National Library of Energy BETA

Sample records for geochemical analysis fluid

  1. Geochemical Data Analysis | Open Energy Information

    Open Energy Info (EERE)

    Information Provided by Technique Lithology: StratigraphicStructural: Hydrological: Thermal: Dictionary.png Geochemical Data Analysis: No definition has been provided for...

  2. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  3. Fluid Inclusion Gas Analysis

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Dilley, Lorie

    2013-01-01

    Fluid inclusion gas analysis for wells in various geothermal areas. Analyses used in developing fluid inclusion stratigraphy for wells and defining fluids across the geothermal fields. Each sample has mass spectrum counts for 180 chemical species.

  4. Analysis and Geochemical Modeling of Vanadium Contamination in Groundwater

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Rifle Processing Site, Colorado | Department of Energy and Geochemical Modeling of Vanadium Contamination in Groundwater New Rifle Processing Site, Colorado Analysis and Geochemical Modeling of Vanadium Contamination in Groundwater New Rifle Processing Site, Colorado Analysis and Geochemical Modeling of Vanadium Contamination in Groundwater New Rifle Processing Site, Colorado Analysis and Geochemical Modeling of Vanadium Contamination in Groundwater New Rifle Processing Site, Colorado

  5. Category:Geochemical Data Analysis | Open Energy Information

    Open Energy Info (EERE)

    category, out of 4 total. G Geochemical Data Analysis Geothermometry T Thermal Ion Dispersion Thermochronometry Retrieved from "http:en.openei.orgwindex.php?titleCategory:Ge...

  6. GaMin’11 – an international inter-laboratory comparison for geochemical CO₂ - saline fluid - mineral interaction experiments

    SciTech Connect (OSTI)

    Ostertag-Henning, C.; Risse, A.; Thomas, B.; Rosenbauer, R.; Rochelle, C.; Purser, G.; Kilpatrick, A.; Rosenqvist, J.; Yardley, B.; Karamalidis, A.; Griffith, C.; Hedges, S.; Dilmore, R.; Goodman, A.; Black, J.; Haese, R.; Deusner, C.; Bigalke, N.; Haeckel, M.; Fischer, S.; Liebscher, A.; Icenhower, J. P.; Daval, D.; Saldi, G. D.; Knauss, K. G.; Schmidt, M.; Mito, S.; Sorai, M.; Truche, L.

    2014-12-31

    Due to the strong interest in geochemical CO₂-fluid-rock interaction in the context of geological storage of CO₂ a growing number of research groups have used a variety of different experimental ways to identify important geochemical dissolution or precipitation reactions and – if possible – quantify the rates and extent of mineral or rock alteration. In this inter-laboratory comparison the gas-fluid-mineral reactions of three samples of rock-forming minerals have been investigated by 11 experimental labs. The reported results point to robust identification of the major processes in the experiments by most groups. The dissolution rates derived from the changes in composition of the aqueous phase are consistent overall, but the variation could be reduced by using similar corrections for changing parameters in the reaction cells over time. The comparison of experimental setups and procedures as well as of data corrections identified potential improvements for future gas-fluid-rock studies.

  7. Characterizing Microbial Community and Geochemical Dynamics at Hydrothermal Vents Using Osmotically Driven Continuous Fluid Samplers

    SciTech Connect (OSTI)

    Robidart, Julie C.; Callister, Stephen J.; Song, Peng F.; Nicora, Carrie D.; Wheat, Charles G.; Girguis, Peter R.

    2013-05-07

    Microbes play a key role in mediating all aquatic biogeochemical cycles, and ongoing efforts are aimed at better understanding the relationships between microbial phylogenetic and physiological diversity, and habitat physical and chemical characteristics. Establishing such relationships is facilitated by sampling and studying microbiology and geochemistry at the appropriate spatial and temporal scales, to access information on the past and current environmental state that contributes to observed microbial abundances and activities. A modest number of sampling systems exist to date, few of which can be used in remote, harsh environments such as hydrothermal vents, where the ephemeral nature of venting underscores the necessity for higher resolution sampling. We have developed a robust, continuous fluid sampling system for co-registered microbial and biogeochemical analyses. The osmosis-powered bio-osmosampling system (BOSS) use no electricity, collects fluids with daily resolution or better, can be deployed in harsh, inaccessible environments and can sample fluids continuously for up to five years. Here we present a series of tests to examine DNA, RNA and protein stability over time, as well as material compatability, via lab experiments. We also conducted two field deployments at deep-sea hydrothermal vents to assess changes in microbial diversity and protein expression as a function of the physico-chemical environment. Our data reveal significant changes in microbial community composition co-occurring with relatively modest changes in the geochemistry. These data additionally provide new insights into the distribution of an enigmatic sulfur oxidizing symbiont in its free-living state. Data from the second deployment reveal differences in the representation of peptides over time, underscoring the utility of the BOSS in meta-proteomic studies. In concert, these data demonstrate the efficacy of this approach, and illustrate the value of using this method to study

  8. Actualistic and Geochemical Modeling of Reservoir Rock, CO2 and Formation Fluid Interaction, Citronelle Oil Field, Alabama

    SciTech Connect (OSTI)

    Weislogel, Amy

    2014-01-31

    This report includes description of the Citronelle field study area and the work carried out in the project to characterize the geology and composition of reservoir rock material and to collect an analyze the geochemical composition of produced fluid waters from the Citronelle field. Reservoir rock samples collected from well bore core were made into thin-sections and assessed for textural properties, including pore types and porosity distribution. Compositional framework grain modal data were collected via point-counting, and grain and cement mineralogy was assessed using SEM-EDS. Geochemistry of fluid samples is described and modeled using PHREEQC. Composition of rock and produced fluids were used as inputs for TOUGHREACT reactive transport modeling, which determined the rock-fluid system was in disequilibrium.

  9. GaMin’11 – an international inter-laboratory comparison for geochemical CO₂ - saline fluid - mineral interaction experiments

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ostertag-Henning, C.; Risse, A.; Thomas, B.; Rosenbauer, R.; Rochelle, C.; Purser, G.; Kilpatrick, A.; Rosenqvist, J.; Yardley, B.; Karamalidis, A.; et al

    2014-12-31

    Due to the strong interest in geochemical CO₂-fluid-rock interaction in the context of geological storage of CO₂ a growing number of research groups have used a variety of different experimental ways to identify important geochemical dissolution or precipitation reactions and – if possible – quantify the rates and extent of mineral or rock alteration. In this inter-laboratory comparison the gas-fluid-mineral reactions of three samples of rock-forming minerals have been investigated by 11 experimental labs. The reported results point to robust identification of the major processes in the experiments by most groups. The dissolution rates derived from the changes in compositionmore » of the aqueous phase are consistent overall, but the variation could be reduced by using similar corrections for changing parameters in the reaction cells over time. The comparison of experimental setups and procedures as well as of data corrections identified potential improvements for future gas-fluid-rock studies.« less

  10. Structural Analysis for Gold Mineralization Using Remote Sensing and Geochemical Techniques in a GIS Environment: Island of Lesvos, Hellas

    SciTech Connect (OSTI)

    Rokos, D. Argialas, D. Mavrantza, R. St Seymour, K.; Vamvoukakis, C.; Kouli, M.; Lamera, S.; Paraskevas, H.; Karfakis, I.; Denes, G

    2000-12-15

    Exploration for epithermal Au has been active lately in the Aegean Sea of the eastern Mediterranean Basin, both in the islands of the Quaternary arc and in those of the back-arc region. The purpose of this study was the structural mapping and analysis for a preliminary investigation of possible epithermal gold mineralization, using remotely sensed data and techniques, structural and field data, and geochemical information, for a specific area on the Island of Lesvos. Therefore, Landsat-TM and SPOT-Pan satellite images and the Digital Elevation Model (DEM) of the study area were processed digitally using spatial filtering techniques for the enhancement and recognition of the geologically significant lineaments, as well as algebraic operations with band ratios and Principal Component Analysis (PCA), for the identification of alteration zones. Statistical rose diagrams and a SCHMIDT projection Stereo Net were generated from the lineament maps and the collected field data (dip and strike measurements of faults, joints, and veins), respectively. The derived lineament map and the band ratio images were manipulated in a GIS environment, in order to study the relation of the tectonic pattern to both the alteration zoning and the geomorphology of the volcanic field of the study area. Target areas of high interest for possible mineralization also were specified using geochemical techniques, such as X-Ray Diffraction (XRD) analysis, trace-element, and fluid-inclusion analysis. Finally, preliminary conclusions were derived about possible mineralization, the type (high or low sulfidation), and the extent of mineralization, by combining the structural information with geochemical information.

  11. Model-Based Analysis of the Role of Biological, Hydrological and Geochemical Factors Affecting Uranium Bioremediation

    SciTech Connect (OSTI)

    Zhao, Jiao; Scheibe, Timothy D.; Mahadevan, Radhakrishnan

    2011-01-24

    Uranium contamination is a serious concern at several sites motivating the development of novel treatment strategies such as the Geobacter-mediated reductive immobilization of uranium. However, this bioremediation strategy has not yet been optimized for the sustained uranium removal. While several reactive-transport models have been developed to represent Geobacter-mediated bioremediation of uranium, these models often lack the detailed quantitative description of the microbial process (e.g., biomass build-up in both groundwater and sediments, electron transport system, etc.) and the interaction between biogeochemical and hydrological process. In this study, a novel multi-scale model was developed by integrating our recent model on electron capacitance of Geobacter (Zhao et al., 2010) with a comprehensive simulator of coupled fluid flow, hydrologic transport, heat transfer, and biogeochemical reactions. This mechanistic reactive-transport model accurately reproduces the experimental data for the bioremediation of uranium with acetate amendment. We subsequently performed global sensitivity analysis with the reactive-transport model in order to identify the main sources of prediction uncertainty caused by synergistic effects of biological, geochemical, and hydrological processes. The proposed approach successfully captured significant contributing factors across time and space, thereby improving the structure and parameterization of the comprehensive reactive-transport model. The global sensitivity analysis also provides a potentially useful tool to evaluate uranium bioremediation strategy. The simulations suggest that under difficult environments (e.g., highly contaminated with U(VI) at a high migration rate of solutes), the efficiency of uranium removal can be improved by adding Geobacter species to the contaminated site (bioaugmentation) in conjunction with the addition of electron donor (biostimulation). The simulations also highlight the interactive effect of

  12. Category:Fluid Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    Fluid Lab Analysis Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermalpower.jpg Looking for the Fluid Lab Analysis page? For detailed information on exploration...

  13. Apparatus and method for fluid analysis

    DOE Patents [OSTI]

    Wilson, Bary W.; Peters, Timothy J.; Shepard, Chester L.; Reeves, James H.

    2004-11-02

    The present invention is an apparatus and method for analyzing a fluid used in a machine or in an industrial process line. The apparatus has at least one meter placed proximate the machine or process line and in contact with the machine or process fluid for measuring at least one parameter related to the fluid. The at least one parameter is a standard laboratory analysis parameter. The at least one meter includes but is not limited to viscometer, element meter, optical meter, particulate meter, and combinations thereof.

  14. Apparatus And Method For Fluid Analysis

    DOE Patents [OSTI]

    Wilson, Bary W.; Peters, Timothy J.; Shepard, Chester L.; Reeves, James H.

    2003-05-13

    The present invention is an apparatus and method for analyzing a fluid used in a machine or in an industrial process line. The apparatus has at least one meter placed proximate the machine or process line and in contact with the machine or process fluid for measuring at least one parameter related to the fluid. The at least one parameter is a standard laboratory analysis parameter. The at least one meter includes but is not limited to viscometer, element meter, optical meter, particulate meter, and combinations thereof.

  15. Drilling Fluids Market Analysis | OpenEI Community

    Open Energy Info (EERE)

    Drilling Fluids Market Analysis Home There are currently no posts in this category. Syndicate content...

  16. Automated fluid analysis apparatus and techniques

    DOE Patents [OSTI]

    Szecsody, James E.

    2004-03-16

    An automated device that couples a pair of differently sized sample loops with a syringe pump and a source of degassed water. A fluid sample is mounted at an inlet port and delivered to the sample loops. A selected sample from the sample loops is diluted in the syringe pump with the degassed water and fed to a flow through detector for analysis. The sample inlet is also directly connected to the syringe pump to selectively perform analysis without dilution. The device is airtight and used to detect oxygen-sensitive species, such as dithionite in groundwater following a remedial injection to treat soil contamination.

  17. Category:Geochemical Techniques | Open Energy Information

    Open Energy Info (EERE)

    Techniques Technique Subcategories This category has only the following subcategory. G + Geochemical Data Analysis (2 categories) 4 pages Pages in category "Geochemical...

  18. Fluid Inclusion Analysis | Open Energy Information

    Open Energy Info (EERE)

    Geothermal Area (2004) Coso Geothermal Area 2004 2004 GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID GEOLOGY AND MINERAL PARAGENESIS STUDY WITHIN THE COSO-EGS...

  19. User's Guide of TOUGH2-EGS. A Coupled Geomechanical and Reactive Geochemical Simulator for Fluid and Heat Flow in Enhanced Geothermal Systems Version 1.0

    SciTech Connect (OSTI)

    Fakcharoenphol, Perapon; Xiong, Yi; Hu, Litang; Winterfeld, Philip H.; Xu, Tianfu; Wu, Yu-Shu

    2013-05-01

    TOUGH2-EGS is a numerical simulation program coupling geomechanics and chemical reactions for fluid and heat flows in porous media and fractured reservoirs of enhanced geothermal systems. The simulator includes the fully-coupled geomechanical (THM) module, the fully-coupled geochemical (THC) module, and the sequentially coupled reactive geochemistry (THMC) module. The fully-coupled flow-geomechanics model is developed from the linear elastic theory for the thermo-poro-elastic system and is formulated with the mean normal stress as well as pore pressure and temperature. The chemical reaction is sequentially coupled after solution of flow equations, which provides the flow velocity and phase saturation for the solute transport calculation at each time step. In addition, reservoir rock properties, such as porosity and permeability, are subjected to change due to rock deformation and chemical reactions. The relationships between rock properties and geomechanical and chemical effects from poro-elasticity theories and empirical correlations are incorporated into the simulator. This report provides the user with detailed information on both mathematical models and instructions for using TOUGH2-EGS for THM, THC or THMC simulations. The mathematical models include the fluid and heat flow equations, geomechanical equation, reactive geochemistry equations, and discretization methods. Although TOUGH2-EGS has the capability for simulating fluid and heat flows coupled with both geomechanical and chemical effects, it is up to the users to select the specific coupling process, such as THM, THC, or THMC in a simulation. There are several example problems illustrating the applications of this program. These example problems are described in details and their input data are presented. The results demonstrate that this program can be used for field-scale geothermal reservoir simulation with fluid and heat flow, geomechanical effect, and chemical reaction in porous and fractured media.

  20. New Mexico Play Fairway Analysis: New Mexico available wells for geochemical sampling

    SciTech Connect (OSTI)

    Jeff Pepin

    2015-11-15

    This is a map package that is used to show the wells in New Mexico that may be available for geochemical sampling.

  1. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1982) Exploration Activity Details Location Valles Caldera - Sulphur Springs...

  2. Fluid Inclusion Analysis At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Sulphur Springs Geothermal Area (Sasada & Goff, 1995) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Valles Caldera...

  3. Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs...

    Open Energy Info (EERE)

    Activity: Isotopic Analysis- Fluid At Valles Caldera - Sulphur Springs Geothermal Area (Goff, Et Al., 1985) Exploration Activity Details Location Valles Caldera - Sulphur Springs...

  4. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Long Valley Caldera Geothermal Area (Taylor & Gerlach, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Long...

  5. Fluid Inclusion Analysis At Raft River Geothermal Area (2011...

    Open Energy Info (EERE)

    Raft River Geothermal Area (2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Raft River Geothermal Area (2011)...

  6. Isotopic Analysis-Fluid At Raft River Geothermal Area (1982)...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Raft River Geothermal Area (1982) Exploration Activity Details Location Raft River...

  7. Isotopic Analysis-Fluid At Raft River Geothermal Area (1977)...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis-Fluid At Raft River Geothermal Area (1977) Exploration Activity Details Location Raft River...

  8. Isotopic Analysis- Fluid At Coso Geothermal Area (1982) | Open...

    Open Energy Info (EERE)

    Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1982 Usefulness not indicated DOE-funding Unknown Exploration Basis...

  9. Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside...

    Open Energy Info (EERE)

    At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 2002 -...

  10. Fluid Inclusion Analysis At Lightning Dock Area (Norman & Moore...

    Open Energy Info (EERE)

    Lightning Dock Area (Norman & Moore, 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Lightning Dock Area...

  11. Fluid Inclusion Analysis At Geysers Area (Moore, Et Al., 2001...

    Open Energy Info (EERE)

    Area (Moore, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Geysers Area (Moore, Et Al., 2001)...

  12. Fluid Inclusion Analysis At Geysers Geothermal Area (1990) |...

    Open Energy Info (EERE)

    Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Geysers Geothermal Area (1990) Exploration...

  13. Fluid Inclusion Analysis At Coso Geothermal Area (2002) | Open...

    Open Energy Info (EERE)

    2) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (2002) Exploration Activity Details Location...

  14. Fluid Inclusion Analysis At Chena Geothermal Area (Kolker, 2008...

    Open Energy Info (EERE)

    Chena Geothermal Area (Kolker, 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Chena Geothermal Area (Kolker,...

  15. Fluid Inclusion Analysis At Salton Sea Geothermal Area (1990...

    Open Energy Info (EERE)

    Salton Sea Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Salton Sea Geothermal Area (1990)...

  16. Fluid Inclusion Analysis At Yellowstone Region (Sturchio, Et...

    Open Energy Info (EERE)

    Yellowstone Region (Sturchio, Et Al., 1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Yellowstone Region...

  17. Fluid Inclusion Analysis At Coso Geothermal Area (1990) | Open...

    Open Energy Info (EERE)

    0) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Coso Geothermal Area (1990) Exploration Activity Details Location...

  18. Fluid Inclusion Analysis At Valles Caldera - Redondo Geothermal...

    Open Energy Info (EERE)

    Redondo Geothermal Area (Sasada, 1988) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Valles Caldera - Redondo...

  19. Fluid Inclusion Analysis At Valles Caldera Geothermal Region...

    Open Energy Info (EERE)

    Geothermal Region (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fluid Inclusion Analysis At Valles Caldera Geothermal Region (1990)...

  20. Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990...

    Open Energy Info (EERE)

    Rose Valley Geothermal Area (1990) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Rose Valley Geothermal Area (1990)...

  1. Isotopic Analysis- Fluid At Coso Geothermal Area (1990) | Open...

    Open Energy Info (EERE)

    Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown...

  2. Isotopic Analysis- Fluid At Indian Valley Hot Springs Geothermal...

    Open Energy Info (EERE)

    Details Location Indian Valley Hot Springs Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown...

  3. Isotopic Analysis- Fluid At Sierra Valley Geothermal Area (1990...

    Open Energy Info (EERE)

    Activity Details Location Sierra Valley Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 1990 Usefulness not indicated DOE-funding Unknown...

  4. Coal fly ash interaction with environmental fluids: Geochemical and strontium isotope results from combined column and batch leaching experiments

    SciTech Connect (OSTI)

    Brubaker, Tonya M.; Stewart, Brian W.; Capo, Rosemary C.; Schroeder, Karl T.; Chapman, Elizabeth C.; Spivak-Birndorf, Lev J.; Vesper, Dorothy J.; Cardone, Carol R.; Rohar, Paul C.

    2013-05-01

    The major element and Sr isotope systematics and geochemistry of coal fly ash and its interactions with environmental waters were investigated using laboratory flow-through column leaching experiments (sodium carbonate, acetic acid, nitric acid) and sequential batch leaching experiments (water, acetic acid, hydrochloric acid). Column leaching of Class F fly ash samples shows rapid release of most major elements early in the leaching procedure, suggesting an association of these elements with soluble and surface bound phases. Delayed release of certain elements (e.g., Al, Fe, Si) signals gradual dissolution of more resistant silicate or glass phases as leaching continues. Strontium isotope results from both column and batch leaching experiments show a marked increase in {sup 87}Sr/{sup 86}Sr ratio with continued leaching, yielding a total range of values from 0.7107 to 0.7138. For comparison, the isotopic composition of fluid output from a fly ash impoundment in West Virginia falls in a narrow range around 0.7124. The experimental data suggest the presence of a more resistant, highly radiogenic silicate phase that survives the combustion process and is leached after the more soluble minerals are removed. Strontium isotopic homogenization of minerals in coal does not always occur during the combustion process, despite the high temperatures encountered in the boiler. Early-released Sr tends to be isotopically uniform; thus the Sr isotopic composition of fly ash could be distinguishable from other sources and is a useful tool for quantifying the possible contribution of fly ash leaching to the total dissolved load in natural surface and ground waters.

  5. Fluid Lab Analysis | Open Energy Information

    Open Energy Info (EERE)

    Over Core Stress Paleomagnetic Measurements Petrography Analysis Rock Density X-Ray Diffraction (XRD) X-Ray Fluorescence (XRF) References No exploration activities found. Print...

  6. Evaluation of Groundwater Movement in the Frenchman Flat CAU Using Geochemical and Isotopic Analysis

    SciTech Connect (OSTI)

    R. Hershey; J. Thomas; T. Rose; J. Paces; I. Farnham; C. Benedict, Jr.

    2005-03-01

    The principal pathway for radionuclide migration from underground tests in Frenchman Flat, on the Nevada Test Site, to the accessible environment is groundwater flow. Two potential pathways for radionuclide transport via groundwater have been identified from hydrologic data: (1) radionuclide transport downward from the alluvial and volcanic aquifers into the underlying carbonate aquifer; and (2) radionuclide transport laterally to the carbonate aquifer surrounding Frenchman Flat. This report presents an evaluation of geochemical and environmental isotopic data to test these potential pathways and to identify other groundwater flowpaths in, and out of, Frenchman Flat.

  7. HBH-GEOCHEM-GEOPHY

    Energy Science and Technology Software Center (OSTI)

    003015WKSTN00 Hiereachical Bayesian Model for Combining Geochemical and Geophysical Data for Environmental Applications Software

  8. Pre-test geological and geochemical evaluation of the Caprock, St. Peter Sandstone and formation fluids, Yakley Field, Pike County, Illinois

    SciTech Connect (OSTI)

    Not Available

    1983-03-01

    The goal of these studies is to ensure long-term stable containment of air in the underground reservoirs used in conjunction with compressed air energy storage (CAES) plants. The specific objective is to develop stability criteria and engineering guidelines for designing CAES reservoirs in each of the three major reservoir types, including aquifers, salt cavities, and mined hard rock caverns. This document characterizes the geologic nature of porous media constituents native to the aquifer field test site near Pittsfield, Illinois. The geologic samples were subjected to geochemical evaluations to determine anticipated responses to cyclic air injection, heating and moisture - conditions typical of an operating CAES reservoir. This report documents the procedures used and results obtained from these analyses.

  9. Fluid Inclusion Analysis At Coso Geothermal Area (2004) | Open...

    Open Energy Info (EERE)

    DOE-funding Unknown Exploration Basis 1) To determine if analyses of fluid propene and propane species in fluid inclusions can be used to interpret fluid type, history, or process....

  10. PArallel Reacting Multiphase FLOw Computational Fluid Dynamic Analysis

    Energy Science and Technology Software Center (OSTI)

    2002-06-01

    PARMFLO is a parallel multiphase reacting flow computational fluid dynamics (CFD) code. It can perform steady or unsteady simulations in three space dimensions. It is intended for use in engineering CFD analysis of industrial flow system components. Its parallel processing capabilities allow it to be applied to problems that use at least an order of magnitude more computational cells than the number that can be used on a typical single processor workstation (about 106 cellsmore » in parallel processing mode versus about io cells in serial processing mode). Alternately, by spreading the work of a CFD problem that could be run on a single workstation over a group of computers on a network, it can bring the runtime down by an order of magnitude or more (typically from many days to less than one day). The software was implemented using the industry standard Message-Passing Interface (MPI) and domain decomposition in one spatial direction. The phases of a flow problem may include an ideal gas mixture with an arbitrary number of chemical species, and dispersed droplet and particle phases. Regions of porous media may also be included within the domain. The porous media may be packed beds, foams, or monolith catalyst supports. With these features, the code is especially suited to analysis of mixing of reactants in the inlet chamber of catalytic reactors coupled to computation of product yields that result from the flow of the mixture through the catalyst coaled support structure.« less

  11. Isotopic Analysis- Fluid At Coso Geothermal Area (2007) | Open...

    Open Energy Info (EERE)

    of the coso east flank hydrothermal fluids: implications for the location and nature of the heat source Additional References Retrieved from "http:en.openei.orgw...

  12. Fluid Inclusion Analysis At Coso Geothermal Area (2003) | Open...

    Open Energy Info (EERE)

    that indicate H2 concentrations > 0.001 mol % typically have ethane > ethylene, propane > propylene, and butane > butylene. There are three end member fluid compositions...

  13. Fluid Inclusion Analysis At Coso Geothermal Area (1996) | Open...

    Open Energy Info (EERE)

    that the interior of the system is still undergoing heating. References Lutz, S. J.; Moore, J. N.; Copp, J. F. (24 January 1996) Integrated mineralogical and fluid inclusion...

  14. Isotopic Analysis- Fluid At Fenton Hill HDR Geothermal Area ...

    Open Energy Info (EERE)

    Interactions in the Fenton Hill, New Mexico, Hot Dry Rock Geothermal Systems I. Fluid Mixing and Chemical Geothermometry Additional References Retrieved from "http:...

  15. Isotopic Analysis- Fluid At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    of water in the wellbore, and identify magmatic gases present in the well fluids. Notes Water samples were collected from the pump discharge line at the surface during each flow...

  16. Fluid Inclusion Analysis At Coso Geothermal Area (1999) | Open...

    Open Energy Info (EERE)

    Devil's Kitchen fumarole area and from Coso production wells. References Lutz, S.J.; Moore, J.N.; Adams, M.C.; Norman, D.I. (1 January 1999) TRACING FLUID SOURCES IN THE COSO...

  17. Fluid Inclusion Analysis At Coso Geothermal Area (2005-2006)...

    Open Energy Info (EERE)

    Interpretation of New Wells in the Coso Geothermal Field Dilley, L. M.; Norman, D.I.; Moore, J.; McCulloch, J. (1 January 2006) Fluid Stratigraphy and Permeable Zones of the Coso...

  18. Isotopic Analysis- Fluid At Dixie Valley Geothermal Area (Kennedy...

    Open Energy Info (EERE)

    suggest that helium isotopes are the best and possibly the only indication of deep permeability where high temperature fluids are masked beneath a cold reservoir. Notes 3He4He...

  19. Fluid Inclusion Analysis At Coso Geothermal Area (Norman & Moore...

    Open Energy Info (EERE)

    done by our CFS (crushfast-scan) method (Norman 1996) show that chips have a high density of homogeneous fluid inclusions. Analyses were averaged and plotted verses depth, and...

  20. Fluid Inclusion Analysis At Coso Geothermal Area (2004-2005)...

    Open Energy Info (EERE)

    and much fine scale detail when the logs are analyzed in detail. References Dilley, L. M.; Norman, D.I.; Berard, B. (1 January 2004) FLUID INCLUSION STRATIGRAPHY: NEW METHOD...

  1. Mineral dissolution and precipitation during CO2 injection at the Frio-I Brine Pilot: Geochemical modeling and uncertainty analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ilgen, A. G.; Cygan, R. T.

    2015-12-07

    During the Frio-I Brine Pilot CO2 injection experiment in 2004, distinct geochemical changes in response to the injection of 1600 tons of CO2 were recorded in samples collected from the monitoring well. Previous geochemical modeling studies have considered dissolution of calcite and iron oxyhydroxides, or release of adsorbed iron, as the most likely sources of the increased ion concentrations. We explore in this modeling study possible alternative sources of the increasing calcium and iron, based on the data from the detailed petrographic characterization of the Upper Frio Formation “C”. Particularly, we evaluate whether dissolution of pyrite and oligoclase (anorthitemore » component) can account for the observed geochemical changes. Due to kinetic limitations, dissolution of pyrite and anorthite cannot account for the increased iron and calcium concentrations on the time scale of the field test (10 days). However, dissolution of these minerals is contributing to carbonate and clay mineral precipitation on the longer time scales (1000 years). The one-dimensional reactive transport model predicts carbonate minerals, dolomite and ankerite, as well as clay minerals kaolinite, nontronite and montmorillonite, will precipitate in the Frio Formation “C” sandstone as the system progresses towards chemical equilibrium during a 1000-year period. Cumulative uncertainties associated with using different thermodynamic databases, activity correction models (Pitzer vs. B-dot), and extrapolating to reservoir temperature, are manifested in the difference in the predicted mineral phases. Furthermore, these models are consistent with regards to the total volume of mineral precipitation and porosity values which are predicted to within 0.002%.« less

  2. Code System for Fluid-Structure Interaction Analysis.

    Energy Science and Technology Software Center (OSTI)

    2001-05-30

    Version 00 PELE-IC is a two-dimensional semi-implicit Eulerian hydrodynamics program for the solution of incompressible flow coupled to flexible structures. The code was developed to calculate fluid-structure interactions and bubble dynamics of a pressure-suppression system following a loss-of-coolant accident (LOCA). The fluid, structure, and coupling algorithms have been verified by calculation of benchmark problems and air and steam blowdown experiments. The code is written for both plane and cylindrical coordinates. The coupling algorithm is generalmore » enough to handle a wide variety of structural shapes. The concepts of void fractions and interface orientation are used to track the movement of free surfaces, allowing great versatility in following fluid-gas interfaces both for bubble definition and water surface motion without the use of marker particles.« less

  3. Computerized tomographic analysis of fluid flow in fractured tuff

    SciTech Connect (OSTI)

    Felice, C.W.; Sharer, J.C.; Springer, E.P.

    1992-05-01

    The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.

  4. Computerized tomographic analysis of fluid flow in fractured tuff

    SciTech Connect (OSTI)

    Felice, C.W.; Sharer, J.C. ); Springer, E.P. )

    1992-01-01

    The purpose of this summary is to demonstrate the usefulness of X-ray computerized tomography to observe fluid flow down a fracture and rock matrix imbibition in a sample of Bandelier tuff. This was accomplished by using a tuff sample 152.4 mm long and 50.8 mm in diameter. A longitudinal fracture was created by cutting the core with a wire saw. The fractured piece was then coupled to its adjacent section to that the fracture was not expected. Water was injected into a dry sample at five flow rates and CT scanning performed at set intervals during the flow. Cross sectional images and longitudinal reconstructions were built and saturation profiles calculated for the sample at each time interval at each flow rate. The results showed that for the test conditions, the fracture was not a primary pathway of fluid flow down the sample. At a slow fluid injection rate into the dry sample, the fluid was imbibed into the rock uniformly down the length of the core. With increasing injection rates, the flow remained uniform over the core cross section through complete saturation.

  5. Geochemical Mud Logging of geothermal drilling

    SciTech Connect (OSTI)

    Tonani, F.B.; Guidi, M.; Johnson, S.D.

    1988-01-01

    The experience and results described in the present paper were developed over nearly two decades, with a major R&D project around 1980. The expression Geochemical Mud Logging (GML) has ill defined meaning in the geothermal industry, and ought to be specified. We refer here to GML as featuring mud and formation fluid tracer(s) and temperature as the bare essentials and with specified accuracies. Air and water logging are expected to be less demanding with regard to analysis accuracy, but are not discussed in this report. During application of GML to several drill holes with low formation permeabilities and under conditions of high temperature and high mud weight, GML as specified, revealed unexpected influx of formation brine. Such influx was a recurring feature that has been referenced to individual fractures and reflects both fracture size and permeability. As a consequence, continuous or subcontinuous sampling of mud systems appears more cost effective than trying to keep up with cumulative changes of bulk mud composition; although, the latter approach is more sensitive to extremely low rate, steady, inflow of formation fluid into the mud system. It appears, that based on this influx of formation fluid, permeability can be estimated well before mud losses are detected and/or drill strings are stuck. The main advantages of GML are: (1) the capability to assess formation temperature and permeability in nearly real time, resulting in (a) assessments of undisturbed formation and (b) having data in hand for holes lost during drilling operations and (2) being effective under conditions of very high temperatures where electrical logs are very costly and less reliable. Estimated cost for GML is $1500 per day (1982) based on assessments of R&D operations. However, extrapolating to larger scale services and to different operating conditions is indeed difficult. GML cost is probably the only significant point of controversy with regard to GML being a viable evaluation tool.

  6. Geochemical Enhancement Of Enhanced Geothermal System Reservoirs: An Integrated Field And Geochemical Approach

    SciTech Connect (OSTI)

    Joseph N. Moore

    2007-12-31

    . In contrast, fluid inclusions trapped prior to injection are relatively gas rich. These results suggest that the rocks undergo extensive microfracturing during injection and that the composition of the fluid inclusions will be biased toward the youngest event. Interactions between the reservoir rocks and injectate were modeled using the non-isothermal reactive geochemical transport code TOUGHREACT. Changes in fluid pH, fracture porosity, fracture permeability, fluid temperature, and mineral abundances were monitored. The simulations predict that amorphous silica will precipitate primarily within a few meters of the injection well and that mineral deposition will lead to rapid declines in fracture porosity and permeability, consistent with field observations. In support of Enhanced Geothermal System development, petrologic studies of Coso well 46A-19RD were conducted to determine the regions that are most likely to fail when stimulated. These studies indicate that the most intensely brecciated and altered rocks in the zone targeted for stimulation (below 10,000 ft (3048 m)) occur between 11,200 and 11,350 ft (3414 and 3459 m). This zone is interpreted as a shear zone that initially juxtaposed quartz diorite against granodiorite. Strong pervasive alteration and veining within the brecciated quartz diorite and granodiorite suggest this shear zone was permeable in the past. This zone of weakness was subsequently exploited by a granophyre dike whose top occurs at 11,350 ft (3459 m). The dike is unaltered. We anticipate, based on analysis of the well samples that failure during stimulation will most likely occur on this shear zone.

  7. IN SITU STRESS, FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C...

    Open Energy Info (EERE)

    FRACTURE, AND FLUID FLOW ANALYSIS IN WELL 38C-9:AN ENHANCED GEOTHERMAL SYSTEM IN THE COSO GEOTHERMAL FIELD Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  8. A fluid pressure and deformation analysis for geological sequestration of carbon dioxide

    SciTech Connect (OSTI)

    Xu, Zhijie; Fang, Yilin; Scheibe, Timothy D.; Bonneville, Alain

    2012-06-07

    We present a hydro-mechanical model and deformation analysis for geological sequestration of carbon dioxide. The model considers the poroelastic effects by taking into account the two-way coupling between the geomechanical response and the fluid flow process in greater detail. In order for analytical solutions, the simplified hydro-mechanical model includes the geomechanical part that relies on the theory of linear elasticity, while the fluid flow is based on the Darcys law. The model was derived through coupling the two parts using the standard linear poroelasticity theory. Analytical solutions for fluid pressure field were obtained for a typical geological sequestration scenario and the solutions for ground deformation were obtained using the method of Greens function. Solutions predict the temporal and spatial variation of fluid pressure, the effect of permeability and elastic modulus on the fluid pressure, the ground surface uplift, and the radial deformation during the entire injection period.

  9. SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Signals in the Subsurface | Department of Energy SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical Signals in the Subsurface SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical Signals in the Subsurface Grand Challenge Workshop -Imaging Subsurface.pdf (434.52 KB) More Documents & Publications AGU SubTER Town Hall Presentation 2015 SubTER Presentation at Town Hall - American Geophysical Union Controlling Subsurface Fractures and Fluid Flow: A Basic

  10. CORE-BASED INTEGRATED SEDIMENTOLOGIC, STRATIGRAPHIC, AND GEOCHEMICAL ANALYSIS OF THE OIL SHALE BEARING GREEN RIVER FORMATION, UINTA BASIN, UTAH

    SciTech Connect (OSTI)

    Lauren P. Birgenheier; Michael D. Vanden Berg,

    2011-04-11

    An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warming events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.

  11. Dispersed Fluid Flow in Fractured Reservoirs- an Analysis of...

    Open Energy Info (EERE)

    Reservoirs- an Analysis of Tracer-Determined Residence Time Distributions Abstract A methodology for analyzing the internal flow characteristics of a fractured geothermal reservoir...

  12. Isotopic Analysis- Fluid At Roosevelt Hot Springs Geothermal...

    Open Energy Info (EERE)

    Unknown Exploration Basis Faulder 1991 Conceptual Geological Model compilation and literature review of the Roosevelt Hot Springs Geothermal Area. Notes Stable isotope analysis...

  13. Computational Fluid Dynamics Analysis of Flexible Duct Junction Box Design

    SciTech Connect (OSTI)

    Beach, Robert; Prahl, Duncan; Lange, Rich

    2013-12-01

    IBACOS explored the relationships between pressure and physical configurations of flexible duct junction boxes by using computational fluid dynamics (CFD) simulations to predict individual box parameters and total system pressure, thereby ensuring improved HVAC performance. Current Air Conditioning Contractors of America (ACCA) guidance (Group 11, Appendix 3, ACCA Manual D, Rutkowski 2009) allows for unconstrained variation in the number of takeoffs, box sizes, and takeoff locations. The only variables currently used in selecting an equivalent length (EL) are velocity of air in the duct and friction rate, given the first takeoff is located at least twice its diameter away from the inlet. This condition does not account for other factors impacting pressure loss across these types of fittings. For each simulation, the IBACOS team converted pressure loss within a box to an EL to compare variation in ACCA Manual D guidance to the simulated variation. IBACOS chose cases to represent flows reasonably correlating to flows typically encountered in the field and analyzed differences in total pressure due to increases in number and location of takeoffs, box dimensions, and velocity of air, and whether an entrance fitting is included. The team also calculated additional balancing losses for all cases due to discrepancies between intended outlet flows and natural flow splits created by the fitting. In certain asymmetrical cases, the balancing losses were significantly higher than symmetrical cases where the natural splits were close to the targets. Thus, IBACOS has shown additional design constraints that can ensure better system performance.

  14. Analysis of linear encroachment in two-immiscible fluid systems in a porous medium

    SciTech Connect (OSTI)

    Srinivasan, V.; Vafai, K. . Dept. of Mechanical Engineering)

    1994-03-01

    The flow of two immiscible fluids in a porous medium was analyzed accounting for boundary and inertia effects. This problem was first solved by Muskat using Darcy's equation for fluid flow in a saturated porous medium. In the present analysis the boundary and inertia effects have been included to predict the movement of the interfacial front that is formed as one fluid displaces the other. In the present work a theoretical study that accounts for the boundary and inertia effects in predicting the movement of the interface for linear encroachment in two immiscible fluid system in a porous material is presented for the first time. The results of the present study when compared with the Muskat's model show that consideration of the boundary and inertia effects becomes important for low value of mobility ratio ([epsilon] < 1.0) and higher values of permeability (K > 1.0 [times] 10[sup [minus]10] m[sup 2]).

  15. The application of moment methods to the analysis of fluid electrical conductivity logs in boreholes

    SciTech Connect (OSTI)

    Loew, S. ); Tsang, Chin-Fu; Hale, F.V. ); Hufschmied, P. , Baden )

    1990-08-01

    This report is one of a series documenting the results of the Nagra-DOE Cooperative (NDC-I) research program in which the cooperating scientists explore the geological, geophysical, hydrological, geochemical, and structural effects anticipated from the use of a rock mass as a geologic repository for nuclear waste. Previous reports have presented a procedure for analyzing a time sequence of wellbore electric conductivity logs in order to obtain outflow parameters of fractures intercepted by the borehole, and a code, called BORE, used to simulate borehole fluid conductivity profiles given these parameters. The present report describes three new direct (not iterative) methods for analyzing a short time series of electric conductivity logs based on moment quantities of the individual outflow peaks and applies them to synthetic as well as to field data. The results of the methods discussed show promising results and are discussed in terms of their respective advantages and limitations. In particular it is shown that one of these methods, the so-called Partial Moment Method,'' is capable of reproducing packer test results from field experiments in the Leuggern deep well within a factor of three, which is below the range of what is recognized as the precision of packer tests themselves. Furthermore the new method is much quicker than the previously used iterative fitting procedure and is even capable of handling transient fracture outflow conditions. 20 refs., 11 figs., 10 tabs.

  16. Geochemical Modeling Of Aqueous Systems

    Energy Science and Technology Software Center (OSTI)

    1995-09-07

    EQ3/6 is a software package for geochemical modeling of aqueous systems. This description pertains to version 7.2b. It addresses aqueous speciation, thermodynamic equilibrium, disequilibrium, and chemical kinetics. The major components of the package are EQ3NR, a speciation-solubility code, and EQ6 a reaction path code. EQ3NR is useful for analyzing groundwater chemistry data, calculating solubility limits, and determining whether certain reactions are in states of equilibrium or disequilibrium. It also initializes EQ6 calculations. EQ6 models themore » consequences of reacting an aqueous solution with a specified set of reactants (e.g., minerals or waste forms). It can also model fluid mixing and the effects of changes in temperature. Each of five supporting data files contain both standard state and activity coefficient-related data. Three support the use of the Davies or B-dot equations for the activity coefficients; the other two support the use of Pitzer''s equations. The temperature range of the thermodynamic data on the data files varies from 25 degrees C only to 0-300 degrees C.« less

  17. Hanford 100-N Area In Situ Apatite and Phosphate Emplacement by Groundwater and Jet Injection: Geochemical and Physical Core Analysis

    SciTech Connect (OSTI)

    Szecsody, James E.; Vermeul, Vincent R.; Fruchter, Jonathan S.; Williams, Mark D.; Rockhold, Mark L.; Qafoku, Nikolla; Phillips, Jerry L.

    2010-07-01

    The purpose of this study is to evaluate emplacement of phosphate into subsurface sediments in the Hanford Site 100-N Area by two different technologies: groundwater injection of a Ca-citrate-PO4 solution and water-jet injection of sodium phosphate and/or fish-bone apatite. In situ emplacement of phosphate and apatite adsorbs, then incorporates Sr-90 into the apatite structure by substitution for calcium. Overall, both technologies (groundwater injection of Ca-citrate-PO4) and water-jet injection of sodium phosphate/fish-bone apatite) delivered sufficient phosphate to subsurface sediments in the 100-N Area. Over years to decades, additional Sr-90 will incorporate into the apatite precipitate. Therefore, high pressure water jetting is a viable technology to emplace phosphate or apatite in shallow subsurface sediments difficult to emplace by Ca-citrate-PO4 groundwater injections, but further analysis is needed to quantify the relevant areal extent of phosphate deposition (in the 5- to 15-ft distance from injection points) and cause of the high deposition in finer grained sediments.

  18. Aging and the geochemical environment

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This report describes and assesses the aging process and related environmental aspects that may provide useful insights toward postponing some of the inevitable effects of aging. Although the Panel on Aging and the Geochemical Environment is convinced that the geochemical environment is associated with aging, it of course recognizes that other factors may also be significant or, perhaps, more important. Accordingly, the report is intended to enhance the awareness of biomedical and geochemical research scientists, decision makers in related areas, and the lay public interested in an understanding of the relation of the geochemical environment to senescence.

  19. Methods for simulation-based analysis of fluid-structure interaction.

    SciTech Connect (OSTI)

    Barone, Matthew Franklin; Payne, Jeffrey L.

    2005-10-01

    Methods for analysis of fluid-structure interaction using high fidelity simulations are critically reviewed. First, a literature review of modern numerical techniques for simulation of aeroelastic phenomena is presented. The review focuses on methods contained within the arbitrary Lagrangian-Eulerian (ALE) framework for coupling computational fluid dynamics codes to computational structural mechanics codes. The review treats mesh movement algorithms, the role of the geometric conservation law, time advancement schemes, wetted surface interface strategies, and some representative applications. The complexity and computational expense of coupled Navier-Stokes/structural dynamics simulations points to the need for reduced order modeling to facilitate parametric analysis. The proper orthogonal decomposition (POD)/Galerkin projection approach for building a reduced order model (ROM) is presented, along with ideas for extension of the methodology to allow construction of ROMs based on data generated from ALE simulations.

  20. A computational model for thermal fluid design analysis of nuclear thermal rockets

    SciTech Connect (OSTI)

    Given, J.A.; Anghaie, S.

    1997-01-01

    A computational model for simulation and design analysis of nuclear thermal propulsion systems has been developed. The model simulates a full-topping expander cycle engine system and the thermofluid dynamics of the core coolant flow, accounting for the real gas properties of the hydrogen propellant/coolant throughout the system. Core thermofluid studies reveal that near-wall heat transfer models currently available may not be applicable to conditions encountered within some nuclear rocket cores. Additionally, the possibility of a core thermal fluid instability at low mass fluxes and the effects of the core power distribution are investigated. Results indicate that for tubular core coolant channels, thermal fluid instability is not an issue within the possible range of operating conditions in these systems. Findings also show the advantages of having a nonflat centrally peaking axial core power profile from a fluid dynamic standpoint. The effects of rocket operating conditions on system performance are also investigated. Results show that high temperature and low pressure operation is limited by core structural considerations, while low temperature and high pressure operation is limited by system performance constraints. The utility of these programs for finding these operational limits, optimum operating conditions, and thermal fluid effects is demonstrated.

  1. Viscous potential flow analysis of electrified miscible finitely conducting fluid through porous media

    SciTech Connect (OSTI)

    Obied Allah, M. H.

    2013-04-15

    In this work, a viscous potential flow analysis is used to investigate capillary surface waves between two horizontal finite fluid layers. The two layers have finite conductivities and admit mass and heat transfer. A general dispersion relation is derived. The presence of finite conductivities together with the dielectric permeabilities makes the horizontal electric field play a dual role in the stability criterion. The phenomenon of negative viscosity is observed. A new growth rate parameter, depending on the kinematical viscosity of the lower fluid layer, is found and has a stabilizing effect on the unstable modes. The growth rates and neutral stability curve are given and applied to air-water interface. The effects of various parameters are discussed for the Kelvin-Helmholtz and the Rayleigh-Taylor instabilities.

  2. Geochemical Speciation Mass Transfer

    Energy Science and Technology Software Center (OSTI)

    1985-12-01

    PHREEQC is designed to model geochemical reactions. Based on an ion association aqueous model, PHREEQC can calculate pH, redox potential, and mass transfer as a function of reaction progress. It can be used to describe geochemical processes for both far-field and near-field performance assessment and to evaluate data acquisition needs and test data. It can also calculate the composition of solutions in equilibrium with multiple phases. The data base, including elements, aqueous species, and mineralmore » phases, is independent of the program and is completely user-definable. PHREEQC requires thermodynamic data for each solid, gaseous, or dissolved chemical species being modeled. The two data bases, PREPHR and DEQPAK7, supplied with PHREEQC are for testing purposes only and should not be applied to real problems without first being carefully examined. The conceptual model embodied in PHREEQC is the ion-association model of Pearson and Noronha. In this model a set of mass action equations are established for each ion pair (and controlling solid phases when making mass transfer calculations) along with a set of mass balance equations for each element considered. These sets of equations are coupled using activity coefficient values for each aqueous species and solved using a continued fraction approach for the mass balances combined with a modified Newton-Raphson technique for all other equations. The activity coefficient expressions in PHREEQC include the extended Debye-Huckel, WATEQ Debye-Huckel, and Davies equations from the original United States Geological Survey version of the program. The auxiliary preprocessor program PHTL, which is derived from EQTL, converts EQ3/6 thermodynamic data to PHREEQC format so that the two programs can be compared. PHREEQC can be used to determine solubility limits on the radionuclides present in the waste form. These solubility constraints may be input to the WAPPA leach model.« less

  3. Novel Coupled Thermochronometric and Geochemical Investigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners Novel Coupled Thermochronometric and Geochemical ...

  4. Internal air flow analysis of a bladeless micro aerial vehicle hemisphere body using computational fluid dynamic

    SciTech Connect (OSTI)

    Othman, M. N. K. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Zuradzman, M. Razlan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Hazry, D. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Khairunizam, Wan E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Shahriman, A. B. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Yaacob, S. E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; Ahmed, S. Faiz E-mail: zuradzman@unimap.edu.my E-mail: khairunizam@unimap.edu.my E-mail: s.yaacob@unimap.edu.my E-mail: abadal@unimap.edu.my; and others

    2014-12-04

    This paper explain the analysis of internal air flow velocity of a bladeless vertical takeoff and landing (VTOL) Micro Aerial Vehicle (MAV) hemisphere body. In mechanical design, before produce a prototype model, several analyses should be done to ensure the product's effectiveness and efficiency. There are two types of analysis method can be done in mechanical design; mathematical modeling and computational fluid dynamic. In this analysis, I used computational fluid dynamic (CFD) by using SolidWorks Flow Simulation software. The idea came through to overcome the problem of ordinary quadrotor UAV which has larger size due to using four rotors and the propellers are exposed to environment. The bladeless MAV body is designed to protect all electronic parts, which means it can be used in rainy condition. It also has been made to increase the thrust produced by the ducted propeller compare to exposed propeller. From the analysis result, the air flow velocity at the ducted area increased to twice the inlet air. This means that the duct contribute to the increasing of air velocity.

  5. Mineral dissolution and precipitation during CO2 injection at the Frio-I Brine Pilot: Geochemical modeling and uncertainty analysis

    SciTech Connect (OSTI)

    Ilgen, A. G.; Cygan, R. T.

    2015-12-07

    During the Frio-I Brine Pilot CO2 injection experiment in 2004, distinct geochemical changes in response to the injection of 1600 tons of CO2 were recorded in samples collected from the monitoring well. Previous geochemical modeling studies have considered dissolution of calcite and iron oxyhydroxides, or release of adsorbed iron, as the most likely sources of the increased ion concentrations. We explore in this modeling study possible alternative sources of the increasing calcium and iron, based on the data from the detailed petrographic characterization of the Upper Frio Formation “C”. Particularly, we evaluate whether dissolution of pyrite and oligoclase (anorthite component) can account for the observed geochemical changes. Due to kinetic limitations, dissolution of pyrite and anorthite cannot account for the increased iron and calcium concentrations on the time scale of the field test (10 days). However, dissolution of these minerals is contributing to carbonate and clay mineral precipitation on the longer time scales (1000 years). The one-dimensional reactive transport model predicts carbonate minerals, dolomite and ankerite, as well as clay minerals kaolinite, nontronite and montmorillonite, will precipitate in the Frio Formation “C” sandstone as the system progresses towards chemical equilibrium during a 1000-year period. Cumulative uncertainties associated with using different thermodynamic databases, activity correction models (Pitzer vs. B-dot), and extrapolating to reservoir temperature, are manifested in the difference in the predicted mineral phases. Furthermore, these models are consistent with regards to the total volume of mineral precipitation and porosity values which are predicted to within 0.002%.

  6. Computational Fluid Dynamic Analysis of the VHTR Lower Plenum Standard Problem

    SciTech Connect (OSTI)

    Richard W. Johnson; Richard R. Schultz

    2009-07-01

    The United States Department of Energy is promoting the resurgence of nuclear power in the U. S. for both electrical power generation and production of process heat required for industrial processes such as the manufacture of hydrogen for use as a fuel in automobiles. The DOE project is called the next generation nuclear plant (NGNP) and is based on a Generation IV reactor concept called the very high temperature reactor (VHTR), which will use helium as the coolant at temperatures ranging from 450 ºC to perhaps 1000 ºC. While computational fluid dynamics (CFD) has not been used for past safety analysis for nuclear reactors in the U. S., it is being considered for safety analysis for existing and future reactors. It is fully recognized that CFD simulation codes will have to be validated for flow physics reasonably close to actual fluid dynamic conditions expected in normal and accident operational situations. To this end, experimental data have been obtained in a scaled model of a narrow slice of the lower plenum of a prismatic VHTR. The present report presents results of CFD examinations of these data to explore potential issues with the geometry, the initial conditions, the flow dynamics and the data needed to fully specify the inlet and boundary conditions; results for several turbulence models are examined. Issues are addressed and recommendations about the data are made.

  7. Stability analysis of self-similar behaviors in perfect fluid gravitational collapse

    SciTech Connect (OSTI)

    Mitsuda, Eiji; Tomimatsu, Akira

    2006-06-15

    Stability of self-similar solutions for gravitational collapse is an important problem to be investigated from the perspectives of their nature as an attractor, critical phenomena, and instability of a naked singularity. In this paper we study spherically symmetric non-self-similar perturbations of matter and metrics in spherically symmetric self-similar backgrounds. The collapsing matter is assumed to be a perfect fluid with the equation of state P={alpha}{rho}. We construct a single wave equation governing the perturbations, which makes their time evolution in arbitrary self-similar backgrounds analytically tractable. Further we propose an analytical application of this master wave equation to the stability problem by means of the normal mode analysis for the perturbations having the time dependence given by exp(i{omega}log vertical t vertical bar), and present some sufficient conditions for the absence of nonoscillatory unstable normal modes with purely imaginary {omega}.

  8. DNA-based methods of geochemical prospecting

    DOE Patents [OSTI]

    Ashby, Matthew

    2011-12-06

    The present invention relates to methods for performing surveys of the genetic diversity of a population. The invention also relates to methods for performing genetic analyses of a population. The invention further relates to methods for the creation of databases comprising the survey information and the databases created by these methods. The invention also relates to methods for analyzing the information to correlate the presence of nucleic acid markers with desired parameters in a sample. These methods have application in the fields of geochemical exploration, agriculture, bioremediation, environmental analysis, clinical microbiology, forensic science and medicine.

  9. Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

    SciTech Connect (OSTI)

    Spane, Frank A.

    2013-04-29

    Preliminary Analysis of Grande Ronde Basalt Formation Flow Top Transmissivity as it Relates to Assessment and Site Selection Applications for Fluid/Energy Storage and Sequestration Projects

  10. Aging and the geochemical environment

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    The report describes and assesses the aging process and related environmental aspects. Specific geographic areas of increased and decreased longevity were identified and geochemically characterized in terms of surface rocks, drinking water quality, soils, and abnormal absorption of trace elements by plants. Environmental factors that may be related to increased longevity are discussed. 11 references, 32 figures, 8 tables. (ACR)

  11. Three region analysis of a bounded plasma using particle in cell and fluid techniques. Doctoral thesis

    SciTech Connect (OSTI)

    Nichols, D.F.

    1994-09-01

    A detailed collisionless sheath theory and a three-region collisional model of a bounded plasma are presented, and the suitability of the collisional model for analysis of ignited mode thermionic converters is investigated. The sheath theory extends previous analyses to regimes in which the sheath potential and electron temperatures are comparable in magnitude. In all operating regimes typical of a ignited mode thermionic converter, the predicted sheaths extend several mean-free paths. The apparent collisionality of the sheaths prompted development of a collisional, three-region model of the converter plasma. By interfacing Particle-in-Cell regions (for the sheaths) and fluid regions (for the bulk of the plasma), a time-dependent, wall-to-wall model of the plasma in the inter-electrode space is created. The components of the model are tested and validated against analytic solutions and against one another, then applied to the analysis of an ignited mode thermionic converter. Under ignited mode operating conditions, the electron velocity distribution at the plasma/sheath boundary is found to be inconsistent with that assumed in the model development, and the calculation diverges. The observed distribution is analyzed and a new basis set of distribution functions is suggested that should permit application of the hybrid model to ignited mode thermionic converters.

  12. Apparatus for irradiating a continuously flowing stream of fluid. [For neutron activation analysis

    DOE Patents [OSTI]

    Speir, L.G.; Adams, E.L.

    1982-05-13

    An apparatus for irradiating a continuously flowing stream of fluid is disclosed. The apparatus consists of a housing having a spherical cavity and a spherical moderator containing a radiation source positioned within the spherical cavity. The spherical moderator is of lesser diameter than the spherical cavity so as to define a spherical annular volume around the moderator. The housing includes fluid intake and output conduits which open onto the spherical cavity at diametrically opposite positions. Fluid flows through the cavity around the spherical moderator and is uniformly irradiated due to the 4..pi.. radiation geometry. The irradiation source, for example a /sup 252/Cf neutron source, is removable from the spherical moderator through a radial bore which extends outwardly to an opening on the outside of the housing. The radiation source may be routinely removed without interrupting the flow of fluid or breaching the containment of the fluid.

  13. The hydrogeologic-geochemical model of Cerro Prieto revisited

    SciTech Connect (OSTI)

    Lippmann, M.J.; Halfman, S.E.; Truesdell, A.H.; Manon M., A.

    1989-01-01

    As the exploitation of the Cerro Prieto, Mexico, geothermal field continues, there is increasing evidence that the hydrogeologic model developed by Halfman et al. (1984, 1986) presents the basic features controlling the movement of geothermal fluids in the system. At the present time the total installed capacity at Cerro Prieto is 620 MWe requiring the production of more than 10,500 tonnes/hr of a brine-steam mixture. This significant rate of fluid production has resulted in changes in reservoir thermodynamic conditions and in the chemistry of the produced fluids. After reviewing the hydrogeologic-geochemical model of Cerro Prieto, some of the changes observed in the field due to its exploitation are discussed and interpreted on the basis of the model. 21 refs., 11 figs., 1 tab.

  14. Diagrammatic analysis of correlations in polymer fluids: Cluster diagrams via Edwards' field theory

    SciTech Connect (OSTI)

    Morse, David C. . E-mail: morse@cems.umn.edu

    2006-10-15

    Edwards' functional integral approach to the statistical mechanics of polymer liquids is amenable to a diagrammatic analysis in which free energies and correlation functions are expanded as infinite sums of Feynman diagrams. This analysis is shown to lead naturally to a perturbative cluster expansion that is closely related to the Mayer cluster expansion developed for molecular liquids by Chandler and co-workers. Expansion of the functional integral representation of the grand-canonical partition function yields a perturbation theory in which all quantities of interest are expressed as functionals of a monomer-monomer pair potential, as functionals of intramolecular correlation functions of non-interacting molecules, and as functions of molecular activities. In different variants of the theory, the pair potential may be either a bare or a screened potential. A series of topological reductions yields a renormalized diagrammatic expansion in which collective correlation functions are instead expressed diagrammatically as functionals of the true single-molecule correlation functions in the interacting fluid, and as functions of molecular number density. Similar renormalized expansions are also obtained for a collective Ornstein-Zernicke direct correlation function, and for intramolecular correlation functions. A concise discussion is given of the corresponding Mayer cluster expansion, and of the relationship between the Mayer and perturbative cluster expansions for liquids of flexible molecules. The application of the perturbative cluster expansion to coarse-grained models of dense multi-component polymer liquids is discussed, and a justification is given for the use of a loop expansion. As an example, the formalism is used to derive a new expression for the wave-number dependent direct correlation function and recover known expressions for the intramolecular two-point correlation function to first-order in a renormalized loop expansion for coarse-grained models of

  15. Application Of Fluid Inclusion And Rock-Gas Analysis In Mineral...

    Open Energy Info (EERE)

    to analyze these gases in fluid inclusions in jasperoid around the Pueblo Viejo gold-silver deposit, in vein minerals from the Creede silver-lead-zinc deposit, and from...

  16. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; Fernandez, Carlos A.; Brown, Christopher F.

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnectionmore » of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is

  17. Geochemical and Geomechanical Effects on Wellbore Cement Fractures

    SciTech Connect (OSTI)

    Um, Wooyong; Jung, Hun Bok; Kabilan, Senthil; Fernandez, Carlos A.; Brown, Christopher F.

    2014-12-31

    Experimental studies were conducted using batch reactors, X-ray microtomograpy (XMT), and computational fluid dynamics (CFD) simulation to determine changes in cement fracture surfaces, fluid flow pathways, and permeability with geochemical and geomechanical processes. Composite Portland cement-basalt caprock core with artificial fractures was prepared and reacted with CO2-saturated groundwater at 50°C and 10 MPa for 3 to 3.5 months under static conditions to understand the geochemical and geomechanical effects on the integrity of wellbores containing defects. Cement-basalt interface samples were subjected to mechanical stress at 2.7 MPa before the CO2 reaction. XMT provided three-dimensional (3-D) visualization of the opening and interconnection of cement fractures due to mechanical stress. After the CO2 reaction, XMT images revealed that calcium carbonate precipitation occurred extensively within the fractures in the cement matrix, but only partially along fractures located at the cement-basalt interface. The permeability calculated based on CFD simulation was in agreement with the experimentally measured permeability. The experimental results imply that the wellbore cement with fractures is likely to be healed during exposure to CO2-saturated groundwater under static conditions, whereas fractures along the cement-caprock interface are still likely to remain vulnerable to the leakage of CO2. CFD simulation for the flow of different fluids (CO2-saturated brine and supercritical CO2) using a pressure difference of 20 kPa and 200 kPa along ~2 cm-long cement fractures showed that a pressure gradient increase resulted in an increase of CO2 fluids flux by a factor of only ~3-9 because the friction of CO2 fluids on cement fracture surfaces increased with higher flow rate as well. At the same pressure gradient, the simulated flow rate was higher for supercritical CO2 than CO2-saturated brine by a factor of only ~2-3, because the viscosity of supercritical CO2 is much

  18. Optimizing parameters for predicting the geochemical behavior...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of discrete fracture networks in geothermal systems Optimizing parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal ...

  19. Interface Induced Carbonate Mineralization: A Fundamental Geochemical

    Office of Scientific and Technical Information (OSTI)

    Interface Induced Carbonate Mineralization: A Fundamental Geochemical Process Relevant to Carbon Sequestration Teng, H. Henry PI, The George Washington University PI, The George...

  20. Novel Coupled Thermochronometric and Geochemical Investigation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... in a well-characterized structural context (permeability and alteration) in order to ... and geochemical data integration and model Innovative approach combining structural ...

  1. Book Review - Geochemical Exploration 1982 | Open Energy Information

    Open Energy Info (EERE)

    Book Review - Geochemical Exploration 1982 Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Review: Book Review - Geochemical Exploration 1982 Author R. A....

  2. Computer Modeling of Chemical and Geochemical Processes in High...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computer modeling of chemical and geochemical processes in high ionic strength solutions ... in brine Computer modeling of chemical and geochemical processes in high ionic ...

  3. Application Of Geochemical Methods In The Search For Geothermal...

    Open Energy Info (EERE)

    Geochemical Methods In The Search For Geothermal Fields Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Application Of Geochemical Methods In...

  4. Fascinating Fluids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fascinating Fluids Fascinating Fluids From liquids to gases, we take on this most fascinating compound with hands-on activities for children and adults alike. We are made of fluids, mostly water, arguably the most interesting compound in the universe. Think About This Liquids Fluids are amazing. Fluids flow. Liquids have variable shapes but almost constant volumes. Gases Gases take the shape of their containers and can be squeezed and stretched relatively easily. Sand What is fine sand? It is a

  5. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda BES Report Controlling Subsurface Fractures and Fluid Flow.pdf (815.56 KB) More Documents & Publications AGU SubTER Town Hall Presentation 2015 SubTER Grand Challenge Roundtable: Imaging Geophysical and Geochemical Signals in the Subsurface SubTER Jason Report

  6. Geothermal/Geochemical Database | Open Energy Information

    Open Energy Info (EERE)

    to library Chart: GeothermalGeochemical DatabaseInfo GraphicMapChart Author Nevada Bureau of Mines and Geology Published Nevada Bureau of Mines and Geology, 2012 DOI Not...

  7. Nanogeochemistry: Geochemical reactions and mass transfers in...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Nanogeochemistry: Geochemical reactions and mass transfers in nanopores ... OSTI Identifier: 913493 Report Number(s): SAND2003-0369J Journal ID: ISSN 0091-7613; TRN: ...

  8. GEOCHEMICAL INVESTIGATIONS OF CO₂-BRINE-ROCK INTERACTIONS OF THE KNOX GROUP IN THE ILLINOIS BASIN

    SciTech Connect (OSTI)

    Yoksoulian, Lois; Berger, Peter; Freiburg, Jared; Butler, Shane; Leetaru, Hannes

    2014-09-30

    Increased output of greenhouse gases, particularly carbon dioxide (CO₂), into the atmosphere from anthropogenic sources is of great concern. A potential technology to reduce CO₂ emissions is geologic carbon sequestration. This technology is currently being evaluated in the United States and throughout the world. The geology of the Illinois Basin exhibits outstanding potential as a carbon sequestration target, as demonstrated by the ongoing Illinois Basin – Decatur Project that is using the Mt. Simon Sandstone reservoir and Eau Claire Shale seal system to store and contain 1 million tonnes of CO₂. The Knox Group-Maquoketa Shale reservoir and seal system, located stratigraphically above the Mt. Simon Sandstone-Eau Claire Shale reservoir and seal system, has little economic value as a resource for fossil fuels or as a potable water source, making it ideal as a potential carbon sequestration target. In order for a reservoir-seal system to be effective, it must be able to contain the injected CO₂ without the potential for the release of harmful contaminants liberated by the reaction between CO₂-formation fluids and reservoir and seal rocks. This study examines portions of the Knox Group (Potosi Dolomite, Gunter Sandstone, New Richmond Sandstone) and St. Peter Sandstone, and Maquoketa Shale from various locations around the Illinois Basin. A total of 14 rock and fluid samples were exposed to simulated sequestration conditions (9101–9860 kPa [1320–1430 psi] and 32°–42°C [90°– 108°F]) for varying amounts of time (6 hours to 4 months). Knox Group reservoir rocks exhibited dissolution of dolomite in the presence of CO₂ as indicated by petrographic examination, X-ray diffraction analysis, and fluid chemistry analysis. These reactions equilibrated rapidly, and geochemical modeling confirmed that these reactions reached equilibrium within the time frames of the experiments. Pre-reaction sample mineralogy and postreaction fluid geochemistry from this

  9. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    DOE Patents [OSTI]

    Smith, Douglas D.; Hiller, John M.

    1998-01-01

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration.

  10. Surfactant/detergent titration analysis method and apparatus for machine working fluids, surfactant-containing wastewater and the like

    DOE Patents [OSTI]

    Smith, D.D.; Hiller, J.M.

    1998-02-24

    The present invention is an improved method and related apparatus for quantitatively analyzing machine working fluids and other aqueous compositions such as wastewater which contain various mixtures of cationic, neutral, and/or anionic surfactants, soluble soaps, and the like. The method utilizes a single-phase, non-aqueous, reactive titration composition containing water insoluble bismuth nitrate dissolved in glycerol for the titration reactant. The chemical reaction of the bismuth ion and glycerol with the surfactant in the test solutions results in formation of micelles, changes in micelle size, and the formation of insoluble bismuth soaps. These soaps are quantified by physical and chemical changes in the aqueous test solution. Both classical potentiometric analysis and turbidity measurements have been used as sensing techniques to determine the quantity of surfactant present in test solutions. This method is amenable to the analysis of various types of new, in-use, dirty or decomposed surfactants and detergents. It is a quick and efficient method utilizing a single-phase reaction without needing a separate extraction from the aqueous solution. It is adaptable to automated control with simple and reliable sensing methods. The method is applicable to a variety of compositions with concentrations from about 1% to about 10% weight. It is also applicable to the analysis of waste water containing surfactants with appropriate pre-treatments for concentration. 1 fig.

  11. X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof

    DOE Patents [OSTI]

    Radley, Ian; Bievenue, Thomas J.; Burdett, John H.; Gallagher, Brian W.; Shakshober, Stuart M.; Chen, Zewu; Moore, Michael D.

    2008-06-08

    An x-ray source assembly and method of operation are provided having enhanced output stability. The assembly includes an anode having a source spot upon which electrons impinge and a control system for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

  12. X-ray source assembly having enhanced output stability, and fluid stream analysis applications thereof

    DOE Patents [OSTI]

    Radley, Ian; Bievenue, Thomas J.; Burdett Jr., John H.; Gallagher, Brian W.; Shakshober, Stuart M.; Chen, Zewu; Moore, Michael D.

    2007-04-24

    An x-ray source assembly (2700) and method of operation are provided having enhanced output stability. The assembly includes an anode (2125) having a source spot upon which electrons (2120) impinge and a control system (2715/2720) for controlling position of the anode source spot relative to an output structure. The control system can maintain the anode source spot location relative to the output structure (2710) notwithstanding a change in one or more operating conditions of the x-ray source assembly. One aspect of the disclosed invention is most amenable to the analysis of sulfur in petroleum-based fuels.

  13. Merging high resolution geophysical and geochemical surveys to reduce exploration risk at glass buttes, Oregon

    SciTech Connect (OSTI)

    Walsh, Patrick; Fercho, Steven; Perkin, Doug; Martini, Brigette; Boshmann, Darrick

    2015-06-01

    The engineering and studies phase of the Glass Buttes project was aimed at reducing risk during the early stages of geothermal project development. The project’s inclusion of high resolution geophysical and geochemical surveys allowed Ormat to evaluate the value of these surveys both independently and in combination to quantify the most valuable course of action for exploration in an area where structure, permeability, and temperature are the most pressing questions. The sizes of the thermal anomalies at Glass Buttes are unusually large. Over the course of Phase I Ormat acquired high resolution LIDAR data to accurately map fault manifestations at the surface and collected detailed gravity and aeromagnetic surveys to map subsurface structural features. In addition, Ormat collected airborne hyperspectral data to assist with mapping the rock petrology and mineral alteration assemblages along Glass Buttes faults and magnetotelluric (MT) survey to try to better constrain the structures at depth. Direct and indirect identification of alteration assemblages reveal not only the geochemical character and temperature of the causative hydrothermal fluids but can also constrain areas of upflow along specific fault segments. All five datasets were merged along with subsurface lithologies and temperatures to predict the most likely locations for high permeability and hot fluids. The Glass Buttes temperature anomalies include 2 areas, totaling 60 km2 (23 mi2) of measured temperature gradients over 165° C/km (10° F/100ft). The Midnight Point temperature anomaly includes the Strat-1 well with 90°C (194 °F) at 603 m (1981 ft) with a 164 °C/km (10°F/100ft) temperature gradient at bottom hole and the GB-18 well with 71°C (160 °F) at 396 m (1300 ft) with a 182°C/km (11°F/100ft) gradient. The primary area of alteration and elevated temperature occurs near major fault intersections associated with Brothers Fault Zone and Basin and Range systems. Evidence for faulting is

  14. Analysis of fluid fuel flow to the neutron kinetics on molten salt reactor FUJI-12

    SciTech Connect (OSTI)

    Aji, Indarta Kuncoro; Waris, Abdul Permana, Sidik

    2015-09-30

    Molten Salt Reactor is a reactor are operating with molten salt fuel flowing. This condition interpret that the neutron kinetics of this reactor is affected by the flow rate of the fuel. This research analyze effect by the alteration velocity of the fuel by MSR type Fuji-12, with fuel composition LiF-BeF{sub 2}-ThF{sub 4}-{sup 233}UF{sub 4} respectively 71.78%-16%-11.86%-0.36%. Calculation process in this study is performed numerically by SOR and finite difference method use C programming language. Data of reactivity, neutron flux, and the macroscopic fission cross section for calculation process obtain from SRAC-CITATION (Standard thermal Reactor Analysis Code) and JENDL-4.0 data library. SRAC system designed and developed by JAEA (Japan Atomic Energy Agency). This study aims to observe the effect of the velocity of fuel salt to the power generated from neutron precursors at fourth year of reactor operate (last critical condition) with number of multiplication effective; 1.0155.

  15. Dual x-ray fluorescence spectrometer and method for fluid analysis

    DOE Patents [OSTI]

    Wilson, Bary W.; Shepard, Chester L.

    2005-02-22

    Disclosed are an X-ray fluorescence (SRF) spectrometer and method for on-site and in-line determination of contaminant elements in lubricating oils and in fuel oils on board a marine vessel. An XRF source block 13 contains two radionuclide sources 16, 17 (e.g. Cd 109 and Fe 55), each oriented 180 degrees from the other to excite separate targets. The Cd 109 source 16 excites sample lube oil flowing through a low molecular weight sample line 18. The Fe 55 source 17 excites fuel oil manually presented to the source beam inside a low molecular weight vial 26 or other container. Two separate detectors A and B are arranged to detect the fluorescent x-rays from the targets, photons from the analyte atoms in the lube oil for example, and sulfur identifying x-rays from bunker fuel oil for example. The system allows both automated in-line and manual on-site analysis using one set of signal processing and multi-channel analyzer electronics 34, 37 as well as one computer 39 and user interface 43.

  16. Microbial Community Changes in Hydraulic Fracturing Fluids and Produced Water from Shale Gas Extraction

    SciTech Connect (OSTI)

    Mohan, Arvind Murali; Hartsock, Angela; Bibby, Kyle J.; Hammack, Richard W.; Vidic, Radisav D.; Gregory, Kelvin B.

    2013-11-19

    Microbial communities associated with produced water from hydraulic fracturing are not well understood, and their deleterious activity can lead to significant increases in production costs and adverse environmental impacts. In this study, we compared the microbial ecology in prefracturing fluids (fracturing source water and fracturing fluid) and produced water at multiple time points from a natural gas well in southwestern Pennsylvania using 16S rRNA gene-based clone libraries, pyrosequencing, and quantitative PCR. The majority of the bacterial community in prefracturing fluids constituted aerobic species affiliated with the class Alphaproteobacteria. However, their relative abundance decreased in produced water with an increase in halotolerant, anaerobic/facultative anaerobic species affiliated with the classes Clostridia, Bacilli, Gammaproteobacteria, Epsilonproteobacteria, Bacteroidia, and Fusobacteria. Produced water collected at the last time point (day 187) consisted almost entirely of sequences similar to Clostridia and showed a decrease in bacterial abundance by 3 orders of magnitude compared to the prefracturing fluids and produced water samplesfrom earlier time points. Geochemical analysis showed that produced water contained higher concentrations of salts and total radioactivity compared to prefracturing fluids. This study provides evidence of long-term subsurface selection of the microbial community introduced through hydraulic fracturing, which may include significant implications for disinfection as well as reuse of produced water in future fracturing operations.

  17. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    SciTech Connect (OSTI)

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineral surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.

  18. Geochemical Reaction Mechanism Discovery from Molecular Simulation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stack, Andrew G.; Kent, Paul R. C.

    2014-11-10

    Methods to explore reactions using computer simulation are becoming increasingly quantitative, versatile, and robust. In this review, a rationale for how molecular simulation can help build better geochemical kinetics models is first given. We summarize some common methods that geochemists use to simulate reaction mechanisms, specifically classical molecular dynamics and quantum chemical methods and discuss their strengths and weaknesses. Useful tools such as umbrella sampling and metadynamics that enable one to explore reactions are discussed. Several case studies wherein geochemists have used these tools to understand reaction mechanisms are presented, including water exchange and sorption on aqueous species and mineralmore » surfaces, surface charging, crystal growth and dissolution, and electron transfer. The impact that molecular simulation has had on our understanding of geochemical reactivity are highlighted in each case. In the future, it is anticipated that molecular simulation of geochemical reaction mechanisms will become more commonplace as a tool to validate and interpret experimental data, and provide a check on the plausibility of geochemical kinetic models.« less

  19. Novel Coupled Thermochronometric and Geochemical Investigation of Blind

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Resources in Fault-Controlled Dilational Corners | Department of Energy Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners presentation at the

  20. Permeability, geochemical, and water quality tests in support of an aquifer thermal energy storage site in Minnesota

    SciTech Connect (OSTI)

    Blair, S.C.; Deutsch, W.J.; Mitchell, P.J.

    1985-04-01

    This report describes the Underground Energy Storage Program's efforts to characterize physicochemical processes at DOE's ATES Field Test Facility (FTF) located on the University of Minnesota campus at St. Paul, Minnesota. Experimental efforts include: field tests at the St. Paul FTF to characterize fluid injectability and to evaluate the effectiveness of fluid-conditioning equipment, geochemical studies to investigate chemical reactions resulting from alterations to the aquifer's thermal regime, and laboratory tests on sandstone core from the site. Each experimental area is discussed and results obtained thus far are reported. 23 refs., 39 figs., 12 tabs.

  1. A Geochemical Speciation Program Based on PHREEQE

    Energy Science and Technology Software Center (OSTI)

    1992-02-18

    HARPHRQ is a program based on the code PHREEQE and is designed to model geochemical reactions. Like PHREEQE, it can calculate the pH, redox potential and mass transfer as a function of reaction progress and the composition of solution in equilibrium with multiple phases. In addition, HARPHRQ includes options to allow the composition of a solution at a fixed pH to be calculated and to automatically add or remove mineral phases as they become saturatedmore » or exhausted. A separate module can also be interfaced to give a choice of sorption models including the triple-layer model.« less

  2. Geochemical Impacts of Carbon Dioxide, Brine, Trace Metal and...

    Office of Scientific and Technical Information (OSTI)

    Carbon Dioxide, Brine, Trace Metal and Organic Leakage into an Unconfined, Oxidizing Limestone Aquifer Citation Details In-Document Search Title: Geochemical Impacts of Carbon ...

  3. Monitoring CO2 intrusion and associated geochemical transformations...

    Office of Scientific and Technical Information (OSTI)

    Monitoring CO2 intrusion and associated geochemical transformations in a shallow ... Citation Details In-Document Search Title: Monitoring CO2 intrusion and associated ...

  4. Geochemical Modeling of the Near-Surface Hydrothermal System...

    Open Energy Info (EERE)

    with non-thermal groundwater. Our conceptual model is based on hypotheses in the literature and published geochemical and petrologic data. Mixing of thermal and non-thermal...

  5. Merging high resolution geophysical and geochemical surveys to...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    combine a suite of high resolution geophysical and geochemical techniques to reduce exploration risk by characterizing hydrothermal alteration, fault geometries and relationships. ...

  6. Universal fluid droplet ejector

    DOE Patents [OSTI]

    Lee, E.R.; Perl, M.L.

    1999-08-24

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal inter-droplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications. 8 figs.

  7. Universal fluid droplet ejector

    DOE Patents [OSTI]

    Lee, Eric R.; Perl, Martin L.

    1999-08-24

    A droplet generator comprises a fluid reservoir having a side wall made of glass or quartz, and an end cap made from a silicon plate. The end cap contains a micromachined aperture through which the fluid is ejected. The side wall is thermally fused to the end cap, and no adhesive is necessary. This means that the fluid only comes into contact with the side wall and the end cap, both of which are chemically inert. Amplitudes of drive pulses received by reservoir determine the horizontal displacements of droplets relative to the ejection aperture. The drive pulses are varied such that the dropper generates a two-dimensional array of vertically-falling droplets. Vertical and horizontal interdroplet spacings may be varied in real time. Applications include droplet analysis experiments such as Millikan fractional charge searches and aerosol characterization, as well as material deposition applications.

  8. Final Report, DE-FG02-92ER14261, Pore Scale Geometric and Fluid Distribution Analysis

    SciTech Connect (OSTI)

    W. Brent Lindquist

    2005-01-21

    The elucidation of the relationship between pore scale structure and fluid flow in porous media is a fundamental problem of long standing interest. Incomplete characterization of medium properties continues to be a limiting factor in accurate field scale simulations. The accomplishments of this grant have kept us at the forefront in investigating the applicability of X-ray computed microtomography (XCMT) as a tool for contributing to the understanding of this relationship. Specific accomplishments have been achieved in four areas: - development of numerical algorithms (largely in the field of computational geometry) to provide automated recognition of and measurements on features of interest in the pore space. These algorithms have been embodied in a software package, 3DMA-Rock. - application of these algorithms to extensive studies of the pore space of sandstones. - application of these algorithms to studies of fluid (oil/water) partitioning in the pore space of Berea sandstone and polyethylene models. - technology transfer.

  9. Fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M.; Laintz, Kenneth E.

    1999-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent is described. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated .beta.-diketone. In especially preferred embodiments the extraction solvent is supercritical carbon dioxide, and the chelating agent comprises a fluorinated .beta.-diketone and a trialkyl phosphate, or a fluorinated .beta.-diketone and a trialkylphosphine oxide. Although a trialkyl phosphate can extract lanthanides and actinides from acidic solutions, a binary mixture comprising a fluorinated .beta.-diketone and a trialkyl phosphate or a trialkylphosphine oxide tends to enhance the extraction efficiencies for actinides and lanthanides. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The method is particularly useful for extracting actinides and lanthanides from acidic solutions. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  10. Evaluating oil quality and monitoring production from heavy oil reservoirs using geochemical methods: Application to the Boscan Field, Venezuela

    SciTech Connect (OSTI)

    Kaufman, R.L.; Noguera, V.H.; Bantz, D.M.; Rodriguez, R.

    1996-08-01

    Many oil fields worldwide contain heavy oil in one or more reservoir units. The low gravity of these oils is most frequently due to biodegradation and/or low maturity. The challenge is to find ways to economically recover this oil. Methods which reduce the operating costs of producing heavy oil add significant value to such projects. Geochemical techniques which use the composition of the reservoir fluids as natural tracers offer cost effective methods to assist with reservoir management. The low viscosity and gravity of heavy oil, combined with frequent high water cuts, low flow rates, and the presence of downhole artificial lift equipment, make many conventional production logging methods difficult to apply. Therefore, monitoring production, especially if the produced oil is commingled from multiple reservoirs, can be difficult. Geochemical methods can be used to identify oil/water contacts, tubing string leaks and to allocate production to individual zones from commingled production. An example of a giant heavy oil field where geochemical methods may be applicable is the Boscan Field in Venezuela. Low maturity oil, averaging 10{degrees} API gravity, is produced from the Eocene Upper and Lower Boscan (Miosa) Sands. Geochemical, stratigraphic and engineering data have helped to better define the controls on oil quality within the field, identified new reservoir compartments and defined unique characteristics of the Upper and Lower Boscan oils. This information can be used to identify existing wells in need of workovers due to mechanical problems and to monitor production from new infill wells.

  11. Computational fluid dynamics analysis of a wire-feed, high-velocity oxygen-fuel (HVOF) thermal spray torch

    SciTech Connect (OSTI)

    Lopez, A.R.; Hassan, B.; Oberkampf, W.L.; Neiser, R.A.; Roemer, T.J.

    1996-09-01

    The fluid and particle dynamics of a High-Velocity Oxygen-Fuel Thermal Spray torch are analyzed using computational and experimental techniques. Three-dimensional Computational Fluid Dynamics (CFD) results are presented for a curved aircap used for coating interior surfaces such as engine cylinder bores. The device analyzed is similar to the Metco Diamond Jet Rotating Wire (DJRW) torch. The feed gases are injected through an axisymmetric nozzle into the curved aircap. Premixed propylene and oxygen are introduced from an annulus in the nozzle, while cooling air is injected between the nozzle and the interior wall of the aircap. The combustion process is modeled using a single-step finite-rate chemistry model with a total of 9 gas species which includes dissociation of combustion products. A continually-fed steel wire passes through the center of the nozzle and melting occurs at a conical tip near the exit of the aircap. Wire melting is simulated computationally by injecting liquid steel particles into the flow field near the tip of the wire. Experimental particle velocity measurements during wire feed were also taken using a Laser Two-Focus (L2F) velocimeter system. Flow fields inside and outside the aircap are presented and particle velocity predictions are compared with experimental measurements outside of the aircap.

  12. Code System to Model Aqueous Geochemical Equilibria.

    Energy Science and Technology Software Center (OSTI)

    2001-08-23

    Version: 00 MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution ofsolid phases. MINTEQ can accept a finite massmore » for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and each compositionally and structurally distinct solid forms a separate phase.« less

  13. Thermodynamic Data for Geochemical Modeling of Carbonate Reactions Associated with CO2 Sequestration – Literature Review

    SciTech Connect (OSTI)

    Krupka, Kenneth M.; Cantrell, Kirk J.; McGrail, B. Peter

    2010-09-28

    Permanent storage of anthropogenic CO2 in deep geologic formations is being considered as a means to reduce the concentration of atmospheric CO2 and thus its contribution to global climate change. To ensure safe and effective geologic sequestration, numerous studies have been completed of the extent to which the CO2 migrates within geologic formations and what physical and geochemical changes occur in these formations when CO2 is injected. Sophisticated, computerized reservoir simulations are used as part of field site and laboratory CO2 sequestration studies. These simulations use coupled multiphase flow-reactive chemical transport models and/or standalone (i.e., no coupled fluid transport) geochemical models to calculate gas solubility, aqueous complexation, reduction/oxidation (redox), and/or mineral solubility reactions related to CO2 injection and sequestration. Thermodynamic data are critical inputs to modeling geochemical processes. The adequacy of thermodynamic data for carbonate compounds has been identified as an important data requirement for the successful application of these geochemical reaction models to CO2 sequestration. A review of thermodynamic data for CO2 gas and carbonate aqueous species and minerals present in published data compilations and databases used in geochemical reaction models was therefore completed. Published studies that describe mineralogical analyses from CO2 sequestration field and natural analogue sites and laboratory studies were also reviewed to identify specific carbonate minerals that are important to CO2 sequestration reactions and therefore require thermodynamic data. The results of the literature review indicated that an extensive thermodynamic database exists for CO2 and CH4 gases, carbonate aqueous species, and carbonate minerals. Values of ∆fG298° and/or log Kr,298° are available for essentially all of these compounds. However, log Kr,T° or heat capacity values at temperatures above 298 K exist for less than

  14. Fluid sampling tool

    DOE Patents [OSTI]

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    2000-01-01

    A fluid-sampling tool for obtaining a fluid sample from a container. When used in combination with a rotatable drill, the tool bores a hole into a container wall, withdraws a fluid sample from the container, and seals the borehole. The tool collects fluid sample without exposing the operator or the environment to the fluid or to wall shavings from the container.

  15. HANFORD DST THERMAL & SEISMIC PROJECT ANSYS BENCHMARK ANALYSIS OF SEISMIC INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    SciTech Connect (OSTI)

    MACKEY, T.C.

    2006-03-14

    M&D Professional Services, Inc. (M&D) is under subcontract to Pacific Northwest National Laboratories (PNNL) to perform seismic analysis of the Hanford Site Double-Shell Tanks (DSTs) in support of a project entitled ''Double-Shell Tank (DSV Integrity Project-DST Thermal and Seismic Analyses)''. The overall scope of the project is to complete an up-to-date comprehensive analysis of record of the DST System at Hanford in support of Tri-Party Agreement Milestone M-48-14. The work described herein was performed in support of the seismic analysis of the DSTs. The thermal and operating loads analysis of the DSTs is documented in Rinker et al. (2004). The overall seismic analysis of the DSTs is being performed with the general-purpose finite element code ANSYS. The overall model used for the seismic analysis of the DSTs includes the DST structure, the contained waste, and the surrounding soil. The seismic analysis of the DSTs must address the fluid-structure interaction behavior and sloshing response of the primary tank and contained liquid. ANSYS has demonstrated capabilities for structural analysis, but the capabilities and limitations of ANSYS to perform fluid-structure interaction are less well understood. The purpose of this study is to demonstrate the capabilities and investigate the limitations of ANSYS for performing a fluid-structure interaction analysis of the primary tank and contained waste. To this end, the ANSYS solutions are benchmarked against theoretical solutions appearing in BNL 1995, when such theoretical solutions exist. When theoretical solutions were not available, comparisons were made to theoretical solutions of similar problems and to the results from Dytran simulations. The capabilities and limitations of the finite element code Dytran for performing a fluid-structure interaction analysis of the primary tank and contained waste were explored in a parallel investigation (Abatt 2006). In conjunction with the results of the global ANSYS analysis

  16. A Mineralogical Petrographic And Geochemical Study Of Samples...

    Open Energy Info (EERE)

    Mineralogical Petrographic And Geochemical Study Of Samples From Wells In The Geothermal Field Of Milos Island (Greece) Jump to: navigation, search OpenEI Reference LibraryAdd to...

  17. Geochemical Data on Waters, Gases, Scales, and Rocks from the...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Geochemical Data on Waters, Gases, Scales, and Rocks from the Dixie Valley Region, Nevada (1996-1999)...

  18. Geochemical and isotopic water results, Barrow, Alaska, 2012-2013

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Heikoop, Jeff; Wilson, Cathy; Newman, Brent

    2012-07-18

    Data include a large suite of analytes (geochemical and isotopic) for samples collected in Barrow, Alaska (2012-2013). Sample types are indicated, and include soil pore waters, drainage waters, snowmelt, precipitation, and permafrost samples.

  19. Next Generation Nuclear Plant Phenomena Identification and Ranking Tables (PIRTs) Volume 2: Accident and Thermal Fluids Analysis PIRTs

    SciTech Connect (OSTI)

    Ball, Sydney J; Corradini, M.; Fisher, Stephen Eugene; Gauntt, R.; Geffraye, G.; Gehin, Jess C; Hassan, Y.; Moses, David Lewis; Renier, John-Paul; Schultz, R.; Wei, T.

    2008-03-01

    An accident, thermal fluids, and reactor physics phenomena identification and ranking process was conducted by a panel of experts on the next generation nuclear plant (NGNP) design (consideration given to both pebble-bed and prismatic gas-cooled reactor configurations). Safety-relevant phenomena, importance, and knowledge base were assessed for the following event classes: (1) normal operation (including some reactor physics aspects), (2) general loss of forced circulation (G-LOFC), (3) pressurized loss-of-forced circulation (P-LOFC), (4) depressurized loss-of-forced circulation (D-LOFC), (5) air ingress (following D-LOFC), (6) reactivity transients - including anticipated transients without scram (ATWS), (7) processes coupled via intermediate heat exchanger (IHX) (IHX failure with molten salt), and (8) steam/water ingress. The panel's judgment of the importance ranking of a given phenomenon (or process) was based on the effect it had on one or more figures of merit or evaluation criteria. These included public and worker dose, fuel failure, and primary (and other safety) system integrity. The major phenomena of concern that were identified and categorized as high importance combined with medium to low knowledge follow: (1) core coolant bypass flows (normal operation), (2) power/flux profiles (normal operation), (3) outlet plenum flows (normal operation), (4) reactivity-temperature feedback coefficients for high-plutonium-content cores (normal operation and accidents), (5) fission product release related to the transport of silver (normal operation), (6)emissivity aspects for the vessel and reactor cavity cooling system (G-LOFC), (7) reactor vessel cavity air circulation and heat transfer (G-LOFC), and (8)convection/radiation heating of upper vessel area (P-LOFC).

  20. Reservoir compartmentalization assessed with fluid compositional data

    SciTech Connect (OSTI)

    Smalley, P.C.; England, W.A. . Alliance R D Centre)

    1994-08-01

    Fluid composition is a valuable addition to the battery of static'' data available during reservoir appraisal that can be used to predict the dynamic behavior of the reservoir later in field life. This is because fluid data are not truly static; natural fluid mixing is a dynamic process that occurs over a long (geologic) time scale. Oil compositional differences, especially those that parallel changes in density, should be mixed rapidly by convection; their preservation indicates barriers to fluid flow. Water variations, now measurable on conventional core samples by use of residual salt analysis (RSA), help identify barriers to vertical fluid flow in oil and water legs.

  1. Critical-fluid extraction of organics from water. Volume I. Engineering analysis. Final report, 1 October 1979-30 November 1983

    SciTech Connect (OSTI)

    Moses, J.M.; de Filippi, R.P.

    1984-06-01

    Critical-fluid extraction of several organic solutes from water was investigated analytically and experimentally to determine the energy conservation potential of the technology relative to distillation. This Volume gives the results of an engineering analysis. The process uses condensed or supercritical carbon dioxide as an extracting solvent to separate aqueous solutions of common organics such as ethanol, isopropanol and sec-butanol. Energy input to the systems is electric power to drive compressors. A detailed process analysis included evaluation and correlation of thermophysical properties and phase equilibria for the two- and three-component systems involved. The analysis showed that a plant fed with 10 weight percent ethanol feed would consume 0.65 kilowatt-hours (kwh) of power for compression energy per gallon of alcohol. This energy consumption would be 5300 Btu of steam-equivalent, or 6500 Btu of fossil-fuel-equivalent energy. The extraction product, however, would require additional energy to produce high-purity alcohol. Doubling the ethanol feed concentration to 20 weight percent would reduce the energy required to about 0.30 kwh per gallon. Halving the ethanol feed concentration to 5 weight percent would increase the energy required to about 1.35 kwh per gallon. For the same feed composition, isopropanol can be separated with 48% of the energy required for ethanol. The same separation of sec-butanol can be done with 25% of the ethanol energy requirement.

  2. Modeling Background Radiation in our Environment Using Geochemical Data

    SciTech Connect (OSTI)

    Malchow, Russell L.; Marsac, Kara; Burnley, Pamela; Hausrath, Elisabeth; Haber, Daniel; Adcock, Christopher

    2015-02-01

    Radiation occurs naturally in bedrock and soil. Gamma rays are released from the decay of the radioactive isotopes K, U, and Th. Gamma rays observed at the surface come from the first 30 cm of rock and soil. The energy of gamma rays is specific to each isotope, allowing identification. For this research, data was collected from national databases, private companies, scientific literature, and field work. Data points were then evaluated for self-consistency. A model was created by converting concentrations of U, K, and Th for each rock and soil unit into a ground exposure rate using the following equation: D=1.32 K+ 0.548 U+ 0.272 Th. The first objective of this research was to compare the original Aerial Measurement System gamma ray survey to results produced by the model. The second objective was to improve the method and learn the constraints of the model. Future work will include sample data analysis from field work with a goal of improving the geochemical model.

  3. HANFORD DST THERMAL & SEISMIC PROJECT DYTRAN ANALYSIS OF SEISMICALLY INDUCED FLUID STRUCTURE INTERACTION IN A HANFORD DOUBLE SHELL PRIMARY TANK

    SciTech Connect (OSTI)

    MACKEY TC; RINKER MW; ABATT FG

    2007-02-14

    Revision 0A of this document contains new Appendices C and D. Appendix C contains a re-analysis of the rigid and flexible tanks at the 460 in. liquid level and was motivated by recommendations from a Project Review held on March 20-21, 2006 (Rinker et al Appendix E of RPP-RPT-28968 Rev 1). Appendix D contains the benchmark solutions in support of the analyses in Appendix C.

  4. Fluid transport container

    DOE Patents [OSTI]

    DeRoos, Bradley G.; Downing, Jr., John P.; Neal, Michael P.

    1995-01-01

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitment for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container.

  5. Fluid transport container

    DOE Patents [OSTI]

    DeRoos, B.G.; Downing, J.P. Jr.; Neal, M.P.

    1995-11-14

    An improved fluid container for the transport, collection, and dispensing of a sample fluid that maintains the fluid integrity relative to the conditions of the location at which it is taken. More specifically, the invention is a fluid sample transport container that utilizes a fitting for both penetrating and sealing a storage container under controlled conditions. Additionally, the invention allows for the periodic withdrawal of portions of the sample fluid without contamination or intermixing from the environment surrounding the sample container. 13 figs.

  6. Computational Fluid Dynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scour-tracc-cfd TRACC RESEARCH Computational Fluid Dynamics Computational Structural Mechanics Transportation Systems Modeling Computational Fluid Dynamics Overview of CFD: Video Clip with Audio Computational fluid dynamics (CFD) research uses mathematical and computational models of flowing fluids to describe and predict fluid response in problems of interest, such as the flow of air around a moving vehicle or the flow of water and sediment in a river. Coupled with appropriate and prototypical

  7. Fluid control structures in microfluidic devices

    DOE Patents [OSTI]

    Mathies, Richard A.; Grover, William H.; Skelley, Alison; Lagally, Eric; Liu, Chung N.

    2008-11-04

    Methods and apparatus for implementing microfluidic analysis devices are provided. A monolithic elastomer membrane associated with an integrated pneumatic manifold allows the placement and actuation of a variety of fluid control structures, such as structures for pumping, isolating, mixing, routing, merging, splitting, preparing, and storing volumes of fluid. The fluid control structures can be used to implement a variety of sample introduction, preparation, processing, and storage techniques.

  8. Geochemical Modeling of ILAW Lysimeter Water Extracts

    SciTech Connect (OSTI)

    Cantrell, Kirk J.

    2014-12-22

    Geochemical modeling results of water extracts from simulated immobilized low-activity waste (ILAW) glasses, placed in lysimeters for eight years suggest that the secondary phase reaction network developed using product consistency test (PCT) results at 90°C may need to be modified for field conditions. For sediment samples that had been collected from near the glass samples, the impact of glass corrosion could be readily observed based upon the pH of their water extracts. For unimpacted sediments the pH ranged from 7.88 to 8.11 with an average of 8.04. Sediments that had observable impacts from glass corrosion exhibited elevated pH values (as high as 9.97). For lysimeter sediment samples that appear to have been impacted by glass corrosion to the greatest extent, saturation indices determined for analcime, calcite, and chalcedony in the 1:1 water extracts were near equilibrium and were consistent with the secondary phase reaction network developed using PCT results at 90°C. Fe(OH)3(s) also appears to be essentially at equilibrium in extracts impacted by glass corrosion, but with a solubility product (log Ksp) that is approximately 2.13 units lower than that used in the secondary phase reaction network developed using PCT results at 90°C. The solubilities of TiO2(am) and ZrO2(am) also appear to be much lower than that assumed in the secondary phase reaction network developed using PCT results at 90°C. The extent that the solubility of TiO2(am) and ZrO2(am) were reduced relative to that assumed in the secondary phase reaction network developed using PCT results at 90°C could not be quantified because the concentrations of Ti and Zr in the extracts were below the estimated quantification limit. Gibbsite was consistently highly oversaturated in the extract while dawsonite was at or near equilibrium. This suggests that dawsonite might be a more suitable phase for the secondary phase reaction network than gibbsite under field conditions. This may be due to the

  9. Natural bacterial communities serve as quantitative geochemical biosensors

    SciTech Connect (OSTI)

    Smith, Mark B.; Rocha, Andrea M.; Smillie, Chris S.; Olesen, Scott W.; Paradis, Charles; Wu, Liyou; Campbell, James H.; Fortney, Julian L.; Mehlhorn, Tonia L.; Lowe, Kenneth A.; Earles, Jennifer E.; Phillips, Jana; Techtmann, Steve M.; Joyner, Dominique C.; Elias, Dwayne A.; Bailey, Kathryn L.; Hurt, Richard A.; Preheim, Sarah P.; Sanders, Matthew C.; Yang, Joy; Mueller, Marcella A.; Brooks, Scott; Watson, David B.; Zhang, Ping; He, Zhili; Dubinsky, Eric A.; Adams, Paul D.; Arkin, Adam P.; Fields, Matthew W.; Zhou, Jizhong; Alm, Eric J.; Hazen, Terry C.

    2015-05-12

    Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination, even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.

  10. Natural bacterial communities serve as quantitative geochemical biosensors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Mark B.; Rocha, Andrea M.; Smillie, Chris S.; Olesen, Scott W.; Paradis, Charles; Wu, Liyou; Campbell, James H.; Fortney, Julian L.; Mehlhorn, Tonia L.; Lowe, Kenneth A.; et al

    2015-05-12

    Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination,more » even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.« less

  11. Precipitation in Pores: A Geochemical Frontier

    SciTech Connect (OSTI)

    Stack, Andrew G.

    2015-01-01

    This article's purpose is to review some of the recent research in which geochemists have examined precipitation of solid phases in porous media, particularly in pores a few nanometers in diameter (nanopores). While this is a “review,” it is actually more forward-looking in that the list of things about this phenomenon that we do not know or cannot control at this time is likely longer than what we do know and can control. For example, there are three directly contradictory theories on how to predict how precipitation proceeds in a medium of varying pore size, as will be discussed below. The confusion on this subject likely stems from the complexity of the phenomenon itself: One can easily clog a porous medium by inducing a rapid, homogeneous precipitation directly from solution, or have limited precipitation occur that does not affect permeability or even porosity substantially. It is more difficult to engineer mineral precipitation in order to obtain a specific outcome, such as filling all available pore space over a targeted area for the purposes of contaminant sequestration. However, breakthrough discoveries could occur in the next five to ten years that enhance our ability to predict robustly and finely control precipitation in porous media by understanding how porosity and permeability evolve in response to system perturbations. These discoveries will likely stem (at least in part) from advances in our ability to 1) perform and interpret X-ray/neutron scattering experiments that reveal the extent of precipitation and its locales within porous media (Anovitz and Cole 2015, this volume), and 2) utilize increasingly powerful simulations to test concepts and models about the evolution of porosity and permeability as precipitation occurs (Steefel et al. 2015, this volume). A further important technique to isolate specific phenomena and understand reactivity is also microfluidics cell experiments that allow specific control of flow paths and fluid velocities

  12. Precipitation in pores: A geochemical frontier

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stack, Andrew G.

    2015-07-29

    This article's purpose is to review some of the recent research in which geochemists have examined precipitation of solid phases in porous media, particularly in pores a few nanometers in diameter (nanopores). While this is a “review,” it is actually more forward-looking in that the list of things about this phenomenon that we do not know or cannot control at this time is likely longer than what we do know and can control. For example, there are three directly contradictory theories on how to predict how precipitation proceeds in a medium of varying pore size, as will be discussed below.more » The confusion on this subject likely stems from the complexity of the phenomenon itself: One can easily clog a porous medium by inducing a rapid, homogeneous precipitation directly from solution, or have limited precipitation occur that does not affect permeability or even porosity substantially. It is more difficult to engineer mineral precipitation in order to obtain a specific outcome, such as filling all available pore space over a targeted area for the purposes of contaminant sequestration. However, breakthrough discoveries could occur in the next five to ten years that enhance our ability to predict robustly and finely control precipitation in porous media by understanding how porosity and permeability evolve in response to system perturbations. These discoveries will likely stem (at least in part) from advances in our ability to 1) perform and interpret X-ray/neutron scattering experiments that reveal the extent of precipitation and its locales within porous media (Anovitz and Cole 2015, this volume), and 2) utilize increasingly powerful simulations to test concepts and models about the evolution of porosity and permeability as precipitation occurs (Steefel et al. 2015, this volume). A further important technique to isolate specific phenomena and understand reactivity is also microfluidics cell experiments that allow specific control of flow paths and fluid

  13. The integration of geochemical, geological and engineering data to determine reservoir continuity in the Iagifu-Hedinia field, Papua New Guinea

    SciTech Connect (OSTI)

    Kaufman, R.L.; Eisenberg, L.I.; Fitzmorris, R.E.

    1995-08-01

    A series of oil and gas fields, including Iagifu-Hedinia, occur along the leading edge of the Papuan fold and thrust belt. Formed during Pliocene to Recent compression, they are structurally complex, and typically broken into multiple reservoir compartments. The presence of the karstic Darai Limestone at the surface over most of the fold belt prevents acquisition of useful seismic data. Reservoir mapping, and establishment of reservoir continuity, is therefore based soley on (1) surface geologic data, (2) drilling data; initially dipmeter and RFT pressure data, and subsequently well production histories, and (3) geochemical correlation of reservoir fluids. During appraisal of the Iagifu-Hedinia discovery, these complimentary data sets demonstrated that (1) a single hydrocarbon column existed above a flowing aquifer in the main block of Iagifu-Hedinia field, (2) a separate acuumulation existed in the Usano area. Geochemical data have suggested the presence of reservoir compartments where other data were missing or inconclusive. Subsequently-acquired production history data have confirmed the geochemically-based interpretations. Geochemical data suggest that oils at Iagifu-Hedinia have a common source. The slight differences in oil composition between reservoirs are likely due to multiple phases of expulsion from the same source rock and/or migration-fractionation.

  14. Channelized fluid flow through shear zones during fluid-enhanced dynamic recrystallization, Northern Apennines, Italy

    SciTech Connect (OSTI)

    Carter, K.E.; Dworkin, S.I. )

    1990-08-01

    Geochemical and petrographic studies of the Triassic Portoro limestone of the Tuscan nappe in Liguria, Italy, indicate that fluid flow was channeled through interlayered bedding-parallel shear zones during Miocene shearing and low-grade metamorphism. Carbon, oxygen, and strontium isotopic compositions and trace element concentrations in the Portoro indicate that it was precipitated from normal marine waters. In sheared and unsheared layers these isotopic compositions are indistinguishable, yet sheared layers of microspar contain less than half the amount of strontium preserved in undeformed layers. Wavy grain boundaries and a dimensional preferred orientation of elongated grains indicate that calcite within sheared zones was dynamically recrystallized. On the basis of these observations we suggest that during burial, extraformational fluids were buffered into oxygen isotopic, but not strontium-concentration, equilibrium with the Portoro. These syndeformational fluids were channeled through discrete 1- to 15-cm-thick shear zones in which strontium was expelled from calcite and incorporated into grain-boundary fluids during dynamic recrystallization.

  15. GEOTHERMAL FLUID PROPENE AND PROPANE: INDICATORS OF FLUID | Open...

    Open Energy Info (EERE)

    FLUID PROPENE AND PROPANE: INDICATORS OF FLUID Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings: GEOTHERMAL FLUID PROPENE AND PROPANE:...

  16. Borehole Fluid Conductivity Model

    Energy Science and Technology Software Center (OSTI)

    2004-03-15

    Dynamic wellbore electrical conductivity logs provide a valuable means to determine the flow characteristics of fractures intersectin a wellbore, in order to study the hydrologic behavior of fractured rocks. To expedite the analysis of log data, a computer program called BORE II has been deveoloped that considers multiple inflow or outflow points along the wellbore, including the case of horizontal flow across the wellbore, BORE II calculates the evolution of fluid electrical conducivity (FEC) profilesmorein a wellbore or wellbore section, which may be pumped at a low rate, and compares model results to log data in a variety of ways. FEC variations may arise from inflow under natural-state conditions or due to tracer injected in a neighboring well (interference tests). BORE II has an interactive, graphical user interface and runs on a personal computer under the Windows operating system. BORE II is a modification and extension of older codes called BORE and BOREXT, which considered inflow points only. Finite difference solution of the one-dimensional advection-diffusion equation with explicit time stepping; feed points treated as prescribed-mass sources or sinks; assume quadratic relationship between fluid electrical conductivity and ion consentration. Graphical user interface; interactive modification of model parameters and graphical display of model results and filed data in a variety of ways. Can examine horizontal flow or arbitarily complicated combination of upflow, downflow, and horizontal flow. Feed point flow rate and/or concentration may vary in time.less

  17. Environmentally safe fluid extractor

    DOE Patents [OSTI]

    Sungaila, Zenon F.

    1993-07-06

    An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

  18. Electric fluid pump

    DOE Patents [OSTI]

    Van Dam, Jeremy Daniel; Turnquist, Norman Arnold; Raminosoa, Tsarafidy; Shah, Manoj Ramprasad; Shen, Xiaochun

    2015-09-29

    An electric machine is presented. The electric machine includes a hollow rotor; and a stator disposed within the hollow rotor, the stator defining a flow channel. The hollow rotor includes a first end portion defining a fluid inlet, a second end portion defining a fluid outlet; the fluid inlet, the fluid outlet, and the flow channel of the stator being configured to allow passage of a fluid from the fluid inlet to the fluid outlet via the flow channel; and wherein the hollow rotor is characterized by a largest cross-sectional area of hollow rotor, and wherein the flow channel is characterized by a smallest cross-sectional area of the flow channel, wherein the smallest cross-sectional area of the flow channel is at least about 25% of the largest cross-sectional area of the hollow rotor. An electric fluid pump and a power generation system are also presented.

  19. Environmentally safe fluid extractor

    DOE Patents [OSTI]

    Sungaila, Zenon F.

    1993-01-01

    An environmentally safe fluid extraction device for use in mobile laboratory and industrial settings comprising a pump, compressor, valving system, waste recovery tank, fluid tank, and a exhaust filtering system.

  20. Fluid sampling tool

    DOE Patents [OSTI]

    Johnston, Roger G.; Garcia, Anthony R. E.; Martinez, Ronald K.

    2001-09-25

    The invention includes a rotatable tool for collecting fluid through the wall of a container. The tool includes a fluid collection section with a cylindrical shank having an end portion for drilling a hole in the container wall when the tool is rotated, and a threaded portion for tapping the hole in the container wall. A passageway in the shank in communication with at least one radial inlet hole in the drilling end and an opening at the end of the shank is adapted to receive fluid from the container. The tool also includes a cylindrical chamber affixed to the end of the shank opposite to the drilling portion thereof for receiving and storing fluid passing through the passageway. The tool also includes a flexible, deformable gasket that provides a fluid-tight chamber to confine kerf generated during the drilling and tapping of the hole. The invention also includes a fluid extractor section for extracting fluid samples from the fluid collecting section.

  1. How 12 geochemical methods fared in GERT project in Permian basin

    SciTech Connect (OSTI)

    Calhoun, G.G.

    1991-05-13

    This paper reports on Geochemical Evaluation Research Team (GERT) which is an experiment conceived to identify surface geochemical exploration methods that are effective in finding oil. Many of the methods use technology developed in the last 5 years. In fact, one of the challenging jobs for the geochemical explorationist is keeping up with new techniques and improvements. The way to minimize dry holes is to screen prospects with carefully selected geochemical techniques prior to acreage acquisition and seismic surveys.

  2. Fluid force transducer

    DOE Patents [OSTI]

    Jendrzejczyk, Joseph A.

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  3. Validation of the WATEQ4 geochemical model for uranium

    SciTech Connect (OSTI)

    Krupka, K.M.; Jenne, E.A.; Deutsch, W.J.

    1983-09-01

    As part of the Geochemical Modeling and Nuclide/Rock/Groundwater Interactions Studies Program, a study was conducted to partially validate the WATEQ4 aqueous speciation-solubility geochemical model for uranium. The solubility controls determined with the WATEQ4 geochemical model were in excellent agreement with those laboratory studies in which the solids schoepite (UO/sub 2/(OH)/sub 2/ . H/sub 2/O), UO/sub 2/(OH)/sub 2/, and rutherfordine ((UO/sub 2/CO/sub 3/) were identified as actual solubility controls for uranium. The results of modeling solution analyses from laboratory studies of uranyl phosphate solids, however, identified possible errors in the characterization of solids in the original solubility experiments. As part of this study, significant deficiencies in the WATEQ4 thermodynamic data base for uranium solutes and solids were corrected. Revisions included recalculation of selected uranium reactions. Additionally, thermodynamic data for the hydroxyl complexes of U(VI), including anionic (VI) species, were evaluated (to the extent permitted by the available data). Vanadium reactions were also added to the thermodynamic data base because uranium-vanadium solids can exist in natural ground-water systems. This study is only a partial validation of the WATEQ4 geochemical model because the available laboratory solubility studies do not cover the range of solid phases, alkaline pH values, and concentrations of inorganic complexing ligands needed to evaluate the potential solubility of uranium in ground waters associated with various proposed nuclear waste repositories. Further validation of this or other geochemical models for uranium will require careful determinations of uraninite solubility over the pH range of 7 to 10 under highly reducing conditions and of uranyl hydroxide and phosphate solubilities over the pH range of 7 to 10 under oxygenated conditions.

  4. Remote Raman - laser induced breakdown spectroscopy (LIBS) geochemical investigation under Venus atmospheric conditions

    SciTech Connect (OSTI)

    Clegg, Sanuel M; Barefield, James E; Humphries, Seth D; Wiens, Roger C; Vaniman, D. T.; Sharma, S. K.; Misra, A. K.; Dyar, M. D.; Smrekar, S. E.

    2010-12-13

    The extreme Venus surface temperatures ({approx}740 K) and atmospheric pressures ({approx}93 atm) create a challenging environment for surface missions. Scientific investigations capable of Venus geochemical observations must be completed within hours of landing before the lander will be overcome by the harsh atmosphere. A combined remote Raman - LIBS (Laser Induced Breakdown Spectroscopy) instrument is capable of accomplishing the geochemical science goals without the risks associated with collecting samples and bringing them into the lander. Wiens et al. and Sharma et al. demonstrated that both analytical techniques can be integrated into a single instrument capable of planetary missions. The focus of this paper is to explore the capability to probe geologic samples with Raman - LIBS and demonstrate quantitative analysis under Venus surface conditions. Raman and LIBS are highly complementary analytical techniques capable of detecting both the mineralogical and geochemical composition of Venus surface materials. These techniques have the potential to profoundly increase our knowledge of the Venus surface composition, which is currently limited to geochemical data from Soviet Venera and VEGA landers that collectively suggest a surface composition that is primarily tholeiitic basaltic with some potentially more evolved compositions and, in some locations, K-rich trachyandesite. These landers were not equipped to probe the surface mineralogy as can be accomplished with Raman spectroscopy. Based on the observed compositional differences and recognizing the imprecise nature of the existing data, 15 samples were chosen to constitute a Venus-analog suite for this study, including five basalts, two each of andesites, dacites, and sulfates, and single samples of a foidite, trachyandesite, rhyolite, and basaltic trachyandesite under Venus conditions. LIBS data reduction involved generating a partial least squares (PLS) model with a subset of the rock powder standards to

  5. Methods for fluid separations, and devices capable of separating fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E [Kennewick, WA; Stenkamp, Victoria S [Richland, WA

    2006-05-30

    Wick-Containing apparatus capable of separating fluids and methods of separating fluids using wicks are disclosed.

  6. Methods for fluid separations, and devices capable of separating fluids

    DOE Patents [OSTI]

    TeGrotenhuis, Ward E.; Stenkamp, Victoria S.

    2007-09-25

    Wick-Containing apparatus capable of separating fluids and methods of separating fluids using wicks are disclosed.

  7. Fluid cooled electrical assembly

    DOE Patents [OSTI]

    Rinehart, Lawrence E.; Romero, Guillermo L.

    2007-02-06

    A heat producing, fluid cooled assembly that includes a housing made of liquid-impermeable material, which defines a fluid inlet and a fluid outlet and an opening. Also included is an electrical package having a set of semiconductor electrical devices supported on a substrate and the second major surface is a heat sink adapted to express heat generated from the electrical apparatus and wherein the second major surface defines a rim that is fit to the opening. Further, the housing is constructed so that as fluid travels from the fluid inlet to the fluid outlet it is constrained to flow past the opening thereby placing the fluid in contact with the heat sink.

  8. Spinning fluids reactor

    DOE Patents [OSTI]

    Miller, Jan D; Hupka, Jan; Aranowski, Robert

    2012-11-20

    A spinning fluids reactor, includes a reactor body (24) having a circular cross-section and a fluid contactor screen (26) within the reactor body (24). The fluid contactor screen (26) having a plurality of apertures and a circular cross-section concentric with the reactor body (24) for a length thus forming an inner volume (28) bound by the fluid contactor screen (26) and an outer volume (30) bound by the reactor body (24) and the fluid contactor screen (26). A primary inlet (20) can be operatively connected to the reactor body (24) and can be configured to produce flow-through first spinning flow of a first fluid within the inner volume (28). A secondary inlet (22) can similarly be operatively connected to the reactor body (24) and can be configured to produce a second flow of a second fluid within the outer volume (30) which is optionally spinning.

  9. Geothermal prospecting by geochemical methods on natural gas and water discharges in the Vulsini Mts Volcanic District (Central Italy)

    SciTech Connect (OSTI)

    Duchi, V.; Minissale, A.A.; Ortino, S.; Romani, L.

    1987-01-01

    The Latera and Torre Alfina geothermal fields were discovered in the Vulsini Mts district (central Italy) in the 70s. The fluid produced by the two geothermal systems is a high rhoCO/sub 2/(around 7 MPa) sodium chloride solution (T.D.S. is 9200 ppm at Latera and 7800 at Torre Alfina), with high SiO/sub 2/ and H/sub 3/BO/sub 3/ contents. The fluid temperature taken at well bottom is about 155/sup 0/C at Torre Alfina, whereas at Latera it ranges from 200 to over 350/sup 0/C. In spite of these temperatures, recorded in producing wells, previous geochemical prospectings using geothermometers in natural thermal manifestations had predicted temperatures no higher than 140/sup 0/C in all the Vulsini district. This contrasting feature between real temperatures and those evaluated during prospecting is caused by the fast circulation of large amounts of meteoric waters in the aquifer located in the shallow parts of the carbonate reservoir formations, and by the short interaction between the latter and the deep geothermal fluids. In the present study a new geochemical survey on thermal and cold springs, stream samples, as well as natural gas emissions has been carried out. A critical review of the main geothermometers, some considerations about the hydraulic behavior of the reservoir formations, and the cross comparison between NH/sub 4//sup +//B ratio, rhoCO/sub 2/ and SiO/sub 2/ content in both cold and thermal waters, have led to the conclusion that in the Vulsini Mts there are no shallow anomalous areas apart from those already discovered at Latera and Torre Alfina. The present method could be successfully applied in other geothermal systems, where the potential reservoir is represented by carbonate formations.

  10. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S. Michael

    1989-01-01

    Particular gases or liquids are detected with a fiber optic element (11, 11a to 11j) having a cladding or coating of a material (23, 23a to 23j) which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector (24, 24a to 24j) may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses.

  11. Fiber optic fluid detector

    DOE Patents [OSTI]

    Angel, S.M.

    1987-02-27

    Particular gases or liquids are detected with a fiber optic element having a cladding or coating of a material which absorbs the fluid or fluids and which exhibits a change of an optical property, such as index of refraction, light transmissiveness or fluoresence emission, for example, in response to absorption of the fluid. The fluid is sensed by directing light into the fiber optic element and detecting changes in the light, such as exit angle changes for example, that result from the changed optical property of the coating material. The fluid detector may be used for such purposes as sensing toxic or explosive gases in the atmosphere, measuring ground water contamination or monitoring fluid flows in industrial processes, among other uses. 10 figs.

  12. Microwave fluid flow meter

    DOE Patents [OSTI]

    Billeter, Thomas R.; Philipp, Lee D.; Schemmel, Richard R.

    1976-01-01

    A microwave fluid flow meter is described utilizing two spaced microwave sensors positioned along a fluid flow path. Each sensor includes a microwave cavity having a frequency of resonance dependent upon the static pressure of the fluid at the sensor locations. The resonant response of each cavity with respect to a variation in pressure of the monitored fluid is represented by a corresponding electrical output which can be calibrated into a direct pressure reading. The pressure drop between sensor locations is then correlated as a measure of fluid velocity. In the preferred embodiment the individual sensor cavities are strategically positioned outside the path of fluid flow and are designed to resonate in two distinct frequency modes yielding a measure of temperature as well as pressure. The temperature response can then be used in correcting for pressure responses of the microwave cavity encountered due to temperature fluctuations.

  13. Geochemical Triggers of Arsenic Mobilization during Managed Aquifer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recharge | Stanford Synchrotron Radiation Lightsource Geochemical Triggers of Arsenic Mobilization during Managed Aquifer Recharge Monday, February 29, 2016 Managed aquifer recharge (MAR) is an increasingly used water enhancement strategy, which involves subsurface storage of water supplies in groundwater aquifers. While MAR projects have the potential to alleviate water deficits, they can also adversely impact groundwater quality by altering the native geochemistry of the aquifer and

  14. Argonne Geothermal Geochemical Database v2.0

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Harto, Christopher

    2013-05-22

    A database of geochemical data from potential geothermal sources aggregated from multiple sources as of March 2010. The database contains fields for the location, depth, temperature, pH, total dissolved solids concentration, chemical composition, and date of sampling. A separate tab contains data on non-condensible gas compositions. The database contains records for over 50,000 wells, although many entries are incomplete. Current versions of source documentation are listed in the dataset.

  15. Argonne Geothermal Geochemical Database v2.0

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Harto, Christopher

    A database of geochemical data from potential geothermal sources aggregated from multiple sources as of March 2010. The database contains fields for the location, depth, temperature, pH, total dissolved solids concentration, chemical composition, and date of sampling. A separate tab contains data on non-condensible gas compositions. The database contains records for over 50,000 wells, although many entries are incomplete. Current versions of source documentation are listed in the dataset.

  16. Microbial distributions detected by an oligonucleotide microarray across geochemical zones associated with methane in marine sediments from the Ulleung Basin

    SciTech Connect (OSTI)

    Briggs, Brandon R.; Graw, Michael; Brodie, Eoin L.; Bahk, Jang-Jun; Kim, Sung-Han; Hyun, Jung-Ho; Kim, Ji-Hoon; Torres, Marta; Colwell, Frederick S.

    2013-11-01

    The biogeochemical processes that occur in marine sediments on continental margins are complex; however, from one perspective they can be considered with respect to three geochemical zones based on the presence and form of methane: sulfatemethane transition (SMTZ), gas hydrate stability zone (GHSZ), and free gas zone (FGZ). These geochemical zones may harbor distinct microbial communities that are important in biogeochemical carbon cycles. The objective of this study was to describe the microbial communities in sediments from the SMTZ, GHSZ, and FGZ using molecular ecology methods (i.e. PhyloChip microarray analysis and terminal restriction fragment length polymorphism (T-RFLP)) and examining the results in the context of non-biological parameters in the sediments. Non-metric multidimensional scaling and multi-response permutation procedures were used to determine whether microbial community compositions were significantly different in the three geochemical zones and to correlate samples with abiotic characteristics of the sediments. This analysis indicated that microbial communities from all three zones were distinct from one another and that variables such as sulfate concentration, hydrate saturation of the nearest gas hydrate layer, and depth (or unmeasured variables associated with depth e.g. temperature, pressure) were correlated to differences between the three zones. The archaeal anaerobic methanotrophs typically attributed to performing anaerobic oxidation of methane were not detected in the SMTZ; however, the marine benthic group-B, which is often found in SMTZ, was detected. Within the GHSZ, samples that were typically closer to layers that contained higher hydrate saturation had indicator sequences related to Vibrio-type taxa. These results suggest that the biogeographic patterns of microbial communities in marine sediments are distinct based on geochemical zones defined by methane.

  17. Metalworking and machining fluids

    DOE Patents [OSTI]

    Erdemir, Ali; Sykora, Frank; Dorbeck, Mark

    2010-10-12

    Improved boron-based metal working and machining fluids. Boric acid and boron-based additives that, when mixed with certain carrier fluids, such as water, cellulose and/or cellulose derivatives, polyhydric alcohol, polyalkylene glycol, polyvinyl alcohol, starch, dextrin, in solid and/or solvated forms result in improved metalworking and machining of metallic work pieces. Fluids manufactured with boric acid or boron-based additives effectively reduce friction, prevent galling and severe wear problems on cutting and forming tools.

  18. Electrorheological fluids and methods

    DOE Patents [OSTI]

    Green, Peter F.; McIntyre, Ernest C.

    2015-06-02

    Electrorheological fluids and methods include changes in liquid-like materials that can flow like milk and subsequently form solid-like structures under applied electric fields; e.g., about 1 kV/mm. Such fluids can be used in various ways as smart suspensions, including uses in automotive, defense, and civil engineering applications. Electrorheological fluids and methods include one or more polar molecule substituted polyhedral silsesquioxanes (e.g., sulfonated polyhedral silsesquioxanes) and one or more oils (e.g., silicone oil), where the fluid can be subjected to an electric field.

  19. Compound and Elemental Analysis At Central Nevada Seismic Zone...

    Open Energy Info (EERE)

    Nevada Seismic Zone Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical...

  20. Compound and Elemental Analysis At Nw Basin & Range Region (Laney...

    Open Energy Info (EERE)

    Northwest Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical...

  1. Compound and Elemental Analysis At Northern Basin & Range Region...

    Open Energy Info (EERE)

    Northern Basin and Range Geothermal Region Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical...

  2. Compound and Elemental Analysis At Buffalo Valley Hot Springs...

    Open Energy Info (EERE)

    Location Buffalo Valley Hot Springs Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Geochemical...

  3. Adjoints and Large Data Sets in Computational Fluid Dynamics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Oana Marin Speaker(s) Title: Postdoctoral Appointee, MCS Optimal flow control and stability analysis are some of the fields within Computational Fluid Dynamics (CFD) that...

  4. Mineral Recovery from Geothermal Fluids | Open Energy Information

    Open Energy Info (EERE)

    Metals and Compounds from Geothermal Fluids California Simbol Mining Corp. Recovery Act: Enhanced Geothermal Systems Component Research and DevelopmentAnalysis Albuquerque, NM,...

  5. Helium measurements of pore-fluids obtained from SAFOD drillcore

    SciTech Connect (OSTI)

    Ali, S.; Stute, M.; Torgersen, T.; Winckler, G.; Kennedy, B.M.

    2010-04-15

    {sup 4}He accumulated in fluids is a well established geochemical tracer used to study crustal fluid dynamics. Direct fluid samples are not always collectable; therefore, a method to extract rare gases from matrix fluids of whole rocks by diffusion has been adapted. Helium was measured on matrix fluids extracted from sandstones and mudstones recovered during the San Andreas Fault Observatory at Depth (SAFOD) drilling in California, USA. Samples were typically collected as subcores or from drillcore fragments. Helium concentration and isotope ratios were measured 4-6 times on each sample, and indicate a bulk {sup 4}He diffusion coefficient of 3.5 {+-} 1.3 x 10{sup -8} cm{sup 2}s{sup -1} at 21 C, compared to previously published diffusion coefficients of 1.2 x 10{sup -18} cm{sup 2}s{sup -1} (21 C) to 3.0 x 10{sup -15} cm{sup 2}s{sup -1} (150 C) in the sands and clays. Correcting the diffusion coefficient of {sup 4}He{sub water} for matrix porosity ({approx}3%) and tortuosity ({approx}6-13) produces effective diffusion coefficients of 1 x 10{sup -8} cm{sup 2}s{sup -1} (21 C) and 1 x 10{sup -7} (120 C), effectively isolating pore fluid {sup 4}He from the {sup 4}He contained in the rock matrix. Model calculations indicate that <6% of helium initially dissolved in pore fluids was lost during the sampling process. Complete and quantitative extraction of the pore fluids provide minimum in situ porosity values for sandstones 2.8 {+-} 0.4% (SD, n=4) and mudstones 3.1 {+-} 0.8% (SD, n=4).

  6. Geologic, geochemical, and geographic controls on NORM in produced water from Texas oil, gas, and geothermal reservoirs. Final report

    SciTech Connect (OSTI)

    Fisher, R.

    1995-08-01

    Water from Texas oil, gas, and geothermal wells contains natural radioactivity that ranges from several hundred to several thousand Picocuries per liter (pCi/L). This natural radioactivity in produced fluids and the scale that forms in producing and processing equipment can lead to increased concerns for worker safety and additional costs for handling and disposing of water and scale. Naturally occurring radioactive materials (NORM) in oil and gas operations are mainly caused by concentrations of radium-226 ({sup 226}Ra) and radium-228 ({sup 228}Ra), daughter products of uranium-238 ({sup 238}U) and thorium-232 ({sup 232}Th), respectively, in barite scale. We examined (1) the geographic distribution of high NORM levels in oil-producing and gas-processing equipment, (2) geologic controls on uranium (U), thorium (Th), and radium (Ra) in sedimentary basins and reservoirs, (3) mineralogy of NORM scale, (4) chemical variability and potential to form barite scale in Texas formation waters, (5) Ra activity in Texas formation waters, and (6) geochemical controls on Ra isotopes in formation water and barite scale to explore natural controls on radioactivity. Our approach combined extensive compilations of published data, collection and analyses of new water samples and scale material, and geochemical modeling of scale Precipitation and Ra incorporation in barite.

  7. Application of geochemical techniques to deduce the reservoir performance of the Palinpinon Geothermal Field, Philippines - an update

    SciTech Connect (OSTI)

    Ramos-Candelaria, M.N.; Garcia, S.E.; Hermoso, D.Z.

    1997-12-31

    Regular monitoring of various geochemical parameters in the water and vapor phases of the production wells at the Palinpinon I and II sectors of the Southern Negros Geothermal Field have been useful in the identification of the dominant reservoir processes occurring related to the present exploitation strategy. Observed geochemical and physical changes in the output of production wells have dictated production and injection strategies adopted to maximize production to meet the steam requirements of the power plant. Correlation of both physical and chemical data have identified the following reservoir processes: (1) Injection breakthrough via the Ticala Fault of the highly mineralized (Cl {approximately}8,000-10,500 mg/kg), isotopically enriched ({delta}{sup 18}O = -3.00{per_thousand}, {delta}{sup 2} H = -39{per_thousand}), and gas depleted brine for wells in the SW and central Puhagan. Injection breakthrough is also occurring in Palinpinon II and has resulted in temperature drops of 5-10{degrees}C.2. Pressure drawdown enhanced boiling in the liquid reservoir with steam separation of 220-240{degrees}C, feeding wells tapping the natural steam zone. However, enhanced drawdown has induced the entry of shallow acid steam condensate fluids in some wells (e.g. OK-7, PN-29D, PN-18D), which if not arrested could reduce production.

  8. Hydrologic and Geochemical Monitoring in Long Valley Caldera...

    Open Energy Info (EERE)

    Differences since 1982 in fluid chemistry of springs has been minor except at Casa Diablo, where rapid fluctuations in chemistry result from near surface boiling and...

  9. Fluid delivery control system

    DOE Patents [OSTI]

    Hoff, Brian D.; Johnson, Kris William; Algrain, Marcelo C.; Akasam, Sivaprasad

    2006-06-06

    A method of controlling the delivery of fluid to an engine includes receiving a fuel flow rate signal. An electric pump is arranged to deliver fluid to the engine. The speed of the electric pump is controlled based on the fuel flow rate signal.

  10. FLUID CONTROLLING MEANS

    DOE Patents [OSTI]

    Pouliot, H.N.

    1960-11-01

    A device is described for releasing fluid from a container and delivering it to an outlet conduit. An explosive squib moves a piston so as to cut a wall section from the conduit and to punch a hole in the container, whereby a fluid may pass from the container into the conduit. A deformable sleeve retains the piston in its final position.

  11. FLUID SELECTING APPARATUS

    DOE Patents [OSTI]

    Stinson, W.J.

    1958-09-16

    A valve designed to selectively sample fluids from a number of sources is described. The valve comprises a rotatable operating lever connected through a bellows seal to a rotatable assembly containing a needle valve, bearings, and a rotational lock. The needle valve is connected through a flexible tube to the sample fluid outlet. By rotating the lever the needle valve is placed over . one of several fluid sources and locked in position so that the fluid is traasferred through the flexible tubing and outlet to a remote sampling system. The fluids from the nonselected sources are exhausted to a waste line. This valve constitutes a simple, dependable means of selecting a sample from one of several scurces.

  12. Fluid blade disablement tool

    DOE Patents [OSTI]

    Jakaboski, Juan-Carlos; Hughs, Chance G.; Todd, Steven N.

    2012-01-10

    A fluid blade disablement (FBD) tool that forms both a focused fluid projectile that resembles a blade, which can provide precision penetration of a barrier wall, and a broad fluid projectile that functions substantially like a hammer, which can produce general disruption of structures behind the barrier wall. Embodiments of the FBD tool comprise a container capable of holding fluid, an explosive assembly which is positioned within the container and which comprises an explosive holder and explosive, and a means for detonating. The container has a concavity on the side adjacent to the exposed surface of the explosive. The position of the concavity relative to the explosive and its construction of materials with thicknesses that facilitate inversion and/or rupture of the concavity wall enable the formation of a sharp and coherent blade of fluid advancing ahead of the detonation gases.

  13. Incompressible Viscous Fluid Dynamics

    Energy Science and Technology Software Center (OSTI)

    1992-02-13

    NACHOS2 is a finite element program designed for the analysis of two-dimensional, incompressible viscous fluid flow problems. The basic flows considered may be isothermal, nonisothermal, or may involve other physical processes, such as mass transport. Both steady and transient flows may be analyzed. The class of problems treated are those described by the two-dimensional (plane or axisymmetric) incompressible form of the Navier-Stokes equations. An energy transport equation is included in the formulation for problems inmore » which heat transfer effects are important. Two auxiliary transport equations can be added to describe other physical processes,e.g. mass transfer, chemical reactions. Among the specific types of flow problems treated are: isothermal flow; forced, free, or mixed convection; conjugate heat transfer; flow in saturated porous media with or without heat transfer; and inelastic, non-Newtonian flows with or without heat transfer. Other problem classes are possible depending on the specific definitions applied to the auxiliary transport equations.« less

  14. Incompressible Viscous Fluid Dynamics

    Energy Science and Technology Software Center (OSTI)

    1992-02-13

    NACHOS2 is a finite element program designed for the analysis of two-dimensional, incompressible viscous fluid flow problems. The basic flows considered may be isothermal, nonisothermal, or may involve other physical processes, such as mass transport. Both steady and transient flows may be analyzed. The class of problems treated are those described by the two-dimensional (plane or axisymmetric) incompressible form of the Navier-Stokes equations. An energy transport equation is included in the formulation for problems inmore »which heat transfer effects are important. Two auxiliary transport equations can be added to describe other physical processes,e.g. mass transfer, chemical reactions. Among the specific types of flow problems treated are: isothermal flow; forced, free, or mixed convection; conjugate heat transfer; flow in saturated porous media with or without heat transfer; and inelastic, non-Newtonian flows with or without heat transfer. Other problem classes are possible depending on the specific definitions applied to the auxiliary transport equations.« less

  15. Computational fluid dynamics improves liner cementing operation

    SciTech Connect (OSTI)

    Barton, N.A.; Archer, G.L. ); Seymour, D.A. )

    1994-09-26

    The use of computational fluid dynamics (CFD), an analytical tool for studying fluid mechanics, helped plan the successful cementing of a critical liner in a North Sea extended reach well. The results from CFD analysis increased the confidence in the primary cementing of the liner. CFD modeling was used to quantify the effects of increasing the displacement rate and of rotating the liner on the mud flow distribution in the annulus around the liner.

  16. Fluid sampling tool

    DOE Patents [OSTI]

    Garcia, A.R.; Johnston, R.G.; Martinez, R.K.

    1999-05-25

    A fluid sampling tool is described for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall. 6 figs.

  17. Fluid sampling tool

    DOE Patents [OSTI]

    Garcia, Anthony R.; Johnston, Roger G.; Martinez, Ronald K.

    1999-05-25

    A fluid sampling tool for sampling fluid from a container. The tool has a fluid collecting portion which is drilled into the container wall, thereby affixing it to the wall. The tool may have a fluid extracting section which withdraws fluid collected by the fluid collecting section. The fluid collecting section has a fluted shank with an end configured to drill a hole into a container wall. The shank has a threaded portion for tapping the borehole. The shank is threadably engaged to a cylindrical housing having an inner axial passageway sealed at one end by a septum. A flexible member having a cylindrical portion and a bulbous portion is provided. The housing can be slid into an inner axial passageway in the cylindrical portion and sealed to the flexible member. The bulbous portion has an outer lip defining an opening. The housing is clamped into the chuck of a drill, the lip of the bulbous section is pressed against a container wall until the shank touches the wall, and the user operates the drill. Wall shavings (kerf) are confined in a chamber formed in the bulbous section as it folds when the shank advances inside the container. After sufficient advancement of the shank, an o-ring makes a seal with the container wall.

  18. Geochemical drivers of organic matter decomposition in Arctic tundra soils

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Herndon, Elizabeth M.; Yang, Ziming; Graham, David E.; Wullschleger, Stan D.; Gu, Baohua; Liang, Liyuan; Bargar, John; Janot, Noemie; Regier, Tom Z.

    2015-12-07

    Climate change is warming tundra ecosystems in the Arctic, resulting in the decomposition of previously-frozen soil organic matter (SOM) and release of carbon (C) to the atmosphere; however, the processes that control SOM decomposition and C emissions remain highly uncertain. In this study, we evaluate geochemical factors that influence anaerobic production of carbon dioxide (CO2) and methane (CH4) in the active layers of four ice-wedge polygons. Surface and soil pore waters were collected during the annual thaw season over a two-year period in an area containing waterlogged, low-centered polygons and well-drained, high-centered polygons. We report spatial and seasonal patterns ofmore » dissolved gases in relation to the geochemical properties of Fe and organic C as determined using spectroscopic and chromatographic techniques. Iron was present as Fe(II) in soil solution near the permafrost boundary but enriched as Fe(III) in the middle of the active layer, similar to dissolved aromatic-C and organic acids. Dissolved CH4 increased relative to dissolved CO2 with depth and varied with soil moisture in the middle of the active layer in patterns that were positively correlated with the proportion of dissolved Fe(III) in transitional and low-centered polygon soils but negatively correlated in the drier flat- and high-centered polygons. These results suggest that microbial-mediated Fe oxidation and reduction influence respiration/fermentation of SOM and production of substrates (e.g., low-molecular-weight organic acids) for methanogenesis. As a result, we infer that geochemical differences induced by water saturation dictate microbial products of SOM decomposition, and Fe geochemistry is an important factor regulating methanogenesis in anoxic tundra soils.« less

  19. Geochemical drivers of organic matter decomposition in Arctic tundra soils

    SciTech Connect (OSTI)

    Herndon, Elizabeth M.; Yang, Ziming; Graham, David E.; Wullschleger, Stan D.; Gu, Baohua; Liang, Liyuan; Bargar, John; Janot, Noemie; Regier, Tom Z.

    2015-12-07

    Climate change is warming tundra ecosystems in the Arctic, resulting in the decomposition of previously-frozen soil organic matter (SOM) and release of carbon (C) to the atmosphere; however, the processes that control SOM decomposition and C emissions remain highly uncertain. In this study, we evaluate geochemical factors that influence anaerobic production of carbon dioxide (CO2) and methane (CH4) in the active layers of four ice-wedge polygons. Surface and soil pore waters were collected during the annual thaw season over a two-year period in an area containing waterlogged, low-centered polygons and well-drained, high-centered polygons. We report spatial and seasonal patterns of dissolved gases in relation to the geochemical properties of Fe and organic C as determined using spectroscopic and chromatographic techniques. Iron was present as Fe(II) in soil solution near the permafrost boundary but enriched as Fe(III) in the middle of the active layer, similar to dissolved aromatic-C and organic acids. Dissolved CH4 increased relative to dissolved CO2 with depth and varied with soil moisture in the middle of the active layer in patterns that were positively correlated with the proportion of dissolved Fe(III) in transitional and low-centered polygon soils but negatively correlated in the drier flat- and high-centered polygons. These results suggest that microbial-mediated Fe oxidation and reduction influence respiration/fermentation of SOM and production of substrates (e.g., low-molecular-weight organic acids) for methanogenesis. As a result, we infer that geochemical differences induced by water saturation dictate microbial products of SOM decomposition, and Fe geochemistry is an important factor regulating methanogenesis in anoxic tundra soils.

  20. Multiphase fluid characterization system

    DOE Patents [OSTI]

    Sinha, Dipen N.

    2014-09-02

    A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

  1. Supercritical fluid extraction

    DOE Patents [OSTI]

    Wai, Chien M.; Laintz, Kenneth

    1994-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a supercritical fluid solvent containing a chelating agent. The chelating agent forms chelates that are soluble in the supercritical fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent is a fluorinated or lipophilic crown ether or fluorinated dithiocarbamate. The method provides an environmentally benign process for removing contaminants from industrial waste without using acids or biologically harmful solvents. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  2. EQ3/6 A Software Package for Geochemical Modeling

    Energy Science and Technology Software Center (OSTI)

    2010-12-13

    EQ3/6 is a software package for modeling geochemical interactions between aqueous solution, solids, and gases, following principles of chemical thermodynamics and chemical kinetics. It is useful for interpreting aqueiou solution chemical compositions and for calculating the consequences of reaction of such solutions with minerals, other solids, and gases. It is designed to run in a command line environment. EQPT is a thermodynamic data file preprocessor. EQ3NR is a speciation-solubility code. EQ6 is a reaction pathmore » code.« less

  3. Improved Geothermometry Through Multivariate Reaction Path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators

    Broader source: Energy.gov [DOE]

    Improved Geothermometry Through Multivariate Reaction Path Modeling and Evaluation of Geomicrobiological Influences on Geochemical Temperature Indicators presentation at the April 2013 peer review meeting held in Denver, Colorado.

  4. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide...

    Office of Scientific and Technical Information (OSTI)

    Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1 Citation Details...

  5. Optimizing parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal systems

    Broader source: Energy.gov [DOE]

    Optimizing parameters for predicting the geochemical behavior and performance of discrete fracture networks in geothermal systems presentation at the April 2013 peer review meeting held in Denver, Colorado.

  6. Basic fluid system trainer

    DOE Patents [OSTI]

    Semans, Joseph P.; Johnson, Peter G.; LeBoeuf, Jr., Robert F.; Kromka, Joseph A.; Goron, Ronald H.; Hay, George D.

    1993-01-01

    A trainer, mounted and housed within a mobile console, is used to teach and reinforce fluid principles to students. The system trainer has two centrifugal pumps, each driven by a corresponding two-speed electric motor. The motors are controlled by motor controllers for operating the pumps to circulate the fluid stored within a supply tank through a closed system. The pumps may be connected in series or in parallel. A number of valves are also included within the system to effect different flow paths for the fluid. In addition, temperature and pressure sensing instruments are installed throughout the closed system for measuring the characteristics of the fluid, as it passes through the different valves and pumps. These measurements are indicated on a front panel mounted to the console, as a teaching aid, to allow the students to observe the characteristics of the system.

  7. Fluid pumping apparatus

    DOE Patents [OSTI]

    West, Phillip B.

    2006-01-17

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  8. Valve for fluid control

    DOE Patents [OSTI]

    Oborny, Michael C.; Paul, Phillip H.; Hencken, Kenneth R.; Frye-Mason, Gregory C.; Manginell, Ronald P.

    2001-01-01

    A valve for controlling fluid flows. This valve, which includes both an actuation device and a valve body provides: the ability to incorporate both the actuation device and valve into a unitary structure that can be placed onto a microchip, the ability to generate higher actuation pressures and thus control higher fluid pressures than conventional microvalves, and a device that draws only microwatts of power. An electrokinetic pump that converts electric potential to hydraulic force is used to operate, or actuate, the valve.

  9. Fluid injection for salt water disposal and enhanced oil recovery as a potential problem for the WIPP: Proceedings of a June 1995 workshop and analysis

    SciTech Connect (OSTI)

    Silva, M.K.

    1996-08-01

    The Waste Isolation Pilot Plant (WIPP) is a facility of the U.S. Department of Energy (DOE), designed and constructed for the permanent disposal of transuranic (TRU) defense waste. The repository is sited in the New Mexico portion of the Delaware Basin, at a depth of 655 meters, in the salt beds of the Salado Formation. The WIPP is surrounded by reserves and production of potash, crude oil and natural gas. In selecting a repository site, concerns about extensive oil field development eliminated the Mescalero Plains site in Chaves County and concerns about future waterflooding in nearby oil fields helped eliminate the Alternate II site in Lea County. Ultimately, the Los Medanos site in Eddy County was selected, relying in part on the conclusion that there were no oil reserves at the site. For oil field operations, the problem of water migrating from the injection zone, through other formations such as the Salado, and onto adjacent property has long been recognized. In 1980, the DOE intended to prohibit secondary recovery by waterflooding in one mile buffer surrounding the WIPP Site. However, the DOE relinquished the right to restrict waterflooding based on a natural resources report which maintained that there was a minimal amount of crude oil likely to exist at the WIPP site, hence waterflooding adjacent to the WIPP would be unlikely. This document presents the workshop presentations and analyses for the fluid injection for salt water disposal and enhanced oil recovery utilizing fluid injection and their potential effects on the WIPP facility.

  10. Geochemical and Isotopic Interpretations of Groundwater Flow in the Oasis Valley Flow System, Southern Nevada

    SciTech Connect (OSTI)

    J.M. Thomas; F.C. Benedict, Jr.; T.P. Rose; R.L. Hershey; J.B. Paces; Z.E. Peterman; I.M. Farnham; K.H. Johannesson; A.K. Singh; K.J. Stetzenbach; G.B. Hudson; J.M. Kenneally; G.F. Eaton; D.K. Smith

    2003-01-08

    This report summarizes the findings of a geochemical investigation of the Pahute Mesa-Oasis Valley groundwater flow system in southwestern Nevada. It is intended to provide geochemical data and interpretations in support of flow and contaminant transport modeling for the Western and Central Pahute Mesa Corrective Action Units.

  11. Fluid driven reciprocating apparatus

    DOE Patents [OSTI]

    Whitehead, J.C.

    1997-04-01

    An apparatus is described comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached. 13 figs.

  12. Fluid driven recipricating apparatus

    DOE Patents [OSTI]

    Whitehead, John C.

    1997-01-01

    An apparatus comprising a pair of fluid driven pump assemblies in a back-to-back configuration to yield a bi-directional pump. Each of the pump assemblies includes a piston or diaphragm which divides a chamber therein to define a power section and a pumping section. An intake-exhaust valve is connected to each of the power sections of the pump chambers, and function to direct fluid, such as compressed air, into the power section and exhaust fluid therefrom. At least one of the pistons or diaphragms is connected by a rod assembly which is constructed to define a signal valve, whereby the intake-exhaust valve of one pump assembly is controlled by the position or location of the piston or diaphragm in the other pump assembly through the operation of the rod assembly signal valve. Each of the pumping sections of the pump assemblies are provided with intake and exhaust valves to enable filling of the pumping section with fluid and discharging fluid therefrom when a desired pressure has been reached.

  13. Boiler using combustible fluid

    DOE Patents [OSTI]

    Baumgartner, H.; Meier, J.G.

    1974-07-03

    A fluid fuel boiler is described comprising a combustion chamber, a cover on the combustion chamber having an opening for introducing a combustion-supporting gaseous fluid through said openings, means to impart rotation to the gaseous fluid about an axis of the combustion chamber, a burner for introducing a fluid fuel into the chamber mixed with the gaseous fluid for combustion thereof, the cover having a generally frustro-conical configuration diverging from the opening toward the interior of the chamber at an angle of between 15/sup 0/ and 55/sup 0/; means defining said combustion chamber having means defining a plurality of axial hot gas flow paths from a downstream portion of the combustion chamber to flow hot gases into an upstream portion of the combustion chamber, and means for diverting some of the hot gas flow along paths in a direction circumferentially of the combustion chamber, with the latter paths being immersed in the water flow path thereby to improve heat transfer and terminating in a gas outlet, the combustion chamber comprising at least one modular element, joined axially to the frustro-conical cover and coaxial therewith. The modular element comprises an inner ring and means of defining the circumferential, radial, and spiral flow paths of the hot gases.

  14. Fluorescent fluid interface position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2004-02-17

    A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.

  15. Completion and workover fluid

    SciTech Connect (OSTI)

    Block, J.

    1985-09-17

    An aqueous completion or workover fluid for oil or gas wells having at least two solid components. One component is a hydroxy containing aluminum compound represented by the formula AlO(OH).xH/sub 2/O. The second component is a fluid loss control agent which can be either a cross-linked polyvinyl alcohol or a cross-linked hydroxyalkyl cellulose reaction product. An acid soluble weighting agent can be added for wells having higher down hole pressures. Examples of the weighting agents include iron carbonates, iron oxides, calcium carbonates, dolomite, sodium or calcium chloride, zinc bromide and calcium bromide. After use, the fluid can be displaced from the well with acid, e.g. 15% HCl, and the cake previously deposited on the bore-hole wall is dissolved by the acid so that no damaging residue remains.

  16. Fluid lubricated bearing construction

    DOE Patents [OSTI]

    Dunning, John R.; Boorse, Henry A.; Boeker, Gilbert F.

    1976-01-01

    1. A fluid lubricated thrust bearing assembly comprising, in combination, a first bearing member having a plain bearing surface, a second bearing member having a bearing surface confronting the bearing surface of said first bearing member and provided with at least one spiral groove extending inwardly from the periphery of said second bearing member, one of said bearing members having an axial fluid-tight well, a source of fluid lubricant adjacent to the periphery of said second bearing member, and means for relatively rotating said bearing members to cause said lubricant to be drawn through said groove and to flow between said bearing surfaces, whereby a sufficient pressure is built up between said bearing surfaces and in said well to tend to separate said bearing surfaces.

  17. Hazardous fluid leak detector

    DOE Patents [OSTI]

    Gray, Harold E.; McLaurin, Felder M.; Ortiz, Monico; Huth, William A.

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  18. Hydrodynamic 'memory' of binary fluid mixtures

    SciTech Connect (OSTI)

    Kalashnik, M. V.; Ingel, L. Kh.

    2006-07-15

    A theoretical analysis is presented of hydrostatic adjustment in a two-component fluid system, such as seawater stratified with respect to temperature and salinity. Both linear approximation and nonlinear problem are investigated. It is shown that scenarios of relaxation to a hydrostatically balanced state in binary fluid mixtures may substantially differ from hydrostatic adjustment in fluids that can be stratified only with respect to temperature. In particular, inviscid two-component fluids have 'memory': a horizontally nonuniform disturbance in the initial temperature or salinity distribution does not vanish even at the final stage, transforming into a persistent thermohaline 'trace.' Despite stability of density stratification and convective stability of the fluid system by all known criteria, an initial temperature disturbance may not decay and may even increase in amplitude. Moreover, its sign may change (depending on the relative contributions of temperature and salinity to stable background density stratification). Hydrostatic adjustment may involve development of discontinuous distributions from smooth initial temperature or concentration distributions. These properties of two-component fluids explain, in particular, the occurrence of persistent horizontally or vertically nonuniform temperature and salinity distributions in the ocean, including discontinuous ones.

  19. WATEQ3 geochemical model: thermodynamic data for several additional solids

    SciTech Connect (OSTI)

    Krupka, K.M.; Jenne, E.A.

    1982-09-01

    Geochemical models such as WATEQ3 can be used to model the concentrations of water-soluble pollutants that may result from the disposal of nuclear waste and retorted oil shale. However, for a model to competently deal with these water-soluble pollutants, an adequate thermodynamic data base must be provided that includes elements identified as important in modeling these pollutants. To this end, several minerals and related solid phases were identified that were absent from the thermodynamic data base of WATEQ3. In this study, the thermodynamic data for the identified solids were compiled and selected from several published tabulations of thermodynamic data. For these solids, an accepted Gibbs free energy of formation, ..delta..G/sup 0//sub f,298/, was selected for each solid phase based on the recentness of the tabulated data and on considerations of internal consistency with respect to both the published tabulations and the existing data in WATEQ3. For those solids not included in these published tabulations, Gibbs free energies of formation were calculated from published solubility data (e.g., lepidocrocite), or were estimated (e.g., nontronite) using a free-energy summation method described by Mattigod and Sposito (1978). The accepted or estimated free energies were then combined with internally consistent, ancillary thermodynamic data to calculate equilibrium constants for the hydrolysis reactions of these minerals and related solid phases. Including these values in the WATEQ3 data base increased the competency of this geochemical model in applications associated with the disposal of nuclear waste and retorted oil shale. Additional minerals and related solid phases that need to be added to the solubility submodel will be identified as modeling applications continue in these two programs.

  20. System for Dispensing a Precise Amount of Fluid

    DOE Patents [OSTI]

    Benett, William J.; Krulevitch, Peter A.; Visuri, Steven R.; Dzenitis, John M.; Ness, Kevin D.

    2008-08-12

    A dispensing system delivers a precise amount of fluid for biological or chemical processing and/or analysis. Dispensing means moves the fluid. The dispensing means is operated by a pneumatic force. Connection means delivers the fluid to the desired location. An actuator means provides the pneumatic force to the dispensing means. Valving means transmits the pneumatic force from the actuator means to the dispensing means.

  1. Geochemical engineering design tools for uranium in situ recovery : the HYDROGEOCHEM codes.

    SciTech Connect (OSTI)

    Siegel, Malcolm Dean; Li, Ming-Hsu; Yeh, Gour-Tsyh

    2010-11-01

    Geochemical Engineering Design (GED) is based on applications of the principles and various computer models that describe the biogeochemistry and physics of removal of contaminants from water by adsorption, precipitation and filtration. It can be used to optimize or evaluate the efficiency of all phases of in situ recovery (ISR). The primary tools of GED are reactive transport models; this talk describes the potential application of the HYDROGEOCHEM family of codes to ISR. The codes can describe a complete suite of equilibrium or kinetic aqueous complexation, adsorption-desorption, precipitation-dissolution, redox, and acid-base reactions in variably saturated media with density-dependent fluid flow. Applications to ISR are illustrated with simulations of (1) the effectiveness of a reactive barrier to prevent off-site uranium migration and (2) evaluation of the effect of sorption hysteresis on natural attenuation. In the first example, it can be seen that the apparent effectiveness of the barrier depends on monitoring location and that it changes over time. This is due to changes in pH, saturation of sorption sites, as well as the geometry of the flow field. The second simulation shows how sorption hysteresis leads to observable attenuation of a uranium contamination plume. Different sorption mechanisms including fast (or reversible), slow, and irreversible sorption were simulated. The migration of the dissolved and total uranium plumes for the different cases are compared and the simulations show that when 50-100% of the sites have slow desorption rates, the center of mass of the dissolved uranium plume begins to move upstream. This would correspond to the case in which the plume boundaries begin to shrink as required for demonstration of natural attenuation.

  2. Ultrasonic fluid densitometry and densitometer

    DOE Patents [OSTI]

    Greenwood, M.S.; Lail, J.C.

    1998-01-13

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface. 6 figs.

  3. Ultrasonic fluid densitometry and densitometer

    DOE Patents [OSTI]

    Greenwood, Margaret S.; Lail, Jason C.

    1998-01-01

    The present invention is an ultrasonic fluid densitometer that uses a material wedge having an acoustic impedance that is near the acoustic impedance of the fluid, specifically less than a factor of 11 greater than the acoustic impedance of the fluid. The invention also includes a wedge having at least two transducers for transmitting and receiving ultrasonic signals internally reflected within the material wedge. Density of a fluid is determined by immersing the wedge into the fluid and measuring reflection of ultrasound at the wedge-fluid interface.

  4. Microscale depletion of high abundance proteins in human biofluids using IgY14 immunoaffinity resin: Analysis of human plasma and cerebrospinal fluid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hyung, Seok Won; Piehowski, Paul D.; Moore, Ronald J.; Orton, Daniel J.; Schepmoes, Athena A.; Clauss, Therese R.; Chu, Rosalie K.; Fillmore, Thomas L.; Brewer, Heather M.; Liu, Tao; et al

    2014-09-06

    Removal of highly abundant proteins in plasma is often carried out using immunoaffinity depletion to extend the dynamic range of measurements to lower abundance species. While commercial depletion columns are available for this purpose, they generally are not applicable to limited sample quantities (<20 µL) due to low yields stemming from losses caused by nonspecific binding to the column matrix. Additionally, the cost of the depletion media can be prohibitive for larger scale studies. Modern LC-MS instrumentation provides the sensitivity necessary to scale-down depletion methods with minimal sacrifice to proteome coverage, which makes smaller volume depletion columns desirable for maximizingmore » sample recovery when samples are limited, as well as for reducing the expense of large scale studies. We characterized the performance of a 346 µL column volume micro-scale depletion system, using four different flow rates to determine the most effective depletion conditions for ~6 μL injections of human plasma proteins and then evaluated depletion reproducibility at the optimum flow rate condition. Depletion of plasma using a commercial 10 mL depletion column served as the control. Results showed depletion efficiency of the micro-scale column increased as flow rate decreased, and that our micro-depletion was reproducible. We found, in an initial application, a 600 µL sample of human cerebral spinal fluid (CSF) pooled from multiple sclerosis patients was depleted and then analyzed using reversed phase liquid chromatography-mass spectrometry to demonstrate the utility of the system for this important biofluid where sample quantities are more commonly limited.« less

  5. Coupled optical/thermal/fluid analysis and design requirements for operation and testing of a supercritical CO2 solar receiver.

    SciTech Connect (OSTI)

    Khivsara, Sagar

    2015-01-01

    Recent studies have evaluated closed-loop supercritical carbon dioxide (s-CO2) Brayton cycles to be a higher energy-density system in comparison to conventional superheated steam Rankine systems. At turbine inlet conditions of 923K and 25 MPa, high thermal efficiency (~50%) can be achieved. Achieving these high efficiencies will make concentrating solar power (CSP) technologies a competitive alternative to current power generation methods. To incorporate a s-CO2 Brayton power cycle in a solar power tower system, the development of a solar receiver capable of providing an outlet temperature of 923 K (at 25 MPa) is necessary. To satisfy the temperature requirements of a s-CO2 Brayton cycle with recuperation and recompression, it is required to heat s-CO2 by a temperature of ~200 K as it passes through the solar receiver. Our objective was to develop an optical-thermal-fluid model to design and evaluate a tubular receiver that will receive a heat input ~1 MWth from a heliostat field. We also undertook the documentation of design requirements for the development, testing and safe operation of a direct s-CO2 solar receiver. The main purpose of this document is to serve as a reference and guideline for design and testing requirements, as well as to address the technical challenges and provide initial parameters for the computational models that will be employed for the development of s-CO2 receivers.

  6. Magnetically stimulated fluid flow patterns

    SciTech Connect (OSTI)

    Martin, Jim; Solis, Kyle

    2014-03-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  7. Magnetically stimulated fluid flow patterns

    ScienceCinema (OSTI)

    Martin, Jim; Solis, Kyle

    2014-08-06

    Sandia National Laboratories' Jim Martin and Kyle Solis explain research on the effects of magnetic fields on fluid flows and how they stimulate vigorous flows. Fluid flow is a necessary phenomenon in everything from reactors to cooling engines in cars.

  8. Production of MHD fluid

    DOE Patents [OSTI]

    Lacey, James J.; Kurtzrock, Roy C.; Bienstock, Daniel

    1976-08-24

    A hot gaseous fluid of low ash content, suitable for use in open-cycle MHD (magnetohydrodynamic) power generation, is produced by means of a three-stage process comprising (1) partial combustion of a fossil fuel to produce a hot gaseous product comprising CO.sub.2 CO, and H.sub.2 O, (2) reformation of the gaseous product from stage (1) by means of a fluidized char bed, whereby CO.sub.2 and H.sub.2 O are converted to CO and H.sub.2, and (3) combustion of CO and H.sub.2 from stage (2) to produce a low ash-content fluid (flue gas) comprising CO.sub.2 and H.sub.2 O and having a temperature of about 4000.degree. to 5000.degree.F.

  9. Oscillating fluid power generator

    DOE Patents [OSTI]

    Morris, David C

    2014-02-25

    A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

  10. Drilling fluid filter

    DOE Patents [OSTI]

    Hall, David R.; Fox, Joe; Garner, Kory

    2007-01-23

    A drilling fluid filter for placement within a bore wall of a tubular drill string component comprises a perforated receptacle with an open end and a closed end. A hanger for engagement with the bore wall is mounted at the open end of the perforated receptacle. A mandrel is adjacent and attached to the open end of the perforated receptacle. A linkage connects the mandrel to the hanger. The linkage may be selected from the group consisting of struts, articulated struts and cams. The mandrel operates on the hanger through the linkage to engage and disengage the drilling fluid filter from the tubular drill string component. The mandrel may have a stationary portion comprising a first attachment to the open end of the perforated receptacle and a telescoping adjustable portion comprising a second attachment to the linkage. The mandrel may also comprise a top-hole interface for top-hole equipment.

  11. Detecting low levels of radionuclides in fluids

    DOE Patents [OSTI]

    Patch, Keith D.; Morgan, Dean T.

    2000-01-01

    An apparatus and method for detecting low levels of one or more radionuclides in a fluid sample uses a substrate that includes an ion exchange resin or other sorbent material to collect the radionuclides. A collecting apparatus includes a collecting chamber that exposes the substrate to a measured amount of the fluid sample such that radionuclides in the fluid sample are collected by the ion exchange resin. A drying apparatus, which can include a drying chamber, then dries the substrate. A measuring apparatus measures emissions from radionuclides collected on the substrate. The substrate is positioned in a measuring chamber proximate to a detector, which provides a signal in response to emissions from the radionuclides. Other analysis methods can be used to detect non-radioactive analytes, which can be collected with other types of sorbent materials.

  12. A Geological and Hydro-Geochemical Study of the Animas Geothermal...

    Open Energy Info (EERE)

    Hydro-Geochemical Study of the Animas Geothermal Area, Hidalgo County, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A Geological...

  13. 31 TAC, part 1, chapter 9, rule 9.11 Geophysical and Geochemical...

    Open Energy Info (EERE)

    9, rule 9.11 Geophysical and Geochemical Exploration Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: 31 TAC, part...

  14. Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide...

    Office of Scientific and Technical Information (OSTI)

    Reduced-Order Model for the Geochemical Impacts of Carbon Dioxide, Brine and Trace Metal Leakage into an Unconfined, Oxidizing Carbonate Aquifer, Version 2.1 Bacon, Diana H. carbon...

  15. Merging high resolution geophysical and geochemical surveys to reduce exploration risk at Glass Buttes, Oregon

    Broader source: Energy.gov [DOE]

    DOE Geothermal Technologies Peer Review - 2010. The primary objective of this project is to combine a suite of high resolution geophysical and geochemical techniques to reduce exploration risk by characterizing hydrothermal alteration, fault geometries and relationships.

  16. A geochemical model of the Kilauea east rift zone | Open Energy...

    Open Energy Info (EERE)

    rift zone Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A geochemical model of the Kilauea east rift zone Abstract NA Author Donald Thomas...

  17. Supercritical fluid reverse micelle separation

    DOE Patents [OSTI]

    Fulton, John L.; Smith, Richard D.

    1993-01-01

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W.sub.o that determines the maximum size of the reverse micelles. The maximum ratio W.sub.o of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions.

  18. Supercritical fluid reverse micelle separation

    DOE Patents [OSTI]

    Fulton, J.L.; Smith, R.D.

    1993-11-30

    A method of separating solute material from a polar fluid in a first polar fluid phase is provided. The method comprises combining a polar fluid, a second fluid that is a gas at standard temperature and pressure and has a critical density, and a surfactant. The solute material is dissolved in the polar fluid to define the first polar fluid phase. The combined polar and second fluids, surfactant, and solute material dissolved in the polar fluid is maintained under near critical or supercritical temperature and pressure conditions such that the density of the second fluid exceeds the critical density thereof. In this way, a reverse micelle system defining a reverse micelle solvent is formed which comprises a continuous phase in the second fluid and a plurality of reverse micelles dispersed in the continuous phase. The solute material is dissolved in the polar fluid and is in chemical equilibrium with the reverse micelles. The first polar fluid phase and the continuous phase are immiscible. The reverse micelles each comprise a dynamic aggregate of surfactant molecules surrounding a core of the polar fluid. The reverse micelle solvent has a polar fluid-to-surfactant molar ratio W, which can vary over a range having a maximum ratio W[sub o] that determines the maximum size of the reverse micelles. The maximum ratio W[sub o] of the reverse micelle solvent is then varied, and the solute material from the first polar fluid phase is transported into the reverse micelles in the continuous phase at an extraction efficiency determined by the critical or supercritical conditions. 27 figures.

  19. Geochemical Monitoring Considerations for the FutureGen 2.0 Project

    SciTech Connect (OSTI)

    Amonette, James E.; Johnson, Timothy A.; Spencer, Clayton F.; Zhong, Lirong; Szecsody, James E.; Vermeul, Vince R.

    2014-12-31

    Geochemical monitoring is an essential component of a suite of monitoring technologies designed to evaluate CO2 mass balance and detect possible loss of containment at the FutureGen 2.0 geologic sequestration site near Jacksonville, IL. This presentation gives an overview of the potential geochemical approaches and tracer technologies that were considered, and describes the evaluation process by which the most cost-effective and robust of these were selected for implementation

  20. Fluid bed material transfer method

    DOE Patents [OSTI]

    Pinske, Jr., Edward E.

    1994-01-01

    A fluidized bed apparatus comprising a pair of separated fluid bed enclosures, each enclosing a fluid bed carried on an air distributor plate supplied with fluidizing air from below the plate. At least one equalizing duct extending through sidewalls of both fluid bed enclosures and flexibly engaged therewith to communicate the fluid beds with each other. The equalizing duct being surrounded by insulation which is in turn encased by an outer duct having expansion means and being fixed between the sidewalls of the fluid bed enclosures.

  1. Heat transfer fluids containing nanoparticles

    DOE Patents [OSTI]

    Singh, Dileep; Routbort, Jules; Routbort, A.J.; Yu, Wenhua; Timofeeva, Elena; Smith, David S.; France, David M.

    2016-05-17

    A nanofluid of a base heat transfer fluid and a plurality of ceramic nanoparticles suspended throughout the base heat transfer fluid applicable to commercial and industrial heat transfer applications. The nanofluid is stable, non-reactive and exhibits enhanced heat transfer properties relative to the base heat transfer fluid, with only minimal increases in pumping power required relative to the base heat transfer fluid. In a particular embodiment, the plurality of ceramic nanoparticles comprise silicon carbide and the base heat transfer fluid comprises water and water and ethylene glycol mixtures.

  2. Geochemical and physical properties of soils and shallow sediments at the Savannah River Site

    SciTech Connect (OSTI)

    Looney, B.B.; Eddy, C.A.; Ramdeen, M.; Pickett, J. ); Rogers, V. . Savannah River Site Savannah River Lab., Aiken, SC ); Scott, M.T.; Shirley, P.A. )

    1990-08-31

    A program to characterize the geochemical and physical properties of the unimpacted soils and shallow sediments at the Savannah River Site (SRS) has been completed. The maximum, minimum, median, standard deviation, and mean values for metals, radionuclides, inorganic anions, organic compounds, and agricultural indicator parameters are summarized for six soil series that were identified as representative of the 29 soil series at SRS. The soils from unimpacted areas of SRS are typical of soils found in moderately aggressive weathering environments, including the southeastern United States. Appendix 8 organic compounds were detected in all samples. Since these constituents are not generally present in soil, this portion of the investigation was intended to assess possible laboratory artifacts. An additional objective of the SRS Soil Study was to determine if the composition of the split spoon sampler biased chemical analysis of the soils. Twenty-five duplicate samples were analyzed for a number of metals, radiological and agricultural parameters, and organics by two laboratories currently contracted with to analyze samples during waste site characterization. In all cases, the absolute values of the average differences are relatively small compared to the overall variability in the population. 31 refs., 14 figs., 48 tabs.

  3. Geochemical characteristics of oils from New Zealand, Papua New Guinea and Taiwan

    SciTech Connect (OSTI)

    Jung-Nan, Oung; Philp, P.R. )

    1990-05-01

    Oils from a number of convergent margin settings of the Pacific and Philippine plates have been characterized by geochemical techniques including gas chromatography-mass spectrometry and carbon isotopic analysis. The oils, collected from New Zealand, New Guinea, and Taiwan, are described in terms of their biomarker compositions, and these distributions are used to evaluate the nature of the source material responsible for the oils. For the most part these oils are of Tertiary age and the source materials were derived predominantly from higher plants. The authors describe the effects of a convergent margin on the relative maturity of the oils as reflected by their biomarker distributions. In other words, do any of the oils from these regions have anomalous maturity values that can be attributed to additional heating resulting from plate movement in the area. The results will also be compared with oils from similar source materials but not in convergent margin settings (for example, the Gippsland basin, Australia) to further evaluate the effects of the convergent margin setting on the biomarker distributions.

  4. Acoustic concentration of particles in fluid flow

    DOE Patents [OSTI]

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  5. Methodologies for Reservoir Characterization Using Fluid Inclusion...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry Methodologies for Reservoir Characterization Using Fluid Inclusion Gas Chemistry Methodologies for ...

  6. Geochemical characteristics of bitumens and seeps from Tanzania

    SciTech Connect (OSTI)

    Mpanju, F. ); Philp, P. )

    1991-03-01

    A number of bitumen extracts from prospective source rocks and oil seeps of potential oil-producing areas in Tanzania have been characterized by a variety of geochemical techniques. The data obtained from this study have provided additional insight into the source rock potential of these areas. However, in this paper it is proposed to discuss in detail the results from two of the more unusual samples in this region, namely Wingayongo and Pemba. The Wingayongo bitumens isolated from an exposed Neocomian-aged sandstone, possibly a paleoreservoir, are almost totally devoid of n-alkanes and steranes and dominated by hopane-type biomarkers with the so-called immature {beta}{beta}-stereochemistry at the C{sub 17} and C{sub 21} positions. There is no typical evidence of biodegradation having occurred leading to the proposal of an unusual source material or maturity history for this sample. The Pemba seep samples were also characterized by relatively high concentrations of hopanes with the immature stereochemistry at the C{sub 17} and C{sub 21} positions and a virtual absence of n-alkanes and steranes. The aromatic fractions contained relatively high concentrations of hopanic acids, with the immature stereochemistry at C{sub 17} and C{sub 21} positions and a virtual absence of n-alkanes and steranes. The aromatic fractions contained relatively high concentrations of hopanic acids, with the immature stereochemistry at C{sub 17} and C{sub 21}. On the basis of these data, it is proposed that the seeps in the Pemba region are not true oil seeps. Rather they are formed as a result of extremely high levels of bacterial activity with the bacteria utilizing natural gas in the region as the substrate. The net result is a material referred to in other areas of the world as paraffin dirt whose occurrence results from extensive microbial activity in the region and not directly from seepage of products having a thermal origin.

  7. Fluid lubricated bearing assembly

    DOE Patents [OSTI]

    Boorse, Henry A.; Boeker, Gilbert F.; Menke, John R.

    1976-01-01

    1. A support for a loaded rotatable shaft comprising in combination on a housing having a fluid-tight cavity encasing an end portion of said shaft, a thrust bearing near the open end of said cavity for supporting the axial thrust of said shaft, said thrust bearing comprising a thrust plate mounted in said housing and a thrust collar mounted on said shaft, said thrust plate having a central opening the peripheral portion of which is hermetically sealed to said housing at the open end of said cavity, and means for supplying a fluid lubricant to said thrust bearing, said thrust bearing having a lubricant-conducting path connecting said lubricant supplying means with the space between said thrust plate and collar intermediate the peripheries thereof, the surfaces of said plate and collar being constructed and arranged to inhibit radial flow of lubricant and, on rotation of said thrust collar, to draw lubricant through said path between the bearing surfaces and to increase the pressure therebetween and in said cavity and thereby exert a supporting force on said end portion of said shaft.

  8. Fluid injection microvalve

    DOE Patents [OSTI]

    Renzi, Ronald F.

    2005-11-22

    A microvalve for extracting small volume samples into analytical devices, e.g., high pressure liquid chromatography (HPLC) column, includes: a first body having a first interior surface and two or more outlet ports at the first interior surface that are in fluid communication with two or more first channels; a second body having a second interior surface and two or more inlet ports at the second interior surface that are in fluid communication with two or more second channels wherein the outlet ports of the first body are coaxial with the corresponding inlet ports of the second body such that there are at least two sets of coaxial port outlets and port inlets; a plate member, which has a substantially planar first mating surface and a substantially planar second mating surface, that is slidably positioned between the first interior surface and the second interior surface wherein the plate member has at least one aperture that traverses the height of the plate member, and wherein the aperture can be positioned to be coaxial with any of the at least two sets of coaxial port outlets and port inlets; and means for securing the first surface of the first body against the first mating surface and for securing the second surface of the second body against the second mating surface.

  9. Controlling Subsurface Fractures and Fluid Flow: A Basic Research Agenda

    SciTech Connect (OSTI)

    Pyrak-Nolte, Laura J; DePaolo, Donald J.; Pietraß, Tanja

    2015-05-22

    . In response, the Office of Science, through its Office of Basic Energy Science (BES), convened a roundtable consisting of 15 national lab, university and industry geoscience experts to brainstorm basic research areas that underpin the SubTER goals but are currently underrepresented in the BES research portfolio. Held in Germantown, Maryland on May 22, 2015, the round-table participants developed a basic research agenda that is detailed in this report. Highlights include the following: -A grand challenge calling for advanced imaging of stress and geological processes to help understand how stresses and chemical substances are distributed in the subsurface—knowledge that is critical to all aspects of subsurface engineering; -A priority research direction aimed at achieving control of fluid flow through fractured media; -A priority research direction aimed at better understanding how mechanical and geochemical perturbations to subsurface rock systems are coupled through fluid and mineral interactions; -A priority research direction aimed at studying the structure, permeability, reactivity and other properties of nanoporous rocks, like shale, which have become critical energy materials and exhibit important hallmarks of mesoscale materials; -A cross-cutting theme that would accelerate development of advanced computational methods to describe heterogeneous time-dependent geologic systems that could, among other potential benefits, provide new and vastly improved models of hydraulic fracturing and its environmental impacts; -A cross-cutting theme that would lead to the creation of “geo-architected materials” with controlled repeatable heterogeneity and structure that can be tested under a variety of thermal, hydraulic, chemical and mechanical conditions relevant to subsurface systems; -A cross-cutting theme calling for new laboratory studies on both natural and geo-architected subsurface materials that deploy advanced high-resolution 3D imaging and chemical analysis

  10. Coupled Fluid Energy Solute Transport

    Energy Science and Technology Software Center (OSTI)

    1992-02-13

    CFEST is a Coupled Fluid, Energy, and Solute Transport code for the study of a multilayered, nonisothermal ground-water system. It can model discontinuous as well as continuous layers, time-dependent and constant source/sinks, and transient as well as steady-state flow. The finite element method is used for analyzing isothermal and nonisothermal events in a confined aquifer system. Only single-phase Darcian flow is considered. In the Cartesian coordinate system, flow in a horizontal plane, in a verticalmore » plane, or in a fully three-dimensional region can be simulated. An option also exists for the axisymmetric analysis of a vertical cross section. The code employs bilinear quadrilateral elements in all two dimensional analyses and trilinear quadrilateral solid elements in three dimensional simulations. The CFEST finite element formulation can approximate discontinuities, major breaks in slope or thickness, and fault zones in individual hydrogeologic units. The code accounts for heterogeneity in aquifer permeability and porosity and accommodates anisotropy (collinear with the Cartesian coordinates). The variation in the hydraulic properties is described on a layer-by-layer basis for the different hydrogeologic units. Initial conditions can be prescribed hydraulic head or pressure, temperature, or concentration. CFEST can be used to support site, repository, and waste package subsystem assessments. Some specific applications are regional hydrologic characterization; simulation of coupled transport of fluid, heat, and salinity in the repository region; consequence assessment due to natural disruption or human intrusion scenarios in the repository region; flow paths and travel-time estimates for transport of radionuclides; and interpretation of well and tracer tests.« less