked and blebby oil shale was deposited by episodic, non-channelized turbidity currents. Laminated oil shale has higher contents of nahcolite, dawsonite, quartz, K-feldspar and calcite, but less dolomite/ankerite and albite than streaked and blebby oil shale. Ca-Mg-Fe carbonate minerals in laminated oil shale have more variable compositions than those in streaked and blebby shales. Streaked and blebby oil shale has more kerogen and a greater diversity of kerogen particles than laminated oil shale. Such variations may produce different pyrolysis reactions when each shale type is retorted.

  14. 1 INRODUCTION Groundwater ion content of Sr, Cl, and SO4 and

    E-Print Network [OSTI]

    Paytan, Adina

    the stratigraphy of southern Quintana Roo and eastern Campeche (where groundwater enters the Caribbean Sea through Lake Bacalar and the Rio Hondo) and of western Campeche (where we report geochemical evidence). Aspects of the rele- vant geology and hydrogeology of the region are summarized in Perry et al. (2009

  15. Geochemical, mineralogical and microbiological characteristics of sediment from a naturally reduced zone in a uranium-contaminated aquifer

    SciTech Connect (OSTI)

    Campbell, Kate M.; Kukkadapu, Ravi K.; Qafoku, Nikolla; Peacock, Aaron D.; Lesher, E.; Williams, Kenneth H.; Bargar, John R.; Wilkins, Michael J.; Figueroa, Linda A.; Ranville, James; Davis, James; Long, Philip E.

    2012-05-23T23:59:59.000Z

    Localized zones or lenses of naturally reduced sediments have the potential to play a significant role in the fate and transport of redox-sensitive metals and metalloids in aquifers. To assess the mineralogy, microbiology, and redox processes that occur in these zones, we examined several cores from a region of naturally occurring reducing conditions in a uranium-contaminated aquifer (Rifle, CO). Sediment samples from a transect of cores ranging from oxic/suboxic Rifle aquifer sediment to naturally reduced sediment were analyzed for uranium and iron content, oxidation state, and mineralogy, reduced sulfur phases, and solid phase organic carbon content using a suite of analytical and spectroscopic techniques on bulk sediment and size fractions. Solid-phase uranium concentrations were higher in the naturally reduced zone, with a high proportion of the uranium present as reduced U(IV). The sediments were also elevated in reduced sulfur phases and Fe(II), indicating it is very likely that U(VI), Fe(III), and sulfate reduction occurred or is occurring in the sediment. The microbial community was assessed using lipid- and DNA-based techniques, and statistical redundancy analysis was performed to determine correlations between the microbial community and the geochemistry. Increased concentration of solid phase organic carbon and biomass in the naturally reduced sediment suggests that natural bioreduction is stimulated by a zone of increased organic carbon concentration associated with fine-grained material and lower permeability to groundwater flow. Characterization of the naturally bioreduced sediment provides an understanding of the natural processes that occur in the sediment under reducing conditions and how they may impact natural attenuation of radionuclides and other redox sensitive materials. Results also suggest the importance of recalcitrant organic carbon for maintaining reducing conditions and uranium immobilization.

  16. DOE ER63951-3 Final Report: An Integrated Assessment of Geochemical and Community Structure Determinants of Metal Reduction Rates in Subsurface Sediments

    SciTech Connect (OSTI)

    Susan Pfiffner

    2010-06-28T23:59:59.000Z

    The objective of this research was to examine the importance of microbial community structure in influencing uranium reduction rates in subsurface sediments. If the redox state alone is the key to metal reduction, then any organisms that can utilize the oxygen and nitrate in the subsurface can change the geochemical conditions so metal reduction becomes an energetically favored reaction. Thus, community structure would not be critical in determining rates or extent of metal reduction unless community structure influenced the rate of change in redox. Alternatively, some microbes may directly catalyze metal reduction (e.g., specifically reduce U). In this case the composition of the community may be more important and specific types of electron donors may promote the production of communities that are more adept at U reduction. Our results helped determine if the type of electron donor or the preexisting community is important in the bioremediation of metal-contaminated environments subjected to biostimulation. In a series of experiments at the DOE FRC site in Oak Ridge we have consistently shown that all substrates promoted nitrate reduction, while glucose, ethanol, and acetate always promoted U reduction. Methanol only occasionally promoted extensive U reduction which is possibly due to community heterogeneity. There appeared to be limitations imposed on the community related to some substrates (e.g. methanol and pyruvate). Membrane lipid analyses (phospholipids and respiratory quinones) indicated different communities depending on electron donor used. Terminal restriction fragment length polymorphism and clone libraries indicated distinct differences among communities even in treatments that promoted U reduction. Thus, there was enough metabolic diversity to accommodate many different electron donors resulting in the U bioimmobilization.

  17. Geochemical Characterization of Chromate Contamination in the 100 Area Vadose Zone at the Hanford Site - Part 2

    SciTech Connect (OSTI)

    Qafoku, Nikolla; Dresel, P. Evan; McKinley, James P.; Ilton, Eugene S.; Um, Wooyong; Resch, Charles T.; Kukkadapu, Ravi K.; Petersen, Scott W.

    2011-01-04T23:59:59.000Z

    At the Hanford Site, chromate was used throughout the 100 Areas (100-B, 100-C, 100-D/DR, 100-F, 100-H, and 100 K) as a corrosion inhibitor in reactor cooling water. Chromate was delivered in rail cars, tanker trucks, barrels, and local pipelines as dichromate granular solid or stock solution. In many occasions, chromate was inevitably discharged to surface or near-surface ground through spills during handling, pipeline leaks, or during disposal to cribs. The composition of the liquids that were discharged is not known and it is quite possible that Cr(VI) fate and transport in the contaminated sediments would be a function of the chemical composition of the waste fluids. The major objectives of this investigation which was limited in scope by the financial resources available, were to 1) determine the leaching characteristics of hexavalent chromium [Cr(VI)] from contaminated sediments collected from 100-D Area spill sites; 2) elucidate possible Cr(VI) mineral and/or chemical associations that may be responsible for Cr(VI) retention in the Hanford Site 100 Areas through the use of macroscopic leaching studies, and microscale characterization of contaminated sediments; and 3) provide information to construct a conceptual model of Cr(VI) geochemistry in the Hanford 100 Area vadose zone that can be used for developing options for environmental remediation. The information gathered from this research effort will help to further improve our understanding of Cr(VI) behavior in the vadose zone and will also help in accelerating the 100 Area Columbia River Corridor cleanup by providing valuable information to develop remedial action based on a fundamental understanding of Cr(VI) vadose zone geochemistry. A series of column experiments were conducted with contaminated sediments to study Cr(VI) desorption patterns. Column experiments used the field size fraction of the sediment samples and a simulated Hanford Site groundwater solution. Periodic stop flow events were applied to evaluate the change in elemental concentration during time periods of no flow and greater fluid residence time. Sediments were characterized for the spatial and mineralogical associations of the contamination using some microscale techniques such as X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, X-ray photoelectron spectroscopy, and Mössbauer spectroscopy.

  18. Geochemical, oxygen, and neodymium isotope compositions of metasediments from the Abitibi greenstone belt and Pontiac Subprovince, Canada: Evidence for ancient crust and Archean terrane juxtaposition

    SciTech Connect (OSTI)

    Feng, R.; Kerrich, R. (Univ. of Saskatchewan, Saskatoon (Canada)); Maas, R. (Curtin Univ. of Technology, Perth (Australia))

    1993-02-01T23:59:59.000Z

    The Abitibi greenstone belt (AGB) and Pontiac Subprovince (PS) in the southwestern Superior Province are adjacent greenstone-plutonic and metasedimentary-dominated terranes, respectively, separated by a major fault zone. Metasediments from these two contrasting terranes are compared in terms of major- and trace-element and O- and Nd-isotope compositions, and detrital zircon ages. The following two compositional populations of metasediments are present in the low-grade, Abitibi southern volcanic zone: (1) a mafic-element-enriched population (MEP) characterized by flat, depleted REE patterns; enhanced Mg, Cr, Co, Ni, and Sc; low-incompatible-element contents; and minor or absent normalized negative troughs at Nb, Ta, and Ti; and (2) a low-mafic-element population (LMEP) featuring LREE-enriched patterns; enhanced Rb, Cs, Ba, Th, and U contents; and pronounced normalized negative troughs at Nb, Ta, and Ti. These geochemical features are interpreted to indicate that the MEP sediments were derived from an ultramafic- and mafic-dominated oceanic provenance, whereas the LMEP sediments represent mixtures of mafic and felsic are source rocks. The PS metasediments are essentially indistinguishable from Abitibi LMEP on the basis of major-element and transition metal abundances, suggesting comparable types of source rocks and degrees of maturity, but are distinct in terms of some trace elements and O-isotope compositions. The Pontiac metasediments are depleted in [sup 18]O and enriched in Cs, Ba, Pb, Th, U, Nb, Ta, Hf, Zr, and total REE and also have higher ratios of Rb/K, Cs/Rb, Ba/Rb, Ta/Nb, Th/La, and Ba/La relative to the Abitibi LMEP. Two subtypes of REE patterns have been identified in PS metasediments. The first subtype is interpreted to be derived from provenances of mixed mafic and felsic volcanic rocks, whereas the Eu-depleted type has features that are typical of post-Archean sediments or Archean K-rich granites and volcanic equivalents. 100 refs., 9 figs., 4 tabs.

  19. Data Package for Past and Current Groundwater Flow and Contamination beneath Single-Shell Tank Waste Management Areas

    SciTech Connect (OSTI)

    Horton, Duane G.

    2007-03-16T23:59:59.000Z

    This appendix summarizes historic and recent groundwater data collected from the uppermost aquifer beneath the 200 East and 200 West Areas. Although the area of interest is the Hanford Site Central Plateau, most of the information discussed in this appendix is at the scale of individual single-shell tank waste management areas. This is because the geologic, and thus the hydraulic, properties and the geochemical properties (i.e., groundwater composition) are different in different parts of the Central Plateau.

  20. Freshwater wetlands are an important natural resource; on a local scale they function to buffer hydrological and geochemical processes, and on a global scale they are

    E-Print Network [OSTI]

    McKenzie, Jeffrey M.

    . To properly model the heat transport, I modified the US Geological Survey SUTRA groundwater and energy-urbanized watershed. Heat and hydraulic head data measured in the peat of a large bog in Minnesota was modeled) that provide drinking water to the City of New York. The focus of my study was to evaluate how wetlands control

  1. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1

    SciTech Connect (OSTI)

    Bacon, Diana H.

    2013-03-31T23:59:59.000Z

    The National Risk Assessment Partnership (NRAP) consists of 5 U.S DOE national laboratories collaborating to develop a framework for predicting the risks associated with carbon sequestration. The approach taken by NRAP is to divide the system into components, including injection target reservoirs, wellbores, natural pathways including faults and fractures, groundwater and the atmosphere. Next, develop a detailed, physics and chemistry-based model of each component. Using the results of the detailed models, develop efficient, simplified models, termed reduced order models (ROM) for each component. Finally, integrate the component ROMs into a system model that calculates risk profiles for the site. This report details the development of the Groundwater Geochemistry ROM for the Edwards Aquifer at PNNL. The Groundwater Geochemistry ROM for the Edwards Aquifer uses a Wellbore Leakage ROM developed at LANL as input. The detailed model, using the STOMP simulator, covers a 5x8 km area of the Edwards Aquifer near San Antonio, Texas. The model includes heterogeneous hydraulic properties, and equilibrium, kinetic and sorption reactions between groundwater, leaked CO2 gas, brine, and the aquifer carbonate and clay minerals. Latin Hypercube sampling was used to generate 1024 samples of input parameters. For each of these input samples, the STOMP simulator was used to predict the flux of CO2 to the atmosphere, and the volume, length and width of the aquifer where pH was less than the MCL standard, and TDS, arsenic, cadmium and lead exceeded MCL standards. In order to decouple the Wellbore Leakage ROM from the Groundwater Geochemistry ROM, the response surface was transformed to replace Wellbore Leakage ROM input parameters with instantaneous and cumulative CO2 and brine leakage rates. The most sensitive parameters proved to be the CO2 and brine leakage rates from the well, with equilibrium coefficients for calcite and dolomite, as well as the number of illite and kaolinite sorption sites proving to be of secondary importance. The Groundwater Geochemistry ROM was developed using nonlinear regression to fit the response surface with a quadratic polynomial. The goodness of fit was excellent for the CO2 flux to the atmosphere, and very good for predicting the volumes of groundwater exceeding the pH, TDS, As, Cd and Pb threshold values.

  2. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field-Scale Subsurface Research Challenge Site at Rifle, Colorado, Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Fix, N. J.

    2008-01-07T23:59:59.000Z

    The U.S. Department of Energy (DOE) is cleaning up and/or monitoring large, dilute plumes contaminated by metals, such as uranium and chromium, whose mobility and solubility change with redox status. Field-scale experiments with acetate as the electron donor have stimulated metal-reducing bacteria to effectively remove uranium [U(VI)] from groundwater at the Uranium Mill Tailings Site in Rifle, Colorado. The Pacific Northwest National Laboratory and a multidisciplinary team of national laboratory and academic collaborators has embarked on a research proposed for the Rifle site, the object of which is to gain a comprehensive and mechanistic understanding of the microbial factors and associated geochemistry controlling uranium mobility so that DOE can confidently remediate uranium plumes as well as support stewardship of uranium-contaminated sites. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Rifle Integrated Field-Scale Subsurface Research Challenge Project.

  3. DOE/SC0001389 Final technical report: Investigation of uranium attenuation and release at column and pore scales in response to advective geochemical gradients

    SciTech Connect (OSTI)

    Savage, Kaye S. [Wofford College; Zhu, Wenyi [Wofford College; Barnett, Mark O. [Auburn University

    2013-05-13T23:59:59.000Z

    Experimental approach Column experiments were devised to investigate the role of changing fluid composition on mobility of uranium through a sequence of geologic media. Fluids and media were chosen to be relevant to the ground water plume emanating from the former S-3 ponds at the Oak Ridge Integrated Field Research Challenge (ORIFC) site. Synthetic ground waters were pumped upwards at 0.05 mL/minute for 21 days through layers of quartz sand alternating with layers of uncontaminated soil, quartz sand mixed with illite, quartz sand coated with iron oxides, and another soil layer. Increases in pH or concentration of phosphate, bicarbonate, or acetate were imposed on the influent solutions after each 7 pore volumes while uranium (as uranyl) remained constant at 0.1mM. A control column maintained the original synthetic groundwater composition with 0.1mM U. Pore water solutions were extracted to assess U retention and release in relation to the advective ligand or pH gradients. Following the column experiments, subsamples from each layer were characterized using microbeam X-ray absorption spectroscopy (XANES) in conjunction with X-ray fluorescence mapping and compared to sediment core samples from the ORIFC, at SSRL Beam Line 2-3. Results U retention of 55 â?? 67 mg occurred in phosphate >pH >control >acetate >carbonate columns. The mass of U retained in the first-encountered quartz layer in all columns was highest and increased throughout the experiment. The rate of increase in acetate- and bicarbonate-bearing columns declined after ligand concentrations were raised. U also accumulated in the first soil layer; the pH-varied column retained most, followed by the increasing-bicarbonate column. The mass of U retained in the upper layers was far lower. Speciation of U, interpreted from microbeam XANES spectra and XRF maps, varied within and among the columns. Evidence of minor reduction to U(IV) was observed in the first-encountered quartz layer in the phosphate, bicarbonate, and pH columns while only U(VI) was observed in the control and acetate columns. In the soil layer, the acetate and bicarbonate columns both indicate minor reduction to U(IV), but U(VI) predominated in all columns. In the ORIFC soils, U was consistently present as U(VI); sorption appears to be the main mechanism of association for U present with Fe and/or Mn, while U occurring with P appears in discrete particles consistent with a U mineral phase. U in soil locations with no other elemental associations shown by XRF are likely uranium oxide phases.

  4. Investigating groundwater and surface water interactions using novel isotopes and geochemical tracers in the upper Merced River Basin, Sierra Nevada, California

    E-Print Network [OSTI]

    Shaw, Glenn David

    2009-01-01T23:59:59.000Z

    Tubbs, and H. E. Gove, Thermonuclear 36 Cl pulse in naturalTubbs, and H. E. Gove, Thermonuclear 36 Cl pulse in naturalfrom above-ground thermonuclear weapons testing, similar to

  5. Investigating groundwater and surface water interactions using novel isotopes and geochemical tracers in the upper Merced River Basin, Sierra Nevada, California

    E-Print Network [OSTI]

    Shaw, Glenn David

    2009-01-01T23:59:59.000Z

    48 Measured electrical conductivity vs. predicted electricalFigure 2.8: Measured electrical conductivity vs. predicted

  6. Investigating groundwater and surface water interactions using novel isotopes and geochemical tracers in the upper Merced River Basin, Sierra Nevada, California

    E-Print Network [OSTI]

    Shaw, Glenn David

    2009-01-01T23:59:59.000Z

    collected in 125 HDPE plastic bottles, stored at 4 C°, and?D. One liter HDPE plastic bottles were used for collection2005, and 1 L HDPE plastic bottles, with PERAFILM sealing

  7. Investigating groundwater and surface water interactions using novel isotopes and geochemical tracers in the upper Merced River Basin, Sierra Nevada, California

    E-Print Network [OSTI]

    Shaw, Glenn David

    2009-01-01T23:59:59.000Z

    throughout Yosemite Valley from Happy Isles to Pohonowithin Yosemite Valley shows that Happy Isles and Bridalveilto Yosemite Valley is plausible because Happy Isles Spring

  8. Investigating groundwater and surface water interactions using novel isotopes and geochemical tracers in the upper Merced River Basin, Sierra Nevada, California

    E-Print Network [OSTI]

    Shaw, Glenn David

    2009-01-01T23:59:59.000Z

    weapons’ test fallout still cycling in the atmosphere? , Nuclearweapons’ test fallout still cycling in the atmosphere? , Nuclear

  9. Groundwater Sampling At Kilauea East Rift Geothermal Area (Cox...

    Open Energy Info (EERE)

    can be a useful geochemical indicator for geothermal exploration when other water chemistry techniques are ambiguous. This research was useful for locating some areas which...

  10. Geochemical characerization of endmember mantle components

    E-Print Network [OSTI]

    Workman, Rhea K

    2005-01-01T23:59:59.000Z

    This thesis uses trace elements and radiogenic isotope tracers to define elemental abundances in reservoirs of the Earth's mantle, including EM2 (the Enriched Mantle 2), as seen in the Samoan hotspot track, and DMM (the ...

  11. Organic geochemical biosignatures in alkaline Hydrothermal ecosystems

    E-Print Network [OSTI]

    Bradley, Alexander Smith

    2008-01-01T23:59:59.000Z

    The 13C content of microbial products are controlled by many factors, including the 13C content of the growth substrate, growth rate, the flux of carbon through various parts of the biochemical network, and the isotopic ...

  12. Geochemical taphonomy of shallow marine vertebrate assemblages

    E-Print Network [OSTI]

    Benton, Michael

    : bones; taphonomy; rare earth elements; diagenesis; redox; marine 1. Introduction 1.1. Background Many). Trueman and Benton (1997) and Staron et al. (2001) demonstrated that the rare earth ele- ment (REE.R. Palmer b a Department of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK b School of Ocean

  13. Optimizing parameters for predicting the geochemical behavior...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Fracture Networks and Fluid Flow in EGS Reservoirs; II: Full-Waveform Inversion of 3D-9C VSP data from Bradys EGS Site and Update of the Brady Reservoir Scale Model...

  14. Geochemical, Genetic, and Community Controls on Mercury

    SciTech Connect (OSTI)

    Wall, Judy D.

    2014-11-10T23:59:59.000Z

    The sulfate-reducing bacteria (SRB) are soil bacteria that share two common characteristics, strict anaerobiosis and the ability to respire sulfate. The metabolic activities of these bacteria play significant roles in the global sulfur cycle, anaerobic degradation of biomass, biological metal corrosion in the environment and, recently, degradation of toxic compounds. The accumulation of evidence suggests these bacteria are also key to the production of the neurotoxin methylmercury in environmental settings. We propose to use our experience with the development of genetics in sulfate-reducing bacteria of the genus Desulfovibrio to create mutations that will eliminate the methylation of mercury, thereby identifying the genes essential for this process. This information may allow the environmental monitoring of the mercury methylation potential to learn the location and quantity of the production this toxin. From these data, more accurate predictive models of mercury cycling can be generated.

  15. Geochemical and Mineralogical Investigation of Uranium in

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun withGenepoolCrystals.GenomeforZone Sediments

  16. Geochemical, mineralogical and microbiological characteristics of sediment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun withGenepoolCrystals.GenomeforZone Sedimentsfrom a

  17. Geochemical Data Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: EnergySector: SolarGenoa is aGeo Exploration

  18. Geothermal/Geochemical Database | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeaugaInformation Mexico - A Survey ofJump to: navigation,

  19. On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage

    SciTech Connect (OSTI)

    Zheng, L.; Apps, J.A.; Zhang, Y.; Xu, T.; Birkholzer, J.T.

    2009-07-01T23:59:59.000Z

    If carbon dioxide stored in deep saline aquifers were to leak into an overlying aquifer containing potable groundwater, the intruding CO{sub 2} would change the geochemical conditions and cause secondary effects mainly induced by changes in pH In particular, hazardous trace elements such as lead and arsenic, which are present in the aquifer host rock, could be mobilized. In an effort to evaluate the potential risks to potable water quality, reactive transport simulations were conducted to evaluate to what extent and mechanisms through which lead and arsenic might be mobilized by intrusion of CO{sub 2}. An earlier geochemical evaluation of more than 38,000 groundwater quality analyses from aquifers throughout the United States and an associated literature review provided the basis for setting up a reactive transport model and examining its sensitivity to model variation. The evaluation included identification of potential mineral hosts containing hazardous trace elements, characterization of the modal bulk mineralogy for an arenaceous aquifer, and augmentation of the required thermodynamic data. The reactive transport simulations suggest that CO{sub 2} ingress into a shallow aquifer can mobilize significant lead and arsenic, contaminating the groundwater near the location of intrusion and further downstream. Although substantial increases in aqueous concentrations are predicted compared to the background values, the maximum permitted concentration for arsenic in drinking water was exceeded in only a few cases, whereas that for lead was never exceeded.

  20. Spatial and Geochemical Spatial and Geochemical Heterogeneity Impacts on Iron Biomineralization and Uranium Sequestration

    SciTech Connect (OSTI)

    Scott Fendorf; Shawn Benner; Jim Neiss; Colleen Hansel; Peter Nico; Chris Francis; Phil Jardine

    2004-03-17T23:59:59.000Z

    Bioreductive transformations of iron (hydr)oxides are a critically important processes controlling the fate and transport of contaminants in soil and aquifer systems. Heterogeneity arising from both chemical and physical conditions will lead to various biomineralization products of iron oxides and will additionally alter reactions controlling the partitioning of hazardous elements such as uranium. We are presently exploring chemical and mineralogical transformations within physically complex material having a range of pore-size distribution and chemical environments. Here we discuss the impact of calcium on the reactive transport of uranium and the spatial heterogeneity in iron hydroxide mineralization and concomitant uranium reduction along a diffusive flow path.

  1. Updated Conceptual Model for the 300 Area Uranium Groundwater Plume

    SciTech Connect (OSTI)

    Zachara, John M.; Freshley, Mark D.; Last, George V.; Peterson, Robert E.; Bjornstad, Bruce N.

    2012-11-01T23:59:59.000Z

    The 300 Area uranium groundwater plume in the 300-FF-5 Operable Unit is residual from past discharge of nuclear fuel fabrication wastes to a number of liquid (and solid) disposal sites. The source zones in the disposal sites were remediated by excavation and backfilled to grade, but sorbed uranium remains in deeper, unexcavated vadose zone sediments. In spite of source term removal, the groundwater plume has shown remarkable persistence, with concentrations exceeding the drinking water standard over an area of approximately 1 km2. The plume resides within a coupled vadose zone, groundwater, river zone system of immense complexity and scale. Interactions between geologic structure, the hydrologic system driven by the Columbia River, groundwater-river exchange points, and the geochemistry of uranium contribute to persistence of the plume. The U.S. Department of Energy (DOE) recently completed a Remedial Investigation/Feasibility Study (RI/FS) to document characterization of the 300 Area uranium plume and plan for beginning to implement proposed remedial actions. As part of the RI/FS document, a conceptual model was developed that integrates knowledge of the hydrogeologic and geochemical properties of the 300 Area and controlling processes to yield an understanding of how the system behaves and the variables that control it. Recent results from the Hanford Integrated Field Research Challenge site and the Subsurface Biogeochemistry Scientific Focus Area Project funded by the DOE Office of Science were used to update the conceptual model and provide an assessment of key factors controlling plume persistence.

  2. Y-12 Groundwater Protection Program Groundwater Monitoring Data Compendium, Revision 1

    SciTech Connect (OSTI)

    None

    2006-12-01T23:59:59.000Z

    This document is a compendium of water quality and hydrologic characterization data obtained through December 2005 from the network of groundwater monitoring wells and surface water sampling stations (including springs and building sumps) at the U.S. Department of Energy (DOE) Y-12 National Security Complex (Y-12) in Oak Ridge, Tennessee that have been sampled since January 2003. The primary objectives of this document, hereafter referenced as the Y-12 Groundwater Protection Program (GWPP) Compendium, are to: (1) Serve as a single-source reference for monitoring data that meet the requirements of the Y-12 GWPP, as defined in the Y-12 GWPP Management Plan (BWXT Y-12 L.L.C. [BWXT] 2004); (2) Maintain a detailed analysis and evaluation of the monitoring data for each applicable well, spring, and surface water sampling station, with a focus on results for the primary inorganic, organic, and radiological contaminants in groundwater and surface water at Y-12; and (3) Ensure retention of ''institutional knowledge'' obtained over the long-term (>20-year) history of groundwater and surface water monitoring at Y-12 and the related sources of groundwater and surface water contamination. To achieve these goals, the Y-12 GWPP Compendium brings together salient hydrologic, geologic, geochemical, water-quality, and environmental compliance information that is otherwise disseminated throughout numerous technical documents and reports prepared in support of completed and ongoing environmental contamination assessment, remediation, and monitoring activities performed at Y-12. The following subsections provide background information regarding the overall scope and format of the Y-12 GWPP Compendium and the planned approach for distribution and revision (i.e., administration) of this ''living'' document.

  3. A User’s Guide to the Comprehensive Water Quality Database for Groundwater in the Vicinity of the Nevada Test Site, Rev. No.: 1

    SciTech Connect (OSTI)

    Farnham, Irene

    2006-09-01T23:59:59.000Z

    This water quality database (viz.GeochemXX.mdb) has been developed as part of the Underground Test Area (UGTA) Program with the cooperation of several agencies actively participating in ongoing evaluation and characterization activities under contract to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The database has been constructed to provide up-to-date, comprehensive, and quality controlled data in a uniform format for the support of current and future projects. This database provides a valuable tool for geochemical and hydrogeologic evaluations of the Nevada Test Site (NTS) and surrounding region. Chemistry data have been compiled for groundwater within the NTS and the surrounding region. These data include major ions, organic compounds, trace elements, radionuclides, various field parameters, and environmental isotopes. Colloid data are also included in the database. The GeochemXX.mdb database is distributed on an annual basis. The extension ''XX'' within the database title is replaced by the last two digits of the release year (e.g., Geochem06 for the version released during the 2006 fiscal year). The database is distributed via compact disc (CD) and is also uploaded to the Common Data Repository (CDR) in order to make it available to all agencies with DOE intranet access. This report provides an explanation of the database configuration and summarizes the general content and utility of the individual data tables. In addition to describing the data, subsequent sections of this report provide the data user with an explanation of the quality assurance/quality control (QA/QC) protocols for this database.

  4. Compilation of data to estimate groundwater migration potential for constituents in active liquid discharges at the Hanford Site

    SciTech Connect (OSTI)

    Ames, L.L.; Serne, R.J.

    1991-03-01T23:59:59.000Z

    A preliminary characterization of the constituents present in the 33 liquid waste streams at the US Department of Energy's Hanford Site has been completed by Westinghouse Hanford Company. In addition, Westinghouse Hanford has summarized the soil characteristics based on drill logs collected at each site that receives these liquid wastes. Literature searches were conducted and available Hanford-specific data were tabulated and reviewed. General literature on organic chemicals present in the liquid waste streams was also reviewed. Using all of this information, Pacific Northwest Laboratory has developed a best estimate of the transport characteristics (water solubility and soil adsorption properties) for those radionuclides and inorganic and organic chemicals identified in the various waste streams. We assume that the potential for transport is qualified through the four geochemical parameters: solubility, distribution coefficient, persistence (radiogenic or biochemical half-life), and volatility. Summary tables of these parameters are presented for more than 50 inorganic and radioactive species and more than 50 organic compounds identified in the liquid waste streams. Brief descriptions of the chemical characteristics of Hanford sediments, solubility, and adsorption processes, and of how geochemical parameters are used to estimate migration in groundwater-sediment environments are also presented. Groundwater monitoring data are tabulated for wells neighboring the facilities that receive the liquid wastes. 91 refs., 16 figs., 23 tabs.

  5. Research Project on CO2 Geological Storage and Groundwater Resources: Water Quality Effects Caused by CO2 Intrusion into Shallow Groundwater

    SciTech Connect (OSTI)

    Birkholzer, Jens; Apps, John; Zheng, Liange; Zhang, Yingqi; Xu, Tianfu; Tsang, Chin-Fu

    2008-10-01T23:59:59.000Z

    One promising approach to reduce greenhouse gas emissions is injecting CO{sub 2} into suitable geologic formations, typically depleted oil/gas reservoirs or saline formations at depth larger than 800 m. Proper site selection and management of CO{sub 2} storage projects will ensure that the risks to human health and the environment are low. However, a risk remains that CO{sub 2} could migrate from a deep storage formation, e.g. via local high-permeability pathways such as permeable faults or degraded wells, and arrive in shallow groundwater resources. The ingress of CO{sub 2} is by itself not typically a concern to the water quality of an underground source of drinking water (USDW), but it will change the geochemical conditions in the aquifer and will cause secondary effects mainly induced by changes in pH, in particular the mobilization of hazardous inorganic constituents present in the aquifer minerals. Identification and assessment of these potential effects is necessary to analyze risks associated with geologic sequestration of CO{sub 2}. This report describes a systematic evaluation of the possible water quality changes in response to CO{sub 2} intrusion into aquifers currently used as sources of potable water in the United States. Our goal was to develop a general understanding of the potential vulnerability of United States potable groundwater resources in the event of CO{sub 2} leakage. This goal was achieved in two main tasks, the first to develop a comprehensive geochemical model representing typical conditions in many freshwater aquifers (Section 3), the second to conduct a systematic reactive-transport modeling study to quantify the effect of CO{sub 2} intrusion into shallow aquifers (Section 4). Via reactive-transport modeling, the amount of hazardous constituents potentially mobilized by the ingress of CO{sub 2} was determined, the fate and migration of these constituents in the groundwater was predicted, and the likelihood that drinking water standards might be exceeded was evaluated. A variety of scenarios and aquifer conditions was considered in a sensitivity evaluation. The scenarios and conditions simulated in Section 4, in particular those describing the geochemistry and mineralogy of potable aquifers, were selected based on the comprehensive geochemical model developed in Section 3.

  6. The impact of CO2 on shallow groundwater chemistry: observations at a natural analog site and implications for carbon sequestration

    SciTech Connect (OSTI)

    Keating, Elizabeth [Los Alamos National Laboratory; Fessenden, Julianna [Los Alamos National Laboratory; Kanjorski, Nancy [NON LANL; Koning, Dan [NM BUREAU OF GEOLOGY AND MINERAL RESOURCES; Pawar, Rajesh [Los Alamos National Laboratory

    2008-01-01T23:59:59.000Z

    In a natural analog study of risks associated with carbon sequestration, impacts of CO{sub 2} on shallow groundwater quality have been measured in a sandstone aquifer in New Mexico, USA. Despite relatively high levels of dissolved CO{sub 2}, originating from depth and producing geysering at one well, pH depression and consequent trace element mobility are relatively minor effects due to the buffering capacity of the aquifer. However, local contamination due to influx of saline waters in a subset of wells is significant. Geochemical modeling of major ion concentrations suggests that high alkalinity and carbonate mineral dissolution buffers pH changes due to CO{sub 2} influx. Analysis oftrends in dissolved trace elements, chloride, and CO2 reveal no evidence of in-situ trace element mobilization. There is clear evidence, however, that As, U, and Pb are locally co-transported into the aquifer with CO{sub 2}-rich saline water. This study illustrates the role that local geochemical conditions will play in determining the effectiveness of monitoring strategies for CO{sub 2} leakage. For example, if buffering is significant, pH monitoring may not effectively detect CO2 leakage. This study also highlights potential complications that CO{sub 2}carrier fluids, such as saline waters, pose in monitoring impacts ofgeologic sequestration.

  7. Hydrological and geochemical investigations of selenium behavior at Kesterson Reservoir

    SciTech Connect (OSTI)

    Zawislanski, P.T.; Tokunaga, T.K.; Benson, S.M. [Lawrence Berkeley Lab., CA (United States). Earth Sciences Div.] [and others

    1995-05-01T23:59:59.000Z

    This report describes research relevant to selenium specification, fractionation, physical redistribution, reduction and oxidation, and spatial distribution as related to Kesterson Reservoir. The work was carried out by scientists and engineers from the Earth Sciences Division of the Lawrence Berkeley Laboratory over a two year period from October 1992 to September 1994. Much of the focus of these efforts was on the effects of two above-average rainfall years (1991/1992 and 1992/1993). These events marked a departure from the previous six years of drought conditions, under which oxidation of Se in the soil profile led to a marked increase in soluble Se. Evidence from the last two years show that much of the re-oxidized Se was once more reduced due to increased soil moisture content. Also, in areas of high hydraulic conductivity, major vertical displacement of selenium and other solutes due to rainfall infiltration was observed. Such observations underscore the dependence of the future of Se speciation and distribution on environmental conditions.

  8. Hydrological and Geochemical Investigations of Selenium Behavior at Kesterson Reservoir

    E-Print Network [OSTI]

    Zawislanski, P.T.

    2010-01-01T23:59:59.000Z

    Cambridge. Cutter, G.A. , and K.W. Bruland. 1984. The marinesediments (Cutter and Bruland, 1984; Weres et al. , 1989a).

  9. Geochemical and Mineralogical Investigation of Uranium inMulti...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Multi–element Contaminated, Organic–rich Subsurface Abstract: Alluvial sediments characterized by an abundance of refractory or lignitic organic carbon compounds and...

  10. Hydrologic and Geochemical Monitoring in Long Valley Caldera...

    Open Energy Info (EERE)

    by pumping at the geothermal production well field nearby. Authors Christopher D. Farrar, Michael L. Sorey, S.A. Rojstaczer, Cathy J. Janik, T.L. Winnett and M.D. Clark...

  11. Hydrologic and Geochemical Monitoring in Long Valley Caldera...

    Open Energy Info (EERE)

    show distinct responses to the Chalfant Valley earthquakes. Authors Christopher D. Farrar, M.L. Sorey, S.A. Rojstaczer, A.C. Steinemann and M.D. Clark Published U.S. Geological...

  12. Spatial And Temporal Geochemical Trends In The Hydrothermal System...

    Open Energy Info (EERE)

    but each river is characterized by a distinct chemical composition, implying large-scale spatial heterogeneity in the inputs of the various solutes. The data also display...

  13. GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN

    SciTech Connect (OSTI)

    CANTRELL KJ; CONNELLY MP

    2010-03-09T23:59:59.000Z

    This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

  14. Molecular Organic Geochemical Records of Late Ordovician Biospheric Evolution

    E-Print Network [OSTI]

    Rohrssen, Megan

    2013-01-01T23:59:59.000Z

    distributions of marine source rock derived crude oilsect of thermal stress on source-rock quality as measured bydistributions of marine source rock derived crude oils

  15. Effect of Subgrid Heterogeneity on Scaling Geochemical and Biogeochemi...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Case of U(VI) Desorption. Abstract: The effect of subgrid heterogeneity in sediment properties on the rate of uranylU(VI) desorption was investigated using a sediment...

  16. Merging high resolution geophysical and geochemical surveys to...

    Broader source: Energy.gov (indexed) [DOE]

    hydrothermal alteration) - Geologic field work - OSU detailed mapping - Geophysics * Gravity - 1km grid collected * High resolution aeromagnetic - currently being collected *...

  17. Lattice gas automata for flow and transport in geochemical systems

    SciTech Connect (OSTI)

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-05-01T23:59:59.000Z

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  18. Lattice gas automata for flow and transport in geochemical systems

    SciTech Connect (OSTI)

    Janecky, D.R.; Chen, S.; Dawson, S.; Eggert, K.C.; Travis, B.J.

    1992-01-01T23:59:59.000Z

    Lattice gas automata models are described, which couple solute transport with chemical reactions at mineral surfaces within pore networks. Diffusion in a box calculations are illustrated, which compare directly with Fickian diffusion. Chemical reactions at solid surfaces, including precipitation/dissolution, sorption, and catalytic reaction, can be examined with the model because hydrodynamic transport, solute diffusion and mineral surface processes are all treated explicitly. The simplicity and flexibility of the approach provides the ability to study the interrelationship between fluid flow and chemical reactions in porous materials, at a level of complexity that has not previously been computationally possible.

  19. The Galapagos Plume from a primarily geochemical perspective

    E-Print Network [OSTI]

    Geist, Dennis

    the Galapagos Hotspot at c. 90 Ma? e.g. Duncan & Hargraves, 1984; Sinton et al., 1998; Hauff et al., 2000

  20. Ecological and Geochemical Aspects of Terrestrial Hydrothermal Systems

    E-Print Network [OSTI]

    Forrest, Matthew James

    exploitation of nearby geothermal energy resources. Dixieexploitation of nearby geothermal energy resources. In Napachange (USFWS, 2009), geothermal energy development (BLM,

  1. Alteration And Geochemical Zoning In Bodie Bluff, Bodie Mining...

    Open Energy Info (EERE)

    examined and chemically analyzed for trace elements by emission spectrographic and atomic absorption methods. Sixty-five samples were analyzed for major elements by X-ray...

  2. Geochemical and sedimentological investigations of Youngest Toba Tuff ashfall deposits

    E-Print Network [OSTI]

    Gatti, Emma

    2013-03-12T23:59:59.000Z

    sedimentological structures and geometry ...................................................... 90 5.5 Discussion .......................................................................................................................... 91 5.5.1 The local... ..................................................... 97 5.6 Conclusion ......................................................................................................................... 97 CHAPTER 6. DEPOSITIONAL PROCESSES AND SEDIMENTOLOGY OF YTT DEPOSITS IN THE LENGGONG VALLEY, MALAYSIA...

  3. Geochemical study of lead in soils from West Dallas, Texas

    SciTech Connect (OSTI)

    Ibrahim, N.M.; Carter, J.L. (Univ. of Texas, Dallas, TX (United States). Programs in Geosciences)

    1993-02-01T23:59:59.000Z

    Soil samples from West Dallas near the RSR smelter were collected and tested to see the content, source, and mobility of lead. 30 cm and 90 cm long cores were cut into 1 cm long pieces and each piece analyzed separately. The results showed that 90%--95% of the lead is readily extractable in cold dilute nitric acid. The lateral distribution of lead in West Dallas indicates an exponential-like decrease with distance from the RSR smelter. Concentrations greater than 500 ppm occur in soils below 10 cm within 1,000 feet of the smelter. In the vicinity of the smelter (300 feet radius), soil cores with total lead content as high as 18,000 ppm in the top 15 cm were obtained. At a distance of 2,400 feet of the smelter the lead in the soil amounts to 400 ppm and drops to 270 ppm at 4,000 feet. The total lead content with depth, correlates with previous clean-up and civil activities in the area: (1) where the soil is original, the lead concentration decreases exponentially with depth; (2) where the soil was cleaned up, the top 10 cm are devoid of lead but are underlain by soil whose lead content varies in response to distance from the smelter; (3) where the top soil had been disturbed (removed, replaced, mixed, etc.) as a result of civil works, the lead content is relatively lower than 1 (above). The underlying insitu soils exhibit similar lead concentration as those in 2 (above).

  4. Hydrological, geochemical, and ecological characterization of Kesterson Reservoir

    SciTech Connect (OSTI)

    Not Available

    1990-06-01T23:59:59.000Z

    This report describes Kesterson Reservoir related research activities carried out under a cooperative program between Lawrence Berkeley Laboratory and the Division of Agriculture and Natural Resources at the University of California during FY89. The primary objectives of these investigations are: Predict the extent, probability of the occurrence, and selenium concentrations in surface water of temporary wetland habitat at Kesterson; assess rates and direction of migration of the drainage water plume that seeped into the aquifer under Kesterson; monitor and predict changes in quantity and speciation of selenium in surface soils and vadose zone pore-waters; and develop a comprehensive strategy through soil, water, and vegetation management to safely dissipate the high concentrations of selenium accumulated in Kesterson soils. This report provides an up-date on progress made in each of these areas. Chapter 2 describes results of recent investigations of water table fluctuations and plume migration. Chapter 3 describes results of ongoing monitoring of soil water selenium concentrations and evaporative accumulation of selenium at the soil surface. Chapter 4 describes early results from the soil, water, and vegetation management field trials as well as supporting laboratory and theoretical studies. In Chapter 5, new analytical methods for selenium speciation are described and quality assurance/quality control statistics for selenium and boron are provided. 110 refs., 138 figs., 62 tabs.

  5. Geophysical and geochemical constraints on geoneutrino fluxes from Earth's mantle

    E-Print Network [OSTI]

    Ond?ej Šrámek; William F. McDonough; Edwin S. Kite; Vedran Leki?; Steve Dye; Shijie Zhong

    2012-10-18T23:59:59.000Z

    Knowledge of the amount and distribution of radiogenic heating in the mantle is crucial for understanding the dynamics of the Earth, including its thermal evolution, the style and planform of mantle convection, and the energetics of the core. Although the flux of heat from the surface of the planet is robustly estimated, the contributions of radiogenic heating and secular cooling remain poorly defined. Constraining the amount of heat-producing elements in the Earth will provide clues to understanding nebula condensation and planetary formation processes in early Solar System. Mantle radioactivity supplies power for mantle convection and plate tectonics, but estimates of mantle radiogenic heat production vary by a factor of more than 20. Recent experimental results demonstrate the potential for direct assessment of mantle radioactivity through observations of geoneutrinos, which are emitted by naturally occurring radionuclides. Predictions of the geoneutrino signal from the mantle exist for several established estimates of mantle composition. Here we present novel analyses, illustrating surface variations of the mantle geoneutrino signal for models of the deep mantle structure, including those based on seismic tomography. These variations have measurable differences for some models, allowing new and meaningful constraints on the dynamics of the planet. An ocean based geoneutrino detector deployed at several strategic locations will be able to discriminate between competing compositional models of the bulk silicate Earth.

  6. 3Geochemistry Published by AGU and the Geochemical Society

    E-Print Network [OSTI]

    Johnson, H. Paul

    identified by a systematic grid of conductive heat flow measure- 15 ments. An array of conductive heat flow, conductive heat flow data indicate a general crossvalley fluid flow, where 18 seawater enters the shallow occurring within faults that surround the fluid discharge sites. These conductive 23 heat flow data

  7. Merging high resolution geophysical and geochemical surveys to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buttes, Oregon Innovative Exploration Technologies Maui Hawaii & Glass Buttes, Oregon Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical...

  8. Molecular Organic Geochemical Records of Late Ordovician Biospheric Evolution

    E-Print Network [OSTI]

    Rohrssen, Megan

    2013-01-01T23:59:59.000Z

    insights into marine microalgae: Annual Review of Genetics,of modern pelagophyte microalgae, occurs in certaindetected in pelagophyte microalgae, including the ”brown

  9. A Geochemical Reconnaissance Of The Alid Volcaniccenter And Geothermal...

    Open Energy Info (EERE)

    Robert O. Fournier, Theoderos Tesfai, Wendell A. Duffield, Michael A. Clynne, James G. Smith, Leake Woldegiorgis, Kidane Weldemariam and Gabreab Kahsai Published Journal...

  10. Geochemical Data for 95 Thermal and Nonthermal Waters of the...

    Open Energy Info (EERE)

    in hydrology, structural geology, hydrothermal alterations, and hydrothermal solution chemistry. Authors Fraser E. Goff, Tamsin McCormick, Pat E. Trujillo Jr, Dale A. Counce and...

  11. Factors Controlling The Geochemical Evolution Of Fumarolic Encrustatio...

    Open Energy Info (EERE)

    Up to 87% of the individual element data variance is apparently controlled by the chemistry of the ejecta on which the relict encrustations are found. This matrix chemistry...

  12. Geochemical Modeling of the Near-Surface Hydrothermal System...

    Open Energy Info (EERE)

    in petrographic studies. Results of this study show that the mineralogy and fluid chemistry observed in the shallow reservoir at Long Valley caldera are formed in an open...

  13. Hydrologic and Geochemical Monitoring in Long Valley Caldera...

    Open Energy Info (EERE)

    causing earthquakes and crustal deformation. Differences since 1982 in fluid chemistry of springs has been minor except at Casa Diablo, where rapid fluctuations in...

  14. american soil geochemical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    METAL DEFICIENCY IN CATTLE? By: Emily, they are also vital to the health of cattle. The metals investigated in this report were copper, iron, manganese and superoxide radicals....

  15. Geophysical and geochemical constraints on geoneutrino fluxes from Earth's mantle

    E-Print Network [OSTI]

    Kite, Edwin

    budget bulk silicate Earth composition depleted mantle composition thermochemical mantle piles a b s t r cooling of the Earth, and heat generated by decay of long-lived radioactive isotopes of uranium, thorium estimates of depleted mantle (DM), which is the source of mid-ocean ridge basalt (MORB), vary by a similar

  16. Geophysical and geochemical constraints on geoneutrino fluxes from Earth's mantle

    E-Print Network [OSTI]

    Zhong, Shijie

    Keywords: geoneutrinos Earth's heat budget bulk silicate Earth composition depleted mantle composition cooling of the Earth, and heat generated by decay of long-lived radioactive isotopes of uranium, thorium estimates of depleted mantle (DM), which is the source of mid-ocean ridge basalt (MORB), vary by a similar

  17. GEOTECHNICAL/GEOCHEMICAL CHARACTERIZATION OF ADVANCED COAL PROCESS WASTE STREAMS

    SciTech Connect (OSTI)

    Edwin S. Olson; Charles J. Moretti

    1999-11-01T23:59:59.000Z

    Thirteen solid wastes, six coals and one unreacted sorbent produced from seven advanced coal utilization processes were characterized for task three of this project. The advanced processes from which samples were obtained included a gas-reburning sorbent injection process, a pressurized fluidized-bed coal combustion process, a coal-reburning process, a SO{sub x}, NO{sub x}, RO{sub x}, BOX process, an advanced flue desulfurization process, and an advanced coal cleaning process. The waste samples ranged from coarse materials, such as bottom ashes and spent bed materials, to fine materials such as fly ashes and cyclone ashes. Based on the results of the waste characterizations, an analysis of appropriate waste management practices for the advanced process wastes was done. The analysis indicated that using conventional waste management technology should be possible for disposal of all the advanced process wastes studied for task three. However, some wastes did possess properties that could present special problems for conventional waste management systems. Several task three wastes were self-hardening materials and one was self-heating. Self-hardening is caused by cementitious and pozzolanic reactions that occur when water is added to the waste. All of the self-hardening wastes setup slowly (in a matter of hours or days rather than minutes). Thus these wastes can still be handled with conventional management systems if care is taken not to allow them to setup in storage bins or transport vehicles. Waste self-heating is caused by the exothermic hydration of lime when the waste is mixed with conditioning water. If enough lime is present, the temperature of the waste will rise until steam is produced. It is recommended that self-heating wastes be conditioned in a controlled manner so that the heat will be safely dissipated before the material is transported to an ultimate disposal site. Waste utilization is important because an advanced process waste will not require ultimate disposal when it is put to use. Each task three waste was evaluated for utilization potential based on its physical properties, bulk chemical composition, and mineral composition. Only one of the thirteen materials studied might be suitable for use as a pozzolanic concrete additive. However, many wastes appeared to be suitable for other high-volume uses such as blasting grit, fine aggregate for asphalt concrete, road deicer, structural fill material, soil stabilization additives, waste stabilization additives, landfill cover material, and pavement base course construction.

  18. A geochemical, petrological, and geophysical case study of Caryn Seamount

    E-Print Network [OSTI]

    Drew, Fred Prescott

    1975-01-01T23:59:59.000Z

    changing bulk chemistry of oceanic islands with overall relative distances from mid-ocean ridges (Aumento, 1968; Chayes, 1972; Gass, 1972). 11 A number of genetic models have been proposed to account for the variation in oceanic basalt chemistry...

  19. Hg Anomalies In Soils- A Geochemical Exploration Method For Geothermal...

    Open Energy Info (EERE)

    Areas. Geothermics. () . Related Geothermal Exploration Activities Activities (5) Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck, 1983) Mercury Vapor At...

  20. Merging high resolution geophysical and geochemical surveys to reduce

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department of EnergyDevelopmentTechnologies |Charles Page -to DOE

  1. Characterizing Microbial Community and Geochemical Dynamics at Hydrothermal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation SitesStandingtheir AtmosphericAnalysisVents Using Osmotically Driven

  2. Optimizing parameters for predicting the geochemical behavior and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSales LLCDiesel Enginesthe U.S. -- An2008performance of discrete

  3. Application Of Geochemical Methods In The Search For Geothermal Fields |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil JumpAltergyExperimentsInformationAnuvuCommissionArea, Japan|

  4. Viewing paleontology through a geochemical lens: 2 case studies

    E-Print Network [OSTI]

    Anderson, Brendan Matthew

    2013-08-31T23:59:59.000Z

    record in general can be informative about paleodiversity, taphonomy and paleoecology as well as the biology, diet and disease history of organisms (Macfadden and Cerling, 1996, Grice et al., 2005, Killops and Killops, 2005, Alroy, 2010). Techniques... and fossil salmon: The record of lifetime migration and diagenesis. Earth and Planetary Science Letters 108, 227-287. Koch, P.L.H., J., Moss, C., Carlson, R.W., Fogel, M.L., Behrensmeyer, A.K., 1995. Isotopic tracking of the diet and home range of African...

  5. Sulfur gas geochemical detection of hydrothermal systems. Final report

    SciTech Connect (OSTI)

    Rouse, G.E.

    1984-01-01T23:59:59.000Z

    The purpose of this investigation was to determine whether a system of exploration using sulfur gases was capable of detecting convecting hydrothermal systems. Three surveying techniques were used at the Roosevelt Hot Springs KGRA in Utah. These were (a) a sniffing technique, capable of instantaneous determinations of sulfur gas concentration, (b) an accumulator technique, capable of integrating the sulfur gas emanations over a 30 day interval, and (c) a method of analyzing the soils for vaporous sulfur compounds. Because of limitations in the sniffer technique, only a limited amount of surveying was done with this method. The accumulator and soil sampling techniques were conducted on a 1000 foot grid at Roosevelt Hot Springs, and each sample site was visited three times during the spring of 1980. Thus, three soil samples and two accumulator samples were collected at each site. The results are shown as averages of three soil and two accumulator determinations of sulfur gas concentrations at each site. Soil surveys and accumulator surveys were conducted at two additional KGRA's which were chosen based on the state of knowledge of these hydrothermal systems and upon their differences from Roosevelt Hot Springs in an effort to show that the exploration methods would be effective in detecting geothermal reservoirs in general. The results at Roosevelt Hot Springs, Utah show that each of the three surveying methods was capable of detecting sulfur gas anomalies which can be interpreted to be related to the source at depth, based on resistivity mapping of that source, and also correlatable with major structural features of the area which are thought to be controlling the geometry of the geothermal reservoir. The results of the surveys at Roosevelt did not indicate that either the soil sampling technique or the accumulator technique was superior to the other.

  6. A Mineralogical Petrographic And Geochemical Study Of Samples...

    Open Energy Info (EERE)

    The composition of the hydrothermal fluid was determined and correlated with the mineralogy. Isotopic ratios of C and O for one calcite sample taken from 341 m depth were...

  7. Book Review - Geochemical Exploration 1982 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: Energy ResourcesJersey:formBlueBombay Beach,Bonner Springs, Kansas:FacilityBook

  8. Spatial And Temporal Geochemical Trends In The Hydrothermal System Of

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-g GrantAtlas (PACA Region -SonelgazSunbelt WindAssociation AeH

  9. Merging High Resolution Geophysical and Geochemical Surveys to Reduce

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to:46 - 429Lacey,(MonasterLowellisMcDonaldInformationEnergyInformation|

  10. A Geochemical Model Of The Platanares Geothermal System, Honduras | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive(Sichuan, Sw China) | OpenbeneathMargin-Energy

  11. A Geochemical Reconnaissance Of The Alid Volcaniccenter And Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive(Sichuan, Sw China) |System, Danakil

  12. A Reconnaissance Geochemical Study Of La Primavera Geothermal Area,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive(Sichuan, SwOpenInformation for

  13. Geochemical Controls on Contaminant Uranium in Vadose Hanford Formation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun withGenepoolCrystals.Genomefor

  14. Geochemical and Geophysical Changes during Ammonia Gas Treatment of Vadose

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun withGenepoolCrystals.GenomeforZone Sediments for

  15. Property:GeochemReservoirTemp | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration Jump to:FieldProcedures JumpGreenButtonID

  16. Geochemical characterization of geothermal systems in the Great Basin:

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: EnergySector: SolarGenoa is

  17. Factors Controlling The Geochemical Evolution Of Fumarolic Encrustations,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6 NoSan Leandro,LawFEMA -Single-WellValley Of Ten Thousand

  18. Effect of Subgrid Heterogeneity on Scaling Geochemical and Biogeochemical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed NewcatalystNeutronEnvironmentZIRKLE FRUITYearEffect ofReactions: A Case of U(VI)

  19. Alteration And Geochemical Zoning In Bodie Bluff, Bodie Mining District,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300Algoil Jump to:Information332InformationCoreAlta,Altamont

  20. Category:Geochemical Data Analysis | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascade SierraStatusGeothermalpower.jpgGas

  1. Geochemical Sampling of Thermal Waters in Nevada | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCellGemini SolarAssetsof Thermal Waters in

  2. Geochemical modeling of the Raft River geothermal field | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCellGemini SolarAssetsof Thermal Waters

  3. Temporal Geochemical Variations In Volatile Emissions From Mount St Helens,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump to:TaosISGANAttribution JumpRRElement JumpNewTempleton is

  4. Hydrologic and Geochemical Monitoring in Long Valley Caldera, Mono County,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: Energy ResourcesPark,isHydroHydrogen

  5. Novel Coupled Thermochronometric and Geochemical Investigation of Blind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnershipEnergy University57Department ofGeothermal

  6. Hg Anomalies In Soils- A Geochemical Exploration Method For Geothermal

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealth DivisionHelioMotionisHesperia,Areas | Open

  7. Hydrologic and Geochemical Monitoring in Long Valley Caldera, Mono County,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII WindHybridsCarCalifornia, 1985 | Open

  8. Hydrologic and Geochemical Monitoring in Long Valley Caldera, Mono County,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:PhotonHolyName HousingIII WindHybridsCarCalifornia, 1985 |

  9. Annual report of groundwater monitoring at Centralia, Kansas, in 2009.

    SciTech Connect (OSTI)

    LaFreniere, L. M. (Environmental Science Division)

    2010-10-19T23:59:59.000Z

    In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is being performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater was sampled twice yearly from September 2005 until September 2007 for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation (reductive dechlorination) processes in the subsurface environment. The results from the two-year sampling program demonstrated the presence of carbon tetrachloride contamination at levels exceeding the KDHE Tier 2 risk-based screening level (RBSL) of 5 {micro}g/L for this compound in a localized groundwater plume that has shown little movement. The relative concentrations of chloroform, the primary degradation product of carbon tetrachloride, suggested that some degree of reductive dechlorination or natural biodegradation was taking place in situ at the former CCC/USDA facility on a localized scale. The CCC/USDA subsequently developed an Interim Measure Conceptual Design (Argonne 2007b), proposing a pilot test of the Adventus EHC technology for in situ chemical reduction (ISCR). The proposed interim measure (IM) was approved by the KDHE in November 2007 (KDHE 2007). Implementation of the pilot test occurred in November-December 2007. The objective was to create highly reducing conditions that would enhance both chemical and biological reductive dechlorination in the injection test area (Argonne 2009a). The KDHE (2008a) has requested that sitewide monitoring continue at Centralia until a final remedy has been selected (as part of a Corrective Action Study [CAS] evaluation) and implemented for this site. In response to this request, twice-yearly sampling of 10 monitoring wells and 6 piezometers (Figure 1.1) previously approved by the KDHE for monitoring of the groundwater at Centralia (KDHE 2005a,b) was continued in 2008. The sampling events under this extension of the two-year (2005-2007) monitoring program occurred in March and September 2008 (Argonne 2008b, 2009b). Additional piezometers specifically installed to evaluate the progress of the IM pilot test (PMP1-PMP9; Figure 1.2) were also sampled in 2008; the results of these analyses were reported and discussed separately (Argonne 2009a). On the basis of results of the 2005-2008 sitewide monitoring and the 2008 IM pilot test monitoring, the CCC/USDA recommended a revised sampling program to address both of the continuing monitoring objectives until a CAS for Centralia is developed (Section 4.2 in Argonne 2009b). The elements of this interim monitoring plan are as follows: (1) Annual sampling of twelve previously established (before the pilot test) monitoring points (locations identified in Figure 1.3) and the five outlying pilot test monitoring points (PMP4, PMP5, PMP6, PMP7, PMP9; Figure 1.4); and (2) Sampling twice yearly at the five pilot test monitoring points inside the injection area (PMP1-PMP3, PMP8, MW02; Figure 1.4). With the approval of the KDHE (2009), groundwater sampling for analyses of VOCs and selected other geochemical parameters was conducted at Centralia under the interim monitoring program outlined above in April and October 2009. This report documents the findings of the 2009 monitoring events.

  10. INDEPENDENT TECHNICAL EVALUATION AND RECOMMENDATIONS FOR CONTAMINATED GROUNDWATER AT THE DEPARTMENT OF ENERGY OFFICE OF LEGACY MANAGEMENT RIVERTON PROCESSING SITE

    SciTech Connect (OSTI)

    Looney, B.; Denham, M.; Eddy-Dilek, C.

    2014-05-06T23:59:59.000Z

    The U.S. Department of Energy Office of Legacy Management (DOE-LM) manages the legacy contamination at the Riverton, WY, Processing Site – a former uranium milling site that operated from 1958 to 1963. The tailings and associated materials were removed in 1988-1989 and contaminants are currently flushing from the groundwater. DOE-LM commissioned an independent technical team to assess the status of the contaminant flushing, identify any issues or opportunities for DOE-LM, and provide key recommendations. The team applied a range of technical frameworks – spatial, temporal, hydrological and geochemical – in performing the evaluation. In each topic area, an in depth evaluation was performed using DOE-LM site data (e.g., chemical measurements in groundwater, surface water and soil, water levels, and historical records) along with information collected during the December 2013 site visit (e.g., plant type survey, geomorphology, and minerals that were observed, collected and evaluated). A few of the key findings include: ? Physical removal of the tailings and associated materials reduced contaminant discharges to groundwater and reduced contaminant concentrations in the near-field plume. ? In the mid-field and far-field areas, residual contaminants are present in the vadose zone as a result of a variety of factors (e.g., evaporation/evapotranspiration from the capillary fringe and water table, higher water levels during tailings disposal, and geochemical processes). ? Vadose zone contaminants are widely distributed above the plume and are expected to be present as solid phase minerals that can serve as “secondary sources” to the underlying groundwater. The mineral sample collected at the site is consistent with thermodynamic predictions. ? Water table fluctuations, irrigation, infiltration and flooding will episodically solubilize some of the vadose zone secondary source materials and release contaminants to the groundwater for continued down gradient migration – extending the overall timeframe for flushing. ? Vertical contaminant stratification in the vadose zone and surficial aquifer will vary from location to location. Soil and water sampling strategies and monitoring well construction details will influence characterization and monitoring data. ? Water flows from the Wind River, beneath the Riverton Processing Site and through the plume toward the Little Wind River. This base flow pattern is influenced by seasonal irrigation and other anthropogenic activities, and by natural perturbations (e.g., flooding). ? Erosion and reworking of the sediments adjacent to the Little Wind River results in high heterogeneity and complex flow and geochemistry. Water flowing into oxbow lakes (or through areas where oxbow lakes were present in the past) will be exposed to localized geochemical conditions that favor chemical reduction (i.e., “naturally reduced zones”) and other attenuation processes. This attenuation is not sufficient to fully stabilize the plume or to reduce contaminant concentrations in the groundwater to target levels. Consistent with these observations, the team recommended increased emphasis on collecting data in the zones where secondary source minerals are projected to accumulate (e.g., just above the water table) using low cost methods such as x-ray fluorescence. The team also suggested several low cost nontraditional sources of data that have the potential to provide supplemental data (e.g., multispectral satellite imagery) to inform and improve legacy management decisions. There are a range of strategies for management of the legacy contamination in the groundwater and vadose zone near the Riverton Processing Site. These range from the current strategy, natural flushing, to intrusive remedies such as plume scale excavation of the vadose zone and pump & treat. Each option relates to the site specific conditions, issues and opportunities in a unique way. Further, each option has advantages and disadvantages that need to be weighed. Scoping evaluation was performed for three major classes

  11. Annual report of groundwater monitoring at Centralia, Kansas, in 2010.

    SciTech Connect (OSTI)

    LaFreniere, L. M. (Environmental Science Division)

    2011-03-16T23:59:59.000Z

    In September 2005, periodic sampling of groundwater was initiated by the Commodity Credit Corporation of the U.S. Department of Agriculture (CCC/USDA) in the vicinity of a grain storage facility formerly operated by the CCC/USDA at Centralia, Kansas. The sampling at Centralia is performed on behalf of the CCC/USDA by Argonne National Laboratory, in accord with a monitoring program approved by the Kansas Department of Health and Environment (KDHE). The objective is to monitor levels of carbon tetrachloride contamination identified in the groundwater at Centralia (Argonne 2003, 2004, 2005a). Under the KDHE-approved monitoring plan (Argonne 2005b), the groundwater was sampled twice yearly from September 2005 until September 2007 for analyses for volatile organic compounds (VOCs), as well as measurement of selected geochemical parameters to aid in the evaluation of possible natural contaminant degradation processes (reductive dechlorination) in the subsurface environment (Argonne 2006, 2007a, 2008a). The results from the two-year sampling program demonstrated the presence of carbon tetrachloride contamination at levels exceeding the KDHE Tier 2 risk-based screening level (RBSL) of 5 {micro}g/L for this compound, in a localized groundwater plume that has shown little movement. The relative concentrations of chloroform, the primary degradation product of carbon tetrachloride, suggested that some degree of reductive dechlorination or natural biodegradation was talking place in situ at the former CCC/USDA facility on a localized scale. The CCC/USDA subsequently developed an Interim Measure Conceptual Design (Argonne 2007b), proposing a pilot test of the Adventus EHC technology for in situ chemical reduction (ISCR). The proposed interim measure (IM) was approved by the KDHE in November 2007 (KDHE 2007). Implementation of the pilot test occurred in November-December 2007. The objective was to create highly reducing conditions that would enhance both chemical and biological reductive dechlorination in the injection test area (Argonne 2009a). The KDHE (2008a) requested that sitewide monitoring continue until a final remedy is selected (as part of a Corrective Action Study [CAS] evaluation) and implemented. In response to this request, the established sampling across the site and additional sampling in the IM pilot test area continued in 2008 (Argonne 2008b, 2009a,b). On the basis of results of the 2005-2008 sitewide monitoring and the 2008 IM pilot test monitoring, the CCC/USDA recommended a revised sampling program for both the wider site and the IM pilot test area (Section 4.2 in Argonne 2009b). The elements of this interim monitoring plan are as follows: (1) Annual sampling of twelve monitoring points across the site (Figure 1.1) and five outlying IM pilot test monitoring points (PMP4, PMP5, PMP6, PMP7, PMP9; Figure 1.2); and (2) Twice yearly sampling of five IM pilot test monitoring points inside the injection area (PMP1-PMP3, PMP8, MW02; Figure 1.2). With the approval of the KDHE (2009), the initial groundwater sampling for VOCs and geochemical analyses under the interim monitoring plan outlined above was conducted in 2009 (Argonne 2010). The present report documents the findings of the 2010 monitoring events, conducted on April 5 and September 19-21, 2010.

  12. Summary of Inorganic Compositional Data for Groundwater, Soil-Water, and Surface-Water Samples at the Headgate Draw Subsurface Drip Irrigation Site

    SciTech Connect (OSTI)

    Geboy, Nicholas J.; Engle, Mark A.; Schroeder, Karl T.; Zupanic, John W.

    2007-01-01T23:59:59.000Z

    As part of a 5-year project on the impact of subsurface drip irrigation (SDI) application of coalbed-methane (CBM) produced waters, water samples were collected from the Headgate Draw SDI site in the Powder River Basin, Wyoming, USA. This research is part of a larger study to understand short- and long-term impacts on both soil and water quality from the beneficial use of CBM waters to grow forage crops through use of SDI. This document provides a summary of the context, sampling methodology, and quality assurance and quality control documentation of samples collected prior to and over the first year of SDI operation at the site (May 2008-October 2009). This report contains an associated database containing inorganic compositional data, water-quality criteria parameters, and calculated geochemical parameters for samples of groundwater, soil water, surface water, treated CBM waters, and as-received CBM waters collected at the Headgate Draw SDI site.

  13. Iodine-129 and Iodine-127 speciation in groundwater at the Hanford Site, U.S.: iodate incorporation into calcite

    SciTech Connect (OSTI)

    Zhang, Saijin [Texas A and M Univ. at Galveston, TX (United States). Dept. of Marine Science; Xu, Chen [Texas A and M Univ. at Galveston, TX (United States). Dept. of Marine Science; Creeley, Danielle [Texas A and M Univ. at Galveston, TX (United States). Dept. of Marine Science; Ho, Yi-Fang [Texas A and M Univ. at Galveston, TX (United States). Dept. of Marine Science; Li, Hsiu-Ping [Texas A and M Univ. at Galveston, TX (United States). Dept. of Marine Science; Grandbois, Russell [Texas A and M Univ. at Galveston, TX (United States). Dept. of Marine Science; Schwehr, Kathy [Texas A and M Univ. at Galveston, TX (United States). Dept. of Marine Science; Kaplan, Daniel I. [Savannah River National Laboratory, Aiken, SC (United States); Yeager, Chris [Los Alamos National Laboratory (LANL), Los Alamos, NM (United States); Wellman, Dawn M. [Pacific Northwest National Laboratory (PNNL), Richland, WA (United States); Santschi, Peter H. [Texas A and M Univ. at Galveston, TX (United States). Dept. of Marine Science

    2013-07-25T23:59:59.000Z

    The Hanford Site, the most contaminated nuclear site in the United States, has large radioactive waste plumes containing high 129I levels. The geochemical transport and fate of radioiodine depends largely on its chemical speciation that is greatly affected by environmental factors. This study reports, for the first time, the speciation of stable and radioactive iodine in the groundwater from the Hanford Site. Iodate was the dominant species and accounts for up to 84%, followed by organo-iodine and minimal levels of iodide. The relatively high pH and oxidizing environment may have prevented iodate reduction. Our results identified that calcite precipitation caused by degassing of CO2 during deep groundwater sampling incorporated between 7 to 40% of dissolved iodine (including 127I and 129I) that was originally in the groundwater, transforming dissolved to particulate iodate during sampling. In order to understand the mechanisms underlying iodine incorporation by calcite, laboratory experiments were carried out to replicate this iodine sequestering processes. Two methods were utilized in this study, 1) addition of sodium carbonate; 2) addition of calcium chloride followed by sodium carbonate where the pH was well controlled at ~8.2, which is close to the average pH of Hanford Site groundwater. It was demonstrated that iodate was the main species incorporated into calcite and this incorporation process could be impeded by elevated pH and decreasing ionic strength in groundwater. This study provides critical information for predicting the long-term fate and transport of 129I at the Hanford Site and reveals a potential means for improved remediation strategies of 129I.

  14. Evidence for ground-water circulation in the brine-filled aquitard, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Nativ, R. [Hebrew Univ. of Jerusalem (Israel). Dept. of Soil and Water Sciences; Halleran, A.; Hunley, A. [Oak Ridge National Lab., TN (United States). Environmental Sciences Div.

    1997-07-01T23:59:59.000Z

    Various geologic, hydrologic, and geochemical methods were used to assess active ground-water circulation in a brine-filled, deep (> 50 m below land surface) aquitard underlying the Oak Ridge Reservation, Tennessee. In places, the brine which was presumed to be stagnant in the past, contains various contaminants. If ground-water circulation is viable in the brine-containing formations, then remediation or containment of the deep-seated contaminants should be considered a high priority. Data used to determine this included (1) spatial and temporal pressures and hydraulic heads measured in the aquitard, (2) hydraulic parameters of the formations in question, (3) vertical temperature gradients, and (4) spatial and temporal chemical and isotopic composition of the saline ground water. Conclusions suggest that the saline water contained at depth is not isolated (in terms of recharge and discharge) from the overlying active and fresh-water-(< 500 mg/l) bearing units. Consequently, influx of young water (and contamination) from land surface does occur. Potential discharge into the shallow aquifers was assumed where the hydraulic head of the saline water was higher than that in the shallow aquifers, accounting for temperature and salinity anomalies observed close to land surface. The confined water (and dissolved solutes) move along open conduits at relatively high velocity into adjacent, more permeable units.

  15. Persistence of uranium groundwater plumes: Contrasting mechanisms at two DOE sites in the groundwater-river interaction zone

    SciTech Connect (OSTI)

    Zachara, John M.; Long, Philip E.; Bargar, John; Davis, James A.; Fox, Patricia M.; Fredrickson, Jim K.; Freshley, Mark D.; Konopka, Allan; Liu, Chongxuan; McKinley, James P.; Rockhold, Mark L.; Williams, Kenneth H.; Yabusaki, Steven B.

    2013-04-01T23:59:59.000Z

    We examine subsurface uranium (U) plumes at two U.S. Department of Energy sites that are located near large river systems and that are influenced by groundwater-river hydrologic interaction. Following surface excavation of contaminated materials, both sites were projected to naturally flush remnant uranium contamination to levels below regulatory limits (e.g., 30 µg/L or 0.126 µmol/L; U.S. EPA drinking water standard), with 10 years projected for the Hanford 300 Area (Columbia River) and 12 years for the Rifle site (Colorado River). The rate of observed uranium decrease was much lower than expected at both sites. While uncertainty remains, a comparison of current understanding suggests that the two sites have common, but also different mechanisms controlling plume persistence. At the Hanford 300 A, the persistent source is adsorbed U(VI) in the vadose zone that is released to the aquifer during spring water table excursions. The release of U(VI) from the vadose zone and its transport within the oxic, coarse-textured aquifer sediments is dominated by kinetically-limited surface complexation. Modeling implies that annual plume discharge volumes to the Columbia River are small (< one pore volume). At the Rifle site, slow oxidation of naturally reduced, contaminant U(IV) in the saturated zone and a continuous influx of U(VI) from natural, up-gradient sources influences plume persistence. Rate-limited mass transfer and surface complexation also control U(VI) migration velocity in the sub-oxic Rifle groundwater. Flux of U(VI) from the vadose zone at the Rifle site may be locally important, but it is not the dominant process that sustains the plume. A wide range in microbiologic functional diversity exists at both sites. Strains of Geobacter and other metal reducing bacteria are present at low natural abundance that are capable of enzymatic U(VI) reduction in localized zones of accumulated detrital organic carbon or after organic carbon amendment. Major differences between the sites include the geochemical nature of residual, contaminant U; the rates of current kinetic processes (both biotic and abiotic) influencing U(VI) solid-liquid distribution; the presence of detrital organic matter and the resulting spatial heterogeneity in microbially-driven redox properties; and the magnitude of groundwater hydrologic dynamics controlled by river-stage fluctuations, geologic structures, and aquifer hydraulic properties. The comparative analysis of these sites provides important guidance to the characterization, understanding, modeling, and remediation of groundwater contaminant plumes influenced by surface water interaction that are common world-wide.

  16. Groundwater prospecting for sandstone-type uranium deposits: the merits of mineral-solution equilibria versus single element tracer methods. Volume II

    SciTech Connect (OSTI)

    Wanty, R.B.; Langmuir, D.; Chatham, J.R.

    1981-08-01T23:59:59.000Z

    This report presents the results of further research on the groundwater geochemistry of 96 well waters in two uraniferous aquifers in Texas and Wyoming, and is a continuation of the work presented by Chatham et al. (1981). In this study variations in concentrations of U, As, Mo, Se and V were compared with the saturation state of the groundwater with respect to mineral phases of these elements known or expected to occur in each area. The non-radiogenic trace elements exhibited strong redox dependence consistent with thermodynamic predictions, but their variations did not pinpoint existing uranium ore bodies, because of a shift in groundwater flow patterns since the time of ore emplacement. Saturation levels of trace element minerals such as realgar, native Se, and molybdenite showed broad anomalies around the ore-bearing areas, similar to patterns found for U minerals by Langmuir and Chatham (1980), and Chatham et al. (1981). The radiogenic elements Ra and Rn showed significant anomalies directly within the ore zones. Helium anomalies were displaced in the direction of groundwater flow, but by their magnitude and areal extent provided strong evidence for the existence of nearby uranium accumulations. Uranium isotope ratios showed no systematic variations within the two aquifers studied. Saturation maps for kaolinite, illite, montmorillonite and the zeolites analcime and clinoptilolite provided 1 to 2 km anomalies around the ore at the Texas site. Saturation values for the gangue minerals pyrite and calcite defined the redox interface and often suggested the position of probable uranium mineralization. When properly used, the groundwater geochemical concepts for exploration can accurately pinpoint uranium mineralization at a fraction of the cost of conventional methods that involve test drilling and geophysical and core logging.

  17. Probabilistic evaluation of shallow groundwater resources at a hypothetical carbon sequestration site

    SciTech Connect (OSTI)

    Dai, Zhenxue; Keating, Elizabeth; Bacon, Diana H.; Viswanathan, Hari; Stauffer, Philip; Jordan, Amy B.; Pawar, Rajesh

    2014-03-07T23:59:59.000Z

    Carbon sequestration in geologic reservoirs is an important approach for mitigating greenhouse gases emissions to the atmosphere. This study first develops an integrated Monte Carlo method for simulating CO2 and brine leakage from carbon sequestration and subsequent geochemical interactions in shallow aquifers. Then, we estimate probability distributions of five risk proxies related to the likelihood and volume of changes in pH, total dissolved solids, and trace concentrations of lead, arsenic, and cadmium for two possible consequence thresholds. The results indicate that shallow groundwater resources may degrade locally around leakage points by reduced pH and increased total dissolved solids (TDS). The volumes of pH and TDS plumes are most sensitive to aquifer porosity, permeability, and CO2 and brine leakage rates. The estimated plume size of pH change is the largest, while that of cadmium is the smallest among the risk proxies. Plume volume distributions of arsenic and lead are similar to those of TDS. The scientific results from this study provide substantial insight for understanding risks of deep fluids leaking into shallow aquifers, determining the area of review, and designing monitoring networks at carbon sequestration sites.

  18. E-Print Network 3.0 - ambient temperature rechargeable Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    physical and geochem- ical... of artificially recharged groundwater in wells located near rainwater harvesting structures and (2) to examine Source: McClain, Michael - Department...

  19. Preliminary Flood Plain Characterization Appendix A

    E-Print Network [OSTI]

    Characterization August 2010 Table of Contents 1 Introduction................................................................................................................................2 2.2 Grab Groundwater Sampling..................................................................................................3 2.5 Data Collection for Geochemical Modeling

  20. Radionuclides in shallow groundwater at Solid Waste Storage Area 5 North, Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Ashwood, T.L.; Marsh, J.D. Jr.

    1994-04-01T23:59:59.000Z

    This report presents a compilation of groundwater monitoring data from Solid Waste Storage Area (SWSA) 5 North at Oak Ridge National Laboratory (ORNL) between November 1989 and September 1993. Monitoring data were collected as part of the Active Sites Environmental Monitoring Program that was implemented in 1989 in response to DOE Order 5820.2A. SWSA 5 North was established for the retrievable storage of transuranic (TRU) wastes in 1970. Four types of storage have been used within SWSA 5 North: bunkers, vaults, wells, and trenches. The fenced portion of SWSA 5 North covers about 3.7 ha (9 acres) in the White Oak Creek watershed south of ORNL. The area is bounded by White Oak Creek and two ephemeral tributaries of White Oak Creek. Since 1989, groundwater has been monitored in wells around SWSA 5 North. During that time, elevated gross alpha contamination (reaching as high as 210 Bq/L) has consistently been detected in well 516. This well is adjacent to burial trenches in the southwest corner of the area. Water level measurements in wells 516 and 518 suggest that water periodically inundates the bottom of some of those trenches. Virtually all of the gross alpha contamination is generated by Curium 244 and Americium 241. A special geochemical investigation of well 516 suggests that nearly all of the Curium 44 and Americium 241 is dissolved or associated with dissolved organic matter. These are being transported at the rate of about 2 m/year from the burial trenches, through well 516, to White Oak Creek, where Curium 244 has been detected in a few bank seeps. Concentrations at these seeps are near detection levels (<1 Bq/L).

  1. Prediction of postmine ground-water quality at a Texas surface lignite mine

    E-Print Network [OSTI]

    Wise, Clifton Farrell

    1995-01-01T23:59:59.000Z

    . The predominant factors which affect spoil water quality have not been completely identified to date. Therefore, the Gibbons Creek Lignite Mine in Grimes County, Texas was chosen as a test site to evaluate the potential factors that can affect the geochemical...

  2. Use of Dissolved H2 Concentrations To Determine Distribution of Microbially Catalyzed Redox Reactions in Anoxic Groundwater

    E-Print Network [OSTI]

    Lovley, Derek

    similartothe HZconcentrationsthat havepreviously been reported for aquatic sedimentswith the same TEAPs. In two aquifers contaminated with petroleum products, it was impossible with standard geochemical analyses actuallyexist (i.e.,there arenofreeelectrons); (2) the redox status of most natural waters cannot be accurately

  3. The influence of naturally-occurring organic acids on model estimates of lakewater acidification using the model of acidification of groundwater in catchments (MAGIC)

    SciTech Connect (OSTI)

    Sullivan, T.J.; Eilers, J.M. (E and S Environmental Chemistry, Inc., Corvallis, OR (United States)); Cosby, B.J. (Virginia Univ., Charlottesville, VA (United States). Dept. of Environmental Sciences); Driscoll, C.T. (Syracuse Univ., NY (United States). Dept. of Civil Engineering); Hemond, H.F. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Civil Engineering); Charles, D.F.

    1993-03-05T23:59:59.000Z

    A project for the US Department of Energy, entitled Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and Testing of the Revised Model UsingIndependent Data Sources'' was initiated by E S Environmental Chemistry, Inc. in March, 1992. Major components of the project include: improving the MAGIC model by incorporating a rigorous organic acid representation, based on empirical data and geochemical considerations, and testing the revised model using data from paleolimnological hindcasts of preindustrial chemistry for 33 Adirondack Mountain lakes, and the results of whole-catchment artificial acidification projects in Maine and Norway. The ongoing research in this project involves development of an organic acid representation to be incorporated into the MAGIC modeland testing of the improved model using three independent data sources. The research during Year 1 has included conducting two workshops to agree on an approach for the organic acid modeling, developing the organic subroutine and incorporating it into MAGIC (Task 1), conducing MAGIC hindcasts for Adirondack lakes and comparing the results with paleolimnological reconstructions (Task 2), and conducting site visits to the manipulation project sites in Maine and Norway. The purpose of this report is to provide a summary of the work that has been conducted on this project during Year 1. Tasks 1 and 2 have now been completed.

  4. Geochemical and Geophysical Changes during Ammonia Gas Treatment of Vadose Zone Sediments for Uranium Remediation

    SciTech Connect (OSTI)

    Szecsody, James E.; Truex, Michael J.; Zhong, Lirong; Johnson, Timothy C.; Qafoku, Nikolla; Williams, Mark D.; Greenwood, William J.; Wallin, Erin L.; Bargar, John R.; Faurie, Danielle K.

    2012-10-30T23:59:59.000Z

    NH3 gas treatment of low water content sediments resulted in a significant decrease in aqueous and adsorbed uranium, which is attributed to incorporation into precipitates. Uranium associated with carbonates showed little change. Uranium associated with hydrous silicates such as Na-boltwoodite showed a significant decrease in mobility but no change in Na-boltwoodite concentration (by EXAFS/XANES), so is most likely caused by non-U precipitate coatings. Complex resistivity changes occurred in the sediment during NH3 and subsequent N2 gas injection, indicating ERT/IP could be used at field scale for injection monitoring.

  5. Using Trends and Geochemical Analysis to Assess Salinity Sources along the Pecos River, Texas

    E-Print Network [OSTI]

    Hoff, Aaron

    2012-07-16T23:59:59.000Z

    Increasing salinity has been a growing concern for users of waters from the Pecos River and the reservoirs it feeds in the Texas portion of the River's watershed. Irrigation water diverted from the river in the northern reach of this watershed...

  6. Geochemical analysis of crude oil from northern Appalachian, eastern Illinois, and southern Michigan basins

    SciTech Connect (OSTI)

    Noel, J.A.; Cole, J.; Innes, C.; Juzwick, S.

    1987-09-01T23:59:59.000Z

    In May 1986, the Ohio Board of Regents awarded a research grant to Ashland College to investigate the basinal origin of crude oil through trace-element analysis. The major thrust of the project was to attempt to finger print crude oils of various ages and depths from the northern Appalachian, eastern Illinois, and southern Michigan basins, to learn if the oldest crudes may have migrated among the basins. This in turn might give a more definitive time for the separation of the three basins. Nickel to vanadium ratios, were chosen to be the discriminators. Nickel to vanadium ratios show that the Trenton oil from the fields at Lima, Ohio; Oak Harbor in Ottawa County, Ohio; Urbana, Indiana; Peru, Indiana; and Albion, Michigan, are all different. The Trempealeau oils in Harmony and Lincoln Townships, Morrow County, are similar but they are different from those in Peru and Bennington Townships. The Devonian oils of the Illinois and Appalachian basins are distinctly different. The Berea oil shows little or no variability along strike. The Mississippian oils of the Illinois basin are different from the Berea oils and the Salem oil is different from the Chester. The only thing consistent about the Clinton is its inconsistency.

  7. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Elizabeth C. Chapman,† Rosemary C. Capo,† Brian W. Stewart,*,† Carl S. Kirby,‡ Richard W. Hammack,§

    2012-02-24T23:59:59.000Z

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ?375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?Sr SW = +13.8 to +41.6, where ?Sr SW is the deviation of the 87Sr/86Sr ratio from that of seawater in parts per 104); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  8. Geochemical and Strontium Isotope Characterization of Produced Waters from Marcellus Shale Natural Gas Extraction

    SciTech Connect (OSTI)

    Chapman, Elizabeth C; Capo, Rosemary C.; Stewart, Brian W.; Kirby, Carl S.; Hammack, Richard W.; Schroeder, Karl T.; Edenborn, Harry M.

    2012-03-20T23:59:59.000Z

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of 375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (?{sub Sr}{sup SW} = +13.8 to +41.6, where ?{sub Sr}{sup SW} is the deviation of the {sup 87}Sr/{sup 86}Sr ratio from that of seawater in parts per 10{sup 4}); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  9. E-Print Network 3.0 - arabian sea geochemical Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Civil Engineering, Indian Institute of Technology Kanpur Collection: Geosciences 2 A Climatology of Arabian Sea Cyclonic Storms AMATO T. EVAN Summary: A Climatology of Arabian Sea...

  10. Geochemical modeling of an aquifer storage and recovery project in Union County, Arkansas

    E-Print Network [OSTI]

    Zhu, Ni, M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    The Sparta aquifer in Union County, Arkansas has served as an important potable water supply to the public and industrial sectors in the area. However, increasing water demand and sustained heavy pumping from the aquifer ...

  11. Carbon isotope ratio of Cenozoic CO2: A comparative evaluation of available geochemical proxies

    E-Print Network [OSTI]

    Tipple, Brett

    Click Here for Full Article Carbon isotope ratio of Cenozoic CO2: A comparative evaluation 2009; revised 16 February 2010; accepted 1 March 2010; published 17 July 2010. [1] The carbon isotope that these factors act to offset one another. Our reconstruction suggests that Cenozoic d13 CCO2 averaged -6.1 ± 0

  12. Investigation of Coupled Hydrologic and Geochemical Impacts of Wildfire on Southern California Watersheds

    E-Print Network [OSTI]

    Burke, Megan Patricia

    2012-01-01T23:59:59.000Z

    Water is routed through the reach network to the watershed outlet using storage routing, or kinematic wave

  13. Geomorphic and Geochemical Characteristics of Five Alpine Fens in the San Juan Mountains, Colorado

    E-Print Network [OSTI]

    McClenning, Bree Kathleen 1985-

    2012-11-26T23:59:59.000Z

    sediment to better understand variations of Pb with depth and calculate approximate sedimentation rates. Based on isotopic ratios of Pb, binary mixing was determined with the presence of ore mineralized Pb and non-ore mineralized. Binary mixing of two types...

  14. Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling

    E-Print Network [OSTI]

    A. Ridgwell; J. C. Hargreaves; N. R. Edwards; J. D. Annan; T. M. Lenton; R. Marsh; A. Yool; A. Watson

    2006-01-01T23:59:59.000Z

    Abstract. We have extended the 3-D ocean based “Grid ENabled Integrated Earth system model ” (GENIE-1) to help understand the role of ocean biogeochemistry and marine sediments in the long-term (?100 to 100 000 year) regulation of atmospheric CO2, and the importance of feedbacks between CO2 and climate. Here we describe the ocean carbon cycle, which in its first incarnation is based around a simple single nutrient (phosphate) control on biological productivity. The addition of calcium carbonate preservation in deep-sea sediments and its role in regulating atmospheric CO2 is presented elsewhere (Ridgwell and Hargreaves, 2007). We have calibrated the model parameters controlling ocean carbon cycling in GENIE-1 by assimilating 3-D observational datasets of phosphate and alkalinity using an ensemble Kalman filter method. The calibrated (mean) model predicts

  15. Broad bounds on Earth's accretion and core formation constrained by geochemical models

    E-Print Network [OSTI]

    Rudge, John

    accretion at either 301,5 or 1002,3 Myr after solar system formation. These models as- sume full metal. Impacts of numerous Moon- to Mars-sized planetary embryos on the growing Earth re- leased sufficient

  16. Geology, compositional heterogeneities, and geochemical origin of the Yacheng gas field, Qiongdongnan Basin, South China Sea

    SciTech Connect (OSTI)

    Hao, F.; Li, S.; Sun, Y. [China Univ. of Geosciences, Wuhan, Hubei (China). Dept. of Petroleum Geology; Zhang, Q. [Nanhai West Oil Corp., Guangdong (China). Inst. of Petroleum Exploration and Development

    1998-07-01T23:59:59.000Z

    The Yacheng gas field is located in the footwall of the No. 1 fault, the boundary fault between the Yinggehai and Qiongdongnan basins. All strata are normally pressured in the gas field except for the Meishan Formation. The Meishan Formation is overpressured near the No. 1 fault in the gas field and in the adjacent Yinggehai Basin. An obvious thermal anomaly occurs below 3600 m in the gas field. This anomaly, characterized by an abrupt increase in drill-stem test and fluid-inclusion homogenization temperatures, vitrinite reflectance (R{sub o}), and Rock-Eval T{sub max}, and by an abnormally low temperature/R{sub o}/T{sub max} gradient, diminishes away from the Yinggehai Basin. The gases and condensates have abnormally high aromatic hydrocarbon contents and show obvious heterogeneities. Away from the No. 1 fault, the C{sub 2+} hydrocarbon content and C{sub 2+}/{Sigma}C{sub n} increase; carbon dioxide content decreases; {delta}{sup 13}C values for methane, ethane, and carbon dioxide become lighter; the heptane and isoheptane values decrease; and the relative contents of aromatic hydrocarbons, both in C{sub 6}/C{sub 7} light hydrocarbons and in the condensates, decrease. The gas field was charged from both the Qiongdongnan and the Yinggehai basins. Hydrocarbons sourced from the Qiongdongnan Basin have relatively low maturities, whereas hydrocarbons from the Yinggehai Basin have relatively higher maturities and seem to have been in association with hydrothermal fluids. The hydrothermal fluids from the Yinggehai Basin, in which methane, ethane, carbon dioxide, and especially aromatic hydrocarbons dissolved under the high-temperature and high-pressure subsurface conditions, migrated along the No. 1 fault and caused the abnormally high concentration of aromatic hydrocarbons, as well as the thermal anomalies in the gas field, especially near the No. 1 fault.

  17. Mantle-related carbonados? Geochemical insights from diamonds from the Dachine komatiite (French Guiana)

    E-Print Network [OSTI]

    Cartigny, Pierre

    Carbonado is a unique type of polycrystalline diamond characterised, among others, by 13 C-depleted isotope carbonado diamonds are polycrystalline, but the reciprocal is not true, i.e. a polycrystalline diamond is not necessarily a carbonado. Most classifications for polycrystalline diamonds are established according

  18. A geochemical study of Lakes Bonney and Vanda, Victoria Land, Antarctica

    E-Print Network [OSTI]

    Armitage, Kenneth

    1963-01-01T23:59:59.000Z

    active consideration. tent of the monimolimnoin of Lake Bonney suggests either a sea-water origin or salt­ water contamination. It is also possible that the waters are a magnesian brine resulting from extensive past concentration either by a freezing... molluscan faunas of the Illinois Valley region: Illinois Geol. Survey Circ. 304, 32 p. OLSON, E . A., and BROECKER, W. S., 1958, Sample contamination and reliability of radiocarbon dates: New York Acad. Sci. Trans., ser. II , v. 20, p. 593-604. RUBIN...

  19. Abstract Diatom and geochemical data from Crawford Lake, Ontario, have been used to docu-

    E-Print Network [OSTI]

    McAndrews, John H.

    periods of cultural eutrophication and examine the limno- logical processes that occurred during ORIGINAL PAPER Diatom assemblage response to Iroquoian and Euro-Canadian eutrophication of Crawford Lake- turbance and recovery in lake systems. Keywords Crawford Lake Ă? Diatoms Ă? Iroquoian Ă? Eutrophication Ă?

  20. Petroleum potential of the Upper Ordovician Maquoketa Group in Illinois: A coordinated geological and geochemical study

    SciTech Connect (OSTI)

    Crockett, J.E.; Oltz, D.F. (Illinois State Geological Survey, Champaign (USA)); Kruge, M.A. (Southern Illinois Univ., Carbondale (USA))

    1990-05-01T23:59:59.000Z

    The Ordovician Maquoketa Group in Illinois, predominantly composed of shale, calcareous shale, and carbonates, has long been considered a potential source for Illinois basin hydrocarbons. Methods used to better define the petroleum potential of the Maquoketa in the Illinois basin were lithostratigraphic study, Rock-Eval (pyrolysis) analyses, comparison of molecular markers from whole-rock extracts and produced oil, and construction of burial history models. Organic-rich submature Maquoketa potential source rocks are present in western Illinois at shallow depths on the basin flank. Deeper in the basin in southern Illinois, Rock-Eval analyses indicate that the Maquoketa shale is within the oil window. Solvent extracts of the Maquoketa from western Illinois closely resemble the Devonian New Albany Shale, suggesting that past studies may have erroneously attributed Maquoketa-generated petroleum to a New Albany source or failed to identify mixed source oils. Subtle differences between Maquoketa and New Albany solvent extracts include differences in pristane/phytane ratios, proportions of steroids, and distribution of dimethyldibenzothiophene isomers. Maquoketa solvent extracts show little resemblance to Middle Ordovician oils from the Illinois or Michigan basins. Lithostratigraphic studies identified localized thick carbonate facies in the Maquoketa, suggesting depositional response to upper Ordovician paleostructures. Sandstone facies in the Maquoketa in southwestern Illinois offer a potential source/trap play, as well as serving as potential carrier beds for hydrocarbon migration. Maquoketa source and carrier beds may feed older Ordovician rocks in faulted areas along and south of the Cottage Grove fault system in southern Illinois.

  1. Mechanisms of geochemical and geophysical variations along the western Galapagos Spreading Center

    E-Print Network [OSTI]

    Ito, Garrett

    Stephanie Ingle, Garrett Ito, John J. Mahoney, William Chazey III, and John Sinton Department of Geology January 2010; Published 16 April 2010. Ingle, S., G. Ito, J. J. Mahoney, W. Chazey III, J. Sinton, M

  2. Correlated geophysical, geochemical, and volcanological manifestations of plume-ridge interaction along the

    E-Print Network [OSTI]

    Ito, Garrett

    Oceanographic Institution, Woods Hole, Massachusetts 02453, USA (rdetrick@whoi.edu) J. M. Sinton School of Ocean (sinton@soest.hawaii.edu) G. Ito School of Ocean and Earth Science and Technology, University of Hawaii; Accepted 21 June 2002; Published 10 October 2002. Detrick, R. S., J. M. Sinton, G. Ito, J. P. Canales, M

  3. The "calamine" nonsulfide ZnPb deposits of Belgium: Petrographical, mineralogical and geochemical characterization

    E-Print Network [OSTI]

    Boni, Maria

    " and consist of a mixture of Zn carbonates (smithsonite, hydrozincite) and Zn silicates (hemimorphite-Variscan hydrothermal veins and replacement bodies, mostly occurring in the Dinantian (Visean) limestones. The sulfides of other willemite ores throughout the world, so far considered of hydrothermal origin. The stable isotope

  4. Laboratory and field-based investigations of subsurface geochemical processes in seafloor hydrothermal systems

    E-Print Network [OSTI]

    Reeves, Eoghan

    2010-01-01T23:59:59.000Z

    This thesis presents the results of four discrete investigations into processes governing the organic and inorganic chemical composition of seafloor hydrothermal fluids in a variety of geologic settings. Though Chapters 2 ...

  5. Geochemical anomalies in the surface media over the Phoenix Deposit, Athabasca Basin Ressources naturelles

    E-Print Network [OSTI]

    summers. The surface topography on the Wheeler River Property consists mainly of gently rolling hills at the Wheeler River Property. The small hills in the background indicate gentle topographical relief. Figure 5: View through the forest, with abundant young black spruce and extensive mossy undergrowth. Samples

  6. Geochemical and Geomechanical Effects on Wellbore Cement Fractures: Data Information for Wellbore Reduced Order Model

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; Suh, Dong-Myung; Fernandez, Carlos A.

    2014-01-01T23:59:59.000Z

    The primary objective of the National Risk Assessment Partnership (NRAP) program is to develop a defensible, generalized, and science-based methodology and platform for quantifying risk profiles at CO2 injection and storage sites. The methodology must incorporate and define the scientific basis for assessing residual risks associated with long-term stewardship and help guide site operational decision-making and risk management. Development of an integrated and risk-based protocol will help minimize uncertainty in the predicted long-term behavior of the CO2 storage site and thereby increase confidence in storage integrity. The risk profile concept has proven useful in conveying the qualitative evolution of risks for CO2 injection and storage site. However, qualitative risk profiles are not sufficient for specifying long-term liability for CO2 storage sites. Because there has been no science-based defensible and robust methodology developed for quantification of risk profiles for CO2 injection and storage, NRAP has been focused on developing a science-based methodology for quantifying risk profiles for various risk proxies.

  7. Geochemical fluxes related to alteration of a subaerially exposed seamount: Nintoku seamount, ODP Leg 197,

    E-Print Network [OSTI]

    Boyer, Edmond

    , Notre Dame, Indiana 46556, USA [1] Hole 1205A was drilled on Nintoku Seamount, which lies fluids. The secondary mineralogy is relatively uniform throughout the section and comprises smectite, Fe elevated ($0.704). The Lower Alteration Zone likely reflects interaction with a subaerial oxidizing fluid

  8. Geological and geochemical aspects of uranium deposits: a selected, annotated bibliography. [474 references

    SciTech Connect (OSTI)

    Thomas, J.M.; Garland, P.A.; White, M.B.; Daniel, E.W.

    1980-09-01T23:59:59.000Z

    This bibliography, a compilation of 474 references, is the fourth in a series compiled from the National Uranium Resource Evaluation (NURE) Bibliographic Data Base. This data base was created for the Grand Junction Office of the Department of Energy's National Uranium Resource Evaluation Project by the Ecological Sciences Information Center, Oak Ridge National Laboratory. The references in the bibliography are arranged by subject category: (1) geochemistry, (2) exploration, (3) mineralogy, (4) genesis of deposits, (5) geology of deposits, (6) uranium industry, (7) geology of potential uranium-bearing areas, and (8) reserves and resources. The references are indexed by author, geographic location, quadrangle name, geoformational feature, and keyword.

  9. Geophysical monitoring of coupled microbial and geochemical processes during stimulated subsurface bioremediation

    E-Print Network [OSTI]

    Williams, K.H.

    2010-01-01T23:59:59.000Z

    electrical properties of unconsolidated sediments. Geophys.induced polarization in sandy unconsolidated sediments andcomprised of ca. 6.5 m of unconsolidated sands, silts, clays

  10. ANDRA UNDERGROUND RESEARCH LABORATORY: INTERPRETATION OF THE MINERALOGICAL AND GEOCHEMICAL DATA ACQUIRED IN THE

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    4 . 1: BRGM, Orléans-45 (France); 2: ANTEA, Orléans-45 (France); 3: ANDRA, Bure- 55 (France); 4: ERM, Poitiers-86 (France); # : author to whom the correspondence should be addressed; *: present address: IRSN, Fontenay-aux-Roses-92 (France). e.gaucher@brgm.fr fax :33 2 38 64 30 62; c.robelin@brgm.fr fax : 33 2 38 64

  11. Paleoproterozoic snowball Earth: Extreme climatic and geochemical global change and its

    E-Print Network [OSTI]

    biological productivity, melting of the oceanic ice would also have induced a cyanobacterial bloom, leading iron formations and cap carbonates. Although global glaciation would have dras- tically curtailed glaciation: An ice-albedo feedback will drive a run-away glaciation (8) resulting in 500­1,500 m of global

  12. Petrographic and geochemical anatomy of lithotypes from the Blue Gem coal bed, Southeastern Kentucky

    SciTech Connect (OSTI)

    Hower, J.C.; Taulbee, D.N.; Morrell, L.G. [Univ. of Kentucky, Lexington, KY (United States)] [and others

    1994-12-31T23:59:59.000Z

    The nature of the association of major, minor, and trace elements with coal has been the subject of intensive research by coal scientists (Swaine; and references cited therein). Density gradient centrifugation (DGC) offers a technique with which ultrafine coal particles can be partitioned into a density spectrum, portions of which represent nearly pure monomaceral concentrates. DGC has been typically conducted on demineralized coals assuring, particularly at lower specific gravities, that the resulting DGC fractions would have very low ash contents. In order to determine trends in elemental composition, particularly with a view towards maceral vs. mineral association, it is necessary to avoid demineralization. To this end the low-ash, low-sulfur Blue Gem coal bed (Middle Pennsylvanian Breathitt Formation) from Knox County, Kentucky, was selected for study. The objective of this study was to determine the petrography and chemistry, with particular emphasis on the ash geochemistry, of DGC separates of lithotypes of the Blue Gem coal bed.

  13. E-Print Network 3.0 - argentina geochemical constraints Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University of Iowa Collection: Geosciences 79 julyaugust 2005 IEEE power & energy magazine 491540-79770520.002005 IEEE SOUTH AMERICA IS FACING IMPORTANT CHALLENGES...

  14. The geological and geochemical study of the mud volcanoes of Azerbaijan

    SciTech Connect (OSTI)

    Guliyev, I.A.; Aliyev, A.A.; Rahmanov, R.R. [Geological Institute of the Azerbaijan academy of sciences (GIA), Baku (Azerbaijan)] [and others

    1995-08-01T23:59:59.000Z

    Azerbaijan is a classic region for the study of mud volcanism. Of the 700 mud volcanoes known in the world, 220 are in Azerbaijan. These are of great interest, not least in relation to oil and gas exploration since they give information on subsurface sediments beyond the reach of drilling. Mud volcanoes are clearly visible on satellite images. They are confined to structural lineaments and associated fractures. Changes in the morphology of some mud volcanoes post-eruption can be detected from a series of images pre-dating and post-dating eruptions. Mud volcanoes are notable for gradients of temperature that are by an order of magnitude or a factor of 102 greater than the temperature gradients established elsewhere. The gases of mud volcanoes consist mainly of methane (95-100%). There are small amounts of C{sub 2-6}, CO{sub 2}, N{sub 2}, He and Ar. The isotopic composition of carbon (ICC) within the methane varies from -61.29. to -35.W{close_quotes} which is isotopically heavier than the methane from producing fields. The ICC of the CO{sub 2} has a very wide range (from -49.6% to +23.1%), indicating several sources of its formation. The isotopically superheavy CO{sub 2} (+5%) is especially interesting. Oils from mud volcanoes are typically severely biodegraded. Their ICC ranges from -24.76% to -28.2%. A relationship between {partial_derivative}{sup l3}C of oils and ages of accumulations has been established. Waters of mud volcanoes are lightly mineralised, containing chiefly bicarbonates and sodium. The hydrogen composition of the water is abnormally heavy. Ejected rocks from mud volcanoes range in age from Cretaceous - Pliocene. Their study suggests that deeply buried reservoirs maintain good poroperm characteristics because of relatively little catagenesis.

  15. 22nd International Senckenberg Conference Exceptional geochemical preservation of vertebrate remains from the Eocene

    E-Print Network [OSTI]

    Schöne, Bernd R.

    , tuetken@uni-bonn.de. The 47-Myr-old middle Eocene oil shale deposits of the UNESCO World Heritage Site as the embedding oil shale, were also analyzed to characterize the isotope compositions of diagenetic mineral phases. The oil shale and siderite have values of 18OCO3 (0.3 to 1.5) and 13CCO3 (14.8 to 17

  16. Geochemical and rheological constraints on the dynamics of the oceanic upper mantle

    E-Print Network [OSTI]

    Warren, Jessica Mendelsohn

    2007-01-01T23:59:59.000Z

    I provide constraints on mantle convection through observations of the rheology and composition of the oceanic upper mantle. Convection cannot be directly observed, yet is a fundamental part of the plate tectonic cycle. ...

  17. Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration

    SciTech Connect (OSTI)

    Xu, Huifang; Zhou, Mo; Zhang, Fangfu; Konishi, Hiromi; Shen, Zhizhang; Teng, H.

    2013-10-16T23:59:59.000Z

    Mica, biotite, muscovite, diopside, tremolite, ultramafic rock, hematite, Ca-Mg-carbonate, calcite, aragonite, dolomite, crystal nucleation, crystallization, interface, catalysis, EBSD, XRD, TEM

  18. ORGANIC GEOCHEMICAL CHARACTERIZATION AND MINERALOGIC PROPERTIES OF MENGEN OIL SHALE (LUTETIAN

    E-Print Network [OSTI]

    unknown authors

    , lignite, and oil shale sequences. Oil shale deposit has been accumulated in shallow restricted back

  19. Trace Element Geochemical Zoning in the Roosevelt Hot Springs Thermal Area,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExplorationUT-gTaguspark JumpDetective:Toyo Aluminium KK Jump to:

  20. A geochemical model of the Kilauea east rift zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating SolarElectric Coop,SaveWhiskey FlatshydroMultiple GeothermalHawaii | Open Energyf

  1. 31 TAC, part 1, chapter 9, rule 9.11 Geophysical and Geochemical

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive Jump to:Species | Open Energy6Open

  2. A Geochemical Model of the Kilauea East Rift Zone | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive(Sichuan, Sw China) |

  3. A Geological and Hydro-Geochemical Study of the Animas Geothermal Area,

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive(Sichuan, Sw China) |System,

  4. A Mineralogical Petrographic And Geochemical Study Of Samples From Wells In

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWater Rights, Substantive(Sichuan, Sw China)| OpenThe Geothermal Field

  5. Memo: Quarry Residuals Geochemical Sampling of the Shallow USGS Piezometers in the Saint Charles County Wellfield.

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$ EGcG ENERGYELIkNATIONHEALXH:LTS-S,:?'85 March

  6. Geochemical Data for 95 Thermal and Nonthermal Waters of the Valles Caldera

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: EnergySector: SolarGenoa is aGeo Exploration-

  7. Geochemical Modeling of the Near-Surface Hydrothermal System Beneath the

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation, searchGeauga County, Ohio: EnergySector: SolarGenoa is aGeo

  8. Geochemical Behaviour of S, Cl and Fe in Silicate Melts/Glasses Simulating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor'sshort version)Unveils High-TechNatural Magmas |

  9. Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision has beenFfe2fb55-352f-473b-a2dd-50ae8b27f0a6TheoreticalFuelCellGemini SolarAssets

  10. Advances in Geochemical Testing of Key Contaminants in Residual Hanford Tank Waste

    SciTech Connect (OSTI)

    Deutsch, William J.; Krupka, Kenneth M.; Cantrell, Kirk J.; Brown, Christopher F.; Lindberg, Michael J.; Schaef, Herbert T.; Heald, Steve M.; Arey, Bruce W.; Kukkadapu, Ravi K.

    2005-11-04T23:59:59.000Z

    This report describes the advances that have been made over the past two years in testing and characterizing waste material in Hanford tanks.

  11. Geological and geochemical aspects of uranium deposits. A selected, annotated bibliography

    SciTech Connect (OSTI)

    Garland, P.A.; Thomas, J.M.; Brock, M.L.; Daniel, E.W. (comps.)

    1980-06-01T23:59:59.000Z

    A bibliography of 479 references encompassing the fields of uranium and thorium geochemistry and mineralogy, geology of uranium deposits, uranium mining, and uranium exploration techniques has been compiled by the Ecological Sciences Information Center of Oak Ridge National Laboratory. The bibliography was produced for the National Uranium Resource Evaluation Program, which is funded by the Grand Junction Office of the Department of Energy. The references contained in the bibliography have been divided into the following eight subject categories: (1) geology of deposits, (2) geochemistry, (3) genesis O deposits, (4) exploration, (5) mineralogy, (6) uranium industry, (7) reserves and resources, and (8) geology of potential uranium-bearing areas. All categories specifically refer to uranium and thorium; the last category contains basic geologic information concerning areas which the Grand Junction Office feels are particularly favorable for uranium deposition. The references are indexed by author, geographic location, quadrangle name, geoformational feature, taxonomic name, and keyword.

  12. Geochemical and petrological evidence for subduction^ accretion processes in the Archean Eastern Indian Craton

    E-Print Network [OSTI]

    Garzione, Carmala N.

    -normalized rare earth element (REE) patterns of the sandstones show a light REE-enriched signature with (La , Amitabha Chakrabarti c a Department of Earth and Environmental Sciences, University of Rochester, Rochester of these sandstones demonstrate an overall similarity with global Proterozoic^Archean sandstones, including strong Nb

  13. Geochemical Evidence for Slab Melting in theTrans-MexicanVolcanic Belt

    E-Print Network [OSTI]

    Langmuir, Charles H.

    and heavy rare earth concentrations and Nb/Ta ratios with increasing SiO2 contents in theVBZ rocks is best OF EARTH AND PLANETARY SCIENCES, HARVARD UNIVERSITY, CAMBRIDGE, MA 02138, USA 3 LAMONT^DOHERTY EARTH OBSERVATORY AND DEPARTMENT OF EARTH AND ENVIRONMENTAL SCIENCES, COLUMBIA UNIVERSITY, 61 RT. 9W, PALISADES, NY

  14. The Hanford Story: Groundwater

    Broader source: Energy.gov [DOE]

    This second chapter of The Hanford Story explains how more than 100 square miles of groundwater under the Hanford Site became contaminated and what workers are doing to restore groundwater to its highest beneficial use.

  15. Groundwater Protection Act (Iowa)

    Broader source: Energy.gov [DOE]

    The Commissioner of the Iowa Department of Natural Resources is required to determine a general groundwater protection strategy and groundwater quality standards for the state, to be approved by...

  16. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

    SciTech Connect (OSTI)

    Mouser, P.J.; N'Guessan, A.L.; Elifantz, H.; Holmes, D.E.; Williams, K.H.; Wilkins, M.J.; Long, P.E.; Lovley, D.R.

    2009-04-01T23:59:59.000Z

    The impact of ammonium availability on microbial community structure and the physiological status and activity of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by as much as two orders of magnitude (<4 to 400 {micro}M) across the study site. Analysis of 16S rRNA gene sequences suggested that ammonium influenced the composition of the microbial community prior to acetate addition with Rhodoferax species predominating over Geobacter species at the site with the highest ammonium, and Dechloromonas species dominating at sites with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI) reduction appeared to be more related to the concentration of acetate that was delivered to each location rather than the amount of ammonium available in the groundwater. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium importer gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during in situ uranium reduction, and that the abundance of amtB transcripts was inversely correlated to ammonium levels across all sites examined. These results suggest that nifD and amtB expression by subsurface Geobacter species are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB expression appears to be a useful approach for monitoring the nitrogen-related physiological status of Geobacter species in subsurface environments during bioremediation. This study also emphasizes the need for more detailed analysis of geochemical/physiological interactions at the field scale, in order to adequately model subsurface microbial processes.

  17. Measured solubilities and speciations of neptunium, plutonium, and americium in a typical groundwater (J-13) from the Yucca Mountain region; Milestone report 3010-WBS 1.2.3.4.1.3.1

    SciTech Connect (OSTI)

    Nitsche, H.; Gatti, R.C.; Standifer, E.M. [and others] [Lawrence Berkeley Lab., CA (United States)

    1993-07-01T23:59:59.000Z

    Solubility and speciation data are important in understanding aqueous radionuclide transport through the geosphere. They define the source term for transport retardation processes such as sorption and colloid formation. Solubility and speciation data are useful in verifying the validity of geochemical codes that are part of predictive transport models. Results are presented from solubility and speciation experiments of {sup 237}NpO{sub 2}{sup +}, {sup 239}Pu{sup 4+}, {sup 241}Am{sup 3+}/Nd{sup 3+}, and {sup 243}Am{sup 3+} in J-13 groundwater (from the Yucca Mountain region, Nevada, which is being investigated as a potential high-level nuclear waste disposal site) at three different temperatures (25{degree}, 60{degree}, and 90{degree}C) and pH values (5.9, 7.0, and 8.5). The solubility-controlling steady-state solids were identified and the speciation and/or oxidation states present in the supernatant solutions were determined. The neptunium solubility decreased with increasing temperature and pH. Plutonium concentrations decreased with increasing temperature and showed no trend with pH. The americium solutions showed no clear solubility trend with increasing temperature and increasing pH.

  18. The influence of naturally-occurring organic acids on model estimates of lakewater acidification using the model of acidification of groundwater in catchments (MAGIC). Summary of research conducted during year 1

    SciTech Connect (OSTI)

    Sullivan, T.J.; Eilers, J.M. [E and S Environmental Chemistry, Inc., Corvallis, OR (United States)] [E and S Environmental Chemistry, Inc., Corvallis, OR (United States); Cosby, B.J. [Virginia Univ., Charlottesville, VA (United States). Dept. of Environmental Sciences] [Virginia Univ., Charlottesville, VA (United States). Dept. of Environmental Sciences; Driscoll, C.T. [Syracuse Univ., NY (United States). Dept. of Civil Engineering] [Syracuse Univ., NY (United States). Dept. of Civil Engineering; Hemond, H.F. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Civil Engineering] [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Civil Engineering; Charles, D.F. [Academy of Natural Sciences of Philadelphia, PA (United States). Patrick Center for Environmental Research] [Academy of Natural Sciences of Philadelphia, PA (United States). Patrick Center for Environmental Research; Norton, S.A. [Maine Univ., Orono, ME (United States). Dept. of Geological Sciences] [Maine Univ., Orono, ME (United States). Dept. of Geological Sciences

    1993-03-05T23:59:59.000Z

    A project for the US Department of Energy, entitled ``Incorporation of an organic acid representation into MAGIC (Model of Acidification of Groundwater in Catchments) and Testing of the Revised Model UsingIndependent Data Sources`` was initiated by E&S Environmental Chemistry, Inc. in March, 1992. Major components of the project include: improving the MAGIC model by incorporating a rigorous organic acid representation, based on empirical data and geochemical considerations, and testing the revised model using data from paleolimnological hindcasts of preindustrial chemistry for 33 Adirondack Mountain lakes, and the results of whole-catchment artificial acidification projects in Maine and Norway. The ongoing research in this project involves development of an organic acid representation to be incorporated into the MAGIC modeland testing of the improved model using three independent data sources. The research during Year 1 has included conducting two workshops to agree on an approach for the organic acid modeling, developing the organic subroutine and incorporating it into MAGIC (Task 1), conducing MAGIC hindcasts for Adirondack lakes and comparing the results with paleolimnological reconstructions (Task 2), and conducting site visits to the manipulation project sites in Maine and Norway. The purpose of this report is to provide a summary of the work that has been conducted on this project during Year 1. Tasks 1 and 2 have now been completed.

  19. Groundwater Management Areas (Texas)

    Broader source: Energy.gov [DOE]

    This legislation authorizes the Texas Commission on Environmental Quality and the Texas Water Development Board to establish Groundwater Management Areas to provide for the conservation,...

  20. Groundwater and Wells (Nebraska)

    Broader source: Energy.gov [DOE]

    This section describes regulations relating to groundwater protection, water wells, and water withdrawals, and requires the registration of all water wells in the state.

  1. 13 In Situ: Groundwater Bioremediation

    E-Print Network [OSTI]

    Hazen, Terry

    and Bioaugmentation of Groundwater ............................ 2589 5 Intrinsic Bioremediation and Modeling attenuation. 1 Introduction A patent for in situ bioremediation of groundwater contaminated with gasoline13 In Situ: Groundwater Bioremediation T. C. Hazen Lawrence Berkeley National Laboratory, Berkeley

  2. Groundwater Protection Plan (West Virginia)

    Broader source: Energy.gov [DOE]

    Groundwater Protection Plans (GPPs) are required for all facilities having the potential to impact groundwater. They are “preventive maintenance” documents that cover all processes and materials at...

  3. Groundwater in the Great Plains

    E-Print Network [OSTI]

    Jensen, R.

    2003-01-01T23:59:59.000Z

    7 The importance of conservation 7 What is Groundwater? The Hydrologic Cycle 8 Groundwater flow patterns 9 Saturated and unsaturated zones 9 Aquifers 10 Sole source aquifers 10 Water wells 12 Groundwater Quality Contamination and pollution, measuring... The High Plains Aquifer 22 Population served by groundwater 23 Competing uses for a limited resource 23 Groundwater declines 24 Contamination and Health Issues Water Testing 26 Regulatory Standards, Treatment Options 27 Table of Contents 3 Public...

  4. Coupling and Testing the Fate and Transport of Heavy Metals and Other Ionic Species in a Groundwater Setting at Oak Ridge, TN - 13498

    SciTech Connect (OSTI)

    Noosai, Nantaporn; Fuentes, Hector R. [CEE Florida International University, Miami, FL 33174 (United States)] [CEE Florida International University, Miami, FL 33174 (United States)

    2013-07-01T23:59:59.000Z

    Historical data show that heavy metals (including mercury) were released from Y -12 National Security Complex (NSC) at Oak Ridge, Tennessee, to the surrounding environments during its operation in 1950's. Studies have also shown that metals accumulated in the soil, rock, and groundwater, and are, at the present time, sources of contamination to nearby rivers and creeks (e.g., East Fork Poplar Creek, Bear Creek). For instance, mercury (Hg), zinc (Zn), cadmium (Cd) and lead (Pb) have been found and reported on the site groundwater. The groundwater type at the site is Ca-Mg-HCO{sub 3}. This paper presents a modeling application of PHREEQC, a model that simulates geochemical processes and couples them to flow and transport settings. The objective was to assess the capability of PHREEQC to simulate the transport of ionic species in groundwater at Oak Ridge, Tennessee; data were available from core holes and monitoring wells over a 736-m distance, within 60-300 m depths. First, predictions of the transport of major ionic species (i.e., Ca{sup 2+} and Mg{sup 2+}) in the water were made between monitoring wells and for GW-131. Second, the model was used to assess hypotheses under two scenarios of transport for Zn, Cd, Pb and Hg, in Ca-Mg-HCO{sub 3} water, as influenced by the following solid-liquid interactions: a) the role of ion exchange and b) the role of both ion exchange and sorption, the latter via surface complexation with Fe(OH){sub 3}. The transport scenario with ion exchange suggests that significant ion exchange is expected to occur for Zn, Cd and Pb concentrations, with no significant impact on Hg, within the first 100 m. Predictions match the expected values of the exchange coefficients relative to Ca{sup 2+} and Mg{sup 2+} (e.g., K{sub Ca/Zn} = K{sub Ca/Cd} > K{sub Ca/Pb} > K{sub Ca/Hg}). The scenario with both ion exchange and sorption does affect the concentrations of Zn and Cd to a small extent within the first 100 m, but does more meaningfully reduce the concentration of Pb, within the same distance, and also decreases the concentration of Hg in between core holes. Analysis of the above results, in the light of available literature on the ions of this study, does fundamentally support the capability of PHREEQC to predict the transport of major ions in a groundwater setting; it also generally supports the hypothesized role of ion exchange and sorption. The results indicate the potential of the model as a tool in the screening, selection and monitoring of remediation technologies for contaminated groundwater sites. (authors)

  5. Influence of heterogeneous ammonium availability on bacterial community structure and the expression of nitrogen fixation and ammonium transporter genes during in situ bioremediation of uranium-contaminated groundwater

    SciTech Connect (OSTI)

    Mouser, Paula; N'guessan, Lucie A.; Elifantz, H.; Holmes, Dawn; Williams, Kenneth H.; Wilkins, Michael J.; Long, Philip E.; Lovley, Derek R.

    2009-06-15T23:59:59.000Z

    The influence of ammonium availability on bacterial community structure and the physiological status of Geobacter species during in situ bioremediation of uranium-contaminated groundwater was evaluated. Ammonium concentrations varied by two orders of magnitude (<4 to 400 ?M) across the study site. Analysis of 16S rRNA sequences suggested that ammonium may have been one factor influencing the community composition prior to acetate amendment with Rhodoferax species predominating over Geobacter species with higher ammonium and Dechloromonas species dominating at the site with lowest ammonium. However, once acetate was added, and dissimilatory metal reduction was stimulated, Geobacter species became the predominant organisms at all locations. Rates of U(VI)-reduction appeared to be more related to acetate concentrations rather than ammonium levels. In situ mRNA transcript abundance of the nitrogen fixation gene, nifD, and the ammonium transporter gene, amtB, in Geobacter species indicated that ammonium was the primary source of nitrogen during uranium reduction. The abundance of amtB was inversely correlated to ammonium levels whereas nifD transcript levels were similar across all sites examined. These results suggest that nifD and amtB expression are closely regulated in response to ammonium availability to ensure an adequate supply of nitrogen while conserving cell resources. Thus, quantifying nifD and amtB transcript expression appears to be a useful approach for monitoring the nitrogen-related physiological status of subsurface Geobacter species and. This study also emphasizes the need for more detailed analysis of geochemical/physiological interactions at the field scale, in order to adequately model subsurface microbial processes during bioremediation.

  6. Multicomponent fluid flow by discontinuous Galerkin and mixed methods in unfractured and fractured media

    E-Print Network [OSTI]

    Firoozabadi, Abbas

    . Numerical examples in unfractured and fractured media illustrate the efficiency and robustness in gas-condensate reservoirs), hydrology and geochemical engineering (contamination of groundwater field, sharp variations in the rock properties, and high nonlinearity of the multicomponent system due

  7. Lead Groundwater Contamination of Groundwater in the Northeast ...

    E-Print Network [OSTI]

    2001-03-12T23:59:59.000Z

    The detailed description of the migration of pollutants is fundamental for the groundwater monitoring and it ... historical data with a, groundwater contamination sampling for water quality analyses ... can be toxic to living organisms. Lead can ...

  8. Buying, Selling and Exporting Groundwater: Implications for Groundwater Conservation Districts

    E-Print Network [OSTI]

    Kaiser, Ronald; Lesikar, Bruce A.; Silvey, Valeen

    in a Sales/ Lease Agreement, by Sandra Burns. Regulation of Exportation of Underground Water, by Doug Caroom. Roberts County Transportation Permits, by C.E. Williams. Export Fees: A Groundwater District Limits and Uses, by Jace Houston. The report also... in Texas, by Ronald Kaiser. Groundwater Transactions: Buyers Perspective, by Russell Johnson. Purchasing Groundwater for Export: The Kinney County Proposal, by Lynn Sherman. Model Lease of Groundwater Rights, by Ned Meister. Protecting Your Land and Water...

  9. Miamisburg Environmental Management Project Archived Soil & Groundwate...

    Office of Environmental Management (EM)

    Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports Miamisburg Environmental Management Project Archived Soil & Groundwater Master Reports...

  10. Fernald Environmental Management Project Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald Environmental Management Project Archived Soil & Groundwater Master Reports Fernald...

  11. Georgia Groundwater Use Act (Georgia)

    Broader source: Energy.gov [DOE]

    The purpose of the Georgia Groundwater Use Act is to establish procedures to be followed to obtain a permit to withdraw, obtain or utilize groundwater and for the submission of information...

  12. Subsurface Drip Irrigation As a Methold to Beneficiallly Use Coalbed Methane Produced Water: Initial Impacts to Groundwater, Soil Water, and Surface Water

    SciTech Connect (OSTI)

    Engle, M.A.: Bern, C: Healy, R: Sams, J: Zupancic, J.: Schroeder, K.

    2009-10-18T23:59:59.000Z

    Coalbed methane (CBM) currently accounts for >8% of US natural gas production. Compared to traditional sources, CBM co-produces large volumes of water. Of particular interest is CBM development in the Powder River Basin of Wyoming and Montana, the 2nd largest CBM production field in the US, where CBM produced waters exhibit low to moderate TDS and relatively high sodium-adsorption ratio (SAR) that could potentially impact the surface environment. Subsurface drip irrigation (SDI) is an emerging technology for beneficial use of pre-treated CBM waters (injectate) which are emitted into the root zone of an agricultural field to aid in irrigation. The method is designed to minimize environmental impacts by storing potentially detrimental salts in the vadose zone. Research objectives include tracking the transport and fate of the water and salts from the injected CBM produced waters at an SDI site on an alluvial terrace, adjacent to the Powder River, Johnson County, Wyoming. This research utilizes soil science, geochemical, and geophysical methods. Initial results from pre-SDI data collection and the first 6-months of post-SDI operation will be presented. Substantial ranges in conductivity (2732-9830 {micro}S/cm) and dominant cation chemistry (Ca-SO{sub 4} to Na-SO{sub 4}) have been identified in pre-SDI analyses of groundwater samples from the site. Ratios of average composition of local ground water to injectate demonstrate that the injectate contains lower concentrations of most constituents except for Cr, Zn, and Tl (all below national water quality standards) but exhibits a higher SAR. Composition of soil water varies markedly with depth and between sites, suggesting large impacts from local controls, including ion exchange and equilibrium with gypsum and carbonates. Changes in chemical composition and specific conductivity along surface water transects adjacent to the site are minimal, suggesting that discharge to the Powder River from groundwater underlying the SDI fields is negligible. Findings from this project provide a critical understanding of water and salt dynamics associated with SDI systems using CBM produced water. The information obtained can be used to improve SDI and other CBM produced water use/disposal technologies in order to minimize adverse impacts.

  13. Savannah River Site - D-Area Groundwater | Department of Energy

    Office of Environmental Management (EM)

    - D-Area Groundwater Savannah River Site - D-Area Groundwater January 1, 2013 - 12:00pm Addthis US Department of Energy Groundwater Database Groundwater Master Report...

  14. TECHNICAL BASIS FOR EVALUATING SURFACE BARRIERS TO PROTECT GROUNDWATER FROM DEEP VADOSE ZONE CONTAMINATION

    SciTech Connect (OSTI)

    FAYER JM; FREEDMAN VL; WARD AL; CHRONISTER GB

    2010-02-24T23:59:59.000Z

    The U.S. DOE and its predecessors released nearly 2 trillion liters (450 billion gallons) of contaminated liquid into the vadose zone at the Hanford Site. Some of the contaminants currently reside in the deeper parts of the vadose zone where they are much less accessible to characterization, monitoring, and typical remediation activities. The DOE Richland Operations Office (DOE-RL) prepared a treatability test plan in 2008 to examine remediation options for addressing contaminants in the deep vadose zone; one of the technologies identified was surface barriers (also known as engineered barriers, covers, and caps). In the typical configuration, the contaminants are located relatively close to the surface, generally within 15 m, and thus they are close to the base of the surface barrier. The proximity of the surface barrier under these conditions yielded few concerns about the effectiveness of the barrier at depth, particularly for cases in which the contaminants were in a lined facility. At Hanford, however, some unlined sites have contaminants located well below depths of 15 m. The issue raised about these sites is the degree of effectiveness of a surface barrier in isolating contaminants in the deep vadose zone. Previous studies by Hanford Site and PNNL researchers suggest that surface barriers have the potential to provide a significant degree of isolation of deep vadose zone contaminants. The studies show that the actual degree of isolation is site-specific and depends on many factors, including recharge rates, barrier size, depth of contaminants, geohydrologic properties ofthe sediments, and the geochemical interactions between the contaminants and the sediments. After the DOE-RL treatability test plan was published, Pacific Northwest National Laboratory was contracted to review the information available to support surface barrier evaluation for the deep vadose zone, identify gaps in the information and outcomes necessary to fill the data gaps, and outline tasks to achieve those outcomes. Full understanding of contaminant behavior in the deep vadose zone is constrained by four key data gaps: limited access; limited data; limited time; and the lack of an accepted predictive capability for determining whether surface barriers can effectively isolate deep vadose zone contaminants. Activities designed to fill these data gaps need to have these outcomes: (1) common evaluation methodology that provides a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination; (2) deep vadose zone data that characterize the lithology, the spatial distribution of moisture and contaminants, the physical, chemical, and biological process that affect the mobility of each contaminant, and the impacts to the contaminants following placement of a surface barrier; (3) subsurface monitoring to provide subsurface characterization of initial conditions and changes that occur during and following remediation activities; and (4) field observations that span years to decades to validate the evaluation methodology. A set of six proposed tasks was identified to provide information needed to address the above outcomes. The proposed tasks are: (1) Evaluation Methodology - Develop common evaluation methodology that will provide a clear, consistent, and defensible basis for evaluating groundwater impacts caused by placement of a surface barrier above deep vadose zone contamination. (2) Case Studies - Conduct case studies to demonstrate the applicability ofthe common evaluation methodology and provide templates for subsequent use elsewhere. Three sites expected to have conditions that would yield valuable information and experience pertinent to deep vadose zone contamination were chosen to cover a range of conditions. The sites are BC Cribs and Trenches, U Plant Cribs, and the T Farm Interim Cover. (3) Subsurface Monitoring Technologies - Evaluate minimally invasive geophysical approaches for delineating subsurface plumes and monitoring their migration in the deep

  15. Coupled modeling of groundwater flow solute transport, chemical reactions and microbial processes in the 'SP' island

    SciTech Connect (OSTI)

    Samper, Javier; Molinero, Jorg; Changbing, Yang; Zhang, Guoxiang

    2003-12-01T23:59:59.000Z

    The Redox Zone Experiment was carried out at the Aespoe HRL in order to study the redox behavior and the hydrochemistry of an isolated vertical fracture zone disturbed by the excavation of an access tunnel. Overall results and interpretation of the Redox Zone Project were reported by /Banwart et al, 1995/. Later, /Banwart et al, 1999/ presented a summary of the hydrochemistry of the Redox Zone Experiment. Coupled groundwater flow and reactive transport models of this experiment were carried out by /Molinero, 2000/ who proposed a revised conceptual model for the hydrogeology of the Redox Zone Experiment which could explain simultaneously measured drawdown and salinity data. The numerical model was found useful to understand the natural system. Several conclusions were drawn about the redox conditions of recharge waters, cation exchange capacity of the fracture zone and the role of mineral phases such as pyrite, calcite, hematite and goethite. This model could reproduce the measured trends of dissolved species, except for bicarbonate and sulfate which are affected by microbially-mediated processes. In order to explore the role of microbial processes, a coupled numerical model has been constructed which accounts for water flow, reactive transport and microbial processes. The results of this model is presented in this report. This model accounts for groundwater flow and reactive transport in a manner similar to that of /Molinero, 2000/ and extends the preliminary microbial model of /Zhang, 2001/ by accounting for microbially-driven organic matter fermentation and organic matter oxidation. This updated microbial model considers simultaneously the fermentation of particulate organic matter by yeast and the oxidation of dissolved organic matter, a product of fermentation. Dissolved organic matter is produced by yeast and serves also as a substrate for iron-reducing bacteria. Model results reproduce the observed increase in bicarbonate and sulfate concentration, thus adding additional evidence for the possibility of organic matter oxidation as the main source of bicarbonate. Model results indicate that pH and Eh are relatively stable. The dissolution-precipitation trends of hematite, pyrite and calcite also coincide with those indicated by the conceptual model. A thorough sensitivity analysis has been performed for the most relevant microbial parameters as well as for initial and boundary POC and DOC concentrations. The results of such analysis indicate that computed concentrations of bicarbonate, sulfate and DOC are sensitive to most of the microbial parameters, including specific growth rates, half-saturation constants, proportionality coefficients and yield coefficients. Model results, however, are less sensitive to the yield coefficient of DOC to iron-reducer bacteria. The sensitivity analysis indicates that changes in fermentation microbial parameters affect the growth of the iron-reducer, thus confirming the interconnection of both microbial processes. Computed concentrations of bicarbonate and sulfate are found to be sensitive to changes in the initial concentration of POC and the boundary concentration of DOC, but they lack sensitivity to the initial concentration of DOC and the boundary concentration of POC. The explanation for such result is related to the fact that POC has a low mobility due to its large molecular weight. DOC, however, can migrate downwards. Although a coupled hydro-bio-geochemical 1-D model can reproduce the observed ''unexpected'' increase of concentrations of bicarbonate and sulfate at a depth of 70 m, further modeling work is required in order to obtain a similar conclusion under the more realistic two dimensional conditions of the fracture zone.

  16. Changes in sources and storage in a karst aquifer during a transition from drought to wet conditions

    E-Print Network [OSTI]

    Banner, Jay L.

    , and used inverse geochemical modeling (PHREEQC) to con- strain controls on groundwater compositions during more storage. Ă? 2012 Elsevier B.V. All rights reserved. 1. Introduction Karst groundwater systems Keywords: Karst Drought Telogenetic Edwards aquifer Groundwater Texas s u m m a r y Understanding

  17. Characterization of 200-UP-1 Aquifer Sediments and Results of Sorption-Desorption Tests Using Spiked Uncontaminated Groundwater

    SciTech Connect (OSTI)

    Um, Wooyong; Serne, R JEFFREY.; Bjornstad, Bruce N.; Schaef, Herbert T.; Brown, Christopher F.; Legore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Lindberg, Michael J.

    2005-11-16T23:59:59.000Z

    Core characterization showed only 4 out of 13 core liner samples were intact samples and that the others were slough material. The intact samples showed typical Ringold Unit E characteristics such as being dominated by gravel and sand. Moderately reducing conditions are inferred in some core from borehole C4299. This reducing condition was caused by the hard tool process used to drill the wells. One core showed significant presence of ferric iron oxide/clay coatings on the gravels. There were no highly contaminated sediments found in the cores from the three new boreholes in UP-1 operable unit, especially for uranium. The presence of slough and ''flour'' caused by hard tooling is a serious challenge to obtaining field relevant sediments for use in geochemical experiments to determine the adsorption-desorption tendencies of redox sensitive elements such as uranium. The adsorption of COCs on intact Ringold Formation sediments and Fe/clay coatings showed that most of the anionic contaminants [Tc(VII), Se(VI), U(VI), Cr(VI), and I(-I)] did not adsorbed very well compared to cationic [Np(V), Sr(II), and Cs(I)] radionuclides. The high hydrous iron oxide content in Fe/clay coatings caused the highest Kd values for U and Np, suggesting these hydrous oxides are the key solid adsorbent in the sediments. Enhanced adsorption behavior for Tc, and Cr and perhaps Se on the sediments was considered an ?artifact? result caused by the induced reducing conditions from the hard tool drilling. Additional U(VI) adsorption Kd studies were performed on Ringold Formation sediments to develop more robust Kd data base for U. The <2 mm size separates of three UP-1 sediments showed a linear U(VI) adsorption isotherm up 1 ppm of total U(VI) concentration in solution. The additional U(VI) Kds obtained from varying carbonate concentration indicated that U(VI) adsorption was strongly influenced by the concentration of carbonate in solution. U(VI) adsorption decreased with increasing concentrations of carbonate up to a point. Then as carbonate and calcium concentrations in the groundwater reach values that exceed the solubility limit for the mineral calcite there is a slight increase in U(VI) Kd likely caused by uranium co-precipitation with the fresh calcite. If remediation of the UP-1 groundwater plume is required, such as pump and treat, it is recommended that the aquifer be treated with chemicals to increase pH and alkalinity and decrease dissolved calcium and magnesium [so that the precipitation of calcite is prevented]. Alternative methods to immobilize the uranium in place might be more effective than trying to remove the uranium by pump and treat. Unfortunately, no aquifer sediments were obtained that contained enough Hanford generated uranium to perform quantitative desorption tests germane to the UP-1 plume remediation issue. Recommended Kd values that should be used for risk predictions for the UP-1 groundwater plume traveling through the lithologies within the aquifer present at the UP-1 (and by proxy ZP-1) operable units were provided. The recommended values Kd values are chosen to include some conservatism (lower values are emphasized from the available range) as is standard risk assessment practice. In general, desorption Kd values for aged contaminated sediments can be larger than Kd values determined in short-term laboratory experiments. To accommodate the potential for desorption hysteresis and other complications, a second suite of uranium desorption Kd values were provided to be used to estimate removal of uranium by pump and treat techniques.

  18. Solid phase evolution in the Biosphere 2 hillslope experiment as predicted by modeling of hydrologic and geochemical fluxes

    E-Print Network [OSTI]

    Dontsova, K.

    2010-01-01T23:59:59.000Z

    samples were embedded in epoxy resin and polished to a 3/4 µsamples were embedded in epoxy resin and polished to a 3/4 µ

  19. Geochemical Analyses of Surface and Shallow Gas Flux and Composition Over a Proposed Carbon Sequestration Site in Eastern Kentucky

    SciTech Connect (OSTI)

    Thomas Parris; Michael Solis; Kathryn Takacs

    2009-12-31T23:59:59.000Z

    Using soil gas chemistry to detect leakage from underground reservoirs (i.e. microseepage) requires that the natural range of soil gas flux and chemistry be fully characterized. To meet this need, soil gas flux (CO{sub 2}, CH{sub 4}) and the bulk (CO{sub 2}, CH{sub 4}) and isotopic chemistry ({delta}{sup 13}C-CO2) of shallow soil gases (<1 m, 3.3 ft) were measured at 25 locations distributed among two active oil and gas fields, an active strip mine, and a relatively undisturbed research forest in eastern Kentucky. The measurements apportion the biologic, atmospheric, and geologic influences on soil gas composition under varying degrees of human surface disturbance. The measurements also highlight potential challenges in using soil gas chemistry as a monitoring tool where the surface cover consists of reclaimed mine land or is underlain by shallow coals. For example, enrichment of ({delta}{sup 13}C-CO2) and high CH{sub 4} concentrations in soils have been historically used as indicators of microseepage, but in the reclaimed mine lands similar soil chemistry characteristics likely result from dissolution of carbonate cement in siliciclastic clasts having {delta}{sup 13}C values close to 0{per_thousand} and degassing of coal fragments. The gases accumulate in the reclaimed mine land soils because intense compaction reduces soil permeability, thereby impeding equilibration with the atmosphere. Consequently, the reclaimed mine lands provide a false microseepage anomaly. Further potential challenges arise from low permeability zones associated with compacted soils in reclaimed mine lands and shallow coals in undisturbed areas that might impede upward gas migration. To investigate the effect of these materials on gas migration and composition, four 10 m (33 ft) deep monitoring wells were drilled in reclaimed mine material and in undisturbed soils with and without coals. The wells, configured with sampling zones at discrete intervals, show the persistence of some of the aforementioned anomalies at depth. Moreover, high CO{sub 2} concentrations associated with coals in the vadose zone suggest a strong affinity for adsorbing CO{sub 2}. Overall, the low permeability of reclaimed mine lands and coals and CO2 adsorption by the latter is likely to reduce the ability of surface geochemistry tools to detect a microseepage signal.

  20. Exploring the Geochemical Fingerprints of an Oceanic Anoxic Event During the Late Cretaceous: the Global and Biological Implications

    E-Print Network [OSTI]

    Owens, Jeremiah David

    2013-01-01T23:59:59.000Z

    Station, TX, pp. 1–23. Bruland, K.W. , Orians, K.J. , Cowen,G.J. , Cutter, G.A. , Bruland, K.W. , 1997. The response ofLetters 309, 77–88. Bruland, K.W. , Rue, E.L. , Smith,

  1. Effect of Subgrid Heterogeneity on Scaling Geochemical and Biogeochemical Reactions: A Case of U(VI) Desorption

    SciTech Connect (OSTI)

    Liu, Chongxuan; Shang, Jianying; Shan, Huimei; Zachara, John M.

    2014-02-04T23:59:59.000Z

    The effect of subgrid heterogeneity in sediment properties on the rate of uranyl[U(VI)] desorption was investigated using a sediment collected from the US Department of Energy Hanford site. The sediment was sieved into 7 grain size fractions that each exhibited different U(VI) desorption properties. Six columns were assembled using the sediment with its grain size fractions arranged in different spatial configurations to mimic subgrid heterogeneity in reactive transport properties. The apparent rate of U(VI) desorption varied significantly in the columns. Those columns with sediment structures leading to preferential transport had much lower rates of U(VI) desorption than those with relatively homogeneous transport. Modeling analysis indicated that the U(VI) desorption model and parameters characterized from well-mixed reactors significantly over-predicted the measured U(VI) desorption in the columns with preferential transport. A dual domain model, which operationally separates reactive transport properties into two subgrid domains improved the predictions significantly. A similar effect of subgrid heterogeneity, albeit at a less degree, was observed for denitrification, which also occurred in the columns. The results imply that subgrid heterogeneity is an important consideration in extrapolating reaction rates from the laboratory to field.

  2. Climate change in the Pacific North America region over the past millennium : development and application of novel geochemical tracers

    E-Print Network [OSTI]

    Roach, Lydia Darcy

    2010-01-01T23:59:59.000Z

    drought in California and Patagonia during mediaeval time.drought in California and Patagonia during mediaeval time.

  3. Geochemical, metagenomic and metaproteomic insights into trace metal utilization by methane-oxidizing microbial consortia in sulfidic marine sediments

    SciTech Connect (OSTI)

    Glass, DR. Jennifer [California Institute of Technology, Pasadena; Yu, DR. Hang [California Institute of Technology, Pasadena; Steele, Joshua [California Institute of Technology, Pasadena; Dawson, Katherine [California Institute of Technology, Pasadena; Sun, S [University of California, San Diego; Chourey, Karuna [ORNL; Hettich, Robert {Bob} L [ORNL; Orphan, V [California Institute of Technology, Pasadena

    2014-01-01T23:59:59.000Z

    Microbes have obligate requirements for trace metals in metalloenzymes that catalyze important biogeochemical reactions. In anoxic methane- and sulfide-rich environments, microbes may have unique adaptations for metal acquisition and utilization due to decreased bioavailability as a result of metal sulfide precipitation. However, micronutrient cycling is largely unexplored in cold ( 10 C) and sulfidic (>1 mM H2S) deep-sea methane seep ecosystems. We investigated trace metal geochemistry and microbial metal utilization in methane seeps offshore Oregon and California, USA, and report dissolved concentrations of nickel (0.5-270 nM), cobalt (0.5-6 nM), molybdenum (10-5,600 nM) and tungsten (0.3-8 nM) in Hydrate Ridge sediment porewaters. Despite low levels of cobalt and tungsten, metagenomic and metaproteomic data suggest that microbial consortia catalyzing anaerobic oxidation of methane utilize both scarce micronutrients in addition to nickel and molybdenum. Genetic machinery for cobalt-containing vitamin B12 biosynthesis was present in both anaerobic methanotrophic archaea (ANME) and sulfate-reducing bacteria (SRB). Proteins affiliated with the tungsten-containing form of formylmethanofuran dehydrogenase were expressed in ANME from two seep ecosystems, the first evidence for expression of a tungstoenzyme in psychrotolerant microorganisms. Finally, our data suggest that chemical speciation of metals in highly sulfidic porewaters may exert a stronger influence on microbial bioavailability than total concentration

  4. Paris Basin, seal integrity Predicting long-term geochemical alteration of wellbore cement in a generic geological CO21

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    abandoned wells is particularly high, such as it often occurs in depleted gas and/or oil fields. The12 of an idealized abandoned wellbore at the top of the Dogger aquifer in Paris18 Basin, France, where CO2 geological from reservoir: (i) a first,24 "clogging" stage, characterized by a decrease in porosity due to calcite

  5. CO2 escapes in the Laacher See region, East Eifel, Germany: application of natural analogue onshore and offshore geochemical monitoring

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    performing CO2 sequestration in depleted oil/gas reservoirs or deep saline aquifers (Gale, 2004; Gapillou et

  6. PII S0016-7037(01)00864-X Geochemical evidence for diversity of dust sources in the southwestern United States

    E-Print Network [OSTI]

    Ahmad, Sajjad

    shows that Owens (dry) Lake and mining wastes from the adjacent Cerro Gordo mining district. The majority of studies of airborne dust in the southwestern United States employed air-filtration techniques anthropogenic pollution (e.g., Young et al., 1988; Pinnick et al., 1993; Malm et al., 1994). However, most

  7. Microbial and Geochemical Characterization of Wellington Oil Field, Southcentral Kansas, and Potential Applications to Microbial Enhanced Oil Recovery

    E-Print Network [OSTI]

    Huff, Breanna

    2014-08-31T23:59:59.000Z

    in the sampled location. Initial production of early wells ranged from 800 to 2,000 barrels of oil and 300,000 to 500,000 cubic meters of gas daily (Cooperative Refinery Association, 1949). The majority of wells, however, initially produced from 200 to 400... to 15 barrels (Cooperative Refinery Association, 1949). This decrease in productivity led to the undertaking of secondary methods to repressure the reservoir to enhance oil recovery. Water flooding of the Wellington field was initiated in February 1953...

  8. The geochemical evolution of the Sonju Lake intrusion: assimilation and fractional crystallization in a layered mafic intrusion near Finland, Mn.

    E-Print Network [OSTI]

    Dayton, Ryan N.

    2011-01-01T23:59:59.000Z

    ??The Sonju Lake Intrusion, located within the Beaver Bay Complex near Finland, MN, is the most completely differentiated intrusion related to the Midcontinent Rift System… (more)

  9. Integrated Geochronologic, Geochemical, and Sedimentological Investigation of Proterozoic-Early Paleozoic Strata: From Northern India to Global Perspectives

    E-Print Network [OSTI]

    McKenzie, Neil Ryan

    2012-01-01T23:59:59.000Z

    composition   of   source–rock.   Large   populations   of  assess  sediment  source   relationships  among  rocks  of  rocks,  eastern  Greenland:  Implications   for  recognizing  the  sources  

  10. The application of PHREEQCi, a geochemical computer program, to aid in the management of a wastewater treatment wetland

    E-Print Network [OSTI]

    Mitzman, Stephanie

    1999-01-01T23:59:59.000Z

    -Volatile Compounds Pol chlorinated Bi hen ls 1. 5-25. 9 128-1190 ND-0. 2 ND 2. 9-5. 0 1170-1800 0. 5-3. 1 ND-0. 1 1. 0-17. 1 0. 3-1, 6 42-366 2-4 2860-6340 ND-241 ND-0. 9 ND-0. 1 0. 088-2. 155 0. 03-0. 07 37. 88-174. 84 ND ND-0. 02 ND-1. 31 ND... to Enhance Treatment Capability at the TMPA Site. . Step 1 . . Step 2. . Step 3 . . Page nl IV V I I IX 4 4 10 10 13 18 18 20 26 26 28 29 29 32 32 33 33 36 43 43 44 55 59 59 59 62 62 64 64 CONCLUSIONS . . PHREEQCI...

  11. Reactive Geochemical Transport Modeling of Concentrated Aqueous Solutions: Supplement to TOUGHREACT User's Guide for the Pitzer Ion-Interaction Model

    E-Print Network [OSTI]

    Zhang, Guoxiang; Spycher, Nicolas; Xu, Tianfu; Sonnenthal, Eric; Steefel, Carl

    2006-01-01T23:59:59.000Z

    Activity Coefficient of CaCl2 80 degree C Measured Osmotic80 degree C Measured Calculated Molality of CaCl2 Molalityof CaCl2 Figure 5-1. Comparison of the TOUGHREACT-

  12. A 6000-year geochemical record of human activities from Alexandria Alain J. Vron a,c,*, Clment Flaux a

    E-Print Network [OSTI]

    Available online 27 October 2013 Keywords: Alexandria Egypt Pre and Early dynasty Lead isotopes Copper-based relics in the Alex- andria region during the Pre and Early dynastic periods, and provide insights bay with a significant peak in pollution at the culmination of the Roman occupation (Goiran, 2001

  13. Quantification of Hydrological, Geochemical, and Mineralogical Processes Governing the Fate and Transport of Uranium over Multiple Scales in Hanford Sediments

    SciTech Connect (OSTI)

    Fendorf, Scott; Mayes, Melanie A.; Perfect, Edmund; van den Berg, Elmer; Parker, Jack C.; Jardine, Philip M.; Tang, Guoping

    2006-11-15T23:59:59.000Z

    A long-term measure of the DOE Environmental Remediation Sciences Division is to provide sufficient scientific understanding to allow a significant fraction of DOE sites to incorporate coupled biological, chemical, and physical processes into decision making for environmental remediation and long-term stewardship by 2015. Our research targets two related, major obstacles to understanding and predicting contaminant transport at DOE sites: the heterogeneity of subsurface geologic media, and the scale dependence of experimental and modeled results.

  14. Assessment of Geochemical Environment for the Proposed INL Remote-Handled Low-Level Waste Disposal Facility

    SciTech Connect (OSTI)

    D. Craig Cooper

    2011-11-01T23:59:59.000Z

    Conservative sorption parameters have been estimated for the proposed Idaho National Laboratory Remote-Handled Low-Level Waste Disposal Facility. This analysis considers the influence of soils, concrete, and steel components on water chemistry and the influence of water chemistry on the relative partitioning of radionuclides over the life of the facility. A set of estimated conservative distribution coefficients for the primary media encountered by transported radionuclides has been recommended. These media include the vault system, concrete-sand-gravel mix, alluvium, and sedimentary interbeds. This analysis was prepared to support the performance assessment required by U.S. Department of Energy Order 435.1, 'Radioactive Waste Management.' The estimated distribution coefficients are provided to support release and transport calculations of radionuclides from the waste form through the vadose zone. A range of sorption parameters are provided for each key transport media, with recommended values being conservative. The range of uncertainty has been bounded through an assessment of most-likely-minimum and most-likely-maximum distribution coefficient values. The range allows for adequate assessment of mean facility performance while providing the basis for uncertainty analysis.

  15. Calculation of calorific values of coals from ultimate analyses: theoretical basis and geochemical implications. Final report. Part 8

    SciTech Connect (OSTI)

    Given, P.H.; Weldon, D.; Zoeller, J.H.

    1984-03-01T23:59:59.000Z

    The various formulae for calculating calorific values for coals from ultimate analyses depend essentially on a propositon due to Dulong, that the heat of combustion of an organic compound is nearly equal to the heats of combustion of the elements in it, multiplied by their percentage content in the compound in question. This proposition assumes that the enthalpy of decomposition is negligible compared with the heat of combustion. The various published formulae, such as that due to Mott and Spooner, include empirical adjustments to allow for the fact that the enthalpy of formation or decomposition of no organic compound is zero (except rarely by chance). A new equation is proposed, which excludes empirical correction terms but includes a term explicitly related to the enthalpy of decomposition. As expected from the behavior of known compounds, this enthalpy varies with rank, but it also varies at the same level of rank with the geological history of the sample: rank is not the only source of variance in coal properties. The new equation is at least as effective in predicting calorific values for a set of 992 coals as equivalent equations derived for 6 subsets of the coals. On the whole, the distributions of differences between observed and calculated calorific values are skewed to only a small extent. About 86% of the differences lie between -300 and +300 Btu/lb (+- 700 kJ/kg). 10 references, 7 figures, 4 tables.

  16. Geochemical and geophysical responses during the infiltration of fresh water into the contaminated saprolite of the Oak Ridge Integrated

    E-Print Network [OSTI]

    Hubbard, Susan

    saprolite of the Oak Ridge Integrated Field Research Challenge site, Tennessee A. Revil,1,2 Y. Wu,3 M 2013; accepted 19 June 2013; published 12 August 2013. [1] At the Oak Ridge Integrated Field Research the infiltration of fresh water into the contaminated saprolite of the Oak Ridge Integrated Field Research

  17. Geochemical and carbon isotopic studies of crude oil destruction, bitumen precipitation, and sulfate reduction in the deep Smackover Formation

    SciTech Connect (OSTI)

    Sassen, R. (Louisiana State Univ., Baton Rouge (USA))

    1988-01-01T23:59:59.000Z

    Crude oil generated by the Lower Smackover source facies migrated to Upper Smackover reservoirs where slow thermal cracking of crude oil resulted in the formation of gas-condensate and late solid bitumen. Ultimately, only pyrobitumen, methane, and nonhydrocarbon gases including hydrogen sulfide persist in the deepest Smackover reservoirs. The carbon isotopic compositions of crude oils became heavier during crude oil destruction. The carbon isotopic compositions of asphaltenes, NSO-compounds, and saturated hydrocarbons in late solid bitumen and the Lower Smackover source facies became isotopically lighter during crude oil destruction. It is suggested that some isotopically-light components from crude oils were incorporated in late solid bitumen by reactions involving thermochemical sulfate reduction. Thermochemical sulfate reduction and crude oil destruction occurred over a long span of geologic time at temperatures in the 120-150C range.

  18. Geochemical and Taphonomic Analysis of Very Well-Preserved Late-Middle Cambrian Lingulid Brachiopods From Laurentia

    E-Print Network [OSTI]

    Robles, Matthew

    2012-01-01T23:59:59.000Z

    sea water effects. Sedimentology. 29, 139-147 Buening, N. ,Mississippi Valley, USA: Sedimentology, 33, Elrick, M. ,

  19. Integrated Geochronologic, Geochemical, and Sedimentological Investigation of Proterozoic-Early Paleozoic Strata: From Northern India to Global Perspectives

    E-Print Network [OSTI]

    McKenzie, Neil Ryan

    2012-01-01T23:59:59.000Z

    Himalaya,  India.  Sedimentology  50,  921-­?952.   Jiang,  that utilizes aspects of sedimentology, detrital zircon

  20. Geochemical tracers of processes affecting the formation of seafloor hydrothermal fluids and deposits in the Manus back-arc basin

    E-Print Network [OSTI]

    Craddock, Paul R

    2009-01-01T23:59:59.000Z

    Systematic differences in trace element compositions (rare earth element (REE), heavy metal, metalloid concentrations) of seafloor vent fluids and related deposits from hydrothermal systems in the Manus back-arc basin ...

  1. Combining particle-tracking and geochemical data to assess public supply well vulnerability to arsenic and uranium q

    E-Print Network [OSTI]

    . Bhattacharya, Associate Editor Keywords: Vulnerability Particle-tracking Arsenic Uranium Classification tree through aquifer systems and also through specific redox and pH zones within aquifers. Time were generally strongest for variables computed for distinct redox zones. Classification tree analysis

  2. A comparative study of the geochemical and mineralogical characteristics of the S1 sapropel in the western and

    E-Print Network [OSTI]

    Paytan, Adina

    in stable strati¢cation, reduced ventilation of deep water, and anoxia, thus enhanced organic matter are dark sediments with organic carbon content s 2 wt%, are common in eastern Mediterranean sections, and water depths at these sites, we conclude that the lack of S1 sapropel formation in the western

  3. Variability of geochemical properties in a microbially dominated coalbed gas system from the eastern margin of the Illinois Basin, USA

    SciTech Connect (OSTI)

    Strapoc, D.; Mastalerz, M.; Schimmelmann, A.; Drobniak, A.; Hedges, S.W.

    2008-10-02T23:59:59.000Z

    This study outlines gas characteristics along the southeastern margins of the Illinois Basin and evaluates regional versus local gas variations in Seelyville and Springfield coal beds. Our findings suggest that high permeability and shallow (100–250 m) depths of these Indiana coals allowed inoculation with methanogenic microbial consortia, thus leading to widespread microbial methane generation along the eastern marginal part of the Illinois Basin. Low maturity coals in the Illinois Basin with a vitrinite reflectance Ro~0.6% contain significant amounts of coal gas (~3 m3/t, 96 scf/t) with ?97 vol.% microbial methane. The amount of coal gas can vary significantly within a coal seam both in a vertical seam section as well as laterally from location to location. Therefore sampling of an entire core section is required for accurate estimates of coal gas reserves.

  4. Climate change in the Pacific North America region over the past millennium : development and application of novel geochemical tracers

    E-Print Network [OSTI]

    Roach, Lydia Darcy

    2010-01-01T23:59:59.000Z

    2003) North Pacific intermediate water response to a moderndecadal changes in intermediate water masses a signature offrom tree rings. J. Amer. Water Res. Assoc. Mestas-Nuńez,

  5. Coal fly ash interaction with environmental fluids: Geochemical and strontium isotope results from combined column and batch leaching experiments

    SciTech Connect (OSTI)

    Brubaker, Tonya M.; Stewart, Brian W.; Capo, Rosemary C.; Schroeder, Karl T.; Chapman, Elizabeth C.; Spivak-Birndorf, Lev J.; Vesper, Dorothy J.; Cardone, Carol R.; Rohar, Paul C.

    2013-05-01T23:59:59.000Z

    The major element and Sr isotope systematics and geochemistry of coal fly ash and its interactions with environmental waters were investigated using laboratory flow-through column leaching experiments (sodium carbonate, acetic acid, nitric acid) and sequential batch leaching experiments (water, acetic acid, hydrochloric acid). Column leaching of Class F fly ash samples shows rapid release of most major elements early in the leaching procedure, suggesting an association of these elements with soluble and surface bound phases. Delayed release of certain elements (e.g., Al, Fe, Si) signals gradual dissolution of more resistant silicate or glass phases as leaching continues. Strontium isotope results from both column and batch leaching experiments show a marked increase in {sup 87}Sr/{sup 86}Sr ratio with continued leaching, yielding a total range of values from 0.7107 to 0.7138. For comparison, the isotopic composition of fluid output from a fly ash impoundment in West Virginia falls in a narrow range around 0.7124. The experimental data suggest the presence of a more resistant, highly radiogenic silicate phase that survives the combustion process and is leached after the more soluble minerals are removed. Strontium isotopic homogenization of minerals in coal does not always occur during the combustion process, despite the high temperatures encountered in the boiler. Early-released Sr tends to be isotopically uniform; thus the Sr isotopic composition of fly ash could be distinguishable from other sources and is a useful tool for quantifying the possible contribution of fly ash leaching to the total dissolved load in natural surface and ground waters.

  6. Dismantling the deep earth : geochemical constraints from hotspot lavas for the origin and lengthscales of mantle heterogeneity

    E-Print Network [OSTI]

    Jackson, Matthew G. (Matthew Gerald)

    2008-01-01T23:59:59.000Z

    Chapter 1 presents the first published measurements of Sr-isotope variability in olivine-hosted melt inclusions. Melt inclusions in just two Samoan basalt hand samples exhibit most of the total Sr-isotope variability ...

  7. Numerical modeling of time-lapse seismic data from fractured reservoirs including fluid flow and geochemical processes

    E-Print Network [OSTI]

    Shekhar, Ravi

    2009-05-15T23:59:59.000Z

    orthogonal sets of fractures in most subsurface rocks that can be converted to seismic model, similar to DFN study. The quality and validity of the models is assessed by comparisons to DFN models, including calculations of fractal dimension measures that can...

  8. Chemostratigraphy And Geochemical Constraints On The Deposition Of The Bakken Formation, Williston Basin, Eastern Montana And Western North Dakota.

    E-Print Network [OSTI]

    Maldonado, David Nyrup

    2013-01-01T23:59:59.000Z

    ??Rowe, Harold The late Devonian-early Mississippian Bakken Formation was deposited in a structural-sedimentary intracratonic basin that extends across a large part of modern day North… (more)

  9. Chemostratigraphy And Geochemical Constraints On The Deposition Of The Bakken Formation, Williston Basin, Eastern Montana And Western North Dakota.

    E-Print Network [OSTI]

    Maldonado, David Nyrup

    2014-01-01T23:59:59.000Z

    ??Rowe, Harold The late Devonian-early Mississippian Bakken Formation was deposited in a structural-sedimentary intracratonic basin that extends across a large part of modern day North… (more)

  10. The distribution of chitin in the water and sediment columns in the Gulf of Mexico and its geochemical significance

    E-Print Network [OSTI]

    Ho, Wai Kwok

    1977-01-01T23:59:59.000Z

    . Structural formula of chitin 2. The structures of Chi. tobiose aud Acetylglucosamine Page 3. A spatially distorted picture showing the two main kinds of hydrogen bonding between chitin chains Unit coll of chitin proposed by Mayer and Mark 5. Structure...-glucosamine residues (chitobiose) linked together by 1-4 ? g-glucosi. dic bonds with the molecular formula (C N 0 N) (Fig. 1-2), n Some workers describe chitin as a 8-glucosidic linked polymer of N-acetyl-2-amino, 2-deoxy, D-gluco e, or as a polymer of 2-acetamido...

  11. A Geochemical and Sedimentary Record of High Southern Latitude Holocene Climate Evolution from Lago Fagnano, Tierra del Fuego

    SciTech Connect (OSTI)

    Moy, C M; Dunbar, R B; Guilderson, T P; Waldmann, N; Mucciarone, D A; Recasens, C; Austin, J A; Anselmetti, F S

    2010-11-19T23:59:59.000Z

    Situated at the southern margin of the hemispheric westerly wind belt and immediately north of the Antarctic Polar Frontal zone, Tierra del Fuego is well-positioned to monitor coupled changes in the ocean-atmosphere system of the high southern latitudes. Here we describe a Holocene paleoclimate record from sediment cores obtained from Lago Fagnano, a large lake in southern Tierra del Fuego at 55{sup o}S, to investigate past changes in climate related to these two important features of the global climate system. We use an AMS radiocarbon chronology for the last 8,000 years based on pollen concentrates, thereby avoiding contamination from bedrock-derived lignite. Our chronology is consistent with a tephrochronologic age date for deposits from the middle Holocene Volcan Hudson eruption. Combining bulk organic isotopic ({delta}{sup 13}C and {delta}{sup 15}N) and elemental (C and N) parameters with physical sediment properties allow us to better understand sediment provenance and transport mechanisms and to interpret Holocene climate and tectonic change during the last 8,000 years. Co-variability and long-term trends in C/N ratio, carbon accumulation rate, and magnetic susceptibility reflect an overall Holocene increase in the delivery of terrestrial organic and lithogenic material to the deep eastern basin. We attribute this variability to westerly wind-derived precipitation. Increased wind strength and precipitation in the late Holocene drives the Nothofagus forest eastward and enhances run-off and terrigenous inputs to the lake. Superimposed on the long-term trend are a series of abrupt 9 negative departures in C/N ratio, which constrain the presence of seismically-driven mass flow events in the record. We identify an increase in bulk {delta}{sup 13}C between 7,000 and 5,000 cal yr BP that we attribute to enhanced aquatic productivity driven by warmer summer temperatures. The Lago Fagnano {delta}{sup 13}C record shows similarities with Holocene records of sea surface temperature from the mid-latitude Chilean continental shelf and Antarctic air temperatures from the Taylor Dome ice core record in East Antarctica. Mid-Holocene warming occurred simultaneously across the Antarctic Frontal Zone, and in particular, in locations currently influenced by the Antarctic Circumpolar Current.

  12. Geochemical Journal, Vol. 46, pp. 000 to 000, 2012 *Corresponding author (e-mail: pinti.daniele@uqam.ca)

    E-Print Network [OSTI]

    Long, Bernard

    measured in the geothermal wells and hot springs of the Los Azufres field (from 118 to 3098 dpm/ gwater

  13. Geochemical tools and paleoclimate clues : multi-molecular and isotropic investigations of tropical marine sediments and alpine ice

    E-Print Network [OSTI]

    Makou, Matthew C

    2006-01-01T23:59:59.000Z

    South American climate has undergone dramatic changes since the last glacial period, as evidenced from Cariaco Basin (Venezuelan coast) and Peru Margin marine sediment biomarker records. Compounds derived from vascular ...

  14. Magmatic cycles and formation of the upper oceanic crust at spreading centers: Geochemical study of a continuous

    E-Print Network [OSTI]

    Demouchy, Sylvie

    -frequency in the Semail ophiolite along Wadi Shaffan. The Wadi Shaffan section is composed mainly of pillow lavas interbedded with massive flows and occasional hyaloclastites. The sampling performed along Wadi Shaffan compositions consistent with those of V1-Geotimes volcanism. The Wadi Shaffan transect was built through two

  15. Geochemical Journal, Vol. 44, pp. 23 to 37, 2010 *Corresponding author (e-mail: schoeneb@uni-mainz.de)

    E-Print Network [OSTI]

    Schöne, Bernd R.

    and Hower, 1960), brachiopods (Lowenstam, 1961), bivalves (Dodd, 1965, 1967), corals (Smith, 1979; Beck et

  16. Reactive geochemical transport simulation to study mineral trapping for CO2 disposal in deep saline arenaceous aquifers

    E-Print Network [OSTI]

    Xu, Tianfu; Apps, John A.; Pruess, Karsten

    2002-01-01T23:59:59.000Z

    vol. 11, p. Eberl, D. and Hower, J. , 1976, Kinetics ofincrease (Eberl and Hower, 1976). Purported field evidence

  17. A 3D partial-equilibrium model to simulate coupled hydrogeological, microbiological, and geochemical processes in subsurface systems

    E-Print Network [OSTI]

    in a laboratory column and redox zonation in a contaminated aquifer. INDEX TERMS: 1615 Global and Lasaga, 1994] or kinetic [e.g., Zheng, 1999; MacQuarrie and Sudicky, 2001] descriptions, efforts

  18. Predictive modeling of CO{sub 2} sequestration in deep saline sandstone reservoirs: Impacts of geochemical kinetics

    SciTech Connect (OSTI)

    Balashov, Victor N.; Guthrie, George D.; Hakala, J. Alexandra; Lopano, Christina L. J.; Rimstidt, Donald; Brantley, Susan L.

    2013-03-01T23:59:59.000Z

    One idea for mitigating the increase in fossil-fuel generated CO{sub 2} in the atmosphere is to inject CO{sub 2} into subsurface saline sandstone reservoirs. To decide whether to try such sequestration at a globally significant scale will require the ability to predict the fate of injected CO{sub 2}. Thus, models are needed to predict the rates and extents of subsurface rock-water-gas interactions. Several reactive transport models for CO{sub 2} sequestration created in the last decade predicted sequestration in sandstone reservoirs of ~17 to ~90 kg CO{sub 2} m{sup -3|. To build confidence in such models, a baseline problem including rock + water chemistry is proposed as the basis for future modeling so that both the models and the parameterizations can be compared systematically. In addition, a reactive diffusion model is used to investigate the fate of injected supercritical CO{sub 2} fluid in the proposed baseline reservoir + brine system. In the baseline problem, injected CO{sub 2} is redistributed from the supercritical (SC) free phase by dissolution into pore brine and by formation of carbonates in the sandstone. The numerical transport model incorporates a full kinetic description of mineral-water reactions under the assumption that transport is by diffusion only. Sensitivity tests were also run to understand which mineral kinetics reactions are important for CO{sub 2} trapping. The diffusion transport model shows that for the first ~20 years after CO{sub 2} diffusion initiates, CO{sub 2} is mostly consumed by dissolution into the brine to form CO{sub 2,aq} (solubility trapping). From 20-200 years, both solubility and mineral trapping are important as calcite precipitation is driven by dissolution of oligoclase. From 200 to 1000 years, mineral trapping is the most important sequestration mechanism, as smectite dissolves and calcite precipitates. Beyond 2000 years, most trapping is due to formation of aqueous HCO{sub 3}{sup -}. Ninety-seven percent of the maximum CO{sub 2} sequestration, 34.5 kg CO{sub 2} per m{sup 3} of sandstone, is attained by 4000 years even though the system does not achieve chemical equilibrium until ~25,000 years. This maximum represents about 20% CO{sub 2} dissolved as CO{sub 2},aq, 50% dissolved as HCO{sub 3}{sup -}{sub ,aq}, and 30% precipitated as calcite. The extent of sequestration as HCO{sub 3}{sup -} at equilibrium can be calculated from equilibrium thermodynamics and is roughly equivalent to the amount of Na+ in the initial sandstone in a soluble mineral (here, oligoclase). Similarly, the extent of trapping in calcite is determined by the amount of Ca2+ in the initial oligoclase and smectite. Sensitivity analyses show that the rate of CO{sub 2} sequestration is sensitive to the mineral-water reaction kinetic constants between approximately 10 and 4000 years. The sensitivity of CO{sub 2} sequestration to the rate constants decreases in magnitude respectively from oligoclase to albite to smectite.

  19. TOUGHREACT: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic M

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation In closing, an overarchingInformationTHERMOANALYTICAL

  20. Establishing geochemical constraints on mass accumulation rates across the Cretaceous-Paleogene boundary with extraterrestrial Helium-3

    E-Print Network [OSTI]

    Giron, Marie Minh-Thu

    2013-01-01T23:59:59.000Z

    Records of ocean biogeochemistry in marine sediments show shifts across the Cretaceous-Paleogene boundary (K-Pg) that are simultaneous with the extinction event and onset of the boundary clay deposition. However, the ...

  1. A geochemical assessment of petroleum from underground oil storage caverns in relation to petroleum from natural reservoirs offshore Norway.

    E-Print Network [OSTI]

    Řstensen, Marie

    2005-01-01T23:59:59.000Z

    ??The aim of this study is to compare oils from known biodegraded fields offshore Norway to waxes and oils from an artificial cavern storage facility,… (more)

  2. Climate change in the Pacific North America region over the past millennium : development and application of novel geochemical tracers

    E-Print Network [OSTI]

    Roach, Lydia Darcy

    2010-01-01T23:59:59.000Z

    Freeze and Bolivia cores ………………………………………………………………………….. 209Lake indicating locations of Bolivia cores and Freeze corescore descriptions of Bolivia cores SL0701 (a), SL0702 (b),

  3. Direct coupling of a genome-scale microbial in silico model and a groundwater reactive transport model

    SciTech Connect (OSTI)

    Fang, Yilin; Scheibe, Timothy D.; Mahadevan, Radhakrishnan; Garg, Srinath; Long, Philip E.; Lovley, Derek R.

    2011-02-28T23:59:59.000Z

    The activity of microorganisms often plays an important role in dynamic natural attenuation or engineered bioremediation of subsurface contaminants, such as chlorinated solvents, metals, and radionuclides. To evaluate and/or design bioremediated systems, quantitative reactive transport models are needed. State-of-the-art reactive transport models often ignore the microbial effects or simulate the microbial effects with static growth yield and constant reaction rate parameters over simulated conditions, while in reality microorganisms can dynamically modify their functionality (such as utilization of alternative respiratory pathways) in response to spatial and temporal variations in environmental conditions. Constraint-based genome-scale microbial in silico models, using genomic data and multiple-pathway reaction networks, have been shown to be able to simulate transient metabolism of some well studied microorganisms and identify growth rate, substrate uptake rates, and byproduct rates under different growth conditions. These rates can be identified and used to replace specific microbially-mediated reaction rates in a reactive transport model using local geochemical conditions as constraints. We previously demonstrated the potential utility of integrating a constraint based microbial metabolism model with a reactive transport simulator as applied to bioremediation of uranium in groundwater. However, that work relied on an indirect coupling approach that was effective for initial demonstration but may not be extensible to more complex problems that are of significant interest (e.g., communities of microbial species, multiple constraining variables). Here, we extend that work by presenting and demonstrating a method of directly integrating a reactive transport model (FORTRAN code) with constraint-based in silico models solved with IBM ILOG CPLEX linear optimizer base system (C library). The models were integrated with BABEL, a language interoperability tool. The modeling system is designed in such a way that constraint-based models targeting different microorganisms or competing organism communities can be easily plugged into the system. Constraint-based modeling is very costly given the size of a genome-scale reaction network. To save computation time, a binary tree is traversed to examine the concentration and solution pool generated during the simulation in order to decide whether the constraint-based model should be called. We also show preliminary results from the integrated model including a comparison of the direct and indirect coupling approaches.

  4. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 3. Historical Ground-Water

    E-Print Network [OSTI]

    ............................................................................................................................................................... 9 Mine history and ground-water development ....................................................................................................................................................... 11 Ground-water quality database.......................................................................................................................................................... 29 Compilation of complete database

  5. Groundwater monitoring system

    DOE Patents [OSTI]

    Ames, Kenneth R. (Pasco, WA); Doesburg, James M. (Richland, WA); Eschbach, Eugene A. (Richland, WA); Kelley, Roy C. (Kennewick, WA); Myers, David A. (Richland, WA)

    1987-01-01T23:59:59.000Z

    A groundwater monitoring system includes a bore, a well casing within and spaced from the bore, and a pump within the casing. A water impermeable seal between the bore and the well casing prevents surface contamination from entering the pump. Above the ground surface is a removable operating means which is connected to the pump piston by a flexible cord. A protective casing extends above ground and has a removable cover. After a groundwater sample has been taken, the cord is disconnected from the operating means. The operating means is removed for taking away, the cord is placed within the protective casing, and the cover closed and locked. The system is thus protected from contamination, as well as from damage by accident or vandalism.

  6. CE 473/573 Groundwater Course information

    E-Print Network [OSTI]

    Rehmann, Chris

    . Groundwater modeling 4.1. Introduction to finite-difference models 4.2. Models of groundwater flow 4.3. ModelsCE 473/573 Groundwater Fall 2011 Course information Instructor: Prof. Chris Rehmann rehmann of water and contaminants in groundwater systems to solve problems of groundwater resource evaluation

  7. GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION.

    SciTech Connect (OSTI)

    PAQUETTE,D.E.; BENNETT,D.B.; DORSCH,W.R.; GOODE,G.A.; LEE,R.J.; KLAUS,K.; HOWE,R.F.; GEIGER,K.

    2002-05-31T23:59:59.000Z

    THE DEPARTMENT OF ENERGY ORDER 5400.1, GENERAL ENVIRONMENTAL PROTECTION PROGRAM, REQUIRES THE DEVELOPMENT AND IMPLEMENTATION OF A GROUNDWATER PROTECTION PROGRAM. THE BNL GROUNDWATER PROTECTION MANAGEMENT PROGRAM DESCRIPTION PROVIDES AN OVERVIEW OF HOW THE LABORATORY ENSURES THAT PLANS FOR GROUNDWATER PROTECTION, MONITORING, AND RESTORATION ARE FULLY DEFINED, INTEGRATED, AND MANAGED IN A COST EFFECTIVE MANNER THAT IS CONSISTENT WITH FEDERAL, STATE, AND LOCAL REGULATIONS.

  8. Questions about Groundwater Conservation Districts in Texas

    E-Print Network [OSTI]

    Lesikar, Bruce J.; Silvy, Valeen

    2008-09-22T23:59:59.000Z

    Groundwater conservation districts (GCDs) are being created in many parts of Texas to allow local citizens to manage and protect their groundwater. This publication answers frequently asked questions about groundwater and GCDs....

  9. 1.72 Groundwater Hydrology, Fall 2004

    E-Print Network [OSTI]

    Harvey, Charles

    Fundamentals of subsurface flow and transport, emphasizing the role of groundwater in the hydrologic cycle, the relation of groundwater flow to geologic structure, and the management of contaminated groundwater. Topics ...

  10. Groundwater Recharge Simulator M. Tech. Thesis

    E-Print Network [OSTI]

    Sohoni, Milind

    ;Contents 1 Introduction 1 1.1 Groundwater Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.4 Groundwater Modelling System(GMS) . . . . . . . . . . . . . . . . . . . . 24 1.5 Chapter Reservoir/Lake Modelling 44 3.1 Lake and Groundwater Interaction

  11. acid transporter hpat1: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRANSPORT AND GEOCHEMICAL EVOLUTION OF ACID MINE DRAINAGE THROUGH Environmental Management and Restoration Websites Summary: SIMULATING TRANSPORT AND GEOCHEMICAL...

  12. acid transporters eaat-1: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRANSPORT AND GEOCHEMICAL EVOLUTION OF ACID MINE DRAINAGE THROUGH Environmental Management and Restoration Websites Summary: SIMULATING TRANSPORT AND GEOCHEMICAL...

  13. acid transporters ntcp: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRANSPORT AND GEOCHEMICAL EVOLUTION OF ACID MINE DRAINAGE THROUGH Environmental Management and Restoration Websites Summary: SIMULATING TRANSPORT AND GEOCHEMICAL...

  14. acid transporter slc10a5: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRANSPORT AND GEOCHEMICAL EVOLUTION OF ACID MINE DRAINAGE THROUGH Environmental Management and Restoration Websites Summary: SIMULATING TRANSPORT AND GEOCHEMICAL...

  15. acid transporter lat1: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRANSPORT AND GEOCHEMICAL EVOLUTION OF ACID MINE DRAINAGE THROUGH Environmental Management and Restoration Websites Summary: SIMULATING TRANSPORT AND GEOCHEMICAL...

  16. Groundwater Discharge Permit and Registration (New Hampshire)

    Broader source: Energy.gov [DOE]

    The Groundwater Discharge Permitting and Registration Program seeks to protect groundwater quality by establishing standards, criteria, and procedures for wastewater discharges. The program...

  17. Groundwater protection management program plan

    SciTech Connect (OSTI)

    Not Available

    1992-06-01T23:59:59.000Z

    US Department of Energy (DOE) Order 5400.1 requires the establishment of a groundwater protection management program to ensure compliance with DOE requirements and applicable Federal, state, and local laws and regulations. The Uranium Mill Tailings Remedial Action (UMTRA) Project Office has prepared a ``Groundwater Protection Management Program Plan`` (groundwater protection plan) of sufficient scope and detail to reflect the program`s significance and address the seven activities required in DOE Order 5400.1, Chapter 3, for special program planning. The groundwater protection plan highlights the methods designed to preserve, protect, and monitor groundwater resources at UMTRA Project processing and disposal sites. The plan includes an overview of the remedial action status at the 24 designated processing sites and identifies project technical guidance documents and site-specific documents for the UMTRA groundwater protection management program. In addition, the groundwater protection plan addresses the general information required to develop a water resources protection strategy at the permanent disposal sites. Finally, the plan describes ongoing activities that are in various stages of development at UMTRA sites (long-term care at disposal sites and groundwater restoration at processing sites). This plan will be reviewed annually and updated every 3 years in accordance with DOE Order 5400.1.

  18. Groundwater Remediation Strategy Using Global Optimization Algorithms

    E-Print Network [OSTI]

    Neumaier, Arnold

    as decision variables. Groundwater flow and particle-tracking models MODFLOW and MODPATH and a GO tool GLOBE; Algorithms; Ground-water management. Introduction The contamination of groundwater is a widespread problem, the simulation is carried out with available groundwater models for flow and transport, and the op- timization

  19. Bioremediation of contaminated groundwater

    DOE Patents [OSTI]

    Hazen, T.C.; Fliermans, C.B.

    1995-01-24T23:59:59.000Z

    An apparatus and method are described for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants. An oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth. Withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene. 3 figures.

  20. Bioremediation of contaminated groundwater

    DOE Patents [OSTI]

    Hazen, T.C.; Fliermans, C.B.

    1994-01-01T23:59:59.000Z

    Disclosed is an apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid (NF) is selected to simulated the growth and reproduction of indigenous subsurface microorganisms capable of degrading the contaminants; an oxygenated fluid (OF) is selected to create an aerobic environment with anaerobic pockets. NF is injected periodically while OF is injected continuously and both are extracted so that both are drawn across the plume. NF stimulates microbial colony growth; withholding it periodically forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is acceptable. NF can be methane and OF be air, for stimulating production of methanotrophs to break down chlorohydrocarbons, especially TCE and tetrachloroethylene.

  1. Bioremediation of contaminated groundwater

    DOE Patents [OSTI]

    Hazen, Terry C. (Augusta, GA); Fliermans, Carl B. (Augusta, GA)

    1995-01-01T23:59:59.000Z

    An apparatus and method for in situ remediation of contaminated subsurface soil or groundwater contaminated by chlorinated hydrocarbons. A nutrient fluid is selected to stimulate the growth and reproduction of indigenous subsurface microorganisms that are capable of degrading the contaminants; an oxygenated fluid is selected to create a generally aerobic environment for these microorganisms to degrade the contaminants, leaving only pockets that are anaerobic. The nutrient fluid is injected periodically while the oxygenated fluid is injected continuously and both are extracted so that both are drawn across the plume. The nutrient fluid stimulates microbial colony growth; withholding it periodicially forces the larger, healthy colony of microbes to degrade the contaminants. Treatment is continued until the subsurface concentration of contaminants is reduced to an acceptable, preselected level. The nutrient fluid can be methane and the oxygenated fluid air for stimulating production of methanotrophs to break down chlorohydrocarbons, especially trichloroethylene (TCE) and tetrachloroethylene.

  2. Data collection for groundwater study

    SciTech Connect (OSTI)

    Wehmann, A.A.; Malensek, A.J.; Elwyn, A.J.; Moss, K.J.; Kesich, P.M.

    1993-11-30T23:59:59.000Z

    Supporting data for a recent groundwater study at Fermilab are collected together in one document, and are described in the context of how they were obtained and how they were used in the study.

  3.  Illinois Groundwater Protection Act (Illinois)

    Broader source: Energy.gov [DOE]

    It is the policy of the State of Illinois to restore, protect, and enhance the groundwaters of the State, as a natural and public resource. The State recognizes the essential and pervasive role of...

  4. Factors Effecting the Fate and Transport of CL-20 in the Vadose Zone and Groundwater: Final Report 2002 - 2004 SERDP Project CP-1255

    SciTech Connect (OSTI)

    Szecsody, James E.; Riley, Robert G.; Devary, Brooks J.; Girvin, Donald C.; Resch, Charles T.; Campbell, James A.; Fredrickson, Herbert L.; Thompson, Karen T.; Crocker, Fiona H.; Qasim, Mohammad M.; Gamerdinger, Amy P.; Lemond, Luke A.

    2005-06-01T23:59:59.000Z

    This SERDP-funded project was initiated to investigate the fate of CL-20 in the subsurface environment, with a focus on identification and quantification of geochemical and microbial reactions of CL-20. CL-20 can be released to the surface and subsurface terrestrial environment by: a) manufacturing processes, b) munition storage, and c) use with low order detonation or unexploded ordnance. The risk of far-field subsurface migration was assessed through labora-tory experiments with a variety of sediments and subsurface materials to quantify processes that control CL-20 sorption-limited migration and degradation. Results of this study show that CL-20 will exhibit differing behavior in the subsurface terrestrial environment: 1. CL-20 on the sediment surface will photodegrade and interact with plants/animals (described in other SERDP projects CU 1254, 1256). CL-20 will exhibit greater sorption in humid sediments to organic matter. Transport will be solubility limited (i.e., low CL-20 aqueous solubility). 2. CL-20 infiltration into soils (<2 m) from spills will be subject to sorption to soil organic matter (if present), and low to high biodegradation rates (weeks to years) depending on the microbial population (greater in humid environment). 3. CL-20 in the vadose zone (>2 m) will be, in most cases, subject to low sorption and low degradation rates, so would persist in the subsurface environment and be at risk for deep migration. Low water content in arid regions will result in a decrease in both sorption and the degradation rate. Measured degradation rates in unsaturated sediments of years would result in significant subsurface migration distances. 4. CL-20 in groundwater will be subject to some sorption but likely very slow degradation rates. CL-20 sorption will be greater than RDX. Most CL-20 degradation will be abiotic (ferrous iron and other transition metals), because most deep subsurface systems have extremely low natural microbial populations. Degradation rates will range from weeks (iron reducing systems) to years. Although CL-20 will move rapidly through most sediments in the terrestrial environment, subsurface remediation can be utilized for cleanup. Transformation of CL-20 to intermediates can be rapidly accomplished under: a) reducing conditions (CL-20 4.1 min. half-life, RDX 18 min. half-life), b) alkaline (pH >10) conditions, and c) bioremediation with added nutrients. CL-20 degradation to intermediates may be insufficient to mitigate environmental impact, as the toxicity of many of these compounds is unknown. Biostimulation in oxic to reducing systems by carbon and nutrient addition can mineralize CL-20, with the most rapid rates occurring under reducing conditions.

  5. Hoe Creek groundwater restoration, 1989

    SciTech Connect (OSTI)

    Renk, R.R.; Crader, S.E.; Lindblom, S.R.; Covell, J.R.

    1990-01-01T23:59:59.000Z

    During the summer of 1989, approximately 6.5 million gallons of contaminated groundwater were pumped from 23 wells at the Hoe Creek underground coal gasification site, near Gillette, Wyoming. The organic contaminants were removed using activated carbon before the water was sprayed on 15.4 acres at the sites. Approximately 2647 g (5.8 lb) of phenols and 10,714 g (23.6 lb) of benzene were removed from the site aquifers. Phenols, benzene, toluene, ethylbenzene, and naphthalene concentrations were measured in 43 wells. Benzene is the only contaminant at the site exceeds the federal standard for drinking water (5 {mu}g/L). Benzene leaches into the groundwater and is slow to biologically degrade; therefore, the benzene concentration has remained high in the groundwater at the site. The pumping operation affected groundwater elevations across the entire 80-acre site. The water levels rebounded quickly when the pumping operation was stopped on October 1, 1989. Removing contaminated groundwater by pumping is not an effective way to clean up the site because the continuous release of benzene from coal tars is slow. Benzene will continue to leach of the tars for a long time unless its source is removed or the leaching rate retarded through mitigation techniques. The application of the treated groundwater to the surface stimulated plant growth. No adverse effects were noted or recorded from some 60 soil samples taken from twenty locations in the spray field area. 20 refs., 52 figs., 8 tabs.

  6. Bikini Atoll groundwater development

    SciTech Connect (OSTI)

    Peterson, F.L.

    1985-01-01T23:59:59.000Z

    Nuclear weapons testing during the 1950's has left the soil and ground water on Bikini Atoll contaminated with cesium-137, and to a lesser extent, strontium-90. Plans currently are underway for the clean-up and resettlement of the atoll by removal of approximately the upper 30 cm of soil. Any large-scale resettlement program must include provisions for water supply. This will be achieved principally by catchment and storage of rain water, however, since rainfall in Bikini is highly seasonal and droughts occur frequently, ground water development must also be considered. The quantity of potable ground water that can be developed is limited by its salinity and radiological quality. The few ground water samples available from Bikini, which have been collected from only about the top meter of the groundwater body, indicate that small bodies of potable ground water exist on Bikini and Eneu, the two principal living islands, but that cesium and strontium in the Bikioni ground water exceed drinking water standards. In order to make a reasonable estimate of the ground water development potential for the atoll, some 40 test boreholes will be drilled during July/August 1985, and a program of water quality monitoring initiated. This paper will describe preliminary results of the drilling and monitoring work.

  7. Groundwater is not a Common-Pool resource: Ordering sustainability issues of groundwater use

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -economic modeling Introduction Groundwater interaction with surface water bodies and dependent ecosystems of conclusions and recommendations of some economic models or social sciences approaches regarding groundwaterGroundwater is not a Common-Pool resource: Ordering sustainability issues of groundwater use

  8. INTEC Groundwater Monitoring Report 2006

    SciTech Connect (OSTI)

    J. R. Forbes

    2007-02-01T23:59:59.000Z

    This report summarizes 2006 perched water and groundwater monitoring activities at the Idaho Nuclear Technology and Engineering Center (INTEC) located at the Idaho National Laboratory (INL). During 2006, groundwater samples were collected from a total of 22 Snake River Plain Aquifer (SRPA) monitoring wells, plus six aquifer wells sampled for the Idaho CERCLA Disposal Facility (ICDF) monitoring program. In addition, perched water samples were collected from 21 perched wells and 19 suction lysimeters. Groundwater and perched water samples were analyzed for a suite of radionuclides and inorganic constituents. Laboratory results in this report are compared to drinking water maximum contaminant levels (MCLs). Such comparison is for reference only and it should be noted that the Operable Unit 3-13 Record of Decision does not require that perched water comply with drinking water standards.

  9. AUTOMATING GROUNDWATER SAMPLING AT HANFORD

    SciTech Connect (OSTI)

    CONNELL CW; HILDEBRAND RD; CONLEY SF; CUNNINGHAM DE

    2009-01-16T23:59:59.000Z

    Until this past October, Fluor Hanford managed Hanford's integrated groundwater program for the U.S. Department of Energy (DOE). With the new contract awards at the Site, however, the CH2M HILL Plateau Remediation Company (CHPRC) has assumed responsibility for the groundwater-monitoring programs at the 586-square-mile reservation in southeastern Washington State. These programs are regulated by the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA). The purpose of monitoring is to track existing groundwater contamination from past practices, as well as other potential contamination that might originate from RCRA treatment, storage, and disposal (TSD) facilities. An integral part of the groundwater-monitoring program involves taking samples of the groundwater and measuring the water levels in wells scattered across the site. More than 1,200 wells are sampled each year. Historically, field personnel or 'samplers' have been issued pre-printed forms that have information about the well(s) for a particular sampling evolution. This information is taken from the Hanford Well Information System (HWIS) and the Hanford Environmental Information System (HEIS)--official electronic databases. The samplers used these hardcopy forms to document the groundwater samples and well water-levels. After recording the entries in the field, the samplers turned the forms in at the end of the day and the collected information was posted onto a spreadsheet that was then printed and included in a log book. The log book was then used to make manual entries of the new information into the software application(s) for the HEIS and HWIS databases. This is a pilot project for automating this tedious process by providing an electronic tool for automating water-level measurements and groundwater field-sampling activities. The automation will eliminate the manual forms and associated data entry, improve the accuracy of the information recorded, and enhance the efficiency and sampling capacity of field personnel. The goal of the effort is to eliminate 100 percent of the manual input to the database(s) and replace the management of paperwork by the field and clerical personnel with an almost entirely electronic process. These activities will include the following: scheduling the activities of the field teams, electronically recording water-level measurements, electronically logging and filing Groundwater Sampling Reports (GSR), and transferring field forms into the site-wide Integrated Document Management System (IDMS).

  10. Groundwater Pollution David W. Watkins, Jr.

    E-Print Network [OSTI]

    Morton, David

    II 21 Mor 2003/10/14 page 391 i i i i i i i i Chapter 21 Groundwater Pollution Control David W pollution has resulted from the use of agricultural chemicals, and localized pollution has resulted from is frequently used to address groundwater pollution problems. In par- ticular, numerical groundwater simulation

  11. GROUNDWATER FLOW MODELS C. P. Kumar

    E-Print Network [OSTI]

    Kumar, C.P.

    (Uttaranchal) 1.0 INTRODUCTION The use of groundwater models is prevalent in the field of environmental scienceGROUNDWATER FLOW MODELS C. P. Kumar Scientist `E1' National Institute of Hydrology Roorkee ­ 247667, groundwater models are being applied to predict the transport of contaminants for risk evaluation. In general

  12. CE 473/573 Groundwater Course information

    E-Print Network [OSTI]

    Rehmann, Chris

    -reactive and reactive contaminants 4. Groundwater modeling 4.1. Introduction to finite-difference models 4.2. Models of groundwater flow 4.3. Models of contaminant transport 4.4. Available models #12;Recommended textbooks FetterCE 473/573 Groundwater Fall 2009 Course information Instructor: Prof. Chris Rehmann rehmann

  13. BEE 4710. Introduction to Groundwater Spring Semester 2009

    E-Print Network [OSTI]

    Walter, M.Todd

    BEE 4710. Introduction to Groundwater Spring Semester 2009 Credit: 3 hours Catalogue description tracers · Regional groundwater · Geology and groundwater occurrence · Groundwater models · Water Quality: Intermediate-level study of aquifer geology, groundwater flow, and related design factors. Includes de

  14. AFBC Roadbed Project groundwater data

    SciTech Connect (OSTI)

    Carpenter, W. [Tennessee Valley Authority, Norris, TN (United States). Engineering Lab.

    1992-08-21T23:59:59.000Z

    TVA permitted the use of AFBC material in a section of roadbed at Paducah, Kentucky, for the purpose of demonstrating its usability as a roadbed base. To determine if the material would leach and contaminate groundwater, four wells and seven lysimeters were installed beside and in the roadbed base material. In August 1991, TVA Field Engineering visited the AFBC Roadbed Project to collect samples and water quality data. The goal was to collect samples and data from four wells and seven lysimeters. All attempts to collect samples from the lysimeters failed with one exemption. All attempts to collect samples from the groundwater wells were successful. The analytical data from the four wells and one lysimeter are also attached. The well data is typical of groundwater in the Paducah, Kentucky area indicating that it was not affected by the AFBC roadbed material. The analysis of the lysimeter shows concentrations for iron and manganese above normal background levels, however, the data do not reflect significant concentrations of these heavy metals. Also, the difficulty in obtaining the lysimeter samples and the fact that the samples had to be composited to obtain sufficient quantity to analyze would make a qualitative evaluation of the data questionable.

  15. Situ treatment of contaminated groundwater

    DOE Patents [OSTI]

    McNab, Jr., Walt W. (Concord, CA); Ruiz, Roberto (Tracy, CA); Pico, Tristan M. (Livermore, CA)

    2001-01-01T23:59:59.000Z

    A system for treating dissolved halogenated organic compounds in groundwater that relies upon electrolytically-generated hydrogen to chemically reduce the halogenated compounds in the presence of a suitable catalyst. A direct current is placed across at least a pair, or an array, of electrodes which are housed within groundwater wells so that hydrogen is generated at the cathode and oxygen at the anode. A pump is located within the well housing in which the cathode(s) is(are) located and draws in groundwater where it is hydrogenated via electrolysis, passes through a well-bore treatment unit, and then transported to the anode well(s) for reinjection into the ground. The well-bore treatment involves a permeable cylinder located in the well bore and containing a packed bed of catalyst material that facilitates the reductive dehalogenation of the halogenated organic compounds by hydrogen into environmentally benign species such as ethane and methane. Also, electro-osmatic transport of contaminants toward the cathode also contributes to contaminant mass removal. The only above ground equipment required are the transfer pipes and a direct circuit power supply for the electrodes. The electrode wells in an array may be used in pairs or one anode well may be used with a plurality of cathode wells. The DC current flow between electrode wells may be periodically reversed which controls the formation of mineral deposits in the alkaline cathode well-bore water, as well as to help rejuvenate the catalysis.

  16. Leach test of cladding removal waste grout using Hanford groundwater

    SciTech Connect (OSTI)

    Serne, R.J.; Martin, W.J.; Legore, V.L.

    1995-09-01T23:59:59.000Z

    This report describes laboratory experiments performed during 1986-1990 designed to produce empirical leach rate data for cladding removal waste (CRW) grout. At the completion of the laboratory work, funding was not available for report completion, and only now during final grout closeout activities is the report published. The leach rates serve as inputs to computer codes used in assessing the potential risk from the migration of waste species from disposed grout. This report discusses chemical analyses conducted on samples of CRW grout, and the results of geochemical computer code calculations that help identify mechanisms involved in the leaching process. The semi-infinite solid diffusion model was selected as the most representative model for describing leaching of grouts. The use of this model with empirically derived leach constants yields conservative predictions of waste release rates, provided no significant changes occur in the grout leach processes over long time periods. The test methods included three types of leach tests--the American Nuclear Society (ANS) 16.1 intermittent solution exchange test, a static leach test, and a once-through flow column test. The synthetic CRW used in the tests was prepared in five batches using simulated liquid waste spiked with several radionuclides: iodine ({sup 125}I), carbon ({sup 14}C), technetium ({sup 99}Tc), cesium ({sup 137}Cs), strontium ({sup 85}Sr), americium ({sup 241}Am), and plutonium ({sup 238}Pu). The grout was formed by mixing the simulated liquid waste with dry blend containing Type I and Type II Portland cement, class F fly ash, Indian Red Pottery clay, and calcium hydroxide. The mixture was allowed to set and cure at room temperature in closed containers for at least 46 days before it was tested.

  17. Microbial Ecology Application of Nonlinear Analysis Methods for Identifying Relationships Between Microbial Community Structure and

    E-Print Network [OSTI]

    Groundwater Geochemistry; Jack C. Schryver; Craig C. Br; Susan M. Pfiffner; Anthony V. Palumbo; Aaron D. Peacock; David C. White; James P. Mckinley; Philip E. Long

    The relationship between groundwater geochemistry and microbial community structure can be complex and dif-ficult to assess. We applied nonlinear and generalized linear data analysis methods to relate microbial biomark-ers (phospholipids fatty acids, PLFA) to groundwater geochemical characteristics at the Shiprock uranium mill tailings disposal site that is primarily contaminated by uranium, sulfate, and nitrate. First, predictive models were constructed using feedforward artificial neural net-works (NN) to predict PLFA classes from geochemistry. To reduce the danger of overfitting, parsimonious NN architectures were selected based on pruning of hidden nodes and elimination of redundant predictor (geo-chemical) variables. The resulting NN models greatly

  18. Groundwater Use and Reporting Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The Department of Health and Environmental Control has established a groundwater management program, requiring entities withdrawing in excess of three million gallons during any one month to obtain...

  19. Compendium of ordinances for groundwater protection

    SciTech Connect (OSTI)

    Not Available

    1990-08-01T23:59:59.000Z

    Groundwater is an extremely important resource in the Tennessee Valley. Nearly two-thirds of the Tennessee Valley's residents rely, at least in part, on groundwater supplies for drinking water. In rural areas, approximately ninety-five percent of residents rely on groundwater for domestic supplies. Population growth and economic development increase the volume and kinds of wastes requiring disposal which can lead to groundwater contamination. In addition to disposal which can lead to groundwater contamination. In addition to disposal problems associated with increases in conventional wastewater and solid waste, technological advancements in recent decades have resulted in new chemicals and increased usage in agriculture, industry, and the home. Unfortunately, there has not been comparable progress in identifying the potential long-term effects of these chemicals, in managing them to prevent contamination of groundwater, or in developing treatment technologies for removing them from water once contamination has occurred. The challenge facing residence of the Tennessee Valley is to manage growth and economic and technological development in ways that will avoid polluting the groundwater resource. Once groundwater has been contaminated, cleanup is almost always very costly and is sometimes impractical or technically infeasible. Therefore, prevention of contamination -- not remedial treatment--is the key to continued availability of usable groundwater. This document discusses regulations to aid in this prevention.

  20. Persistence of uranium groundwater plumes: Contrasting mechanisms...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in microbially-driven redox properties; and the magnitude of groundwater hydrologic dynamics controlled by river-stage fluctuations, geologic structures, and aquifer...

  1. Energy Boom andEnergy Boom and Groundwater BustGroundwater Bust

    E-Print Network [OSTI]

    Keller, Arturo A.

    and PolicySustainability and Policy Behind groundwater boom-bust cycles (e.g., Mexico) are energy supplyEnergy Boom andEnergy Boom and Groundwater BustGroundwater Bust MexicoMexico''s Waters Water--Energy) consequences for the other resource Sustainability ­ policy tools for water, energy need to be mutually

  2. Groundwater flow and groundwater-stream interaction in fractured and dipping sedimentary rocks

    E-Print Network [OSTI]

    Toran, Laura

    detailed numerical models to evaluate the effects of various factors that influence groundwater flow. Introduction [2] The rate and direction of groundwater flow at a given location is driven by hydraulic gradient], where groundwater occurs in tilted, fractured beds. A simple con- ceptual model of the hydrogeology

  3. A CONVERGENT EXPLICIT GROUNDWATER MODEL Victor M. Ponce

    E-Print Network [OSTI]

    Ponce, V. Miguel

    A CONVERGENT EXPLICIT GROUNDWATER MODEL Victor M. Ponce Professor, Department of Civil Works, Ankara, Turkey. ABSTRACT: A groundwater model is developed by using an explicit formulation groundwater flow with excellent stability, convergence, and mass-conservation properties. 1 #12;INTRODUCTION

  4. Soil and Groundwater Cleanup - In-Situ Grouting, Lessons Learned...

    Energy Savers [EERE]

    Soil and Groundwater Cleanup - In-Situ Grouting, Lessons Learned (Post CD-4), Environmental Management Cleanup, May 2011 Soil and Groundwater Cleanup - In-Situ Grouting, Lessons...

  5. Rocky Flats Environmental Technology Site Archived Soil & Groundwater...

    Office of Environmental Management (EM)

    Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky Flats Environmental Technology Site Archived Soil & Groundwater Master Reports Rocky...

  6. 2000 Annual Interim Sanitary Landfill Groundwater Monitoring Report

    SciTech Connect (OSTI)

    Chase, J.A.

    2001-01-26T23:59:59.000Z

    This report includes a discussion of the groundwater flow direction and rate, the groundwater analytical results, and the methane monitoring results.

  7. Oak Ridge Removes Laboratory's Greatest Source of Groundwater...

    Broader source: Energy.gov (indexed) [DOE]

    Removes Laboratory's Greatest Source of Groundwater Contamination Oak Ridge Removes Laboratory's Greatest Source of Groundwater Contamination May 1, 2012 - 12:00pm Addthis Workers...

  8. Microbial Community Dynamics of Lactate Enriched Hanford Groundwaters

    E-Print Network [OSTI]

    Mosher, Jennifer J.

    2010-01-01T23:59:59.000Z

    Dynamics of Lactate Enriched Hanford Groundwaters Jenniferof Energy site at Hanford, WA, has been historicallyof lactate-enriched Hanford well H-100 groundwater sample.

  9. groundwater | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors | National91 Agrootvel AmesGroundwater

  10. In situ bioremediation of petrol contaminated groundwater

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    ) Bacterial Diversity and Aerobic Biodegradation Potential in a BTEX-Contaminated Aquifer Water Air Soil21/11/08 1 In situ bioremediation of petrol contaminated groundwater Guido Miguel Delgadillo EVS and facts · Likelihood of contamination · Benefits of in situ bioremediation So... Ask not what groundwater

  11. Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data

    SciTech Connect (OSTI)

    Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

    2007-06-25T23:59:59.000Z

    Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

  12. Geochemical properties of the Beni Bousera (N. Morocco) peridotites : a field and laboratory approach to understanding melt infiltration and extraction in an orogenic peridotite massif

    E-Print Network [OSTI]

    Manthei, Christian D. (Christian David)

    2012-01-01T23:59:59.000Z

    The Beni Bousera ultramafic massif is a tectonically emplaced body of upper mantle material that is exposed over 72 km2 in the Betic-Rif-Tell orogenic belt of northern Morocco. The massif is composed primarily of spinel ...

  13. Microbiological, Geochemical and Hydrologic Processes Controlling Uranium Mobility: An Integrated Field Scale Subsurface Research Challenge Site at Rifle, Colorado, February 2011 to January 2012

    E-Print Network [OSTI]

    Long, P.E.

    2013-01-01T23:59:59.000Z

    with Sediments from an UMTRA Site. American Society forREDUCTION AT THE OLD RIFLE UMTRA SITE. Geological Society of

  14. Modeling brine-rock interactions in an enhanced geothermal systemdeep fractured reservoir at Soultz-Sous-Forets (France): a joint approachusing two geochemical codes: frachem and toughreact

    SciTech Connect (OSTI)

    Andre, Laurent; Spycher, Nicolas; Xu, Tianfu; Vuataz,Francois-D.; Pruess, Karsten.

    2006-12-31T23:59:59.000Z

    The modeling of coupled thermal, hydrological, and chemical (THC) processes in geothermal systems is complicated by reservoir conditions such as high temperatures, elevated pressures and sometimes the high salinity of the formation fluid. Coupled THC models have been developed and applied to the study of enhanced geothermal systems (EGS) to forecast the long-term evolution of reservoir properties and to determine how fluid circulation within a fractured reservoir can modify its rock properties. In this study, two simulators, FRACHEM and TOUGHREACT, specifically developed to investigate EGS, were applied to model the same geothermal reservoir and to forecast reservoir evolution using their respective thermodynamic and kinetic input data. First, we report the specifics of each of these two codes regarding the calculation of activity coefficients, equilibrium constants and mineral reaction rates. Comparisons of simulation results are then made for a Soultz-type geothermal fluid (ionic strength {approx}1.8 molal), with a recent (unreleased) version of TOUGHREACT using either an extended Debye-Hueckel or Pitzer model for calculating activity coefficients, and FRACHEM using the Pitzer model as well. Despite somewhat different calculation approaches and methodologies, we observe a reasonably good agreement for most of the investigated factors. Differences in the calculation schemes typically produce less difference in model outputs than differences in input thermodynamic and kinetic data, with model results being particularly sensitive to differences in ion-interaction parameters for activity coefficient models. Differences in input thermodynamic equilibrium constants, activity coefficients, and kinetics data yield differences in calculated pH and in predicted mineral precipitation behavior and reservoir-porosity evolution. When numerically cooling a Soultz-type geothermal fluid from 200 C (initially equilibrated with calcite at pH 4.9) to 20 C and suppressing mineral precipitation, pH values calculated with FRACHEM and TOUGHREACT/Debye-Hueckel decrease by up to half a pH unit, whereas pH values calculated with TOUGHREACT/Pitzer increase by a similar amount. As a result of these differences, calcite solubilities computed using the Pitzer formalism (the more accurate approach) are up to about 1.5 orders of magnitude lower. Because of differences in Pitzer ion-interaction parameters, the calcite solubility computed with TOUGHREACT/Pitzer is also typically about 0.5 orders of magnitude lower than that computed with FRACHEM, with the latter expected to be most accurate. In a second part of this investigation, both models were applied to model the evolution of a Soultz-type geothermal reservoir under high pressure and temperature conditions. By specifying initial conditions reflecting a reservoir fluid saturated with respect to calcite (a reasonable assumption based on field data), we found that THC reservoir simulations with the three models yield similar results, including similar trends and amounts of reservoir porosity decrease over time, thus pointing to the importance of model conceptualization. This study also highlights the critical effect of input thermodynamic data on the results of reactive transport simulations, most particularly for systems involving brines.

  15. Fluid origins, paths, and fluid-rock reactions at convergent margins, using halogens, Cl stable isotopes, and alkali metals as geochemical tracers

    E-Print Network [OSTI]

    Wei, Wei

    2007-01-01T23:59:59.000Z

    range kg/yr Cl sources and sinks Water or rock mass mol/kgtemperature at the source of fluid-rock reactions, asto identify the fluid-rock reactions at source. In addition,

  16. ORGANIC GEOCHEMICAL STUDIES. II. THE DISTRIBUTION OF ALIPHATIC HYDROCARBONS IN ALGAE, BACTERIA, AND IN A RECENT LAKE SEDIMENT: A PRELIMINARY REPORT

    E-Print Network [OSTI]

    Han, Jerry; McCarthy, E.D.; Van Hoeven Jr., William; Calvin, Melvin; Bradley, W. H.

    2008-01-01T23:59:59.000Z

    ALIPHATIC HYDROCARBONS IN ALGAE, BACTERIA, AND IN A RECENTH F A PRELIMINARY REPORT IN ALGAE, BACTERIA, AKD IN A RECENTrests on the finding that algae have less cellulose and a

  17. Geochemical and Microbiological Characterization of the Arbuckle Saline Aquifer, a Potential CO2 Storage Reservoir; Implications for Hydraulic Separation and Caprock Integrity

    E-Print Network [OSTI]

    Scheffer, Aimee

    2012-12-31T23:59:59.000Z

    Wellington oilfield in Sumner County, Kansas (Fig. 2.1). Brine was sampled during four drill- stem-tests performed in each well. Coring began at a depth (below groundsurface) of 1079 m in KGS 1-32 and an almost continuous 500-meter long core was collected...

  18. Geochemical and optical characterization of diagenetic and hydrothermal dolomite from the Bonneterre formation within the Southeastern Missouri Lead-Zinc District

    E-Print Network [OSTI]

    Borkowski, Richard Michael

    1983-01-01T23:59:59.000Z

    core, b. single high Fe rim, c. single outer dark rim 73 41 MS-1-1044. 0 Color cathodoluminescence, 200X. . 74 42 MS-1-1044. 0 Ferrous iron staining of dolomite by potassium ferricyanide, uncrossed nicols, 200X. . . , 74 43 MS-1-1044. 0 Linescan... rim 3, e. single rim 4. . . . . . . . . . . . . . . . 76 LIST OF FIGURES (continued) ~Fi ure ~Pa e 46 MS-4-983. 0 a. Ferrous iron staining of dolomite by potassium ferricyanide, uncrossed nicols, 220X. . . . . . 77 47 NS-4-983. 0b Plane light...

  19. Geochemical assessment of gaseous hydrocarbons: mixing of bacterial and thermogenic methane in the deep subsurface petroleum system, Gulf of Mexico continental slope

    E-Print Network [OSTI]

    Ozgul, Ercin

    2004-09-30T23:59:59.000Z

    Page 12 Modelled maturity variations in g10013C of methane through butane, relative to g10013C of total source kerogen .......................................................... 29 13 Diagrams showing various processes and resulting compositional... gas contains methane (CH4) as a major constituent (70-100%), ethane (C2H6) (1-10%), lower percentages of higher hydrocarbons ?propane (C3H8), butane (C4H10), pentane (C5H12)? through hexanes (C6H14), and traces up through nonanes (C9H20) (Tissot...

  20. TOUGHREACT User's Guide: A Simulation Program for Non-isothermal Multiphase Reactive Geochemical Transport in Variably Saturated Geologic Media, V1.2.1

    E-Print Network [OSTI]

    Xu, Tianfu

    2008-01-01T23:59:59.000Z

    Drift, heat was applied solely to the drift-center gridsquares) indicate grid block coordinates. Heat was appliedgrid block KCYC=KCYC+1 Time step: ?t Solve fluid and heat

  1. Geochemical provenance of anomalous metal concentrations in stream sediments in the Ashton 1:250,000 quadrangle, Idaho/Montana/Wyoming

    SciTech Connect (OSTI)

    Shannon, S.S. Jr.

    1982-01-01T23:59:59.000Z

    Stream-sediment samples from 1500 sites in the Ashton, Idaho/Montana/Wyoming 1:250,000 quadrangle were analyzed for 45 elements. Almost all samples containing anomalous concentrations (exceeding one standard deviation above the mean value of any element) were derived from drainage basins underlain by Quaternary rhyolite, Tertiary andesite or Precambrian gneiss and schist. Aluminum, barium, calcium, cobalt, iron, nickel, magnesium, scandium, sodium, strontium, and vanadium have no andesite provenance. Most anomalous manganese, europium, hafnium, and zirconium values were derived from Precambrian rocks. All other anomalous elemental concentrations are related to Quaternary rhyolite. This study demonstrates that multielemental stream-sediment analyses can be used to infer the provenance of stream sediments. Such data are available for many parts of the country as a result of the National Uranium Resource Evaluation. This study suggests that stream-sediment samples collected in the Rocky Mountains can be used either as pathfinders or as direct indicators to select targets for mineral exploration for a host of metals.

  2. Geochemical Water and Sediment Data: Reformatted Data from the National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) Program

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Smith, Steven M.(USGS)

    The National Uranium Resource Evaluation (NURE) program was initiated by the Atomic Energy Commission (AEC) in 1973 with a primary goal of identifying uranium resources in the United States. The Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program (initiated in 1975) was one of nine components of NURE. Planned systematic sampling of the entire United States began in 1976 under the responsibility of four DOE national laboratories: Lawrence Livermore Laboratory (LLL), Los Alamos Scientific Laboratory (LASL), Oak Ridge Gaseous Diffusion Plant (ORGDP), and Savannah River Laboratory (SRL). The NURE program effectively ended about 1983-84 when funding disappeared. Out of a total of 625 quadrangles that cover the entire lower 48 States and Alaska, only 307 quadrangles were completely sampled, some were partially completed, and many had not been done at all. Over the years various efforts have been made to finish the original task or analyze the stored samples or complete final reports. The sample archive was transferred to the U.S. Geological Survey (USGS) in 1985. The archive reportedly contained about 380,000 original sediment samples from all four laboratories, about 250,000 replicates, splits, size fractions or other samples and approximately 500,000 resin samples of waters.

  3. Response to comments on an article entitled A geochemical survey of spring water from the main Ethiopian rift valley, southern Ethiopia

    E-Print Network [OSTI]

    McKenzie, Jeffrey M.

    Ethiopian rift valley, southern Ethiopia: implications for well-head protection by McKenzie et al water from the main Ethiopian rift valley, southern Ethiopia: implications for well-head protection" (Mc in southern Ethiopia may be used to address issues related to well-head protection. Kebede and Travi criticize

  4. Final Report Coupled In Silico Microbial and Geochemical Reactive Transport Models: Extension to Multi-Organism Communities, Upscaling, and Experimental Validation

    SciTech Connect (OSTI)

    Lovley, Derek R.

    2014-03-05T23:59:59.000Z

    The project was highly successful in improving the understanding of physiological and ecological factors controlling the growth and interaction of subsurface microorganisms and in developing better strategies for in silico modeling of the interactions of subsurface microorganisms with other species and their environment.

  5. On the spatial nature of the groundwater pumping externality

    E-Print Network [OSTI]

    Sunding, David

    On the spatial nature of the groundwater pumping externality Nicholas Brozovic´ a, *, David L and instantly to groundwater pumping. In this paper, we develop an economic model of groundwater manage- ment the magnitude of the groundwater pumping externality relative to spatially explicit models. In particular

  6. The Groundwater Performance Assessment Project Quality Assurance Plan

    SciTech Connect (OSTI)

    Walker, Thomas G.

    2005-01-26T23:59:59.000Z

    This document provides the quality assurance guidelines that will be followed by the groundwater project.

  7. GROUNDWATER DATA REQUIREMENT AND ANALYSIS C. P. Kumar

    E-Print Network [OSTI]

    Kumar, C.P.

    .0 INTRODUCTION Groundwater is used for a variety of purposes, including irrigation, drinking, and manufacturing characteristics of groundwater. Numerical models are capable of solving large and complex groundwater problems/monitoring of required data form an integral part of any groundwater modelling exercise. 2.0 DATA REQUIREMENT

  8. BEE 4710. Introduction to Groundwater Fall Semester 2006

    E-Print Network [OSTI]

    Walter, M.Todd

    BEE 4710. Introduction to Groundwater Fall Semester 2006 Credit: 3 hours Catalogue description: Introduction, Field trip in afternoon Principles of groundwater flow Flow to Wells Properties of aquifiers Soil occurrence Groundwater models Water Quality Groundwater quality monitoring Vadose water quality monitoring

  9. Groundwater Data Package for Hanford Assessments

    SciTech Connect (OSTI)

    Thorne, Paul D.; Bergeron, Marcel P.; Williams, Mark D.; Freedman, Vicky L.

    2006-01-31T23:59:59.000Z

    This report presents data and interpreted information that supports the groundwater module of the System Assessment Capability (SAC) used in Hanford Assessments. The objective of the groundwater module is to predict movement of radioactive and chemical contaminants through the aquifer to the Columbia River or other potential discharge locations. This data package is being revised as part of the deliverables under the Characterization of Systems Project (#49139) aimed at providing documentation for assessments being conducted under the Hanford Assessments Project (#47042). Both of these projects are components of the Groundwater Remediation and Closure Assessments Projects, managed by the Management and Integration Project (#47043).

  10. Burn site groundwater interim measures work plan.

    SciTech Connect (OSTI)

    Witt, Jonathan L. (North Wind, Inc., Idaho Falls, ID); Hall, Kevin A. (North Wind, Inc., Idaho Falls, ID)

    2005-05-01T23:59:59.000Z

    This Work Plan identifies and outlines interim measures to address nitrate contamination in groundwater at the Burn Site, Sandia National Laboratories/New Mexico. The New Mexico Environment Department has required implementation of interim measures for nitrate-contaminated groundwater at the Burn Site. The purpose of interim measures is to prevent human or environmental exposure to nitrate-contaminated groundwater originating from the Burn Site. This Work Plan details a summary of current information about the Burn Site, interim measures activities for stabilization, and project management responsibilities to accomplish this purpose.

  11. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1990-10-18T23:59:59.000Z

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the first quarter of 1990. It includes the analytical data, field data, well activity data, and the other documentation for this program and provides a record of the program's activities and rationale and an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of the analytical data and other data, maintenance of the databases containing groundwater monitoring data and related data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  12. Water Budget Analysis and Groundwater Inverse Modeling

    E-Print Network [OSTI]

    Farid Marandi, Sayena

    2012-07-16T23:59:59.000Z

    the hydraulic conductivity field conditioned on the measurements of hydraulic conductivity and hydraulic head for saturated flow in randomly heterogeneous porous media. The groundwater modeling approach was found to be efficient in identifying the dominant...

  13. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1991-06-18T23:59:59.000Z

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted in the fourth quarter of 1990. It includes the analytical data, field data, well activity data, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results. The groundwater monitoring program includes the following activities: installation, maintenance, and abandonment of monitoring wells, environmental soil borings, development of the sampling and analytical schedule, collection and analyses of groundwater samples, review of analytical and other data, maintenance of the databases containing groundwater monitoring data, quality assurance (QA) evaluations of laboratory performance, and reports of results to waste-site facility custodians and to the Environmental Protection Section (EPS) of EPD.

  14. Nevada National Security Site Groundwater Program

    ScienceCinema (OSTI)

    None

    2014-10-28T23:59:59.000Z

    From 1951 to 1992, the Unites States government conducted 828 underground nuclear tests at the Nevada National Security Site. About one-third of these tests occurred near, below or within the water table - the very top portion of the groundwater layer where rock and soil are completely saturated with water. As a result, some groundwater was contaminated. The U.S. Department of Energy (DOE) began exploring the effects of groundwater contamination in the 1970s. Though contamination from underground testing has never been detected on public land, the DOE was committed to developing an advanced, reliable monitoring network that ensures the long-term protection of the public. An intensive groundwater investigation program was launched in 1989.

  15. Groundwater Classification and Standards (North Carolina)

    Broader source: Energy.gov [DOE]

    The rules established in this Subchapter 2L of North Carolina Administrative Code Title 15A are intended to maintain and preserve the quality of the groundwaters, prevent and abate pollution and...

  16. Delineating Groundwater Sources and Protection Zones

    E-Print Network [OSTI]

    Pasternack, Gregory B.

    : Groundwater protection zones for five city-owned water supply wells in Sebastopol, Calif. Zones were City of Sebastopol Demonstration Project report by Leah G. Walker, California Dept. of Health Services

  17. E-Print Network 3.0 - accelerates groundwater clean Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    groundwater clean Page: << < 1 2 3 4 5 > >> 1 MANAGEMENT OF GROUNDWATER IN SALT WATER INGRESS COASTAL AQUIFERS Summary: MANAGEMENT OF GROUNDWATER IN SALT WATER INGRESS...

  18. Mixed Waste Management Facility Groundwater Monitoring Report

    SciTech Connect (OSTI)

    Chase, J.

    1998-03-01T23:59:59.000Z

    During fourth quarter 1997, eleven constituents exceeded final Primary Drinking Water Standards (PDWS) in groundwater samples from downgradient monitoring wells at the Mixed Waste Management Facility. No constituents exceeded final PDWS in samples from upgradient monitoring wells. As in previous quarters, tritium and trichloroethylene were the most widespread elevated constituents. The groundwater flow directions and rates in the three hydrostratigraphic units were similar to those of previous quarters.

  19. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Oct. 2005, p. 63086318 Vol. 71, No. 10 0099-2240/05/$08.00 0 doi:10.1128/AEM.71.10.63086318.2005

    E-Print Network [OSTI]

    Lovley, Derek

    Rights Reserved. Microbiological and Geochemical Heterogeneity in an In Situ Uranium Bioremediation Field 2005/Accepted 30 April 2005 The geochemistry and microbiology of a uranium-contaminated subsurface the injection gallery where microbially reducible Fe(III) oxides were highly depleted, groundwater sulfate

  20. Geophysical Research Abstracts Vol. 13, EGU2011-4868, 2011

    E-Print Network [OSTI]

    Boyer, Edmond

    to better understand the global functioning of the system from the hydrological, geochemical, ecological(s) 2011 Multi-isotopes systematics to constrain surface water­groundwater interactions in an alluvial, France (p.negrel@brgm.fr) This work is dedicated to wetlands of the Loire River systems and aims

  1. Oxidative particle mixtures for groundwater treatment

    DOE Patents [OSTI]

    Siegrist, Robert L. (Boulder, CO); Murdoch, Lawrence C. (Clemson, SC)

    2000-01-01T23:59:59.000Z

    The invention is a method and a composition of a mixture for degradation and immobilization of contaminants in soil and groundwater. The oxidative particle mixture and method includes providing a material having a minimal volume of free water, mixing at least one inorganic oxidative chemical in a granular form with a carrier fluid containing a fine grained inorganic hydrophilic compound and injecting the resulting mixture into the subsurface. The granular form of the inorganic oxidative chemical dissolves within the areas of injection, and the oxidative ions move by diffusion and/or advection, therefore extending the treatment zone over a wider area than the injection area. The organic contaminants in the soil and groundwater are degraded by the oxidative ions, which form solid byproducts that can sorb significant amounts of inorganic contaminants, metals, and radionuclides for in situ treatment and immobilization of contaminants. The method and composition of the oxidative particle mixture for long-term treatment and immobilization of contaminants in soil and groundwater provides for a reduction in toxicity of contaminants in a subsurface area of contamination without the need for continued injection of treatment material, or for movement of the contaminants, or without the need for continuous pumping of groundwater through the treatment zone, or removal of groundwater from the subsurface area of contamination.

  2. Heat Transport in Groundwater Systems--Finite Element Model

    E-Print Network [OSTI]

    Grubaugh, E. K.; Reddell, D. L.

    into groundwater aquifers for long term energy storage. Analytical solutions are available that predict water temperatures as hot water is injected into a groundwater aquifer, but little field and laboratory data are available to verify these models. The objectives...

  3. Method to remove uranium/vanadium contamination from groundwater

    DOE Patents [OSTI]

    Metzler, Donald R. (DeBeque, CO); Morrison, Stanley (Grand Junction, CO)

    2004-07-27T23:59:59.000Z

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  4. Method to Remove Uranium/Vanadium Contamination from Groundwater

    DOE Patents [OSTI]

    Metzler, Donald R.; Morrison Stanley

    2004-07-27T23:59:59.000Z

    A process for removing uranium/vanadium-based contaminants from groundwater using a primary in-ground treatment media and a pretreatment media that chemically adjusts the groundwater contaminant to provide for optimum treatment by the primary treatment media.

  5. Rules and Regulations for Groundwater Quality (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations provide standards for groundwater quality in the state of Rhode Island. The rules are intended to protect and restore the quality of the state's groundwater resources for use as...

  6. In situ remediation of uranium contaminated groundwater

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C. [Sandia National Labs., Albuquerque, NM (United States)

    1997-12-31T23:59:59.000Z

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment - various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field preliminary results are discussed with regard to other potential contaminated groundwater treatment applications.

  7. In situ remediation of uranium contaminated groundwater

    SciTech Connect (OSTI)

    Dwyer, B.P.; Marozas, D.C.

    1997-02-01T23:59:59.000Z

    In an effort to develop cost-efficient techniques for remediating uranium contaminated groundwater at DOE Uranium Mill Tailing Remedial Action (UMTRA) sites nationwide, Sandia National Laboratories (SNL) deployed a pilot scale research project at an UMTRA site in Durango, CO. Implementation included design, construction, and subsequent monitoring of an in situ passive reactive barrier to remove Uranium from the tailings pile effluent. A reactive subsurface barrier is produced by emplacing a reactant material (in this experiment various forms of metallic iron) in the flow path of the contaminated groundwater. Conceptually the iron media reduces and/or adsorbs uranium in situ to acceptable regulatory levels. In addition, other metals such as Se, Mo, and As have been removed by the reductive/adsorptive process. The primary objective of the experiment was to eliminate the need for surface treatment of tailing pile effluent. Experimental design, and laboratory and field results are discussed with regard to other potential contaminated groundwater treatment applications.

  8. Uranium Contamination in the Subsurface Beneath the 300 Area, Hanford Site, Washington

    SciTech Connect (OSTI)

    Peterson, Robert E.; Rockhold, Mark L.; Serne, R. Jeffrey; Thorne, Paul D.; Williams, Mark D.

    2008-02-29T23:59:59.000Z

    This report provides a description of uranium contamination in the subsurface at the Hanford Site's 300 Area. The principal focus is a persistence plume in groundwater, which has not attenuated as predicted by earlier remedial investigations. Included in the report are chapters on current conditions, hydrogeologic framework, groundwater flow modeling, and geochemical considerations. The report is intended to describe what is known or inferred about the uranium contamination for the purpose of making remedial action decisions.

  9. Data acquisition for low-temperature geothermal well tests and long-term monitoring. Final report

    SciTech Connect (OSTI)

    Lienau, P.J.

    1992-09-01T23:59:59.000Z

    Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

  10. Data acquisition for low-temperature geothermal well tests and long-term monitoring

    SciTech Connect (OSTI)

    Lienau, P.J.

    1992-09-01T23:59:59.000Z

    Groundwater monitoring is an essential part of the development of a low-temperature geothermal field for production and injection wells. State water resource and environmental departments are requiring both geothermal well testing and long-term monitoring as a part of the permitting process for geothermal developments. This report covers water-level measurement methods, instruments used for well testing, geochemical sampling, examples of data acquisition and regulatory mandates on groundwater monitoring.

  11. Hanford Site Groundwater Monitoring for Fiscal Year 2001

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2002-02-28T23:59:59.000Z

    This report provides information on the status of groundwater monitoring at the Hanford Site during fiscal year 2001.

  12. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, Joel M. (Idaho Falls, ID); Wylie, Allan H. (Idaho Falls, ID)

    1996-01-01T23:59:59.000Z

    A method and apparatus has been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing.

  13. Vapor port and groundwater sampling well

    DOE Patents [OSTI]

    Hubbell, J.M.; Wylie, A.H.

    1996-01-09T23:59:59.000Z

    A method and apparatus have been developed for combining groundwater monitoring wells with unsaturated-zone vapor sampling ports. The apparatus allows concurrent monitoring of both the unsaturated and the saturated zone from the same well at contaminated areas. The innovative well design allows for concurrent sampling of groundwater and volatile organic compounds (VOCs) in the vadose (unsaturated) zone from a single well, saving considerable time and money. The sample tubes are banded to the outer well casing during installation of the well casing. 10 figs.

  14. ICDP Complex Groundwater Monitoring Plan REV 5

    SciTech Connect (OSTI)

    Cahn, L. S.

    2007-08-09T23:59:59.000Z

    This Groundwater Monitoring Plan, along with the Quality Assurance Project Plan for Waste Area Groups 1, 2, 3, 4, 5, 6, 7, 10, and Removal Actions, constitutes the sampling and analysis plan for groundwater and perched water monitoring at the Idaho CERCLA Disposal Facility (ICDF). A detection monitoring system was installed in the Snake River Plan Aquifer to comply with substantive requirements of "Releases from Solid Waste Management Units" of the Resource Conservation and Recovery Act. This detection monitoring wells constructed in the Snake River Plain Aquifer.

  15. Basic Ground-Water Hydrology By RALPH C. HEATH

    E-Print Network [OSTI]

    Sohoni, Milind

    #12;Basic Ground-Water Hydrology By RALPH C. HEATH Prepared in cooperation with the North Carolina., 1983, Basic ground-water hydrology: U .S. Geological Survey Water-Supply Paper 2220, 86 p. Library of Congress Cataloging-in-Publications Data Heath, Ralph C . Basic ground-water hydrology (Geological Survey

  16. CONTINUOUSTIME FINITE ELEMENT ANALYSIS OF MULTIPHASE FLOW IN GROUNDWATER HYDROLOGY

    E-Print Network [OSTI]

    CONTINUOUS­TIME FINITE ELEMENT ANALYSIS OF MULTIPHASE FLOW IN GROUNDWATER HYDROLOGY Zhangxin Chen­water system in groundwater hydrology is given. The system is written in a fractional flow formulation, i for an air­water system in groundwater hydrology, ff = a; w [1], [11], [26]: @(OEae ff s ff ) @t +r \\Delta

  17. Groundwater Impacts of Radioactive Wastes and Associated Environmental Modeling Assessment

    SciTech Connect (OSTI)

    Ma, Rui; Zheng, Chunmiao; Liu, Chongxuan

    2012-11-01T23:59:59.000Z

    This article provides a review of the major sources of radioactive wastes and their impacts on groundwater contamination. The review discusses the major biogeochemical processes that control the transport and fate of radionuclide contaminants in groundwater, and describe the evolution of mathematical models designed to simulate and assess the transport and transformation of radionuclides in groundwater.

  18. THE RECONSTRUCTION OF GROUNDWATER PARAMETERS FROM HEAD DATA IN AN

    E-Print Network [OSTI]

    Knowles, Ian W.

    ancillary data is fundamental to the process of modelling a groundwater system. In an unconfined aquifer of the unconfined groundwater parameters as the unique minimum of a convex functional. 1. Introduction It is commonTHE RECONSTRUCTION OF GROUNDWATER PARAMETERS FROM HEAD DATA IN AN UNCONFINED AQUIFER IAN KNOWLES

  19. Regionally compartmented groundwater flow on Mars Keith P. Harrison1

    E-Print Network [OSTI]

    Harrison, Keith

    the basis for such a test. Specifically, we use groundwater models to predict regions of cryosphere that groundwater flow was likely regionally compartmented. Furthermore, the consistent occurrence of modeled. Geophys. Res., 114, E04004, doi:10.1029/2008JE003300. 1. Introduction [2] Groundwater is thought to have

  20. New approximation for free surface flow of groundwater: capillarity correction

    E-Print Network [OSTI]

    Walter, M.Todd

    capillarity correction for free surface groundwater flow as modelled by the Boussinesq equation is re; Shallow flow expansion; Simplified approximation 1. Introduction Groundwater heads in coastal aquifersNew approximation for free surface flow of groundwater: capillarity correction D.-S. Jeng a,*, B

  1. Error Control of Iterative Linear Solvers for Integrated Groundwater Models

    E-Print Network [OSTI]

    Bai, Zhaojun

    and presentation of GMRES performance benchmarking results. Introduction As the groundwater model infrastructureError Control of Iterative Linear Solvers for Integrated Groundwater Models by Matthew F. Dixon1 for integrated groundwater models, which are implicitly coupled to another model, such as surface water models

  2. Visualization of groundwater flow using line integral convolution

    E-Print Network [OSTI]

    Andrzejak, Artur

    for the simulation of groundwater flow and transport models. INTRODUCTION Nowadays, 3D numerical simulationsVisualization of groundwater flow using line integral convolution JĂ?RG GOTTHARDT & CAROLA BLĂ?MER of groundwater flow and transport problems become more and more common. At the same time the need for adequate

  3. Groundwater Protection 7 2003 SITE ENVIRONMENTAL REPORT7-1

    E-Print Network [OSTI]

    Homes, Christopher C.

    and to implement best management practices designed to protect groundwater. Examples include upgrading unGroundwater Protection 7 2003 SITE ENVIRONMENTAL REPORT7-1 7.1 THE BNL GROUNDWATER PROTECTION's program helps to fulfill the environmental monitoring requirements outlined in U.S. Department of Energy

  4. Chemical characterization of fluids and their modeling with respect to their damage potential in injection on production processes using an expert system

    SciTech Connect (OSTI)

    Thomas, L.G. [Geological Survey of Brandenburg (Germany); Albertsen, M. [Deutsche Gesellschaft fuer Mineraloelwissenschaft und Kohlechemie e.V., Hamburg (Germany); Perdeger, A. [Free Univ., Berlin (Germany); Knoke, H.H.K.; Horstmann, B.W.; Schenk, D. [Johannes Gutenberg Univ., Mainz (Germany)

    1995-11-01T23:59:59.000Z

    Deep groundwaters, esp. oil field waters, from different sedimentary basins in Germany were characterized and evaluated with respect to their damage potential in production and injection processes. Geochemical modeling with different computer programs (PHRF-EQE, PHRQPITZ, SOLMINEQ etc.) was used to evaluate fluid-rock-interactions as well as their damage potential during operation processes. The geochemical program PHREEQE was integrated in an expert system (XPS FROCKI) for the evaluation of operational problems (scaling, fines mobilization, reduced permeability) in production or injection wells.

  5. The Savannah River Site's Groundwater Monitoring Program

    SciTech Connect (OSTI)

    Not Available

    1992-08-03T23:59:59.000Z

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted during the first quarter of 1992. It includes the analytical data, field data, data review, quality control, and other documentation for this program; provides a record of the program's activities; and serves as an official document of the analytical results.

  6. Understanding the Effects of Groundwater Pumping on

    E-Print Network [OSTI]

    Understanding the Effects of Groundwater Pumping on Streamflow Depletion through USGS Capture Maps (Vertical and Horizontal Distance from Streams) Pumping rates and pumping schedules The timing source of water to the wells in years to decades. 0 10 mi #12;Pumping Can Affect Other Hydrologic

  7. The Savannah River Site's groundwater monitoring program

    SciTech Connect (OSTI)

    Not Available

    1991-10-18T23:59:59.000Z

    This report summarizes the Savannah River Site (SRS) groundwater monitoring program conducted by EPD/EMS in the first quarter of 1991. In includes the analytical data, field data, data review, quality control, and other documentation for this program, provides a record of the program's activities and rationale, and serves as an official document of the analytical results.

  8. PARAMETER ESTIMATION IN PETROLEUM AND GROUNDWATER MODELING

    E-Print Network [OSTI]

    Ewing, Richard E.

    on grand challenge problems. In today's petroleum industry, reservoir simulators are routinely usedPARAMETER ESTIMATION IN PETROLEUM AND GROUNDWATER MODELING R.E. Ewing, M.S. Pilant, J.G. Wade in the model, the numerical discretization used, and the solution algorithms employed. Parameter identification

  9. Groundwater level status report for 2009, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Koch, Richard J.; Schmeer, Sarah

    2010-03-01T23:59:59.000Z

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2009 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 55 regional aquifer wells (including 11 regional/intermediate wells), 26 intermediate wells, 98 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 161 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

  10. Groundwater level status report for 2010, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Koch, Richard J.; Schmeer, Sarah

    2011-03-01T23:59:59.000Z

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2010 is provided in this report. This report summarizes groundwater level data for 194 monitoring wells, including 63 regional aquifer wells (including 10 regional/intermediate wells), 34 intermediate wells, 97 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 162 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells and seasonal responses to snowmelt runoff observed in intermediate wells.

  11. Groundwater level status report for 2008, Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Koch, Richard J.; Schmeer, Sarah

    2009-03-01T23:59:59.000Z

    The status of groundwater level monitoring at Los Alamos National Laboratory in 2008 is provided in this report. This report summarizes groundwater level data for 179 monitoring wells, including 45 regional aquifer wells, 28 intermediate wells, 8 regional/intermediate wells, 106 alluvial wells, and 12 water supply wells. Pressure transducers were installed in 166 monitoring wells for continuous monitoring of groundwater levels. Time-series hydrographs of groundwater level data are presented along with pertinent construction and location information for each well. The report also summarizes the groundwater temperatures recorded in intermediate and regional aquifer monitoring wells.

  12. Gas-Phase Treatment of Technetium in the Vadose Zone at the Hanford Site Central Plateau

    SciTech Connect (OSTI)

    Truex, Michael J.; Szecsody, James E.; Zhong, Lirong; Qafoku, Nikolla

    2014-09-01T23:59:59.000Z

    Technetium-99 (Tc-99) is present in the vadose zone of the Hanford Central Plateau and is a concern with respect to the protection of groundwater. The persistence, limited natural attenuation mechanisms, and geochemical behavior of Tc-99 in oxic vadose zone environments must be considered in developing effective alternatives for remediation. This report describes a new in situ geochemical manipulation technique for decreasing Tc-99 mobility using a combination of geochemical Tc-99 reduction with hydrogen sulfide gas and induced sediment mineral dissolution with ammonia vapor, which create conditions for deposition of stable precipitates that decrease the mobility of Tc-99. Laboratory experiments were conducted to examine changes in Tc-99 mobility in vadose zone sediment samples to evaluate the effectiveness of the treatment under a variety of operational and sediment conditions.

  13. The Groundwater Performance Assessment Project Quality Assurance Plan

    SciTech Connect (OSTI)

    Luttrell, Stuart P.

    2006-05-11T23:59:59.000Z

    U.S. Department of Energy (DOE) has monitored groundwater on the Hanford Site since the 1940s to help determine what chemical and radiological contaminants have made their way into the groundwater. As regulatory requirements for monitoring increased in the 1980s, there began to be some overlap between various programs. DOE established the Groundwater Performance Assessment Project (groundwater project) in 1996 to ensure protection of the public and the environment while improving the efficiency of monitoring activities. The groundwater project is designed to support all groundwater monitoring needs at the site, eliminate redundant sampling and analysis, and establish a cost-effective hierarchy for groundwater monitoring activities. This document provides the quality assurance guidelines that will be followed by the groundwater project. This QA Plan is based on the QA requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--General Provisions/Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory’s Standards-Based Management System. In addition, the groundwater project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The groundwater project has determined that the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.

  14. Complexity of Groundwater Contaminants at DOE Sites

    SciTech Connect (OSTI)

    Hazen, T.C.; Faybishenko, B.; Jordan, P.

    2010-12-03T23:59:59.000Z

    The U.S. Department of Energy (DOE) is responsible for the remediation and long-term stewardship of one of the world's largest groundwater contamination portfolios, with a significant number of plumes containing various contaminants, and considerable total mass and activity. As of 1999, the DOE's Office of Environmental Management was responsible for remediation, waste management, or nuclear materials and facility stabilization at 144 sites in 31 states and one U.S. territory, out of which 109 sites were expected to require long-term stewardship. Currently, 19 DOE sites are on the National Priority List. The total number of contaminated plumes on DOE lands is estimated to be 10,000. However, a significant number of DOE sites have not yet been fully characterized. The most prevalent contaminated media are groundwater and soil, although contaminated sediment, sludge, and surface water also are present. Groundwater, soil, and sediment contamination are present at 72% of all DOE sites. A proper characterization of the contaminant inventory at DOE sites is critical for accomplishing one of the primary DOE missions -- planning basic research to understand the complex physical, chemical, and biological properties of contaminated sites. Note that the definitions of the terms 'site' and 'facility' may differ from one publication to another. In this report, the terms 'site,' 'facility' or 'installation' are used to identify a contiguous land area within the borders of a property, which may contain more than one plume. The term 'plume' is used here to indicate an individual area of contamination, which can be small or large. Even though several publications and databases contain information on groundwater contamination and remediation technologies, no statistical analyses of the contaminant inventory at DOE sites has been prepared since the 1992 report by Riley and Zachara. The DOE Groundwater Data Base (GWD) presents data as of 2003 for 221 groundwater plumes at 60 DOE sites and facilities. Note that Riley and Zachara analyzed the data from only 18 sites/facilities including 91 plumes. In this paper, we present the results of statistical analyses of the data in the GWD as guidance for planning future basic and applied research of groundwater contaminants within the DOE complex. Our analyses include the evaluation of a frequency and ranking of specific contaminants and contaminant groups, contaminant concentrations/activities and total contaminant masses and activities. We also compared the results from analyses of the GWD with those from the 1992 report by Riley and Zachara. The difference between our results and those summarized in the 1992 report by Riley and Zachara could be caused by not only additional releases, but also by the use of modern site characterization methods, which more accurately reveal the extent of groundwater contamination. Contaminated sites within the DOE complex are located in all major geographic regions of the United States, with highly variable geologic, hydrogeologic, soil, and climatic conditions. We assume that the information from the 60 DOE sites included in the GWD are representative for the whole DOE complex. These 60 sites include the major DOE sites and facilities, such as Rocky Flats Environmental Technology Site, Colorado; Idaho National Laboratory, Idaho; Savannah River Site, South Carolina; Oak Ridge Reservation, Tennessee; and Hanford Reservation, Washington. These five sites alone ccount for 71% of the value of the remediation work.

  15. Modular, multi-level groundwater sampler

    DOE Patents [OSTI]

    Nichols, Ralph L. (812 Plantation Point Dr., N. Augusta, SC 29841); Widdowson, Mark A. (4204 Havana Ct., Columbia, SC 29206); Mullinex, Harry (10 Cardross La., Columbia, SC 29209); Orne, William H. (12 Martha Ct., Sumter, SC 29150); Looney, Brian B. (1135 Ridgemont Dr., Aiken, SC 29803)

    1994-01-01T23:59:59.000Z

    Apparatus for taking a multiple of samples of groundwater or pressure measurements from a well simultaneously. The apparatus comprises a series of chambers arranged in an axial array, each of which is dimensioned to fit into a perforated well casing and leave a small gap between the well casing and the exterior of the chamber. Seals at each end of the container define the limits to the axial portion of the well to be sampled. A submersible pump in each chamber pumps the groundwater that passes through the well casing perforations into the gap from the gap to the surface for analysis. The power lines and hoses for the chambers farther down the array pass through each chamber above them in the array. The seals are solid, water-proof, non-reactive, resilient disks supported to engage the inside surface of the well casing. Because of the modular design, the apparatus provides flexibility for use in a variety of well configurations.

  16. The Savannah River Site's groundwater monitoring program

    SciTech Connect (OSTI)

    Not Available

    1991-05-06T23:59:59.000Z

    The Environmental Protection Department/Environmental Monitoring Section (EPD/EMS) administers the Savannah River Site's (SRS) Groundwater Monitoring Program. During third quarter 1990 (July through September) EPD/EMS conducted routine sampling of monitoring wells and drinking water locations. EPD/EMS established two sets of flagging criteria in 1986 to assist in the management of sample results. The flagging criteria do not define contamination levels; instead they aid personnel in sample scheduling, interpretation of data, and trend identification. The flagging criteria are based on detection limits, background levels in SRS groundwater, and drinking water standards. All analytical results from third quarter 1990 are listed in this report, which is distributed to all site custodians. One or more analytes exceeded Flag 2 in 87 monitoring well series. Analytes exceeded Flat 2 for the first since 1984 in 14 monitoring well series. In addition to groundwater monitoring, EPD/EMS collected drinking water samples from SRS drinking water systems supplied by wells. The drinking water samples were analyzed for radioactive constituents.

  17. Hanford Site Groundwater Monitoring for Fiscal Year 2006

    SciTech Connect (OSTI)

    Hartman, Mary J.; Morasch, Launa F.; Webber, William D.

    2007-03-01T23:59:59.000Z

    This report presents the results of groundwater monitoring for FY 2006 on DOE's Hanford Site. Results of groundwater remediation, vadose zone monitoring, and characterization are summarized. DOE monitors groundwater at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act (AEA), the Resource Conservation and Recovery Act (RCRA), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), and Washington Administrative Code (WAC).

  18. Ground-water sample collection and analysis plan for the ground-water surveillance project

    SciTech Connect (OSTI)

    Bryce, R.W.; Evans, J.C.; Olsen, K.B.

    1991-12-01T23:59:59.000Z

    The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy`s (DOE`s) Hanford Site in support of DOE`s environmental surveillance responsibilities. The purpose of this document is to translate DOE`s General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives.

  19. Ground-water sample collection and analysis plan for the ground-water surveillance project

    SciTech Connect (OSTI)

    Bryce, R.W.; Evans, J.C.; Olsen, K.B.

    1991-12-01T23:59:59.000Z

    The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy's (DOE's) Hanford Site in support of DOE's environmental surveillance responsibilities. The purpose of this document is to translate DOE's General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives.

  20. Groundwater in the Southwestern Part of the Jemez Mountains Volcanic...

    Open Energy Info (EERE)

    Southwestern Part of the Jemez Mountains Volcanic Region, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Groundwater in the...