Powered by Deep Web Technologies
Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Advanced Metal-Hydrides-Based Thermal Battery: A New Generation of High Density Thermal Battery Based on Advanced Metal Hydrides  

SciTech Connect (OSTI)

HEATS Project: The University of Utah is developing a compact hot-and-cold thermal battery using advanced metal hydrides that could offer efficient climate control system for EVs. The team’s innovative designs of heating and cooling systems for EVs with high energy density, low-cost thermal batteries could significantly reduce the weight and eliminate the space constraint in automobiles. The thermal battery can be charged by plugging it into an electrical outlet while charging the electric battery and it produces heat and cold through a heat exchanger when discharging. The ultimate goal of the project is a climate-controlling thermal battery that can last up to 5,000 charge and discharge cycles while substantially increasing the driving range of EVs, thus reducing the drain on electric batteries.

None

2011-12-01T23:59:59.000Z

2

Thermal Batteries for Electric Vehicles  

SciTech Connect (OSTI)

HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austin’s thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

None

2011-11-21T23:59:59.000Z

3

Thermal conductivity of thermal-battery insulations  

SciTech Connect (OSTI)

The thermal conductivities of a variety of insulating materials used in thermal batteries were measured in atmospheres of argon and helium using several techniques. (Helium was used to simulate the hydrogen atmosphere that results when a Li(Si)/FeS{sub 2} thermal battery ages.) The guarded-hot-plate method was used with the Min-K insulation because of its extremely low thermal conductivity. For comparison purposes, the thermal conductivity of the Min-K insulating board was also measured using the hot-probe method. The thermal-comparator method was used for the rigid Fiberfrax board and Fiberfrax paper. The thermal conductivity of the paper was measured under several levels of compression to simulate the conditions of the insulating wrap used on the stack in a thermal battery. The results of preliminary thermal-characterization tests with several silica aerogel materials are also presented.

Guidotti, R.A.; Moss, M.

1995-08-01T23:59:59.000Z

4

Battery Thermal Modeling and Testing (Presentation)  

SciTech Connect (OSTI)

This presentation summarizes NREL battery thermal modeling and testing work for the DOE Annual Merit Review, May 9, 2011.

Smith, K.

2011-05-01T23:59:59.000Z

5

Battery Thermal Management System Design Modeling  

SciTech Connect (OSTI)

Looks at the impact of cooling strategies with air and both direct and indirect liquid cooling for battery thermal management.

Pesaran, A.; Kim, G. H.

2006-11-01T23:59:59.000Z

6

EV Everywhere Batteries Workshop - Next Generation Lithium Ion...  

Energy Savers [EERE]

Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report Breakout session...

7

Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)  

SciTech Connect (OSTI)

This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

Rugh, J. P.; Pesaran, A.; Smith, K.

2013-07-01T23:59:59.000Z

8

Short term generation scheduling in photovoltaic-utility grid with battery storage  

SciTech Connect (OSTI)

This paper presents an efficient approach to short term resource scheduling for an integrated thermal and photovoltaic-battery generation. The proposed model incorporated battery storage for peak load shaving. Several constraints including battery capacity, minimum up/down time and ramp rates for thermal units, as well as natural photovoltaic (PV) capacity are considered in the proposed model. A case study composed of 26 thermal units and a PV-battery plant is presented to test the efficiency of the method.

Marwali, M.K.C.; Ma, H.; Shahidehpour, S.M. [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Electrical and Computer Engineering] [Illinois Inst. of Tech., Chicago, IL (United States). Dept. of Electrical and Computer Engineering; Abdul-Rahman, K.H. [Siemens Energy and Automation, Brooklyn Park, MN (United States)] [Siemens Energy and Automation, Brooklyn Park, MN (United States)

1998-08-01T23:59:59.000Z

9

SOLID ELECTROLYTES FOR NEXT GENERATION BATTERIES  

Broader source: Energy.gov (indexed) [DOE]

Austin SOLID ELECTROLYTES FOR NEXT GENERATION BATTERIES PI: John B. Goodenough Presented by: Long Wang Texas Materials Institute The University of Texas at Austin DOE Vehicle...

10

NREL Battery Thermal and Life Test Facility (Presentation)  

SciTech Connect (OSTI)

This presentation describes NREL's Battery Thermal Test Facility and identifies test requirements and equipment and planned upgrades to the facility.

Keyser, M.

2011-05-01T23:59:59.000Z

11

Thermal fuse for high-temperature batteries  

DOE Patents [OSTI]

A thermal fuse, preferably for a high-temperature battery, comprising leads and a body therebetween having a melting point between approximately 400.degree. C. and 500.degree. C. The body is preferably an alloy of Ag--Mg, Ag--Sb, Al--Ge, Au--In, Bi--Te, Cd--Sb, Cu--Mg, In--Sb, Mg--Pb, Pb--Pd, Sb--Zn, Sn--Te, or Mg--Al.

Jungst, Rudolph G. (Albuquerque, NM); Armijo, James R. (Albuquerque, NM); Frear, Darrel R. (Austin, TX)

2000-01-01T23:59:59.000Z

12

Vehicle Technologies Office Merit Review 2014: Battery Thermal Characterization  

Broader source: Energy.gov [DOE]

Presentation given by NREL at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about battery thermal characterization.

13

Optimal Energy Management Strategy including Battery Health through Thermal  

E-Print Network [OSTI]

: Energy management strategy, Plug-in hybrid electric vehicles, Li-ion battery aging, thermal management process of Li-ion batteries is very intricate and is currently the subject of many studies, Gyan et al interested in a thorough analysis on Li-ion battery aging can refer to Vetter et al. (2005), Broussely et al

Paris-Sud XI, Université de

14

BATTERY STORAGE CONTROL FOR STEADYING RENEWABLE POWER GENERATION  

E-Print Network [OSTI]

pro- duction to come from renewable resources. In the 2011 State of the Union Address, President ObamaBATTERY STORAGE CONTROL FOR STEADYING RENEWABLE POWER GENERATION By Shengyuan (Mike) Chen, Emilie-626-7370 URL: http://www.ima.umn.edu #12;Battery Storage Control for Steadying Renewable Power Generation

15

Thermal characteristics of air flow cooling in the lithium ion batteries experimental chamber  

SciTech Connect (OSTI)

A battery pack prototype has been designed and built to evaluate various air cooling concepts for the thermal management of Li-ion batteries. The heat generation from the Li-Ion batteries was simulated with electrical heat generation devices with the same dimensions as the Li-Ion battery (200 mm x 150 mm x 12 mm). Each battery simulator generates up to 15W of heat. There are 20 temperature probes placed uniformly on the surface of the battery simulator, which can measure temperatures in the range from -40 C to +120 C. The prototype for the pack has up to 100 battery simulators and temperature probes are recorder using a PC based DAQ system. We can measure the average surface temperature of the simulator, temperature distribution on each surface and temperature distributions in the pack. The pack which holds the battery simulators is built as a crate, with adjustable gap (varies from 2mm to 5mm) between the simulators for air flow channel studies. The total system flow rate and the inlet flow temperature are controlled during the test. The cooling channel with various heat transfer enhancing devices can be installed between the simulators to investigate the cooling performance. The prototype was designed to configure the number of cooling channels from one to hundred Li-ion battery simulators. The pack is thermally isolated which prevents heat transfer from the pack to the surroundings. The flow device can provide the air flow rate in the gap of up to 5m/s velocity and air temperature in the range from -30 C to +50 C. Test results are compared with computational modeling of the test configurations. The present test set up will be used for future tests for developing and validating new cooling concepts such as surface conditions or heat pipes.

Lukhanin A.; Rohatgi U.; Belyaev, A.; Fedorchenko, D.; Khazhmuradov, M.; Lukhanin, O; Rudychev, I.

2012-07-08T23:59:59.000Z

16

High Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This...

17

Additive for iron disulfide cathodes used in thermal batteries  

DOE Patents [OSTI]

The invention comprises thermal batteries employing an FeS/sub 2/ depolarizer itself. A minor amount of CaSi/sub 2/ preferably 1-3% by weight is provided as an additive in the FeS/sub 2/ depolarizer to eliminate the voltage transient (spike) which normally occurs upon activation of batteries of this type. The amount of FeS/sub 2/ by weight generally comprises 64 to 90%.

Not Available

1982-03-23T23:59:59.000Z

18

Evaluating the ignition sensitivity of thermal battery heat pellets  

SciTech Connect (OSTI)

Thermal batteries are activated by the ignition of heat pellets. If the heat pellets are not sensitive enough to the ignition stimulus, the thermal battery will not activate, resulting in a dud. Thus, to assure reliable thermal batteries, it is important to demonstrate that the pellets have satisfactory ignition sensitivity by testing a number of specimens. There are a number of statistical methods for evaluating the sensitivity of a device to some stimulus. Generally, these methods are applicable to the situation in which a single test is destructive to the specimen being tested, independent of the outcome of the test. In the case of thermal battery heat pellets, however, tests that result in a nonresponse do not totally degrade the specimen. This peculiarity provides opportunities to efficiently evaluate the ignition sensitivity of heat pellets. In this paper, a simple strategy for evaluating heat pellet ignition sensitivity (including experimental design and data analysis) is described. The relatively good asymptotic and small-sample efficiencies of this strategy are demonstrated.

Thomas, E.V.

1993-09-01T23:59:59.000Z

19

Thermal disconnect for high-temperature batteries  

DOE Patents [OSTI]

A new type of high temperature thermal disconnect has been developed to protect electrical and mechanical equipment from damage caused by operation at extreme temperatures. These thermal disconnects allow continuous operation at temperatures ranging from 250.degree. C. to 450.degree. C., while rapidly terminating operation at temperatures 50.degree. C. to 150.degree. C. higher than the continuous operating temperature.

Jungst, Rudolph George (Albuquerque, NM); Armijo, James Rudolph (Albuquerque, NM); Frear, Darrel Richard (Austin, TX)

2000-01-01T23:59:59.000Z

20

New composite separator pellet to increase power density and reduce size of thermal batteries.  

SciTech Connect (OSTI)

We show that it is possible to manufacture strong macroporous ceramic films that can be backfilled with electrolyte to form rigid separator pellets suitable for use in thermal batteries. Several new ceramic manufacturing processes are developed to produce sintered magnesium oxide foams with connected porosities of over 80% by volume and with sufficient strength to withstand the battery manufacturing steps. The effects of processing parameters are quantified, and methods to imbibe electrolyte into the ceramic scaffold demonstrated. Preliminary single cell battery testing show that some of our first generation pellets exhibit longer voltage life with comparable resistance at the critical early times to that exhibited by a traditional pressed pellets. Although more development work is needed to optimize the processes to create these rigid separator pellets, the results indicate the potential of such ceramic separator pellets to be equal, if not superior to, current pressed pellets. Furthermore, they could be a replacement for critical material that is no longer available, as well as improving battery separator strength, decreasing production costs, and leading to shorter battery stacks for long-life batteries.

Mondy, Lisa Ann; Roberts, Christine Cardinal; Grillet, Anne Mary; Soehnel, Melissa Marie; Barringer, David Alan; DiAntonio, Christopher Brian; Chavez, Thomas P.; Ingersoll, David T.; Hughes, Lindsey Gloe; Evans, Lindsey R.; Fitchett, Stephanie

2013-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

High Energy Density Thermal Batteries: Thermoelectric Reactors for Efficient Automotive Thermal Storage  

SciTech Connect (OSTI)

HEATS Project: Sheetak is developing a new HVAC system to store the energy required for heating and cooling in EVs. This system will replace the traditional refrigerant-based vapor compressors and inefficient heaters used in today’s EVs with efficient, light, and rechargeable hot-and-cold thermal batteries. The high energy density thermal battery—which does not use any hazardous substances—can be recharged by an integrated solid-state thermoelectric energy converter while the vehicle is parked and its electrical battery is being charged. Sheetak’s converters can also run on the electric battery if needed and provide the required cooling and heating to the passengers—eliminating the space constraint and reducing the weight of EVs that use more traditional compressors and heaters.

None

2011-11-15T23:59:59.000Z

22

Improvement of Thermal Stability of Li-Ion Batteries by Polymer Coating of LiMn2O4  

E-Print Network [OSTI]

thermal stability of the Li-ion battery. CONCLUSIONS CoatingPDDA. EC- AFM studies on Li-ion battery electrodes offered

Stroeve, Pieter; Vidu, Ruxandra

2004-01-01T23:59:59.000Z

23

PARAMETERIZATION AND VALIDATION OF AN INTEGRATED ELECTRO-THERMAL CYLINDRICAL LFP BATTERY MODEL  

E-Print Network [OSTI]

with a two-state thermal model to form an electro-thermal model for cylindrical lithium ion batteries- eters. A two-state thermal model is used to approximate the core and surface temperatures of the battery to lithium diffusion in the solid phase and in the electrolyte [13]. These circuit elements depend on state

Stefanopoulou, Anna

24

Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries  

E-Print Network [OSTI]

Stress generation during lithiation of high-capacity electrode particles in lithium ion batteries S in controlling stress generation in high-capacity electrodes for lithium ion batteries. Ă? 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved. Keywords: Lithium ion battery; Lithiation

Zhu, Ting

25

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

Thermal Array for Next Generation Solar Thermal Power Production Award Number: DE-EE00025828 Report Date: March 15, 2013 PI: Stephen Obrey * Technical approach is focused on...

26

Quick charge battery  

SciTech Connect (OSTI)

Electric and hybrid electric vehicles (EVs and HEVs) will become a significant reality in the near future of the automotive industry. Both types of vehicles will need a means to store energy on board. For the present, the method of choice would be lead-acid batteries, with the HEV having auxiliary power supplied by a small internal combustion engine. One of the main drawbacks to lead-acid batteries is internal heat generation as a natural consequence of the charging process as well as resistance losses. This limits the re-charging rate to the battery pack for an EV which has a range of about 80 miles. A quick turnaround on recharge is needed but not yet possible. One of the limiting factors is the heat buildup. For the HEV the auxiliary power unit provides a continuous charge to the battery pack. Therefore heat generation in the lead-acid battery is a constant problem that must be addressed. Presented here is a battery that is capable of quick charging, the Quick Charge Battery with Thermal Management. This is an electrochemical battery, typically a lead-acid battery, without the inherent thermal management problems that have been present in the past. The battery can be used in an all-electric vehicle, a hybrid-electric vehicle or an internal combustion engine vehicle, as well as in other applications that utilize secondary batteries. This is not restricted to only lead-acid batteries. The concept and technology are flexible enough to use in any secondary battery application where thermal management of the battery must be addressed, especially during charging. Any battery with temperature constraints can benefit from this advancement in the state of the art of battery manufacturing. This can also include nickel-cadmium, metal-air, nickel hydroxide, zinc-chloride or any other type of battery whose performance is affected by the temperature control of the interior as well as the exterior of the battery.

Parise, R.J.

1998-07-01T23:59:59.000Z

27

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

efficiency of the thermoelectric energy generation and battery storageefficiency of the thermoelectric energy generation and battery storagebattery electrodes suggest that the use of nanostructured materials can substantially improve the thermal management of the batteries and their energy storage efficiency.

Khan, Javed Miller

2012-01-01T23:59:59.000Z

28

Novel Battery Thermal Management System for Greater Lifetime Ratifying Current Quality and Safety Standard  

E-Print Network [OSTI]

acceptance; o power and energy capability; o reliability; o lifetime and life cycle cost. ThereofNovel Battery Thermal Management System for Greater Lifetime Ratifying Current Quality and Safety,Denmark. Temperature excursions and non-uniformity of the temperature inside the battery systems are the main concern

Andreasen, Søren Juhl

29

Simplified Electrochemical and Thermal Model of LiFePO4-Graphite Li-Ion Batteries for Fast Charge Applications  

E-Print Network [OSTI]

Simplified Electrochemical and Thermal Model of LiFePO4- Graphite Li-Ion Batteries for Fast Charge, a simplified electrochemical and thermal model of LiFePO4-graphite based Li-ion batteries is developed : 10.1149/2.064209jes #12;Over the past 15 years, Li-ion batteries have received much attention

Paris-Sud XI, Université de

30

Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles (Presentation)  

SciTech Connect (OSTI)

Temperature has a significant impact on life, performance, and safety of lithium-ion battery technology, which is expected to be the energy storage of choice for electric drive vehicles (xEVs). High temperatures degrade Li-ion cells faster while low temperatures reduce power and energy capabilities that could have cost, reliability, range, or drivability implications. Thermal management of battery packs in xEVs is essential to keep the cells in the desired temperature range and also reduce cell-to-cell temperature variations, both of which impact life and performance. The value that the battery thermal management system provides in reducing battery life and improving performance outweighs its additional cost and complexity. Tools that are essential for thermal management of batteries are infrared thermal imaging, isothermal calorimetry, thermal conductivity meter and computer-aided thermal analysis design software. This presentation provides details of these tools that NREL has used and we believe are needed to design right-sized battery thermal management systems.

Pesaran, A.; Keyser, M.; Kim, G. H.; Santhanagopalan, S.; Smith, K.

2013-02-01T23:59:59.000Z

31

Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries  

E-Print Network [OSTI]

with graphene. Incorporation of graphene increases thermal conductivity of phase change materials. Graphene that common PCMs are characterized by very low thermal conductivity, K, with typical values in the range of 0Graphene-enhanced hybrid phase change materials for thermal management of Li-ion batteries

32

High-Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

3 Q1 High-Temperature Thermal Array for Next Generation Solar Thermal Power Production - FY13 Q1 This document summarizes the progress of this Los Alamos National Laboratory...

33

Electrochemical-thermal modeling and microscale phase change for passive internal thermal management of lithium ion batteries.  

SciTech Connect (OSTI)

A fully coupled electrochemical and thermal model for lithium-ion batteries is developed to investigate the impact of different thermal management strategies on battery performance. In contrast to previous modeling efforts focused either exclusively on particle electrochemistry on the one hand or overall vehicle simulations on the other, the present work predicts local electrochemical reaction rates using temperature-dependent data on commercially available batteries designed for high rates (C/LiFePO{sub 4}) in a computationally efficient manner. Simulation results show that conventional external cooling systems for these batteries, which have a low composite thermal conductivity ({approx}1 W/m-K), cause either large temperature rises or internal temperature gradients. Thus, a novel, passive internal cooling system that uses heat removal through liquid-vapor phase change is developed. Although there have been prior investigations of phase change at the microscales, fluid flow at the conditions expected here is not well understood. A first-principles based cooling system performance model is developed and validated experimentally, and is integrated into the coupled electrochemical-thermal model for assessment of performance improvement relative to conventional thermal management strategies. The proposed cooling system passively removes heat almost isothermally with negligible thermal resistances between the heat source and cooling fluid. Thus, the minimization of peak temperatures and gradients within batteries allow increased power and energy densities unencumbered by thermal limitations.

Fuller, Thomas F. (Georgia Institute of Technology, Atlanta, GA); Bandhauer, Todd (Georgia Institute of Technology, Atlanta, GA); Garimella, Srinivas (Georgia Institute of Technology, Atlanta, GA)

2012-01-01T23:59:59.000Z

34

Thermal Strategies for High Efficiency Thermoelectric Power Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Strategies for High Efficiency Thermoelectric Power Generation Thermal Strategies for High Efficiency Thermoelectric Power Generation Developing integrated TE system...

35

IEEE Standard for qualification of Class 1E lead storage batteries for nuclear power generating stations  

SciTech Connect (OSTI)

This document describes qualification methods for Class 1E lead storage batteries and racks to be used in nuclear power generating stations outside of primary containment. Qualification required in ANSI/IEEE Std 279-1979 and IEEE Std 308-1978, can be demonstrated by using the procedures provided in this Standard in accordance with IEEE Std 323-1974. Battery sizing, maintenance, capacity testing, installation, charging equipment and consideration of other types batteries are beyond the scope of this Standard.

Not Available

1980-01-01T23:59:59.000Z

36

falls into this category if the PV DC conductors penetrate the house. Although batteries are not power generators,  

E-Print Network [OSTI]

falls into this category if the PV DC conductors penetrate the house. Although batteries-grid, battery-based PV systems or grid-tied (utility-interactive) PV systems with battery backup. In situations are not power generators, they can source energy, so a battery disconnect might also fall into this category

Johnson, Eric E.

37

A Simplified Electrochemical and Thermal Aging Model of LiFePO4-Graphite Li-ion Batteries  

E-Print Network [OSTI]

1 A Simplified Electrochemical and Thermal Aging Model of LiFePO4-Graphite Li-ion Batteries: Power of a commercial LiFePO4-graphite Li-ion battery. Compared to the isothermal reference, the mechanism of porosity;2 Due to their high power and energy densities, Li-ion technologies are the leading battery systems

38

Method for improving voltage regulation of batteries, particularly Li/FeS/sub 2/ thermal batteries  

DOE Patents [OSTI]

Batteries are improved, especially with respect to voltage regulation properties, by employing as anode and cathode compositions, those which fall in a thermodynamically invariant region of the metallurgical phase diagram of the combination of the constituent components. The invention is especially useful in the Li/FeS/sub 2/ system.

Godshall, N.A.

1986-06-10T23:59:59.000Z

39

Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation  

E-Print Network [OSTI]

Batteries and electrochemical energy storage are central to any future alternative energy scenario. Future energy generation sources are likely to be intermittent, requiring storage capacity energy storage for uninterrupted power supply units, the electrical grid, and transportation. Of all

Kemner, Ken

40

PV output smoothing using a battery and natural gas engine-generator.  

SciTech Connect (OSTI)

In some situations involving weak grids or high penetration scenarios, the variability of photovoltaic systems can affect the local electrical grid. In order to mitigate destabilizing effects of power fluctuations, an energy storage device or other controllable generation or load can be used. This paper describes the development of a controller for coordinated operation of a small gas engine-generator set (genset) and a battery for smoothing PV plant output. There are a number of benefits derived from using a traditional generation resource in combination with the battery; the variability of the photovoltaic system can be reduced to a specific level with a smaller battery and Power Conditioning System (PCS) and the lifetime of the battery can be extended. The controller was designed specifically for a PV/energy storage project (Prosperity) and a gas engine-generator (Mesa Del Sol) currently operating on the same feeder in Albuquerque, New Mexico. A number of smoothing simulations of the Prosperity PV were conducted using power data collected from the site. By adjusting the control parameters, tradeoffs between battery use and ramp rates could be tuned. A cost function was created to optimize the control in order to balance, in this example, the need to have low ramp rates with reducing battery size and operation. Simulations were performed for cases with only a genset or battery, and with and without coordinated control between the genset and battery, e.g., without the communication link between sites or during a communication failure. The degree of smoothing without coordinated control did not change significantly because the battery dominated the smoothing response. It is anticipated that this work will be followed by a field demonstration in the near future.

Johnson, Jay; Ellis, Abraham; Denda, Atsushi [Shimizu Corporation; Morino, Kimio [Shimizu Corporation; Shinji, Takao [Tokyo Gas Co., Ltd.; Ogata, Takao [Tokyo Gas Co., Ltd.; Tadokoro, Masayuki [Tokyo Gas Co., Ltd.

2013-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

A thermally efficient micro-reactor for thermophotovoltaic power generation  

E-Print Network [OSTI]

Hydrocarbon fuels exhibit very high energy densities, and micro-generators converting the stored chemical energy into electrical power are interesting alternatives to batteries in certain applications. The increasing demands ...

Nielsen, Ole Mattis, 1977-

2006-01-01T23:59:59.000Z

42

Battery Thermal Modeling and Testing | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid-BasicHardware inThermal Modeling

43

IMPROVEMENT OF THERMAL STABILITY OF LI-ION BATTERIES BY  

E-Print Network [OSTI]

· Overall Technology Assessment · Appendices o Appendix A: Final Report (under separate cover) o Appendix B Funding: $75,000 Term: July 2002 ­ June 2003 PIER Subject Area: Renewable Energy Technologies #12;Page i · Renewable Energy Technologies · Environmentally-Preferred Advanced Generation · Energy-Related Environmental

44

Electrolyte effects in Li(Si)/FeS{sub 2} thermal batteries  

SciTech Connect (OSTI)

The most common electrochemical couple for thermally activated (``thermal``) batteries is the Li-alloy/FeS{sub 2} system. The most common Li-alloys used for anodes are 20% Li-80% Al and 44% Li-56% Si (by weight); liquid Li immobilized with iron powder has also been used. The standard electrolyte that has been used in thermal batteries over the years is the LiCl-KCl eutectic that melts at 352{degrees}C. The LiCl-LiBr-LiF eutectic had the best rate and power characteristics. This electrolyte melts at 436{degrees}C and shows very low polarization because of the absence of Li+ gradients common with the LiCl-KCl eutectic. The low-melting electrolytes examined included a KBr-LiBr-LiCl eutectic (melting at 321{degrees}C), a LiBr-KBr-LiF eutectic (melting at 313{degrees}C), and a CsBr-LiBr-KBr eutectic (melting at 238{degrees}C). The CsBr-based salt had poor conductivity and was not studied further. The LiBr-KBr-LiF eutectic outperformed the KBr-LiBr-LiCl eutectic and was selected for more extensive testing. Because of their lower melting points and larger liquidi relative to the LiCl-KCl eutectic, the low-melting electrolytes are prime candidates for long-life applications (i.e., for activated lives of one hour or more). This paper will detail the relative performance of the Li(Si)/FeS{sub 2} couple using primarily the LiCl-KCl (standard) eutectic, the LiCl-LiBr-LiF (all-Li) eutectic, and the LiBr-KBr-LiF (low-melting) eutectic electrolytes. Most of the tests were conducted with 5-cell batteries; validation tests were also carried out with appropriate full-sized batteries.

Guidotti, R.A.; Reinhardt, F.W.

1994-10-01T23:59:59.000Z

45

Qualification of Class 1E static battery charges and inverters for nuclear power generating stations  

SciTech Connect (OSTI)

This standard describes methods for qualifying static battery chargers and inverters for Class 1E installations in environmentally controlled areas outside containment in nuclear power generating stations. The purpose of this standard is to provide specific procedures to meet the requirements of IEEE Std. 323-1974.

Not Available

1981-01-01T23:59:59.000Z

46

High elastic modulus polymer electrolytes suitable for preventing thermal runaway in lithium batteries  

DOE Patents [OSTI]

A polymer that combines high ionic conductivity with the structural properties required for Li electrode stability is useful as a solid phase electrolyte for high energy density, high cycle life batteries that do not suffer from failures due to side reactions and dendrite growth on the Li electrodes, and other potential applications. The polymer electrolyte includes a linear block copolymer having a conductive linear polymer block with a molecular weight of at least 5000 Daltons, a structural linear polymer block with an elastic modulus in excess of 1.times.10.sup.7 Pa and an ionic conductivity of at least 1.times.10.sup.-5 Scm.sup.-1. The electrolyte is made under dry conditions to achieve the noted characteristics. In another aspect, the electrolyte exhibits a conductivity drop when the temperature of electrolyte increases over a threshold temperature, thereby providing a shutoff mechanism for preventing thermal runaway in lithium battery cells.

Mullin, Scott; Panday, Ashoutosh; Balsara, Nitash Pervez; Singh, Mohit; Eitouni, Hany Basam; Gomez, Enrique Daniel

2014-04-22T23:59:59.000Z

47

Thermal Characterization and Analysis of A123 Systems Battery Cells, Modules and Packs: Cooperative Research and Development Final Report, CRADA Number CRD-07-243  

SciTech Connect (OSTI)

In support of the A123 Systems battery development program with USABC/DOE, NREL provided technical support in thermal characterization, analysis and management of batteries. NREL's effort was part of Energy Storage Project funded by DOE Vehicle Technologies Program. The purpose of this work was for NREL to perform thermal characterization and analysis of A123 Systems cells and modules with the aim for Al23 Systems to improve the thermal performance of their battery cells, modules and packs.

Pesaran, A.

2012-03-01T23:59:59.000Z

48

Thermal stability of LiPF6EC:EMC electrolyte for lithium ion batteries Gerardine G. Bottea  

E-Print Network [OSTI]

Thermal stability of LiPF6±EC:EMC electrolyte for lithium ion batteries Gerardine G. Bottea , Ralph study of the LiPF6±EC:EMC electrolyte. The effect of different variables on its thermal stability was evaluated: salt (LiPF6) concentration effect, solvents, EC:EMC ratios, and heating rates. Hermetically

49

Three-Dimensional Thermal-Electrochemical Coupled Model for Spirally Wound Large-Format Lithium-Ion Batteries (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the behavior of spirally wound large-format Li-ion batteries with respect to their design. The objectives of the study include developing thermal and electrochemical models resolving 3-dimensional spirally wound structures of cylindrical cells, understanding the mechanisms and interactions between local electrochemical reactions and macroscopic heat and electron transfers, and developing a tool and methodology to support macroscopic designs of cylindrical Li-ion battery cells.

Lee, K. J.; Smith K.; Kim, G. H.

2011-04-01T23:59:59.000Z

50

Project Profile: High-Temperature Thermal Array for Next-Generation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Array for Next-Generation Solar Thermal Power Production Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production Los Alamos...

51

Elastic modulus mapping of atomically thin film based Lithium Ion Battery electrodes Lithium Ion Batteries (LIB) are one of the most promising class of next generation energy storage devices,  

E-Print Network [OSTI]

Batteries (LIB) are one of the most promising class of next generation energy storage devices, which canElastic modulus mapping of atomically thin film based Lithium Ion Battery electrodes Lithium Ion the charging/discharging which otherwise lead to in efficient battery operation. The cyclically charging

52

Device for thermal transfer and power generation  

DOE Patents [OSTI]

A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

Weaver, Stanton Earl (Northville, NY); Arik, Mehmet (Niskayuna, NY)

2011-04-19T23:59:59.000Z

53

EV Everywhere Batteries Workshop - Materials Processing and Manufactur...  

Energy Savers [EERE]

More Documents & Publications EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries Breakout Session Report EV Everywhere Batteries Workshop - Beyond...

54

Personal, closed-cycle cooling and protective apparatus and thermal battery therefor  

DOE Patents [OSTI]

A closed-cycle apparatus for cooling a living body includes a heat pickup body or garment which permits evaporation of an evaporating fluid, transmission of the vapor to a condenser, and return of the condensate to the heat pickup body. A thermal battery cooling source is provided for removing heat from the condenser. The apparatus requires no external power and provides a cooling system for soldiers, race car drivers, police officers, firefighters, bomb squad technicians, and other personnel who may utilize protective clothing to work in hostile environments. An additional shield layer may simultaneously provide protection from discomfort, illness or injury due to harmful atmospheres, projectiles, edged weapons, impacts, explosions, heat, poisons, microbes, corrosive agents, or radiation, while simultaneously removing body heat from the wearer.

Klett, James W.; Klett, Lynn B.

2004-07-20T23:59:59.000Z

55

High Temperature Thermal Array for Next Generation Solar Thermal...  

Broader source: Energy.gov (indexed) [DOE]

A 10% increase in shaft work is directly attributable to modified thermal heat capacity Engineering HTF Specific heat yields modified power output. 27 127 227 327 427 527...

56

Evaluation of ceramic papers and tapes for use as separators in thermal batteries.  

SciTech Connect (OSTI)

Ceramic tapes and papers were evaluated for potential use as separators in high-temperature thermal batteries. The bulk of the tests involved fiberglass tape and borosilicate filter discs. Quartz (SiO{sub 2}) and zirconia (ZrO{sub 2}) materials were also examined to a limited extent. In addition, custom-prepared MgO-coated ceramic discs from Inventek Inc. were evaluated as separators. The tapes and paper discs were impregnated with LiCl-KCl eutectic or LiCl-LiBr-LiF electrolytes using three different techniques. Test discs were punched from the tapes and papers, impregnated with electrolyte and evaluated as separators in Li(Si)/FeS{sub 2} single cells at 400 or 500 C at a steady-state current of 63 or 125 mA/cm{sup 2}. The performance of single cells containing these discs generally improved with increased electrolyte loading for most of the materials in the case of the LiCl-KCl eutectic. Better results were obtained with the paper filter discs than with the tapes. The best results with the paper discs were obtained with Whatman GF/A filter discs. Active lives for cells with these separators were about 85% of standard cells with pressed-powder separators. Good results were obtained in one battery test with the eutectic electrolyte. Mixed results were obtained with the LiCl-LiBr-LiF electrolyte under similar conditions. Higher loadings of electrolyte did not always translate into improved cell performance. Self-discharge reactions are believed responsible. The best overall results were obtained with the Inventek separators. Based on the results of this study, more work in this technology area is merited.

Reinhardt, Frederick William; Guidotti, Ronald Armand

2006-06-01T23:59:59.000Z

57

Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density: Cooperative Research and Development Final Report, CRADA Number CRD-12-499  

SciTech Connect (OSTI)

Under this CRADA NREL will support Creare's project for the Department of Energy entitled 'Improved Battery Pack Thermal Management to Reduce Cost and Increase Energy Density' which involves the development of an air-flow based cooling product that increases energy density, safety, and reliability of hybrid electric vehicle battery packs.

Smith, K.

2013-10-01T23:59:59.000Z

58

PHEV Battery Trade-Off Study and Standby Thermal Control (Presentation)  

SciTech Connect (OSTI)

Describes NREL's R&D to optimize the design of batteries for plug-in hybrid electric vehicles to meet established requirements at minimum cost.

Smith, K.; Markel, T.; Pesaran, A.

2009-03-01T23:59:59.000Z

59

Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation  

SciTech Connect (OSTI)

This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

Yi Jia

2011-02-28T23:59:59.000Z

60

Low-cost distributed solar-thermal-electric power generation  

E-Print Network [OSTI]

Low-cost distributed solar-thermal-electric power generation A. Der Minassians, K. H. Aschenbach discuss the technical and economic feasibility of a low-cost distributed solar-thermal-electric power technologies should be judged by output power per dollar rather than by efficiency or other technical merits

Sanders, Seth

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Thermal Stability of LiPF6 Salt and Li-ion Battery ElectrolytesContaining LiPF6  

SciTech Connect (OSTI)

The thermal stability of the neat LiPF6 salt and of 1 molal solutions of LiPF6 in prototypical Li-ion battery solvents was studied with thermogravimetric analysis (TGA) and on-line FTIR. Pure LiPF6 salt is thermally stable up to 380 K in a dry inert atmosphere, and its decomposition path is a simple dissociation producing LiF as solid and PF5 as gaseous products. In the presence of water (300 ppm) in the carrier gas, its decomposition onset temperature is lowered as a result of direct thermal reaction between LiPF6 and water vapor to form POF3 and HF. No new products were observed in 1 molal solutions of LiPF6 in EC, DMC and EMC by on-line TGA-FTIR analysis. The storage of the same solutions in sealed containers at 358 K for 300 420 hrs. did not produce any significant quantity of new products as well. In particular, noalkylflurophosphates were found in the solutions after storage at elevated temperature. In the absence of either an impurity like alcohol or cathode active material that may (or may not) act as a catalyst, there is no evidence of thermally induced reaction between LiPF6 and the prototypical Li-ion battery solvents EC, PC, DMC or EMC.

Yang, Hui; Zhuang, Guorong V.; Ross Jr., Philip N.

2006-03-08T23:59:59.000Z

62

Optimal working conditions for thermoelectric generators with realistic thermal coupling  

E-Print Network [OSTI]

We study how maximum output power can be obtained from a thermoelectric generator(TEG) with nonideal heat exchangers. We demonstrate with an analytic approach based on a force-flux formalism that the sole improvement of the intrinsic characteristics of thermoelectric modules including the enhancement of the figure of merit is of limited interest: the constraints imposed by the working conditions of the TEG must be considered on the same footing. Introducing an effective thermal conductance we derive the conditions which permit maximization of both efficiency and power production of the TEG dissipatively coupled to heat reservoirs. Thermal impedance matching must be accounted for as well as electrical impedance matching in order to maximize the output power. Our calculations also show that the thermal impedance does not only depend on the thermal conductivity at zero electrical current: it also depends on the TEG figure of merit. Our analysis thus yields both electrical and thermal conditions permitting optima...

Apertet, Y; Glavatskaya, O; Goupil, C; Lecoeur, P

2011-01-01T23:59:59.000Z

63

Fluorinated Phosphazene Co-solvents for Improved Thermal and Safety Performance in Lithium-Ion Battery Electrolytes  

SciTech Connect (OSTI)

The safety of lithium-ion batteries is coming under increased scrutiny as they are being adopted for large format applications especially in the vehicle transportation industry and for grid-scale energy storage. The primary short-comings of lithium-ion batteries are the flammability of the liquid electrolyte and sensitivity to high voltage and elevated temperatures. We have synthesized a series of non-flammable fluorinated phosphazene liquids and blended them with conventional carbonate solvents. While the use of these phosphazenes as standalone electrolytes is highly desirable, they simply do not satisfy all of the many requirements that must be met such as high LiPF6 solubility and low viscosity, thus we have used them as additives and co-solvents in blends with typical carbonates. The physical and electrochemical properties of the electrolyte blends were characterized, and then the blends were used to build 2032-type coin cells which were evaluated at constant current cycling rates from C/10 to C/1. We have evaluated the performance of the electrolytes by determining the conductivity, viscosity, flash point, vapor pressure, thermal stability, electrochemical window, cell cycling data, and the ability to form solid electrolyte interphase (SEI) films. This paper presents our results on a series of chemically similar fluorinated cyclic phosphazene trimers, the FM series, which has exhibited numerous beneficial effects on battery performance, lifetimes, and safety aspects.

Harry W. Rollins; Mason K. Harrup; Eric J. Dufek; David K. Jamison; Sergiy V. Sazhin; Kevin L. Gering; Dayna L. Daubaras

2014-10-01T23:59:59.000Z

64

Thermal Stability of LiPF6 Salt and Li-ion Battery Electrolytes Containing LiPF6  

E-Print Network [OSTI]

of LiPF 6 Salt and Li-ion Battery Electrolytes ContainingLiPF 6 in prototypical Li-ion battery solvents was studied6 and the prototypical Li- ion battery solvents EC, PC, DMC

Yang, Hui; Zhuang, Guorong V.; Ross Jr., Philip N.

2006-01-01T23:59:59.000Z

65

Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m  

ScienceCinema (OSTI)

Accelerator Generation and Thermal Separation (AGATS) of Technetium-99m is a linear electron accelerator-based technology for producing medical imaging radioisotopes from a separation process that heats, vaporizes and condenses the desired radioisotope. You can learn more about INL's education programs at http://www.facebook.com/idahonationallaboratory.

None

2013-05-28T23:59:59.000Z

66

In-Plant Reliability Data base for nuclear plant components. Interim report: diesel generators, batteries, chargers and inverters  

SciTech Connect (OSTI)

The objective of the In-Plant Reliability Data (IPRD) program is to develop a comprehensive, component-specific reliability data base for probabilistic risk assessment and for other statistical analyses relevant to component reliability evaluations. This document is the product of a pilot study that was undertaken to demonstrate the methodology and feasibility of applying IPRDS techniques to develop and analyze the reliability characteristics of key electrical components in five nuclear power plants. These electrical components include diesel generators, batteries, battery chargers and inverters. The sources used to develop the data base and produce the component failure rates and mean repair times were the plant equipment lists, plant drawings, maintenance work requests, Final Safety Analysis Reports (FSARs), and interviews with plant personnel. The data spanned approximately 33 reactor-years of commercial operation.

Kahl, W.K.; Borkowski, R.J.

1985-01-01T23:59:59.000Z

67

Investigation of thermal storage and steam generator issues  

SciTech Connect (OSTI)

A review and evaluation of steam generator and thermal storage tank designs for commercial nitrate salt technology showed that the potential exists to procure both on a competitive basis from a number of qualified vendors. The report outlines the criteria for review and the results of the review, which was intended only to assess the feasibility of each design, not to make a comparison or select the best concept.

Not Available

1993-08-01T23:59:59.000Z

68

Analysis of the value of battery storage with wind and photovoltaic generation to the Sacramento Municipal Utility District  

SciTech Connect (OSTI)

This report describes the results of an analysis to determine the economic and operational value of battery storage to wind and photovoltaic (PV) generation technologies to the Sacramento Municipal Utility District (SMUD) system. The analysis approach consisted of performing a benefit-cost economic assessment using established SMUD financial parameters, system expansion plans, and current system operating procedures. This report presents the results of the analysis. Section 2 describes expected wind and PV plant performance. Section 3 describes expected benefits to SMUD associated with employing battery storage. Section 4 presents preliminary benefit-cost results for battery storage added at the Solano wind plant and the Hedge PV plant. Section 5 presents conclusions and recommendations resulting from this analysis. The results of this analysis should be reviewed subject to the following caveat. The assumptions and data used in developing these results were based on reports available from and interaction with appropriate SMUD operating, planning, and design personnel in 1994 and early 1995 and are compatible with financial assumptions and system expansion plans as of that time. Assumptions and SMUD expansion plans have changed since then. In particular, SMUD did not install the additional 45 MW of wind that was planned for 1996. Current SMUD expansion plans and assumptions should be obtained from appropriate SMUD personnel.

Zaininger, H.W. [Zaininger Engineering Co., Inc., Roseville, CA (United States)

1998-08-01T23:59:59.000Z

69

Analytical thermal model validation for Cassini radioisotope thermoelectric generator  

SciTech Connect (OSTI)

The Saturn-bound Cassini spacecraft is designed to rely, without precedent, on the waste heat from its three radioisotope thermoelectric generators (RTGs) to warm the propulsion module subsystem, and the RTG end dome temperature is a key determining factor of the amount of waste heat delivered. A previously validated SINDA thermal model of the RTG was the sole guide to understanding its complex thermal behavior, but displayed large discrepancies against some initial thermal development test data. A careful revalidation effort led to significant modifications and adjustments of the model, which result in a doubling of the radiative heat transfer from the heat source support assemblies to the end domes and bring up the end dome and flange temperature predictions to within 2 C of the pertinent test data. The increased inboard end dome temperature has a considerable impact on thermal control of the spacecraft central body. The validation process offers an example of physically-driven analytical model calibration with test data from not only an electrical simulator but also a nuclear-fueled flight unit, and has established the end dome temperatures of a flight RTG where no in-flight or ground-test data existed before.

Lin, E.I. [California Inst. of Tech., Pasadena, CA (United States). Jet Propulsion Lab.

1997-12-31T23:59:59.000Z

70

Stirling Engines for Low-Temperature Solar-Thermal-Electric Power Generation  

E-Print Network [OSTI]

Stirling Engines for Low-Temperature Solar-Thermal- Electric Power Generation Artin Der Minassians-Temperature Solar-Thermal-Electric Power Generation by Artin Der Minassians Karshenasi (Amirkabir University-Temperature Solar-Thermal-Electric Power Generation Copyright c 2007 by Artin Der Minassians #12;1 Abstract Stirling

Sanders, Seth

71

Battery life and performance depend strongly on temperature; thus there exists a need for thermal conditioning in plug-in  

E-Print Network [OSTI]

change in the battery and a degradation model that estimates capacity loss. A driving and storage profile and stress factors during storage and cycling also affects how quickly the battery will degradeABSTRACT Battery life and performance depend strongly on temperature; thus there exists a need

Michalek, Jeremy J.

72

Battery Charger Efficiency  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of batteries. * The battery charger could be used to charge a single battery, single battery bank, multiple batteries or multiple battery banks * The dominant batteries in...

73

Mechanical design of flow batteries  

E-Print Network [OSTI]

The purpose of this research is to investigate the design of low-cost, high-efficiency flow batteries. Researchers are searching for next-generation battery materials, and this thesis presents a systems analysis encompassing ...

Hopkins, Brandon J. (Brandon James)

2013-01-01T23:59:59.000Z

74

Journal of Power Sources 160 (2006) 662673 Power and thermal characterization of a lithium-ion battery  

E-Print Network [OSTI]

-ion battery; Electrochemical modeling; Hybrid-electric vehicles; Transient; Solid-state diffusion; Heat, indicating solid-state diffusion is the limiting mechanism. The 3.9 V cell-1 maximum limit, meant to protect where batteries are used as a transient pulse power source, cycled about a relatively fixed state

75

Battery utilizing ceramic membranes  

DOE Patents [OSTI]

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range.

Yahnke, Mark S. (Berkeley, CA); Shlomo, Golan (Haifa, IL); Anderson, Marc A. (Madison, WI)

1994-01-01T23:59:59.000Z

76

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network [OSTI]

to integrate their battery storage and internal vehicleOstergaard, J. (2009). Battery energy storage technology fora far smaller battery energy storage capacity than BEVs,

Greer, Mark R

2012-01-01T23:59:59.000Z

77

Battery system  

DOE Patents [OSTI]

A battery module includes a plurality of battery cells and a system configured for passing a fluid past at least a portion of the plurality of battery cells in a parallel manner.

Dougherty, Thomas J; Wood, Steven J; Trester, Dale B; Andrew, Michael G

2013-08-27T23:59:59.000Z

78

batteries | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

batteries batteries Leads No leads are available at this time. Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. Abstract: As a candidate material for...

79

Ceramics in non-thermal plasma discharge for hydrogen generation.  

E-Print Network [OSTI]

??Recent interest in hydrogen as an energy source has resulted in development of new technologies such as non-thermal plasma processing of natural gas. We report… (more)

Vintila, Ramona Roxana

2005-01-01T23:59:59.000Z

80

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

M=Mn, Ni, Co) in Lithium Batteries at 50°C. Electrochem.Spinel Electrodes for Lithium Batteries. J. Am. Ceram. Soc.for Rechargeable Lithium Batteries. J. Power Sources 54:

Doeff, Marca M

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Batteries: Overview of Battery Cathodes  

E-Print Network [OSTI]

insertion reactions. For Li-ion battery materials, it refersis widespread throughout the Li-ion battery literature, thisthe chemistry of the Li-ion battery is not fixed, unlike the

Doeff, Marca M

2011-01-01T23:59:59.000Z

82

Sustainable solar thermal power generation (STPG) technologies in Indian context  

SciTech Connect (OSTI)

India is a fast developing country. Some of the factors like population growth, industrialization, liberalization in economic policies, green revolution and awareness toward the environment, are increasing the electricity demand rapidly. As per the 14th Power Survey Report, an energy deficit of (+) 9% and peak demand deficit of (+) 18% have been estimated. Keeping in view the liberalization in economic policies, this deficit may be higher by the year 2000 AD. An estimation indicates that India is blessed with solar energy to the tune of 5 x 10{sup 15} kWh/yr. Being clean and inexhaustible source of energy, it can be used for large-scale power generation in the country. Keeping in view the present state-of-art technologies for STPG in MW range, best possible efforts are required to be made by all the concerned, to develop sustainable STPG technology of the future, specially for tropical regions. Standardization of vital equipment is an important aspect. There are a few required criteria like simple and robust technology, its transfer and adaptation in tropical climate conditions; high plant load factor without fossil-fired backup; availability of plant during evening peak and night hours; least use of fragile components, and capacity optimization for MW plants as per solar irradiance and environmental factors. In this paper, efforts have been made to compare the different STPG technologies. On the basis, of literature surveyed and studies carried out by the author, it may be stated that Central Receiver System technologies using molten salt and volumetric air receiver, along with molten salt and ceramic thermal storage respectively seems to be suitable and comparable in Indian context. Performance of SOLAR-TWO and PHOEBUS plants may be decisive.

Sharma, R.S. [Ministry of Non-Conventional Energy Sources, New Delhi (India). Solar Energy Centre

1996-12-31T23:59:59.000Z

83

Novel Electrolytes for Lithium Ion Batteries  

SciTech Connect (OSTI)

We have been investigating three primary areas related to lithium ion battery electrolytes. First, we have been investigating the thermal stability of novel electrolytes for lithium ion batteries, in particular borate based salts. Second, we have been investigating novel additives to improve the calendar life of lithium ion batteries. Third, we have been investigating the thermal decomposition reactions of electrolytes for lithium-oxygen batteries.

Lucht, Brett L

2014-12-12T23:59:59.000Z

84

Modeling of solar thermal selective surfaces and thermoelectric generators  

E-Print Network [OSTI]

A thermoelectric generator is a solid-state device that converts a heat flux into electrical power via the Seebeck effect. When a thermoelectric generator is inserted between a solar-absorbing surface and a heat sink, a ...

McEnaney, Kenneth

2010-01-01T23:59:59.000Z

85

Model based control of a coke battery  

SciTech Connect (OSTI)

This paper describes a model-based strategy for coke battery control at BHP Steel`s operations in Pt Kembla, Australia. The strategy uses several models describing the battery thermal and coking behavior. A prototype controller has been installed on the Pt Kembla No. 6 Battery (PK6CO). In trials, the new controller has been well accepted by operators and has resulted in a clear improvement in battery thermal stability, with a halving of the standard deviation of average battery temperature. Along with other improvements to that battery`s operations, this implementation has contributed to a 10% decrease in specific battery energy consumption. A number of enhancements to the low level control systems on that battery are currently being undertaken in order to realize further benefits.

Stone, P.M.; Srour, J.M.; Zulli, P. [BHP Research, Mulgrave (Australia). Melbourne Labs.; Cunningham, R.; Hockings, K. [BHP Steel, Pt Kembla, New South Wales (Australia). Coal and Coke Technical Development Group

1997-12-31T23:59:59.000Z

86

Solar thermal bowl concepts and economic comparisons for electricity generation  

SciTech Connect (OSTI)

This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications for fixed mirror distributed focus (FMDF) solar thermal concepts which have been studied and developed in the DOE solar thermal program. Following the completion of earlier systems comparison studies in the late 1970's there have been a number of years of progress in solar thermal technology. This progress includes developing new solar components, improving component and system design details, constructing working systems, and collecting operating data on the systems. This study povides an update of the expected performance and cost of the major components, and an overall system energy cost for the FMDDF concepts evaluated. The projections in this study are for the late 1990's and are based on the potential capabilities that might be achieved with further technology development.

Williams, T.A.; Dirks, J.A.; Brown, D.R.; Antoniak, Z.I.; Allemann, R.T.; Coomes, E.P.; Craig, S.N.; Drost, M.K.; Humphreys, K.K.; Nomura, K.K.

1988-04-01T23:59:59.000Z

87

Novel Thermal Storage Technologies for Concentrating Solar Power Generation  

SciTech Connect (OSTI)

The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

2013-06-20T23:59:59.000Z

88

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network [OSTI]

the battery depletion cost per kWh transferred could bethe battery depletion cost per kWh transferred from off-peakhigher battery depletion cost per kWh transferred under the

Greer, Mark R

2012-01-01T23:59:59.000Z

89

High-density thermoelectric power generation and nanoscale thermal metrology  

E-Print Network [OSTI]

Thermoelectric power generation has been around for over 50 years but has seen very little large scale implementation due to the inherently low efficiencies and powers available from known materials. Recent material advances ...

Mayer, Peter (Peter Matthew), 1978-

2007-01-01T23:59:59.000Z

90

Battery utilizing ceramic membranes  

DOE Patents [OSTI]

A thin film battery is disclosed based on the use of ceramic membrane technology. The battery includes a pair of conductive collectors on which the materials for the anode and the cathode may be spin coated. The separator is formed of a porous metal oxide ceramic membrane impregnated with electrolyte so that electrical separation is maintained while ion mobility is also maintained. The entire battery can be made less than 10 microns thick while generating a potential in the 1 volt range. 2 figs.

Yahnke, M.S.; Shlomo, G.; Anderson, M.A.

1994-08-30T23:59:59.000Z

91

The development of a solar thermal water purification, heating, and power generation system: A case study.  

E-Print Network [OSTI]

The development of a solar thermal water purification, heating, and power generation system: A case, none of the existing concentrated solar power systems (trough, dish, and tower) that have been the potential of an invention directed to a water purification system that also recovers power from generated

Wu, Mingshen

92

Pressure drops for direct steam generation in line-focus solar thermal systems  

E-Print Network [OSTI]

Early direct steam generation prototypes include two central tower projects: a solar-powered enhanced oil recovery project called STEOR in the early 1980s (Romero 2002), and a solar tower projectPressure drops for direct steam generation in line-focus solar thermal systems John Pye1 , Graham

93

Predictive Models of Li-ion Battery Lifetime (Presentation)  

SciTech Connect (OSTI)

Predictive models of Li-ion battery reliability must consider a multiplicity of electrochemical, thermal and mechanical degradation modes experienced by batteries in application environments. Complicating matters, Li-ion batteries can experience several path dependent degradation trajectories dependent on storage and cycling history of the application environment. Rates of degradation are controlled by factors such as temperature history, electrochemical operating window, and charge/discharge rate. Lacking accurate models and tests, lifetime uncertainty must be absorbed by overdesign and warranty costs. Degradation models are needed that predict lifetime more accurately and with less test data. Models should also provide engineering feedback for next generation battery designs. This presentation reviews both multi-dimensional physical models and simpler, lumped surrogate models of battery electrochemical and mechanical degradation. Models are compared with cell- and pack-level aging data from commercial Li-ion chemistries. The analysis elucidates the relative importance of electrochemical and mechanical stress-induced degradation mechanisms in real-world operating environments. Opportunities for extending the lifetime of commercial battery systems are explored.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G.; Shi, Y.; Pesaran, A.

2014-09-01T23:59:59.000Z

94

A monolithically integrated thermo-adsorptive battery  

E-Print Network [OSTI]

A rechargeable thermal battery based on advanced zeolite or metal-organic framework water adsorbents promises extremely high capacity for both cooling (>800 kJ/L) and heating (>1150 kJ/L) applications. In the thermal ...

McKay, Ian Salmon

2014-01-01T23:59:59.000Z

95

Metal Hydride Thermal Storage: Reversible Metal Hydride Thermal Storage for High-Temperature Power Generation Systems  

SciTech Connect (OSTI)

HEATS Project: PNNL is developing a thermal energy storage system based on a Reversible Metal Hydride Thermochemical (RMHT) system, which uses metal hydride as a heat storage material. Heat storage materials are critical to the energy storage process. In solar thermal storage systems, heat can be stored in these materials during the day and released at night—when the sun is not out—to drive a turbine and produce electricity. In nuclear storage systems, heat can be stored in these materials at night and released to produce electricity during daytime peak-demand hours. PNNL’s metal hydride material can reversibly store heat as hydrogen cycles in and out of the material. In a RHMT system, metal hydrides remain stable in high temperatures (600- 800°C). A high-temperature tank in PNNL’s storage system releases heat as hydrogen is absorbed, and a low-temperature tank stores the heat until it is needed. The low-cost material and simplicity of PNNL’s thermal energy storage system is expected to keep costs down. The system has the potential to significantly increase energy density.

None

2011-12-05T23:59:59.000Z

96

EMSL - batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

batteries en Magnesium behavior and structural defects in Mg+ ion implanted silicon carbide. http:www.emsl.pnl.govemslwebpublicationsmagnesium-behavior-and-structural-defects-...

97

Development of New Generation of Thermally-Enhanced Fiber Glass Insulation  

SciTech Connect (OSTI)

This report presents experimental and numerical results from thermal performance studies. The purpose of this Cooperative Research and Development Agreement (CRADA) between UT-Battelle, LLC and John s Manville was to design a basic concept of a new generation of thermally-enhanced fiber glass insulation. Different types of Phase Change Materials (PCMs) have been tested as dynamic components in buildings during the last 4 decades. Most historical studies have found that PCMs enhance building energy performance. Some PCM-enhanced building materials, like PCM-gypsum boards or PCM-impregnated concretes have already found their limited applications in different countries. Today, continued improvements in building envelope technologies suggest that throughout Southern and Central U.S. climates, residences may soon be routinely constructed with PCM in order to maximize insulation effectiveness and maintain low heating and cooling loads. The proposed thermally-enhanced fiber glass insulation will maximize this integration by utilizing a highly-efficient building envelope with high-R thermal insulation, active thermal mass and superior air-tightness. Improved thermal resistance will come from modifications in infrared internal characteristics of the fiber glass insulation. Thermal mass effect can be provided by proprietary thermally-active microencapsulated phase change material (PCM). Work carried out at the Oak Ridge National Laboratory (ORNL) on the CRADA is described in this report.

Kosny, Jan [ORNL; Yarbrough, David W [ORNL; Childs, Phillip W [ORNL; Miller, William A [ORNL; Atchley, Jerald Allen [ORNL; Shrestha, Som S [ORNL

2010-03-01T23:59:59.000Z

98

Geek-Up[04.01.2011]: Charting Wind, Thermal, Hydro Generation  

Broader source: Energy.gov [DOE]

Check out Bonneville Power Administration’s new near real-time energy monitoring – it displays the output of all wind, thermal and hydro generation in the agency’s balancing authority against its load. Updated every five minutes, it’s a great resource for universities, research laboratories and other utilities.

99

KAir Battery  

Broader source: Energy.gov [DOE]

KAir Battery, from Ohio State University, is commercializing highly energy efficient cost-effective potassium air batteries for use in the electrical stationary storage systems market (ESSS). Beyond, the ESSS market potential applications range from temporary power stations and electric vehicle.

100

High Voltage Electrolyte for Lithium Batteries  

Broader source: Energy.gov (indexed) [DOE]

battery using high voltage high energy cathode materials to enable large-scale, cost competitive production of the next generation of electric-drive vehicles. To...

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Horizontal Steam Generator Thermal-Hydraulics at Various Steady-State Power Levels  

SciTech Connect (OSTI)

Three-dimensional computer simulation and analyses of the horizontal steam generator thermal-hydraulics of the WWER 1000 nuclear power plant have been performed for 50% and 75% partial loads, 100% nominal load and 110% over-load. Presented results show water and steam mass flow rate vectors, steam void fraction spatial distribution, recirculation zones, swell level position, water mass inventory on the shell side, and other important thermal-hydraulic parameters. The simulations have been performed with the computer code 3D ANA, based on the 'two-fluid' model approach. Steam-water interface transport processes, as well as tube bundle flow resistance, energy transfer, and steam generation within tube bundles are modelled with {sup c}losure laws{sup .} Applied approach implies non-equilibrium thermal and flow conditions. The model is solved by the control volume procedure, which has been extended in order to take into account the 3D flow of liquid and gas phase. The methodology is validated by comparing numerical and experimental results of real steam generator operational conditions at various power levels of the WWER Novovoronezh, Unit 5. One-dimensional model of the horizontal steam generator has been built with the RELAP 5 standard code on the basis of the multidimensional two-phase flow structure obtained with the 3D ANA code. RELAP 5 and 3D ANA code results are compared, showing acceptable agreement. (authors)

Stevanovic, Vladimir D. [University of Belgrade, Kraljice Marije 16, 11000 Belgrade, Serbia and Montenegro (Yugoslavia); Stosic, Zoran V.; Kiera, Michael; Stoll, Uwe [Framatome ANP GmbH, P.O. Box 3220, 91050 Erlangen (Germany)

2002-07-01T23:59:59.000Z

102

An on-line information system for radioisotope thermal generator production  

SciTech Connect (OSTI)

An on-line production information system has been designed to support radioisotope thermal generator assembly and testing in a new facility being built at the Department of Energy Hanford Site in Washington State. This system is intended to make handling the large volumes of information associated with radioisotope thermal generator production and certification more efficient with less opportunity for error than traditional paper methods. It provides for tracking materials, implementing work procedures directly from computer terminals, and cross referencing among materials, procedures, and other documents related to production. This system will be implemented on a network of microcomputers using UNIX{sup TM} for its operating system. It has been designed to allow increased capabilities to be added as operating experience with the new facility dictates.

Kiebel, G.R.; Wiemers, M.J. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (US))

1991-01-01T23:59:59.000Z

103

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux  

DOE Patents [OSTI]

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

Bowman, C.D.

1992-11-03T23:59:59.000Z

104

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux  

DOE Patents [OSTI]

Apparatus for nuclear transmutation and power production using an intense accelerator-generated thermal neutron flux. High thermal neutron fluxes generated from the action of a high power proton accelerator on a spallation target allows the efficient burn-up of higher actinide nuclear waste by a two-step process. Additionally, rapid burn-up of fission product waste for nuclides having small thermal neutron cross sections, and the practicality of small material inventories while achieving significant throughput derive from employment of such high fluxes. Several nuclear technology problems are addressed including 1. nuclear energy production without a waste stream requiring storage on a geological timescale, 2. the burn-up of defense and commercial nuclear waste, and 3. the production of defense nuclear material. The apparatus includes an accelerator, a target for neutron production surrounded by a blanket region for transmutation, a turbine for electric power production, and a chemical processing facility. In all applications, the accelerator power may be generated internally from fission and the waste produced thereby is transmuted internally so that waste management might not be required beyond the human lifespan.

Bowman, Charles D. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

105

Study on generating of thermal neutron scattering cross sections for LiH  

SciTech Connect (OSTI)

LiH is designated as a promising moderator and shielding material because of its low density, high melting point and large fraction of H atoms. However, lack of the thermal neutron cross sections of LiH makes numerical calculation deviate from experimental data to some extent. As a result, it is necessary to study LiH thermal kernel effect. The phonon property of LiH has been investigated by first-principles calculations using the plane-wave pseudo potential method with CASTEP code. The scattering law and the thermal neutron scattering cross sections for Li and H have been generated using this distribution. The results have been compared with zirconium hydride data. The GASKET and NJOY/LEAPR codes have been used in the calculation of scattering law, whose results have been compared with the reference; the discrepancy mainly comes from phonon spectrums and its expansion. LEAPR had the capability to compute scattering through larger energy and momentum transfers than GASKET did. By studying LiH phonon spectrum and constructing the model of LiH thermal kernel and scattering matrix, the ACE format LiH thermal neutron cross sections for MCNP software could be made and used for reactor Neutronics calculation. (authors)

Wang, L.; Jiang, X.; Zhao, Z.; Chen, L. [Northwest Institute of Nuclear Technology, Xi'an 710024 (China)

2013-07-01T23:59:59.000Z

106

Models for Battery Reliability and Lifetime  

SciTech Connect (OSTI)

Models describing battery degradation physics are needed to more accurately understand how battery usage and next-generation battery designs can be optimized for performance and lifetime. Such lifetime models may also reduce the cost of battery aging experiments and shorten the time required to validate battery lifetime. Models for chemical degradation and mechanical stress are reviewed. Experimental analysis of aging data from a commercial iron-phosphate lithium-ion (Li-ion) cell elucidates the relative importance of several mechanical stress-induced degradation mechanisms.

Smith, K.; Wood, E.; Santhanagopalan, S.; Kim, G. H.; Neubauer, J.; Pesaran, A.

2014-03-01T23:59:59.000Z

107

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

energy generation and battery storage via the use ofenergy generation and battery storage via the use of nanos-and storage (e.g lithium-ion rechargeable battery)

Khan, Javed Miller

2012-01-01T23:59:59.000Z

108

Characterization of the Hydrogen-Bromine Flow Battery for Electrical Energy Storage  

E-Print Network [OSTI]

generating units through peak shaving and load leveling. Batteries have proper energy and power densities for these applications. A flow battery is advantageous to a secondary battery because the reactants are stored externally and the electrodes are inert...

Kreutzer, Haley Maren

2012-05-31T23:59:59.000Z

109

Wednesday, October 17th Bourns A265 1:40-2:30pm To realize the next generation rechargeable lithium batteries, it is critical to use novel electrode  

E-Print Network [OSTI]

lithium batteries, it is critical to use novel electrode materials with higher lithium storage capacity. In this presentation, a number of novel lithium battery electrode materials including silicon anode, tin anode, and sulfur cathode will be presented. Silicon (Si) and tin (Sn) possess very high lithium storage capacities

110

Design of a 2.5kW Low Temperature Stirling Engine for Distributed Solar Thermal Generation  

E-Print Network [OSTI]

-flexible with respect to the source of thermal energy and unprocessed waste heat can be harvested for CHP purposes for residential solar generation or on a small commercial building scale. The Stirling engine is a key component

Sanders, Seth

111

Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation  

SciTech Connect (OSTI)

The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222şC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go/no-go goals stipulated by the DOE for this project. Energy densities of all salt mixtures were higher than that of the current solar salt. The salt mixtures costs have been estimated and TES system costs for a 2 tank, direct approach have been estimated for each of these materials. All estimated costs are significantly below the baseline system that used solar salt. These lower melt point salts offer significantly higher energy density per volume than solar salt – and therefore attractively smaller inventory and equipment costs. Moreover, a new TES system geometry has been recommended A variety of approaches were evaluated to use the low melting point molten salt. Two novel changes are recommended that 1) use the salt as a HTF through the solar trough field, and 2) use the salt to not only create steam but also to preheat the condensed feedwater for Rankine cycle. The two changes enable the powerblock to operate at 500°C, rather than the current 400°C obtainable using oil as the HTF. Secondly, the use of salt to preheat the feedwater eliminates the need to extract steam from the low pressure turbine for that purpose. Together, these changes result in a dramatic 63% reduction required for 6 hour salt inventory, a 72% reduction in storage volume, and a 24% reduction in steam flow rate in the power block. Round trip efficiency for the Case 5 - 2 tank “direct” system is estimated at >97%, with only small losses from time under storage and heat exchange, and meeting RFP goals. This attractive efficiency is available because the major heat loss experienced in a 2 tank “indirect” system - losses by transferring the thermal energy from oil HTF to the salt storage material and back to oil to run the steam generator at night - is not present for the 2 tank direct system. The higher heat capacity values for both LMP and HMP systems enable larger storage capacities for concentrating solar power.

Reddy, Ramana G. [The University of Alabama] [The University of Alabama

2013-10-23T23:59:59.000Z

112

Cathode material for lithium batteries  

DOE Patents [OSTI]

A method of manufacture an article of a cathode (positive electrode) material for lithium batteries. The cathode material is a lithium molybdenum composite transition metal oxide material and is prepared by mixing in a solid state an intermediate molybdenum composite transition metal oxide and a lithium source. The mixture is thermally treated to obtain the lithium molybdenum composite transition metal oxide cathode material.

Park, Sang-Ho; Amine, Khalil

2013-07-23T23:59:59.000Z

113

Batteries: Overview of Battery Cathodes  

SciTech Connect (OSTI)

The very high theoretical capacity of lithium (3829 mAh/g) provided a compelling rationale from the 1970's onward for development of rechargeable batteries employing the elemental metal as an anode. The realization that some transition metal compounds undergo reductive lithium intercalation reactions reversibly allowed use of these materials as cathodes in these devices, most notably, TiS{sub 2}. Another intercalation compound, LiCoO{sub 2}, was described shortly thereafter but, because it was produced in the discharged state, was not considered to be of interest by battery companies at the time. Due to difficulties with the rechargeability of lithium and related safety concerns, however, alternative anodes were sought. The graphite intercalation compound (GIC) LiC{sub 6} was considered an attractive candidate but the high reactivity with commonly used electrolytic solutions containing organic solvents was recognized as a significant impediment to its use. The development of electrolytes that allowed the formation of a solid electrolyte interface (SEI) on surfaces of the carbon particles was a breakthrough that enabled commercialization of Li-ion batteries. In 1990, Sony announced the first commercial batteries based on a dual Li ion intercalation system. These devices are assembled in the discharged state, so that it is convenient to employ a prelithiated cathode such as LiCoO{sub 2} with the commonly used graphite anode. After charging, the batteries are ready to power devices. The practical realization of high energy density Li-ion batteries revolutionized the portable electronics industry, as evidenced by the widespread market penetration of mobile phones, laptop computers, digital music players, and other lightweight devices since the early 1990s. In 2009, worldwide sales of Li-ion batteries for these applications alone were US$ 7 billion. Furthermore, their performance characteristics (Figure 1) make them attractive for traction applications such as hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and electric vehicles (EVs); a market predicted to be potentially ten times greater than that of consumer electronics. In fact, only Liion batteries can meet the requirements for PHEVs as set by the U.S. Advanced Battery Consortium (USABC), although they still fall slightly short of EV goals. In the case of Li-ion batteries, the trade-off between power and energy shown in Figure 1 is a function both of device design and the electrode materials that are used. Thus, a high power battery (e.g., one intended for an HEV) will not necessarily contain the same electrode materials as one designed for high energy (i.e., for an EV). As is shown in Figure 1, power translates into acceleration, and energy into range, or miles traveled, for vehicular uses. Furthermore, performance, cost, and abuse-tolerance requirements for traction batteries differ considerably from those for consumer electronics batteries. Vehicular applications are particularly sensitive to cost; currently, Li-ion batteries are priced at about $1000/kWh, whereas the USABC goal is $150/kWh. The three most expensive components of a Li-ion battery, no matter what the configuration, are the cathode, the separator, and the electrolyte. Reduction of cost has been one of the primary driving forces for the investigation of new cathode materials to replace expensive LiCoO{sub 2}, particularly for vehicular applications. Another extremely important factor is safety under abuse conditions such as overcharge. This is particularly relevant for the large battery packs intended for vehicular uses, which are designed with multiple cells wired in series arrays. Premature failure of one cell in a string may cause others to go into overcharge during passage of current. These considerations have led to the development of several different types of cathode materials, as will be covered in the next section. Because there is not yet one ideal material that can meet requirements for all applications, research into cathodes for Li-ion batteries is, as of this writ

Doeff, Marca M

2010-07-12T23:59:59.000Z

114

Nanoscale LiFePO4 and Li4Ti5O12 for High Rate Li-ion Batteries  

E-Print Network [OSTI]

12 for High Rate Li-ion Batteries A. Jaiswal 1 , C. R. Hornenext generation of Li-ion batteries for consumer electronics

Jaiswal, A.

2010-01-01T23:59:59.000Z

115

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network [OSTI]

Ferdowsi, M. (2007). Plug-hybrid vehicles – A vision for thepower: battery, hybrid and fuel cell vehicles as resources2010). Plug-in hybrid electric vehicles as regulating power

Greer, Mark R

2012-01-01T23:59:59.000Z

116

Metal-Air Batteries  

SciTech Connect (OSTI)

Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

2011-08-01T23:59:59.000Z

117

Fault-tolerant battery system employing intra-battery network architecture  

DOE Patents [OSTI]

A distributed energy storing system employing a communications network is disclosed. A distributed battery system includes a number of energy storing modules, each of which includes a processor and communications interface. In a network mode of operation, a battery computer communicates with each of the module processors over an intra-battery network and cooperates with individual module processors to coordinate module monitoring and control operations. The battery computer monitors a number of battery and module conditions, including the potential and current state of the battery and individual modules, and the conditions of the battery's thermal management system. An over-discharge protection system, equalization adjustment system, and communications system are also controlled by the battery computer. The battery computer logs and reports various status data on battery level conditions which may be reported to a separate system platform computer. A module transitions to a stand-alone mode of operation if the module detects an absence of communication connectivity with the battery computer. A module which operates in a stand-alone mode performs various monitoring and control functions locally within the module to ensure safe and continued operation.

Hagen, Ronald A. (Stillwater, MN); Chen, Kenneth W. (Fair Oaks, CA); Comte, Christophe (Montreal, CA); Knudson, Orlin B. (Vadnais Heights, MN); Rouillard, Jean (Saint-Luc, CA)

2000-01-01T23:59:59.000Z

118

Multi-cell storage battery  

DOE Patents [OSTI]

A multi-cell storage battery, in particular to a lithium storage battery, which contains a temperature control device and in which groups of one or more individual cells arranged alongside one another are separated from one another by a thermally insulating solid layer whose coefficient of thermal conductivity lies between 0.01 and 0.2 W/(m*K), the thermal resistance of the solid layer being greater by at least a factor .lambda. than the thermal resistance of the individual cell. The individual cell is connected, at least in a region free of insulating material, to a heat exchanger, the thermal resistance of the heat exchanger in the direction toward the neighboring cell being selected to be greater by at least a factor .lambda. than the thermal resistance of the individual cell and, in addition, the thermal resistance of the heat exchanger toward the temperature control medium being selected to be smaller by at least a factor of about 10 than the thermal resistance of the individual cell, and .lambda. being the ratio of the energy content of the individual cell to the amount of energy that is needed to trigger a thermally induced cell failure at a defined upper operating temperature limit.

Brohm, Thomas (Hattersheim, DE); Bottcher, Friedhelm (Kelkheim, DE)

2000-01-01T23:59:59.000Z

119

Coupling of Mechanical Behavior of Cell Components to Electrochemical-Thermal Models for Computer-Aided Engineering of Batteries under Abuse (Presentation)  

SciTech Connect (OSTI)

The EV Everywhere Grand Challenge aims to produce plug-in electric vehicles as affordable and convenient for the American family as gasoline-powered vehicles by 2022. Among the requirements set by the challenge, electric vehicles must be as safe as conventional vehicles, and EV batteries must not lead to unsafe situations under abuse conditions. NREL's project started in October 2013, based on a proposal in response to the January 2013 DOE VTO FOA, with the goal of developing computer aided engineering tools to accelerate the development of safer lithium ion batteries.

Pesaran, A.; Wierzbicki, T.; Sahraei, E.; Li, G.; Collins, L.; Sprague, M.; Kim, G. H.; Santhangopalan, S.

2014-06-01T23:59:59.000Z

120

Advanced Battery Manufacturing (VA)  

SciTech Connect (OSTI)

LiFeBATT has concentrated its recent testing and evaluation on the safety of its batteries. There appears to be a good margin of safety with respect to overheating of the cells and the cases being utilized for the batteries are specifically designed to dissipate any heat built up during charging. This aspect of LiFeBATT’s products will be even more fully investigated, and assuming ongoing positive results, it will become a major component of marketing efforts for the batteries. LiFeBATT has continued to receive prismatic 20 Amp hour cells from Taiwan. Further testing continues to indicate significant advantages over the previously available 15 Ah cells. Battery packs are being assembled with battery management systems in the Danville facility. Comprehensive tests are underway at Sandia National Laboratory to provide further documentation of the advantages of these 20 Ah cells. The company is pursuing its work with Hybrid Vehicles of Danville to critically evaluate the 20 Ah cells in a hybrid, armored vehicle being developed for military and security applications. Results have been even more encouraging than they were initially. LiFeBATT is expanding its work with several OEM customers to build a worldwide distribution network. These customers include a major automotive consulting group in the U.K., an Australian maker of luxury off-road campers, and a number of makers of E-bikes and scooters. LiFeBATT continues to explore the possibility of working with nations that are woefully short of infrastructure. Negotiations are underway with Siemens to jointly develop a system for using photovoltaic generation and battery storage to supply electricity to communities that are not currently served adequately. The IDA has continued to monitor the progress of LiFeBATT’s work to ensure that all funds are being expended wisely and that matching funds will be generated as promised. The company has also remained current on all obligations for repayment of an IDA loan and lease payments for space to the IDA. A commercial venture is being formed to utilize the LiFeBATT product for consumer use in enabling photovoltaic powered boat lifts. Field tests of the system have proven to be very effective and commercially promising. This venture is expected to result in significant sales within the next six months.

Stratton, Jeremy

2012-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Combination of thermal and cavitation effects to generate deep lesions with an endocavitary applicator using a plane transducer: Ex vivo studies.  

E-Print Network [OSTI]

1 Combination of thermal and cavitation effects to generate deep lesions with an endocavitary@lyon.inserm.fr Running title : Combination of thermal and cavitation effects inserm-00189856,version1-22Nov2007 Author.ultrasmedbio.2003.09.005 #12;2 Combination of thermal and cavitation effects to generate deep lesions

Paris-Sud XI, Université de

122

battery materials | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery materials battery materials Leads No leads are available at this time. Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. Abstract: The...

123

Battery cell feedthrough apparatus  

DOE Patents [OSTI]

A compact, hermetic feedthrough apparatus comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance.

Kaun, Thomas D. (New Lenox, IL)

1995-01-01T23:59:59.000Z

124

Battery Safety Testing  

Broader source: Energy.gov (indexed) [DOE]

mechanical modeling battery crash worthiness for USCAR Abuse tolerance evaluation of cells, batteries, and systems Milestones Demonstrate improved abuse tolerant cells and...

125

Signal generation mechanisms, intracavity-gas thermal-diffusivity temperature dependence, and absolute infrared emissivity measurements  

E-Print Network [OSTI]

, Canada Received 22 September 1997; accepted for publication 8 October 1997 The operating thermal power dominance of thermal-wave radiation power transfer in the phase channel of the thermal-wave signal at large produces an ac electrical signal proportional to the energy of the standing thermal-wave pattern

Mandelis, Andreas

126

Rapid hydrogen gas generation using reactive thermal decomposition of uranium hydride.  

SciTech Connect (OSTI)

Oxygen gas injection has been studied as one method for rapidly generating hydrogen gas from a uranium hydride storage system. Small scale reactors, 2.9 g UH{sub 3}, were used to study the process experimentally. Complimentary numerical simulations were used to better characterize and understand the strongly coupled chemical and thermal transport processes controlling hydrogen gas liberation. The results indicate that UH{sub 3} and O{sub 2} are sufficiently reactive to enable a well designed system to release gram quantities of hydrogen in {approx} 2 seconds over a broad temperature range. The major system-design challenge appears to be heat management. In addition to the oxidation tests, H/D isotope exchange experiments were performed. The rate limiting step in the overall gas-to-particle exchange process was found to be hydrogen diffusion in the {approx}0.5 {mu}m hydride particles. The experiments generated a set of high quality experimental data; from which effective intra-particle diffusion coefficients can be inferred.

Kanouff, Michael P.; Van Blarigan, Peter; Robinson, David B.; Shugard, Andrew D.; Gharagozloo, Patricia E.; Buffleben, George M.; James, Scott Carlton; Mills, Bernice E.

2011-09-01T23:59:59.000Z

127

Metal-Air Electric Vehicle Battery: Sustainable, High-Energy Density, Low-Cost Electrochemical Energy Storage – Metal-Air Ionic Liquid (MAIL) Batteries  

SciTech Connect (OSTI)

Broad Funding Opportunity Announcement Project: ASU is developing a new class of metal-air batteries. Metal-air batteries are promising for future generations of EVs because they use oxygen from the air as one of the battery’s main reactants, reducing the weight of the battery and freeing up more space to devote to energy storage than Li-Ion batteries. ASU technology uses Zinc as the active metal in the battery because it is more abundant and affordable than imported lithium. Metal-air batteries have long been considered impractical for EV applications because the water-based electrolytes inside would decompose the battery interior after just a few uses. Overcoming this traditional limitation, ASU’s new battery system could be both cheaper and safer than today’s Li-Ion batteries, store from 4-5 times more energy, and be recharged over 2,500 times.

None

2009-12-21T23:59:59.000Z

128

NREL: News - NREL Model Licensed to Improve Accuracy of Battery...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the development of next generation electric-drive vehicle batteries," NREL Energy Storage Group Manager Ahmad Pesaran said. "By adding this model to their software package,...

129

Batteries: Direct-write Microbatteries for Microelectronic Devices  

E-Print Network [OSTI]

Batteries: Direct-write Microbatteries for Microelectronic Devices Mesoscale electrochemical charge and ultra- capacitors have a minimal heat signature, generate no noise, and have no moving parts, so

Arnold, Craig B.

130

NREL/CCSE PEV Battery Second Use Project (Presentation)  

SciTech Connect (OSTI)

This presentation describes the Battery Second Use Project. Preliminary analysis results show (1) the impact of competing technologies, (2) potential revenue generation, and (3) supply and demand of the second use of plug-in electric vehicle batteries. The impact of competing technologies are: maximum salve value of a used battery will be limited by future battery prices, under favorable conditions, second use can only discount today's battery prices by 12% or less, however, second use will offer batteries to second applications at reduced cost (typically < $170/kWh). Revenue streams are highly variable, allowable battery costs are highly sensitive to balance-of-system costs, and batteries need to be very cheap for these applications to be viable. Supply and demand show that high-value applications have both competition and small markets, and supply from plug-in electric vehicles has the potential to overwhelm many second use markets.

Neubauer, J.; Pesaran, A.

2011-09-01T23:59:59.000Z

131

NREL: Energy Storage - Battery Ownership  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

publications. Updating United States Advanced Battery Consortium and Department of Energy Battery Technology Targets for Battery Electric Vehicles Sensitivity of Plug-In Hybrid...

132

Distributed Energy Resources On-Site Optimization for Commercial Buildings with Electric and Thermal Storage Technologies  

E-Print Network [OSTI]

could be acquired, e.g. battery storage, the costs for whichlead/acid battery, and thermal storage, capabilities, withis limited by battery size - Heat storage is limited by

Stadler, Michael

2008-01-01T23:59:59.000Z

133

Thermal Instability of Olivine-Type LiMnP04 Cathodes  

E-Print Network [OSTI]

Standard for Lithium Batteries, document 1642, 3 rd Edition,of high energy phosphate Li-ion batteries is discussed. 2.g. Thermal runaway of Li-ion batteries occurs when the heat

Chen, Guoying

2010-01-01T23:59:59.000Z

134

Towards Understanding the Poor Thermal Stability of V5+ Electrolyte...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

the Poor Thermal Stability of V5+ Electrolyte Solution in Vanadium Redox Flow Batteries. Towards Understanding the Poor Thermal Stability of V5+ Electrolyte Solution in...

135

Develop and Evaluate Materials and Additives that Enhance Thermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

& Additives that Enhance Thermal & Overcharge Abuse Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse High Voltage Electrolyte for Lithium Batteries...

136

Membranes and separators for flowing electrolyte batteries-a review  

SciTech Connect (OSTI)

Flowing electrolyte batteries are rechargeable electrochemical storage devices in which externally stored electrolytes are circulated through the cell stack during charge or discharge. The potential advantages that flow batteries offer compared to other secondary batteries include: 1) ease of thermal and electrolyte management, 2) simple electrochemistry, 3) deep cycling capability, and 4) minimal loss of capacity with cycling. However, flow batteries are more complex than other secondary batteries and consequently may cost more and may be less reliable. Flow batteries are being developed for utility load leveling, electric vehicles, solar photovoltaic and wind turbine application. The status of flow batteries has recently been reviewed by Clark et al. The flowing electrolyte batteries place rigorous demands on the performance of separators and membranes. The operating characteristics of the iron/chromium redox battery were changed in order to accommodate the limitations in membrane performance. Low cost alternatives to the presently used membrane must be found before the zinc/ferricyanide battery can be economically feasible. The zinc/bromine battery's efficiency could be improved if a suitably selective membrane were available. It is anticipated that better and less costly membranes to meet these needs will be developed as more is learned about their preparation and performance.

Arnold, C.; Assink, R.A.

1983-01-01T23:59:59.000Z

137

Short communication Enhanced autonomic shutdown of Li-ion batteries by polydopamine  

E-Print Network [OSTI]

Short communication Enhanced autonomic shutdown of Li-ion batteries by polydopamine coated Accepted 9 July 2014 Available online 17 July 2014 Keywords: Li-ion batteries Thermal shutdown Polyethylene binder, applied onto a battery anode surface, dried, and incorporated into Li-ion coin cells. FTIR

Sottos, Nancy R.

138

Battery cell feedthrough apparatus  

DOE Patents [OSTI]

A compact, hermetic feedthrough apparatus is described comprising interfitting sleeve portions constructed of chemically-stable materials to permit unique battery designs and increase battery life and performance. 8 figs.

Kaun, T.D.

1995-03-14T23:59:59.000Z

139

Advanced Vehicle Testing - Beginning-of-Test Battery Testing...  

Broader source: Energy.gov (indexed) [DOE]

2.5 V Thermal Mgmt.: Passive, Vacuum-Sealed Unit Pack Weight: 294 kg BATTERY LABORATORY TEST RESULTS SUMMARY Vehicle Mileage and Testing Date Vehicle Odometer: 6,696 mi Date of...

140

Finger wear detection for production line battery tester  

DOE Patents [OSTI]

A method is described for detecting wear in a battery tester probe. The method includes providing a battery tester unit having at least one tester finger, generating a tester signal using the tester fingers and battery tester unit with the signal characteristic of the electrochemical condition of the battery and the tester finger, applying wavelet transformation to the tester signal including computing a mother wavelet to produce finger wear indicator signals, analyzing the signals to create a finger wear index, comparing the wear index for the tester finger with the index for a new tester finger and generating a tester finger signal change signal to indicate achieving a threshold wear change. 9 figs.

Depiante, E.V.

1997-11-18T23:59:59.000Z

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Development and Demonstration of an Innovative Thermal Energy Storage System for Baseload Power Generation  

SciTech Connect (OSTI)

The objective of this project is to research and develop a thermal energy storage system (operating range 3000C ���¢�������� 450 0C ) based on encapsulated phase change materials (PCM) that can meet the utility-scale base-load concentrated solar power plant requirements at much lower system costs compared to the existing thermal energy storage (TES) concepts. The major focus of this program is to develop suitable encapsulation methods for existing low-cost phase change materials that would provide a cost effective and reliable solution for thermal energy storage to be integrated in solar thermal power plants. This project proposes a TES system concept that will allow for an increase of the capacity factor of the present CSP technologies to 75% or greater and reduce the cost to less than $20/kWht.

D. Y. Goswami

2012-09-04T23:59:59.000Z

142

Battery Lifetime Analysis and Simulation Tool (BLAST) Documentation  

SciTech Connect (OSTI)

The deployment and use of lithium-ion batteries in automotive and stationary energy storage applications must be optimized to justify their high up-front costs. Given that batteries degrade with use and storage, such optimizations must evaluate many years of operation. As the degradation mechanisms are sensitive to temperature, state-of-charge histories, current levels, and cycle depth and frequency, it is important to model both the battery and the application to a high level of detail to ensure battery response is accurately predicted. To address these issues, the National Renewable Energy Laboratory has developed the Battery Lifetime Analysis and Simulation Tool (BLAST) suite of tools. This suite of tools pairs NREL's high-fidelity battery degradation model with a battery electrical and thermal performance model, application-specific electrical and thermal performance models of the larger system (e.g., an electric vehicle), application-specific system use data (e.g., vehicle travel patterns and driving data), and historic climate data from cities across the United States. This provides highly realistic, long-term predictions of battery response and thereby enables quantitative comparisons of varied battery use strategies.

Neubauer, J.

2014-12-01T23:59:59.000Z

143

Sandia National Laboratories: Batteries & Energy Storage Publications  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

StorageBatteries & Energy Storage Publications Batteries & Energy Storage Publications Batteries & Energy Storage Fact Sheets Achieving Higher Energy Density in Flow Batteries at...

144

Flow Battery System Design for Manufacturability.  

SciTech Connect (OSTI)

Flow battery energy storage systems can support renewable energy generation and increase energy efficiency. But, presently, the costs of flow battery energy storage systems can be a significant barrier for large-scale market penetration. For cost- effective systems to be produced, it is critical to optimize the selection of materials and components simultaneously with the adherence to requirements and manufacturing processes to allow these batteries and their manufacturers to succeed in the market by reducing costs to consumers. This report analyzes performance, safety, and testing requirements derived from applicable regulations as well as commercial and military standards that would apply to a flow battery energy storage system. System components of a zinc-bromine flow battery energy storage system, including the batteries, inverters, and control and monitoring system, are discussed relative to manufacturing. The issues addressed include costs and component availability and lead times. A service and support model including setup, maintenance and transportation is outlined, along with a description of the safety-related features of the example flow battery energy storage system to promote regulatory and environmental, safety, and health compliance in anticipation of scale manufacturing.

Montoya, Tracy Louise; Meacham, Paul Gregory; Perry, David; Broyles, Robin S.; Hickey, Steven; Hernandez, Jacquelynne

2014-10-01T23:59:59.000Z

145

Lithium Metal Anodes for Rechargeable Batteries  

SciTech Connect (OSTI)

Rechargeable lithium metal batteries have much higher energy density than those of lithium ion batteries using graphite anode. Unfortunately, uncontrollable dendritic lithium growth inherent in these batteries (upon repeated charge/discharge cycling) and limited Coulombic efficiency during lithium deposition/striping has prevented their practical application over the past 40 years. With the emerging of post Li-ion batteries, safe and efficient operation of lithium metal anode has become an enabling technology which may determine the fate of several promising candidates for the next generation of energy storage systems, including rechargeable Li-air battery, Li-S battery, and Li metal battery which utilize lithium intercalation compounds as cathode. In this work, various factors which affect the morphology and Coulombic efficiency of lithium anode will be analyzed. Technologies used to characterize the morphology of lithium deposition and the results obtained by modeling of lithium dendrite growth will also be reviewed. At last, recent development in this filed and urgent need in this field will also be discussed.

Xu, Wu; Wang, Jiulin; Ding, Fei; Chen, Xilin; Nasybulin, Eduard N.; Zhang, Yaohui; Zhang, Jiguang

2014-02-28T23:59:59.000Z

146

ENERGY EFFICIENCY AND ENVIRONMENTALLY FRIENDLY DISTRIBUTED ENERGY STORAGE BATTERY  

SciTech Connect (OSTI)

Electro Energy, Inc. conducted a research project to develop an energy efficient and environmentally friendly bipolar Ni-MH battery for distributed energy storage applications. Rechargeable batteries with long life and low cost potentially play a significant role by reducing electricity cost and pollution. A rechargeable battery functions as a reservoir for storage for electrical energy, carries energy for portable applications, or can provide peaking energy when a demand for electrical power exceeds primary generating capabilities.

LANDI, J.T.; PLIVELICH, R.F.

2006-04-30T23:59:59.000Z

147

Research, development and demonstration of nickel-zinc batteries for electric vehicle propulsion. Annual report, 1979. [70 W/lb  

SciTech Connect (OSTI)

This second annual report under Contract No. 31-109-39-4200 covers the period July 1, 1978 through August 31, 1979. The program demonstrates the feasibility of the nickel-zinc battery for electric vehicle propulsion. The program is divided into seven distinct but highly interactive tasks collectively aimed at the development and commercialization of nickel-zinc technology. These basic technical tasks are separator development, electrode development, product design and analysis, cell/module battery testing, process development, pilot manufacturing, and thermal management. A Quality Assurance Program has also been established. Significant progress has been made in the understanding of separator failure mechanisms, and a generic category of materials has been specified for the 300+ deep discharge (100% DOD) applications. Shape change has been reduced significantly. A methodology has been generated with the resulting hierarchy: cycle life cost, volumetric energy density, peak power at 80% DOD, gravimetric energy density, and sustained power. Generation I design full-sized 400-Ah cells have yielded in excess of 70 W/lb at 80% DOD. Extensive testing of cells, modules, and batteries is done in a minicomputer-based testing facility. The best life attained with electric vehicle-size cell components is 315 cycles at 100% DOD (1.0V cutoff voltage), while four-cell (approx. 6V) module performance has been limited to about 145 deep discharge cycles. The scale-up of processes for production of components and cells has progressed to facilitate component production rates of thousands per month. Progress in the area of thermal management has been significant, with the development of a model that accurately represents heat generation and rejection rates during battery operation. For the balance of the program, cycle life of > 500 has to be demonstrated in modules and full-sized batteries. 40 figures, 19 tables. (RWR)

Not Available

1980-06-01T23:59:59.000Z

148

Thermal and Radiolytic Gas Generation in Hanford High-Level Waste  

SciTech Connect (OSTI)

The Hanford Site has 177 underground storage tanks containing radioactive wastes that are complex mixes of radioactive and chemical products. Some of these wastes are known to generate and retain large quantities of flammable gases consisting of hydrogen, nitrous oxide, nitrogen, and ammonia. Because these gases are flammable and have the potential for rapid release, the gas generation rate for each tank must be determined to establish the flammability hazard (Johnson et al. 1997). An understanding of gas generation is important to operation of the waste tanks for several reasons. First, knowledge of the overall rate of generation is needed to verify that any given tank has sufficient ventilation to ensure that flammable gases are maintained at a safe level within the dome space. Understanding the mechanisms for production of the various gases is important so that future waste operations do not create conditions that promote the production of hydrogen, ammonia, and nitrous oxide. Studying the generation of gases also provides important data for the composition of the gas mixture, which in turn is needed to assess the flammability characteristics. Finally, information about generation of gases, including the influence of various chemical constituents, temperature, and dose, would aid in assessing the future behavior of the waste during interim storage, implementation of controls, and final waste treatment. This paper summarizes the current knowledge of gas generation pathways and discusses models used in predicting gas generation rates from actual Hanford radioactive wastes. A comparison is made between measured gas generation rates and rates by the predictive models.

Bryan, Samuel A.; Pederson, Larry R.; King, C. M.

2000-01-31T23:59:59.000Z

149

CLASSIFICATION OF NON-HEAT GENERATING OUTDOOR OBJECTS IN THERMAL SCENES FOR AUTONOMOUS ROBOTS  

E-Print Network [OSTI]

describes a physics-based adaptive Bayesian pattern classification model that uses a passive thermal as a result of the diurnal cycle of solar energy. The model that we present will allow bots to "see beyond by the classes of objects and design our Adaptive Bayesian Classification Model. We demonstrate that our novel

Shaw, Leah B.

150

Stochastic Real-Time Scheduling of Wind-thermal Generation Units ...  

E-Print Network [OSTI]

Power produced by thermal unit i in time t (MW). Pps,t. Power .... problem is presented in Section V. Simulation results are pre- sented in section VI ...... operation of a virtual power plant using two stage stochastic programming,”. Energy, vol.

2014-11-11T23:59:59.000Z

151

Macroscopic cross section generation and application for coupled spatial kinetics and thermal hydraulics analysis with SAS-DIF3DK  

SciTech Connect (OSTI)

This paper discusses the importance of modeling the transient behavior of multigroup cross sections in the context of coupled reactor physics and thermal-hydraulic computations with the SAS-DIF3DK computer code. The MACOEF macroscopic cross section methodology is presented. Results from benchmark verification calculations with a continuous-energy Monte Carlo are reported. Analysis of the Chernobyl accident is made using correlated WIMS-D4M generated group constants with special emphasis placed on the impact of modeling assumptions on the progression of the accident simulation.

Turski, R.B.; Morris, E.E.; Taiwo, T.A.; Cahalan, J.E.

1997-08-01T23:59:59.000Z

152

Selecting a PV battery  

SciTech Connect (OSTI)

The primary goal for all photovoltaic systems must be to provide value. Since the total life cycle cost of a system will depend on the type of battery installed, the impact of proper battery selection is considerable. For the designer, selecting an ideal battery can be confusing because he seldom has a reliable frame of reference with which to compare options. This article is an attempt to provide that frame of reference by describing a specific battery design which, for many photovoltaic applications, will represent the best value option. Other battery types can then simply be contrasted to this ''reference battery'' to see if they provide better or worse overall value in any particular application.

Jones, W.

1983-01-01T23:59:59.000Z

153

Characterization of solar thermal concepts for electricity generation: Volume 1, Analyses and evaluation  

SciTech Connect (OSTI)

This study is aimed at providing a relative comparison of the thermodynamic and economic performance in electric applications of several concepts that have been studied and developed in the DOE solar thermal program. Since the completion of earlier systems comparison studies in the late 1970's, there have been a number of years of progress in solar thermal technology. This progress has included development of new solar components, improvements in component and system design detail, construction of working systems, and collection of operating data on the systems. This study provides an updating of the expected performance and cost of the major components and the overall system energy cost for the concepts evaluated. The projections in this study are for the late 1990's time frame, based on the capabilities of the technologies that could be expected to be achieved with further technology development.

Williams, T.A.; Dirks, J.A.; Brown, D.R.; Drost, M.K.; Antoniac, Z.A.; Ross, B.A.

1987-03-01T23:59:59.000Z

154

Flow and Temperature Fields Generated by a Thermally Activated Interventional Vascular Device  

E-Print Network [OSTI]

[ ] ? thermal diffusivity [ ] vii r radius [cm] u axial velocity component [ ] Ac cross-sectional area [cm 2] Dh hydraulic diameter for pipe [cm] hydraulic diameter for annulus ( ) [cm] P... to intravascular issues. In cases 7 where CFD was simultaneously employed, overall agreement between the simulations and experiments is observed. On the whole, applications of LIF are less represented in the literature, but some relevant articles do arise...

McCurrin, Casey

2012-10-19T23:59:59.000Z

155

Lithium battery management system  

DOE Patents [OSTI]

Provided is a system for managing a lithium battery system having a plurality of cells. The battery system comprises a variable-resistance element electrically connected to a cell and located proximate a portion of the cell; and a device for determining, utilizing the variable-resistance element, whether the temperature of the cell has exceeded a predetermined threshold. A method of managing the temperature of a lithium battery system is also included.

Dougherty, Thomas J. (Waukesha, WI)

2012-05-08T23:59:59.000Z

156

Flash report: Automotive batteries  

SciTech Connect (OSTI)

Battery inventories soared early in the years after sales plunged 15% due to the mild winter. But in the last 90 days, admist a hot summer, industry leader Exide announced a 5% price hike to assess the current market, OTR interviewed 14 professionals from the battery industry - Contacts include four battery manufacturers, one industry specialists, seven retail chains plus two wholesalers. The nine sales groups supply about 10,000 stores an automotive shops nationwide.

Gates, J.H.

1995-12-01T23:59:59.000Z

157

Solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2007-09-18T23:59:59.000Z

158

10 Questions for a Batteries Expert: Daniel Abraham  

Broader source: Energy.gov [DOE]

Lithium-ion batteries are in almost every cell phone, as well as cameras, camcorders, and computers. Dr. Abraham explains, "Our goal is to get the batteries into our cars –- into the next generation of plug-in hybrid and electric vehicles." Learn more.

159

battery2.indd  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

High Power Battery Systems Company 5 Silkin Street, Apt. 40 Sarov, Nizhny Novgorod Russia, 607190 Alexander A. Potanin 7-(83130)-43701 (phonefax), potanin@hpbs.ru General...

160

Solid Electrolyte Batteries  

Broader source: Energy.gov (indexed) [DOE]

Kim Texas Materials Institute The University of Texas at Austin Solid Electrolyte Batteries This presentation does not contain any proprietary or confidential information. DOE...

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

EMSL - battery materials  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

battery-materials en Modeling Interfacial Glass-Water Reactions: Recent Advances and Current Limitations. http:www.emsl.pnl.govemslwebpublicationsmodeling-interfacial-glass-wa...

162

Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation  

SciTech Connect (OSTI)

This final report summarizes the final results of the Phase II Innovative Application of Maintenance-Free Phase-Change Thermal Energy Storage for Dish-Engine Solar Power Generation project being performed by Infinia Corporation for the U.S. Department of Energy under contract DE-FC36-08GO18157 during the project period of September 1, 2009 - August 30, 2012. The primary objective of this project is to demonstrate the practicality of integrating thermal energy storage (TES) modules, using a suitable thermal salt phase-change material (PCM) as its medium, with a dish/Stirling engine; enabling the system to operate during cloud transients and to provide dispatchable power for 4 to 6 hours after sunset. A laboratory prototype designed to provide 3 kW-h of net electrical output was constructed and tested at Infinia's Ogden Headquarters. In the course of the testing, it was determined that the system's heat pipe network - used to transfer incoming heat from the solar receiver to both the Stirling generator heater head and to the phase change salt - did not perform to expectations. The heat pipes had limited capacity to deliver sufficient heat energy to the generator and salt mass while in a charging mode, which was highly dependent on the orientation of the device (vertical versus horizontal). In addition, the TES system was only able to extract about 30 to 40% of the expected amount of energy from the phase change salt once it was fully molten. However, the use of heat pipes to transfer heat energy to and from a thermal energy storage medium is a key technical innovation, and the project team feels that the limitations of the current device could be greatly improved with further development. A detailed study of manufacturing costs using the prototype TES module as a basis indicates that meeting DOE LCOE goals with this hardware requires significant efforts. Improvement can be made by implementing aggressive cost-down initiatives in design and materials, improving system performance by boosting efficiencies, and by refining cost estimates with vendor quotes in lieu of mass-based approaches. Although the prototype did not fully demonstrate performance and realize projected cost targets, the project team believes that these challenges can be overcome. The test data showed that the performance can be significantly improved by refining the heat pipe designs. However, the project objective for phase 3 is to design and test on sun the field ready systems, the project team feels that is necessary to further refine the prototype heat pipe design in the current prototype TES system before move on to field test units, Phase 3 continuation will not be pursued.

Qui, Songgang [Temple University] [Temple University; Galbraith, Ross [Infinia] [Infinia

2013-01-23T23:59:59.000Z

163

Supervisory Control of an Adaptive-Droop Regulated DC Microgrid with Battery Management  

E-Print Network [OSTI]

such as photovoltaic (PV) systems and secondary batteries. In this paper, several distributed generators (DGs) have1 Supervisory Control of an Adaptive-Droop Regulated DC Microgrid with Battery Management been merged together with a pair of batteries and loads to form an autonomous dc Microgrid (MG

Vasquez, Juan Carlos

164

Application of Flow Battery in Marine Current Turbine System for Daily Power Management  

E-Print Network [OSTI]

focuses on a grid-connected MCT system and proposes using vanadium redox flow battery (VRB) energy storage/energy sizing. In this paper, one grid-connected MCT generation system with battery energy storage system (BESSApplication of Flow Battery in Marine Current Turbine System for Daily Power Management Zhibin Zhou

Brest, Université de

165

Servant dictionary battery, map  

E-Print Network [OSTI]

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X Cupboard1 wireless Potting gloves aunt[3] Storage dumbwaiter wrench OldFurn parcel, med whistle Over] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key

Rosenthal, Jeffrey S.

166

battery, map parcel, med  

E-Print Network [OSTI]

Attic *** book teachest Servant dictionary scarf [11] Winery demijohn battery, map AuntLair X Cupboard1 wireless Potting gloves aunt[3] Storage dumbwaiter wrench OldFurn parcel, med whistle Over] EastAnnex battery[4] Cupboard2 [2] mask DeadEnd rucksack AlisonWriting [16] TinyBalcony [17] gold key

Rosenthal, Jeffrey S.

167

Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 1, Cell and battery safety  

SciTech Connect (OSTI)

This report is the first of four volumes that identify and assess the environmental, health, and safety issues involved in using sodium-sulfur (Na/S) battery technology as the energy source in electric and hybrid vehicles that may affect the commercialization of Na/S batteries. This and the other reports on recycling, shipping, and vehicle safety are intended to help the Electric and Hybrid Propulsion Division of the Office of Transportation Technologies in the US Department of Energy (DOE/EHP) determine the direction of its research, development, and demonstration (RD&D) program for Na/S battery technology. The reports review the status of Na/S battery RD&D and identify potential hazards and risks that may require additional research or that may affect the design and use of Na/S batteries. This volume covers cell design and engineering as the basis of safety for Na/S batteries and describes and assesses the potential chemical, electrical, and thermal hazards and risks of Na/S cells and batteries as well as the RD&D performed, under way, or to address these hazards and risks. The report is based on a review of the literature and on discussions with experts at DOE, national laboratories and agencies, universities, and private industry. Subsequent volumes will address environmental, health, and safety issues involved in shipping cells and batteries, using batteries to propel electric vehicles, and recycling and disposing of spent batteries. The remainder of this volume is divided into two major sections on safety at the cell and battery levels. The section on Na/S cells describes major component and potential failure modes, design, life testing and failure testing, thermal cycling, and the safety status of Na/S cells. The section on batteries describes battery design, testing, and safety status. Additional EH&S information on Na/S batteries is provided in the appendices.

Ohi, J.M.

1992-09-01T23:59:59.000Z

168

Development and Performance Evaluation of High Temperature Concrete for Thermal Energy Storage for Solar Power Generation  

SciTech Connect (OSTI)

Thermal energy can be stored by the mechanism of sensible or latent heat or heat from chemical reactions. Sensible heat is the means of storing energy by increasing the temperature of the solid or liquid. Since the concrete as media cost per kWhthermal is $1, this seems to be a very economical material to be used as a TES. This research is focused on extending the concrete TES system for higher temperatures (500 Ă?ÂşC to 600 Ă?ÂşC) and increasing the heat transfer performance using novel construction techniques. To store heat at high temperature special concretes are developed and tested for its performance. The storage capacity costs of the developed concrete is in the range of $0.91-$3.02/kWhthermal Two different storage methods are investigated. In the first one heat is transported using molten slat through a stainless steel tube and heat is transported into concrete block through diffusion. The cost of the system is higher than the targeted DOE goal of $15/kWhthermal The increase in cost of the system is due to stainless steel tube to transfer the heat from molten salt to the concrete blocks.The other method is a one-tank thermocline system in which both the hot and cold fluid occupy the same tank resulting in reduced storage tank volume. In this model, heated molten salt enters the top of the tank which contains a packed bed of quartzite rock and silica sand as the thermal energy storage (TES) medium. The single-tank storage system uses about half the salt that is required by the two-tank system for a required storage capacity. This amounts to a significant reduction in the cost of the storage system. The single tank alternative has also been proven to be cheaper than the option which uses large concrete modules with embedded heat exchangers. Using computer models optimum dimensions are determined to have an round trip efficiency of 84%. Additionally, the cost of the structured concrete thermocline configuration provides the TES capacity cost of $33.80$/kWhthermal compared with $30.04/kWhthermal for a packed-bed thermocline (PBTC) configuration and $46.11/kWhthermal for a two-tank liquid configuration.

R. Panneer Selvam, Micah Hale and Matt strasser

2013-03-31T23:59:59.000Z

169

Temperature and thermal stress distributions for the HFIR permanent reflector generated by nuclear heating  

SciTech Connect (OSTI)

The beryllium permanent reflector of the High Flux Isotope Reactor has the main functions for slowing down and reflecting the neutrons and housing the experimental facilities. The reflector is heated as a result of the nuclear reaction. Heat is removed mainly by the cooling water passing through the densely distributed coolant holes along the vertical or axial direction of the reflector. The reflector neutronic distribution and its heating rate are calculated by J.C. Gehin of the Oak Ridge National Laboratory by applying the Monte Carlo Code MCNP. The heat transfer boundary conditions along several reflector interfaces are estimated to remove additional heat from the reflector. The present paper is to report the calculation results of the temperature and the thermal stress distributions of the permanent reflector by applying the computer aided design code I-DEAS and the finite element code ABAQUS. The present calculation is to estimate the high stress areas as a result of the new beam tube cutouts along the horizontal mid-plane of the reflector of the recent reactor upgrade project. These high stresses were not able to be calculated in the preliminary design analysis in earlier 60`s. The heat transfer boundary conditions are used in this redesigned calculation. The material constants and the acceptance criteria for the allowable stresses are mainly based on that assumed in the preliminary design report.

Chang, S.J.

1998-04-01T23:59:59.000Z

170

EV Everywhere Batteries Workshop - Next Generation Lithium Ion Batteries  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPC IDIQ Contract DocumentBreakout Session Report |

171

Batteries - Next-generation Li-ion batteries Breakout session  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: Scope ChangeL-01-06Hot-Humid-Basic Energy20585

172

The potential of biomass and animal waste of Turkey and the possibilities of these as fuel in thermal generating stations  

SciTech Connect (OSTI)

In this study, the potential of important biomass energy sources and animal solid wastes of Turkey were determined and the potential of these as a source of fuel in thermal generating stations to produce electricity was studied. The effects of biomass and lignite coal usage on the environment were reported comparatively. Considering total cereal products and fatty seed plants, approximately 50--65 million tons per year of biomass and 11,051 million tons of solid matter animal waste are produced, and 60% of biomass is seen as possible to use for energy. The primary energy of applicable biomass was evaluated as 467--623 Peta Joule (PJ) and the energy of animal residues as 50,172 PJ. This amount of energy is equal to 22--27% of Turkey`s annual primary energy consumption, (6,308 million tons of oil equivalent).

Acaroglu, M. [Selcuk Univ. Technical Coll., Konya (Turkey). Dept. of Agricultural Machinery; Aksoy, A.S. [Ege Univ. Solar Energy Inst., Izmir (Turkey). Dept. of Energy Sources; Oeguet, H. [Selcuk Univ. Faculty of Agriculture, Konya (Turkey). Dept. of Agricultural Machinery

1999-05-01T23:59:59.000Z

173

Steam generation in line-focus solar collectors: a comparative assessment of thermal performance, operating stability, and cost issues  

SciTech Connect (OSTI)

The engineering and system benefits of using direct steam (in situ) generation in line-focus collectors are assessed. The major emphasis of the analysis is a detailed thermal performance comparison of in situ systems (which utilize unfired boilers). The analysis model developed for this study is discussed in detail. An analysis of potential flow stability problems is also provided along with a cursory cost analysis and an assessment of freeze protection, safety, and control issues. Results indicated a significant thermal performance advantage over the more conventional oil and flash systems and the flow stability does not appear to be a significant problem. In particular, at steam temperatures of 220/sup 0/C (430/sup 0/F) under the chosen set of assumptions, annual delivered energy predictions indicate that the in situ system can deliver 15% more energy than an oil system and 12% more energy than a flash system, with all of the systems using the same collector field. Further, the in situ system may result in a 10% capital cost reduction. Other advantages include improvement in simpler control when compared with flash systems, and fluid handling and safety enhancement when compared with oil systems.

Murphy, L.M.; May, E.K.

1982-04-01T23:59:59.000Z

174

BEEST: Electric Vehicle Batteries  

SciTech Connect (OSTI)

BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

None

2010-07-01T23:59:59.000Z

175

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract -This paper proposes new solar battery  

E-Print Network [OSTI]

SOLAR BATTERY CHARGERS FOR NIMH BATTERIES1 Abstract - This paper proposes new solar battery chargers for NiMH batteries. Used with portable solar panels, existing charge control methods are shown of consumer portable solar arrays. These new arrays are lightweight, durable, and flexible and have been

Lehman, Brad

176

Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer, Longer-lasting Batteries Colorado: Isothermal Battery Calorimeter Quantifies Heat Flow, Helps Make Safer,...

177

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

Gabano, Ed. , Lithium Batteries, Academic Press, New York,K. V. Kordesch, "Primary Batteries 1951-1976," J. Elec- n ~.Rechargeable Lithium Batteries," J. Electrochem. Soc. , [20

Doyle, C.M.

2010-01-01T23:59:59.000Z

178

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

J. -P. Gabano, Ed. , Lithium Batteries, Academic Press, Newfor Rechargeable Lithium Batteries," J. Electrochem.for Rechargeable Lithium Batteries," J. Electroclzern.

Doyle, C.M.

2010-01-01T23:59:59.000Z

179

Ionic liquids for rechargeable lithium batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries (Preliminary report,applications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

Salminen, Justin; Papaiconomou, Nicolas; Kerr, John; Prausnitz, John; Newman, John

2008-01-01T23:59:59.000Z

180

Side Reactions in Lithium-Ion Batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries. Advanced Materials 10,Protection of Secondary Lithium Batteries. Journal of thein Rechargeable Lithium Batteries for Overcharge Protection.

Tang, Maureen Han-Mei

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Advances in lithium-ion batteries  

E-Print Network [OSTI]

Advances in Lithium-Ion Batteries Edited by Walter A. vanpuzzling mysteries of lithium ion batteries. The book beginssuch importance to lithium ion batteries one is amazed that

Kerr, John B.

2003-01-01T23:59:59.000Z

182

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

polymer electrolytes for lithium batteries. Nature 394, 456-facing rechargeable lithium batteries. Nature 414, 359-367 (vanadium oxides for lithium batteries. Journal of Materials

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

183

Parallel flow diffusion battery  

DOE Patents [OSTI]

A parallel flow diffusion battery for determining the mass distribution of an aerosol has a plurality of diffusion cells mounted in parallel to an aerosol stream, each diffusion cell including a stack of mesh wire screens of different density.

Yeh, H.C.; Cheng, Y.S.

1984-01-01T23:59:59.000Z

184

Side terminal battery  

SciTech Connect (OSTI)

A side terminal battery and method of making same is shown and described. In particular, the terminal includes an electrically conductive plug disposed within an externally extending boss. The plug does not extend into the battery. Rather, a riser is welded to the plug through an aperture disposed at the base of the boss. The terminal is mechanically crimped to further ensure the leak-resistant soundness of the joint between the plug and riser.

Clingenpeel, W.R.

1981-12-08T23:59:59.000Z

185

Laboratory evaluation and analysis of advanced lead-acid load-leveling batteries  

SciTech Connect (OSTI)

Argonne National Laboratory has conducted an extensive evaluation of advanced lead-acid batteries developed by the Exide Corporation for load-leveling applications. This paper presents the results of performance and accelerated life tests conducted on these batteries over a five-year period. This paper describes the operational reliability and maintenance requirements for this technology, and also includes analyses of the batteries' thermal characteristics, arsine/stibine emission rates, and cell degradation modes as determined from post-test examinations.

Miller, J.F.; Mulcahey, T.P.; Christianson, C.C.; Marr, J.J.; Smaga, J.A.

1987-01-01T23:59:59.000Z

186

Data Collection for Improved Cold Temperature Thermal Modeling...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

More Documents & Publications Data Collection for Improved Cold Temperature Thermal Modeling Energy Management Strategies for Fast Battery Temperature Rise and Engine...

187

New sealed rechargeable batteries and supercapacitors  

SciTech Connect (OSTI)

This conference was divided into the following sections: supercapacitors; nickel-metal hydride batteries; lithium polymer batteries; lithium/carbon batteries; cathode materials; and lithium batteries. Separate abstracts were prepared for the 46 papers of this conference.

Barnett, B.M. (ed.) (Arthur D. Little, Inc., Cambridge, MA (United States)); Dowgiallo, E. (ed.) (Dept. of Energy, Washington, DC (United States)); Halpert, G. (ed.) (Jet Propulsion Lab., Pasadena, CA (United States)); Matsuda, Y. (ed.) (Yamagushi Univ., Ube (Japan)); Takehara, Z.I. (ed.) (Kyoto Univ. (Japan))

1993-01-01T23:59:59.000Z

188

Nickel coated aluminum battery cell tabs  

DOE Patents [OSTI]

A battery cell tab is described. The battery cell tab is anodized on one end and has a metal coating on the other end. Battery cells and methods of making battery cell tabs are also described.

Bucchi, Robert S.; Casoli, Daniel J.; Campbell, Kathleen M.; Nicotina, Joseph

2014-07-29T23:59:59.000Z

189

Stand-Alone Battery Thermal Management System  

Broader source: Energy.gov [DOE]

2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

190

Testimonials- Partnerships in Battery Technologies- CalBattery  

Broader source: Energy.gov [DOE]

Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

191

Accelerating Battery Design Using Computer-Aided Engineering Tools: Preprint  

SciTech Connect (OSTI)

Computer-aided engineering (CAE) is a proven pathway, especially in the automotive industry, to improve performance by resolving the relevant physics in complex systems, shortening the product development design cycle, thus reducing cost, and providing an efficient way to evaluate parameters for robust designs. Academic models include the relevant physics details, but neglect engineering complexities. Industry models include the relevant macroscopic geometry and system conditions, but simplify the fundamental physics too much. Most of the CAE battery tools for in-house use are custom model codes and require expert users. There is a need to make these battery modeling and design tools more accessible to end users such as battery developers, pack integrators, and vehicle makers. Developing integrated and physics-based CAE battery tools can reduce the design, build, test, break, re-design, re-build, and re-test cycle and help lower costs. NREL has been involved in developing various models to predict the thermal and electrochemical performance of large-format cells and has used in commercial three-dimensional finite-element analysis and computational fluid dynamics to study battery pack thermal issues. These NREL cell and pack design tools can be integrated to help support the automotive industry and to accelerate battery design.

Pesaran, A.; Heon, G. H.; Smith, K.

2011-01-01T23:59:59.000Z

192

Analysis of batteries for use in photovoltaic systems. Final report  

SciTech Connect (OSTI)

An evaluation of 11 types of secondary batteries for energy storage in photovoltaic electric power systems is given. The evaluation was based on six specific application scenarios which were selected to represent the diverse requirements of various photovoltaic systems. Electrical load characteristics and solar insulation data were first obtained for each application scenario. A computer-based simulation program, SOLSIM, was then developed to determine optimal sizes for battery, solar array, and power conditioning systems. Projected service lives and battery costs were used to estimate life-cycle costs for each candidate battery type. The evaluation considered battery life-cycle cost, safety and health effects associated with battery operation, and reliability/maintainability. The 11 battery types were: lead-acid, nickel-zinc, nickel-iron, nickel-hydrogen, lithium-iron sulfide, calcium-iron sulfide, sodium-sulfur, zinc-chlorine, zinc-bromine, Redox, and zinc-ferricyanide. The six application scenarios were: (1) a single-family house in Denver, Colorado (photovoltaic system connected to the utility line); (2) a remote village in equatorial Africa (stand-alone power system); (3) a dairy farm in Howard County, Maryland (onsite generator for backup power); (4) a 50,000 square foot office building in Washington, DC (onsite generator backup); (5) a community in central Arizona with a population of 10,000 (battery to be used for dedicated energy storage for a utility grid-connected photovoltaic power plant); and (6) a military field telephone office with a constant 300 W load (trailer-mounted auxiliary generator backup). Recommendations for a research and development program on battery energy storage for photovoltaic applications are given, and a discussion of electrical interfacing problems for utility line-connected photovoltaic power systems is included. (WHK)

Podder, A; Kapner, M

1981-02-01T23:59:59.000Z

193

Electrocatalysts for Nonaqueous Lithium–Air Batteries:...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges,...

194

Advanced Battery Materials Characterization: Success stories...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Advanced Battery Materials Characterization: Success...

195

Testimonials - Partnerships in Battery Technologies - Capstone...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Battery Technologies - Capstone Turbine Corporation Testimonials - Partnerships in Battery Technologies - Capstone Turbine Corporation Addthis Text Version The words Office of...

196

Battery venting system and method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Casale, Thomas J. (Aurora, CO); Ching, Larry K. W. (Littleton, CO); Baer, Jose T. (Gaviota, CA); Swan, David H. (Monrovia, CA)

1999-01-05T23:59:59.000Z

197

Battery Vent Mechanism And Method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve.

Ching, Larry K. W. (Littleton, CO)

2000-02-15T23:59:59.000Z

198

Battery venting system and method  

DOE Patents [OSTI]

Disclosed herein is a venting mechanism for a battery. The venting mechanism includes a battery vent structure which is located on the battery cover and may be integrally formed therewith. The venting mechanism includes an opening extending through the battery cover such that the opening communicates with a plurality of battery cells located within the battery case. The venting mechanism also includes a vent manifold which attaches to the battery vent structure. The vent manifold includes a first opening which communicates with the battery vent structure opening and second and third openings which allow the vent manifold to be connected to two separate conduits. In this manner, a plurality of batteries may be interconnected for venting purposes, thus eliminating the need to provide separate vent lines for each battery. The vent manifold may be attached to the battery vent structure by a spin-welding technique. To facilitate this technique, the vent manifold may be provided with a flange portion which fits into a corresponding groove portion on the battery vent structure. The vent manifold includes an internal chamber which is large enough to completely house a conventional battery flame arrester and overpressure safety valve. In this manner, the vent manifold, when installed, lessens the likelihood of tampering with the flame arrester and safety valve. 8 figs.

Casale, T.J.; Ching, L.K.W.; Baer, J.T.; Swan, D.H.

1999-01-05T23:59:59.000Z

199

EA-1939: Reese Technology Center Wind and Battery Integration Project, Lubbock County, TX  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts of a proposal by the Center for Commercialization of Electric Technologies to demonstrate battery technology integration with wind generated electricity by deploying and evaluating utility-scale lithium battery technology to improve grid performance and thereby aid in the integration of wind generation into the local electricity supply.

200

Circulating current battery heater  

DOE Patents [OSTI]

A circuit for heating energy storage devices such as batteries is provided. The circuit includes a pair of switches connected in a half-bridge configuration. Unidirectional current conduction devices are connected in parallel with each switch. A series resonant element for storing energy is connected from the energy storage device to the pair of switches. An energy storage device for intermediate storage of energy is connected in a loop with the series resonant element and one of the switches. The energy storage device which is being heated is connected in a loop with the series resonant element and the other switch. Energy from the heated energy storage device is transferred to the switched network and then recirculated back to the battery. The flow of energy through the battery causes internal power dissipation due to electrical to chemical conversion inefficiencies. The dissipated power causes the internal temperature of the battery to increase. Higher internal temperatures expand the cold temperature operating range and energy capacity utilization of the battery. As disclosed, either fixed frequency or variable frequency modulation schemes may be used to control the network.

Ashtiani, Cyrus N. (West Bloomfield, MI); Stuart, Thomas A. (Toledo, OH)

2001-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems  

DOE Patents [OSTI]

Battery charging control methods, electric vehicle charging methods, battery charging apparatuses and rechargeable battery systems. According to one aspect, a battery charging control method includes accessing information regarding a presence of at least one of a surplus and a deficiency of electrical energy upon an electrical power distribution system at a plurality of different moments in time, and using the information, controlling an adjustment of an amount of the electrical energy provided from the electrical power distribution system to a rechargeable battery to charge the rechargeable battery.

Tuffner, Francis K. (Richland, WA); Kintner-Meyer, Michael C. W. (Richland, WA); Hammerstrom, Donald J. (West Richland, WA); Pratt, Richard M. (Richland, WA)

2012-05-22T23:59:59.000Z

202

Battery energy storage systems life cycle costs case studies  

SciTech Connect (OSTI)

This report presents a comparison of life cycle costs between battery energy storage systems and alternative mature technologies that could serve the same utility-scale applications. Two of the battery energy storage systems presented in this report are located on the supply side, providing spinning reserve and system stability benefits. These systems are compared with the alternative technologies of oil-fired combustion turbines and diesel generators. The other two battery energy storage systems are located on the demand side for use in power quality applications. These are compared with available uninterruptible power supply technologies.

Swaminathan, S.; Miller, N.F.; Sen, R.K. [SENTECH, Inc., Bethesda, MD (United States)

1998-08-01T23:59:59.000Z

203

Battery Wear from Disparate Duty-Cycles: Opportunities for Electric-Drive Vehicle Battery Health Management; Preprint  

SciTech Connect (OSTI)

Electric-drive vehicles utilizing lithium-ion batteries experience wholly different degradation patterns than do conventional vehicles, depending on geographic ambient conditions and consumer driving and charging patterns. A semi-empirical life-predictive model for the lithium-ion graphite/nickel-cobalt-aluminum chemistry is presented that accounts for physically justified calendar and cycling fade mechanisms. An analysis of battery life for plug-in hybrid electric vehicles considers 782 duty-cycles from travel survey data superimposed with climate data from multiple geographic locations around the United States. Based on predicted wear distributions, opportunities for extending battery life including modification of battery operating limits, thermal and charge control are discussed.

Smith, K.; Earleywine, M.; Wood, E.; Pesaran, A.

2012-10-01T23:59:59.000Z

204

Method and apparatus for indicating electric charge remaining in batteries based on electrode weight and center of gravity  

DOE Patents [OSTI]

In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery. 35 figs.

Rouhani, S.Z.

1996-12-03T23:59:59.000Z

205

Method and apparatus for indicating electric charge remaining in batteries based on electrode weight and center of gravity  

DOE Patents [OSTI]

In most electrochemical batteries which generate electricity through the reaction of a battery electrode with an electrolyte solution, the chemical composition, and thus the weight and density, of the electrode changes as the battery discharges. The invention measures a parameter of the battery which changes as the weight of the electrode changes as the battery discharges and relates that parameter to the value of the parameter when the battery is fully charged and when the battery is functionally discharged to determine the state-of-charge of the battery at the time the parameter is measured. In one embodiment, the weight of a battery electrode or electrode unit is measured to determine the state-of-charge. In other embodiments, where a battery electrode is located away from the geometrical center of the battery, the position of the center of gravity of the battery or shift in the position of the center of gravity of the battery is measured (the position of the center of gravity changes with the change in weight of the electrode) and indicates the state-of-charge of the battery.

Rouhani, S. Zia (Idaho Falls, ID)

1996-01-01T23:59:59.000Z

206

Overview of PNGV Battery Development and Test Programs  

SciTech Connect (OSTI)

Affordable, safe, long-lasting, high-power batteries are requisites for successful commercialization of hybrid electric vehicles. The U.S. Department of Energy’s Office of Advance Automotive Technologies and the Partnership for a New Generation of Vehicles are funding research and development programs to address each of these issues. An overview of these areas is presented along with a summary of battery development and test programs, as well as recent performance data from several of these programs.

Motloch, Chester George; Murphy, Timothy Collins; Sutula, Raymond; Miller, Ted J.

2002-02-01T23:59:59.000Z

207

Batteries | Department of Energy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES ReportsExperimentBasic Batteries Batteries

208

Evaluation of advanced lead-acid batteries developed for load-leveling applications  

SciTech Connect (OSTI)

Argonne National Laboratory has conducted an extensive evaluation of an advanced lead-acid battery developed by Exide Corporation for load-leveling applications. This paper presents the results of tests and analyses conducted on three 3100-Ah batteries over a five-year period. The Exide batteries demonstrated their high reliability and long life by completing over 2300 deep discharge cycles under accelerated life testing conditions at 50/sup 0/C, the equivalent of over 6400 cycles or 25 years of operation for the electric utility application. This paper also describes the thermal characteristics and operational reliability of this battery technology.

Miller, J.F.; Mulcahey, T.P.

1987-01-01T23:59:59.000Z

209

Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle  

SciTech Connect (OSTI)

At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

Humphreys, K.K.; Brown, D.R.

1990-01-01T23:59:59.000Z

210

Material characterization of high-voltage lithium-ion battery models for crashworthiness analysis  

E-Print Network [OSTI]

A three-phased study of the material properties and post-impact behavior of prismatic pouch lithium-ion battery cells was conducted to refine computational finite element models and explore the mechanisms of thermal runaway ...

Meier, Joseph D. (Joseph David)

2013-01-01T23:59:59.000Z

211

Experimental characterization of adsorption and transport properties for advanced thermo-adsorptive batteries  

E-Print Network [OSTI]

Thermal energy storage has received significant interest for delivering heating and cooling in both transportation and building sectors. It can minimize the use of on-board electric batteries for heating, ventilation and ...

Kim, Hyunho, S.M. Massachusetts Institute of Technology

2014-01-01T23:59:59.000Z

212

Optimizing small wind turbine performance in battery charging applications  

SciTech Connect (OSTI)

Many small wind turbine generators (10 kW or less) consist of a variable speed rotor driving a permanent magnet synchronous generator (alternator). One application of such wind turbines is battery charging, in which the generator is connected through a rectifier to a battery bank. The wind turbine electrical interface is essentially the same whether the turbine is part of a remote power supply for telecommunications, a standalone residential power system, or a hybrid village power system, in short, any system in which the wind generator output is rectified and fed into a DC bus. Field experience with such applications has shown that both the peak power output and the total energy capture of the wind turbine often fall short of expectations based on rotor size and generator rating. In this paper, the authors present a simple analytical model of the typical wind generator battery charging system that allows one to calculate actual power curves if the generator and rotor properties are known. The model clearly illustrates how the load characteristics affect the generator output. In the second part of this paper, the authors present four approaches to maximizing energy capture from wind turbines in battery charging applications. The first of these is to determine the optimal battery bank voltage for a given WTG. The second consists of adding capacitors in series with the generator. The third approach is to place an optimizing DC/DC voltage converter between the rectifier and the battery bank. The fourth is a combination of the series capacitors and the optimizing voltage controller. They also discuss both the limitations and the potential performance gain associated with each of the four configurations.

Drouilhet, S; Muljadi, E; Holz, R [National Renewable Energy Lab., Golden, CO (United States). Wind Technology Div.; Gevorgian, V [State Engineering Univ. of Armenia, Yerevan (Armenia)

1995-05-01T23:59:59.000Z

213

Soluble Lead Flow Battery: Soluble Lead Flow Battery Technology  

SciTech Connect (OSTI)

GRIDS Project: General Atomics is developing a flow battery technology based on chemistry similar to that used in the traditional lead-acid battery found in nearly every car on the road today. Flow batteries store energy in chemicals that are held in tanks outside the battery. When the energy is needed, the chemicals are pumped through the battery. Using the same basic chemistry as a traditional battery but storing its energy outside of the cell allows for the use of very low cost materials. The goal is to develop a system that is far more durable than today’s lead-acid batteries, can be scaled to deliver megawatts of power, and which lowers the cost of energy storage below $100 per kilowatt hour.

None

2010-09-01T23:59:59.000Z

214

Three-dimensional batteries using a liquid cathode  

E-Print Network [OSTI]

3 and 4, secondary lithium batteries based on using lithiumcommercial primary lithium batteries. The final part of thislithium batteries. ..

Malati, Peter Moneir

2013-01-01T23:59:59.000Z

215

Nanostructured Materials for Energy Generation and Storage  

E-Print Network [OSTI]

for Electrochemical Energy Storage Nanostructured Electrodesof the batteries and their energy storage efficiency. viifor Nanostructure-Based Energy Storage and Generation Tech-

Khan, Javed Miller

2012-01-01T23:59:59.000Z

216

Current balancing for battery strings  

DOE Patents [OSTI]

A battery plant is described which features magnetic circuit means for balancing the electrical current flow through a pluraliircuitbattery strings which are connected electrically in parallel. The magnetic circuit means is associated with the battery strings such that the conductors carrying the electrical current flow through each of the battery strings pass through the magnetic circuit means in directions which cause the electromagnetic fields of at least one predetermined pair of the conductors to oppose each other. In an alternative embodiment, a low voltage converter is associated with each of the battery strings for balancing the electrical current flow through the battery strings.

Galloway, James H. (New Baltimore, MI)

1985-01-01T23:59:59.000Z

217

Battery electrode growth accommodation  

DOE Patents [OSTI]

An electrode for a lead acid flow through battery, the grids including a plastic frame, a plate suspended from the top of the frame to hang freely in the plastic frame and a paste applied to the plate, the paste being free to allow for expansion in the planar direction of the grid.

Bowen, Gerald K. (Cedarburg, WI); Andrew, Michael G. (Wauwatosa, WI); Eskra, Michael D. (Fredonia, WI)

1992-01-01T23:59:59.000Z

218

Evaluation of Aerogel Materials for High-Temperature Batteries  

SciTech Connect (OSTI)

Siiica aerogels have 1/3 the thermal conductivity of the best commercial composite insulations, or ~13 mW/m-K at 25°C. However, aerogels are transparent in the near IR region of 4-7 µm, which is where the radiation peak from a thermal-battery stack occurs. Titania and carbon- black powders were examined as thermal opacifiers, to reduce radiation at temperatures between 300°C and 600°C, which spans the range of operating temperature for most thermal batteries. The effectiveness of the various opacifiers depended on the loading, with the best overall results being obtained using aerogels filled with carbon black. Fabrication and strength issues still remain, however.

Ashley, Carol S.; Guidotti, Ronald A.; Reed, Scott T.; Reinhardt, Frederick W.

1999-05-04T23:59:59.000Z

219

Johnson Controls Develops an Improved Vehicle Battery, Works...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half Johnson Controls Develops an Improved Vehicle Battery, Works to Cut Battery Costs in Half...

220

FY14 Milestone: Simulated Impacts of Life-Like Fast Charging on BEV Batteries (Management Publication)  

SciTech Connect (OSTI)

Fast charging is attractive to battery electric vehicle (BEV) drivers for its ability to enable long-distance travel and quickly recharge depleted batteries on short notice. However, such aggressive charging and the sustained vehicle operation that results could lead to excessive battery temperatures and degradation. Properly assessing the consequences of fast charging requires accounting for disparate cycling, heating, and aging of individual cells in large BEV packs when subjected to realistic travel patterns, usage of fast chargers, and climates over long durations (i.e., years). The U.S. Department of Energy's Vehicle Technologies Office has supported NREL's development of BLAST-V 'the Battery Lifetime Analysis and Simulation Tool for Vehicles' to create a tool capable of accounting for all of these factors. The authors present on the findings of applying this tool to realistic fast charge scenarios. The effects of different travel patterns, climates, battery sizes, battery thermal management systems, and other factors on battery performance and degradation are presented. The primary challenge for BEV batteries operated in the presence of fast charging is controlling maximum battery temperature, which can be achieved with active battery cooling systems.

Neubauer, J.; Wood, E.; Burton, E.; Smith, K.; Pesaran, A.

2014-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Geek-Up[7.8.2011]: Cyanobacteria, Biofuels and Next-Generation...  

Broader source: Energy.gov (indexed) [DOE]

7.8.2011: Cyanobacteria, Biofuels and Next-Generation Batteries Geek-Up7.8.2011: Cyanobacteria, Biofuels and Next-Generation Batteries July 8, 2011 - 5:02pm Addthis Chains of...

222

US advanced battery consortium in-vehicle battery testing procedure  

SciTech Connect (OSTI)

This article describes test procedures to be used as part of a program to monitor the performance of batteries used in electric vehicle applications. The data will be collected as part of an electric vehicle testing program, which will include battery packs from a number of different suppliers. Most data will be collected by on-board systems or from driver logs. The paper describes the test procedure to be implemented for batteries being used in this testing.

NONE

1997-03-01T23:59:59.000Z

223

Applying the Battery Ownership Model in Pursuit of Optimal Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ownership Model in Pursuit of Optimal Battery Use Strategies 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer...

224

Analysis of wind power for battery charging  

SciTech Connect (OSTI)

One type of wind-powered battery charging will be explored in this paper. It consists of a wind turbine driving a permanent magnet alternator and operates at variable speed. The alternator is connected to a battery bank via a rectifier. The characteristic of the system depends on the wind turbine, the alternator, and the system configuration. If the electrical load does not match the wind turbine, the performance of the system will be degraded. By matching the electrical load to the wind turbine, the system can be improved significantly. This paper analyzes the properties of the system components. The effects of parameter variation and the system configuration on the system performance are investigated. Two basic methods of shaping the torque-speed characteristic of the generator are presented. The uncompensated as well as the compensated systems will be discussed. Control strategies to improve the system performance will be explored. Finally, a summary of the paper will be presented in the last section.

Muljadi, E.; Drouilhet, S.; Holz, R. [National Renewable Energy Lab., Golden, CO (United States); Gevorgian, V. [University of Armenia, Yerevan (Armenia). State Engineering

1995-11-01T23:59:59.000Z

225

Isothermal Battery Calorimeter Technology Transfer and Development: Cooperative Research and Development Final Report, CRADA Number CRD-12-461  

SciTech Connect (OSTI)

During the last 15 years, NREL has been utilizing its unique expertise and capabilities to work with industry partners on battery thermal testing and electric and hybrid vehicle simulation and testing. Further information and publications about NREL's work and unique capabilities in battery testing and modeling can be found at NREL's Energy Storage website: http://www.nrel.gov/vehiclesandfuels/energystorage/. Particularly, NREL has developed and fabricated a large volume isothermal battery calorimeter that has been made available for licensing and potential commercialization (http://techportal.eere.energy.gov/technology.do/techID=394). In summer of 2011, NREL developed and fabricated a smaller version of the large volume isothermal battery calorimeter, called hereafter 'cell-scale LVBC.' NETZSCH Instruments North America, LLC is a leading company in thermal analysis, calorimetry, and determination of thermo-physical properties of materials (www.netzsch-thermal-analysis.com). NETZSCH is interested in evaluation and eventual commercialization of the NREL large volume isothermal battery calorimeter.

Pesaran, A.; Keyser, M.

2014-12-01T23:59:59.000Z

226

Distributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers  

E-Print Network [OSTI]

Rack PDU BackupMain Bus-type power network Utility Diesel Generator ATS PDU Server Rack Server RackDistributed Battery Control to Improve Peak Power Shaving Efficiency in Data Centers Baris Aksanli, Eddie Pettis and Tajana S. Rosing UCSD, Google Stored energy in batteries can be used to cap peak power

Simunic, Tajana

227

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles  

E-Print Network [OSTI]

Vehicle-to-Grid Power: Battery, Hybrid, and Fuel Cell Vehicles as Resources for Distributed, and fuel cell. Battery EDVs can store electricity, charging during low demand times and discharging when power is scarce and prices are high. Fuel cell and hybrid EDVs are sources of new power generation

Firestone, Jeremy

228

United States Advanced Battery Consortium  

Broader source: Energy.gov (indexed) [DOE]

of internal short circuit as a potential failure mechanism * Public Perception: - Media and other promotion of unrealistic expectations for battery capabilities present a...

229

Advanced battery modeling using neural networks  

E-Print Network [OSTI]

battery models are available today that can accurately predict the performance of the battery system. This thesis presents a modeling technique for batteries employing neural networks. The advantage of using neural networks is that the effect of any...

Arikara, Muralidharan Pushpakam

1993-01-01T23:59:59.000Z

230

Mapping Particle Charges in Battery Electrodes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of batteries masks their chemical complexity. A typical lithium-ion battery in a cell phone consists of trillions of particles. When a lithium-ion battery is charged or...

231

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

interface in the Li-ion battery. Electrochimica Acta 50,K. The role of Li-ion battery electrolyte reactivity inK. The role of Li-ion battery electrolyte reactivity in

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

232

High efficiency battery converter with SiC devices for residential PV Cam Pham, Remus Teodorescu, Tamas Kerekes and Laszlo Mathe  

E-Print Network [OSTI]

High efficiency battery converter with SiC devices for residential PV systems Cam Pham, Remus, where the generated energy price is relatively high. Smart PV systems with internal battery storage launched a financial support program for residential PV systems with battery storage [2]. Furthermore

Teodorescu, Remus

233

PHYSICAL REVIEW B 84, 205446 (2011) First-principles study of the oxygen evolution reaction of lithium peroxide in the lithium-air battery  

E-Print Network [OSTI]

motivation in seeking batteries with higher specific energies and higher energy den- sities. Metal-air of lithium peroxide in the lithium-air battery Yifei Mo, Shyue Ping Ong, and Gerbrand Ceder* Department) The lithium-air chemistry is an interesting candidate for the next-generation batteries with high specific

Ceder, Gerbrand

234

Research, development, and demonstration of lead-acid batteries for electric-vehicle propulsion. Annual report for 1982  

SciTech Connect (OSTI)

Research programs on lead-acid batteries are reported that cover active materials utilization, active material integrity, and some technical support projects. Processing problems were encountered and corrected. Components and materials, a lead-plastic composite grid, cell designs, and deliverables are described. Cell testing is discussed, as well as battery subsystems, including fuel gage, thermal management, and electrolyte circulation. (LEW)

Bowman, D.E.

1983-08-01T23:59:59.000Z

235

Quadruple Adaptive Observer of the Core Temperature in Cylindrical Li-ion Batteries and their Health Monitoring  

E-Print Network [OSTI]

Quadruple Adaptive Observer of the Core Temperature in Cylindrical Li-ion Batteries to an effective thermal management system and to maintain safety, performance, and longevity of these Li-Ion. Dyche Anderson Abstract-- Temperature monitoring is a critical issue for lithium ion batteries. Since

Stefanopoulou, Anna

236

Disordered Materials Hold Promise for Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Disordered materials hold promise for better batteries Disordered Materials Hold Promise for Better Batteries February 21, 2014 | Tags: Chemistry, Hopper, Materials Science,...

237

Sandia National Laboratories: Evaluating Powerful Batteries for...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ClimateECEnergyEvaluating Powerful Batteries for Modular Electric Grid Energy Storage Evaluating Powerful Batteries for Modular Electric Grid Energy Storage Sandian Spoke at the...

238

Coordination Chemistry in magnesium battery electrolytes: how...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Chemistry in magnesium battery electrolytes: how ligands affect their performance. Coordination Chemistry in magnesium battery electrolytes: how ligands affect their performance....

239

Washington: Graphene Nanostructures for Lithium Batteries Recieves...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award Washington: Graphene Nanostructures for Lithium Batteries Recieves 2012 R&D 100 Award February...

240

Better Battery Performance | EMSL  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply for a JobBernard MatthewBetter Battery

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Battery SEAB Presentation  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists' ResearchTheMarketing, Inc.mission of the6,AugustBattery Chargers |santini.pdf MoreThe

242

Battery system with temperature sensors  

DOE Patents [OSTI]

A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

Wood, Steven J.; Trester, Dale B.

2012-11-13T23:59:59.000Z

243

Redox Flow Batteries, a Review  

SciTech Connect (OSTI)

Redox flow batteries are enjoying a renaissance due to their ability to store large amounts of electrical energy relatively cheaply and efficiently. In this review, we examine the components of redox flow batteries with a focus on understanding the underlying physical processes. The various transport and kinetic phenomena are discussed along with the most common redox couples.

U. Tennessee Knoxville; U. Texas Austin; McGill U; Weber, Adam Z.; Mench, Matthew M.; Meyers, Jeremy P.; Ross, Philip N.; Gostick, Jeffrey T.; Liu, Qinghua

2011-07-15T23:59:59.000Z

244

Hierarchical Models for Batteries: Overview with Some Case Studies  

SciTech Connect (OSTI)

Batteries are complex multiscale systems and a hierarchy of models has been employed to study different aspects of batteries at different resolutions. For the electrochemistry and charge transport, the models span from electric circuits, single-particle, pseudo 2D, detailed 3D, and microstructure resolved at the continuum scales and various techniques such as molecular dynamics and density functional theory to resolve the atomistic structure. Similar analogies exist for the thermal, mechanical, and electrical aspects of the batteries. We have been recently working on the development of a unified formulation for the continuum scales across the electrode-electrolyte-electrode system - using a rigorous volume averaging approach typical of multiphase formulation. This formulation accounts for any spatio-temporal variation of the different properties such as electrode/void volume fractions and anisotropic conductivities. In this talk the following will be presented: The background and the hierarchy of models that need to be integrated into a battery modeling framework to carry out predictive simulations, Our recent work on the unified 3D formulation addressing the missing links in the multiscale description of the batteries, Our work on microstructure resolved simulations for diffusion processes, Upscaling of quantities of interest to construct closures for the 3D continuum description, Sample results for a standard Carbon/Spinel cell will be presented and compared to experimental data, Finally, the infrastructure we are building to bring together components with different physics operating at different resolution will be presented. The presentation will also include details about how this generalized approach can be applied to other electrochemical storage systems such as supercapacitors, Li-Air batteries, and Lithium batteries with 3D architectures.

Pannala, Sreekanth [ORNL; Mukherjee, Partha P [ORNL; Allu, Srikanth [ORNL; Nanda, Jagjit [ORNL; Martha, Surendra K [ORNL; Dudney, Nancy J [ORNL; Turner, John A [ORNL

2012-01-01T23:59:59.000Z

245

Platform Li-Ion Battery Risk Assessment Tool: Cooperative Research and Development Final Report, CRADA Number CRD-10-407  

SciTech Connect (OSTI)

Creare was awarded a Phase 1 STTR contract from the US Office of Naval Research, with a seven month period of performance from 6/28/2010 to 1/28/2011. The objectives of the STTR were to determine the feasibility of developing a software package for estimating reliability of battery packs, and develop a user interface to allow the designer to assess the overall impact on battery packs and host platforms for cell-level faults. NREL served as sub-tier partner to Creare, providing battery modeling and battery thermal safety expertise.

Smith, K.

2012-01-01T23:59:59.000Z

246

Bacterial batteries By Birmingham Science News Examiner, Paul  

E-Print Network [OSTI]

the University of Massachusetts has isolated a strain of Geobacter sulfurreducens that is called KN400. KN400 can generate enough electricity to make a microbial fuel cell practical. Potential uses are electric production in remote areas, conversion of waste to electricity, and longer battery life in harsh environments. KN400

Lovley, Derek

247

Recycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid, nickel  

E-Print Network [OSTI]

metal hydride and lithium ion batteries. The use of these batteries is increasing as a green, nickel metal hydride and lithium ion batteries. Please contact EHS if you need an accumulation containerRecycle Batteries CSM recycles a variety of battery types including automotive, sealed lead acid

248

Battery-Powered Digital CMOS Massoud Pedram  

E-Print Network [OSTI]

(submarines) Stationary batteries 250 Wh~5 MWh Emergency power supplies, local energy storage, remote relay1 Page 1 USC Low Power CAD Massoud Pedram Battery-Powered Digital CMOS Design Massoud Pedram Power CAD Massoud Pedram Motivation Extending the battery service life of battery-powered micro

Pedram, Massoud

249

Batteries, mobile phones & small electrical devices  

E-Print Network [OSTI]

, mobile phones and data collection equipment. Lithium Ion batteries are used in mobile phones, laptopsBatteries, mobile phones & small electrical devices IN-BUILDING RECYCLING STATIONS. A full list of acceptable items: Sealed batteries ­excludes vented NiCad and Lead acid batteries Cameras Laser printer

250

High power rechargeable batteries Paul V. Braun  

E-Print Network [OSTI]

High power rechargeable batteries Paul V. Braun , Jiung Cho, James H. Pikul, William P. King storage Secondary batteries High energy density High power density Lithium ion battery 3D battery electrodes a b s t r a c t Energy and power density are the key figures of merit for most electrochemical

Braun, Paul

251

Waste Toolkit A-Z Battery recycling  

E-Print Network [OSTI]

Waste Toolkit A-Z Battery recycling How can I recycle batteries? The University Safety Office is responsible for arranging battery recycling for departments (see Contact at bottom of page). Colleges must in normal waste bins or recycling boxes. To recycle batteries, select either option 1 or 2 below: Option 1

Melham, Tom

252

JV Task 46 - Development and Testing of a Thermally Integrated SOFC-Gasification System for Biomass Power Generation  

SciTech Connect (OSTI)

The Energy & Environmental Research Center has designed a biomass power system using a solid oxide fuel cell (SOFC) thermally integrated with a downdraft gasifier. In this system, the high-temperature effluent from the SOFC enables the operation of a substoichiometric air downdraft gasifier at an elevated temperature (1000 C). At this temperature, moisture in the biomass acts as an essential carbon-gasifying medium, reducing the equivalence ratio at which the gasifier can operate with complete carbon conversion. Calculations show gross conversion efficiencies up to 45% (higher heating value) for biomass moisture levels up to 40% (wt basis). Experimental work on a bench-scale gasifier demonstrated increased tar cracking within the gasifier and increased energy density of the resultant syngas. A series of experiments on wood chips demonstrated tar output in the range of 9.9 and 234 mg/m{sup 3}. Both button cells and a 100-watt stack was tested on syngas from the gasifier. Both achieved steady-state operation with a 22% and 15% drop in performance, respectively, relative to pure hydrogen. In addition, tar tolerance testing on button cells demonstrated an upper limit of tar tolerance of approximately 1%, well above the tar output of the gasifier. The predicted system efficiency was revised down to 33% gross and 27% net system efficiency because of the results of the gasifier and fuel cell experiments. These results demonstrate the feasibility and benefits of thermally integrating a gasifier and a high-temperature fuel cell in small distributed power systems.

Phillip Hutton; Nikhil Patel; Kyle Martin; Devinder Singh

2008-02-01T23:59:59.000Z

253

Cell for making secondary batteries  

DOE Patents [OSTI]

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145.degree. C. (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium triflate (PEO.sub.8 LiCF.sub.3 SO.sub.3), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS).sub.n, and carbon black, dispersed in a polymeric electrolyte.

Visco, Steven J. (2336 California St., Berkeley, CA 94703); Liu, Meilin (1121C Ninth St., #29, Albany, CA 94710); DeJonghe, Lutgard C. (910 Acalanes Rd., Lafayette, CA 94549)

1992-01-01T23:59:59.000Z

254

Cell for making secondary batteries  

DOE Patents [OSTI]

The present invention provides all solid-state lithium and sodium batteries operating in the approximate temperature range of ambient to 145 C (limited by melting points of electrodes/electrolyte), with demonstrated energy and power densities far in excess of state-of-the-art high-temperature battery systems. The preferred battery comprises a solid lithium or sodium electrode, a polymeric electrolyte such as polyethylene oxide doped with lithium trifluorate (PEO[sub 8]LiCF[sub 3]SO[sub 3]), and a solid-state composite positive electrode containing a polymeric organosulfur electrode, (SRS)[sub n], and carbon black, dispersed in a polymeric electrolyte. 2 figs.

Visco, S.J.; Liu, M.; DeJonghe, L.C.

1992-11-10T23:59:59.000Z

255

THERMAL DESTRUCTION OF HIGHLY CHLORINATED MIXED WASTES WITHOUT GENERATING CORROSIVE OFF-GASES USING MOLTEN SALT OXIDATION (1,2)  

SciTech Connect (OSTI)

A pilot-scale MSO (Molten Salt Oxidation) system was used to process 45-gallons of a halogenated mixed waste that is difficult to treat with other thermal systems. The mixed waste was a halogenated solvent that consisted mostly of methylchloroform. The 80 weight percent of waste consisting of highly corrosive chlorine was captured in the first process vessel as sodium chloride. The sodium chloride leached chrome from that process vessel and the solidified salt exhibited the toxicity characteristic for chrome as measured by TCLP (Toxicity Characteristic Leaching Procedure) testing. The operating ranges for parameters such as salt bed temperature, off-gas temperature, and feed rate that enable sustained operation were identified. At feed rates below the sustainable limit, both processing capacity and maintenance requirements increased with feed rate. Design and operational modifications to increase the sustainable feed rate limit and reduce maintenance requirements reduced both salt carryover and volumetric gas flows.

Smith, W.; Feizollahi, F.

2002-02-25T23:59:59.000Z

256

In situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In situ Characterizations of New Battery Materials and the Studies of High Energy...

257

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network [OSTI]

Distribution in Thin-Film Batteries. J. Electrochem. Soc.of Lithium Polymer Batteries. J. Power Sources 2002, 110,for Rechargeable Li Batteries. Chem. Mater. 2010, 15. Padhi,

Liu, Jun

2010-01-01T23:59:59.000Z

258

Making Li-air batteries rechargeable: material challenges. |...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Li-air batteries rechargeable: material challenges. Making Li-air batteries rechargeable: material challenges. Abstract: A Li-air battery could potentially provide three to five...

259

In Situ Characterizations of New Battery Materials and the Studies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of New Battery Materials and the Studies of High Energy Density Li-Air Batteries In Situ Characterizations of New Battery Materials and the Studies of High Energy...

260

Redox shuttle additives for overcharge protection in lithium batteries  

E-Print Network [OSTI]

Protection in Lithium Batteries”, T. J. Richardson* and P.OVERCHARGE PROTECTION IN LITHIUM BATTERIES T. J. Richardson*improve the safety of lithium batteries. ACKNOWLEDGEMENT

Richardson, Thomas J.; Ross Jr., P.N.

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Visualization of Charge Distribution in a Lithium Battery Electrode  

E-Print Network [OSTI]

for Rechargeable Lithium Batteries. J. Electrochem. Soc.Calculations for Lithium Batteries. J. Electrostatics 1995,Modeling of Lithium Polymer Batteries. J. Power Sources

Liu, Jun

2010-01-01T23:59:59.000Z

262

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network [OSTI]

for rechargeable lithium batteries, Journal of Powerand iron phosphate lithium batteries will be satisfactoryapplications. The cost of lithium batteries remains high ($

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

263

Grafted polyelectrolyte membranes for lithium batteries and fuel cells  

E-Print Network [OSTI]

MEMBRANES FOR LITHIUM BATTERIES AND FUEL CELLS. John Kerralso be discussed. Lithium Batteries for Transportation andpolymer membrane for lithium batteries. This paper will give

Kerr, John B.

2003-01-01T23:59:59.000Z

264

Coated Silicon Nanowires as Anodes in Lithium Ion Batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries. J. Power Sources 139,for advanced lithium-ion batteries. J. Power Sources 174,nano-anodes for lithium rechargeable batteries. Angew. Chem.

Watts, David James

2014-01-01T23:59:59.000Z

265

Synthesis, Characterization and Performance of Cathodes for Lithium Ion Batteries  

E-Print Network [OSTI]

0 lithium batteries. J. Electrochem. Soc.for rechargeable lithium batteries. Advanced Materials 1998,for rechargeable lithium batteries. J. Electrochem. Soc.

Zhu, Jianxin

2014-01-01T23:59:59.000Z

266

Developing Next-Gen Batteries With Help From NERSC  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

NERSC Helps Develop Next-Gen Batteries NERSC Helps Develop Next-Gen Batteries A genomics approach to materials research could speed up advancements in battery performance December...

267

Stability of polymer binders in Li-O2 batteries  

SciTech Connect (OSTI)

A number of polymers with various chemical structures were studied as binders for air electrodes in Li-O2 batteries. The nature of the polymer significantly affects the binding properties in the carbon electrodes thus altering the discharge performance of Li-O2 batteries. Stability of polymers to the aggressive reduced oxygen species generated during discharge was tested by ball milling them with KO2 and Li2O2, respectively. Most of the polymers decomposed under these conditions and mechanisms of the decompositions are proposed for some of the polymers. Polyethylene was found to have excellent stability and is suggested as robust binder for air electrodes in Li-O2 batteries.

Nasybulin, Eduard N.; Xu, Wu; Engelhard, Mark H.; Nie, Zimin; Li, Xiaohong S.; Zhang, Jiguang

2013-06-24T23:59:59.000Z

268

Optimization of blended battery packs  

E-Print Network [OSTI]

This thesis reviews the traditional battery pack design process for hybrid and electric vehicles, and presents a dynamic programming (DP) based algorithm that eases the process of cell selection and pack design, especially ...

Erb, Dylan C. (Dylan Charles)

2013-01-01T23:59:59.000Z

269

Batteries using molten salt electrolyte  

DOE Patents [OSTI]

An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

Guidotti, Ronald A. (Albuquerque, NM)

2003-04-08T23:59:59.000Z

270

Metal-air battery assessment  

SciTech Connect (OSTI)

The objective of this report is to evaluate the present technical status of the zinc-air, aluminum/air and iron/air batteries and assess their potential for use in an electric vehicle. In addition, this report will outline proposed research and development priorities for the successful development of metal-air batteries for electric vehicle application. 39 refs., 25 figs., 11 tabs.

Sen, R.K.; Van Voorhees, S.L.; Ferrel, T.

1988-05-01T23:59:59.000Z

271

Solid polymer electrolyte lithium batteries  

DOE Patents [OSTI]

This invention pertains to Lithium batteries using Li ion (Li[sup +]) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride). 3 figures.

Alamgir, M.; Abraham, K.M.

1993-10-12T23:59:59.000Z

272

Solid polymer electrolyte lithium batteries  

DOE Patents [OSTI]

This invention pertains to Lithium batteries using Li ion (Li.sup.+) conductive solid polymer electrolytes composed of solvates of Li salts immobilized in a solid organic polymer matrix. In particular, this invention relates to Li batteries using solid polymer electrolytes derived by immobilizing solvates formed between a Li salt and an aprotic organic solvent (or mixture of such solvents) in poly(vinyl chloride).

Alamgir, Mohamed (Dedham, MA); Abraham, Kuzhikalail M. (Needham, MA)

1993-01-01T23:59:59.000Z

273

Reinventing Batteries for Grid Storage  

SciTech Connect (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2012-01-01T23:59:59.000Z

274

Reinventing Batteries for Grid Storage  

ScienceCinema (OSTI)

The City University of New York's Energy Institute, with the help of ARPA-E funding, is creating safe, low cost, rechargeable, long lifecycle batteries that could be used as modular distributed storage for the electrical grid. The batteries could be used at the building level or the utility level to offer benefits such as capture of renewable energy, peak shaving and microgridding, for a safer, cheaper, and more secure electrical grid.

Banerjee, Sanjoy

2013-05-29T23:59:59.000Z

275

Carbon-enhanced VRLA batteries.  

SciTech Connect (OSTI)

The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

2010-10-01T23:59:59.000Z

276

Applying the Battery Ownership Model in Pursuit of Optimal Battery Use Strategies (Presentation)  

SciTech Connect (OSTI)

This Annual Merit Review presentation describes the application of the Battery Ownership Model for strategies for optimal battery use in electric drive vehicles (PEVs, PHEVs, and BEVs).

Neubauer, J.; Ahmad, P.; Brooker, A.; Wood, E.; Smith, K.; Johnson, C.; Mendelsohn, M.

2012-05-01T23:59:59.000Z

277

Promising future energy storage systems: Nanomaterial based systems, Zn-air and electromechanical batteries  

SciTech Connect (OSTI)

Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

Koopman, R.; Richardson, J.

1993-10-01T23:59:59.000Z

278

Actively driven thermal radiation shield  

DOE Patents [OSTI]

A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

2002-01-01T23:59:59.000Z

279

The Biology of . . . Batteries -news education science magazines tech... http://www.discover.com/issues/jan-04/departments/biology-of-batteries/ 1 of 2 11/14/2005 2:45 PM  

E-Print Network [OSTI]

The Biology of . . . Batteries - news education science magazines tech... http source of electrical power--humans. The machines "grow" people in vast industrial farms and siphon off the small current of electricity generated by the bodies. You, me--we are battery. Thankfully, civilization

Lovley, Derek

280

Residential solar-photovoltaic power systems: the need for battery storage  

SciTech Connect (OSTI)

Benefits of battery storage used in conjunction with residential solar photovoltaic (PV) power systems were evaluated for a representative set of utility service areas. The PV systems were assumed capable of exporting excess power to the utility grid, and the batteries sited at the substation level were operated as a form of load-leveling utility storage. A cost-allocation model, SIMSTOR, was employed to determine utility fuel and capital cost savings resulting from the addition of batteries as a function of PV system penetration level. These benefits were compared with the savings of batteries used alone without introduction of the PV systems. Battery storage capacities and discharge rates were varied to determine the battery configurations that maximize net utility savings as a function of battery costs. Installed (rated) PV device capacities up to 20 percent of the generation peak load in each service area were considered. Findings indicate that batteries and PV systems are complementary rather than competing technologies, when attached to the electric supply grid. The utility benefits of the PV systems are primarily fuel savings, while those of the battery are primarily due to savings in utility capacity. The economic rationale for batteries does not change significantly as the penetration level for the PV systems increases. In some of the service areas, the addition of the PV systems tended to sharpen rather than flatten the peaks in the utility's load curves, with the magnitude of the effect becoming more pronounced at the higher PV system penetration levels. As a result of these load shape changes, batteries with higher discharge rates and larger storage capacities were favored.

Mueller, R.O.; Cha, B.K.; Giese, R.F.; Maslowski, C.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Cosmic Battery in Astrophysical Accretion Disks  

E-Print Network [OSTI]

The aberrated radiation pressure at the inner edge of the accretion disk around an astrophysical black hole imparts a relative azimuthal velocity on the electrons with respect to the ions which gives rise to a ring electric current that generates large scale poloidal magnetic field loops. This is the Cosmic Battery established by Contopoulos and Kazanas in 1998. In the present work we perform realistic numerical simulations of this important astrophysical mechanism in advection-dominated accretion flows-ADAF. We confirm the original prediction that the inner parts of the loops are continuously advected toward the central black hole and contribute to the growth of the large scale magnetic field, whereas the outer parts of the loops are continuously diffusing outward through the turbulent accretion flow. This process of inward advection of the axial field and outward diffusion of the return field proceeds all the way to equipartition, thus generating astrophysically significant magnetic fields on astrophysicall...

Contopoulos, Ioannis; Katsanikas, Matthaios

2015-01-01T23:59:59.000Z

282

Role of minerals in the thermal alteration of organic matter. IV. Generation of n-alkanes, acyclic isoprenoids, and alkenes in laboratory experiments  

SciTech Connect (OSTI)

A series of pyrolysis experiments, utilizing two different immature oil-prone kerogens mixed with common sedimentary minerals (calcite, illite, or Na-montmorillonite), was conducted to study the effects of minerals on the generation of n-alkanes, acyclic isoprenoids, and alkenes during laboratory-simulated catagenesis of kerogen. The influence of clay minerals on the aliphatic hydrocarbons is critically dependent on the water concentration during laboratory thermal maturation. Under extremely low contents of water, C/sub 12+/-range n-alkanes and acyclic isoprenoids are mostly destroyed by montmorillonite but undergo only a minor alteration with illite. Both clay minerals significantly reduce alkene formation during dry pyrolysis. Under hydrous conditions (mineral/water = 2:1), the effects of the clay minerals are substantially reduced. In addition, the dry-pyrolysis experiments show that illite and montmorillonite preferentially retain large amounts of the polar constituents of bitumen, but not n-alkanes of acyclic isoprenoids. Therefore, bitumen fractionation according to polarity differences occurs in the presence of these clay minerals. By this process, n-alkanes, and acyclic isoprenoids are concentrated in the bitumen fraction that is not strongly adsorbed on the clay matrices. In contrast, calcite has no significant influence on the thermal evolution of the hydrocarbons. In addition, calcite is incapable of retaining bitumen. Therefore, the fractionation of n-alkanes or acyclic isoprenoids relative to the polar constituents of bitumen is insignificant in the presence of calcite.

Huizinga, B.J.; Tannenbaum, E.; Kaplan, I.R.

1987-05-01T23:59:59.000Z

283

Beyond Conventional Cathode Materials for Li-ion Batteries and Na-ion Batteries Nickel fluoride conversion materials and P2 type Na-ion intercalation cathodes /  

E-Print Network [OSTI]

spinel structures for lithium batteries. ElectrochemistryMaterials for Rechargeable Lithium Batteries. Journal of thefor Rechargeable Lithium Batteries. Electrochemical and

Lee, Dae Hoe

2013-01-01T23:59:59.000Z

284

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 Barcelona, Spain, November 17-20, 2013  

E-Print Network [OSTI]

EVS27 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium 1 EVS27 Barcelona and Fuel Cell Electric Vehicle Symposium 2 However, for embedded systems, studies look for simple signals for the diagnosis of electrochemical generators (batteries or fuel cell). It is now possible to acquire

Paris-Sud XI, Université de

285

Optimal management of batteries in electric systems  

DOE Patents [OSTI]

An electric system including at least a pair of battery strings and an AC source minimizes the use and maximizes the efficiency of the AC source by using the AC source only to charge all battery strings at the same time. Then one or more battery strings is used to power the load while management, such as application of a finish charge, is provided to one battery string. After another charge cycle, the roles of the battery strings are reversed so that each battery string receives regular management.

Atcitty, Stanley (Albuquerque, NM); Butler, Paul C. (Albuquerque, NM); Corey, Garth P. (Albuquerque, NM); Symons, Philip C. (Morgan Hill, CA)

2002-01-01T23:59:59.000Z

286

Lessons Learned from the Puerto Rico Battery Energy Storage System  

SciTech Connect (OSTI)

The Puerto Rico Electric Power Authority (PREPA) installed a distributed battery energy storage system in 1994 at a substation near San Juan, Puerto Rico. It was patterned after two other large energy storage systems operated by electric utilities in California and Germany. The U.S. Department of Energy (DOE) Energy Storage Systems Program at Sandia National Laboratories has followed the progress of all stages of the project since its inception. It directly supported the critical battery room cooling system design by conducting laboratory thermal testing of a scale model of the battery under simulated operating conditions. The Puerto Rico facility is at present the largest operating battery storage system in the world and is successfully providing frequency control, voltage regulation, and spinning reserve to the Caribbean island. The system further proved its usefulness to the PREPA network in the fall of 1998 in the aftermath of Hurricane Georges. The owner-operator, PREPA, and the architect/engineer, vendors, and contractors learned many valuable lessons during all phases of project development and operation. In documenting these lessons, this report will help PREPA and other utilities in planning to build large energy storage systems.

BOYES, JOHN D.; DE ANA, MINDI FARBER; TORRES, WENCESLANO

1999-09-01T23:59:59.000Z

287

Accelerating Design of Batteries Using Computer-Aided Engineering Tools (Presentation)  

SciTech Connect (OSTI)

Computer-aided engineering (CAE) is a proven pathway, especially in the automotive industry, to improve performance by resolving the relevant physics in complex systems, shortening the product development design cycle, thus reducing cost, and providing an efficient way to evaluate parameters for robust designs. Academic models include the relevant physics details, but neglect engineering complexities. Industry models include the relevant macroscopic geometry and system conditions, but simplify the fundamental physics too much. Most of the CAE battery tools for in-house use are custom model codes and require expert users. There is a need to make these battery modeling and design tools more accessible to end users such as battery developers, pack integrators, and vehicle makers. Developing integrated and physics-based CAE battery tools can reduce the design, build, test, break, re-design, re-build, and re-test cycle and help lower costs. NREL has been involved in developing various models to predict the thermal and electrochemical performance of large-format cells and has used in commercial three-dimensional finite-element analysis and computational fluid dynamics to study battery pack thermal issues. These NREL cell and pack design tools can be integrated to help support the automotive industry and to accelerate battery design.

Pesaran, A.; Kim, G. H.; Smith, K.

2010-11-01T23:59:59.000Z

288

Accelerating Development of EV Batteries Through Computer-Aided Engineering (Presentation)  

SciTech Connect (OSTI)

The Department of Energy's Vehicle Technology Program has launched the Computer-Aided Engineering for Automotive Batteries (CAEBAT) project to work with national labs, industry and software venders to develop sophisticated software. As coordinator, NREL has teamed with a number of companies to help improve and accelerate battery design and production. This presentation provides an overview of CAEBAT, including its predictive computer simulation of Li-ion batteries known as the Multi-Scale Multi-Dimensional (MSMD) model framework. MSMD's modular, flexible architecture connects the physics of battery charge/discharge processes, thermal control, safety and reliability in a computationally efficient manner. This allows independent development of submodels at the cell and pack levels.

Pesaran, A.; Kim, G. H.; Smith, K.; Santhanagopalan, S.

2012-12-01T23:59:59.000Z

289

The Joint Center for Energy Storage Research: A New Paradigm for Battery Research and Development  

E-Print Network [OSTI]

The Joint Center for Energy Storage Research (JCESR) seeks transformational change in transportation and the electricity grid driven by next generation high performance, low cost electricity storage. To pursue this transformative vision JCESR introduces a new paradigm for battery research: integrating discovery science, battery design, research prototyping and manufacturing collaboration in a single highly interactive organization. This new paradigm will accelerate the pace of discovery and innovation and reduce the time from conceptualization to commercialization. JCESR applies its new paradigm exclusively to beyond-lithium-ion batteries, a vast, rich and largely unexplored frontier. This review presents JCESR's motivation, vision, mission, intended outcomes or legacies and first year accomplishments.

Crabtree, George

2014-01-01T23:59:59.000Z

290

An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries  

E-Print Network [OSTI]

An Analytical Model for Predicting the Remaining Battery Capacity of Lithium-Ion Batteries Peng cycle-life tends to shrink significantly. The capacities of commercial lithium-ion batteries fade by 10 prediction model to estimate the remaining capacity of a Lithium-Ion battery. The proposed analytical model

Pedram, Massoud

291

Battery compatibility with photovoltaic charge controllers  

SciTech Connect (OSTI)

Photovoltaic (PV) systems offer a cost-effective solution to provide electrical power for a wide variety of applications, with battery performance playing a major role in their success. This paper presents some of the results of an industry meeting regarding battery specifications and ratings that photovoltaic system designers require, but do not typically have available to them. Communications between the PV industry and the battery industry regarding appropriate specifications have been uncoordinated and poor in the past. This paper also discusses the effort under way involving the PV industry and battery manufacturers, and provides a working draft of specifications to develop and outline the information sorely needed on batteries. The development of this information is referred to as ``Application Notes for Batteries in Photovoltaic Systems.`` The content of these ``notes`` has been compiled from various sources, including the input from the results of a survey on battery use in the photovoltaic industry. Only lead-acid batteries are discussed

Harrington, S.R. [Ktech Corp., Albuquerque, NM (United States); Bower, W.I. [Sandia National Labs., Albuquerque, NM (United States)

1992-12-31T23:59:59.000Z

292

Vehicle Technologies Office: Advanced Battery Development, System...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

learn how batteries are used in plug-in electric vehicles, visit the Alternative Fuels Data Center's page on batteries. Through the USABC, VTO supports a variety of research,...

293

A User Programmable Battery Charging System  

E-Print Network [OSTI]

, high energy density and longer lasting batteries with efficient charging systems are being developed by companies and original equipment manufacturers. Whatever the application may be, rechargeable batteries, which deliver power to a load or system...

Amanor-Boadu, Judy M

2013-05-07T23:59:59.000Z

294

Khalil Amine on Lithium-air Batteries  

ScienceCinema (OSTI)

Khalil Amine, materials scientist at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Khalil Amine

2010-01-08T23:59:59.000Z

295

Electrolyte Model Helps Researchers Develop Better Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award Electrolyte Model Helps Researchers Develop Better Batteries, Wins R&D 100 Award October 15, 2014 -...

296

'Thirsty' Metals Key to Longer Battery Lifetimes  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov PCCPxantheascover Imagine a cell phone battery that lasted a whole week on a single charge. A car battery that worked...

297

Michael Thackery on Lithium-air Batteries  

ScienceCinema (OSTI)

Michael Thackery, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries.

Michael Thackery

2010-01-08T23:59:59.000Z

298

Design and Simulation of Lithium Rechargeable Batteries  

E-Print Network [OSTI]

A New Rechargeable Plastic Li-Ion Battery," Lithium Batteryion battery developed at Bellcore in Red Bank, NJ.1-6 The experimental prototYpe cell has the configuration: Li

Doyle, C.M.

2010-01-01T23:59:59.000Z

299

Vehicle Battery Safety Roadmap Guidance  

SciTech Connect (OSTI)

The safety of electrified vehicles with high capacity energy storage devices creates challenges that must be met to assure commercial acceptance of EVs and HEVs. High performance vehicular traction energy storage systems must be intrinsically tolerant of abusive conditions: overcharge, short circuit, crush, fire exposure, overdischarge, and mechanical shock and vibration. Fail-safe responses to these conditions must be designed into the system, at the materials and the system level, through selection of materials and safety devices that will further reduce the probability of single cell failure and preclude propagation of failure to adjacent cells. One of the most important objectives of DOE's Office of Vehicle Technologies is to support the development of lithium ion batteries that are safe and abuse tolerant in electric drive vehicles. This Roadmap analyzes battery safety and failure modes of state-of-the-art cells and batteries and makes recommendations on future investments that would further DOE's mission.

Doughty, D. H.

2012-10-01T23:59:59.000Z

300

Review of flow battery testing at Sandia  

SciTech Connect (OSTI)

Sandia National Laboratories is evaluating prototype zinc/bromine, Redox, and zinc/ferricyanide flowing electrolyte batteries and cells. This paper will update previous reports of test results of two Exxon zinc/bromine batteries and one NASA Redox iron/chromium battery. Two 60-sq. cm. zinc/ferricyanide cells from Lockheed Missiles and Space Co. are also being evaluated. Performance, life, and operating data will be described for these batteries and cells.

Butler, P.C.; Miller, D.W.; Robinson, C.E.; Rodriguez, G.P.

1984-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Electrochemically controlled charging circuit for storage batteries  

DOE Patents [OSTI]

An electrochemically controlled charging circuit for charging storage batteries is disclosed. The embodiments disclosed utilize dc amplification of battery control current to minimize total energy expended for charging storage batteries to a preset voltage level. The circuits allow for selection of Zener diodes having a wide range of reference voltage levels. Also, the preset voltage level to which the storage batteries are charged can be varied over a wide range.

Onstott, E.I.

1980-06-24T23:59:59.000Z

302

Heating control methodology in coke oven battery at Rourkela Steel Plant  

SciTech Connect (OSTI)

A methodology of heating control was evolved incorporating temperature data generated through infra-red sensor at quenching station and thermocouples specially installed in the gooseneck of coke oven battery No. 3 of RSP. Average temperature of the red-hot coke as pushed helps in diagnosis of the abnormal ovens and in setting the targeted battery temperature. A concept of coke readiness factor (Q) was introduced which on optimization resulted in lowering the specific heat consumption by 30 KCal/Kg.

Bandyopadhyay, S.S.; Parthasarathy, L.; Gupta, A.; Bose, P.R.; Mishra, U.

1996-12-31T23:59:59.000Z

303

Sandia's research spans generation, storage, and load management at  

E-Print Network [OSTI]

Sandia's research spans generation, storage, and load management at the component and systems kW diesel genset, fuel cells, and additional interchangeable generators. Storage capabilities include a 500 kWh lead-acid battery bank, along with several additional batteries of smaller size. Over

304

Propagation testing multi-cell batteries.  

SciTech Connect (OSTI)

Propagation of single point or single cell failures in multi-cell batteries is a significant concern as batteries increase in scale for a variety of civilian and military applications. This report describes the procedure for testing failure propagation along with some representative test results to highlight the potential outcomes for different battery types and designs.

Orendorff, Christopher J.; Lamb, Joshua; Steele, Leigh Anna Marie; Spangler, Scott Wilmer

2014-10-01T23:59:59.000Z

305

Jeff Chamberlain on Lithium-air batteries  

ScienceCinema (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2013-04-19T23:59:59.000Z

306

Jeff Chamberlain on Lithium-air batteries  

SciTech Connect (OSTI)

Jeff Chamberlain, technology transfer expert at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Chamberlain, Jeff

2009-01-01T23:59:59.000Z

307

Michael Thackeray on Lithium-air Batteries  

ScienceCinema (OSTI)

Michael Thackeray, Distinguished Fellow at Argonne National Laboratory, speaks on the new technology Lithium-air batteries, which could potentially increase energy density by 5-10 times over lithium-ion batteries. More information at http://www.anl.gov/Media_Center/News/2009/batteries090915.html

Thackeray, Michael

2013-04-19T23:59:59.000Z

308

Solid-state lithium battery  

DOE Patents [OSTI]

The present invention is directed to a higher power, thin film lithium-ion electrolyte on a metallic substrate, enabling mass-produced solid-state lithium batteries. High-temperature thermodynamic equilibrium processing enables co-firing of oxides and base metals, providing a means to integrate the crystalline, lithium-stable, fast lithium-ion conductor lanthanum lithium tantalate (La.sub.1/3-xLi.sub.3xTaO.sub.3) directly with a thin metal foil current collector appropriate for a lithium-free solid-state battery.

Ihlefeld, Jon; Clem, Paul G; Edney, Cynthia; Ingersoll, David; Nagasubramanian, Ganesan; Fenton, Kyle Ross

2014-11-04T23:59:59.000Z

309

Analysis and Improvement of the securing RFID systems conforming to EPC Class 1 Generation 2  

E-Print Network [OSTI]

. In general terms, the tag comprises a wireless microchip with a very limited computational and storage from the electrical field generated by the reader. Semi-passive tags use a battery, but that battery by the reader. Active tags use a battery for both communication and running the i

310

STUDIES ON TWO CLASSES OF POSITIVE ELECTRODE MATERIALS FOR LITHIUM-ION BATTERIES  

E-Print Network [OSTI]

facing rechargeable lithium batteries. Nature, 2001. 414(of rechargeable lithium batteries, I. Lithium manganeseof rechargeable lithium batteries, II. Lithium ion

Wilcox, James D.

2010-01-01T23:59:59.000Z

311

Non-thermal Plasma Chemistry Non-thermal Thermal  

E-Print Network [OSTI]

-thermal Plasma Chemical Flow Reactor #12;Werner von Siemens ,, ... construction of an apparatus generation (1857) pollution control volatile organic components, NOx reforming, ... radiation sources excimer;Leuchtstoffröhre Plasma-Bildschirm Energiesparlampe #12;electrical engineering light sources textile industry

Greifswald, Ernst-Moritz-Arndt-Universität

312

How to Obtain Reproducible Results for Lithium Sulfur Batteries  

SciTech Connect (OSTI)

The basic requirements for getting reliable Li-S battery data have been discussed in this work. Unlike Li-ion batteries, electrolyte-rich environment significantly affects the cycling stability of Li-S batteries prepared and tested under the same conditions. The reason has been assigned to the different concentrations of polysulfide-containing electrolytes in the cells, which have profound influences on both sulfur cathode and lithium anode. At optimized S/E ratio of 50 g L-1, a good balance among electrolyte viscosity, wetting ability, diffusion rate dissolved polysulfide and nucleation/growth of short-chain Li2S/Li2S2 has been built along with largely reduced contamination on the lithium anode side. Accordingly, good cyclability, high reversible capacity and Coulombic efficiency are achieved in Li-S cell with controlled S/E ratio without any additive. Other factors such as sulfur content in the composite and sulfur loading on the electrode also need careful concern in Li-S system in order to generate reproducible results and gauge the various methods used to improve Li-S battery technology.

Zheng, Jianming; Lu, Dongping; Gu, Meng; Wang, Chong M.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

2013-01-01T23:59:59.000Z

313

A Desalination Battery Mauro Pasta,  

E-Print Network [OSTI]

is promising when compared to reverse osmosis ( 0.2 Wh l-1 ), the most efficient technique presently available. KEYWORDS: Seawater desalination, mixing entropy battery, reverse osmosis, ion selectivity Increasing of desalination technologies have been developed over the years.2,4-10 Reverse osmosis requires a large electrical

Cui, Yi

314

The Science of Battery Degradation.  

SciTech Connect (OSTI)

This report documents work that was performed under the Laboratory Directed Research and Development project, Science of Battery Degradation. The focus of this work was on the creation of new experimental and theoretical approaches to understand atomistic mechanisms of degradation in battery electrodes that result in loss of electrical energy storage capacity. Several unique approaches were developed during the course of the project, including the invention of a technique based on ultramicrotoming to cross-section commercial scale battery electrodes, the demonstration of scanning transmission x-ray microscopy (STXM) to probe lithium transport mechanisms within Li-ion battery electrodes, the creation of in-situ liquid cells to observe electrochemical reactions in real-time using both transmission electron microscopy (TEM) and STXM, the creation of an in-situ optical cell utilizing Raman spectroscopy and the application of the cell for analyzing redox flow batteries, the invention of an approach for performing ab initio simulation of electrochemical reactions under potential control and its application for the study of electrolyte degradation, and the development of an electrochemical entropy technique combined with x-ray based structural measurements for understanding origins of battery degradation. These approaches led to a number of scientific discoveries. Using STXM we learned that lithium iron phosphate battery cathodes display unexpected behavior during lithiation wherein lithium transport is controlled by nucleation of a lithiated phase, leading to high heterogeneity in lithium content at each particle and a surprising invariance of local current density with the overall electrode charging current. We discovered using in-situ transmission electron microscopy that there is a size limit to lithiation of silicon anode particles above which particle fracture controls electrode degradation. From electrochemical entropy measurements, we discovered that entropy changes little with degradation but the origin of degradation in cathodes is kinetic in nature, i.e. lower rate cycling recovers lost capacity. Finally, our modeling of electrode-electrolyte interfaces revealed that electrolyte degradation may occur by either a single or double electron transfer process depending on thickness of the solid-electrolyte- interphase layer, and this cross-over can be modeled and predicted.

Sullivan, John P; Fenton, Kyle R [Sandia National Laboratories, Albuquerque, NM; El Gabaly Marquez, Farid; Harris, Charles Thomas [Sandia National Laboratories, Albuquerque, NM; Hayden, Carl C.; Hudak, Nicholas [Sandia National Laboratories, Albuquerque, NM; Jungjohann, Katherine Leigh [Sandia National Laboratories, Albuquerque, NM; Kliewer, Christopher Jesse; Leung, Kevin [Sandia National Laboratories, Albuquerque, NM; McDaniel, Anthony H.; Nagasubramanian, Ganesan [Sandia National Laboratories, Albuquerque, NM; Sugar, Joshua Daniel; Talin, Albert Alec; Tenney, Craig M [Sandia National Laboratories, Albuquerque, NM; Zavadil, Kevin R. [Sandia National Laboratories, Albuquerque, NM

2015-01-01T23:59:59.000Z

315

Assessment of generic solar thermal systems for large power applications: analysis of electric power generating costs for systems larger than 10 MWe  

SciTech Connect (OSTI)

Seven generic types of collectors, together with associated subsystems for electric power generation, were considered. The collectors can be classified into three categories: (1) two-axis tracking (with compound-curvature reflecting surfaces); (2) one-axis tracking (with single-curvature reflecting surfaces); and (3) nontracking (with low-concentration reflecting surfaces). All seven collectors were analyzed in conceptual system configurations with Rankine-cycle engines. In addition, two of the collectors were analyzed with Brayton-cycle engines, and one was analyzed with a Stirling-cycle engine. With these engine options, and the consideration of both thermal and electrical storage for the Brayton-cycle central receiver, 11 systems were formulated for analysis. Conceptual designs developed for the 11 systems were based on common assumptions of available technology in the 1990 to 2000 time frame. No attempt was made to perform a detailed optimization of each conceptual design. Rather, designs best suited for a comparative evaluation of the concepts were formulated. Costs were estimated on the basis of identical assumptions, ground rules, methodologies, and unit costs of materials and labor applied uniformly to all of the concepts. The computer code SOLSTEP was used to analyze the thermodynamic performance characteristics and energy costs of the 11 concepts. Year-long simulations were performed using meteorological and insolation data for Barstow, California. Results for each concept include levelized energy costs and capacity factors for various combinations of storage capacity and collector field size.

Apley, W.J.; Bird, S.P.; Brown, D.R.; Drost, M.K.; Fort, J.A.; Garrett-Price, B.A.; Patton, W.P.; Williams, T.A.

1980-11-01T23:59:59.000Z

316

3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems  

SciTech Connect (OSTI)

Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PV’s inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switching™ topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topology’s capability for the industry’s first single-stage multi-port hybrid power converter. This unique low cost approach eliminates the hybrid power conversion bottlenecks when integrating batteries into PV systems. As result this product will significantly accelerate market adoption of these systems.

Bundschuh, Paul [Ideal Power

2013-03-23T23:59:59.000Z

317

Molten Air -- A new, highest energy class of rechargeable batteries  

E-Print Network [OSTI]

This study introduces the principles of a new class of batteries, rechargeable molten air batteries, and several battery chemistry examples are demonstrated. The new battery class uses a molten electrolyte, are quasi reversible, and have amongst the highest intrinsic battery electric energy storage capacities. Three examples of the new batteries are demonstrated. These are the iron, carbon and VB2 molten air batteries with respective intrinsic volumetric energy capacities of 10,000, 19,000 and 27,000 Wh per liter.

Licht, Stuart

2013-01-01T23:59:59.000Z

318

Project Profile: Innovative Thermal Energy Storage for Baseload...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Storage for Baseload Solar Power Generation Project Profile: Innovative Thermal Energy Storage for Baseload Solar Power Generation University of South Florida logo...

319

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect (OSTI)

Methods of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electroytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one or .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wunjun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2013-12-03T23:59:59.000Z

320

Lithium sulfide compositions for battery electrolyte and battery electrode coatings  

SciTech Connect (OSTI)

Method of forming lithium-containing electrolytes are provided using wet chemical synthesis. In some examples, the lithium containing electrolytes are composed of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7. The solid electrolyte may be a core shell material. In one embodiment, the core shell material includes a core of lithium sulfide (Li.sub.2S), a first shell of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7, and a second shell including one of .beta.-Li.sub.3PS.sub.4 or Li.sub.4P.sub.2S.sub.7 and carbon. The lithium containing electrolytes may be incorporated into wet cell batteries or solid state batteries.

Liang, Chengdu; Liu, Zengcai; Fu, Wujun; Lin, Zhan; Dudney, Nancy J; Howe, Jane Y; Rondinone, Adam J

2014-10-28T23:59:59.000Z

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Response of Lithium Polymer Batteries to Mechanical Loading  

E-Print Network [OSTI]

Response of Lithium Polymer Batteries to Mechanical Loading Karl Suabedissen1, Christina Peabody2 · Lithium polymer batteries are everywhere. · Efforts to create flexible batteries. · Restrictive battery performance. #12;Lithium Polymer Battery Structure · Al cathode coated with LiCoO2. · Cu anode coated

Petta, Jason

322

LITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA  

E-Print Network [OSTI]

to handle the Powerizer Li-Ion rechargeable Battery Packs. It will bring reveal battery specificationsLITHIUM-ION BATTERY CHARGING REPORT G. MICHAEL BARRAMEDA 1. Abstract This report introduces how the amount of "de-Rating" the batteries have experienced. 2. Safety Guidelines · Must put battery

Ruina, Andy L.

323

Understanding batteries on the micro- and nanometer scale  

ScienceCinema (OSTI)

In order to understand performance limitations and failure mechanisms of batteries, one has to investigate processes on the micro- and nanometer scale. A typical failure mechanism in lithium metal batteries is dendritic growth. During discharge, lithium is stripped of the anode surface and migrates to the cathode. During charge, lithium is deposited back on the anode. Repeated cycling can result in stripping and re-deposition that roughens the surface. The roughening of the surface changes the electric field and draws more metal to spikes that are beginning to grow. These can grow with tremendous mechanical force, puncture the separator, and directly connect the anode with the cathode which can create an internal short circuit. This can lead to an uncontrolled discharge reaction, which heats the cell and causes additional exothermic reactions leading to what is called thermal runaway. ORNL has developed a new technology called liquid electron microscopy. In a specially designed sample holder micro-chamber with electron-transparent windows, researchers can hold a liquid and take images of structures and particles at nanometer size. It's the first microscope holder of its kind used to investigate the inside of a battery while cycled.

None

2014-06-03T23:59:59.000Z

324

Recombination device for storage batteries  

DOE Patents [OSTI]

A recombination device including a gas-tight enclosure connected to receive the discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

Kraft, H.; Ledjeff, K.

1984-01-01T23:59:59.000Z

325

Cascade redox flow battery systems  

DOE Patents [OSTI]

A reduction/oxidation ("redox") flow battery system includes a series of electrochemical cells arranged in a cascade, whereby liquid electrolyte reacts in a first electrochemical cell (or group of cells) before being directed into a second cell (or group of cells) where it reacts before being directed to subsequent cells. The cascade includes 2 to n stages, each stage having one or more electrochemical cells. During a charge reaction, electrolyte entering a first stage will have a lower state-of-charge than electrolyte entering the nth stage. In some embodiments, cell components and/or characteristics may be configured based on a state-of-charge of electrolytes expected at each cascade stage. Such engineered cascades provide redox flow battery systems with higher energy efficiency over a broader range of current density than prior art arrangements.

Horne, Craig R.; Kinoshita, Kim; Hickey, Darren B.; Sha, Jay E.; Bose, Deepak

2014-07-22T23:59:59.000Z

326

Recombination device for storage batteries  

DOE Patents [OSTI]

A recombination device including a gas-tight enclosure connected to receive he discharge gases from a rechargeable storage battery. Catalytic material for the recombination of hydrogen and oxygen to form water is supported within the enclosure. The enclosure is sealed from the atmosphere by a liquid seal including two vertical chambers interconnected with an inverted U-shaped overflow tube. The first chamber is connected at its upper portion to the enclosure and the second chamber communicates at its upper portion with the atmosphere. If the pressure within the enclosure differs as overpressure or vacuum by more than the liquid level, the liquid is forced into one of the two chambers and the overpressure is vented or the vacuum is relieved. The recombination device also includes means for returning recombined liquid to the battery and for absorbing metal hydrides.

Kraft, Helmut (Liederbach, DE); Ledjeff, Konstantin (Bad Krozingen, DE)

1985-01-01T23:59:59.000Z

327

Battery system with temperature sensors  

DOE Patents [OSTI]

A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

Wood, Steven J; Trester, Dale B

2014-02-04T23:59:59.000Z

328

Electrolytes for lithium ion batteries  

DOE Patents [OSTI]

A family of electrolytes for use in a lithium ion battery. The genus of electrolytes includes ketone-based solvents, such as, 2,4-dimethyl-3-pentanone; 3,3-dimethyl 2-butanone(pinacolone) and 2-butanone. These solvents can be used in combination with non-Lewis Acid salts, such as Li.sub.2[B.sub.12F.sub.12] and LiBOB.

Vaughey, John; Jansen, Andrew N.; Dees, Dennis W.

2014-08-05T23:59:59.000Z

329

EERE Partner Testimonials- Phil Roberts, California Lithium Battery (CalBattery)  

Broader source: Energy.gov [DOE]

Phil Roberts, CEO and Founder of California Lithium Battery (CalBattery), describes the new growth and development that was possible through partnering with the U.S. Department of Energy.

330

Household batteries: Evaluation of collection methods  

SciTech Connect (OSTI)

While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

Seeberger, D.A.

1992-01-01T23:59:59.000Z

331

Household batteries: Evaluation of collection methods  

SciTech Connect (OSTI)

While it is difficult to prove that a specific material is causing contamination in a landfill, tests have been conducted at waste-to-energy facilities that indicate that household batteries contribute significant amounts of heavy metals to both air emissions and ash residue. Hennepin County, MN, used a dual approach for developing and implementing a special household battery collection. Alternative collection methods were examined; test collections were conducted. The second phase examined operating and disposal policy issues. This report describes the results of the grant project, moving from a broad examination of the construction and content of batteries, to a description of the pilot collection programs, and ending with a discussion of variables affecting the cost and operation of a comprehensive battery collection program. Three out-of-state companies (PA, NY) were found that accept spent batteries; difficulties in reclaiming household batteries are discussed.

Seeberger, D.A.

1992-12-31T23:59:59.000Z

332

Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin  

SciTech Connect (OSTI)

Silicon (Si) nanomaterials have emerged as a leading candidate for next generation lithium-ion battery anodes. However, the low electrical conductivity of Si requires the use of conductive additives in the anode film. Here we report a solution-based synthesis of Si nanowires with a conductive carbon skin. Without any conductive additive, the Si nanowire electrodes exhibited capacities of over 2000 mA h g-1 for 100 cycles when cycled at C/10 and over 1200 mA h g-1 when cycled more rapidly at 1C against Li metal.. In situ transmission electron microscopy (TEM) observation reveals that the carbon skin performs dual roles: it speeds lithiation of the Si nanowires significantly, while also constraining the final volume expansion. The present work sheds light on ways to optimize lithium battery performance by smartly tailoring the nanostructure of composition of materials based on silicon and carbon.

Bogart, Timothy D.; Oka, Daichi; Lu, Xiaotang; Gu, Meng; Wang, Chong M.; Korgel, Brian A.

2013-12-06T23:59:59.000Z

333

Primer on lead-acid storage batteries  

SciTech Connect (OSTI)

This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

NONE

1995-09-01T23:59:59.000Z

334

Rate-Dependent Morphology of Li2O2 Growth in Li-O2 Batteries Birger Horstmann,1, 2, 3, 4  

E-Print Network [OSTI]

-generation batteries that can replace conventional combustion technologies [16­21]. Although the stability of oxygen Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 2 German Aerospace Center continuum model for the growth of Li2O2 crystals in lithium-oxygen batteries with organic electrolytes

Bazant, Martin Z.

335

Block copolymer electrolytes for lithium batteries  

E-Print Network [OSTI]

connecting to the solid-state lithium battery. c. An opticalbattery (discounting packaging, tabs, etc. ) demonstrate the advantage of the solid-state

Hudson, William Rodgers

2011-01-01T23:59:59.000Z

336

Abuse Testing of High Power Batteries  

Broader source: Energy.gov (indexed) [DOE]

not contain any proprietary or confidential information Abuse Testing of High Power Batteries Sandia National Laboratories Overview * Start Date: Oct. 2007 * End date: Sept. 2014...

337

Abuse Testing of High Power Batteries  

Broader source: Energy.gov (indexed) [DOE]

Sandia National Laboratories Abuse Testing of High Power Batteries Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United...

338

Advanced Battery Materials Characterization: Success stories...  

Broader source: Energy.gov (indexed) [DOE]

Battery Materials Characterization: Success stories from the High Temperature Materials Laboratory (HTML) User Program Dr. E. Andrew Payzant, ORNL Project ID lmp02payzant This...

339

A High-Performance PHEV Battery Pack  

Broader source: Energy.gov (indexed) [DOE]

LCD Glass OLED Materials Color Filter Lithium-Ion Batteries for - Mobile Phone, Laptop, Power Tool - Hybrid & Electric Vehicles - ESS Energy Solution(10%) Petro-...

340

Ambient Operation of Li/Air Batteries  

SciTech Connect (OSTI)

In this work, Li/air batteries based on nonaqueous electrolytes were investigated in ambient conditions (with an oxygen partial pressure of 0.21 atm and relative humidity of ~20%). A heat-sealable polymer membrane was used as both an oxygen-diffusion membrane and as a moisture barrier for Li/air batteries. The membrane also can minimize the evaporation of the electrolyte from the batteries. Li/air batteries with this membrane can operate in ambient conditions for more than one month with a specific energy of 362 Wh kg-1, based on the total weight of the battery including its packaging. Among various carbon sources used in this work, Li/air batteries using Ketjenblack (KB) carbon-based air electrodes exhibited the highest specific energy. However, KB-based air electrodes expanded significantly and absorbed much more electrolyte than electrodes made from other carbon sources. The weight distribution of a typical Li/air battery using the KB-based air electrode was dominated by the electrolyte (~70%). Lithium-metal anodes and KB-carbon anodes account for only 5.12% and 5.78% of the battery weight, respectively. We also found that only ~ 20% of the mesopore volume of the air electrode was occupied by reaction products after discharge. To further improve the specific energy of the Li/air batteries, the microstructure of the carbon electrode needs to be further improved to absorb much less electrolyte while still holding significant amounts of reaction products

Zhang, Jiguang; Wang, Deyu; Xu, Wu; Xiao, Jie; Williford, Ralph E.

2010-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Celgard and Entek - Battery Separator Development  

Broader source: Energy.gov (indexed) [DOE]

Celgard and Entek Battery Separator Development Harshad Tataria R. Pekala, Ron Smith USABC May 19, 2009 Project ID es08tataria This presentation does not contain any...

342

Automated Battery Swap and Recharge to Enable Persistent UAV Missions  

E-Print Network [OSTI]

This paper introduces a hardware platform for automated battery changing and charging for multiple UAV agents. The automated station holds a bu er of 8 batteries in a novel dual-drum structure that enables a "hot" battery ...

Toksoz, Tuna

343

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

344

A Better Anode Design to Improve Lithium-Ion Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

A Better Anode Design to Improve Lithium-Ion Batteries A Better Anode Design to Improve Lithium-Ion Batteries Print Friday, 23 March 2012 13:53 Lithium-ion batteries are in smart...

345

Model Reformulation and Design of Lithium-ion Batteries  

E-Print Network [OSTI]

987 94 Model Reformulation and Design of Lithium-ion Batteries V.R. Subramanian1,*, V. Boovaragavan Prediction......................................997 Optimal Design of Lithium-ion Batteries Lithium-ion batteries, product design, Bayesian estimation, Markov Chain Monte Carlo simulation

Subramanian, Venkat

346

Improved Positive Electrode Materials for Li-ion Batteries  

E-Print Network [OSTI]

of the assembled Li-ion battery, such as the operating1-4: Schematic of a Li-ion battery. Li + ions are shuttledprocessing of active Li-ion battery materials. Various

Conry, Thomas Edward

2012-01-01T23:59:59.000Z

347

A Bayesian nonparametric approach to modeling battery health  

E-Print Network [OSTI]

The batteries of many consumer products are both a substantial portion of the product's cost and commonly a first point of failure. Accurately predicting remaining battery life can lower costs by reducing unnecessary battery ...

Doshi-Velez, Finale

348

Benefits of battery-uItracapacitor hybrid energy storage systems  

E-Print Network [OSTI]

This thesis explores the benefits of battery and battery-ultracapacitor hybrid energy storage systems (ESSs) in pulsed-load applications. It investigates and quantifies the benefits of the hybrid ESS over its battery-only ...

Smith, Ian C., S.M. (Ian Charles). Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

349

Models for Battery Reliability and Lifetime: Applications in Design and Health Management (Presentation)  

SciTech Connect (OSTI)

This presentation discusses models for battery reliability and lifetime and the Battery Ownership Model.

Smith, K.; Neubauer, J.; Wood, E.; Jun, M.; Pesaran, A.

2013-06-01T23:59:59.000Z

350

Battery, heal thyself: Inventing self-repairing batteries | Argonne  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground High the cover:Battery Boost

351

Rankline-Brayton engine powered solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2012-03-13T23:59:59.000Z

352

Rankine-Brayton engine powered solar thermal aircraft  

DOE Patents [OSTI]

A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

Bennett, Charles L. (Livermore, CA)

2009-12-29T23:59:59.000Z

353

Chemical preconcentrator with integral thermal flow sensor  

DOE Patents [OSTI]

A chemical preconcentrator with integral thermal flow sensor can be used to accurately measure fluid flow rate in a microanalytical system. The thermal flow sensor can be operated in either constant temperature or constant power mode and variants thereof. The chemical preconcentrator with integral thermal flow sensor can be fabricated with the same MEMS technology as the rest of the microanlaytical system. Because of its low heat capacity, low-loss, and small size, the chemical preconcentrator with integral thermal flow sensor is fast and efficient enough to be used in battery-powered, portable microanalytical systems.

Manginell, Ronald P. (Albuquerque, NM); Frye-Mason, Gregory C. (Cedar Crest, NM)

2003-01-01T23:59:59.000Z

354

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

the rechargeable battery industry. Li-ion batteries rapidlyLi-ion chemistry. For grid storage applications, several other rechargeable batteryLi-ion batteries, because cadmium is highly toxic. In 1991, lithium-ion battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

355

Development of High Energy Lithium Batteries for Electric Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

Kasei * Focused on High Capacity Manganese Rich (HCMR TM ) cathodes & Silicon-Carbon composite anodes for Lithium ion batteries * Envia's high energy Li-ion battery materials...

356

ALS Technique Gives Novel View of Lithium Battery Dendrite Growth  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ALS Technique Gives Novel View of Lithium Battery Dendrite Growth Print Lithium-ion batteries, popular in today's electronic devices and electric vehicles, could gain significant...

357

Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production...  

Office of Environmental Management (EM)

Celebrates Expansion of Lithium-Ion Battery Production in North Carolina Secretary Chu Celebrates Expansion of Lithium-Ion Battery Production in North Carolina July 26, 2011 -...

358

Lithium Ion Battery Performance of Silicon Nanowires With Carbon...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Ion Battery Performance of Silicon Nanowires With Carbon Skin . Lithium Ion Battery Performance of Silicon Nanowires With Carbon Skin . Abstract: Silicon (Si) nanomaterials have...

359

Linking Ion Solvation and Lithium Battery Electrolyte Properties...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Linking Ion Solvation and Lithium Battery Electrolyte Properties Linking Ion Solvation and Lithium Battery Electrolyte Properties 2010 DOE Vehicle Technologies and Hydrogen...

360

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Print Our way of life is deeply intertwined with battery technologies that have enabled a mobile revolution powering cell...

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Manipulating the Surface Reactions in Lithium Sulfur Batteries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode Structures. Manipulating the Surface Reactions in Lithium Sulfur Batteries Using Hybrid Anode...

362

Diagnostic Studies on Lithium Battery Cells and Cell Components...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Studies on Lithium Battery Cells and Cell Components Diagnostic Studies on Lithium Battery Cells and Cell Components 2012 DOE Hydrogen and Fuel Cells Program and Vehicle...

363

Special Feature: Reducing Energy Costs with Better Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Scientific Computing Center (NERSC) are working to achieve this goal. New Anode Boots Capacity of Lithium-Ion Batteries Lithium-ion batteries are everywhere- in smart...

364

alkaline storage battery: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

arrays, wind turbines, and battery storage is designed based on empirical weather and load development of photovoltaic (PV), wind turbine and battery technologies, hybrid...

365

alkaline storage batteries: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

arrays, wind turbines, and battery storage is designed based on empirical weather and load development of photovoltaic (PV), wind turbine and battery technologies, hybrid...

366

aerospace flight battery: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

minigrid system comprising batteries and an inverter under which the battery charging load is only one of many various village loads on the system. NREL has completed feasibility...

367

Development of High Energy Lithium Batteries for Electric Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Lithium Batteries for Electric Vehicles Development of High Energy Lithium Batteries for Electric Vehicles 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program...

368

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2012 DOE Hydrogen and Fuel Cells Program and...

369

EV Everywhere: Innovative Battery Research Powering Up Plug-In...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles EV Everywhere: Innovative Battery Research Powering Up Plug-In Electric Vehicles January 24, 2014 -...

370

Diagnostic and Prognostic Analysis of Battery Performance & Aging...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Prognostic Analysis of Battery Performance & Aging based on Kinetic and Thermodynamic Principles Diagnostic and Prognostic Analysis of Battery Performance & Aging based on...

371

2008 Annual Merit Review Results Summary - 4. Exploratory Battery...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

4. Exploratory Battery Research 2008 Annual Merit Review Results Summary - 4. Exploratory Battery Research DOE Vehicle Technologies Annual Merit Review 2008meritreview4.pdf More...

372

Overview and Progress of United States Advanced Battery Research...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of United States Advanced Battery Consortium (USABC) Activity United States Advanced Battery Consortium High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric...

373

USABC Development of Advanced High-Performance Batteries for...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

USABC Development of Advanced High-Performance Batteries for EV Applications USABC Development of Advanced High-Performance Batteries for EV Applications 2012 DOE Hydrogen and Fuel...

374

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles...  

Broader source: Energy.gov (indexed) [DOE]

High-Voltage Solid Polymer Batteries for Electric Drive Vehicles High-Voltage Solid Polymer Batteries for Electric Drive Vehicles 2013 DOE Hydrogen and Fuel Cells Program and...

375

Overview of the Batteries for Advanced Transportation Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Presentation from the...

376

Remember the Batteries - and Maybe a Charger? | Department of...  

Broader source: Energy.gov (indexed) [DOE]

Remember the Batteries - and Maybe a Charger? Remember the Batteries - and Maybe a Charger? December 21, 2010 - 11:20am Addthis Elizabeth Spencer Communicator, National Renewable...

377

Development of Polymer Electrolytes for Advanced Lithium Batteries...  

Broader source: Energy.gov (indexed) [DOE]

Development of Polymer Electrolytes for Advanced Lithium Batteries Development of Polymer Electrolytes for Advanced Lithium Batteries 2013 DOE Hydrogen and Fuel Cells Program and...

378

Overview and Progress of the Batteries for Advanced Transportation...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

and Progress of the Batteries for Advanced Transportation Technologies (BATT) Activity Overview and Progress of the Batteries for Advanced Transportation Technologies (BATT)...

379

NREL: Transportation Research - Innovative Way to Test Batteries...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Innovative Way to Test Batteries Fills a Market Niche A square piece of machinery with a lid that opens upwards NETZSCH's Isothermal Battery Calorimeter (IBC 284), developed by...

380

Overview of the Batteries for Advanced Transportation Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program 2010 DOE Vehicle...

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Overview of the Batteries for Advanced Transportation Technologies...  

Broader source: Energy.gov (indexed) [DOE]

Overview of the Batteries for Advanced Transportation Technologies (BATT) Program Overview of the Batteries for Advanced Transportation Technologies (BATT) Program 2009 DOE...

382

Characterization of Materials for Li-ion Batteries: Success Stories...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Materials for Li-ion Batteries: Success Stories from the High Temperature Materials Laboratory (HTML) User Program Characterization of Materials for Li-ion Batteries: Success...

383

Energy Management Strategies for Fast Battery Temperature Rise...  

Broader source: Energy.gov (indexed) [DOE]

Strategies to Quickly Raise Battery Temperature and Engine Efficiency Component level comparison: - Compare rate of temperature rise for the battery , engine. Vehicle...

384

Development of Computer-Aided Design Tools for Automotive Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

9han2012o.pdf More Documents & Publications Progress of Computer-Aided Engineering of Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT)...

385

Computer-Aided Engineering for Electric Drive Vehicle Batteries...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) Computer-Aided Engineering for Electric Drive Vehicle Batteries (CAEBAT) 2011 DOE Hydrogen and Fuel Cells...

386

Department of Energy Will Hold a Batteries and Energy Storage...  

Broader source: Energy.gov (indexed) [DOE]

Department of Energy Will Hold a Batteries and Energy Storage Information Meeting on October 21, 2011 Department of Energy Will Hold a Batteries and Energy Storage Information...

387

Characterization of Li-ion Batteries using Neutron Diffraction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques Characterization of Li-ion Batteries using Neutron Diffraction and Infrared Imaging Techniques 2011 DOE...

388

High power bipolar battery/cells with enhanced overcharge tolerance  

DOE Patents [OSTI]

A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification.

Kaun, Thomas D. (New Lenox, IL)

1998-01-01T23:59:59.000Z

389

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage...  

Energy Savers [EERE]

Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) Fact Sheet: Lithium-Ion Batteries for Stationary Energy Storage (October 2012) DOE's Energy Storage...

390

Rechargeable Heat Battery's Secret Revealed: Solar Energy Capture...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Rechargeable Heat Battery Rechargeable Heat Battery's Secret Revealed Solar energy capture in chemical form makes it storable and transportable January 11, 2011 | Tags: Chemistry,...

391

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network [OSTI]

of the Electric Fuel Zinc-Air Battery System for EVs,of the Electric Fuel Zinc-air battery for electric vehicles,

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

392

Three-dimensional batteries using a liquid cathode  

E-Print Network [OSTI]

for powering microelectromechanical systems and otherSurvey of battery powered microelectromechanical systems.battery powered microelectromechanical systems (MEMS), it is

Malati, Peter Moneir

2013-01-01T23:59:59.000Z

393

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Hierarchically Porous Graphene as a Lithium-Air Battery Electrode. Abstract: Functionalized graphene sheets (FGS)...

394

Factors Affecting the Battery Performance of Anthraquinone-based...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials. Factors Affecting the Battery Performance of Anthraquinone-based Organic Cathode Materials....

395

Anodes for rechargeable lithium batteries  

DOE Patents [OSTI]

A negative electrode (12) for a non-aqueous electrochemical cell (10) with an intermetallic host structure containing two or more elements selected from the metal elements and silicon, capable of accommodating lithium within its crystallographic host structure such that when the host structure is lithiated it transforms to a lithiated zinc-blende-type structure. Both active elements (alloying with lithium) and inactive elements (non-alloying with lithium) are disclosed. Electrochemical cells and batteries as well as methods of making the negative electrode are disclosed.

Thackeray, Michael M. (Naperville, IL); Kepler, Keith D. (Mountain View, CA); Vaughey, John T. (Elmhurst, IL)

2003-01-01T23:59:59.000Z

396

Self-Charging Battery Project  

SciTech Connect (OSTI)

In March 2006, a Cooperative Research and Development Agreement (CRADA) was formed between Fauton Tech, Inc. and INL to develop a prototype for a commercial application that incorporates some INL-developed Intellectual Properties (IP). This report presents the results of the work performed at INL during Phase 1. The objective of Phase 1 was to construct a prototype battery in a “D” cell form factor, determine optimized internal components for a baseline configuration using a standard coil design, perform a series of tests on the baseline configuration, and document the test results in a logbook.

Yager, Eric

2007-07-25T23:59:59.000Z

397

Thin film buried anode battery  

DOE Patents [OSTI]

A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

Lee, Se-Hee (Lakewood, CO); Tracy, C. Edwin (Golden, CO); Liu, Ping (Denver, CO)

2009-12-15T23:59:59.000Z

398

Battery Boost | ornl.gov  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScience ProgramBackground High the cover:Battery Boost ORNL computing

399

EV Everywhere Challenge Battery Workshop  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecord ofESPC ENABLE: ECM Summary ECM Included Not Included Challenge Battery

400

Battery Chargers | Department of Energy  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement3--Logistical5/08 Attendance List1-02EvaluationJohnBall StateBattery Chargers

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Prieto Battery | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy ResourcesLoadingPenobscot County, Maine:Plug Power IncPowderClimate Action4622144° LoadingPrieto Battery

402

Thermal Fluids  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Thermal Fluids The Thermal Fluids and Heat Transfer program works on thermal hydraulic reactor safety code development and experimental heat transferthermal hydraulics. The...

403

Progress in Grid Scale Flow Batteries  

E-Print Network [OSTI]

Progress in Grid Scale Flow Batteries IMRE GYUK, PROGRAM MANAGER ENERGY STORAGE RESEARCH, DOE Flow;LogMW Renewables (not capacity factor adjusted) 9 8 7 6 5 4 3 Wind Wind (proj) Solar PV Solar PV 2011Year #12;Flow Battery Research at PNNL and Sandia #12

404

Alloys of clathrate allotropes for rechargeable batteries  

DOE Patents [OSTI]

The present disclosure is directed at an electrode for a battery wherein the electrode comprises clathrate alloys of silicon, germanium or tin. In method form, the present disclosure is directed at methods of forming clathrate alloys of silicon, germanium or tin which methods lead to the formation of empty cage structures suitable for use as electrodes in rechargeable type batteries.

Chan, Candace K; Miller, Michael A; Chan, Kwai S

2014-12-09T23:59:59.000Z

405

Battery Stack-on Process Improvement  

E-Print Network [OSTI]

Imagine yourself in a job in which you stack 10,000 batteries onto a conveyor for eight hours. Each battery weighs about 22 pounds. The work is completed in an acidic environment where temperatures can peak in the summer as high as 100 degrees...

Watkins, Robert E.

2011-12-16T23:59:59.000Z

406

Bimetallic Cathode Materials for Lithium Based Batteries  

E-Print Network [OSTI]

Bimetallic Cathode Materials for Lithium Based Batteries Frontiers in Materials Science Seminar / Chemistryg g g g g y University at Buffalo ­ The State University of New York (SUNY) Abstract Batteries for implantable cardiac defibrillators (ICDs) are based on the Lithium/Silver vanadium oxide (SVO, Ag2V4O11

407

Solar cooking : the development of a thermal battery  

E-Print Network [OSTI]

There are many rural area in the world where cooking fuel is very scarce. One solution to this problem is to use solar energy to cook food. However most people around the world like to cook large meals at night, when the ...

Cutting, Alexander Chatfield

2007-01-01T23:59:59.000Z

408

Stand-Alone Battery Thermal Management System | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScopingOverview * AnalyzerNano Olivines8 *Stand-Alone

409

NREL Battery Thermal and Life Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward aInnovation |NEXTDevelopmentNOxsensorNRECANRELNREL

410

Thermal Energy Harvesting with Thermoelectrics for Self-powered Sensors: With Applications to Implantable Medical Devices, Body Sensor Networks and Aging in Place  

E-Print Network [OSTI]

thermal expansion of polymer composites filled with ceramicas thermal energy generation and refrigeration. Ceramic&

Chen, Alic

2011-01-01T23:59:59.000Z

411

Lithium ion battery with improved safety  

DOE Patents [OSTI]

A lithium battery with improved safety that utilizes one or more additives in the battery electrolyte solution wherein a lithium salt is dissolved in an organic solvent, which may contain propylene, carbonate. For example, a blend of 2 wt % triphenyl phosphate (TPP), 1 wt % diphenyl monobutyl phosphate (DMP) and 2 wt % vinyl ethylene carbonate additives has been found to significantly enhance the safety and performance of Li-ion batteries using a LiPF6 salt in EC/DEC electrolyte solvent. The invention relates to both the use of individual additives and to blends of additives such as that shown in the above example at concentrations of 1 to 4-wt % in the lithium battery electrolyte. This invention relates to additives that suppress gas evolution in the cell, passivate graphite electrode and protect it from exfoliating in the presence of propylene carbonate solvents in the electrolyte, and retard flames in the lithium batteries.

Chen, Chun-hua; Hyung, Yoo Eup; Vissers, Donald R.; Amine, Khalil

2006-04-11T23:59:59.000Z

412

State of charge indicators for a battery  

DOE Patents [OSTI]

The present invention relates to state of charge indicators for a battery. One aspect of the present invention utilizes expansion and contraction displacements of an electrode plate of a battery to gauge the state of charge in the battery. One embodiment of a battery of the present invention includes an anodic plate; a cathodic plate; an electrolyte in contact with the anodic and cathodic plates; plural terminals individually coupled with one of the anodic and cathodic plates; a separator intermediate the anodic and cathodic plates; an indicator configured to indicate an energy level of the battery responsive to movement of the separator; and a casing configured to house the anodic and cathodic plates, electrolyte, and separator.

Rouhani, S. Zia (Idaho Falls, ID)

1999-01-01T23:59:59.000Z

413

Final Progress Report for Linking Ion Solvation and Lithium Battery Electrolyte Properties  

SciTech Connect (OSTI)

The research objective of this proposal was to provide a detailed analysis of how solvent and anion structure govern the solvation state of Li+ cations in solvent-LiX mixtures and how this, in turn, dictates the electrolyte physicochemical and electrochemical properties which govern (in part) battery performance. Lithium battery electrolytes remain a poorly understood and hardly studied topic relative to the research devoted to battery electrodes. This is due to the fact that it is the electrodes which determine the energy (capacity) of the battery. The electrolyte, however, plays a crucial role in the practical energy density, power, low and/or high temperature performance, lifetime, safety, etc. which is achievable. The development within this project of a "looking glass" into the molecular interactions (i.e., solution structure) in bulk electrolytes through a synergistic experimental approach involving three research thrusts complements work by other researchers to optimize multi-solvent electrolytes and efforts to understand/control the electrode-electrolyte interfaces, thereby enabling the rational design of electrolytes for a wide variety of battery chemistries and applications (electrolytes-on-demand). The three research thrusts pursued include: (1) conduction of an in-depth analysis of the thermal phase behavior of diverse solvent-LiX mixtures, (2) exploration of the ionic association/solvate formation behavior of select LiX salts with a wide variety of solvents, and (3) linking structure to properties?determination of electrolyte physicochemical and electrochemical properties for comparison with the ionic association and phase behavior.

Henderson, Wesley

2014-08-29T23:59:59.000Z

414

A Novel Low-Cost Sodium-Zinc Chloride Battery  

SciTech Connect (OSTI)

The sodium-metal halide (ZEBRA) battery has been considered as one of the most attractive energy storage systems for stationary and transportation applications. Even though Na-NiCl2 battery has been widely investigated, there is still a need to develop a more economical system to make this technology more attractive for commercialization. In the present work, a novel low-cost Na-ZnCl2 battery with a thin planar ??-Al2O3 solid electrolyte (BASE) was proposed, and its electrochemical reactions and battery performance were investigated. Compared to the Na-NiCl2 chemistry, the ZnCl2-based chemistry was more complicated, in which multiple electrochemical reactions including liquid-phase formation occurred at temperatures above 253°C. During the first stage of charge, NaCl reacted with Zn to form Na in the anode and Na2ZnCl4 in the cathode. Once all the residual NaCl was consumed, further charging led to the formation of a NaCl-ZnCl2 liquid phase. At the end of charge, the liquid phase reacted with Zn to produce solid ZnCl2. To identify the effects of liquid-phase formation on electrochemical performance, button cells were assembled and tested at 280°C and 240°C. At 280°C where the liquid phase formed during cycling, cells revealed quite stable cyclability. On the other hand, more rapid increase in polarization was observed at 240°C where only solid-state electrochemical reactions occurred. SEM analysis indicated that the stable performance at 280°C was due to the suppressed growth of Zn and NaCl particles, which were generated from the liquid phase during discharge of each cycle.

Lu, Xiaochuan; Li, Guosheng; Kim, Jin Yong; Lemmon, John P.; Sprenkle, Vincent L.; Yang, Zhenguo

2013-02-28T23:59:59.000Z

415

Can electricity from the human body replace batteries? by Anne-Marie Bullock for BBC News  

E-Print Network [OSTI]

Harnessing energy from the human body may only generate small amounts of electricity but scientists believeCan electricity from the human body replace batteries? by Anne-Marie Bullock for BBC News it has a wide range of potentially life-changing applications. Imagine clothes made with materials

South Bohemia, University of

416

Distributed and Decentralized Control of Residential Energy Systems Incorporating Battery Storage  

E-Print Network [OSTI]

is increasingly being considered by utilities seeking to reinforce distribution networks and shave peak demand consists of solar PV generation, battery storage and an inelastic energy load. Each RES is connected--The recent rapid uptake of residential solar photo- voltaic (PV) installations provides many challenges

Knobloch,JĂĽrgen

417

Solid electrolytes for battery applications a theoretical perspective a  

E-Print Network [OSTI]

solid state batteries at the present time. · Several companies are involved in all solids state batterySolid electrolytes for battery applications ­ a theoretical perspective a Natalie Holzwarth ion batteries Solid electrolytes Advantages 1. Excellent chemical and physical stability. 2. Perform

Holzwarth, Natalie

418

Platinum third electrode to improve float polarization of standby batteries  

SciTech Connect (OSTI)

An auxiliary electrode of platinum or palladium is immersed in the electrolyte of a lead-acid battery and connected to the negative plate of the battery so that, when the battery is employed in float service, hydrogen evolves on the auxiliary electrode whereby the parasitic current equivalent to the hydrogen evolution increases the float current to the positive plate of the battery.

Werth, J.

1982-09-14T23:59:59.000Z

419

Learning Policies For Battery Usage Optimization in Electric Vehicles  

E-Print Network [OSTI]

algorithmic chal- lenge. 1 Introduction Electric vehicles, partially or fully powered by batteries, are oneLearning Policies For Battery Usage Optimization in Electric Vehicles Stefano Ermon, Yexiang Xue for the widespread adoption of electric vehicles. Multi-battery systems that combine a standard battery

Bejerano, Gill

420

BROADBAND IDENTIFICATION OF BATTERY ELECTRICAL IMPEDANCE FOR HEV  

E-Print Network [OSTI]

­ CEA LETI/LITEN; P. Granjon ­ GIPSA-Lab; Abstract -- In recent years, Li-ion batteries have been for the broadband monitoring of a battery. Keywords-- battery impedance, spectroscopy, broadband signals, Li-ion system of EV and HEV. Li-ion battery technology is believed to be the most attractive

Paris-Sud XI, Université de

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Hierarchically Structured Materials for Lithium Batteries  

SciTech Connect (OSTI)

Lithium-ion battery (LIB) is one of the most promising power sources to be deployed in electric vehicles (EV), including solely battery powered vehicles, plug-in hybrid electric vehicles, and hybrid electrical vehicles. With the increasing demand on devices of high energy densities (>500 Wh/kg) , new energy storage systems, such as lithium-oxygen (Li-O2) batteries and other emerging systems beyond the conventional LIB also attracted worldwide interest for both transportation and grid energy storage applications in recent years. It is well known that the electrochemical performances of these energy storage systems depend not only on the composition of the materials, but also on the structure of electrode materials used in the batteries. Although the desired performances characteristics of batteries often have conflict requirements on the micro/nano-structure of electrodes, hierarchically designed electrodes can be tailored to satisfy these conflict requirements. This work will review hierarchically structured materials that have been successfully used in LIB and Li-O2 batteries. Our goal is to elucidate 1) how to realize the full potential of energy materials through the manipulation of morphologies, and 2) how the hierarchical structure benefits the charge transport, promotes the interfacial properties, prolongs the electrode stability and battery lifetime.

Xiao, Jie; Zheng, Jianming; Li, Xiaolin; Shao, Yuyan; Zhang, Jiguang

2013-09-25T23:59:59.000Z

422

Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems  

DOE Patents [OSTI]

A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power. 8 figs.

King, R.D.; DeDoncker, R.W.A.A.

1998-01-20T23:59:59.000Z

423

2010 Honda Civic Hybrid UltraBattery Conversion 5577 - Hybrid Electric Vehicle Battery Test Results  

SciTech Connect (OSTI)

The U.S. Department of Energy Advanced Vehicle Testing Activity Program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on hybrid electric vehicles (HEVs), including testing the HEV batteries when both the vehicles and batteries are new and at the conclusion of on-road fleet testing. This report documents battery testing performed for the 2010 Honda Civic HEV UltraBattery Conversion (VIN JHMFA3F24AS005577). Battery testing was performed by the Electric Transportation Engineering Corporation dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

424

Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems  

DOE Patents [OSTI]

A method and apparatus for load leveling of a battery in an electrical power system includes a power regulator coupled to transfer power between a load and a DC link, a battery coupled to the DC link through a first DC-to-DC converter and an auxiliary passive energy storage device coupled to the DC link through a second DC-to-DC converter. The battery is coupled to the passive energy storage device through a unidirectional conducting device whereby the battery can supply power to the DC link through each of the first and second converters when battery voltage exceeds voltage on the passive storage device. When the load comprises a motor capable of operating in a regenerative mode, the converters are adapted for transferring power to the battery and passive storage device. In this form, resistance can be coupled in circuit with the second DC-to-DC converter to dissipate excess regenerative power.

King, Robert Dean (Schenectady, NY); DeDoncker, Rik Wivina Anna Adelson (Malvern, PA)

1998-01-01T23:59:59.000Z

425

Prediction of Retained Capacity and EODV of Li-ion Batteries in LEO Spacecraft Batteries  

E-Print Network [OSTI]

In resent years ANN is widely reported for modeling in different areas of science including electro chemistry. This includes modeling of different technological batteries such as lead acid battery, Nickel cadmium batteries etc. Lithium ion batteries are advance battery technology which satisfy most of the space mission requirements. Low earth orbit (LEO)space craft batteries undergo large number of charge discharge cycles (about 25000 cycles)compared to other ground level or space applications. This study is indented to develop ANN model for about 25000 cycles, cycled under various temperature, Depth Of Discharge (DOD) settings with constant charge voltage limit to predict the retained capacity and End of Discharge Voltage (EODV). To extract firm conclusion and distinguish the capability of ANN method, the predicted values are compared with experimental result by statistical method and Bland Altman plot.

Ramakrishnan, S; Jeyakumar, A Ebenezer

2010-01-01T23:59:59.000Z

426

Redox Flow Batteries: An Engineering Perspective  

SciTech Connect (OSTI)

Redox flow batteries are well suited to provide modular and scalable energy storage systems for a wide range of energy storage applications. In this paper, we review the development of redox flow battery technology including recent advances in new redox active materials and systems. We discuss cost, performance, and reliability metrics that are critical for deployment of large flow battery systems. The technology, while relatively young, has the potential for significant improvement through reduced materials costs, improved energy and power efficiency, and significant reduction in the overall system cost.

Chalamala, Babu R.; Soundappan, Thiagarajan; Fisher, Graham R.; Anstey, Mitchell A.; Viswanathan, Vilayanur V.; Perry, Mike L.

2014-10-01T23:59:59.000Z

427

Capacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads full cell studies  

E-Print Network [OSTI]

. Introduction Hybrid energy storage devices are more efficient than a battery in supplying the total powerCapacity fade analysis of a battery/super capacitor hybrid and a battery under pulse loads ­ full words: capacity fade, interfacial impedance, lithium ion battery/supercapacitor hybrid, pulse discharge

Popov, Branko N.

428

Using Backup Generators: Alternative Backup Power Options | Department...  

Broader source: Energy.gov (indexed) [DOE]

during a power outage. These systems can connect to renewable sources of energy, like solar panels and small-scale wind generators, to help the batteries stay charged during an...

429

Develop improved battery charger (Turbo-Z Battery Charging System). Final report  

SciTech Connect (OSTI)

The output of this project was a flexible control board. The control board can be used to control a variety of rapid battery chargers. The control module will reduce development cost of rapid battery charging hardware. In addition, PEPCO's proprietary battery charging software have been pre-programmed into the control microprocessor. This product is being applied to the proprietary capacitive charging system now under development.

NONE

1999-09-01T23:59:59.000Z

430

SOLID ELECTROLYTES FOR NEXT GENERATION BATTERIES | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 Roadmap forDKT.Awards andeere.energy.gov|

431

Structural Integration of Silicon Solar Cells and Lithium-ion Batteries Using Printed Electronics  

E-Print Network [OSTI]

solid state battery ..of the thin-film solid state battery is shown in Fig. 13.the thin-film solid state battery. CHAPTER FIVE Performance

Kang, Jin Sung

2012-01-01T23:59:59.000Z

432

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

J. Řstergaard, “Battery energy storage technology for powerBattery for Grid Energy Storage..Energy Storage for the Grid: A Battery of Choices,” Science,

Wang, Zuoqian

2013-01-01T23:59:59.000Z

433

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries," Science 311(5763), 977-^ for Advanced Lithium-Ion Batteries," J. Electrochem. Soc.02 for lithium-ion batteries," Chem. Lett. , [3] Yabuuchi,

Doeff, Marca M.

2010-01-01T23:59:59.000Z

434

Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries  

E-Print Network [OSTI]

References 1. Lithium Ion Batteries: Fundamentals andProgram for Lithium Ion Batteries, U.S. Department ofas Electrolytes for Lithium Ion Batteries Li Yang a , Hanjun

Yang, Li

2014-01-01T23:59:59.000Z

435

Design Principles for the Use of Electroactive Polymers for Overcharge Protection of Lithium-Ion Batteries  

E-Print Network [OSTI]

Modeling of Lithium Batteries. Kluwer Academic Publishers,of interest for lithium batteries. Therefore, we can use y =and J. Newman, Advances in Lithium-Ion Batteries, ch.

Thomas-Alyea, Karen E.; Newman, John; Chen, Guoying; Richardson, Thomas J.

2005-01-01T23:59:59.000Z

436

Studies of ionic liquids in lithium-ion battery test systems  

E-Print Network [OSTI]

are not useful for lithium batteries. We are therefore nowapplications using lithium batteries, we must be sure thattemperature range. For lithium batteries in hybrid vehicles,

Salminen, Justin; Prausnitz, John M.; Newman, John

2006-01-01T23:59:59.000Z

437

Characterization of an Electroactive Polymer for Overcharge Protection in Secondary Lithium Batteries  

E-Print Network [OSTI]

Protection in Secondary Lithium Batteries Guoying Chen,protection agents in lithium batteries is relatively new,in rechargeable lithium batteries with a variety of

Chen, Guoying; Thomas-Alyea, Karen E.; Newman, John; Richardson, Thomas J.

2005-01-01T23:59:59.000Z

438

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network [OSTI]

the manufacture of lithium batteries (References 2 and 3).Characteristics of Lithium-ion Batteries of VariousAdvisor utilizing lithium-ion batteries of the different

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

439

Synthesis and Characterization of Simultaneous Electronic and Ionic Conducting Block Copolymers for Lithium Battery Electrodes  

E-Print Network [OSTI]

Protection in Secondary Lithium Batteries. Electrochim. ActaFacing Rechargeable Lithium Batteries. Nature 2001, 414,for Rechargeable Lithium Batteries Using Electroactive

Patel, Shrayesh

2013-01-01T23:59:59.000Z

440

A Failure and Structural Analysis of Block Copolymer Electrolytes for Rechargeable Lithium Metal Batteries  

E-Print Network [OSTI]

for Rechargeable Lithium Metal Batteries By Gregory Michaelfor Rechargeable Lithium Metal Batteries by Gregory Michaelin rechargeable lithium metal batteries. The block copolymer

Stone, Gregory Michael

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries  

E-Print Network [OSTI]

Layered Oxides for Lithium Batteries. Nano Lett. 13, 3857–O 2 Cathode Material in Lithium Ion Batteries. Adv. Energydecomposition in lithium ion batteries: first-principles

Lin, Feng

2014-01-01T23:59:59.000Z

442

Layered manganese oxide intergrowth electrodes for rechargeable lithium batteries: Part 1-substitution with Co or Ni  

E-Print Network [OSTI]

Cathode Materials for Lithium Batteries, 2003, Massachusettsfor Rechargeable Lithium Batteries: Part 1-Substitution withelectrode materials for lithium batteries because of their

Dolle, Mickael; Patoux, Sebastien; Doeff, Marca M.

2004-01-01T23:59:59.000Z

443

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

Performance for Lithium Batteries,” J. Electrochem. Soc. ,developments in lithium ion batteries,” Materials Sciencefor advanced lithium-ion batteries,” Journal of Power

Wang, Zuoqian

2013-01-01T23:59:59.000Z

444

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network [OSTI]

Considerations for Lithium Batteries for Plug-in Electricfast charging of the lithium batteries should be possiblefast charging of the lithium batteries will be is possible

Burke, Andrew

2009-01-01T23:59:59.000Z

445

Overcharge Protection for 4 V Lithium Batteries at High Rates and Low Temperature  

E-Print Network [OSTI]

Protection for 4 V Lithium Batteries at High Rates and LowIntroduction Rechargeable lithium batteries are known forfor rechargeable lithium batteries. When impregnated into a

Chen, Guoying

2010-01-01T23:59:59.000Z

446

Develop high energy high power Li-ion battery cathode materials : a first principles computational study  

E-Print Network [OSTI]

of cathode materials for lithium batteries guided by first-facing rechargeable lithium batteries. Nature, 2001. 414(M.S. Whittingham, Lithium batteries and cathode materials.

Xu, Bo; Xu, Bo

2012-01-01T23:59:59.000Z

447

Cu2Sb thin film electrodes prepared by pulsed laser deposition f or lithium batteries  

E-Print Network [OSTI]

Laser Deposition for Lithium Batteries Seung-Wan Song, a, *in rechargeable lithium batteries. Introduction Sb-in rechargeable lithium batteries. Two advantages of

Song, Seung-Wan; Reade, Ronald P.; Cairns, Elton J.; Vaughey, Jack T.; Thackeray, Michael M.; Striebel, Kathryn A.

2003-01-01T23:59:59.000Z

448

Improved layered mixed transition metal oxides for Li-ion batteries  

E-Print Network [OSTI]

for rechargeable lithium batteries," Science 311 (5763),for rechargeable lithium batteries," Science 311(5763), 977-M n , ^ for Advanced Lithium-Ion Batteries," J. Electrochem.

Doeff, Marca M.

2010-01-01T23:59:59.000Z

449

Comparison of Plug-In Hybrid Electric Vehicle Battery Life Across Geographies and Drive-Cycles  

SciTech Connect (OSTI)

In a laboratory environment, it is cost prohibitive to run automotive battery aging experiments across a wide range of possible ambient environment, drive cycle and charging scenarios. Since worst-case scenarios drive the conservative sizing of electric-drive vehicle batteries, it is useful to understand how and why those scenarios arise and what design or control actions might be taken to mitigate them. In an effort to explore this problem, this paper applies a semi-empirical life model of the graphite/nickel-cobalt-aluminum lithium-ion chemistry to investigate impacts of geographic environments under storage and simplified cycling conditions. The model is then applied to analyze complex cycling conditions, using battery charge/discharge profiles generated from simulations of PHEV10 and PHEV40 vehicles across 782 single-day driving cycles taken from Texas travel survey data.

Smith, K.; Warleywine, M.; Wood, E.; Neubauer, J.; Pesaran, A.

2012-06-01T23:59:59.000Z

450

Method and apparatus for controlling battery charging in a hybrid electric vehicle  

DOE Patents [OSTI]

A starter/alternator system (24) for hybrid electric vehicle (10) having an internal combustion engine (12) and an energy storage device (34) has a controller (30) coupled to the starter/alternator (26). The controller (30) has a state of charge manager (40) that monitors the state of charge of the energy storage device. The controller has eight battery state-of-charge threshold values that determine the hybrid operating mode of the hybrid electric vehicle. The value of the battery state-of-charge relative to the threshold values is a factor in the determination of the hybrid mode, for example; regenerative braking, charging, battery bleed, boost. The starter/alternator may be operated as a generator or a motor, depending upon the mode.

Phillips, Anthony Mark (Northville, MI); Blankenship, John Richard (Dearborn, MI); Bailey, Kathleen Ellen (Dearborn, MI); Jankovic, Miroslava (Birmingham, MI)

2003-06-24T23:59:59.000Z

451

Online Identification of Power Required for Self-Sustainability of the Battery in Hybrid Electric Vehicles  

SciTech Connect (OSTI)

Hybrid electric vehicles have shown great potential for enhancing fuel economy and reducing emissions. Deriving a power management control policy to distribute the power demanded by the driver optimally to the available subsystems (e.g., the internal combustion engine, motor, generator, and battery) has been a challenging control problem. One of the main aspects of the power management control algorithms is concerned with the self-sustainability of the electrical path, which must be guaranteed for the entire driving cycle. This paper considers the problem of identifying online the power required by the battery to maintain the state of charge within a range of the target value. An algorithm is presented that realizes how much power the engine needs to provide to the battery so that self-sustainability of the electrical path is maintained.

Malikopoulos, Andreas [ORNL

2014-01-01T23:59:59.000Z

452

Simulation-based design of energy management system with storage battery for a refugee shelter in Japan  

SciTech Connect (OSTI)

Since the massive earthquake hit eastern Japan in March, 2011, our team has participated in the recovery planning for Kesen Association, which is a group of cities in northeastern Japan. As one of our proposals for the recovery planning for the community, we are designing energy management system with renewable energy (RE) and storage batteries. Some public facilities in the area have been used as refugee shelters, but refugees had to put up with life without electricity for a while after the disaster. If RE generator and storage batteries are introduced into the facilities, it is possible to provide refugees with electricity. In this study, the sizes of photovoltaic (PV) appliances and storage batteries to be introduced into one public facility are optimized. The optimization is based on simulation, in which electric energy is managed by charge and discharge of storage battery.

Kaji, K.; Zhang, J.; Horie, H.; Tanaka, K. [Department of Technology Management for Innovation, Graduate School of Engineering, The University of Tokyo (Japan); Akimoto, H. [Korea Advanced Institute of Science and Technology (Korea, Republic of)

2013-12-10T23:59:59.000Z

453

The Role of FeS in Initial Activation and Performance Degradation of Na-NiCl2 Batteries  

SciTech Connect (OSTI)

The role of iron sulfide (FeS) in initial cell activation and degradation in the Na-NiCl2 battery was investigated in this work. The research focused on identifying the effects of the FeS level on the electrochemical performance and morphological changes in the cathode. The x-ray photoelectron spectroscopy study along with battery tests revealed that FeS plays a critical role in initial battery activation by removing passivation layers on Ni particles. It was also found that the optimum level of FeS in the cathode resulted in minimum Ni particle growth and improved battery cycling performance. The results of electrochemical characterization indicated that sulfur species generated in situ during initial charging, such as polysulfide and sulfur, are responsible for removing the passivation layer. Consequently, the cells containing elemental sulfur in the cathode exhibited similar electrochemical behavior during initial charging compared to that of the cells containing FeS.

Li, Guosheng; Lu, Xiaochuan; Kim, Jin Yong; Engelhard, Mark H.; Lemmon, John P.; Sprenkle, Vincent L.

2014-12-25T23:59:59.000Z

454

From corrosion to batteries: Electrochemical interface studies...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

From corrosion to batteries: Electrochemical interface studies Thursday, October 18, 2012 - 11:00am SSRL, Bldg. 137, Rm 226 Dr. Frank Uwe Renner Max-Planck-Institut fr...

455

Intercalation dynamics in lithium-ion batteries  

E-Print Network [OSTI]

A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to ...

Burch, Damian

2009-01-01T23:59:59.000Z

456

Promising Magnesium Battery Research at ALS  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to the ALS. Beamline 6.3.1 scientists are studying magnesium battery performance and degradation with a unique new endstation that offers in situ electrochemical soft x-ray...

457

Membrane-less hydrogen bromine flow battery  

E-Print Network [OSTI]

In order for the widely discussed benefits of flow batteries for electrochemical energy storage to be applied at large scale, the cost of the electrochemical stack must come down substantially. One promising avenue for ...

Braff, William A.

458

How Advanced Batteries Are Energizing the Economy  

Broader source: Energy.gov [DOE]

Earlier today, President Obama visited Johnson Controls in Holland, Michigan to highlight how this once shuttered factory is helping rev up the advanced battery industry in the United States. This...

459

California Lithium Battery, Inc. | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Systems and CALiB Power. US production of this advanced Very Large Format (400Ah+) si-graphene LI-ion battery is scheduled to start in California in 2014. Plans are to produce the...

460

Battery components employing a silicate binder  

SciTech Connect (OSTI)

A battery component structure employing inorganic-silicate binders. In some embodiments, casting or coating of components may be performed using aqueous slurries of silicates and electrode materials or separator materials.

Delnick, Frank M. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM); Odinek, Judy G. (Rio Rancho, NM)

2011-05-24T23:59:59.000Z

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

A High-Performance PHEV Battery Pack  

Broader source: Energy.gov (indexed) [DOE]

cooling system we have developed in our previous program with respect to mass, volume, cost and power demand. Deliver cells and battery packs to USABC for testing. Tasks OEM...

462

Thermal Abuse Modeling of Li-Ion Cells and Propagation in Modules (Presentation)  

SciTech Connect (OSTI)

The objectives of this paper are: (1) continue to explore thermal abuse behaviors of Li-ion cells and modules that are affected by local conditions of heat and materials; (2) use the 3D Li-ion battery thermal abuse 'reaction' model developed for cells to explore the impact of the location of internal short, its heating rate, and thermal properties of the cell; (3) continue to understand the mechanisms and interactions between heat transfer and chemical reactions during thermal runaway for Li-ion cells and modules; and (4) explore the use of the developed methodology to support the design of abuse-tolerant Li-ion battery systems.

Kim, G.-H.; Pesaran, A.; Smith, K.

2008-05-01T23:59:59.000Z

463

Lithium-Polysulfide Flow Battery Demonstration  

ScienceCinema (OSTI)

In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

Zheng, Wesley

2014-07-16T23:59:59.000Z

464

Negative Electrodes for Li-Ion Batteries  

SciTech Connect (OSTI)

Graphitized carbons have played a key role in the successful commercialization of Li-ion batteries. The physicochemical properties of carbon cover a wide range; therefore identifying the optimum active electrode material can be time consuming. The significant physical properties of negative electrodes for Li-ion batteries are summarized, and the relationship of these properties to their electrochemical performance in nonaqueous electrolytes, are discussed in this paper.

Kinoshita, Kim; Zaghib, Karim

2001-10-01T23:59:59.000Z

465

High-discharge-rate lithium ion battery  

SciTech Connect (OSTI)

The present invention provides for a lithium ion battery and process for creating such, comprising higher binder to carbon conductor ratios than presently used in the industry. The battery is characterized by much lower interfacial resistances at the anode and cathode as a result of initially mixing a carbon conductor with a binder, then with the active material. Further improvements in cycleability can also be realized by first mixing the carbon conductor with the active material first and then adding the binder.

Liu, Gao; Battaglia, Vincent S; Zheng, Honghe

2014-04-22T23:59:59.000Z

466

Packaging material for thin film lithium batteries  

DOE Patents [OSTI]

A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

Bates, John B. (116 Baltimore Dr., Oak Ridge, TN 37830); Dudney, Nancy J. (11634 S. Monticello Rd., Knoxville, TN 37922); Weatherspoon, Kim A. (223 Wadsworth Pl., Oak Ridge, TN 37830)

1996-01-01T23:59:59.000Z

467

Lithium-Polysulfide Flow Battery Demonstration  

SciTech Connect (OSTI)

In this video, Stanford graduate student Wesley Zheng demonstrates the new low-cost, long-lived flow battery he helped create. The researchers created this miniature system using simple glassware. Adding a lithium polysulfide solution to the flask immediately produces electricity that lights an LED. A utility version of the new battery would be scaled up to store many megawatt-hours of energy.

Zheng, Wesley

2014-06-30T23:59:59.000Z

468

Anti-Idling Battery for Truck Applications  

SciTech Connect (OSTI)

In accordance to the Assistance Agreement DE-EE0001036, the objective of this project was to develop an advanced high voltage lithium-ion battery for use in an all-electric HVAC system for Class-7-8 heavy duty trucks. This system will help heavy duty truck drivers meet the tough new anti-idling laws being implemented by over 23 states. Quallion will be partnering with a major OEM supplier of HVAC systems to develop this system. The major OEM supplier will provide Quallion the necessary interface requirements and HVAC hardware to ensure successful testing of the all-electric system. At the end of the program, Quallion will deliver test data on three (3) batteries as well as test data for the prototype HVAC system. The objectives of the program are: (1) Battery Development - Objective 1 - Define battery and electronics specifications in preparation for building the prototype module. (Completed - summary included in report) and Objective 2 - Establish a functional prototype battery and characterize three batteries in-house. (Completed - photos and data included in report); (2) HVAC Development - Objective 1 - Collaborate with manufacturers to define HVAC components, layout, and electronics in preparation for establishing the prototype system. (Completed - photos and data included in report) and Objective 2 - Acquire components for three functional prototypes for use by Quallion. (Completed - photos and data included in report).

Keith Kelly

2011-09-30T23:59:59.000Z

469

Thermoelectric generator  

SciTech Connect (OSTI)

A thermoelectric generator unit is described comprising: a hot side heat exchanger including a plate having extruded retention posts projecting from one surface of the plate, and fins adapted for contact with a heating source. The fins are positioned between two of the retention posts. Retention rods are inserted between the retention posts and the base of the fins to retain the fin in thermal contact with the plate surface upon insertion of the retention rod between the engaging surface of the post and the corresponding fin. Thermoelectric semi-conductor modules are in thermal contact with the opposite side of the hot side heat exchanger plate from the contact with the fins. The modules are arranged in a grid pattern so that heat flow is directed into each of the modules from the hot side heat exchanger. The modules are connected electrically so as to combine their electrical output; and a cold side heat exchanger is in thermal contact with the modules acting as a heat sink on the opposite side of the module from the hot side heat exchanger plate so as to produce a thermal gradient across the modules.

Shakun, W.; Bearden, J.H.; Henderson, D.R.

1988-03-29T23:59:59.000Z

470

Graphite Foams for Lithium-Ion Battery Current Collectors  

SciTech Connect (OSTI)

Graphite open-cell foams, with their very high electronic and thermal conductivities, may serve as high surface area and corrosion resistant current collectors for lithium-ion batteries. As a proof of principle, cathodes were prepared by sintering carbon-coated LiFePO4 particles into the porous graphite foams. Cycling these cathodes in a liquid electrolyte cell showed promising performance even for materials and coatings that have not been optimized. The specific capacity is not limited by the foam structure, but by the cycling performance of the coated LiFePO4 particles. Upon extended cycling for more than 100 deep cycles, no loss of capacity is observed for rates of C/2 or less. The uncoated graphite foams will slowly intercalate lithium reversibly at potentials less than 0.2 volts versus lithium.

Dudney, Nancy J [ORNL; Tiegs, Terry N [ORNL; Kiggans, Jim [ORNL; Jang, Young-Il [ORNL; Klett, James William [ORNL

2007-01-01T23:59:59.000Z

471

Analysis of Off-Board Powered Thermal Preconditioning in Electric Drive Vehicles: Preprint  

SciTech Connect (OSTI)

Following a hot or cold thermal soak, vehicle climate control systems (air conditioning or heat) are required to quickly attain a cabin temperature comfortable to the vehicle occupants. In a plug-in hybrid electric or electric vehicle (PEV) equipped with electric climate control systems, the traction battery is the sole on-board power source. Depleting the battery for immediate climate control results in reduced charge-depleting (CD) range and additional battery wear. PEV cabin and battery thermal preconditioning using off-board power supplied by the grid or a building can mitigate the impacts of climate control. This analysis shows that climate control loads can reduce CD range up to 35%. However, cabin thermal preconditioning can increase CD range up to 19% when compared to no thermal preconditioning. In addition, this analysis shows that while battery capacity loss over time is driven by ambient temperature rather than climate control loads, concurrent battery thermal preconditioning can reduce capacity loss up to 7% by reducing pack temperature in a high ambient temperature scenario.

Barnitt, R. A.; Brooker, A. D.; Ramroth, L.; Rugh , J.; Smith, K. A.

2010-12-01T23:59:59.000Z

472

Steam generator tube rupture study  

E-Print Network [OSTI]

This report describes our investigation of steam generator behavior during a postulated tube rupture accident. Our study was performed using the steam generator, thermal-hydraulic analysis code THERMIT-UTSG. The purpose ...

Free, Scott Thomas

1986-01-01T23:59:59.000Z

473

Making Li-air batteries rechargeable: material challenges  

SciTech Connect (OSTI)

A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

2013-02-25T23:59:59.000Z

474

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network [OSTI]

of gel electrolyte based solid-state battery chemistry alsoproject, a solid-state rechargeable battery was developedsolid-state batteries, as discussed in this dissertation, has the potential to disrupt the current battery

Wang, Zuoqian

2013-01-01T23:59:59.000Z

475

Fact #823: June 2, 2014 Hybrid Vehicles use more Battery Packs...  

Energy Savers [EERE]

capacities as high as 85 kWh - a battery offering for the Tesla Model S. Number of Batteries Sold and Battery Capacity Sold for Model Year 2013 Graph of the number of batteries...

476

Characterization of Electrode Materials for Lithium Ion and Sodium Ion Batteries using Synchrotron Radiation Techniques  

E-Print Network [OSTI]

Relationships in the Li-Ion Battery Electrode Material LiNiAl foil may be used for Li ion battery cathode materials andElectrode materials, Li ion battery, Na ion battery, X-ray

Doeff, Marca M.

2013-01-01T23:59:59.000Z

477

Analysis of interrelationships between photovoltaic power and battery storage for electric utility load management  

SciTech Connect (OSTI)

The impact of photovoltaic power generation on the electric utility's load shape under supply-side peak load management conditions is explored. Results show that some utilities employing battery storage for peak load shaving might benefit from use of photovoltaic (PV) power, the extent of its usefulness being dependent on the specific load shapes as well as the photovoltaic array orientations. Typical utility load shapes both in the eastern and in the western parts of the U.S. are examined for this purpose. While photovoltaic power generation seems to present a bigger impact on the load of the western utility, both utilities will experience considerable savings on the size of the battery system required to shave the peak loads and also in the night-time base capacity required to charge the battery. Results show that when the cost of 2-axis tracking PV systems drop to $2/Wp, the southwestern utility will experience net cost savings when the PV-battery hybrid system is employed for load management. On the other hand, because of lesser availability of solar energy, the southeastern utility shows adverse economics for such a system.

Chowdhury, B.H.; Rahman, S.

1988-08-01T23:59:59.000Z

478

Finding Room for Improvement in Transition Metal Oxides Cathodes for Lithium-ion Batteries  

E-Print Network [OSTI]

Oxides Cathodes for Lithium-ion Batteries Kinson C. Kam andusing rechargeable lithium-ion batteries has become an

Kam, Kinson

2012-01-01T23:59:59.000Z

479

CO2/oxalate Cathodes as Safe and Efficient Alternatives in High Energy Density Metal-Air Type Rechargeable Batteries  

E-Print Network [OSTI]

We present theoretical analysis on why and how rechargeable metal-air type batteries can be made significantly safer and more practical by utilizing CO2/oxalate conversions instead of O2/peroxide or O2/hydroxide ones, in the positive electrode. Metal-air batteries, such as the Li-air one, may have very large energy densities, comparable to that of gasoline, theoretically allowing for long range all-electric vehicles. There are, however, still significant challenges, especially related to the safety of their underlying chemistries, the robustness of their recharging and the need of supplying high purity O2 from air to the battery. We point out that the CO2/oxalate reversible electrochemical conversion is a viable alternative of the O2-based ones, allowing for similarly high energy density and almost identical voltage, while being much safer through the elimination of aggressive oxidant peroxides and the use of thermally stable, non-oxidative and environmentally benign oxalates instead.

Nemeth, Karoly

2013-01-01T23:59:59.000Z

480

Highlighting High Performance: Twenty River Terrace, Battery Park City, New York, New York  

SciTech Connect (OSTI)

Case study on high performance building features of the Twenty River Terrace, Battery Park City building. Breezes off the Hudson River waft through Battery Park City, a planned development of residential and commercial buildings and open space at the tip of lower Manhattan. A riverfront walkway and several connecting public parks sprinkled with public art flank Battery Park City on one side, and New York's busy financial district vibrates on the other. Construction continues on Battery Park's newest building, Twenty River Terrace, the first residential apartment building to embrace sustainable design in a systematic way, and the first to follow the Hugh L. Carey Battery Park City Authority Residential Environmental Guidelines. According to the guidelines, which all future Battery Park City development must follow, they ''establish a process for the creation of environmentally responsible residential buildings that are appreciably ahead of current standards and practices for development.'' As a result of the guidelines, and the architects' commitment to incorporating best practices, this 27-story apartment building operates 35% more efficiently than required by the New York State Energy Code, and generates some of its own electricity from building-integrated photovoltaics, especially in the summer when New York power plants struggle to keep up with air-conditioning demands. The Authority hopes the guidelines will be a good model for other developments, in Manhattan and across the world, for incorporating energy-efficient design and renewable energy. The principles of environmentally sound, people-centered planning and development addressed by Twenty River Terrace continue to be a focus of the redevelopment of lower Manhattan.

Not Available

2002-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators thermal batteries" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Two Studies Reveal Details of Lithium-Battery Function  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Two Studies Reveal Details of Lithium-Battery Function Two Studies Reveal Details of Lithium-Battery Function Print Wednesday, 27 February 2013 00:00 Our way of life is deeply...

482

Three-Dimensional Lithium-Ion Battery Model (Presentation)  

SciTech Connect (OSTI)

Nonuniform battery physics can cause unexpected performance and life degradations in lithium-ion batteries; a three-dimensional cell performance model was developed by integrating an electrode-scale submodel using a multiscale modeling scheme.

Kim, G. H.; Smith, K.

2008-05-01T23:59:59.000Z

483

Solid-state Graft Copolymer Electrolytes for Lithium Battery Applications  

E-Print Network [OSTI]

Battery safety has been a very important research area over the past decade. Commercially available lithium ion batteries employ low flash point (<80 °C), flammable, and volatile organic electrolytes. These organic based ...

Hu, Qichao

484

Design and implementation of an automated battery management platform  

E-Print Network [OSTI]

This thesis describes the design and the implementation of the hardware platform for automated battery management with battery changing/charging capability for autonomous UAV missions with persistency requirement that ...

Toksoz, Tuna

2012-01-01T23:59:59.000Z

485

Transport and Failure in Li-ion Batteries | Stanford Synchrotron...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Li-ion Batteries Monday, February 13, 2012 - 1:30pm SSRL Conference Room 137-322 Stephen J. Harris, General Motors R&D While battery performance is well predicted by the...

486

Comparison of advanced battery technologies for electric vehicles  

SciTech Connect (OSTI)

Battery technologies of different chemistries, manufacture and geometry were evaluated as candidates for use in Electric Vehicles (EV). The candidate batteries that were evaluated include four single cell and seven multi-cell modules representing four technologies: Lead-Acid, Nickel-Cadmium, Nickel-Metal Hydride and Zinc-Bromide. A standard set of testing procedures for electric vehicle batteries, based on industry accepted testing procedures, and any tests which were specific to individual battery types were used in the evaluations. The batteries were evaluated by conducting performance tests, and by subjecting them to cyclical loading, using a computer controlled charge--discharge cycler, to simulate typical EV driving cycles. Criteria for comparison of batteries were: performance, projected vehicle range, cost, and applicability to various types of EVs. The four battery technologies have individual strengths and weaknesses and each is suited to fill a particular application. None of the batteries tested can fill every EV application.

Dickinson, B.E.; Lalk, T.R. [Texas A and M Univ., College Station, TX (United States). Mechanical Engineering Dept.; Swan, D.H. [Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

1993-12-31T23:59:59.000Z

487

High power bipolar battery/cells with enhanced overcharge tolerance  

DOE Patents [OSTI]

A cell or battery of cells having improved overcharge tolerance and increased power capability, and methods for the construction of such cells or batteries, via electrolyte modification, are described. 5 figs.

Kaun, T.D.

1998-04-07T23:59:59.000Z

488

Batteries May Fade, But Research Can Revitalize | Department...  

Broader source: Energy.gov (indexed) [DOE]

Batteries May Fade, But Research Can Revitalize Batteries May Fade, But Research Can Revitalize November 9, 2012 - 4:04pm Addthis The Transmission Electron Microscope (TEM) at the...

489

Lithium-ion battery modeling using non-equilibrium thermodynamics  

E-Print Network [OSTI]

The focus of this thesis work is the application of non-equilibrium thermodynamics in lithium-ion battery modeling. As the demand for higher power and longer lasting batteries increases, the search for materials suitable ...

Ferguson, Todd R. (Todd Richard)

2014-01-01T23:59:59.000Z

490

Modeling the operating voltage of liquid metal battery cells  

E-Print Network [OSTI]

A one-dimensional, integrative model of the voltage during liquid metal battery operation has been developed to enhance the understanding of performance at the cell level. Two liquid metal batteries were studied: Mg-Sb for ...

Newhouse, Jocelyn Marie

2014-01-01T23:59:59.000Z

491

Overview of Computer-Aided Engineering of Batteries (CAEBAT)...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Computer-Aided Engineering of Batteries (CAEBAT) and Introduction to Multi-Scale, Multi-Dimensional (MSMD) Modeling of Lithium-Ion Batteries Overview of Computer-Aided Engineering...

492

Water and Gold: A Promising Mix for Future Batteries  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Water and Gold: A Promising Mix for Future Batteries Water and Gold: A Promising Mix for Future Batteries Berkeley Lab Study Reveals Molecular Structure of Water at Gold Electrodes...

493

Are batteries ready for plug-in hybrid buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

494

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel- metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

495

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network [OSTI]

Of the battery chemistries discussed, only Li-ion shows the2008) battery researchers continue to develop Li-ionbattery chemistries: nickel-metal hydride (NiMH) and lithium-ion (Li-

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

496

The assessment of battery-ultracapacitor hybrid energy storage systems  

E-Print Network [OSTI]

Battery-ultracapacitors hybrid energy storage systems (ESS) could combine the high power density and high life cycle of ultracapacitors with the high energy density of batteries, which forms a promising energy storage ...

He, Yiou

2014-01-01T23:59:59.000Z

497

Microfabricated thin-film batteries : technology and potential applications  

E-Print Network [OSTI]

High-energy-density lithium ion batteries have enabled a myriad of small consumer-electronics applications. Batteries for these applications most often employ a liquid electrolyte system. However, liquid electrolytes do ...

Greiner, Julia

2006-01-01T23:59:59.000Z

498

Design and fabrication of evaporators for thermo-adsorptive batteries  

E-Print Network [OSTI]

Current heating and cooling within electric vehicles places a significant demand on the battery, greatly reducing their potential driving range. An Advanced Thermo- Adsorptive Battery (ATB) reduces this load by storing ...

Farnham, Taylor A

2014-01-01T23:59:59.000Z

499

The UC Davis Emerging Lithium Battery Test Project  

E-Print Network [OSTI]

initial and life cycle costs of the battery. As indicatedbattery chemistries have the potential for longer cycle life which on a life cycle costLife cycle data for the Altairnano 50Ah cell (Altairnano data) Battery cost

Burke, Andy; Miller, Marshall

2009-01-01T23:59:59.000Z

500

Electromechanical battery design suitable for back-up power applications  

DOE Patents [OSTI]

The windings that couple energy into and out of the rotor of an electro-mechanical battery are modified. The normal stator windings of the generator/motor have been replaced by two orthogonal sets of windings. Because of their orthogonality, they are decoupled from each other electrically, though each can receive (or deliver) power flows from the rotating field produced by the array of permanent magnets. Due to the orthogonal design of the stator windings and the high mechanical inertia of the flywheel rotor, the resulting power delivered to the computer system is completely insensitive to any and all electrical transients and variabilities of the power from the main power source. This insensitivity includes complete failure for a period determined only by the amount of stored kinetic energy in the E-M battery modules that are supplied. Furthermore there is no need whatsoever for fast-acting, fractional-cycle switches, such as are employed in conventional systems, and which are complicated to implement.

Post, Richard F. (Walnut Creek, CA)

2002-01-01T23:59:59.000Z