Powered by Deep Web Technologies
Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

FINAL STAFF PAPER A New Generation of Combined Heat  

E-Print Network [OSTI]

onsite or exporting it to the grid. The feasibility of meeting the state's combined heat and power goals FINAL STAFF PAPER A New Generation of Combined Heat and Power: Policy Planning. Neff , Bryan. A New Generation of Combined Heat and Power: Policy Planning for 2030. 2012. California

2

Efficiency and Air Quality Implications of Distributed Generation and Combined Heat  

E-Print Network [OSTI]

Efficiency and Air Quality Implications of Distributed Generation and Combined Heat and Power March 2011 The Issue Distributed generation generates electricity from many small energy sources near where the electricity is used. The use of distributed generation in urban areas, however, can

3

Evaluation of performance of combined heat and power systems with dual power generation units (D-CHP).  

E-Print Network [OSTI]

?? In this research, a new combined heat and power (CHP) system configuration has been proposed that uses two power generation units (PGU) operating simultaneously (more)

Knizley, Alta Alyce

2013-01-01T23:59:59.000Z

4

A new absorption chiller to establish combined cold, heat, and power generation utilizing low-temperature heat  

SciTech Connect (OSTI)

Presently available absorption machines for air conditioning are driven with heat of a minimum of 80 C (176 F). A combination of the standard single-effect and a double-lift process has been identified as a new cycle that can use driving heat down to return temperatures of about 55 C (131 F) and permits temperature glides in generation of more than 30 K (54 F). Thus a larger cooling capacity can be produced from the same heat source compared to a single-effect chiller run with the same heat carrier supply temperature and mass flow. According to the estimated heat exchanger area, competitive machine costs for this new chiller can be expected. This single-effect/double-lift absorption chiller can be operated with waste heat from industrial processes, as well as with low-temperature heat (e.g., heat from solar collectors) as driving heat for air conditioning. The large temperature glide and the low return temperature especially fit the operating conditions in district heating networks during the summer. The cycle will be presented, followed by a discussion of suitable operating conditions.

Schweigler, C.J.; Riesch, P.; Demmel, S.; Alefeld, G. [ZAE Bayern, Garching/Muenchen (Germany)

1996-11-01T23:59:59.000Z

5

GREENHOUSE GAS REDUCTION POTENTIAL WITH COMBINED HEAT AND POWER WITH DISTRIBUTED GENERATION PRIME MOVERS - ASME 2012  

SciTech Connect (OSTI)

Pending or recently enacted greenhouse gas regulations and mandates are leading to the need for current and feasible GHG reduction solutions including combined heat and power (CHP). Distributed generation using advanced reciprocating engines, gas turbines, microturbines and fuel cells has been shown to reduce greenhouse gases (GHG) compared to the U.S. electrical generation mix due to the use of natural gas and high electrical generation efficiencies of these prime movers. Many of these prime movers are also well suited for use in CHP systems which recover heat generated during combustion or energy conversion. CHP increases the total efficiency of the prime mover by recovering waste heat for generating electricity, replacing process steam, hot water for buildings or even cooling via absorption chilling. The increased efficiency of CHP systems further reduces GHG emissions compared to systems which do not recover waste thermal energy. Current GHG mandates within the U.S Federal sector and looming GHG legislation for states puts an emphasis on understanding the GHG reduction potential of such systems. This study compares the GHG savings from various state-of-the- art prime movers. GHG reductions from commercially available prime movers in the 1-5 MW class including, various industrial fuel cells, large and small gas turbines, micro turbines and reciprocating gas engines with and without CHP are compared to centralized electricity generation including the U.S. mix and the best available technology with natural gas combined cycle power plants. The findings show significant GHG saving potential with the use of CHP. Also provided is an exploration of the accounting methodology for GHG reductions with CHP and the sensitivity of such analyses to electrical generation efficiency, emissions factors and most importantly recoverable heat and thermal recovery efficiency from the CHP system.

Curran, Scott [ORNL; Theiss, Timothy J [ORNL; Bunce, Michael [ORNL

2012-01-01T23:59:59.000Z

6

Investigation And Evaluation Of The Systemwide Economic Benefits Of Combined Heat And Power Generation In The New York State Energy Market.  

E-Print Network [OSTI]

??Combined Heat and Power (CHP) is the production of electricity and the simultaneous utilization of the heat produced by the generator prime mover. The energy (more)

Baquero, Ricardo

2008-01-01T23:59:59.000Z

7

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

Memorandum Encouraging Combined Heat and Power in California2012 ICF, 2012, Combined Heat and Power: Policy AnalysisA New Generation of Combined Heat and Power: Policy Planning

Stadler, Michael

2014-01-01T23:59:59.000Z

8

Combined Heat and Power  

Office of Environmental Management (EM)

energy costs and 31 emissions while also providing more resilient and reliable electric power and thermal energy 1 . CHP 32 systems combine the production of heat (for both...

9

Combined Heat & Power  

Broader source: Energy.gov (indexed) [DOE]

available today." -American Council for an Energy-Efficient Economy What is Combined Heat & Power (CHP)? Federal Utility Partnership Working Group May 7 - 8, 2014 Virginia...

10

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

power generation with combined heat and power applications,of carbon tax on combined heat and power adoption by a131(1), 2-25. US Combined Heat and Power Association (

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

11

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

selection of on-site power generation with combined heat andTotal Electricity Generation Figure 13. Small MercantileWeekday Total Electricity Generation (No Storage Adoption

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

12

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site  

E-Print Network [OSTI]

Proposal for the Award of a Contract for the Supply and Installation of a gas Turbine for Combined Generation of Electricity and Heat in the Heating Plant on the Meyrin Site

1994-01-01T23:59:59.000Z

13

Combined Heat and Power Plant Steam Turbine  

E-Print Network [OSTI]

Combined Heat and Power Plant Steam Turbine Steam Turbine Chiller Campus Heat Load Steam (recovered waste heat) Gas Turbine University Substation High Pressure Natural Gas Campus Electric Load Southern Generator Heat Recovery Alternative Uses: 1. Campus heating load 2. Steam turbine chiller to campus cooling

Rose, Michael R.

14

Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Combined Heat and Power Combined Heat and Power Jump to: navigation, search All power plants release a certain amount of heat during electricity generation. This heat can be used to serve thermal loads, such as building heating and hot water requirements. The simultaneous production of electrical (or mechanical) and useful thermal power from a single source is referred to as a combined heat and power (CHP) process, or cogeneration. Contents 1 Combined Heat and Power Basics 2 Fuel Types 2.1 Rural Resources 2.2 Urban Resources 3 CHP Technologies 3.1 Steam Turbine 3.2 Gas Turbine 3.3 Microturbine 3.4 Reciprocating Engine 4 Example CHP Systems[7] 4.1 University of Missouri (MU) 4.2 Princeton University 4.3 University of Iowa 4.4 Cornell University 5 Glossary 6 References Combined Heat and Power Basics

15

Combined Heat and Power, Waste Heat, and District Energy | Department...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power, Waste Heat, and District Energy Combined Heat and Power, Waste Heat, and District Energy Presentation-given at the Fall 2011 Federal Utility Partnership...

16

Accelerating Combined Heat & Power Deployment  

Broader source: Energy.gov (indexed) [DOE]

ACCELERATING COMBINED HEAT & POWER DEPLOYMENT An Industry Consultation by the United States Energy Association August 31, 2011 Cover Photograph: CHP Plant at the Mueller Energy...

17

Flameless heat generator  

SciTech Connect (OSTI)

A heating device generates heat by working a liquid in a closed container with a rotating stack of finely perforate square plates and recovering the heat from the thus heated liquid. In one embodiment a stack of a multiplicity of flat square plates radially offset one from another is rotated in an oil bath in a container under an inner perforate non-rotating cover over which is a similar non-rotating cover that is imperforate. The thermal energy developed through the mechanical working of the liquid is transferred to the main liquid bath and is then removed, as for example, by circulating air or a liquid around the outside of the container with the thus heated air or liquid being used to heat a house or the like.

Leary, C. L.; Leary, G. C.

1983-12-13T23:59:59.000Z

18

Generating Resources Combined Cycle Combustion Turbine  

E-Print Network [OSTI]

turbine (s) Heat recovery steam generator (s) - HRSG with or without duct firing Natural gas supply11/17/2014 1 Generating Resources Combined Cycle Combustion Turbine Utility Scale Solar PV Steven doing recently around two key supply-side resource technologies 1. Combined Cycle Combustion Turbine

19

Plant Oil Fuels Combined Heat and Power (CHP)  

Science Journals Connector (OSTI)

Combined heat and power (CHP) or cogeneration is the simultaneous generation of both useable heat and power in a single process by a heat and power supply station or an engine. The mechanical energy is usuall...

Dr. Klaus Thuneke

2013-01-01T23:59:59.000Z

20

Plant Oil Fuels Combined Heat and Power (CHP)  

Science Journals Connector (OSTI)

Combined heat and power (CHP) or cogeneration is the simultaneous generation of both useable heat and power in a single process by a heat and power supply station or an engine. The mechanical energy is usuall...

Dr. Klaus Thuneke

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Ultra Efficient Combined Heat, Hydrogen, and Power System  

Broader source: Energy.gov (indexed) [DOE]

information. Project Objective Demonstrate Tri-generation (CHHP) combining heat, hydrogen and power production using a high temperature fuel cell to reduce O&M costs...

22

Renewable Combined Heat and Power Dairy Operations  

E-Print Network [OSTI]

horsepower Guascor model SFGLD-560 biogas-fired lean burn internal combustion (IC) engine and generator set and modify the existing biogas toelectricity combined heat and power (CHP) system operated at Fiscalini bacteria to remove hydrogen sulfide presented in the biogas. Source: Fiscalini Farms Term: March 2011

23

Combined Retrieval, Microphysical Retrievals and Heating Rates  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval.

Feng, Zhe

24

Combined Heat and Power Basics | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technical Assistance Combined Heat & Power Deployment Combined Heat and Power Basics Combined Heat and Power Basics Combined heat and power (CHP), also known as cogeneration,...

25

Combined Heat and Power Basics | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power Basics Combined Heat and Power Basics Combined Heat and Power Basics November 1, 2013 - 11:40am Addthis Combined heat and power (CHP), also known as cogeneration, is: A process flow diagram showing efficiency benefits of CHP CHP Process Flow Diagram The concurrent production of electricity or mechanical power and useful thermal energy (heating and/or cooling) from a single source of energy. A type of distributed generation, which, unlike central station generation, is located at or near the point of consumption. A suite of technologies that can use a variety of fuels to generate electricity or power at the point of use, allowing the heat that would normally be lost in the power generation process to be recovered to provide needed heating and/or cooling. CHP technology can be deployed quickly, cost-effectively, and with few

26

MAXIMALLY EQUIDISTRIBUTED COMBINED TAUSWORTHE GENERATORS  

E-Print Network [OSTI]

MAXIMALLY EQUIDISTRIBUTED COMBINED TAUSWORTHE GENERATORS PIERRE L'ECUYER Abstract. Tausworthe random number generators based on a primitive tri­ nomial allow an easy and fast implementation when their parameters obey certain restrictions. However, such generators, with those restrictions, have bad statistical

L'Ecuyer, Pierre

27

Biomass Energy Small-Scale Combined Heat and Power Systems  

Science Journals Connector (OSTI)

Combined heat and power (CHP) generation is one of the essential pillar in a modern, sustainable, and environmentally friendly energy generation. This is due to the fact that cogeneration systems are energeti...

Daniel Bchner; Volker Lenz

2012-01-01T23:59:59.000Z

28

Biomass Energy Small-Scale Combined Heat and Power Systems  

Science Journals Connector (OSTI)

Combined heat and power (CHP) generation is one of the essential pillar in a modern, sustainable, and environmentally friendly energy generation. This is due to the fact that cogeneration systems are energeti...

Daniel Bchner; Volker Lenz

2013-01-01T23:59:59.000Z

29

Skutterudite Thermoelectric Generator For Automotive Waste Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery Skutterudite TE modules were...

30

Waste Heat Recovery Opportunities for Thermoelectric Generators...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Waste Heat Recovery Opportunities for Thermoelectric Generators Waste Heat Recovery Opportunities for Thermoelectric Generators Thermoelectrics have unique advantages for...

31

Industrial Distributed Energy: Combined Heat & Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Information about the Department of Energys Industrial Technologies Program and its Combined Heat and Power program.

32

Solar air heating system for combined DHW and space heating  

E-Print Network [OSTI]

Solar air heating system for combined DHW and space heating solar air collector PV-panel fannon-return valve DHW tank mantle cold waterhot water roof Solar Energy Centre Denmark Danish Technological Institute SEC-R-29 #12;Solar air heating system for combined DHW and space heating Søren ?stergaard Jensen

33

CONSULTANT REPORT COMBINED HEAT AND POWER  

E-Print Network [OSTI]

CONSULTANT REPORT COMBINED HEAT AND POWER: POLICY ANALYSIS AND 2011 ­ 2030 MARKET ASSESSMENT This report analyzes the potential market penetration of combined heat and power systems in California from 2011 to 2030. This analysis evaluates the potential contribution of new combined heat and power

34

CONSULTANT REPORT COMBINED HEAT AND POWER  

E-Print Network [OSTI]

CONSULTANT REPORT COMBINED HEAT AND POWER: POLICY ANALYSIS AND 2011 ­ 2030 MARKET ASSESSMENT ABSTRACT This report analyzes the potential market penetration of combined heat and power systems the markets, applications, technologies, and economic competition for combined heat and power over

35

Heat Recovery Steam Generator Simulation  

E-Print Network [OSTI]

The paper discusses the applications of Heat Recovery Steam Generator Simulation. Consultants, plant engineers and plant developers can evaluate the steam side performance of HRSGs and arrive at the optimum system which matches the needs...

Ganapathy, V.

36

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

Energy; Grid systems; Optimization; Heat flow; Financialof grid power and by utilizing combined heat and power (CHP)

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

37

Using and Measuring the Combined Heat and Power Advantage  

E-Print Network [OSTI]

Combined Heat and Power (CHP), also known as cogeneration, refers to the integration of thermal energy with power generation. CHP is a powerful energy conservation measure that has been identified as an important greenhouse gas reduction measure...

John, T.

2011-01-01T23:59:59.000Z

38

Industrial Distributed Energy: Combined Heat & Power  

Broader source: Energy.gov (indexed) [DOE]

(DOE) (DOE) Industrial Technology Program (ITP) Industrial Distributed Energy: Combined Heat & Power (CHP) Richard Sweetser Senior Advisor DOE's Mid-Atlantic Clean Energy Application Center 32% Helping plants save energy today using efficient energy management practices and efficient new technologies Activities to spur widespread commercial use of CHP and other distributed generation solutions 10% Manufacturing Energy Systems 33% Industries of the Future R&D addressing top priorities in America's most energy-intensive industries and cross-cutting activities applicable to multiple industrial subsectors 25% Industrial Distributed Energy Industrial Technical Assistance DOE ITP FY'11 Budget: $100M Knowledge development and

39

Benefits of Combined Heat and Power | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Benefits of Combined Heat and Power Benefits of Combined Heat and Power Combined heat and power (CHP) positively impacts the health of local economies and supports national policy...

40

ENVIRONMENTAL REVENUE STREAMS FOR COMBINED HEAT AND POWER | Department...  

Broader source: Energy.gov (indexed) [DOE]

ENVIRONMENTAL REVENUE STREAMS FOR COMBINED HEAT AND POWER ENVIRONMENTAL REVENUE STREAMS FOR COMBINED HEAT AND POWER ENVIRONMENTAL REVENUE STREAMS FOR COMBINED HEAT AND POWER...

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Investment in Combined Heat and Power: CHP  

Science Journals Connector (OSTI)

This study investigates the advantages of investing in plants for cogeneration, i.e., Combined Heat and Power (CHP), in case the heat is utilized ... in order to analyze the dimensioning of a CHP plant. Two main ...

Gran Bergendahl

2010-01-01T23:59:59.000Z

42

Midwest Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

43

Northwest Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

44

Pacific Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

45

Northeast Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

46

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

of fossil fuel sources of waste heat and other lossesthat this is only the waste heat from fossil generation,an estimate of the total waste heat from fossil generation

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

47

Combined heat recovery and make-up water heating system  

SciTech Connect (OSTI)

A cogeneration plant is described comprising in combination: a first stage source of hot gas; a duct having an inlet for receiving the hot gas and an outlet stack open to the atmosphere; a second stage recovery heat steam generator including an evaporator situated in the duct, and economizer in the duct downstream of the evaporator, and steam drum fluidly connected to the evaporator and the economizer; feedwater supply means including a deaerator heater and feedwater pump for supplying deaerated feedwater to the steam drum through the economizer; makeup water supply means including a makeup pump for delivering makeup water to the deaerator heater; means fluidly connected to the steam drum for supplying auxiliary steam to the deaerator heater; and heat exchanger means located between the deaerator and the economizer, for transferring heat from the feedwater to the makeup water, thereby increasing the temperature of the makeup water delivered to the deaerator and decreasing the temperature of the feedwater delivered to the economizer, without fluid exchange.

Kim, S.Y.

1988-05-24T23:59:59.000Z

48

CHP: It's Time for Combined Heat and Power  

E-Print Network [OSTI]

and export 16. Creates local jobs for installation, operation and maintenance 17. Supports competitive electricity market structure General Conclusion It is very much in the PUBLIC interest to support CHP distributed energy even if the private incentives... of use Electricity Electricity Heat Heat Combined Heat and Power Conventional Generation Building Load Power Plant fuel (66 units of remote energy) Boiler fuel (34 units of on-site energy) CHP fuel (x units of on-site energy) Losses Losses 20 29 20...

Herweck, R.

49

Heat Transfer Enhancement in Thermoelectric Power Generation.  

E-Print Network [OSTI]

??Heat transfer plays an important role in thermoelectric (TE) power generation because the higher the heat-transfer rate from the hot to the cold side of (more)

Hu, Shih-yung

2009-01-01T23:59:59.000Z

50

Combined Heat & Power Technology Overview and Federal Sector...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat & Power Technology Overview and Federal Sector Deployment Combined Heat & Power Technology Overview and Federal Sector Deployment Presentation covers the Combined...

51

NREL: Climate Neutral Research Campuses - Combined Heat and Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combined Heat and Power Combined Heat and Power Combined heat and power (CHP) systems on research campuses can reduce climate impact by 15% to 30% and yield a positive financial return, because they recover heat that is typically wasted in the generation of electric power and deliver that energy in a useful form. The following links go to sections that describe how CHP may fit into your climate action plans. Considerations Sample Project Related Links CHP systems can take advantage of large central heating plants and steam distribution systems that are available on many campuses. CHP systems may be new at a particular facility, but the process and equipment involve well-established industrial technologies. The U.S. Environmental Protection Agency CHP Partnership offers technical information and resources that

52

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Broader source: Energy.gov (indexed) [DOE]

Overview and Overview and Federal Sector Deployment Federal Utility Partnership Working Group Spring 2013 - May 22-23 San Francisco, CA Hosted by: Pacific Gas and Electric Company Bob Slattery Oak Ridge National Laboratory CHP is an integrated energy system that:  is located at or near a facility  generates electrical and/or mechanical power  recovers waste heat for ◦ heating ◦ cooling ◦ dehumidification  can utilize a variety of technologies and fuels  is also referred to as cogeneration The on-site simultaneous generation of two forms of energy (heat and electricity) from a single fuel/energy source Defining Combined Heat and Power (CHP) Steam Electricity Fuel Prime Mover & Generator Heat Recovery Steam Boiler Conventional CHP

53

An algorithm for combined heat and power economic dispatch  

SciTech Connect (OSTI)

This paper presents a new algorithm for Combined Heat and Power (CHP) economic dispatch. The CHP economic dispatch problem is decomposed into two subproblems: the heat dispatch and the power dispatch. The subproblems are connected through the heat-power feasible region constraints of co-generation units. The connection can be interpreted by the unit heat-power feasible region constraint multipliers in the Lagrangian function, and the interpretation naturally leads to the development of a two-layer algorithm. The outer layer uses the Lagrangian Relaxation technique to solve the power dispatch iteratively. In each iteration, the inner layer solves the heat dispatch with the unit heat capacities passed by the outer layer. The binding constraints of the heat dispatch are fed back to the outer layer to move the CHP economic dispatch towards a global optimal solution.

Guo, T.; Henwood, M.I. [Henwood Energy Services, Inc., Sacramento, CA (United States)] [Henwood Energy Services, Inc., Sacramento, CA (United States); Ooijen, M. van [Eindhoven Univ. of Technology (Netherlands)] [Eindhoven Univ. of Technology (Netherlands)

1996-11-01T23:59:59.000Z

54

Low-Cost Packaged Combined Heat and Power System | Department...  

Broader source: Energy.gov (indexed) [DOE]

Low-Cost Packaged Combined Heat and Power System Low-Cost Packaged Combined Heat and Power System Introduction Many combined heat and power (CHP) systems less than 1 megawatt (MW)...

55

Fuel-Flexible Microturbine and Gasifier System for Combined Heat...  

Broader source: Energy.gov (indexed) [DOE]

Flexible Microturbine and Gasifier System for Combined Heat and Power Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power Capstone Turbine Corporation, in...

56

Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Fact Sheet, 2011 FuelCell Energy, Inc., in...

57

ITP Industrial Distributed Energy: Combined Heat and Power -...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of Progress, A Vision for the Future ITP Industrial Distributed Energy: Combined Heat and Power - A Decade of...

58

Promoting Combined Heat and Power (CHP) for Multifamily Properties...  

Broader source: Energy.gov (indexed) [DOE]

Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 Promoting Combined Heat and Power (CHP) for Multifamily Properties, 2008 The U.S. Department of Housing and...

59

Combined Heat and Power (CHP) Resource Guide for Hospital Applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007 Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007 The objective of this 2007...

60

Energy Portfolio Standards and the Promotion of Combined Heat...  

Broader source: Energy.gov (indexed) [DOE]

Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009 Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White...

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Guide to Using Combined Heat and Power for Enhancing Reliability...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in...

62

Combined Heat and Power: Expanding CHP in Your State | Department...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power: Expanding CHP in Your State Combined Heat and Power: Expanding CHP in Your State This presentation, given through the DOE's Technical Assitance Program...

63

National CHP Roadmap: Doubling Combined Heat and Power Capacity...  

Broader source: Energy.gov (indexed) [DOE]

National CHP Roadmap: Doubling Combined Heat and Power Capacity in the United States by 2010, March 2001 National CHP Roadmap: Doubling Combined Heat and Power Capacity in the...

64

Survey of Emissions Models for Distributed Combined Heat and...  

Broader source: Energy.gov (indexed) [DOE]

Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 Survey of Emissions Models for Distributed Combined Heat and Power Systems, 2007 The models...

65

Opportunities for Combined Heat and Power in Data Centers, March...  

Broader source: Energy.gov (indexed) [DOE]

Opportunities for Combined Heat and Power in Data Centers, March 2009 Opportunities for Combined Heat and Power in Data Centers, March 2009 This report analyzes the opportunities...

66

Energy Department Actions to Deploy Combined Heat and Power,...  

Broader source: Energy.gov (indexed) [DOE]

Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 -...

67

Development of an Advanced Combined Heat and Power (CHP) System...  

Broader source: Energy.gov (indexed) [DOE]

an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination - Fact Sheet, 2011 Development of an Advanced Combined Heat and Power (CHP) System...

68

Combined Heat and Power Market Potential for Opportunity Fuels...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 Combined Heat and Power Market Potential for Opportunity Fuels, August 2004 The purpose of this 2004...

69

Assessment of Combined Heat and Power Premium Power Applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment of Combined Heat and Power Premium Power Applications in California, September 2008 Assessment of Combined Heat and Power Premium Power Applications in California,...

70

National Association of Counties Webinar - Combined Heat and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Association of Counties Webinar - Combined Heat and Power: Resiliency Strategies for Critical Facilities National Association of Counties Webinar - Combined Heat and Power:...

71

Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentati...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by FuelCell Energy, June 2011 Ultra Efficient Combined Heat, Hydrogen, and Power System - Presentation by...

72

Combined Heat and Power (CHP) Integrated with Burners for Packaged...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Combined Heat and Power (CHP) Integrated with Burners for Packaged Boilers Providing Clean, Low-Cost,...

73

AMO Industrial Distributed Energy: Combine Heat and Power: A...  

Broader source: Energy.gov (indexed) [DOE]

Clean Energy Solution Combined Heat and Power August 2012 Combined Heat and Power: A Clean Energy Solution 1 Contents Executive Summary ......

74

Heat engine generator control system  

DOE Patents [OSTI]

An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.

Rajashekara, Kaushik (Carmel, IN); Gorti, Bhanuprasad Venkata (Towson, MD); McMullen, Steven Robert (Anderson, IN); Raibert, Robert Joseph (Fishers, IN)

1998-01-01T23:59:59.000Z

75

Heat engine generator control system  

DOE Patents [OSTI]

An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.

Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.

1998-05-12T23:59:59.000Z

76

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network [OSTI]

for Combined Heat and Power, U.S. E NVTL . P ROT . A GENCY CCombined Heat and Power: A Technology Whose Time Has ComeD.C. COMBINED HEAT AND POWER A. Create an Organization to

Ferraina, Steven

2014-01-01T23:59:59.000Z

77

Assessment of Large Combined Heat and Power Market, April 2004...  

Broader source: Energy.gov (indexed) [DOE]

Large Combined Heat and Power Market, April 2004 Assessment of Large Combined Heat and Power Market, April 2004 This 2004 report summarizes an assessment of the 2-50 MW combined...

78

Standby Rates for Combined Heat and Power Systems  

SciTech Connect (OSTI)

Improvements in technology, low natural gas prices, and more flexible and positive attitudes in government and utilities are making distributed generation more viable. With more distributed generation, notably combined heat and power, comes an increase in the importance of standby rates, the cost of services utilities provide when customer generation is not operating or is insufficient to meet full load. This work looks at existing utility standby tariffs in five states. It uses these existing rates and terms to showcase practices that demonstrate a sound application of regulatory principles and ones that do not. The paper also addresses areas for improvement in standby rates.

Sedano, Richard [Regulatory Assistance Partnership; Selecky, James [Brubaker & Associates, Inc.; Iverson, Kathryn [Brubaker & Associates, Inc.; Al-Jabir, Ali [Brubaker & Associates, Inc.

2014-02-01T23:59:59.000Z

79

Combined Heat and Power (CHP) essentials  

Science Journals Connector (OSTI)

'CHP essentials' introduces the concept of power and heat 'production possibility sets', starting at the cradle of CHP, i.e., the thermal power generation plant. The latter always occasions 'fatal' heat that is either recovered (the 'merit' of CHP) or wasted (condensing). This split paves the way to defining the production possibility sets of CHP plants, shown for steam turbines, internal combustion engines and gas turbines as main CHP technologies. Three indicators are widely used to monitor CHP performance: the overall conversion efficiency (quantity indicator), the (mostly ill-defined) power to heat ratio (quality indicator), the 'quality norm' advertised by the EU Directive 2004/8/EC. The paper levels the field for discussing the crucial issue of identifying and quantifying CHP activity.

Aviel Verbruggen

2007-01-01T23:59:59.000Z

80

GUIDELINES FOR CERTIFICATION OF COMBINED HEAT AND POWER SYSTEMS  

E-Print Network [OSTI]

CALIFORNIA ENERGY COMMISSION GUIDELINES FOR CERTIFICATION OF COMBINED HEAT AND POWER SYSTEMS for Certification of Combined Heat and Power Systems Pursuant to the Waste Heat and Carbon Emissions Reduction Act Heat and Power System Pursuant to the Waste Heat and Carbon Emissions Reduction Act, Public Utilities

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Combined Heat and Power with Your Local Utility  

Broader source: Energy.gov (indexed) [DOE]

Partnership Working Group Combined Heat and Power C.A. Skip Cofield October 16, 2012 Agenda * Southern Company * Combined Heat and Power (CHP) * Southern Company CHP * Utility Partnerships 2 Southern Company Overview Operating Companies: * Alabama Power * Georgia Power * Gulf Power * Mississippi Power Subsidiaries: * Southern LINC * Southern Nuclear * Southern Power * Southern Telecom 3 Retail Generating Units Wholesale Generating Units * 4.4 million customers * 43,500+ MW * 26,000+ employees * 120,000 square miles of retail service territory * 27,000 mi. of transmission lines * 3,700 substations * $17.7B in operating revenue * $2.2B in net income * $39.2B in market cap * $59.3B in assets * $13.5B annual op. expense 4 Southern Company Overview

82

Waste Heat Recovery Power Generation with WOWGen  

E-Print Network [OSTI]

Waste Heat Recovery Power Generation with WOWGen? Business Overview WOW operates in the energy efficiency field - one of the fastest growing energy sectors in the world today. The two key products - WOWGen? and WOWClean? provide more... energy at cheaper cost and lower emissions. ? WOWGen? - Power Generation from Industrial Waste Heat ? WOWClean? - Multi Pollutant emission control system Current power generation technology uses only 35% of the energy in a fossil fuel...

Romero, M.

83

Control system for fluid heated steam generator  

DOE Patents [OSTI]

A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

Boland, J.F.; Koenig, J.F.

1984-05-29T23:59:59.000Z

84

HUD Combined Heat and Power (CHP) Guide #3, September 2010 |...  

Broader source: Energy.gov (indexed) [DOE]

HUD Combined Heat and Power (CHP) Guide 3, September 2010 HUD Combined Heat and Power (CHP) Guide 3, September 2010 This Level 2 analysis tool for multifamily buildings will help...

85

Alaska Gateway School District Adopts Combined Heat and Power...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Alaska Gateway School District Adopts Combined Heat and Power Alaska Gateway School District Adopts Combined Heat and Power May 7, 2013 - 12:00am Addthis In Tok, Alaska, the...

86

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

incentive ($/W) wind turbine waste heat to power pressurewind turbines, fuel cells, organic rankine cycle/waste heat capture, pressure reduction turbines, advanced energy storage, and combined heat and power

Stadler, Michael

2014-01-01T23:59:59.000Z

87

Alaska Gateway School District Adopts Combined Heat and Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Tok School's use of a biomass combined heat and power system is helping the school to save on energy costs.

88

Nuclear power eyed to generate industrial heat  

Science Journals Connector (OSTI)

Nuclear power eyed to generate industrial heat ... The American Nuclear Society has called for "an aggresssive national policy aimed at demonstrating specific capabilities and providing incentives for the application of nuclear power to meeting industrial energy needs." ...

1983-10-24T23:59:59.000Z

89

Analysis of a coal fired combined cycle with carried-heat gasification  

Science Journals Connector (OSTI)

In the research of a more efficient, less costly, more environmentally responsible and less technically difficult method for generating electrical power from coal, the Carried-heat Gasification Combined Cycle (CG...

Xiangdong Xu; Weimin Zhu; Li Zhao; F. N. Fett

90

Effects of a carbon tax on microgrid combined heat and power adoption  

E-Print Network [OSTI]

Modeling with Combined Heat and Power Applications. with or without combined heat and power (CHP) equipment,Carbon emissions; Combined heat and power; CHP; Distributed

Siddiqui, Afzal S.; Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Stadler, Michael

2004-01-01T23:59:59.000Z

91

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network [OSTI]

Modeling with Combined Heat and Power Applications,Committee, Combined Heat and Power Workshop, CaliforniaJuly 23, 2009 Combined Heat and Power Installation

Stadler, Michael

2010-01-01T23:59:59.000Z

92

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM "PREMIUM POWER" APPLICATIONS IN CALIFORNIA  

E-Print Network [OSTI]

Modeling with Combined Heat and Power Applications. Lawrencegeneration, combined heat and power, and thermally drivenPacific Region Combined Heat and Power Application Center (

Norwood, Zack

2010-01-01T23:59:59.000Z

93

ITP Industrial Distributed Energy: Ultra Efficient Combined Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Ultra Efficient Combined Heat, Hydrogen, and Power System A High-Temperature Fuel Cell to Provide On-site Process Reducing Gas, Clean Power, and Heat The project will utilize...

94

Utility Incentives for Combined Heat and Power | Open Energy Information  

Open Energy Info (EERE)

Utility Incentives for Combined Heat and Power Utility Incentives for Combined Heat and Power Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Utility Incentives for Combined Heat and Power Focus Area: Solar Topics: Policy Impacts Website: www.epa.gov/chp/documents/utility_incentives.pdf Equivalent URI: cleanenergysolutions.org/content/utility-incentives-combined-heat-and- Language: English Policies: Financial Incentives This report reviews a U.S. Environmental Protection Agency study that researched 41 U.S. utilities and found that nearly half provided some kind of support for combined heat and power (CHP). Here they profile 16 utility programs that support CHP in ways excluding direct financial incentives. References Retrieved from "http://en.openei.org/w/index.php?title=Utility_Incentives_for_Combined_Heat_and_Power&oldid=514610

95

Combined Heat and Power: A Technology Whose Time Has Come  

E-Print Network [OSTI]

energy efficient and environmentally friendly technology.Combined Heat and Power: A Technology Whose Time Has Comesteps to utilize the technology. 9 The average increase in

Ferraina, Steven

2014-01-01T23:59:59.000Z

96

Combined Heat and Power: Connecting the Gap between Markets and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices (Part I) Susanne Brooks, Brent Elswick, and R. Neal Elliott March 2006...

97

Combined Heat and Power System Achieves Millions in Cost Savings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

campus, which includes 750 buildings. Photo courtesy of Texas A&M University Combined Heat and Power System Achieves Millions in Cost Savings at Large University Recovery Act...

98

Combined Heat and Power with Your Local Utility  

Broader source: Energy.gov [DOE]

Presentationgiven at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meetingcovers combined heat and power (CHP) and its uses, configurations, considerations, and more.

99

Integrated Combined Heat and Power/Advanced Reciprocating Internal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and PowerAdvanced Reciprocating Internal Combustion Engine System for Landfill Gas to Power Applications Development of an Improved Modular Landfill Gas Cleanup and...

100

Combined Heat and Power System Enables 100% Reliability at Leading...  

Broader source: Energy.gov (indexed) [DOE]

Enables 100% Reliability at Leading Medical Campus - Case Study, 2013 Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus - Case Study, 2013 Thermal...

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Combined Heat and Power System Achieves Millions in Cost Savings...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Achieves Millions in Cost Savings at Large University - Case Study, 2013 Combined Heat and Power System Achieves Millions in Cost Savings at Large University - Case Study, 2013...

102

Combined Heat and Power System Enables 100% Reliability at Leading...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

buildings on nearly 1,000 acres. Photo courtesy of Thermal Energy Corporation Combined Heat and Power System Enables 100% Reliability at Leading Medical Campus Recovery Act...

103

Mid-Atlantic Region Combined Heat and Power Projects  

Broader source: Energy.gov [DOE]

DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs.

104

ITP Industrial Distributed Energy: Combined Heat and Power: Effective...  

Broader source: Energy.gov (indexed) [DOE]

Energy Solutions for a Sustainable Future ITP Industrial Distributed Energy: Combined Heat and Power: Effective Energy Solutions for a Sustainable Future Report describing the...

105

Combined Heat and Power Webinar | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Webinar Combined Heat and Power Webinar 06092010CHP.pdf More Documents & Publications CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices,...

106

ITP Distributed Energy: Combined Heat and Power Market Assessment...  

Broader source: Energy.gov (indexed) [DOE]

Governor COMBINED HEAT AND POWER MARKET ASSESSMENT Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: ICF International,...

107

SOFC combined cycle systems for distributed generation  

SciTech Connect (OSTI)

The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

Brown, R.A.

1997-05-01T23:59:59.000Z

108

Quantifying Combined Heat and Power (CHP) activity  

Science Journals Connector (OSTI)

In CHP plants without heat rejection facilities power, output is complementary to the recovery of heat, and all activity is cogeneration. CHP plants with heat rejection facilities can operate a mix of cogeneration and condensing activities. Quantifying the energy flows of both activities properly requires knowledge of the design power-to-heat ratios of the CHP processes (steam and gas turbines, combustion engines). The ratios may be multiple, non-linear or extend into the virtual domain of the production possibility sets of the plants. Quantifying cogeneration in CCGT plants reveals a definition conflict but consistent solutions are available.

Aviel Verbruggen

2007-01-01T23:59:59.000Z

109

Combined Heat and Power Research and Development  

Broader source: Energy.gov (indexed) [DOE]

related to dilution and fuel selection Difficult for near-term Environmental heat loss * Low-temperature combustion techniques * Adiabatic approach increases thermal...

110

Combined Heat and Power: Expanding CHP in Your State  

Broader source: Energy.gov (indexed) [DOE]

Turbines Electricity On-Site Consumption Sold to Utility Fuel Natural Gas Propane Biogas Landfill Gas Coal Steam Waste Products Others Generator Heat Exchanger Thermal Process...

111

FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power,  

Broader source: Energy.gov (indexed) [DOE]

FACT SHEET: Energy Department Actions to Deploy Combined Heat and FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking action to develop the next generation of combined heat and power (CHP) technology and help local communities and businesses make cost-effective investments that save money and energy. As part of this effort, the Department launched today seven new regional Combined Heat and Power Technical Assistance Partnerships across the country to help strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce

112

FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power,  

Broader source: Energy.gov (indexed) [DOE]

FACT SHEET: Energy Department Actions to Deploy Combined Heat and FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency FACT SHEET: Energy Department Actions to Deploy Combined Heat and Power, Boost Industrial Efficiency October 21, 2013 - 11:30am Addthis News Media Contact (202) 586-4940 Underscoring President Obama's Climate Action Plan to cut harmful emissions and double energy efficiency, the Energy Department is taking action to develop the next generation of combined heat and power (CHP) technology and help local communities and businesses make cost-effective investments that save money and energy. As part of this effort, the Department launched today seven new regional Combined Heat and Power Technical Assistance Partnerships across the country to help strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce

113

Understanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies within Energy Systems  

E-Print Network [OSTI]

Understanding the Impact of Large-Scale Penetration of Micro Combined Heat & Power Technologies of Micro Combined Heat & Power Technologies within Energy Systems by Karen de los Ángeles Tapia for this purpose. Co-generation of electricity and heat at the residential level, known as micro

Catholic University of Chile (Universidad Católica de Chile)

114

Corrosion Investigations at Masned Combined Heat and Power Plant  

E-Print Network [OSTI]

Corrosion Investigations at Masnedø Combined Heat and Power Plant Part VI Melanie Montgomery AT MASNED? COMBINED HEAT AND POWER PLANT PART VI CONTENTS 1. Introduction Department for Manufacturing Engineering Technical University of Denmark Asger Karlsson Energi E2 Power

115

Optimal Scheduling of Industrial Combined Heat and Power Plants  

E-Print Network [OSTI]

Optimal Scheduling of Industrial Combined Heat and Power Plants under Time-sensitive Electricity Prices Sumit Mitra , Lige Sun , Ignacio E. Grossmann December 24, 2012 Abstract Combined heat and power companies. However, under-utilization can be a chance for tighter interaction with the power grid, which

Grossmann, Ignacio E.

116

Combined Flue Gas Heat Recovery and Pollution Control Systems  

E-Print Network [OSTI]

in the field of heat recovery now make it possible to recover a portion of the wasted heat and improve the working conditions of the air purification equipment. Proper design and selection of heat recovery and pollution control equipment as a combination...

Zbikowski, T.

1979-01-01T23:59:59.000Z

117

Southwest Gas Corporation - Combined Heat and Power Program | Department of  

Broader source: Energy.gov (indexed) [DOE]

Southwest Gas Corporation - Combined Heat and Power Program Southwest Gas Corporation - Combined Heat and Power Program Southwest Gas Corporation - Combined Heat and Power Program < Back Eligibility Commercial Industrial Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate 50% of the installed cost of the project Program Info State Arizona Program Type Utility Rebate Program Rebate Amount $400/kW - $500/kW up to 50% of the installed cost of the project Provider Southwest Gas Corporation Southwest Gas Corporation (SWG) offers incentives to qualifying commercial and industrial facilities who install efficient Combined Heat and Power systems (CHP). CHP systems produce localized, on-site power and heat which can be used in a variety of ways. Incentives vary based upon the efficiency

118

Encouraging Combined Heat and Power in California Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Encouraging Combined Heat and Power in California Buildings Encouraging Combined Heat and Power in California Buildings Title Encouraging Combined Heat and Power in California Buildings Publication Type Report LBNL Report Number LBNL-6267E Year of Publication 2013 Authors Stadler, Michael, Markus Groissböck, Gonçalo Cardoso, Andreas Müller, and Judy Lai Abstract Governor Brown's research priorities include an additional 6.5 GW of combined heat and power (CHP) by 2030. As of 2009, roughly 0.25 GW of small natural gas and biogas fired CHP is documented by the Self-Generation Incentive Program (SGIP) database. The SGIP is set to expire, and the anticipated grid de-carbonization based on the development of 20 GW of renewable energy will influence the CHP adoption. Thus, an integrated optimization approach for this analysis was chosen that allows optimizing the adoption of distributed energy resources (DER) such as photovoltaics (PV), CHP, storage technologies, etc. in the California commercial sector from the building owners' perspective. To solve this DER adoption problem the Distributed Energy Resources Customer Adoption Model (DER-CAM), developed by the Lawrence Berkeley National Laboratory and used extensively to address the problem of optimally investing and scheduling DER under multiple settings, has been used. The application of CHP at large industrial sites is well known, and much of its potential is already being realized. Conversely, commercial sector CHP, especially those above 50 to 100 kW peak electricity load, is widely overlooked. In order to analyze the role of DER in CO2 reduction, 147 representative sites in different climate zones were selected from the California Commercial End Use Survey (CEUS). About 8000 individual optimization runs, with different assumptions for the electric tariffs, natural gas costs, marginal grid CO2 emissions, and nitrogen oxide treatment costs, SGIP, fuel cell lifetime, fuel cell efficiency, PV installation costs, and payback periods for investments have been performed. The most optimistic CHP potential contribution in this sector in 2020 will be 2.7 GW. However, this result requires a SGIP in 2020, 46% average electric efficiency for fuel cells, a payback period for investments of 10 years, and a CO2 focused approach of the building owners. In 2030 it will be only 2.5 GW due to the anticipated grid de-carbonization. The 2030 result requires a 60% electric efficiency and 20 year life time for fuel cells, a payback period of 10 years, and a CO2 minimization strategy of building owners. Finally, the possible CHP potential in 2030 shows a significant variance between 0.2 GW and 2.5 GW, demonstrating the complex interactions between technologies, policies, and customer objectives.

119

What Are the Relative Roles of Heating and Cooling in Generating Solar Wind Temperature Anisotropies?  

E-Print Network [OSTI]

a combination of mechanisms of anisotropic heating (e.g., cyclotron-resonant heating and dissipation of kineticWhat Are the Relative Roles of Heating and Cooling in Generating Solar Wind Temperature, anisotropy-driven instabilities such as the cyclotron, mirror, and firehose instabilities limit the allowable

California at Berkeley, University of

120

Second-Generation Biofuels from Multi-Product Biorefineries Combine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Second-Generation Biofuels from Multi-Product...

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Portland Community College Celebrates Commissioning of Combined Heat and  

Broader source: Energy.gov (indexed) [DOE]

Portland Community College Celebrates Commissioning of Combined Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel Cell System Portland Community College Celebrates Commissioning of Combined Heat and Power Fuel Cell System October 3, 2011 - 4:43pm Addthis U.S. Energy Secretary Steven Chu today applauded the commissioning of a combined heat and power (CHP) fuel cell system at Portland Community College in Oregon. The CHP fuel cell system will help Portland Community College save on its energy bills and help achieve its energy efficiency and sustainability goals. Students at the College will also learn about the fuel cell technology used in the project as part of a comprehensive alternative energy curriculum offered by the school. "The benefits of a combined heat and power fuel cell system, coupled with

122

Qualifying Combined Heat and Power (CHP) activity  

Science Journals Connector (OSTI)

The EU 2002 draft and 2004 final CHP Directives propose qualifying CHP activity with the quality norm. This norm benchmarks the energy efficiency of CHP plant outputs on external reference power and heat efficiencies. Because the quality norm amalgamates cogeneration and condensing activity its application entails particular perverse effects for high-quality and adapted scale investment in CHP capacities and for operating available units. Operators get incentives to part-load or shut down their capacities and to avoid condensing activity (lucrative at spiky price conditions in the power market). The formula of the quality norm is only useful when CHP activity (heat recovery, cogenerated electricity, fuel consumption for cogeneration) is first quantified reliably.

Aviel Verbruggen

2007-01-01T23:59:59.000Z

123

ARM - PI Product - Combined Retrieval, Microphysical Retrievals & Heating  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ProductsCombined Retrieval, Microphysical Retrievals & ProductsCombined Retrieval, Microphysical Retrievals & Heating Rates Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Combined Retrieval, Microphysical Retrievals & Heating Rates 2011.10.11 - 2012.02.07 Site(s) GAN General Description Microphysical retrievals and heating rates from the AMIE/Gan deployment using the PNNL Combined Retrieval. The PNNL Combined Remote Sensor retrieval algorithm (CombRet) is designed to retrieve cloud and precipitation properties for all sky conditions. The retrieval is based on a combination of several previously published retrievals, with new additions related to the retrieval of cloud microphysical properties when only one instrument is able to detect cloud (i.e. radar only or lidar only).

124

Definition: Combined heat and power | Open Energy Information  

Open Energy Info (EERE)

heat and power heat and power Jump to: navigation, search Dictionary.png Combined heat and power The production of electricity and heat from a single process. Almost synonymous with the term cogeneration, but slightly more broad. Under the Public Utility Regulatory Policies Act (PURPA), the definition of cogeneration is the production of electric energy and "another form of useful thermal energy through the sequential use of energy." Since some facilities produce both heat and power but not in a sequential fashion, the term CHP is used.[1][2][3] View on Wikipedia Wikipedia Definition View on Reegle Reegle Definition Cogeneration power plants produce electricity but do not waste the heat this process creates. The heat is used for district heating or other purposes, and thus the overall efficiency is improved. For example could

125

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high-temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR.

Conklin, Jim [ORNL; Forsberg, Charles W [ORNL

2007-01-01T23:59:59.000Z

126

Base-Load and Peak Electricity from a Combined Nuclear Heat and Fossil Combined-Cycle Plant  

SciTech Connect (OSTI)

A combined-cycle power plant is proposed that uses heat from a high-temperature reactor and fossil fuel to meet base-load and peak electrical demands. The high temperature gas turbine produces shaft power to turn an electric generator. The hot exhaust is then fed to a heat recovery steam generator (HRSG) that provides steam to a steam turbine for added electrical power production. A simplified computational model of the thermal power conversion system was developed in order to parametrically investigate two different steady-state operation conditions: base load nuclear heat only from an Advanced High Temperature Reactor (AHTR), and combined nuclear heat with fossil heat to increase the turbine inlet temperature. These two cases bracket the expected range of power levels, where any intermediate power level can result during electrical load following. The computed results indicate that combined nuclear-fossil systems have the potential to offer both low-cost base-load electricity and lower-cost peak power relative to the existing combination of base-load nuclear plants and separate fossil-fired peak-electricity production units. In addition, electric grid stability, reduced greenhouse gases, and operational flexibility can also result with using the conventional technology presented here for the thermal power conversion system coupled with the AHTR. (authors)

Conklin, James C.; Forsberg, Charles W. [Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831 (United States)

2007-07-01T23:59:59.000Z

127

Pacific Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Pacific www.pacificCHPTAP.org Terry Clapham California Center for Sustainable Energy 858-244-4872 terry.clapham@energycenter.org California Alameda County Santa Rita Jail, Dublin Burlingame Wastewater Treatment Plant, Burlingame Chiquita Water Reclamation Plant, Santa Margarita DGS Central Plant, Sacramento East Bay Municipal Utility District, Oakland East Bay Municipal Utility District WWTP, Oakland EMWD Microturbine Energy System, Riverside County

128

Southeast Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Southeast Region Combined Heat and Power Projects Southeast Region Combined Heat and Power Projects Southeast Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Southeast www.southeastCHPTAP.org Isaac Panzarella North Carolina State University 919-515-0354 ipanzarella@ncsu.edu Alabama View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Alabama. Arkansas Fourche Creek Wastewater Treatment Facility, Little Rock View EEA's database of all known CHP installations in Arkansas. Florida Howard F. Curren Advanced Wastewater Treatment Plant, Tampa Shands Hospital, Gainesville View EEA's database of all known CHP installations in Florida.

129

Midwest Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Midwest Region Combined Heat and Power Projects Midwest Region Combined Heat and Power Projects Midwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Midwest www.midwestCHPTAP.org John Cuttica University of Illinois at Chicago 312-996-4382 cuttica@uic.edu Cliff Haefke University of Illinois at Chicago 312-355-3476 chaefk1@uic.edu Illinois Adkins Energy, Lena Advocate South Suburban Hospital, Hazel Crest Antioch Community High School, Antioch Elgin Community College, Elgin Evanston Township High School, Evanston Hunter Haven Farms, Inc., Pearl City Jesse Brown VA Medical Center, Chicago Lake Forest Hospital, Lake Forest

130

Pacific Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects Pacific Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Pacific www.pacificCHPTAP.org Terry Clapham California Center for Sustainable Energy 858-244-4872 terry.clapham@energycenter.org California Alameda County Santa Rita Jail, Dublin Burlingame Wastewater Treatment Plant, Burlingame Chiquita Water Reclamation Plant, Santa Margarita DGS Central Plant, Sacramento East Bay Municipal Utility District, Oakland East Bay Municipal Utility District WWTP, Oakland EMWD Microturbine Energy System, Riverside County

131

Northwest Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Northwest Region Combined Heat and Power Projects Northwest Region Combined Heat and Power Projects Northwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's Regional CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Northwest www.northwestCHPTAP.org David Sjoding Washington State University 360-956-2004 sjodingd@energy.wsu.edu Alaska Alaska Village Electric Cooperative, Anvik Alaska Village Electric Cooperative, Grayling Exit Glacier - Kenai Fjords National Park, Seward Golovin City, Golovin Inside Passage Electric Cooperative, Angoon Kokhanok City, Kokhanok St. Paul Island, St. Paul Island Village Council, Kongiganak City Village Council, Kwigillingok City Village Council, Stevens Village

132

Southwest Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Southwest Region Combined Heat and Power Projects Southwest Region Combined Heat and Power Projects Southwest Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Southwest www.southwestCHPTAP.org Christine Brinker Southwest Energy Efficiency Project 720-939-8333 cbrinker@swenergy.org Arizona Ina Road Water Pollution Control Facility, Tucson University of Arizona, Tucson View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Arizona. Colorado Metro Wastewater Reclamation District, Denver MillerCoors, Golden New Belgium Brewery, Fort Collins Trailblazer Pipeline, Fort Collins View EEA's database of all known CHP installations in Colorado.

133

Combined Heat & Power Technology Overview and Federal Sector Deployment  

Broader source: Energy.gov [DOE]

Presentation covers the Combined Heat & Power Technology Overview and Federal Sector Deployment from Oakridge National Laboratory. The presentation is from the FUPWG Spring Meeting, held on May 22, 2013 in San Francisco, California.

134

ITP Industrial Distributed Energy: Promoting Combined Heat and...  

Broader source: Energy.gov (indexed) [DOE]

1 Promoting Combined Heat and Power (CHP) for Multifamily Properties Robert Groberg, U.S. Department of Housing and Urban Development (HUD) Mike MacDonald and Patti Garland, Oak...

135

ITP Industrial Distributed Energy: HUD Combined Heat and Power...  

Broader source: Energy.gov (indexed) [DOE]

HUD COMBINED HEAT AND POWER (CHP) GUIDE 3 INTRODUCTION TO THE LEVEL 2 ANALYSIS TOOL FOR MULTIFAMILY BUILDINGS PREPARED FOR U.S. DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT BY U.S....

136

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

of Commercial-Building Micro-grids, IEEE Transactions onEffects of Carbon Tax on Micro-grid Combined Heat and Powerin this work, picks optimal micro-grid 3 /building equipment

Stadler, Michael

2014-01-01T23:59:59.000Z

137

.Heat Generation Patterns and Temperature Profiles in_ Electroslag Welding  

E-Print Network [OSTI]

l .Heat Generation Patterns and Temperature Profiles in_ Electroslag Welding ) · T. DEBROY, J process parameters such as the voltage profiles, heat generation patterns and temperature profiles with equivalent slag, electrode and other geometrical variable; Calcu- 0 lations show that the heat generation

Eagar, Thomas W.

138

Opportunities for Combined Heat and Power at Wastewater Treatment...  

Broader source: Energy.gov (indexed) [DOE]

option for WWTFs that have, or are planning to install, anaerobic digesters. The biogas flow from the digester can be used as fuel to generate electricity and heat in a CHP...

139

A state, characteristics, and perspectives of the Czech combined heating and power (CHP) systems  

SciTech Connect (OSTI)

The combined production of electricity and heat is a significant method for saving primary energy sources like fossil fuels, as well as reducing the production of CO{sub 2} and its emission to the atmosphere. The paper discusses the total efficiency of combined heat and power generation (CHP), comparing various types of CHP plants. The paper then describes the situation in the Czech Republic with regard to their centralized heat supply. The author concludes that there is no simple way to rebuild the Czech CHP systems, and that it would be better to start construction on more modern plants. He lists several starting principles to follow in the planning and design stage.

Kadrnozka, J. [Technical Univ. of Brno (Czech Republic)

1994-12-31T23:59:59.000Z

140

Property:Distributed Generation System Heating-Cooling Application | Open  

Open Energy Info (EERE)

Heating-Cooling Application Heating-Cooling Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Domestic Hot Water +, Space Heat and/or Cooling + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Domestic Hot Water + Distributed Generation Study/Arrow Linen + Domestic Hot Water + Distributed Generation Study/Dakota Station (Minnegasco) + Space Heat and/or Cooling +, Other + Distributed Generation Study/Elgin Community College + Space Heat and/or Cooling +, Domestic Hot Water + Distributed Generation Study/Emerling Farm + Domestic Hot Water +, Process Heat and/or Cooling +

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Heat Transfer Enhancement for Finned-Tube Heat Exchangers with Vortex Generators: Experimental and Numerical Results  

SciTech Connect (OSTI)

A combined experimental and numerical investigation is under way to investigate heat transfer enhancement techniques that may be applicable to large-scale air-cooled condensers such as those used in geothermal power applications. The research is focused on whether air-side heat transfer can be improved through the use of finsurface vortex generators (winglets,) while maintaining low heat exchanger pressure drop. A transient heat transfer visualization and measurement technique has been employed in order to obtain detailed distributions of local heat transfer coefficients on model fin surfaces. Pressure drop measurements have also been acquired in a separate multiple-tube row apparatus. In addition, numerical modeling techniques have been developed to allow prediction of local and average heat transfer for these low-Reynolds-number flows with and without winglets. Representative experimental and numerical results presented in this paper reveal quantitative details of local fin-surface heat transfer in the vicinity of a circular tube with a single delta winglet pair downstream of the cylinder. The winglets were triangular (delta) with a 1:2 height/length aspect ratio and a height equal to 90% of the channel height. Overall mean fin-surface Nusselt-number results indicate a significant level of heat transfer enhancement (average enhancement ratio 35%) associated with the deployment of the winglets with oval tubes. Pressure drop measurements have also been obtained for a variety of tube and winglet configurations using a single-channel flow apparatus that includes four tube rows in a staggered array. Comparisons of heat transfer and pressure drop results for the elliptical tube versus a circular tube with and without winglets are provided. Heat transfer and pressure-drop results have been obtained for flow Reynolds numbers based on channel height and mean flow velocity ranging from 700 to 6500.

O'Brien, James Edward; Sohal, Manohar Singh; Huff, George Albert

2002-08-01T23:59:59.000Z

142

Combined ICR heating antenna for ion separation systems  

SciTech Connect (OSTI)

A combination of one- and two-wave antennas (one and two turns of conductors around a plasma cylinder, respectively) is proposed. This combined antenna localizes an RF field within itself. It is shown that spent nuclear fuel processing systems based on ICR heating of nuclear ash by such a combined antenna have high productivity. A theory of the RF field excitation in ICR ion separation systems is presented in a simple and compact form.

Timofeev, A. V. [Russian Research Centre Kurchatov Institute (Russian Federation)

2011-01-15T23:59:59.000Z

143

Combined Cycle (CC) and Combined Heat and Power (CHP) Systems: An Introduction  

Science Journals Connector (OSTI)

Combined Cycle (CC)...is a power plant system in which two types of turbines, namely a gas turbine and a steam turbine, are used to generate electricity. Moreover the turbines are combined in one cycle

Andrzej W. Ordys MScEE; PhD; A. W. Pike

1994-01-01T23:59:59.000Z

144

5 Questions for an Expert: Bob Gemmer on Combined Heat and Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Combined heat and power (CHP), also known as co-generation, provides both electricity and heat from a single source all while saving energy and slashing carbon pollution. CHP systems capture energy that is normally lost in centralized power generation and convert that energy to heat and cool manufacturing facilities and businesses. Unlike central power generation, CHP systems are distributed energy generation systems and that means that they are located close to where energy is consumed. The proximity of power generation to its use makes CHP a reliable source of power for hospitals, schools, office buildings, apartment complexes, and other large buildings that require around-the-clock electricity. Bob Gemmer of EEREs Advanced Manufacturing Office is one of the Energy Departments primary experts on CHP technologies with more than 40 years of related expertise. We sat down with Bob to learn more about him and what makes him such a passionate advocate for CHP.

145

Effects of a carbon tax on combined heat and power adoption by a microgrid  

E-Print Network [OSTI]

of a Carbon Tax on Combined Heat and Power Adoption by aof a Carbon Tax on Combined Heat and Power Adoption by ainvolving combined heat and power (CHP). The expectation

Marnay, Chris; Edwards, Jennifer L.; Firestone, Ryan M.; Ghosh, Srijay; Siddidqui, Afzal S.; Stadler, Michael

2002-01-01T23:59:59.000Z

146

Terrestrial Heat Flow and Heat Generation in South-west England  

Science Journals Connector (OSTI)

......g cm-3 and a heat generation contrast of 3.35 pW...batholith, assuming heat generation from the country rocks...that radioactive heat generation is not constant throughout...University of London Reactor Centre for providing...from radioactivity, Nuclear Geology, ed. H. Faul......

H. Y. Tammemagi; J. Wheildon

1974-07-01T23:59:59.000Z

147

Waste Heat Recovery Opportunities for Thermoelectric Generators  

Broader source: Energy.gov [DOE]

Thermoelectrics have unique advantages for integration into selected waste heat recovery applications.

148

Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power Projects Combined Heat and Power Projects Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of CHP project profiles. Search the project profiles database. Project profiles can be searched by state, CHP TAP, market sector, North American Industry Classification System (NAICS) code, system size, technology/prime mover, fuel, thermal energy use, and year installed. View a list of project profiles by market sector. To view project profiles by state, click on a state on the map or choose a state from the drop-down list below. "An image of the United States representing a select number of CHP project profiles on a state-by-state basis View Energy and Environmental Analysis Inc.'s (EEA) database of all known

149

Guide to Combined Heat and Power Systems for Boiler Owners and...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power Systems for Boiler Owners and Operators Guide to Combined Heat and Power Systems for Boiler Owners and Operators This guide presents useful information for...

150

Second-Generation Biofuels from Multi-Product Biorefineries Combine...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Cellana 2014 Cellana's Cellana Inc. 2014 Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Martin...

151

A Flashing Binary Combined Cycle For Geothermal Power Generation | Open  

Open Energy Info (EERE)

Flashing Binary Combined Cycle For Geothermal Power Generation Flashing Binary Combined Cycle For Geothermal Power Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Flashing Binary Combined Cycle For Geothermal Power Generation Details Activities (0) Areas (0) Regions (0) Abstract: The performance of a flashing binary combined cycle for geothermal power generation is analysed. It is proposed to utilize hot residual brine from the separator in flashing-type plants to run a binary cycle, thereby producing incremental power. Parametric variations were carried out to determine the optimum performance of the combined cycle. Comparative evaluation with the simple flashing plant was made to assess its thermodynamic potential and economic viability. Results of the analyses indicate that the combined cycle can generate 13-28% more power than the

152

Magnetohydrodynamic power generation, electromagnetic pumps, heat pipes, and thermionic convertors  

SciTech Connect (OSTI)

The basic principles of operation, components, and design of MHD generators, electromagnetic pumps, heat pipes and thermionic converters are described. 66 references. (WHK)

Pierson, E.S.; Bonyhady, K.A.; Dunn, P.F.; Nathenson, R.D.; Uherka, K.L.

1984-01-01T23:59:59.000Z

153

Method of calculation of heat generation rates for DWPF glass  

SciTech Connect (OSTI)

The Waste Acceptance Preliminary Specifications (WAPS) require estimates of the heat generation rate of DWPF waste glasses. Estimates of the heat generation rates of projected glass compositions are to be reported in the Waste Form Qualification Report. Similar estimates for actual production glasses are to be reported in the Production Records. In this report, a method of calculating the heat generation rate from the radionuclide inventory is provided. Application of the method to the DWPF Design-Basis glass indicates that the heat generation rate can be accurately estimated from the Sr-90, Y-90, Cs-137, Ba-137m, and Pu-238 contents alone.

Plodinec, M.J.

1992-03-17T23:59:59.000Z

154

Method of calculation of heat generation rates for DWPF glass  

SciTech Connect (OSTI)

The Waste Acceptance Preliminary Specifications (WAPS) require estimates of the heat generation rate of DWPF waste glasses. Estimates of the heat generation rates of projected glass compositions are to be reported in the Waste Form Qualification Report. Similar estimates for actual production glasses are to be reported in the Production Records. In this report, a method of calculating the heat generation rate from the radionuclide inventory is provided. Application of the method to the DWPF Design-Basis glass indicates that the heat generation rate can be accurately estimated from the Sr-90, Y-90, Cs-137, Ba-137m, and Pu-238 contents alone.

Plodinec, M.J.

1993-02-04T23:59:59.000Z

155

Heat Integration Strategy for Economic Production of Combined Heat and Power from Biomass Waste  

Science Journals Connector (OSTI)

Heat Integration Strategy for Economic Production of Combined Heat and Power from Biomass Waste ... Dilution of hydrogen rich fuels resulting from coal or heavy hydrocarbon gasification processes with nitrogen prior to the entrance of the gas turbines may be desirable in precombustion carbon capture and storage (CCS) routes, in order to ensure safe operations of gas turbines. ...

Jhuma Sadhukhan; Kok Siew Ng; Nilay Shah; Howard J. Simons

2009-09-15T23:59:59.000Z

156

NREL: Vehicle Ancillary Loads Reduction - Heat Generated Cooling  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Heat Generated Cooling Heat Generated Cooling A counterintuitive but promising path to reducing the loads imposed by automotive air conditioning systems is to use heat-specifically the waste heat generated by engines. This can be an abundant source of energy, since most light-duty vehicles with combustion engines are only about 30% efficient at best. With that degree of thermal efficiency, an engine releases 70% of its fuel energy as waste heat through the coolant, exhaust gases, and engine compartment warm-up. During much of a typical drive cycle, the engine efficiency is even lower than 30%. As efficiency decreases, the amount of waste heat increases, representing a larger potential energy source. NREL's Vehicle Ancillary Loads Reduction (VALR) team is investigating a number of heat generated cooling technologies

157

Fossil fuel combined cycle power generation method  

DOE Patents [OSTI]

A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

2008-10-21T23:59:59.000Z

158

Why Blow Away Heat? Harvest Server's Heat Using Ther-moelectric Generators  

E-Print Network [OSTI]

Why Blow Away Heat? Harvest Server's Heat Using Ther- moelectric Generators Ted Tsung-Te Lai, Wei ABSTRACT This paper argues for harvesting energy from servers' wasted heat in data centers. Our approach is to distribute a large number of thermoelectric generators (TEGs) on or nearby server hotspot components whose

Huang, Polly

159

PipelineMarch 2013 Volume 5, Issue 2 COMBINED HEAT  

E-Print Network [OSTI]

generates electricity while also producing heat that will be used to create steam for University buildings growth has increased steam demand. Without the plant, demand will exceed reliable steam production that are reliable, sustainable and cost-effective. The Southeast Steam plant is the campus' sole steam production

Webb, Peter

160

A PASSIVE SOLAR HEATING SYSTEM COMBINED WITH A HEATPUMP AND A LONG TERM HEAT STORAGE  

Science Journals Connector (OSTI)

ABSTRACT This paper describes the design and the first preliminary performance results of a sunspace attached to an existent building, combined with a heatpump and a long term heat storage. The aim of the project is to study the possibility of storing the excess heat of the passive system in a low temperature storage, which is used as cold source for a heatpump. The advantages of the presented system are that the energy flows in the passive solar system can be controlled and that a rather high solar fraction can be obtained (around .7 to .8 in the climate of Ispra). KEYWORDS Passive solar energy, heat pump, heat storage

D. van Hattem; R. Colombo; P. Actis-Dato

1988-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

3D THERMOGRAPHY FOR QUANTIFICATION OF HEAT GENERATION RESULTING FROM  

E-Print Network [OSTI]

been used for decades by biologists and clinicians to isolate main sites of body heat loss by biologists and clinicians to isolate main sites of body heat loss and to assist with diagnosis3D THERMOGRAPHY FOR QUANTIFICATION OF HEAT GENERATION RESULTING FROM INFLAMMATION THERMOGRAPHIE 3D

Nebel, Jean-Christophe

162

Heat and mass transfer of a viscous heat generating fluid with Hall currents  

Science Journals Connector (OSTI)

A study of natural convection in hydrodynamic flows of a viscous heat generating fluid in the presence of Hall currents and ... out. The governing equations for the magnetohydrodynamic fluid flow and heat transfer

P. C. Ram; S. S. Singh; R. K. Jain

163

Combined Heat and Power Pilot Loan Program (Connecticut) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Loan Program (Connecticut) Loan Program (Connecticut) Combined Heat and Power Pilot Loan Program (Connecticut) < Back Eligibility Commercial Industrial Institutional Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate $450 per kilowatt Program Info Funding Source Clean Energy Finance and Investment Authority Start Date 06/18/2012 State Connecticut Program Type State Loan Program Rebate Amount Varies based on the specific technology, efficiency, and economics of the installation Provider Clean Energy Finance and Investment Authority Note: The application deadline was September 28, 2012. This solicitation is now closed. Check the program web site for information regarding the next solicitation. The Clean Energy Finance and Investment Authority (CEFIA) is administering

164

Combined Heat and Power Pilot Grant Program (Connecticut ) | Department of  

Broader source: Energy.gov (indexed) [DOE]

Grant Program (Connecticut ) Grant Program (Connecticut ) Combined Heat and Power Pilot Grant Program (Connecticut ) < Back Eligibility Commercial Industrial Institutional Savings Category Commercial Heating & Cooling Manufacturing Buying & Making Electricity Maximum Rebate $450 per kilowatt Program Info Funding Source Clean Energy Finance and Investment Authority State Connecticut Program Type State Grant Program Rebate Amount Varies based on the specific technology, efficiency, and economics of the installation Provider Clean Energy Finance and Investment Authority Note: The initial application deadline was September 28, 2012. This solicitation is now closed. Check the program web site for information regarding the next solicitation. The Clean Energy Finance and Investment Authority (CEFIA) is administering

165

Thermionic generator module with heat pipes  

SciTech Connect (OSTI)

A thermionic converter module is described comprising: a first heat pipe with an annular casing which has a first surface located on an inside surface of the annular casing, at least part of the first surface of the casing of the first heat pipe having constructed upon it a thermionic converter emitter located so that heat will be transferred by conduction from the first heat pipe casing to the thermionic converter emitter; a second heat pipe with a casing which has a second surface, the second surface being located within the first surface of the annular casing of the first heat pipe so that it is surrounded by the first surface; a thermionic converter collector located so as to transfer heat by conduction to the second surface of the casing of the second heat pipe with the thermionic converter collector being adjacent to the thermionic converter emitter but being separated from the thermionic converter emitter by an inter electrode space; and end fitting structures located so that, with the thermionic converter collector and the thermionic converter emitter, they complete an enclosure around the inter electrode space and form an evacuated enclosure within which are located the thermionic converter collector and the thermionic converter emitter.

Horner-Richardson, K.; Ernst, D.M.

1993-06-15T23:59:59.000Z

166

Issues in heat recovery steam generator system noise  

Science Journals Connector (OSTI)

A heat recovery steam generator (HRSG) is a fundamental component of all combustion turbine?based combined cycle power plants. While its primary purpose is to convert exhaust gas heat to steam an important secondary function is to reduce noise emissions from the combustion turbine exhaust. This source at about 155 dB (overall) re: 1 pW for a 100?MW turbine is the highest noise emission source in any combustion turbine plant. Therefore the residual exhaust noise emissions leaving the HRSG walls and stack exit must be predicted with acceptable accuracy to determine the total plant noise level. The sources involved in this prediction methodology will be discussed. The issues include source power levels wall and duct transmission loss and the noise reduction characteristics through the HRSG flow path. Special measurement techniques required to quantify HRSG noise emissions are described. Whereas the HRSG is mainly a passive device that attenuates combustion turbine exhaust noise two HRSG generated sources steam venting and supplemental duct firing will also be discussed. [See NOISE?CON Proceedings for full paper.

George F. Hessler Jr.

1997-01-01T23:59:59.000Z

167

Combined passive bearing element/generator motor  

DOE Patents [OSTI]

An electric machine includes a cylindrical rotor made up of an array of permanent magnets that provide a N-pole magnetic field of even order (where N=4, 6, 8, etc.). This array of permanent magnets has bars of identical permanent magnets made of dipole elements where the bars are assembled in a circle. A stator inserted down the axis of the dipole field is made of two sets of windings that are electrically orthogonal to each other, where one set of windings provides stabilization of the stator and the other set of windings couples to the array of permanent magnets and acts as the windings of a generator/motor. The rotor and the stator are horizontally disposed, and the rotor is on the outside of said stator. The electric machine may also include two rings of ferromagnetic material. One of these rings would be located at each end of the rotor. Two levitator pole assemblies are attached to a support member that is external to the electric machine. These levitator pole assemblies interact attractively with the rings of ferromagnetic material to produce a levitating force upon the rotor.

Post, Richard F. (Walnut Creek, CA)

2000-01-01T23:59:59.000Z

168

Heat transfer in a thermoelectric generator for diesel engines  

SciTech Connect (OSTI)

This paper discusses the design and test results obtained for a 1kW thermoelectric generator used to convert the waste thermal energy in the exhaust of a Diesel engine directly to electric energy. The paper focuses on the heat transfer within the generator and shows what had to be done to overcome the heat transfer problems encountered in the initial generator testing to achieve the output goal of 1kW electrical. The 1kW generator uses Bismuth-Telluride thermoelectric modules for the energy conversion process. These modules are also being evaluated for other waste heat applications. Some of these applications are briefly addressed.

Bass, J.C. [Hi-Z Technology, Inc., San Diego, CA (United States)

1995-12-31T23:59:59.000Z

169

Combined Heat and Power - A Decade of Progress, A Vision for...  

Broader source: Energy.gov (indexed) [DOE]

Combined Heat and Power - A Decade of Progress, A Vision for the Future, August 2009 Combined Heat and Power - A Decade of Progress, A Vision for the Future, August 2009 Combined...

170

The development of Coke Carried-Heat Gasification Coal-Fired Combined Cycle  

Science Journals Connector (OSTI)

Carried-Heat Partial Gasification Combined cycle is a novel combined cycle which was proposed by Thermal Engineering Department ... technology, Coke Carried-Heat Gasification Coal-Fired Combined Cycle, as the imp...

Li Zhao; Xiangdong Xu

1999-12-01T23:59:59.000Z

171

Combined Heat and Power (CHP) Systems | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Technology Development » Smart Grid » Distributed Technology Development » Smart Grid » Distributed Energy » Combined Heat and Power (CHP) Systems Combined Heat and Power (CHP) Systems The CHP systems program aimed to facilitate acceptance of distributed energy in end-use sectors by forming partnerships with industry consortia in the commercial building, merchant stores, light industrial, supermarkets, restaurants, hospitality, health care and high-tech industries. In high-tech industries such as telecommunications, commercial data processing and internet services, the use of electronic data and signal processing have become a cornerstone in the U.S. economy. These industries represent high potential for CHP and distributed energy due to their ultra-high reliability and power quality requirements and related large

172

Encouraging Combined Heat and Power in California Buildings  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

267E 267E Encouraging Combined Heat and Power in California Buildings Michael Stadler, Markus Groissböck, Gonçalo Cardoso, Andreas Müller, and Judy Lai Environmental Energy Technologies Division http://microgrid.lbl.gov This project was funded by the California Energy Commission Public Interest Energy Research (PIER) Program under WFO Contract No. 500-10-052 and by the U.S. Department of Energy, under Contract No. DE-AC02-05CH11231. We are appreciative of the Commission's timely support for this project. We particularly thank Golam Kibrya and Chris Scruton for their guidance and assistance through all phases of the project. ERNEST ORLANDO LAWRENCE BERKELEY NATIONAL LABORATORY Encouraging Combined Heat and Power in California

173

Distributed Generation with Heat Recovery and Storage  

E-Print Network [OSTI]

most commercial buildings, electricity costs far exceed heatoffset by lower electricity costs from on- site generation (as much from lower electricity costs as it does from lower

Siddiqui, Afzal S.; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

2008-01-01T23:59:59.000Z

174

Heat Transfer Enhancement: Second Generation Technology  

E-Print Network [OSTI]

stant temperature difference or one-ninth the temp erature difference at a constant heat flux compared to plain tubes. 7.5 frn/em lin tube Atter flanening ltn tips Some manufacturers also employ tube-side en hancement for water flowing...

Bergles, A. E.; Webb, R. L.

1984-01-01T23:59:59.000Z

175

Energy efficient operation strategy design for the combined cooling, heating and power system.  

E-Print Network [OSTI]

??Combined cooling, heating and power (CCHP) systems are known as trigeneration systems, designed to provide electricity, cooling and heating simultaneously. The CCHP system has become (more)

Liu, Mingxi

2012-01-01T23:59:59.000Z

176

Field application of a chemical heat and nitrogen generating system  

SciTech Connect (OSTI)

Heat is often required to stimulate production in wells with recurrent histories of paraffin deposition and plugging. A chemical system which produces heat and nitrogen at a predetermined well depth is proposed as an alternative to the traditional hot oil and steam generation treatments. The system is described briefly and case histories are given for 3 wells in California and 5 wells in Wyoming. The field results indicate that heat produced by the nitrogen generating system effectively stimulates production from paraffin plugged wells. The heat and nitrogen generating system further shows increased production cycle lengths over those which result from hot oil or paraffin solvent treatments. Beneficial effects of including a paraffin inhibitor in the treatment design are discussed, along with other potential applications for the heat produced by this system.

Mitchell, T.I.; Collesi, J.B.; Donovan, S.C.; McSpadden, H.W.

1984-04-01T23:59:59.000Z

177

Power Generation From Waste Heat Using Organic Rankine Cycle Systems  

E-Print Network [OSTI]

Many efforts are currently being pursued to develop and implement new energy technologies aimed at meeting our national energy goals The use of organic Rankine cycle engines to generate power from waste heat provides a near term means to greatly...

Prasad, A.

1980-01-01T23:59:59.000Z

178

Generator powered electrically heated diesel particulate filter  

DOE Patents [OSTI]

A control circuit for a vehicle powertrain includes a switch that selectivity interrupts current flow between a first terminal and a second terminal. A first power source provides power to the first terminal and a second power source provides power to the second terminal and to a heater of a heated diesel particulate filter (DPF). The switch is opened during a DPF regeneration cycle to prevent the first power source from being loaded by the heater while the heater is energized.

Gonze, Eugene V; Paratore, Jr., Michael J

2014-03-18T23:59:59.000Z

179

WORKING PARK-FUEL CELL COMBINED HEAT AND POWER SYSTEM  

SciTech Connect (OSTI)

This report covers the aims and objectives of the project which was to design, install and operate a fuel cell combined heat and power (CHP) system in Woking Park, the first fuel cell CHP system in the United Kingdom. The report also covers the benefits that were expected to accrue from the work in an understanding of the full technology procurement process (including planning, design, installation, operation and maintenance), the economic and environmental performance in comparison with both conventional UK fuel supply and conventional CHP and the commercial viability of fuel cell CHP energy supply in the new deregulated energy markets.

Allan Jones

2003-09-01T23:59:59.000Z

180

1990,"AK","Combined Heat and Power, Commercial Power","All Sources",4,85.9,80.09  

U.S. Energy Information Administration (EIA) Indexed Site

STATE_CODE","PRODUCER_TYPE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY STATE_CODE","PRODUCER_TYPE","FUEL_SOURCE","GENERATORS","NAMEPLATE_CAPACITY (Megawatts)","SUMMER_CAPACITY (Megawatts)" 1990,"AK","Combined Heat and Power, Commercial Power","All Sources",4,85.9,80.09 1990,"AK","Combined Heat and Power, Commercial Power","Coal",3,65.5,61.1 1990,"AK","Combined Heat and Power, Commercial Power","Petroleum",1,20.4,18.99 1990,"AK","Combined Heat and Power, Industrial Power","All Sources",23,229.4,204.21 1990,"AK","Combined Heat and Power, Industrial Power","Natural Gas",28,159.32,136.67 1990,"AK","Combined Heat and Power, Industrial Power","Petroleum",8,68.28,65.86

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Distributed Generation Investment by a Microgrid Under Uncertainty  

E-Print Network [OSTI]

DG) and combined heat and power (CHP) applications matchedpower generation with combined heat and power applications,tax on microgrid combined heat and power adoption, Journal

Siddiqui, Afzal; Marnay, Chris

2006-01-01T23:59:59.000Z

182

Guide to Combined Heat and Power Systems for Boiler Owners and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Guide to Combined Heat and Power Systems for Boiler Owners and Operators, July 2004 Many owners...

183

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...  

Broader source: Energy.gov (indexed) [DOE]

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2011 Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power - Fact Sheet, 2011 TDA...

184

Combined Heat and Power: Is It Right For Your Facility? | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Combined Heat and Power: Is It Right For Your Facility? Combined Heat and Power: Is It Right For Your Facility? This presentation provides an overview of CHP technologies and how...

185

Assessing the Benefits of On-Site Combined Heat and Power During...  

Broader source: Energy.gov (indexed) [DOE]

Assessing the Benefits of On-Site Combined Heat and Power During the August 14, 2003, Blackout, June 2004 Assessing the Benefits of On-Site Combined Heat and Power During the...

186

Case Study: Fuel Cells Provide Combined Heat and Power at Verizon...  

Broader source: Energy.gov (indexed) [DOE]

Provide Combined Heat and Power at Verizon's Garden Central Office Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office This is a case study...

187

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT...  

Broader source: Energy.gov (indexed) [DOE]

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES Section...

188

National Association of Counties Webinar- Combined Heat and Power: Resiliency Strategies for Critical Facilities  

Broader source: Energy.gov [DOE]

Combined heat and power (CHP), also known as cogeneration, is a method whereby energy is produced, and excess heat from the production process can be used for heating and cooling processes....

189

Experimental investigation on system with combination of ground-source heat pump and solar collector  

Science Journals Connector (OSTI)

This paper presents the heating performance and energy distribution of a system with the combination of ground-source heat pump and solar collector or a solar-assisted ground-source heat pump system (SAGSHPS) by ...

Tao Hu ? ?; Jialing Zhu ???; Wei Zhang ? ?

2013-06-01T23:59:59.000Z

190

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation  

E-Print Network [OSTI]

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites INTRODUCTION In part I

Xu, Xianfan

191

Engine Driven Combined Heat and Power: Arrow Linen Supply, December 2008  

Broader source: Energy.gov [DOE]

Presentation overview the arrow linen supply combined heat and power, its cost savings, success factors, and impacts

192

The Market and Technical Potential for Combined Heat and Power in the Industrial Sector, January 2000  

Broader source: Energy.gov [DOE]

Report of an analysis of the market and technical potential for combined heat and power in the industrial sector

193

Finned Tube With Vortex Generators For A Heat Exchanger.  

DOE Patents [OSTI]

A system for and method of manufacturing a finned tube for a heat exchanger is disclosed herein. A continuous fin strip is provided with at least one pair of vortex generators. A tube is rotated and linearly displaced while the continuous fin strip with vortex generators is spirally wrapped around the tube.

Sohal, Monohar S. (Idaho Falls, ID); O'Brien, James E. (Idaho Falls, ID)

2004-09-14T23:59:59.000Z

194

Billet Heating with the Homopolar Generator  

E-Print Network [OSTI]

energy storage using homopolar electro mechanical conversion is the least expensive and most compact among the practical methods of energy storage which would allow energy to be drawn from the utility grid in a continuous mode, including loading... a conductor that moves through a unidirection al magnetic field. The essential difference from a conventional generator is that the current travels through the rotor itself which is the energy storage flywheel and makes only one transit across...

Weldon, W. F.; Keith, R. E.; Weldon, J. M.

1980-01-01T23:59:59.000Z

195

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

solar thermal utilization photovoltaic solar thermal electric storage heatDER technologies as PV, solar thermal, electric and heat

Stadler, Michael

2014-01-01T23:59:59.000Z

196

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

natural-gas- fired combined cycle generation, and the othernatural-gas-fired combined cycle plants. This assumptionplants were efficient combined cycle plants. The four

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

197

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System Combined Heat and Power System by Zachary Mills Norwood Doctor of Philosophy in the Energy and Resources of analysis of Distributed Concentrating Solar Combined Heat and Power (DCS-CHP) systems is a design

California at Berkeley, University of

198

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network [OSTI]

natural gas generator with waste heat recovery at a facilityCCHP locations that are using waste heat for cooling alsouse some of the waste heat directly for water or space

Norwood, Zack

2010-01-01T23:59:59.000Z

199

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

of the rejected waste heat from power generation. (c)and for use of the waste heat, a condenser is muchcycle ? t Fraction of waste heat recovered from Rankine

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

200

Techno-economic analysis of using corn stover to supply heat and power to a corn ethanol plant - Part 2: Cost of heat and power generation systems  

SciTech Connect (OSTI)

This paper presents a techno-economic analysis of corn stover fired process heating (PH) and the combined heat and power (CHP) generation systems for a typical corn ethanol plant (ethanol production capacity of 170 dam3). Discounted cash flow method was used to estimate both the capital and operating costs of each system and compared with the existing natural gas fired heating system. Environmental impact assessment of using corn stover, coal and natural gas in the heat and/or power generation systems was also evaluated. Coal fired process heating (PH) system had the lowest annual operating cost due to the low fuel cost, but had the highest environmental and human toxicity impacts. The proposed combined heat and power (CHP) generation system required about 137 Gg of corn stover to generate 9.5 MW of electricity and 52.3 MW of process heat with an overall CHP efficiency of 83.3%. Stover fired CHP system would generate an annual savings of 3.6 M$ with an payback period of 6 y. Economics of the coal fired CHP system was very attractive compared to the stover fired CHP system due to lower fuel cost. But the greenhouse gas emissions per Mg of fuel for the coal fired CHP system was 32 times higher than that of stover fired CHP system. Corn stover fired heat and power generation system for a corn ethanol plant can improve the net energy balance and add environmental benefits to the corn to ethanol biorefinery.

Mani, Sudhagar [University of Georgia; Sokhansanj, Shahabaddine [ORNL; Togore, Sam [U.S. Department of Energy; Turhollow Jr, Anthony F [ORNL

2010-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

with or without combined heat and power (CHP) and contributein Microgrids with Combined Heat and Power Chris Marnay,Microgrids with Combined Heat and Power 1 Chris Marnay a) ,

Marnay, Chris

2010-01-01T23:59:59.000Z

202

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network [OSTI]

Economic Analysis of Combined Heat and Power Technologies inEconomic Analysis of Combined Heat and Power Technologies inAgency (1998). Combined Heat and Power in Denmark. Version

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

203

Corner heating in rectangular solid oxide electrochemical cell generators  

DOE Patents [OSTI]

Disclosed is an improvement in a solid oxide electrochemical cell generator 1 having a rectangular design with four sides that meet at corners, and containing multiplicity of electrically connected fuel cells 11, where a fuel gas is passed over one side of said cells and an oxygen containing gas is passed into said cells, and said fuel is burned to form heat, electricity, and an exhaust gas. The improvement comprises passing the exhaust gases over the multiplicity of cells 11 in such a way that more of the heat in said exhaust gases flows at the corners of the generator, such as through channels 19.

Reichner, Philip (Plum Boro, PA)

1989-01-01T23:59:59.000Z

204

New geothermal heat extraction process to deliver clean power generation  

ScienceCinema (OSTI)

A new method for capturing significantly more heat from low-temperature geothermal resources holds promise for generating virtually pollution-free electrical energy. Scientists at the Department of Energys Pacific Northwest National Laboratory will determine if their innovative approach can safely and economically extract and convert heat from vast untapped geothermal resources. The goal is to enable power generation from low-temperature geothermal resources at an economical cost. In addition to being a clean energy source without any greenhouse gas emissions, geothermal is also a steady and dependable source of power.

Pete McGrail

2012-12-31T23:59:59.000Z

205

Combined search for the quarks of a sequential fourth generation  

DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5??fb?1 recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up and down type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant Cabibbo-Kobayashi-Maskawa matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about 20??GeV . These results significantly reduce the allowed parameter space for a fourth generation of fermions.

Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Er, J.; Fabjan, C.; Friedl, M.; Frhwirth, R.; Ghete, V. M.; Hammer, J.; Hrmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knnz, V.; Krammer, M.; Krtschmer, I.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schfbeck, R.; Strauss, J.; Taurok, A.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; DHondt, J.; Gonzalez Suarez, R.; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Lonard, A.; Marage, P. E.; Mohammadi, A.; Reis, T.; Thomas, L.; Vander Marcken, G.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Correa Martins Junior, M.; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Ald Jnior, W. L.; Carvalho, W.; Custdio, A.; Da Costa, E. M.; De Oliveira Martins, C.; Fonseca De Souza, S.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Oguri, V.; Prado Da Silva, W. L.; Santoro, A.; Soares Jorge, L.; Sznajder, A.; Anjos, T. S.; Bernardes, C. A.; Dias, F. A.; Tomei, T.R. Fernandez Perez; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zhu, B.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Ellithi Kamel, A.; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Mntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Hrknen, J.; Heikkinen, A.; Karimki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampn, T.; Lassila-Perini, K.; Lehti, S.; Lindn, T.; Luukka, P.; Menp, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; Granier de Cassagnac, R.; Haguenauer, M.; Min, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gel, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.

2012-12-01T23:59:59.000Z

206

Multi-physics modeling of thermoelectric generators for waste heat recovery applications  

Broader source: Energy.gov [DOE]

Model developed provides effective guidelines to designing thermoelectric generation systems for automotive waste heat recovery applications

207

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling  

E-Print Network [OSTI]

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling telluride TEMs. Key words: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from

Xu, Xianfan

208

Guide to Combined Heat and Power Systems for Boiler Owners and Operators  

SciTech Connect (OSTI)

Combined heat and power (CHP) or cogeneration is the sequential production of two forms of useful energy from a single fuel source. In most CHP applications, chemical energy in fuel is converted to both mechanical and thermal energy. The mechanical energy is generally used to generate electricity, while the thermal energy or heat is used to produce steam, hot water, or hot air. Depending on the application, CHP is referred to by various names including Building Cooling, Heating, and Power (BCHP); Cooling, Heating, and Power for Buildings (CHPB); Combined Cooling, Heating, and Power (CCHP); Integrated Energy Systems (IES), or Distributed Energy Resources (DER). The principal technical advantage of a CHP system is its ability to extract more useful energy from fuel compared to traditional energy systems such as conventional power plants that only generate electricity and industrial boiler systems that only produce steam or hot water for process applications. By using fuel energy for both power and heat production, CHP systems can be very energy efficient and have the potential to produce electricity below the price charged by the local power provider. Another important incentive for applying cogeneration technology is to reduce or eliminate dependency on the electrical grid. For some industrial processes, the consequences of losing power for even a short period of time are unacceptable. The primary objective of the guide is to present information needed to evaluate the viability of cogeneration for new or existing industrial, commercial, and institutional (ICI) boiler installations and to make informed CHP equipment selection decisions. Information presented is meant to help boiler owners and operators understand the potential benefits derived from implementing a CHP project and recognize opportunities for successful application of cogeneration technology. Topics covered in the guide follow: (1) an overview of cogeneration technology with discussions about benefits of applying cogeneration technology and barriers to implementing cogeneration technology; (2) applicable federal regulations and permitting issues; (3) descriptions of prime movers commonly used in CHP applications, including discussions about design characteristics, heat-recovery options and equipment, fuels and emissions, efficiency, maintenance, availability, and capital cost; (4) electrical generators and electrical interconnection equipment; (5) cooling and dehumidification equipment; (6) thermodynamic cycle options and configurations; (7) steps for evaluating the technical and economic feasibility of applying cogeneration technology; and (8) information sources.

Oland, CB

2004-08-19T23:59:59.000Z

209

Optimization of waste heat recovery boiler of a combined cycle power plant  

SciTech Connect (OSTI)

This paper describes the details of a procedure developed for optimization of a waste heat recovery boiler (WHRB) of a combined cycle power plant (CCPP) using the program for performance prediction of a typical CCPP, details of which have been presented elsewhere (Seyedan et al., 1994). In order to illustrate the procedure, the optimum design of a WHRB for a typical CCPP (employing dual-pressure bottoming cycle) built by a prominent Indian company, has been carried out. The present design of a WHRB is taken as the base design and the newer designs generated by this procedure are compared with it to assess the extent of cost reduction possible.

Seyedan, B.; Dhar, P.L.; Gaur, R.R. [Indian Inst. of Tech., New Delhi (India). Dept. of Mechanical Engineering; Bindra, G.S. [Bharat Heavy Electrical Ltd., New Delhi (India)

1996-07-01T23:59:59.000Z

210

Combining Energy Efficiency Building Retrofits and Onsite Generation: An  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Combining Energy Efficiency Building Retrofits and Onsite Generation: An Combining Energy Efficiency Building Retrofits and Onsite Generation: An Emerging Business Model from the ESCO Industry Title Combining Energy Efficiency Building Retrofits and Onsite Generation: An Emerging Business Model from the ESCO Industry Publication Type Conference Paper Year of Publication 2011 Authors Satchwell, Andrew, Peter H. Larsen, and Charles A. Goldman Conference Name 2011 ACEEE Summer Study on Energy Efficiency in Industry Date Published 2011 Publisher ACEEE Conference Location Niagara Falls, New York Abstract The U.S. energy service company (ESCO) industry is an example of a private-sector business model where energy efficiency savings are delivered to customers primarily through the use of performance-based contracts. Despite the onset of a severe economic recession, we estimate that the U.S. ESCO industry grew about 7% per year from 2006 to 2008 with annual revenues of about $4.1 billion in 2008. About 75% of industry revenues are directly related to the installation of energy efficiency measures at existing buildings in the institutional, commercial, and industrial sectors.

211

A detailed MILP optimization model for combined cooling, heat and power system operation planning  

Science Journals Connector (OSTI)

Abstract A detailed optimization model is presented for planning the short-term operation of combined cooling, heat and power (CCHP) energy systems. The purpose is, given the design of a cogeneration system, to determine an operating schedule that minimizes the total operating and maintenance costs minus the revenue due to the electricity sold to the grid, while taking into account time-varying loads, tariffs and ambient conditions. The model considers the simultaneous use of different prime movers (generating electricity and heat), boilers, compression heat pumps and chillers, and absorption chillers to satisfy given electricity, heat and cooling demands. Heat and cooling load can be stored in storage tanks. Units can have one or two operative variables, highly nonlinear performance curves describing their off-design behavior, and limitations or penalizations affecting their start-up/shut-down operations. To exploit the effectiveness of state-of-the-art Mixed Integer Linear Program (MILP) solvers, the resulting Mixed Integer Nonlinear Programming (MINLP) model is converted into a MILP by appropriate piecewise linear approximation of the nonlinear performance curves. The model, written in the AMPL modeling language, has been tested on several plant test cases. The computational results are discussed in terms of the quality of the solutions, the linearization accuracy and the computational time.

Aldo Bischi; Leonardo Taccari; Emanuele Martelli; Edoardo Amaldi; Giampaolo Manzolini; Paolo Silva; Stefano Campanari; Ennio Macchi

2014-01-01T23:59:59.000Z

212

Combined search for the quarks of a sequential fourth generation  

E-Print Network [OSTI]

Results are presented from a search for a fourth generation of quarks produced singly or in pairs in a data set corresponding to an integrated luminosity of 5 inverse femtobarns recorded by the CMS experiment at the LHC in 2011. A novel strategy has been developed for a combined search for quarks of the up- and down-type in decay channels with at least one isolated muon or electron. Limits on the mass of the fourth-generation quarks and the relevant CKM matrix elements are derived in the context of a simple extension of the standard model with a sequential fourth generation of fermions. The existence of mass-degenerate fourth-generation quarks with masses below 685 GeV is excluded at 95% confidence level for minimal off-diagonal mixing between the third- and the fourth-generation quarks. With a mass difference of 25 GeV between the quark masses, the obtained limit on the masses of the fourth-generation quarks shifts by about +/- 20 GeV. This result significantly reduces the allowed parameter space for a fourt...

Chatrchyan, Serguei; Sirunyan, Albert M; Tumasyan, Armen; Adam, Wolfgang; Aguilo, Ernest; Bergauer, Thomas; Dragicevic, Marko; Er, Janos; Fabjan, Christian; Friedl, Markus; Fruehwirth, Rudolf; Ghete, Vasile Mihai; Hammer, Josef; Hrmann, Natascha; Hrubec, Josef; Jeitler, Manfred; Kiesenhofer, Wolfgang; Knnz, Valentin; Krammer, Manfred; Krtschmer, Ilse; Liko, Dietrich; Mikulec, Ivan; Pernicka, Manfred; Rahbaran, Babak; Rohringer, Christine; Rohringer, Herbert; Schfbeck, Robert; Strauss, Josef; Taurok, Anton; Waltenberger, Wolfgang; Walzel, Gerhard; Widl, Edmund; Wulz, Claudia-Elisabeth; Mossolov, Vladimir; Shumeiko, Nikolai; Suarez Gonzalez, Juan; Bansal, Monika; Bansal, Sunil; Cornelis, Tom; De Wolf, Eddi A; Janssen, Xavier; Luyckx, Sten; Mucibello, Luca; Ochesanu, Silvia; Roland, Benoit; Rougny, Romain; Selvaggi, Michele; Staykova, Zlatka; Van Haevermaet, Hans; Van Mechelen, Pierre; Van Remortel, Nick; Van Spilbeeck, Alex; Blekman, Freya; Blyweert, Stijn; D'Hondt, Jorgen; Gonzalez Suarez, Rebeca; Kalogeropoulos, Alexis; Maes, Michael; Olbrechts, Annik; Van Doninck, Walter; Van Mulders, Petra; Van Onsem, Gerrit Patrick; Villella, Ilaria; Clerbaux, Barbara; De Lentdecker, Gilles; Dero, Vincent; Gay, Arnaud; Hreus, Tomas; Lonard, Alexandre; Marage, Pierre Edouard; Mohammadi, Abdollah; Reis, Thomas; Thomas, Laurent; Vander Marcken, Gil; Vander Velde, Catherine; Vanlaer, Pascal; Wang, Jian; Adler, Volker; Beernaert, Kelly; Cimmino, Anna; Costantini, Silvia; Garcia, Guillaume; Grunewald, Martin; Klein, Benjamin; Lellouch, Jrmie; Marinov, Andrey; Mccartin, Joseph; Ocampo Rios, Alberto Andres; Ryckbosch, Dirk; Strobbe, Nadja; Thyssen, Filip; Tytgat, Michael; Verwilligen, Piet; Walsh, Sinead; Yazgan, Efe; Zaganidis, Nicolas; Basegmez, Suzan; Bruno, Giacomo; Castello, Roberto; Ceard, Ludivine; Delaere, Christophe; Du Pree, Tristan; Favart, Denis; Forthomme, Laurent; Giammanco, Andrea; Hollar, Jonathan; Lemaitre, Vincent; Liao, Junhui; Militaru, Otilia; Nuttens, Claude; Pagano, Davide; Pin, Arnaud; Piotrzkowski, Krzysztof; Schul, Nicolas; Vizan Garcia, Jesus Manuel; Beliy, Nikita; Caebergs, Thierry; Daubie, Evelyne; Hammad, Gregory Habib; Alves, Gilvan; Correa Martins Junior, Marcos; De Jesus Damiao, Dilson; Martins, Thiago; Pol, Maria Elena; Henrique Gomes E Souza, Moacyr; Ald Jnior, Walter Luiz; Carvalho, Wagner; Custdio, Analu; Da Costa, Eliza Melo; De Oliveira Martins, Carley; Fonseca De Souza, Sandro; Matos Figueiredo, Diego; Mundim, Luiz; Nogima, Helio; Oguri, Vitor; Prado Da Silva, Wanda Lucia; Santoro, Alberto; Soares Jorge, Luana; Sznajder, Andre; Souza Dos Anjos, Tiago; Bernardes, Cesar Augusto; De Almeida Dias, Flavia; Tomei, Thiago; De Moraes Gregores, Eduardo; Lagana, Caio; Da Cunha Marinho, Franciole; Mercadante, Pedro G; Novaes, Sergio F; Padula, Sandra; Genchev, Vladimir; Iaydjiev, Plamen; Piperov, Stefan; Rodozov, Mircho; Stoykova, Stefka; Sultanov, Georgi; Tcholakov, Vanio; Trayanov, Rumen; Vutova, Mariana; Dimitrov, Anton; Hadjiiska, Roumyana; Kozhuharov, Venelin; Litov, Leander; Pavlov, Borislav; Petkov, Peicho; Bian, Jian-Guo; Chen, Guo-Ming; Chen, He-Sheng; Jiang, Chun-Hua; Liang, Dong; Liang, Song; Meng, Xiangwei; Tao, Junquan; Wang, Jian; Wang, Xianyou; Wang, Zheng; Xiao, Hong; Xu, Ming; Zang, Jingjing; Zhang, Zhen; Asawatangtrakuldee, Chayanit; Ban, Yong; Guo, Shuang; Guo, Yifei; Li, Wenbo; Liu, Shuai; Mao, Yajun; Qian, Si-Jin; Teng, Haiyun; Wang, Dayong; Zhang, Linlin; Zhu, Bo; Zou, Wei; Avila, Carlos; Gomez, Juan Pablo; Gomez Moreno, Bernardo; Osorio Oliveros, Andres Felipe; Sanabria, Juan Carlos; Godinovic, Nikola; Lelas, Damir; Plestina, Roko; Polic, Dunja; Puljak, Ivica; Antunovic, Zeljko; Kovac, Marko; Brigljevic, Vuko; Duric, Senka; Kadija, Kreso; Luetic, Jelena; Morovic, Srecko; Attikis, Alexandros; Galanti, Mario; Mavromanolakis, Georgios; Mousa, Jehad; Nicolaou, Charalambos; Ptochos, Fotios; Razis, Panos A; Finger, Miroslav; Finger Jr, Michael; Assran, Yasser; Elgammal, Sherif; Ellithi Kamel, Ali; Khalil, Shaaban; Mahmoud, Mohammed; Radi, Amr; Kadastik, Mario; Mntel, Mait; Raidal, Martti; Rebane, Liis; Tiko, Andres; Eerola, Paula; Fedi, Giacomo; Voutilainen, Mikko; Hrknen, Jaakko; Heikkinen, Mika Aatos; Karimki, Veikko; Kinnunen, Ritva; Kortelainen, Matti J; Lampn, Tapio; Lassila-Perini, Kati; Lehti, Sami; Lindn, Tomas; Luukka, Panja-Riina; Menp, Teppo; Peltola, Timo; Tuominen, Eija; Tuominiemi, Jorma; Tuovinen, Esa; Ungaro, Donatella; Wendland, Lauri; Banzuzi, Kukka; Karjalainen, Ahti; Korpela, Arja; Tuuva, Tuure; Besancon, Marc; Choudhury, Somnath

2012-01-01T23:59:59.000Z

213

Multi-objective optimization of a combined cooling, heating and power system driven by solar energy  

Science Journals Connector (OSTI)

Abstract This paper presented a multi-objective optimization of a combined cooling, heating and power system (CCHP) driven by solar energy. The flat-plate solar collector was employed to collect the solar radiation and to transform it into thermal energy. The thermal storage unit was installed to storage the thermal energy collected by the collectors to ensure a continuous energy supplement when solar energy was weak or insufficient. The CCHP system combined an organic Rankine cycle with an ejector refrigeration cycle to yield electricity and cold capacity to users. In order to conduct the optimization, the mathematical model of the solar-powered CCHP system was established. Owing to the limitation of the single-objective optimization, the multi-objective optimization of the system was carried out. Four key parameters, namely turbine inlet temperature, turbine inlet pressure, condensation temperature and pinch temperature difference in vapor generator, were selected as the decision variables to examine the performance of the overall system. Two objective functions, namely the average useful output and the total heat transfer area, were selected to maximize the average useful output and to minimize the total heat transfer area under the given conditions. NSGA-II (Non-dominated Sort Genetic Algorithm-II) was employed to achieve the final solutions in the multi-objective optimization of the system operating in three modes, namely power mode, combined heat and power (CHP) mode, and combined cooling and power (CCP) mode. For the power mode, the optimum average useful output and total heat transfer area were 6.40kW and 46.16m2. For the CCP mode, the optimum average useful output and total heat transfer area were 5.84kW and 58.74m2. For the CHP mode, the optimum average useful output and total heat transfer area were 8.89kW and 38.78m2. Results also indicated that the multi-objective optimization provided a more comprehensive solution set so that the optimum performance could be achieved according to different requirements for system.

Man Wang; Jiangfeng Wang; Pan Zhao; Yiping Dai

2015-01-01T23:59:59.000Z

214

Novel Controls for Economic Dispatch of Combined Cooling, Heating and Power (CCHP) Systems  

Broader source: Energy.gov [DOE]

The emergence of technologies that efficiently convert heat into cooling, such as absorption chillers, has opened up many new opportunities and markets for combined heat and power systems. These...

215

EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska |  

Broader source: Energy.gov (indexed) [DOE]

2: Combined Power and Biomass Heating System, Fort Yukon, 2: Combined Power and Biomass Heating System, Fort Yukon, Alaska EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska SUMMARY DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 6, 2013 EA-1922: Finding of No Significant Impact Combined Power and Biomass Heating System, Fort Yukon, Alaska

216

EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska |  

Broader source: Energy.gov (indexed) [DOE]

2: Combined Power and Biomass Heating System, Fort Yukon, 2: Combined Power and Biomass Heating System, Fort Yukon, Alaska EA-1922: Combined Power and Biomass Heating System, Fort Yukon, Alaska SUMMARY DOE (lead agency), Denali Commission (cooperating agency) and USDA Rural Utilities Services (cooperating agency) are proposing to provide funding to support the final design and construction of a biomass combined heat and power plant and associated district heating system to the Council of Athabascan Tribal Governments and the Gwitchyaa Zhee Corporation. The proposed biomass district heating system would be located in Fort Yukon Alaska. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD May 6, 2013 EA-1922: Finding of No Significant Impact Combined Power and Biomass Heating System, Fort Yukon, Alaska

217

Convection in magnetic fluids with internal heat generation  

SciTech Connect (OSTI)

The effect of a uniform distribution of heat source on the onset of stationary convection in a horizontal Boussinesq magnetic fluid layer bounded by isothermal nonmagnetic boundary is investigated. Solutions are obtained using a higher order Galerkin expansion technique, considering different isothermal boundary combinations (rigid-rigid, rigid-free, and free-free). It is found that the effect of internal magnetic number, due to a heat source, is to make the system more unstable. The results obtained, in the limiting cases, compare well with the existing literature.

Rudraiah, N.; Sekhar, G.N. (Bangalore Univ. (India))

1991-02-01T23:59:59.000Z

218

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power Improving Desulfurization to Enable Fuel Cell Utilization of Digester Gases This project will develop a new,...

219

Combined Heat and Power Market Potential for Opportunity Fuels, August 2004  

Broader source: Energy.gov [DOE]

Best opportunity fuels for distributed energy resources and combined heat and power (DER/CHP) applications; technologies that can use them; market impact potential.

220

Assessment of Combined Heat and Power Premium Power Applications in California, September 2008  

Broader source: Energy.gov [DOE]

This report analyzes the current economic and environmental performance of combined heat and power (CHP) systems in power interruption intolerant commercial facilities in California.

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Energy Portfolio Standards and the Promotion of Combined Heat and Power (CHP) White Paper, April 2009  

Broader source: Energy.gov [DOE]

EPA CHP Partnerships white paper provides information on energy portfolio standards and how they promote combined heat and power.

222

Combined Heat and Power (CHP) Resource Guide for Hospital Applications, 2007  

Broader source: Energy.gov [DOE]

Reference document of basic information for hospital managers when considering the application of combined heat and power (CHP) in the healthcare industry, specifically in hospitals

223

A combined power and ejector refrigeration cycle for low temperature heat sources  

SciTech Connect (OSTI)

A combined power and ejector refrigeration cycle for low temperature heat sources is under investigation in this paper. The proposed cycle combines the organic Rankine cycle and the ejector refrigeration cycle. The ejector is driven by the exhausts from the turbine to produce power and refrigeration simultaneously. A simulation was carried out to analyze the cycle performance using R245fa as the working fluid. A thermal efficiency of 34.1%, an effective efficiency of 18.7% and an exergy efficiency of 56.8% can be obtained at a generating temperature of 395 K, a condensing temperature of 298 K and an evaporating temperature of 280 K. Simulation results show that the proposed cycle has a big potential to produce refrigeration and most exergy losses take place in the ejector. (author)

Zheng, B.; Weng, Y.W. [School of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200240 (China)

2010-05-15T23:59:59.000Z

224

Anaerobic Digestion and Combined Heat and Power Study  

SciTech Connect (OSTI)

One of the underlying objectives of this study is to recover the untapped energy in wastewater biomass. Some national statistics worth considering include: (1) 5% of the electrical energy demand in the US is used to treat municipal wastewater; (2) This carbon rich wastewater is an untapped energy resource; (3) Only 10% of wastewater treatment plants (>5mgd) recover energy; (4) Wastewater treatment plants have the potential to produce > 575 MW of energy nationwide; and (5) Wastewater treatment plants have the potential to capture an additional 175 MW of energy from waste Fats, Oils and Grease. The WSSC conducted this study to determine the feasibility of utilizing anaerobic digestion and combined heat and power (AD/CHP) and/or biosolids gasification and drying facilities to produce and utilize renewable digester biogas. Digester gas is considered a renewable energy source and can be used in place of fossil fuels to reduce greenhouse gas emissions. The project focus includes: (1) Converting wastewater Biomass to Electricity; (2) Using innovative technologies to Maximize Energy Recovery; and (3) Enhancing the Environment by reducing nutrient load to waterways (Chesapeake Bay), Sanitary Sewer Overflows (by reducing FOG in sewers) and Greenhouse Gas Emissions. The study consisted of these four tasks: (1) Technology screening and alternative shortlisting, answering the question 'what are the most viable and cost effective technical approaches by which to recover and reuse energy from biosolids while reducing disposal volume?'; (2) Energy recovery and disposal reduction potential verification, answering the question 'how much energy can be recovered from biosolids?'; (3) Economic environmental and community benefit analysis, answering the question 'what are the potential economic, environmental and community benefits/impacts of each approach?'; and (4) Recommend the best plan and develop a concept design.

Frank J. Hartz; Rob Taylor; Grant Davies

2011-12-30T23:59:59.000Z

225

Thermophotovoltaics for Combined Heat and Power Using Low NOx Gas Fired Radiant Tube Burners  

Science Journals Connector (OSTI)

Three new developments have now occurred making economical TPV systems possible. The first development is the diffused junction GaSb cell that responds out to 1.8 microns producing over 1 W/cm2 electric given a blackbody IR emitter temperature of 1250 C. This high power density along with a simple diffused junction cell makes an array cost of $0.50 per Watt possible. The second development is new IR emitters and filters that put 75% of the radiant energy in the cell convertible band. The third development is a set of commercially available ceramic radiant tube burners that operate at up to 1250 C. Herein we present near term and longer term spectral control designs leading to a 1.5 kW TPV generator / furnace incorporating these new features. This TPV generator / furnace is designed to replace the residential furnace for combined heat and power for the home.

Lewis Fraas; James Avery; Enrico Malfa; Joachim G. Wuenning; Gary Kovacik; Chris Astle

2003-01-01T23:59:59.000Z

226

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

photovoltaic solar thermal electric storage heat storageamount of PV, solar thermal, and electric storage needs toamount of PV, solar thermal, and electric storage needs to

Stadler, Michael

2014-01-01T23:59:59.000Z

227

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

for energy storage, chiller, PV and solar thermal equipmentsolar thermal electric storage heat storage absorption chillers zero net energyenergy resources (DER) technologies such as PV, solar thermal,

Stadler, Michael

2014-01-01T23:59:59.000Z

228

Determining the quality and quantity of heat produced by proton exchange membrane fuel cells with application to air-cooled stacks for combined heat and power  

E-Print Network [OSTI]

with application to air-cooled stacks for combined heat and power by Thomas Schmeister B.Sc., University to air-cooled stacks for combined heat and power by Thomas Schmeister B.Sc., University of Colorado, 1991 cells as a heat and electrical power source for residential combined heat and power (CHP

Victoria, University of

229

Low-Cost Packaged Combined Heat and Power System with Reduced...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

monoxide (CO), and volatile organic compounds (VOCs) * Yearly reduction of carbon dioxide emissions by 950 tons com- pared to separate generation of electricity and heat,...

230

The importance of combined cycle generating plants in integrating large levels of wind power generation  

SciTech Connect (OSTI)

Integration of high wind penetration levels will require fast-ramping combined cycle and steam cycles that, due to higher operating costs, will require proper pricing of ancillary services or other forms of compensation to remain viable. Several technical and policy recommendations are presented to help realign the generation mix to properly integrate the wind. (author)

Puga, J. Nicolas

2010-08-15T23:59:59.000Z

231

Research on Heating Scope of Combined Heat and Power (CHP) Plant  

Science Journals Connector (OSTI)

Compilation Stipulation on heat-electricity cogeneration program (trial implementation) published recently says, Under the condition of reasonable technical economy, heat resource shall be concentrated as far as...

Tai L; Zheng Wang; Hui Kang

2007-01-01T23:59:59.000Z

232

Modeling the heating of the Green Energy Lab in Shanghai by the geothermal heat pump combined with the solar thermal energy and ground energy storage.  

E-Print Network [OSTI]

?? This work involves the study of heating systems that combine solar collectors, geothermal heat pumps and thermal energy storage in the ground. Solar collectors (more)

Yu, Candice Yau May

2012-01-01T23:59:59.000Z

233

Cornell's conversion of a coal fired heating plant to natural Gas -BACKGROUND: In December 2009, the Combined Heat and Power Plant  

E-Print Network [OSTI]

- BACKGROUND: In December 2009, the Combined Heat and Power Plant at Cornell Cornell's conversion of a coal fired heating plant to natural Gas the power plant #12;

Keinan, Alon

234

A modified unit decommitment algorithm in combined heat and power production planning  

Science Journals Connector (OSTI)

This paper addresses the unit commitment in multi-period combined heat and power (CHP) production planning, considering the possibility to trade power on the spot market. We present a modified unit decommitment algorithm (MUD) that starts with a good ... Keywords: combined heat and power production, deregulated power market, energy optimization, modelling, modified unit decommitment, unit commitment

Aiying Rong; Risto Lahdelma

2007-01-01T23:59:59.000Z

235

Melting heat transfer effects on stagnation point flow of micropolar fluid saturated in porous medium with internal heat generation (absorption)  

Science Journals Connector (OSTI)

The effect of melting heat transfer on the two dimensional boundary layer flow of a micropolar fluid near a stagnation point embedded in a porous medium in the presence of internal heat generation/absorption is i...

M. A. A. Mahmoud; S. E. Waheed

2014-08-01T23:59:59.000Z

236

Generation of acoustic-gravity waves in ionospheric HF heating experiments : simulating large-scale natural heat sources  

E-Print Network [OSTI]

In this thesis, we investigate the potential role played by large-scale anomalous heat sources (e.g. prolonged heat wave events) in generating acoustic-gravity waves (AGWs) that might trigger widespread plasma turbulence ...

Pradipta, Rezy

2012-01-01T23:59:59.000Z

237

Encouraging Combined Heat and Power in California Buildings  

E-Print Network [OSTI]

lifetime for energy storage, chiller, PV and solar thermalEnergy Storage can be stand-alone or paired with solar PV orsolar thermal electric storage heat storage absorption chillers zero net energy

Stadler, Michael

2014-01-01T23:59:59.000Z

238

Combined permeable pavement and ground source heat pump systems  

E-Print Network [OSTI]

The PhD thesis focuses on the performance assessment of permeable pavement systems incorporating ground source heat pumps (GSHP). The relatively high variability of temperature in these systems allows for the survival of pathogenic organisms within...

Grabowiecki, Piotr

2010-01-01T23:59:59.000Z

239

FACT SHEET: Energy Department Actions to Deploy Combined Heat...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

reuses excess heat to warm Frito-Lay's chip fryer oil - cutting costs and reduce harmful air pollution. The Department is also supporting new CHP technologies that are cleaner,...

240

Top 10 Things You Didn't Know About Combined Heat and Power | Department  

Broader source: Energy.gov (indexed) [DOE]

Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power October 21, 2013 - 11:25am Addthis Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs More Top Things: Top 9 Things You Didn't Know About America's Power Grid Top 9 Things You Didn't Know about Carbon Fiber

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in  

Broader source: Energy.gov (indexed) [DOE]

741: Seattle Steam Company Combined Heat and Power at Post 741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington EA-1741: Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington Summary This EA evaluates the environmental impacts of a proposal to provide an American Recovery Act and Reinvestment Act of 2009 financial assistance grant to Seattle Steam Company to facilitate the installation of a combined heat and power plant in downtown Seattle, Washington. NOTE: This project has been cancelled. Public Comment Opportunities No public comment opportunities available at this time. Documents Available for Download June 16, 2010 EA-1741: Draft Environmental Assessment Seattle Steam Company Combined Heat and Power at Post Street in Downtown Seattle, Washington (June 2010)

242

Top 10 Things You Didn't Know About Combined Heat and Power | Department  

Broader source: Energy.gov (indexed) [DOE]

Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power Top 10 Things You Didn't Know About Combined Heat and Power October 21, 2013 - 11:25am Addthis Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Learn how combined heat and power could strengthen U.S. manufacturing competitiveness, lower energy consumption and reduce harmful emissions. | Infographic by Sarah Gerrity, Energy Department. Rebecca Matulka Rebecca Matulka Digital Communications Specialist, Office of Public Affairs More Top Things: Top 9 Things You Didn't Know About America's Power Grid Top 9 Things You Didn't Know about Carbon Fiber

243

The Influence of Building Location on Combined Heat and Power...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

are relatively high risk due to uncertainty of demand Combining hydrogen production with CHP capability may reduce upfront costs and reduce investment risks Fuel Cell with CHP...

244

Joule heating generated by spin current through Josephson junctions  

SciTech Connect (OSTI)

We theoretically study the spin-polarized current flowing through a Josephson junction (JJ) in a spin injection device. When the spin-polarized current is injected from a ferromagnet in a superconductor (SC), the charge current is carried by the superconducting condensate (Cooper pairs), while the spin-up and spin-down currents flow in equal magnitude but in the opposite direction in a SC, because of no quasiparticle charge current in the SC. This indicates that not only the Josephson current but also the spin current flow across JJ at zero bias voltage, thereby generating Joule heating by the spin current. The result provides a new method for detecting the spin current by measuring Joule heating at JJ. {copyright} 2001 American Institute of Physics.

Takahashi, S.; Yamashita, T.; Koyama, T.; Maekawa, S.; Imamura, H.

2001-06-01T23:59:59.000Z

245

Combined heat and mass transfer device for improving separation process  

SciTech Connect (OSTI)

A two-phase small channel heat exchange matrix for providing simultaneous heat transfer and mass transfer at a single, predetermined location within a separation column, whereby the thermodynamic efficiency of the separation process is significantly improved. The small channel heat exchange matrix is comprised of a series of channels having a hydraulic diameter no greater than 5.0 mm. The channels are connected to an inlet header for supplying a two-phase coolant to the channels and an outlet header for receiving the coolant horn the channels. In operation, the matrix provides the liquid-vapor contacting surfaces within a separation column, whereby liquid descends along the exterior surfaces of the cooling channels and vapor ascends between adjacent channels within the matrix. Preferably, a perforated and concave sheet connects each channel to an adjacent channel, such that liquid further descends along the concave surfaces of the sheets and the vapor further ascends through the perforations in the sheets. The size and configuration of the small channel heat exchange matrix allows the heat and mass transfer device to be positioned within the separation column, thereby allowing precise control of the local operating conditions within the column and increasing the energy efficiency of the process.

Tran, Thanh Nhon

1997-12-01T23:59:59.000Z

246

Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles  

Broader source: Energy.gov [DOE]

Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

247

Salt disposal of heat-generating nuclear waste.  

SciTech Connect (OSTI)

This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United States repository development, such as seal system design, coupled process simulation, and application of performance assessment methodology, helps define a clear strategy for a heat-generating nuclear waste repository in salt.

Leigh, Christi D. (Sandia National Laboratories, Carlsbad, NM); Hansen, Francis D.

2011-01-01T23:59:59.000Z

248

Dynamic stability experiments in sodium-heated steam generators. [LMFBR  

SciTech Connect (OSTI)

Seventy-two dynamic stability tests were performed in the sodium-heated boiling-water test facility at Argonne National Laboratory. A full-scale LMFBR steam generator tube was employed as the test section operating over the water parameter ranges of 6.9 to 15.9 MPa pressure and 170 to 800 kg/m/sup 2/.s mass flux. The stability thresholds from the test compared well to the predictions of a modified version of a correlation equation recently published by other investigators. Typical experimental data and the modified correlation equation are presented.

France, D.M.; Roy, R.; Carlson, R.D.; Chiang, T.

1984-01-01T23:59:59.000Z

249

Combined heat and power systems for commercial buildings: investigating cost, emissions, and primary energy reduction based on system components.  

E-Print Network [OSTI]

?? Combined heat and power (CHP) systems produce electricity and useful heat from fuel. When power is produced near a building which consumes power, transmission (more)

Smith, Amanda D.

2012-01-01T23:59:59.000Z

250

Heat Transfer Research 44(1), 130 (2013) ENTROPY GENERATION ANALYSIS  

E-Print Network [OSTI]

Heat Transfer Research 44(1), 1­30 (2013) ENTROPY GENERATION ANALYSIS FOR A PULSATING HEAT­vapor phase 2 Kim, Zhang, & Choi Heat Transfer Research NOMENCLATURE A area, m2 Qin,s,l sensible heat transfer into cp specific heat at constant liquid slug, W pressure, Qout,s,l sensible heat transfer out cv specific

Zhang, Yuwen

251

High-power ELF radiation generated by modulated HF heating of the ionosphere can cause Earthquakes, Cyclones and localized heating  

E-Print Network [OSTI]

High-power ELF radiation generated by modulated HF heating of the ionosphere can cause Earthquakes, the HAARP heater is the most powerful ionospheric heater, with 3.6GW of effective power using HF heating, Cyclones and localized heating Fran De Aquino Maranhao State University, Physics Department, S

Paris-Sud XI, Université de

252

Investigation of coal fired combined-cycle cogeneration plants for power, heat, syngas, and hydrogen  

Science Journals Connector (OSTI)

The methodology for determination of technical and economic efficiency of coal fired combined-cycle cogeneration plant (CCCP) with low-pressure ... steam-gas generator and continuous flow gasifier at combined pro...

V. E. Nakoryakov; G. V. Nozdrenko; A. G. Kuzmin

2009-12-01T23:59:59.000Z

253

Convective flow and heat transfer of a viscous heat generating fluid in the presence of a moving, infinite, vertical, porous plate  

Science Journals Connector (OSTI)

The analysis of convective flow and heat transfer of a viscous heat generating fluid past a uniformly moving, infinite, vertical, ... of the plate-motion and the presence of heat generation/absorption on the flow...

K. Vajravelu

1978-09-01T23:59:59.000Z

254

Mid-Atlantic Region Combined Heat and Power Projects | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Mid-Atlantic Region Combined Heat and Power Projects Mid-Atlantic Region Combined Heat and Power Projects Mid-Atlantic Region Combined Heat and Power Projects November 1, 2013 - 11:40am Addthis DOE's CHP Technical Assistance Partnerships (CHP TAPs) have compiled a select number of combined heat and power (CHP) project profiles, which are available as Adobe Acrobat PDFs. Mid-Atlantic www.midatlanticCHPTAP.org Jim Freihaut Pennsylvania State University 814-863-0083 jdf11@psu.edu Delaware View Energy and Environmental Analysis Inc.'s (EEA) database of all known CHP installations in Delaware. District of Columbia View EEA's database of all known CHP installations in the District of Columbia. Maryland Baltimore Refuse Energy Co., Baltimore View EEA's database of all known CHP installations in Maryland. New Jersey View EEA's database of all known CHP installations in New Jersey.

255

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER  

Broader source: Energy.gov (indexed) [DOE]

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES Section 1308 of the Energy Independence and Security Act of 2007 ("EISA 2007") directed the Secretary of Energy, in consultation with the States, to undertake a study of the laws affecting the siting of privately-owned distribution wires on or across public rights of way and to consider the impact of those laws on the development of combined heat and power ("CHP") facilities, as well as to determine whether a change in those laws would impact utility operations, costs or reliability, or impact utility customers. The study is also to consider whether changing the laws would

256

Novel Direct Steelmaking by Combining Microwave, Electric Arc, and Exothermal Heating Technologies  

Broader source: Energy.gov [DOE]

This factsheet describes a project to develop direct steelmaking through the combination of microwave, electric arc, and exothermal heating, a process which is meant to eliminate traditional, intermediate steelmaking steps.

257

Ultra Efficient Combined Heat, Hydrogen, and Power System- Presentation by FuelCell Energy, June 2011  

Broader source: Energy.gov [DOE]

Presentation on Ultra Efficient Combined Heat, Hydrogen, and Power System, given by Pinakin Patel at the U.S. DOE Industrial Distributed Energy Portfolio Review Meeting in Washington, D.C. on June 1-2, 2011.

258

A Preliminary Study on Designing Combined Heat and Power (CHP) System for the University Environment  

E-Print Network [OSTI]

Combined heat and power (CHP) systems are an evolving technology that is at the front of the energy conservation movement. With the reduction in energy consumption and green house gas emissions, CHP systems are improving the efficiency of power...

Kozman, T. A.; Reynolds, C. M.; Lee, J.

2008-01-01T23:59:59.000Z

259

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER  

Broader source: Energy.gov (indexed) [DOE]

THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIES Section 1308 of the Energy Independence and Security Act of 2007 ("EISA 2007") directed the Secretary of Energy, in consultation with the States, to undertake a study of the laws affecting the siting of privately-owned distribution wires on or across public rights of way and to consider the impact of those laws on the development of combined heat and power ("CHP") facilities, as well as to determine whether a change in those laws would impact utility operations, costs or reliability, or impact utility customers. The study is also to consider whether changing the laws would

260

ITP Industrial Distributed Energy: Combined Heat and Power: Effective...  

Energy Savers [EERE]

Power 19.6% Other 0.18% Unaccounted for 0.46% Net Imports of Electricity 0.1% Conversion Losses 63.9% More than two-thirds of the fuel used to generate power in the U.S. is...

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network [OSTI]

Technologies in a Grid Application heat, usually in thethe Grid. In this Grid the heat loads are not that great,Combined Heat and Power Technologies in a Grid Application

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

262

Spring 2005 Test #1 1. Steady state heat conduction in a slab with heat generation. (40 points)  

E-Print Network [OSTI]

and goes only in the r direction. The fluid density is , the heat capacity is Cp and the thermal to the surroundings is given by a heat transfer coefficient and Newton's law of cooling q(R) = h (T(R) -T0). a. WriteChEg 356 Spring 2005 Test #1 2/17/05 1. Steady state heat conduction in a slab with heat generation

McCready, Mark J.

263

Techno-economic analysis of a coal-fired CHP based combined heating system with gas-fired boilers for peak load compensation  

Science Journals Connector (OSTI)

Combined heat and power (CHP) plants dominate the heating market in China. With the ongoing energy structure reformation and increasing environmental concerns, we propose gas-fired boilers to be deployed in underperforming heating substations of heating networks for peak load compensation, in order to improve both energy efficiency and environmental sustainability. However, due to the relatively high price of gas, techno-economic analysis is required for evaluating different combined heating scenarios, characterized by basic heat load ratio (?). Therefore, we employ the dynamic economics and annual cost method to develop a techno-economic model for computing the net heating cost of the system, considering the current state of the art of cogeneration systems in China. The net heating cost is defined as the investment costs and operations costs of the system subtracted by revenues from power generation. We demonstrate the model in a real-life combined heating system of Daqing, China. The results show that the minimum net heating cost can be realized at ?=0.75 with a cost reduction of 16.8% compared to coal heating alone. Since fuel cost is the dominating factor, sensitivity analyses on coal and gas prices are discussed subsequently.

Hai-Chao Wang; Wen-Ling Jiao; Risto Lahdelma; Ping-Hua Zou

2011-01-01T23:59:59.000Z

264

Power Generation Using District Heat: Energy Efficient Retrofitted Plus-energy School Rostock  

Science Journals Connector (OSTI)

Abstract The Mathias-Thesen-School in Rostock/Germany is one of few schools which has been retrofitted as an Energy Plus building as part of the energy-efficient school research project EnEff:Schule sponsored by the German Ministry of Economics and Technology. The original building complex (build 1960, useful area 2200sqm) is being converted into a compact building by extending the main building with two new buildings connected by light-flooded buffer spaces. Both the existing building and the new buildings will be highly insulated. The low remaining heating demand will be covered using an innovative concept, made reasonable by the low primary energy factor of the district heat in Rostock: A small-scale Organic Rankine Cycle system generates electricity using high-temperature district heat. The excess heat of the generator is then used to heat the building via low-temperature distribution systems. In combination with two small-scale onsite wind turbines and building integrated photovoltaics a positive primary energy balance is achieved. For this balance, the development of the primary energy factors (PEF) of the German electricity mix is crucial: With rising generation from renewable energies the PEF of electricity in Germany is going to descent, leading to higher primary energy factors of cogeneration systems. In the Mathias-Thesen-School in Rostock a detailed monitoring system was installed, which has been checked and reworked for proper functioning. First measures to optimize the HVAC system and user comfort have been taken. The second construction phase will take place in 2014, after which the performance of the ORC system and the Energy Balance will be analyzed in detail.

Simon Winiger; Sebastian Herkel; Gesa Haroske

2014-01-01T23:59:59.000Z

265

Assessing the Benefits of On-Site Combined Heat and Power During the August 14, 2003, Blackout, June 2004  

Broader source: Energy.gov [DOE]

This June 2004 report summarizes the experiences of 12 combined heat and power facilities during the August 14, 2003, blackout

266

ITP Industrial Distributed Energy: Combined Heat & Power Multifamily Performance Program-- Sea Park East 150 kW CHP System  

Broader source: Energy.gov [DOE]

Overview of Sea Park East 150 kilowatt (kW) Combined Heat and Power (CHP) System in Brooklyn, New York

267

Generation of mirage effect by heated carbon nanotube thin film  

SciTech Connect (OSTI)

Mirage effect, a common phenomenon in nature, is a naturally occurring optical phenomenon in which lights are bent due to the gradient variation of refraction in the temperature gradient medium. The theoretical analysis of mirage effect generated by heated carbon nanotube thin film is presented both for gas and liquid. Excellent agreement is demonstrated through comparing the theoretical prediction with published experimental results. It is concluded from the theoretical prediction and experimental observation that the mirage effect is more likely to happen in liquid. The phase of deflected optical beam is also discussed and the method for measurement of thermal diffusivity of medium is theoretically verified. Furthermore, a method for measuring the refractive index of gas by detecting optical beam deflection is also presented in this paper.

Tong, L. H. [Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026 (China); USTC-CityU Joint Advanced Research Centre, Suzhou, Jiangsu 215123 (China); Lim, C. W., E-mail: bccwlim@cityu.edu.hk [USTC-CityU Joint Advanced Research Centre, Suzhou, Jiangsu 215123 (China); Department of Civil and Architectural Engineering, City University of Hong Kong, Kowloon, Hong Kong, Peoples Republic of China and City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057 (China); Li, Y. C. [Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Zhang, Chuanzeng; Quoc Bui, Tinh [Department of Civil Engineering, University of Siegen, Paul-Bonatz-Str. 9-11, D-57076 Siegen (Germany)

2014-06-28T23:59:59.000Z

268

Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power  

Broader source: Energy.gov [DOE]

With their clean and quiet operation, fuel cells represent a promising means of implementing small-scale distributed power generation in the future. Waste heat from the fuel cell can be harnessed...

269

Heat generation from electronics increases with the advent of high-density integrated circuit technology. To  

E-Print Network [OSTI]

1 Abstract Heat generation from electronics increases with the advent of high-density integrated circuit technology. To come up with the heat generation, microscale cooling has been thought as a promising technology. Prediction of heat transfer rate is crucial in design of microscale cooling device

Boyer, Edmond

270

Tsiklauri-Durst combined cycle (T-D Cycle{trademark}) application for nuclear and fossil-fueled power generating plants  

SciTech Connect (OSTI)

The Tsiklauri-Durst combined cycle is a combination of the best attributes of both nuclear power and combined cycle gas power plants. A technology patented in 1994 by Battelle Memorial Institute offers a synergistic approach to power generation. A typical combined cycle is defined as the combination of gas turbine Brayton Cycle, topping steam turbine Rankine Cycle. Exhaust from the gas turbine is used in heat recovery steam generators to produce steam for a steam turbine. In a standard combined cycle gas turbine-steam turbine application, the gas turbine generates about 65 to 70 percent of system power. The thermal efficiency for such an installation is typically about 45 to 50 percent. A T-D combined cycle takes a new, creative approach to combined cycle design by directly mixing high enthalpy steam from the heat recovery steam generator, involving the steam generator at more than one pressure. Direct mixing of superheated and saturated steam eliminates the requirement for a large heat exchanger, making plant modification simple and economical.

Tsiklauri, B.; Korolev, V.N.; Durst, B.M.; Shen, P.K.

1998-07-01T23:59:59.000Z

271

Design and Operational Planning of Energy Networks Based on Combined Heat and Power Units  

Science Journals Connector (OSTI)

For each time period and sector, big-M constraints 13 model the heat (generated by the energy generator installed in the sector) transferred to the heat storage tank of the sector (Q?sit). ... Heat and electricity demand data for the reference case have been taken from the Milton Keynes Energy Park data set provided by the U.K. Energy Research Centre Energy Data Centre. ... Cardoso, G.; Stadler, M.; Siddiqui, A.; Marnay, C.; Deforest, N.; Barbosa-Pvoa, A.; Ferro, P.Microgrid reliability modeling and battery scheduling using stochastic linear programming Electric Power Syst. ...

Nikolaos E. Koltsaklis; Georgios M. Kopanos; Michael C. Georgiadis

2014-03-05T23:59:59.000Z

272

Solar's combined-cycle system utilizes novel steam-generator concept  

SciTech Connect (OSTI)

As escalating fuel costs force equipment users to seek more efficient prime movers, the combined-cycle system will become increasingly attractive because it retains the advantages of simple-cycle gas turbines - low installation costs, high availability, low maintenance, and low emission levels - while adding 40% power output from the steam-based system operated on the turbine exhaust. Solar Turbines International has sought to develop an automated, remote-control combined-cycle system that can be easily retrofitted to existing simple-cycle power stations. The key component giving the system its advantages over the hazardous, complex steam-drum-type boiler systems is a once-through dual-pressure steam-generator device that eliminates the need for drums and elaborate control mechanisms. Forty identical parallel tube circuits suspended from a single frame are connected to common inlet and discharge manifolds; the individual circuits are made of dual high- and low-pressure bundles, with each bundle having economizer, vaporizer, and superheating sections. The 40 circuits comprise one complete steam-generator module core matrix. By injecting the superheated low-pressure steam into the latter stages of the steam turbine, the dual-pressure feature improves the heat recovery by more than 12% over conventional devices. The only water treatment that the corrosion-resistant tube material requires is the removal of dissolved solids.

Not Available

1980-06-01T23:59:59.000Z

273

Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams .  

E-Print Network [OSTI]

??An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue (more)

Latcham, Jacob G. (Jacob Greco)

2009-01-01T23:59:59.000Z

274

Combined desalination and power generation using solar energy.  

E-Print Network [OSTI]

??Integrated desalination and power generation using solar energy is a prospective way to help solve the twin challenges of energy and fresh water shortage, while (more)

Zhao, Y

2009-01-01T23:59:59.000Z

275

Combined solar and internal load effects on selection of heat reclaim-economizer HVAC systems  

SciTech Connect (OSTI)

The concern for energy conservation has led to the development and use of heat recovery systems which reclaim the building internal heat before it is discarded in the exhaust air. On the other hand, economizer cycles have been widely used for many years in a variety of types of HVAC systems. Economizer cycles are widely accepted as a means to reduce operating time for chilling equipment when cool outside air is available. It has been suggested that heat reclaim systems should not be used in conjunction with an HVAC system which incorporates an economizer cycle because the economizer operation would result in heat being exhausted which might have been recovered. Others suggest that the economizer cycle can be used economically in a heat recovery system if properly controlled to maintain an overall building heat balance. This study looks at potential energy savings of such combined systems with particular emphasis on the effects of the solar load (amount of glass) and the internal load level (lights, people, appliances, etc.). For systems without thermal storage, annual energy savings of up to 60 percent are predicted with the use of heat reclaim systems in conjunction with economizers when the heat reclaim has priority. These results demonstrate the necessity of complete engineering evaluations if proper selection and operation of combined heat recovery and economizer cycles are to be obtained. This paper includes the basic methodology for making such evaluations.

Sauer, H.J. Jr.; Howell, R.H.; Wang, Z. (Missouri Univ., Rolla, MO (USA). Dept. of Mechanical Engineering)

1990-05-01T23:59:59.000Z

276

STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT  

Broader source: Energy.gov (indexed) [DOE]

STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIE STUDY OF THE EFFECT OF PRIVATE WIRE LAWS ON DEVELOPMENT OF COMBINED HEAT AND POWER FACILITIE Section 1308 of the Energy Independence and Security Act of 2007 ("EISA 2007") directed the Secretary of Energy, in consultation with the States, to undertake a study of the laws affecting the siting of privately-owned distribution wires on or across public rights of way and to consider the impact of those laws on the development of combined heat and power ("CHP") facilities, as well as to determine whether a change in those laws would impact utility operations, costs or reliability, or impact utility customers. The study is also to consider whether a change in those laws

277

Performance and emission characteristics of natural gas combined cycle power generation system with steam injection and oxyfuel combustion.  

E-Print Network [OSTI]

??Natural gas combined cycle power generation systems are gaining popularity due to their high power generation efficiency and reduced emission. In the present work, combined (more)

Varia, Nitin

2014-01-01T23:59:59.000Z

278

"Potential for Combined Heat and Power and District Heating and Cooling from Waste-to-Energy Facilities in the U.S. Learning from the Danish Experience"  

E-Print Network [OSTI]

is used for the generation of electricity. The advantages of district heating using WTE plants are heating and cooling system in Indianapolis. However, there are few U.S. hot water district heating systems,800 district heating and cooling systems, providing 320 million MWh of thermal energy. Currently, 28 of the 88

Shepard, Kenneth

279

Steam Power Stations for Electricity and Heat Generation  

Science Journals Connector (OSTI)

Power plants produce electricity, process heat or district heating, according to their task (Stultz and Kitto 1992). Electric power is the only product of a condensation power plant and the main product of a p...

Dr. Hartmut Spliethoff

2010-01-01T23:59:59.000Z

280

Heat and mass transfer on MHD heat generating flow through a porous medium in a rotating fluid  

Science Journals Connector (OSTI)

The problem of the free-convection flow of a viscous heat generating fluid through porous media in a rotating frame of reference is considered for the case when a strong magnetic field is imposed in a directio...

P. C. Ram

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Method of calculation of heat generation rates for DWPF glass. Revision 1  

SciTech Connect (OSTI)

The Waste Acceptance Preliminary Specifications (WAPS) require estimates of the heat generation rate of DWPF waste glasses. Estimates of the heat generation rates of projected glass compositions are to be reported in the Waste Form Qualification Report. Similar estimates for actual production glasses are to be reported in the Production Records. In this report, a method of calculating the heat generation rate from the radionuclide inventory is provided. Application of the method to the DWPF Design-Basis glass indicates that the heat generation rate can be accurately estimated from the Sr-90, Y-90, Cs-137, Ba-137m, and Pu-238 contents alone.

Plodinec, M.J.

1992-03-17T23:59:59.000Z

282

Method of calculation of heat generation rates for DWPF glass. Revision 2  

SciTech Connect (OSTI)

The Waste Acceptance Preliminary Specifications (WAPS) require estimates of the heat generation rate of DWPF waste glasses. Estimates of the heat generation rates of projected glass compositions are to be reported in the Waste Form Qualification Report. Similar estimates for actual production glasses are to be reported in the Production Records. In this report, a method of calculating the heat generation rate from the radionuclide inventory is provided. Application of the method to the DWPF Design-Basis glass indicates that the heat generation rate can be accurately estimated from the Sr-90, Y-90, Cs-137, Ba-137m, and Pu-238 contents alone.

Plodinec, M.J.

1993-02-04T23:59:59.000Z

283

Combined fuel and air staged power generation system  

SciTech Connect (OSTI)

A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

2014-05-27T23:59:59.000Z

284

Combined heat and power (CHP or cogeneration) for saving energy and carbon in commercial buildings  

SciTech Connect (OSTI)

Combined Heat and Power (CHP) systems simultaneously deliver electric, thermal and mechanical energy services and thus use fuel very efficiently. Today's small-scale CHP systems already provide heat, cooling and electricity at nearly twice the fuel efficiency of heat and power based on power remote plants and onsite hot water and space heating. In this paper, the authors have refined and extended the assessments of small-scale building CHP previously done by the authors. They estimate the energy and carbon savings for existing small-scale CHP technology such as reciprocating engines and two promising new CHP technologies--microturbines and fuel cells--for commercial buildings. In 2010 the authors estimate that small-scale CHP will emit 14--65% less carbon than separate heat and power (SHP) depending on the technologies compared. They estimate that these technologies in commercial buildings could save nearly two-thirds of a quadrillion Btu's of energy and 23 million tonnes of carbon.

Kaarsberg, T.; Fiskum, R.; Romm, J.; Rosenfeld, A.; Koomey, J.; Teagan, W.P.

1998-07-01T23:59:59.000Z

285

Federal strategies to increase the implementation of combined heat and power technologies in the United States  

SciTech Connect (OSTI)

Recent interest in combined heat and power (CHP) is providing momentum to efforts aimed at increasing the capacity of this highly-efficient technology. Factors driving this increase in interest include the need to increase the efficiency of the nation's electricity generation infrastructure, DOE Assistant Secretary Dan Reicher's challenge to double the capacity of CHP by 2010, the success of DOE's Advanced Turbine Systems Program in supporting ultra-efficient CHP technologies, and the necessity of finding cost-effective solutions to address climate change and air quality issues. The federal government is committed to increasing the penetration of CHP technologies in the US. The ultimate goal is to build a competitive market for CHP in which policies and regulations support the implementation of a full suite of technologies for multiple applications. Specific actions underway at the federal level include technology strategies to improve CHP data collection and assessment and work with industry to encourage the development of advanced CHP technologies. Policy strategies include changes to federal environmental permitting procedures including CHP-friendly strategies in federal restructuring legislation, supporting tax credits and changes to depreciation requirements as economic incentives to CHP, working with industry to leverage resources in the development of advanced CHP technologies, educating state officials about the things they can do to encourage CHP, and increasing awareness about the benefits of CHP and the barriers limiting its increased implementation.

Laitner, J.; Parks, W.; Schilling, J.; Scheer, R.

1999-07-01T23:59:59.000Z

286

Combined heat and power's potential to meet New York City's sustainability goals  

Science Journals Connector (OSTI)

Abstract Combined Heat and Power (CHP) has been proven as a mature technology that can benefit both building owners and utility operators. As the economic and environmental benefits of CHP in urban centers gain recognition, regulations and policies have evolved to encourage their deployment. However, the question remains whether these policies are sufficient in helping to achieve the larger sustainability goals, such as the New York City-specific goal of incorporating 800MW of distributed generation. In this paper, the current regulatory and policy environment for CHP is discussed. Then, an engineering analysis estimating the potential for CHP in NYC at the individual building and microgrid scale, considered a city block, is performed. This analysis indicates that over 800MW of individual building CHP systems would qualify for the current incentives but many systems would need to undergo more cumbersome air permitting processes reducing the viable capacity to 360MW. In addition microgrid CHP systems with multiple owners could contribute to meeting the goal even after considering air permits; however, these systems may incorporate many residential customers. The regulatory framework for microgrids with multiple owners and especially residential customers is particularly uncertain therefore additional policies would be needed to facilitate their development.

Bianca Howard; Alexis Saba; Michael Gerrard; Vijay Modi

2014-01-01T23:59:59.000Z

287

Dependable Hydrogen and Industrial Heat Generation from the Next Generation Nuclear Plant  

SciTech Connect (OSTI)

The Department of Energy is working with industry to develop a next generation, high-temperature gas-cooled nuclear reactor (HTGR) as a part of the effort to supply the US with abundant, clean and secure energy. The Next Generation Nuclear Plant (NGNP) project, led by the Idaho National Laboratory, will demonstrate the ability of the HTGR to generate hydrogen, electricity, and high-quality process heat for a wide range of industrial applications. Substituting HTGR power for traditional fossil fuel resources reduces the cost and supply vulnerability of natural gas and oil, and reduces or eliminates greenhouse gas emissions. As authorized by the Energy Policy Act of 2005, industry leaders are developing designs for the construction of a commercial prototype producing up to 600 MWt of power by 2021. This paper describes a variety of critical applications that are appropriate for the HTGR with an emphasis placed on applications requiring a clean and reliable source of hydrogen. An overview of the NGNP project status and its significant technology development efforts are also presented.

Charles V. Park; Michael W. Patterson; Vincent C. Maio; Piyush Sabharwall

2009-03-01T23:59:59.000Z

288

Combined heat and power: How much carbon and energy can it save for manufacturers?  

SciTech Connect (OSTI)

As part of a September 1997 National Laboratory study for the US Department of Energy, the authors estimated the potential for reducing industrial energy consumption and carbon emissions using advanced technologies for combined heat and power (CHP) for the year 2010. In this paper the authors re-analyze the potential for CHP in manufacturing only. The authors also refine the assessment by more accurately estimating the average efficiency of industrial boilers most likely to be replaced by CHP. The authors do this with recent GRI estimates of the age distribution of industrial boilers and standard age-efficiency equations. The previous estimate was based on use of the best CHP technology available, such as the about-to-be commercialized industrial advanced turbine system (ATS). This estimate assumes the use of existing off-the-shelf CHP technologies. Data is now available with which to develop a more realistic suite of penetration rates for existing and new CHP technologies. However, potential variation in actions of state and federal electricity and environmental regulators introduces uncertainties in the use of existing and potential new CHP far greater than those in previous technology penetration estimates. This is, thus, the maximum cost-effective technical potential for the frozen technology case. The authors find that if manufacturers in 1994 had generated all their steam and electric needs with existing CHP technologies, they could have reduced carbon equivalent (carbon dioxide) emissions by up to 30 million metric tons of carbon equivalent (MtC) or nearly 20%. This result is consistent with carbon and energy savings found in other studies. For example, the aforementioned laboratory study found that just three CHP technologies, fuel cells, advanced turbines, and integrated combined cycle technologies, accounted for nearly 10% of the study's projected carbon savings of 400 MtC by 2010--enough to reduce projected US 2010 emissions to 1990 levels.

Kaarsberg, T.M.; Roop, J.M.

1998-07-01T23:59:59.000Z

289

SOOT GENERATION IN FIRES: AN IMPORTANT PARAMETER FOR ACCURATE CALCULATION OF HEAT RELEASE  

E-Print Network [OSTI]

states that heat of complete combustion per unit mass of oxygen consumed is approximately constant similarly states that heat of complete combustion per unit mass of carbon dioxide generated is approximately constant for most organic liquid, gaseous and solid compounds [1]. The heat of combustion per unit mass

Paris-Sud XI, Université de

290

FARM NET INCOME IMPACT OF SWITCHGRASS PRODUCTION AND CORN STOVER COLLECTION FOR HEAT AND POWER GENERATION  

E-Print Network [OSTI]

FARM NET INCOME IMPACT OF SWITCHGRASS PRODUCTION AND CORN STOVER COLLECTION FOR HEAT AND POWER and Corn Stover Collection for Heat and Power Generation Mitchell A. Myhre Advisor: Associate Professor heat and electric power. To perform this analysis, yield and production potentials were explored

Wisconsin at Madison, University of

291

Novel thermoelectric generator for stationary power waste heat recovery .  

E-Print Network [OSTI]

??Internal combustion engines produce much excess heat that is vented to the atmosphere through the exhaust fluid. Use of solid-state thermoelectric (TE) energy conversion technology (more)

Engelke, Kylan Wynn.

2010-01-01T23:59:59.000Z

292

Use of Time-Aggregated Data in Economic Screening Analyses of Combined Heat and Power Systems  

SciTech Connect (OSTI)

Combined heat and power (CHP) projects (also known as cogeneration projects) usually undergo a series of assessments and viability checks before any commitment is made. A screening analysis, with electrical and thermal loads characterized on an annual basis, may be performed initially to quickly determine the economic viability of the proposed project. Screening analyses using time-aggregated data do not reflect several critical cost influences, however. Seasonal and diurnal variations in electrical and thermal loads, as well as time-of-use utility pricing structures, can have a dramatic impact on the economics. A more accurate economic assessment requires additional detailed data on electrical and thermal demand (e.g., hourly load data), which may not be readily available for the specific facility under study. Recent developments in CHP evaluation tools, however, can generate the needed hourly data through the use of historical data libraries and building simulation. This article utilizes model-generated hourly load data for four potential CHP applications and compares the calculated cost savings of a CHP system when evaluated on a time-aggregated (i.e., annual) basis to the savings when evaluated on an hour-by-hour basis. It is observed that the simple, aggregated analysis forecasts much greater savings (i.e., greater economic viability) than the more detailed hourly analysis. The findings confirm that the simpler tool produces results with a much more optimistic outlook, which, if taken by itself, might lead to erroneous project decisions. The more rigorous approach, being more reflective of actual requirements and conditions, presents a more accurate economic comparison of the alternatives, which, in turn, leads to better decision risk management.

Hudson II, Carl Randy [ORNL

2004-09-01T23:59:59.000Z

293

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

SciTech Connect (OSTI)

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

Rudd, A.; Ueno, K.; Bergey, D.; Osser, R.

2012-07-01T23:59:59.000Z

294

IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS  

E-Print Network [OSTI]

IMPROVING THE EFFICIENCY OF THERMOELECTRIC GENERATORS BY USING SOLAR HEAT CONCENTRATORS M. T. de : Thermoelectric generator, Solar heat concentrator, Carnot efficiency I - Introduction The global energy crisis the junctions of two different materials. For a TEG to supply a significant amount of power, several thermo

295

Stirling engines in generating heat and electricity for micro: CHP systems  

Science Journals Connector (OSTI)

In this paper, an analysis of different generating heat and electricity systems with Stirling engine is made from the point of view of benefits and limitations, both operational and economic and environmental. Stirling engine has the ability to work ... Keywords: biomass, fossil fuels, generating heat and electricity system, m-CHP, stirling engine

Dan Scarpete; Krisztina Uzuneanu

2011-03-01T23:59:59.000Z

296

Modeling and optimization of a combined cycle Stirling-ORC system and design of an integrated microchannel Stirling heat rejector.  

E-Print Network [OSTI]

??The performance of a combined Stirling-ORC power cycle is evaluated, and an integrated microchannel heat exchanger is designed as an annular cold-side heat rejector for (more)

Ingram-Goble, Robbie

2010-01-01T23:59:59.000Z

297

Minimum entropy generation due to heat transfer and fluid friction in a parabolic trough receiver with non-uniform heat flux at different rim angles and concentration ratios  

Science Journals Connector (OSTI)

Abstract In this paper, Monte Carlo ray-tracing and computational fluid dynamics are used to numerically investigate the minimum entropy generation due to heat transfer and fluid friction in a parabolic trough receiver. The analysis was carried out for rim angles in the range 40120, concentration ratios in the range 57143, Reynolds numbers in the range 1.02נ1041.36נ106 and fluid temperatures in the range 350650K. Results show existence of an optimal Reynolds number at any given combination of fluid temperature, concentration ratio and rim angle for which the total entropy generation is a minimum. The total entropy generation was found to increase as the rim angle reduced, concentration ratio increased and fluid temperature reduced. The high entropy generation rates at low rim angles are mainly due to high peak temperatures in the absorber tube at these low rim angles.

Aggrey Mwesigye; Tunde Bello-Ochende; Josua P. Meyer

2014-01-01T23:59:59.000Z

298

Establishing the Technical Basis for Disposal of Heat-generating Waste in  

Broader source: Energy.gov (indexed) [DOE]

Establishing the Technical Basis for Disposal of Heat-generating Establishing the Technical Basis for Disposal of Heat-generating Waste in Salt Establishing the Technical Basis for Disposal of Heat-generating Waste in Salt The report summarizes available historic tests and the developed technical basis for disposal of heat-generating waste in salt, and the means by which a safety case for disposal of heat generating waste at a generic salt site can be initiated from the existing technical basis. Though the basis for a salt safety case is strong and has been made by the German repository program, RD&D programs continue in order to help reduce uncertainty, to improve understanding of certain complex processes, to demonstrate operational concepts, to confirm performance expectations, and to improve modeling capabilities utilizing the latest software platforms.

299

CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation Environment for Whole-building Performance Analysis Title CHAMPS-Multizone-A Combined Heat, Air, Moisture and Pollutant Simulation Environment for Whole-building Performance Analysis Publication Type Journal Article Year of Publication 2012 Authors Zhang, J. S., Wei Feng, John Grunewald, Andreas Nicolai, and Carey Zhang Journal HVAC&R Research Volume 18 Issue 1-2 Abstract A computer simulation tool, named "CHAMPS-Multizone" is introduced in this paper for analyzing bothenergy and IAQ performance of buildings. The simulation model accounts for the dynamic effects ofoutdoor climate conditions (solar radiation, wind speed and direction, and contaminant concentrations),building materials and envelope system design, multizone air and contaminant flows in buildings,internal heat and pollutant sources, and operation of the building HVAC systems on the buildingperformance. It enables combined analysis of building energy efficiency and indoor air quality. Themodel also has the ability to input building geometry data and HVAC system operation relatedinformation from software such as SketchUp and DesignBuilder via IDF file format. A "bridge" to accessstatic and dynamic building data stored in a "virtual building" database is also developed, allowingconvenient input of initial and boundary conditions for the simulation, and for comparisons between thepredicted and measured results. This paper summarizes the mathematical models, adoptedassumptions, methods of implementation, and verification and validation results. The needs andchallenges for further development are also discussed

300

A Partial Load Model for a Local Combined Heat and Power Plant  

E-Print Network [OSTI]

A Partial Load Model for a Local Combined Heat and Power Plant Camilla Schaumburg and power (CHP) plants constitute a not insignificant share of the power production in Denmark, particularly using data from a typical local CHP plant and the years 2003 through 2006 are simulated to assess

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Guide to Using Combined Heat and Power for Enhancing Reliability and Resiliency in Buildings  

Broader source: Energy.gov [DOE]

During and after Hurricane Sandy, combined heat and power (CHP) enabled a number of critical infrastructure and other facilities to continue their operations when the electric grid went down. This guidance document on CHP supports the August 2013 Hurricane Sandy Rebuilding Strategy by providing an overview of CHP and examples of how this technology can help improve the resiliency and reliability of key infrastructure.

302

The Market and Technical Potential for Combined Heat and Power in the Commercial/Institutional Sector, January 2000  

Broader source: Energy.gov [DOE]

Report of an analysis to determine the potential for cogeneration or combined heat and power (CHP) in the commercial/institutional market.

303

An engineering-economic analysis of combined heat and power technologies in a (mu)grid application  

E-Print Network [OSTI]

draft, 2001. Danish Energy Agency (1998). Combined Heat andpolicies and measures, Danish Energy Agency. Hirschenhofer,demand in 1996 (Danish Energy Agency 1998). Reliance on CHP

Bailey, Owen; Ouaglal, Boubekeur; Bartholomew, Emily; Marnay, Chris; Bourassa, Norman

2002-01-01T23:59:59.000Z

304

Distributed Generation Investment by a Microgrid under Uncertainty  

E-Print Network [OSTI]

power generation with combined heat and power applications.tax on microgrid combined heat and power adoption. JournalCHP Application Center. Combined heat and power in a dairy.

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

305

Combined Heat and Power (CHP), also known as cogeneration, is the concurrent production of electricity or  

E-Print Network [OSTI]

movers or technology types, which include: Reciprocating Engines Combustion or Gas Turbines Steam systems can provide the following products: Electricity Direct mechanical drive Steam or hot water, integrated systems that consist of various components ranging from prime mover (heat engine), generator

306

Certification testing of the Los Alamos National Laboratory Heat Source/Radioisotopic Thermoelectric Generator shipping container  

SciTech Connect (OSTI)

The Heat Source/Radioisotopic Thermoelectric Generator shipping counter is a Type B packaging currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to normal and hypothetical accident environments defined in Title 10 of the Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this packaging design. This report documents the testing portion of the design verification. Six tests were conducted on a prototype package: a water spray test, a 4-foot normal conditions drop test, a 30-foot drop test, a 40-inch puncture test, a 30-minute thermal test, and an 8-hour immersion test.

Bronowski, D.R.; Madsen, M.M.

1991-09-01T23:59:59.000Z

307

Life cycle analysis of distributed concentrating solar combined heat and power: economics, global warming potential and water  

Science Journals Connector (OSTI)

We report on life cycle assessment (LCA) of the economics, global warming potential and water (both for desalination and water use in operation) for a distributed concentrating solar combined heat and power (DCS-CHP) system. Detailed simulation of system performance across 1020 sites in the US combined with a sensible cost allocation scheme informs this LCA. We forecast a levelized cost of $0.25kWh?1 electricity and $0.03kWh?1 thermal, for a system with a life cycle global warming potential of ~80gCO2eqkWh?1 of electricity and ~10gCO2eqkWh?1 thermal, sited in Oakland, California. On the basis of the economics shown for air cooling, and the fact that any combined heat and power system reduces the need for cooling while at the same time boosting the overall solar efficiency of the system, DCS-CHP compares favorably to other electric power generation systems in terms of minimization of water use in the maintenance and operation of the plant. The outlook for water desalination coupled with distributed concentrating solar combined heat and power is less favorable. At a projected cost of $1.40m?3, water desalination with DCS-CHP would be economical and practical only in areas where water is very scarce or moderately expensive, primarily available through the informal sector, and where contaminated or salt water is easily available as feed-water. It is also interesting to note that $0.40$1.90m?3 is the range of water prices in the developed world, so DCS-CHP desalination systems could also be an economical solution there under some conditions.

Zack Norwood; Daniel Kammen

2012-01-01T23:59:59.000Z

308

Air bottoming cycle: Use of gas turbine waste heat for power generation  

SciTech Connect (OSTI)

This paper presents a thermodynamic analysis of the Air Bottoming Cycle (ABC) as well as the results of a feasibility study for using the Air Bottoming Cycle for gas turbine waste heat recovery/power generation on oil/gas platforms in the North Sea. The basis for the feasibility study was to utilize the exhaust gas heat from an LM2500PE gas turbine. Installation of the ABC on both a new and an existing platform have been considered. A design reference case is presented, and the recommended ABC is a two-shaft engine with two compressor intercoolers. The compression pressure ratio was found optimal at 8:1. The combined gas turbine and ABC shaft efficiency wa/s calculated to 46.6 percent. The LM2500PE gas turbine contributes with 36.1 percent while the ABC adds 10.5 percent points to the gas turbine efficiency. The ABC shaft power output is 6.6 MW when utilizing the waste heat of an LM2500PE gas turbine. A preliminary thermal and hydraulic design of the ABC main components (compressor, turbine, intercoolers, and recuperator) was carried out. The recuperator is the largest and heaviest component (45 tons). A weight and cost breakdown of the ABC is presented. The total weight of the ABC package was calculated to 154 metric tons, and the ABC package cost to 9.4 million US$. An economical examination for three different cases was carried out. The results show that the ABC alternative (LM2500PE + ABC) is economical, with a rather good margin, compared to the other alternatives. The conclusion is that the Air Bottoming Cycle is an economical alternative for power generation on both new platforms and on existing platforms with demand for more power.

Bolland, O.; Foerde, M. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Div. of Thermal Energy and Hydropower; Haande, B. [Oil Engineering Consultants, Sandvika (Norway)

1996-04-01T23:59:59.000Z

309

Performance improvement of combined cycle power plant based on the optimization of the bottom cycle and heat recuperation  

Science Journals Connector (OSTI)

Many F class gas turbine combined cycle (GTCC) power plants are built in ... the efficiency improvement of GTCC plant. A combined cycle with three-pressure reheat heat recovery steam ... HRSG inlet gas temperatur...

Wenguo Xiang; Yingying Chen

2007-03-01T23:59:59.000Z

310

09/01/12 13:01:401 Quantifying the effects of heating temperature, and combined effects of heating medium2  

E-Print Network [OSTI]

09/01/12 13:01:401 Quantifying the effects of heating temperature, and combined effects of heating medium2 pH and recovery medium pH on the heat resistance of Salmonella typhimurium3 4 I. Leguérinel1 *, I +33 02 98 90 85 4410 E mail address: guerinel@univ-brest.fr11 Abstract12 The influence of heating

Paris-Sud XI, Université de

311

An integrated assessment of the energy savings and emissions-reduction potential of combined heat and power  

SciTech Connect (OSTI)

Combined Heat and Power (CHP) systems, or cogeneration systems, generated electrical/mechanical and thermal energy simultaneously, recovering much of the energy normally lost in separate generation. This recovered energy can be used for heating or cooling purposes, eliminating the need for a separate boiler. Significant reductions in energy, criteria pollutants, and carbon emissions can be achieved from the improved efficiency of fuel use. Generating electricity on or near the point of use also avoids transmission and distribution losses and defers expansion of the electricity transmission grid. Several recent developments make dramatic expansion of CHP a cost-effective possibility over the next decade. First, advances in technologies such as combustion turbines, steam turbines, reciprocating engines, fuel cells. and heat-recovery equipment have decreased the cost and improved the performance of CHP systems. Second, a significant portion of the nation's boiler stock will need to be replaced in the next decade, creating an opportunity to upgrade this equipment with clean and efficient CHP systems. Third, environmental policies, including addressing concerns about greenhouse gas emissions, have created pressures to find cleaner and more efficient means of using energy. Finally, electric power market restructuring is creating new opportunities for innovations in power generation and smaller-scale distributed systems such as CHP. The integrated analysis suggests that there is enormous potential for the installation of cost-effective CHP in the industrial, district energy, and buildings sectors. The projected additional capacity by 2010 is 73 GW with corresponding energy savings of 2.6 quadrillion Btus, carbon emissions reductions of 74 million metric tons, 1.4 million tons of avoided SO{sub 2} emissions, and 0.6 million tons of avoided NO{sub x} emissions. The authors estimate that this new CHP would require cumulative capital investments of roughly $47 billion over ten years.

Kaarsberg, T.M.; Elliott, R.N.; Spurr, M.

1999-07-01T23:59:59.000Z

312

Technical Analysis of Installed Micro-Combined Heat and Power Fuel-Cell System  

SciTech Connect (OSTI)

Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a technical analysis of 5 kWe CHP-FCSs installed in different locations in the U.S. At some sites as many as five 5 kWe system is used to provide up to 25kWe of power. Systems in this power range are considered micro-CHP-FCS. To better assess performance of micro-CHP-FCS and understand their benefits, the U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe PBI high temperature PEM fuel cells (CE5 models) in the commercial markets of California and Oregon. Pacific Northwest National Laboratory evaluated these systems in terms of their economics, operations, and technical performance. These units were monitored from September 2011 until June 2013. During this time, about 190,000 hours of data were collected and more than 17 billion data points were analyzed. Beginning in July 2013, ten of these systems were gradually replaced with ungraded systems (M5 models) containing phosphoric acid fuel cell technology. The new units were monitored until June 2014 until they went offline because ClearEdge was bought by Doosan at the time and the new manufacturer did not continue to support data collection and maintenance of these units. During these two phases, data was collected at once per second and data analysis techniques were applied to understand behavior of these systems. The results of this analysis indicate that systems installed in the second phase of this demonstration performed much better in terms of availability, consistency in generation, and reliability. The average net electrical power output increased from 4.1 to 4.9 kWe, net heat recovery from 4.7 to 5.4 kWth, and system availability improved from 94% to 95%. The average net system electric efficiency, average net heat recovery efficiency, and overall net efficiency of the system increased respectively from 33% to 36%, from 38% to 41%, and from 71% to 76%. The temperature of water sent to sit however reduced by about 16% from 51?C to 43 ?C. This was a control strategy and the temperature can be controlled depending on building heat demands. More importantly, the number of shutdowns and maintenance events required to keep the systems running at the manufacturers rated performance specifications were substantially reduced by about 76% (for 8 to 10 units running over a one-year period). From July 2012 to June 2013, there were eight CE5 units in operation and a total of 134 scheduled and unscheduled shutdowns took place. From July 2013 to June 2014, between two to ten units were in operation and only 32 shutdowns were reported (all unscheduled). In summary, the number of shutdowns reduced from 10 shutdowns per month on average for eight CE5units to an average of 2.7 shutdowns per month for M5 units (between two to ten units).

Brooks, Kriston P.; Makhmalbaf, Atefe

2014-10-31T23:59:59.000Z

313

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part II of II, case study results.  

SciTech Connect (OSTI)

Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches. The detailed assumptions and methods behind these models are described in Part I of this article pair.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

314

Optimizal design and control strategies for novel Combined Heat and Power (CHP) fuel cell systems. Part II of II, case study results.  

SciTech Connect (OSTI)

Innovative energy system optimization models are deployed to evaluate novel fuel cell system (FCS) operating strategies, not typically pursued by commercial industry. Most FCS today are installed according to a 'business-as-usual' approach: (1) stand-alone (unconnected to district heating networks and low-voltage electricity distribution lines), (2) not load following (not producing output equivalent to the instantaneous electrical or thermal demand of surrounding buildings), (3) employing a fairly fixed heat-to-power ratio (producing heat and electricity in a relatively constant ratio to each other), and (4) producing only electricity and no recoverable heat. By contrast, models discussed here consider novel approaches as well. Novel approaches include (1) networking (connecting FCSs to electrical and/or thermal networks), (2) load following (having FCSs produce only the instantaneous electricity or heat demanded by surrounding buildings), (3) employing a variable heat-to-power ratio (such that FCS can vary the ratio of heat and electricity they produce), (4) co-generation (combining the production of electricity and recoverable heat), (5) permutations of these together, and (6) permutations of these combined with more 'business-as-usual' approaches.

Colella, Whitney G.

2010-04-01T23:59:59.000Z

315

Skutterudite Thermoelectric Generator For Automotive Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Skutterudite TE modules were fabricated and assembled into prototype thermoelectric generators (TEGs), then installed on a standard GM production vehicle and tested for performance

316

Combined-Cycle Power Generation A Promising Alternative for the Generation of Electric Power from Coal  

Science Journals Connector (OSTI)

The classic concept of generating electric power from a fossil energy source (coal, oil, gas) comprises the following essential process steps (Fig. 1): Combustion of coal and g...

Eberhard Nitschke

1987-01-01T23:59:59.000Z

317

Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability  

Broader source: Energy.gov [DOE]

Breakout Session 3BIntegration of Supply Chains III: Algal Biofuels Strategy Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Martin Sabarsky, Chief Executive Officer, Cellana

318

Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time-sensi%ve Electricity Prices  

E-Print Network [OSTI]

1 Op%mal Scheduling of Combined Heat and Power (CHP) Plants1 under Time. Combined heat and power genera%on plants are also called co-genera%on plants. #12. #12;Facing the challenge of variability, the power grid is in transi

Grossmann, Ignacio E.

319

FINAL ENVIRONMENTAL ASSESSMENT FOR A COMBINED POWER AND BIOMASS HEATING SYSTEM  

Broader source: Energy.gov (indexed) [DOE]

FOR A COMBINED POWER AND BIOMASS HEATING SYSTEM FORT YUKON, ALASKA U.S. Department of Energy Office of Energy Efficiency and Renewable Energy GOLDEN FIELD OFFICE In Cooperation with USDA RURAL UTILITIES SERVICE DENALI COMMISSION APRIL 2013 ABBREVIATIONS AND ACRONYMS ADEC Alaska Department of Environmental Conservation AFRPA Alaska Forest Resources Practices Act BFE Base Flood Elevation BMP best management practice BTU British Thermal Unit CATG Council of Athabascan Tribal Governments CEQ Council on Environmental Quality CFR Code of Federal Regulations CHP Combined Heat and Power CO carbon monoxide CO 2 carbon dioxide CWA Clean Water Act dBA A-weighted decibel DBH diameter at breast height DOE U.S. Department of Energy EA Environmental Assessment

320

Retrofitting the Strogino district heat supply station with construction of a 260-MW combined-cycle power plant (Consisting of two PGU-130 combined-cycle power units)  

Science Journals Connector (OSTI)

The retrofitting carried out at the Strogino district heat supply station and the specific features of works accomplished in the course of constructing the thermal power station based on a combined-cycle power pl...

V. F. Aleksandrov

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Ultra Efficient Combined Heat, Hydrogen, and Power System- Fact Sheet, 2015  

Broader source: Energy.gov [DOE]

FuelCell Energy, Inc., in collaboration with Abbott Furnace Company, is developing a combined heat, hydrogen, and power (CHHP) system that utilizes reducing gas produced by a high-temperature fuel cell to directly replace hydrogen in metal treatment and other industrial processes. Excess reducing gas can be utilized in a low-temperature, bottoming cycle fuel cell incorporated into the CHHP system to increase overall efficiency.

322

4th Generation District Heating (4GDH): Integrating smart thermal grids into future sustainable energy systems  

Science Journals Connector (OSTI)

Abstract This paper defines the concept of 4th Generation District Heating (4GDH) including the relations to District Cooling and the concepts of smart energy and smart thermal grids. The motive is to identify the future challenges of reaching a future renewable non-fossil heat supply as part of the implementation of overall sustainable energy systems. The basic assumption is that district heating and cooling has an important role to play in future sustainable energy systems including 100 percent renewable energy systems but the present generation of district heating and cooling technologies will have to be developed further into a new generation in order to play such a role. Unlike the first three generations, the development of 4GDH involves meeting the challenge of more energy efficient buildings as well as being an integrated part of the operation of smart energy systems, i.e. integrated smart electricity, gas and thermal grids.

Henrik Lund; Sven Werner; Robin Wiltshire; Svend Svendsen; Jan Eric Thorsen; Frede Hvelplund; Brian Vad Mathiesen

2014-01-01T23:59:59.000Z

323

Testing and Thermodynamic Analysis of Low-Grade Heat Power Generation System Using Organic Rankine Cycle  

Science Journals Connector (OSTI)

Low grade heat power generation system using Organic Rankine Cycle (ORC) was introduced in this work. ... system behaved better in thermodynamic efficiency than stream-Rankine cycle. Numerical thermodynamic model...

Wei Gu; Yiwu Weng; Guangyi Cao

2007-01-01T23:59:59.000Z

324

Improving heat capture for power generation in coal gasification plants  

E-Print Network [OSTI]

Improving the steam cycle design to maximize power generation is demonstrated using pinch analysis targeting techniques. Previous work models the steam pressure level in composite curves based on its saturation temperature ...

Botros, Barbara Brenda

2011-01-01T23:59:59.000Z

325

Business Case for a Micro-Combined Heat and Power Fuel Cell System in Commercial Applications  

SciTech Connect (OSTI)

Combined heat and power fuel cell systems (CHP-FCSs) provide consistent electrical power and hot water with greater efficiency and lower emissions than alternative sources. These systems can be used either as baseload, grid-connected, or as off-the-grid power sources. This report presents a business case for CHP-FCSs in the range of 5 to 50 kWe. Systems in this power range are considered micro-CHP-FCS. For this particular business case, commercial applications rather than residential or industrial are targeted. To understand the benefits of implementing a micro-CHP-FCS, the characteristics that determine their competitive advantage must first be identified. Locations with high electricity prices and low natural gas prices are ideal locations for micro-CHP-FCSs. Fortunately, these high spark spread locations are generally in the northeastern area of the United States and California where government incentives are already in place to offset the current high cost of the micro-CHP-FCSs. As a result of the inherently high efficiency of a fuel cell and their ability to use the waste heat that is generated as a CHP, they have higher efficiency. This results in lower fuel costs than comparable alternative small-scale power systems (e.g., microturbines and reciprocating engines). A variety of markets should consider micro-CHP-FCSs including those that require both heat and baseload electricity throughout the year. In addition, the reliable power of micro-CHP-FCSs could be beneficial to markets where electrical outages are especially frequent or costly. Greenhouse gas emission levels from micro-CHP-FCSs are 69 percent lower, and the human health costs are 99.9 percent lower, than those attributed to conventional coal-fired power plants. As a result, FCSs can allow a company to advertise as environmentally conscious and provide a bottom-line sales advantage. As a new technology in the early stages of adoption, micro-CHP-FCSs are currently more expensive than alternative technologies. As the technology gains a foothold in its target markets and demand increases, the costs will decline in response to improved manufacturing efficiencies, similar to trends seen with other technologies. Transparency Market Research forecasts suggest that the CHP-FCS market will grow at a compound annual growth rate of greater than 27 percent over the next 5 years. These production level increases, coupled with the expected low price of natural gas, indicate the economic payback period will move to less than 5 years over the course of the next 5 years. To better understand the benefits of micro-CHP-FCSs, The U.S. Department of Energy worked with ClearEdge Power to install fifteen 5-kWe fuel cells in the commercial markets of California and Oregon. Pacific Northwest National Laboratory is evaluating these systems in terms of economics, operations, and their environmental impact in real-world applications. As expected, the economic analysis has indicated that the high capital cost of the micro-CHP-FCSs results in a longer payback period than typically is acceptable for all but early-adopter market segments. However, a payback period of less than 3 years may be expected as increased production brings system cost down, and CHP incentives are maintained or improved.

Brooks, Kriston P.; Makhmalbaf, Atefe; Anderson, David M.; Amaya, Jodi P.; Pilli, Siva Prasad; Srivastava, Viraj; Upton, Jaki F.

2013-10-30T23:59:59.000Z

326

Table A45. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Enclosed Floorspace, Percent Conditioned Floorspace, and Presence of Computer" " Controls for Building Environment, 1991" " (Estimates in Trillion Btu)" ,,"Presence of Computer Controls" ,," for Buildings Environment",,"RSE" "Enclosed Floorspace and"," ","--------------","--------------","Row" "Percent Conditioned Floorspace","Total","Present","Not Present","Factors" " "," " "RSE Column Factors:",0.8,1.3,0.9 "ALL SQUARE FEET CATEGORIES" "Approximate Conditioned Floorspace"

327

Table A31. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1991" " (Continued)" " (Estimates in Trillion Btu)",,,,"Value of Shipments and Receipts(b)" ,,,," (million dollars)" ,,,"-","-","-","-","-","-","RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Groups and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors"

328

Constructal multi-scale package of vertical channels with natural convection and maximal heat transfer density. CONSTRUCTAL DESIGN: THE GENERATION OF MULTI-SCALE HEAT  

E-Print Network [OSTI]

transfer density. CONSTRUCTAL DESIGN: THE GENERATION OF MULTI-SCALE HEAT AND FLUID FLOW STRUCTURES-scale structures in natural convection with the objective of maximizing the heat transfer density, or the heat transfer rate per unit of volume§ . The flow volume is filled with vertical equidistant heated blades

Kihm, IconKenneth David

329

Solar Colletors Combined with Ground-Source Heat Pumps in Dwellings - Analyses of System Performance.  

E-Print Network [OSTI]

??The use of ground-source heat pumps for heating buildings and domestic hot water in dwellings is increasing rapidly in Sweden. The heat pump extracts heat (more)

Kjellsson, Elisabeth

2009-01-01T23:59:59.000Z

330

Feasibility of combined solar thermal and ground source heat pump systems in cold climate, Canada  

Science Journals Connector (OSTI)

This document presents a study for examining the viability of hybrid ground source heat pump (GSHP) systems that use solar thermal collectors as the supplemental component in heating dominated buildings. Loads for an actual house in the City of Milton near Toronto, Canada, were estimated. TRNSYS, a system simulation software tool, was used to model yearly performance of a conventional GSHP system as well as a proposed hybrid GSHP system. Actual yearly data collected from the site were examined against the simulation results. This study demonstrates that hybrid ground source heat pump system combined with solar thermal collectors is a feasible choice for space conditioning for heating dominated houses. It was shown that the solar thermal energy storage in the ground could reduce a large amount of ground heat exchanger (GHX) length. Combining three solar thermal collectors with a total area of 6.81m2 to a GSHP system will reduce GHX length by 15%. Sensitivity analysis was carried out for different cities of Canada and resulted that Vancouver, with mildest climate compared to other cities, was the best candidate for the proposed solar hybrid GSHP system with a GHX length reduction to solar collector area ratio of 7.64m/m2. Overall system economic viability was also evaluated using a 20-year life-cycle cost analysis. The analysis showed that there is small economic benefit in comparing to the conventional GSHP system. The net present value of the proposed hybrid system based on the 20-year life-cycle cost analysis was estimated to be in a range of 3.7%7.6% (or $1500 to $3430 Canadian dollar) lower than the conventional GSHP system depending on the drilling cost.

Farzin M. Rad; Alan S. Fung; Wey H. Leong

2013-01-01T23:59:59.000Z

331

Non-uniform heat generation effect on heat transfer of a non-Newtonian power-law fluid over a non-linearly stretching sheet  

Science Journals Connector (OSTI)

The effects of non-uniform heat generation/absorption and viscous dissipation on heat transfer of a non-Newtonian power-law fluid on a non-linearly stretching surface have ... law index parameter, the Prandtl num...

Mostafa A. A. Mahmoud; Ahmed M. Megahed

2012-06-01T23:59:59.000Z

332

An assessment of solar-powered organic Rankine cycle systems for combined heating and power in UK domestic applications  

Science Journals Connector (OSTI)

Abstract Performance calculations are presented for a small-scale combined solar heat and power (CSHP) system based on an Organic Rankine Cycle (ORC), in order to investigate the potential of this technology for the combined provision of heating and power for domestic use in the UK. The system consists of a solar collector array of total area equivalent to that available on the roof of a typical UK home, an ORC engine featuring a generalised positive-displacement expander and a water-cooled condenser, and a hot water storage cylinder. Preheated water from the condenser is sent to the domestic hot water cylinder, which can also receive an indirect heating contribution from the solar collector. Annual simulations of the system are performed. The electrical power output from concentrating parabolic-trough (PTC) and non-concentrating evacuated-tube (ETC) collectors of the same total array area are compared. A parametric analysis and a life-cycle cost analysis are also performed, and the annual performance of the system is evaluated according to the total electrical power output and cost per unit generating capacity. A best-case average electrical power output of 89W (total of 776kWh/year) plus a hot water provision capacity equivalent to ?80% of the total demand are demonstrated, for a whole system capital cost of 27003900. Tracking \\{PTCs\\} are found to be very similar in performance to non-tracking \\{ETCs\\} with an average power output of 89W (776kWh/year) vs. 80W (701kWh/year).

James Freeman; Klaus Hellgardt; Christos N. Markides

2015-01-01T23:59:59.000Z

333

Results of heat tests of the TGE-435 main boiler in the PGU-190/220 combined-cycle plant of the Tyumen' TETs-2 cogeneration plant  

SciTech Connect (OSTI)

Special features of operation of a boiler operating as a combined-cycle plant and having its own furnace and burner unit are descried. The flow of flue gases on the boiler is increased due to feeding of exhaust gases of the GTU into the furnace, which intensifies the convective heat exchange. In addition, it is not necessary to preheat air in the convective heating surfaces (the boiler has no air preheater). The convective heating surfaces of the boiler are used for heating the feed water, thus replacing the regeneration extractions of the steam turbine (HPP are absent in the circuit) and partially replacing the preheating of condensate (the LPP in the circuit of the unit are combined with preheaters of delivery water). Regeneration of the steam turbine is primarily used for the district cogeneration heating purposes. The furnace and burner unit of the exhaust-heat boiler (which is a new engineering solution for the given project) ensures utilization of not only the heat of the exhaust gases of the GTU but also of their excess volume, because the latter contains up to 15% oxygen that oxidizes the combustion process in the boiler. Thus, the gas temperature at the inlet to the boiler amounts to 580{sup o}C at an excess air factor a = 3.50; at the outlet these parameters are utilized to T{sub out} = 139{sup o}C and a{sub out} = 1.17. The proportions of the GTU/boiler loads that can actually be organized at the generating unit (and have been checked by testing) are presented and the proportions of loads recommended for the most efficient operation of the boiler are determined. The performance characteristics of the boiler are presented for various proportions of GTU/boiler loads. The operating conditions of the superheater and of the convective trailing heating surfaces are presented as well as the ecological parameters of the generating unit.

A.V. Kurochkin; A.L. Kovalenko; V.G. Kozlov; A.I. Krivobok [Engineering Center of the Ural Power Industry (Russian Federation)

2007-01-15T23:59:59.000Z

334

MHTGR steam generator on-line heat balance, instrumentation and function  

SciTech Connect (OSTI)

Instrumentation is used to measure the Modular High Temperature Gas-Cooled Reactor (MHTGR) steam generator dissimilar metal weld temperature during start-up testing. Additional instrumentation is used to determine an on-line heat balance which is maintained during the 40 year module life. In the process of calibrating the on-line heat balance, the helium flow is adjusted to yield the optimum boiling level in the steam generator relative to the dissimilar metal weld. After calibration is complete the weld temperature measurement is non longer required. The reduced boiling level range results in less restrictive steam generator design constraints.

Klapka, R.E.; Howard, W.W.; Etzel, K.T. (General Atomics, San Diego, CA (United States)); Basol, M.; Karim, N.U. (ABB-CENP, Chattanooga, TN (United States))

1991-09-01T23:59:59.000Z

335

The use of combined heat and power (CHP) to reduce greenhouse gas emissions  

SciTech Connect (OSTI)

Cogeneration or Combined Heat and Power (CHP) is the sequential production of electric power and thermal energy. It is a more efficient way of providing electricity and process heat than producing them independently. Average overall efficiencies can range from 70% to more than 80%. CHP decisions often present an opportunity to switch to a cleaner fuel. CHP systems are an attractive opportunity to save money, increase overall efficiency, reduce net emissions, and improve environmental performance. Climate Wise, a US Environmental Protection Agency (US EPA) program helping industrial Partners turn energy efficiency and pollution prevention into a corporate asset, has increased awareness of CHP by providing implementation and savings information, providing peer exchange opportunities for its Partners, and recognizing the achievements of Partners that have implemented CHP at their facilities. This paper profiles Climate Wise Partners that have invested in CHP systems, including describing how CHP is used in their facilities and the resulting cost and emission reductions.

Asrael, J.; Milmoe, P.H.; Haydel, J.

1999-07-01T23:59:59.000Z

336

Analysis of combined cooling, heating, and power systems based on source primary energy consumption  

Science Journals Connector (OSTI)

Combined cooling, heating, and power (CCHP) is a cogeneration technology that integrates an absorption chiller to produce cooling, which is sometimes referred to as trigeneration. For building applications, CCHP systems have the advantage to maintain high overall energy efficiency throughout the year. Design and operation of CCHP systems must consider the type and quality of the energy being consumed. Type and magnitude of the on-site energy consumed by a building having separated heating and cooling systems is different than a building having CCHP. Therefore, building energy consumption must be compared using the same reference which is usually the primary energy measured at the source. Site-to-source energy conversion factors can be used to estimate the equivalent source energy from site energy consumption. However, building energy consumption depends on multiple parameters. In this study, mathematical relations are derived to define conditions a CCHP system should operate in order to guarantee primary energy savings.

Nelson Fumo; Louay M. Chamra

2010-01-01T23:59:59.000Z

337

Review of combined photovoltaic/thermal collector: solar assisted heat pump system options  

SciTech Connect (OSTI)

The advantages of using photovoltaic (PV) and combined photovoltaic/thermal (PV/T) collectors in conjunction with residential heat pumps are examined. The thermal and electrical power requirements of similar residences in New York City and Fort Worth are the loads under consideration. The TRNSYS energy balance program is used to simulate the operations of parallel, series, and cascade solar assisted heat pump systems. Similar work involving exclusively thermal collectors is reviewed, and the distinctions between thermal and PV/T systems are emphasized. Provided the defrost problem can be satisfactorily controlled, lifecycle cost analyses show that at both locations the optimum collector area is less than 50 m/sup 2/ and that the parallel system is preferred.

Sheldon, D.B.; Russell, M.C.

1980-01-01T23:59:59.000Z

338

Terrestrial Heat Flow and Heat Generation in South-west England  

Science Journals Connector (OSTI)

......the Wilsey Down borehole, and of heat...located over the large underlying batholith...the Wilsey Down borehole lies just beyond...the effects of drilling had subsided and...length of the borehole, I6 months after drilling ceased. At Geevor......

H. Y. Tammemagi; J. Wheildon

1974-07-01T23:59:59.000Z

339

Waste heat recovery from the exhaust of a diesel generator using Rankine Cycle  

Science Journals Connector (OSTI)

Abstract Exhaust heat from diesel engines can be an important heat source to provide additional power using a separate Rankine Cycle (RC). In this research, experiments were conducted to measure the available exhaust heat from a 40kW diesel generator using two off-the-shelf heat exchangers. The effectiveness of the heat exchangers using water as the working fluid was found to be 0.44 which seems to be lower than a standard one. This lower performance of the existing heat exchangers indicates the necessity of optimization of the design of the heat exchangers for this particular application. With the available experimental data, computer simulations were carried out to optimize the design of the heat exchangers. Two heat exchangers were used to generate super-heated steam to expand in the turbine using two orientations: series and parallel. The optimized heat exchangers were then used to estimate additional power considering actual turbine isentropic efficiency. The proposed heat exchanger was able to produce 11% additional power using water as the working fluid at a pressure of 15bar at rated engine load. This additional power resulted into 12% improvement in brake-specific fuel consumption (bsfc). The effects of the working fluid pressure were also investigated to maximize the additional power production. The pressure was limited to 15bar which was constrained by the exhaust gas temperature. However, higher pressure is possible for higher exhaust gas temperatures from higher capacity engines. This would yield more additional power with further improvements in bsfc. At 40% part load, the additional power developed was 3.4% which resulted in 3.3% reduction in bsfc.

Shekh Nisar Hossain; Saiful Bari

2013-01-01T23:59:59.000Z

340

Preliminary Estimates of Combined Heat and Power Greenhouse GasAbatement Potential for California in 2020  

SciTech Connect (OSTI)

The objective of this scoping project is to help the California Energy Commission's (CEC) Public Interest Energy Research (PIER) Program determine where it should make investments in research to support combined heat and power (CHP) deployment. Specifically, this project will: {sm_bullet} Determine what impact CHP might have in reducing greenhouse gas (GHG) emissions, {sm_bullet} Determine which CHP strategies might encourage the most attractive early adoption, {sm_bullet} Identify the regulatory and technological barriers to the most attractive CHP strategies, and {sm_bullet} Make recommendations to the PIER program as to research that is needed to support the most attractive CHP strategies.

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare,Kristina

2007-07-31T23:59:59.000Z

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Combined cooling, heating and power: A review of performance improvement and optimization  

Science Journals Connector (OSTI)

Abstract This paper presents a review on combined cooling, heating, and power (CCHP) systems. This work summarizes the methods used to perform energetic and exergetic analyses, system optimization, performance improvement studies, and development and analysis of CCHP systems, as reported in existing literature. In addition, this work highlights the most current research and emerging trends in CCHP technologies. It is envisioned that the information collected in this review paper will be a valuable source of information, for researchers, designers, and engineers, and provides direction and guidance for future research in CCHP technology.

Heejin Cho; Amanda D. Smith; Pedro Mago

2014-01-01T23:59:59.000Z

342

System and method for generating current by selective electron heating  

DOE Patents [OSTI]

A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of high-frequency waves into the plasma by means of waveguides. The wave frequency and polarization are chosen such that when the waveguides are tilted in a predetermined fashion, the wave energy is absorbed preferentially by electrons traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.

Fisch, Nathaniel J. (Princeton, NJ); Boozer, Allen H. (Rocky Hill, NJ)

1984-01-01T23:59:59.000Z

343

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

limits potential use of waste heat for space conditioning.the attractive uses for waste heat in many circumstancesprovide electricity and use the waste heat for cleaning, the

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

344

Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems  

Science Journals Connector (OSTI)

...simply as resistive heaters. Efficiency is about...office resistance heaters. Usually, traditional heaters draw more electrical...maintenance-free operation dominate other performance...pipelines, polar weather station power generators...

Lon E. Bell

2008-09-12T23:59:59.000Z

345

Cooling, Heating, Generating Power, and Recovering Waste Heat with Thermoelectric Systems  

Science Journals Connector (OSTI)

...the vehicle engine is off. Fuel consumption is reduced...target of 10% fuel reduction...possible in diesel-powered...combustion engines such as those...spectrum of fuels, such as...generation, fuel consumption and CO 2 emissions...

Lon E. Bell

2008-09-12T23:59:59.000Z

346

CHP in ESPC: Implementing Combined Heat and Power Technologies Using Energy Savings Performance Contracts (ESPCs): Webinar Transcript  

Broader source: Energy.gov [DOE]

Kurmit Rockwell:Welcome. I'm Kurmit Rockwell, the ESPC Program Manager for DOE's Federal Energy Management Program. In this presentation we will introduce you to the basics of combined heat and...

347

An improved absorption generator for solar-thermal powered heat pumps. Part 1: Feasibility  

SciTech Connect (OSTI)

Solar heated absorption chiller installations have been, typically, very expensive for their rating. The need to keep the liquid flowing within the collectors as cool as possible to enhance collector thermal efficiency, conflicts with the need to operate the absorption chiller at a higher temperature. The compromise usually results in poor collector efficiency as well as a relatively poor specific chiller effect. The proposed vortex generator permits a heat pump to operate efficiently with relatively low temperature solar heated fluid (70--80 C). As a result, the collectors are cooler and much more efficient. In addition, the specific heat pumping capacity is about 27% greater than conventional systems operating at the same reduced generator temperatures and, therefore, a smaller chiller is required. The economic consequences of these benefits will be presented in Part 2.

Fineblum, S. [Megadyne Inc., Rochester, NY (United States)

1997-12-31T23:59:59.000Z

348

An improved absorption generator for solar-thermal powered heat pumps. Part 2: Energy and economics  

SciTech Connect (OSTI)

Solar heated absorption chiller installations have been very expensive for their rating. To enhance collector thermal efficiency the liquid flowing within the collectors must be kept as cool as possible. However, there is also a need to operate the absorption reported earlier. The compromise usually results in poor collector efficiency as well as a relatively poor specific chiller effect. The proposed vortex generator permits a heat pump to operate efficiently with relatively low temperature solar heated fluid (70--80 C). As a result, the collectors are cooler and more efficient. As noted in Part 1, the specific heat pumping capacity is about 27% greater than conventional systems operating at the same reduced generator temperatures. Therefore, a smaller, less expensive chiller is required. The reduced investment in solar arrays and absorption chillers is estimated along with a range of paybacks.

Fineblum, S. [Megadyne Inc., Rochester, NY (United States)

1997-12-31T23:59:59.000Z

349

Compact design improves efficiency and CAPEX -- combining plate heat exchangers and gas-liquid separators for gas processing savings  

SciTech Connect (OSTI)

This paper presents the unique combination of two well proven technologies: a compact large scale welded plate heat exchanger with a gas-liquid separator within the same pressure vessel. Explained are the benefits for raw gas processing on production sites where cost, weight and efficiency are of particular importance. Application of this Combined Heat Exchanger-Separator is presented for various gas processing schemes: Turbo Expander, Mechanical Refrigeration and Joule-Thompson.

Waintraub, L.; Sourp, T. [Proser (France)

1998-12-31T23:59:59.000Z

350

The preliminary design of thermoelectric generation system using the fluid heat sources  

SciTech Connect (OSTI)

This paper describes the preliminary design of a thermoelectric generation system using the fluid heat sources available as the waste heat of the phosphoric acid fuel cells. The thermoelectric generator consists of many thermoelectric generation units. For estimating the output performance of the thermoelectric generator, an equilibrium thermal circuit was derived from an analytic model of a thermoelectric generation unit. Based on the equivalent thermal circuit, the output performance at thermal equilibrium was calculated by iteration. In this paper, the output performance was estimated considering the cold side pumping power. The calculation was done by assuming a heat source temperature of about 450K on the hot side, about 310 K on the cold side, and 2,000kWth as heat exchange capacity. The electric power of the generator with a size of 1.5 x 1.5 x 1.4 (h) m{sup 3} was found to be about 70 kW and its power density, about 1.5 kW/m{sup 2} excepting the pumping power on the cold water side.

Hori, Y.; Ito, T. [Central Research Inst. of Electric Power Industry, Yokosuka, Kanagawa (Japan)

1995-12-31T23:59:59.000Z

351

Combined use of adiabatic calorimetry and heat conduction calorimetry for quantifying propellant cook-off hazards  

Science Journals Connector (OSTI)

Recent work performed at DERA (now QinetiQ) has shown how accelerating rate calorimetry (ARC) can be used to obtain time to maximum rate curves using larger samples of energetic materials. The use of larger samples reduces the influence of thermal inertia, permitting experimental data to be gathered at temperatures closer to those likely to be encountered during manufacture, transportation or storage of an explosive device. However, in many cases, extrapolation of the time to maximum rate curve will still be necessary. Because of its low detection limit compared to the ARC, heat conduction calorimetry can be used to obtain data points at, or below, the region where an explosive system might exceed its temperature of no return and undergo a thermal explosion. Paired ARC and heat conduction calorimetry experiments have been conducted on some energetic material samples to explore this possibility further. Examples of where both agreement and disagreement are found between the two techniques are reported and the significance of these discussed. Ways in which combining ARC and heat conduction calorimetry experiments can enhance, complement and validate the results obtained from each technique are examined.

P.F. Bunyan; T.T. Griffiths; V.J. Norris

2003-01-01T23:59:59.000Z

352

Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system  

DOE Patents [OSTI]

In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

Tomlinson, Leroy Omar (Niskayuna, NY); Smith, Raub Warfield (Ballston Lake, NY)

2002-01-01T23:59:59.000Z

353

Combined heat and power has the potential to significantly increase energy production efficiency and thus reduce greenhouse gas emissions, however current market penetration  

E-Print Network [OSTI]

1 Combined heat and power has the potential to significantly increase energy production efficiency that California will not reach the targets for combined heat and power set for it by the Air Resources Board (ARB of combined heat and power into the new ARB Emissions Cap and Trade scheme. This potential failure would

Kammen, Daniel M.

354

Developing Next-Generation Multimodal Chemical Imaging Capability by Combining STEM/APT/STXM/HIM  

E-Print Network [OSTI]

Developing Next-Generation Multimodal Chemical Imaging Capability by Combining STEM battery cathode materials at sub-nanometer spatial and chemical resolution and ppm-level mass sensitivity Develop a common analysis platform for integrating aberration-corrected transmission electron microscopy

355

Optimal combined scheduling of generation and demand response with demand resource constraints  

Science Journals Connector (OSTI)

Demand response (DR) extends customer participation to power systems and results in a paradigm shift from simplex to interactive operation in power systems due to the advancement of smart grid technology. Therefore, it is important to model the customer characteristics in DR. This paper proposes customer information as the registration and participation information of DR, thus providing indices for evaluating customer response, such as DR magnitude, duration, frequency and marginal cost. The customer response characteristics are modeled from this information. This paper also introduces the new concept of virtual generation resources, whose marginal costs are calculated in the same manner as conventional generation marginal costs, according to customer information. Finally, some of the DR constraints are manipulated and expressed using the information modeled in this paper with various status flags. Optimal scheduling, combined with generation and DR, is proposed by minimizing the system operation cost, including generation and DR costs, with the generation and DR constraints developed in this paper.

Hyung-Geun Kwag; Jin-O Kim

2012-01-01T23:59:59.000Z

356

Simplified Heat Generation Model for Lithium ion battery used in Electric Vehicle  

Science Journals Connector (OSTI)

It is known that temperature variations inside a battery may greatly affect its performance, life, and reliability. In an effort to gain a better understanding of the heat generation in Lithium ion batteries, a simple heat generation models were constructed in order to predict the thermal behaviour of a battery pack. The Lithium ion battery presents in this paper is Lithium Iron Phosphate (LiFePO4). The results show that the model can be viewed as an acceptable approximation for the variation of the battery pack temperature at a continuous discharge current from data provided by the manufacturer and literature.

Nur Hazima Faezaa Ismail; Siti Fauziah Toha; Nor Aziah Mohd Azubir; Nizam Hanis Md Ishak; Mohd Khair Hassan; Babul Salam Ksm Ibrahim

2013-01-01T23:59:59.000Z

357

Table A15. Total Inputs of Energy for Heat, Power, and Electricity Generation  

U.S. Energy Information Administration (EIA) Indexed Site

Total Inputs of Energy for Heat, Power, and Electricity Generation" Total Inputs of Energy for Heat, Power, and Electricity Generation" " by Value of Shipment Categories, Industry Group, and Selected Industries, 1994" " (Estimates in Trillion Btu)" ,,,," Value of Shipments and Receipts(b)" ,,,," "," (million dollars)" ,,,,,,,,,"RSE" "SIC"," "," "," "," "," "," "," ",500,"Row" "Code(a)","Industry Group and Industry","Total","Under 20","20-49","50-99","100-249","250-499","and Over","Factors" ,"RSE Column Factors:",0.6,1.3,1,1,0.9,1.2,1.2

358

Combined Heat and Power (CHP): Is It Right For Your Facility?  

Broader source: Energy.gov (indexed) [DOE]

Partnership with the US DOE Partnership with the US DOE Combined Heat and Power (CHP) Is It Right For Your Facility U.S. DOE Industrial Technologies Program Webcast Series May 14 th , 2009 John J. Cuttica Cliff Haefke 312/996-4382 312/355-3476 cuttica@uic.edu chaefk1@uic.edu In Partnership with the US DOE Mid Atlantic www.chpcenterma.org Midwest www.chpcentermw.org Pacific www.chpcenterpr.org Northwest Region www.chpcenternw.org Northeast www.northeastchp.org Intermountain www.IntermountainCHP.org Gulf Coast www.GulfCoastCHP.org Southeastern www.chpcenterse.org In Partnership with the US DOE CHP Decision Making Process Presented by Ted Bronson & Joe Orlando Webcast Series January 8, 2009 CHP Regional Application Centers Walkthrough STOP Average Costs Typical Performance Yes No Energy Rates Profiles

359

Expert Meeting Report: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Broader source: Energy.gov (indexed) [DOE]

Recommendations for Applying Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems A. Rudd, K. Ueno, D. Bergey, R. Osser Building Science Corporation June 2012 i This report received minimal editorial review at NREL. NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark,

360

Effects of a shortened depreciation schedule on the investment costs for combined heat and power  

SciTech Connect (OSTI)

We investigate and compare several generic depreciation methods to assess the effectiveness of possible policy measures with respect to the depreciation schedules for investments in combined heat and power plants in the United States. We assess the different depreciation methods for CHP projects of various sizes (ranging from 1 MW to 100 MW). We evaluate the impact of different depreciation schedules on the tax shield, and the resulting tax savings to potential investors. We show that a shorter depreciation cycle could have a substantial impact on the cost of producing power, making cogeneration more attractive. The savings amount to approximately 6-7 percent of capital and fixed operation and maintenance costs, when changing from the current system to a 7 year depreciation scheme with switchover from declining balance to straight line depreciation. Suggestions for further research to improve the analysis are given.

Kranz, Nicole; Worrell, Ernst

2001-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate  

Broader source: Energy.gov (indexed) [DOE]

Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power Enhanced Geothermal in Nevada: Extracting Heat From the Earth to Generate Sustainable Power April 12, 2013 - 11:17am Addthis Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Learn the basics of enhanced geothermal systems technology. I Infographic by Sarah Gerrity. Erin R. Pierce Erin R. Pierce Digital Communications Specialist, Office of Public Affairs What does this project do? Desert Peak 2 is the nation's first commercial enhanced geothermal system to supply electricity to the grid. Based in Churchill County, Nevada, the project has increased power

362

Real-Time Combined Heat and Power Operational Strategy Using a Hierarchical Optimization Algorithm  

SciTech Connect (OSTI)

Existing attempts to optimize the operation of Combined Heat and Power (CHP) systems for building applications have two major limitations: the electrical and thermal loads are obtained from historical weather profiles; and the CHP system models ignore transient responses by using constant equipment efficiencies. This paper considers the transient response of a building combined with a hierarchical CHP optimal control algorithm to obtain a real-time integrated system that uses the most recent weather and electric load information. This is accomplished by running concurrent simulations of two transient building models. The first transient building model uses current as well as forecast input information to obtain short term predictions of the thermal and electric building loads. The predictions are then used by an optimization algorithm, i.e., a hierarchical controller, that decides the amount of fuel and of electrical energy to be allocated at the current time step. In a simulation, the actual physical building is not available and, hence, to simulate a real-time environment, a second, building model with similar but not identical input loads are used to represent the actual building. A state-variable feedback loop is completed at the beginning of each time step by copying, i.e., measuring, the state variable from the actual building and restarting the predictive model using these ?measured? values as initial conditions. The simulation environment presented in this paper features nonlinear effects such as the dependence of the heat exchanger effectiveness on their operating conditions. The results indicate that the CHP engine operation dictated by the proposed hierarchical controller with uncertain weather conditions have the potential to yield significant savings when compared to conventional systems using current values of electricity and fuel prices.

Yun, Kyung Tae; Cho, Heejin; Luck, Rogelio; Mago, Pedro J.

2011-06-01T23:59:59.000Z

363

A combined heat-transfer analysis of a single-fiber CVD reactor  

SciTech Connect (OSTI)

In high-temperature applications, structural fibers such as SiC are currently being considered for reinforcement of both ceramic and intermetallic matrices. A combined-conjugated heat-transfer and fluid-flow analysis is presented for coating fibers by CVD in a vertical cylindrical quartz reactor. The numerical model focuses on radiation and natural convection. Three case studies are performed, and the wall temperature predictions are compared to experimental measurements. In the first case, the flowing gas is hydrogen, and conduction is more important than both radiation and convection, in which case measured and predicted wall temperatures agree excellently. In the second, hydrogen is replaced by argon, thus making radiation heat transfer more important than the previous situation. Three radiation models with increasing degrees of sophistication are compared: an approximate nongray model (no wavelength dependence of emissivity), an approximate semigray model, and a rigorous semigray model with view factor calculations. Comparison with experiments suggest that a semigray radiative analysis is needed for correct determination of wall temperatures. The third involves argon at a lower flow rate, where natural convection effects are more pronounced. Checking the validity of the Boussinesq approximation by incorporating the explicit dependence of density on temperature in the model shows a slight difference between the velocity fields predicted using the Boussinesq approximation and those obtained using the explicit dependence of density on temperature. However, there is negligible difference between the temperature fields predicted in the two cases.

Kassemi, M.; Gokoglu, S.A.; Panzarella, C.H.; Veitch, L.C. (NASA Lewis Research Center, Cleveland, OH (United States))

1993-10-01T23:59:59.000Z

364

TWO WELL STORAGE SYSTEMS FOR COMBINED HEATING AND AIRCONDITIONING BY GROUNDWATER HEATPUMPS IN SHALLOW AQUIFERS  

E-Print Network [OSTI]

In warmer climates air source heat pumps have gained widestadvantages over air source heat pumps. For example, theair source equipment is much less. The source for this kind of heat pump

Pelka, Walter

2010-01-01T23:59:59.000Z

365

EXERGY ANALYSIS AND ENTROPY GENERATION MINIMIZATION OF THERMOELECTRIC WASTE HEAT RECOVERY FOR ELECTRONICS  

E-Print Network [OSTI]

Energy recovery from waste heat is attracting more and more attention. All electronic systems consume electricity but only a fraction of it is used for information processing and for human interfaces, such as displays. Lots of energy is dissipated as heat. There are some discussions on waste heat recovery from the electronic systems such as laptop computers. However the efficiency of energy conversion for such utilization is not very attractive due to the maximum allowable temperature of the heat source devices. This leads to very low limits of Carnot efficiency. In contrast to thermodynamic heat engines, Brayton cycle, free piston Stirling engines, etc., authors previously reported that thermoelectric (TE) can be a cost-effective device if the TE and the heat sink are co-optimized, and if some parasitic effects could be reduced. Since the heat already exists and it is free, the additional cost and energy payback time are the key measures to evaluate the value of the energy recovery system. In this report, we will start with the optimum model of the TE power generation system. Then, theoretical maximum output, cost impact and energy payback are evaluated in the examples of electronics system. Entropy Generation Minimization (EGM) is a method already familiar in thermal management of electronics. The optimum thermoelectric waste heat recovery design is compared with the EGM approach. Exergy analysis evaluates the useful energy flow in the optimum TE system. This comprehensive analysis is used to predict the potential future impact of the TE material development, as the dimensionless figure-ofmerit (ZT) is improved.

Kazuaki Yazawa; Ali Shakouri

366

The CO2 Reduction Potential of Combined Heat and Power in California's Commercial Buildings  

E-Print Network [OSTI]

P.C. (2001), Introduction to Advancd Batteries for EmergingPV) and solar thermal collectors; conventional batteries,flow batteries, and heat storage; heat exchangers for

Stadler, Michael

2010-01-01T23:59:59.000Z

367

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

working fluid to power a remote heat engine, as the fluidCHP options. Having a remote heat engine has many advantages

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

368

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

GHG preferable to grid power only when the waste heat can bethe grid electricity it displaces when the waste heat from

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

369

Energy and cost analysis of a solar-hydrogen combined heat and power system for remote power supply using a computer simulation  

SciTech Connect (OSTI)

A simulation program, based on Visual Pascal, for sizing and techno-economic analysis of the performance of solar-hydrogen combined heat and power systems for remote applications is described. The accuracy of the submodels is checked by comparing the real performances of the system's components obtained from experimental measurements with model outputs. The use of the heat generated by the PEM fuel cell, and any unused excess hydrogen, is investigated for hot water production or space heating while the solar-hydrogen system is supplying electricity. A 5 kWh daily demand profile and the solar radiation profile of Melbourne have been used in a case study to investigate the typical techno-economic characteristics of the system to supply a remote household. The simulation shows that by harnessing both thermal load and excess hydrogen it is possible to increase the average yearly energy efficiency of the fuel cell in the solar-hydrogen system from just below 40% up to about 80% in both heat and power generation (based on the high heating value of hydrogen). The fuel cell in the system is conventionally sized to meet the peak of the demand profile. However, an economic optimisation analysis illustrates that installing a larger fuel cell could lead to up to a 15% reduction in the unit cost of the electricity to an average of just below 90 c/kWh over the assessment period of 30 years. Further, for an economically optimal size of the fuel cell, nearly a half the yearly energy demand for hot water of the remote household could be supplied by heat recovery from the fuel cell and utilising unused hydrogen in the exit stream. Such a system could then complement a conventional solar water heating system by providing the boosting energy (usually in the order of 40% of the total) normally obtained from gas or electricity. (author)

Shabani, Bahman; Andrews, John; Watkins, Simon [School of Aerospace Mechanical and Manufacturing Engineering, RMIT University, Melbourne (Australia)

2010-01-15T23:59:59.000Z

370

Parametric design study of ``mini-generator`` with 6-watt heat source  

SciTech Connect (OSTI)

The Fairchild study showed that generator designs based on a single 1-watt RHU had very poor thermal efficiencies. At their optimum operating point, more than half of the generated heat was lost through the thermal insulation. This resulted in system efficiency of only 2.2%, compared to 7.2% for current Radioisotope Thermoelectric Generators (RTGs). Moreover, there were serious doubts about the fabricability of the required multicouples, particularly of the series/parallel connections between the large number (900) of thermoelectric legs of very small cross-section (0.21 mm square). All in all, the preceding paper showed that neither JPL`s Power Stick design nor the Fairchild-generated derivatives based on the 1-watt heat source looked promising. The present paper describes a similar parametric study of a mini-generator based on a 6-watt heat source, and compares its performance and fabricability to that of the optimum Power Stick derivative and of the current RTG design for the same mission. {copyright} 1995 {ital American} {ital Institute} {ital of} {ital Physics}

Schock, A.; Or, C.T. [Orbital Sciences Corporation, 20301 Century Blvd., Germantown, Maryland 20874 (United States)

1995-01-20T23:59:59.000Z

371

COMBINE7.1 - A Portable ENDF/B-VII.0 Based Neutron Spectrum and Cross-Section Generation Program  

SciTech Connect (OSTI)

COMBINE7.1 is a FORTRAN 90 computer code that generates multigroup neutron constants for use in the deterministic diffusion and transport theory neutronics analysis. The cross-section database used by COMBINE7.1 is derived from the Evaluated Nuclear Data Files (ENDF/B-VII.0). The neutron energy range covered is from 20 MeV to 1.0E-5 eV. The Los Alamos National Laboratory NJOY code is used as the processing code to generate a 167 fine-group cross-section library in MATXS format for Bondarenko self-shielding treatment. Resolved resonance parameters are extracted from ENDF/B-VII.0 File 2 for a separate library to be used in an alternate Nordheim self-shielding treatment in the resolved resonance energy range. The equations solved for energy dependent neutron spectrum in the 167 fine-group structure are the B3 or B1 zero-dimensional approximations to the transport equation. The fine group cross sections needed for the spectrum calculation are first prepared by Bondarenko self-shielding interpolation in terms of background cross section and temperature. The geometric lump effect, when present, is accounted for by augmenting the background cross section. Nordheim self-shielded fine group cross sections for a material having resolved resonance parameters overwrite correspondingly the existing self-shielded fine group cross sections when this option is used. COMBINE7.1 coalesces fine group cross sections into broad group macroscopic and microscopic constants. The coalescing is performed by utilizing fine-group fluxes and/or currents obtained by spectrum calculation as the weighting functions. The multigroup constants may be output in any of several standard formats including INL format, ANISN 14** free format, CCCC ISOTXS format, and AMPX working library format. ANISN-PC, a one-dimensional (1-D) discrete-ordinate transport code, is incorporated into COMBINE7.1. As an option, the 167 fine-group constants generated by zero-dimensional COMBINE portion in the program can be used to calculate regionwise spectra in the 1-D ANISN portion, all internally to reflect the 1-D transport correction. The regionwise spectra are then used to generate mutigroup regionwise neutron constants. The 1-D neutron transport can be performed up to three stages, e.g., from a TRISO fuel to PEBBLE to 1-D full core wedge. In addition, COMBINE7.1 has now the capability of adjoint flux calculation through the 1-D ANISN transport. Photon transport capability is also added. For this, a photon production and photo-atomic cross section library, MATNG.LIB, was generated in MATXS format through NJOY code. The photon production cross section matrix is of 167 neutron - 18 photon groups. Photo-atomic cross sections, including heating, are in 18 energy groups.

Woo Y. Yoon; David W. Nigg

2011-09-01T23:59:59.000Z

372

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

of the test, the induction generator and variable frequencyprovided to induction motor/generator (Hz) % baseFrequency:the induction motor is instead acting as a generator, the

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

373

Property:Distributed Generation System Application | Open Energy  

Open Energy Info (EERE)

System Application System Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Application" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Combined Heat and Power + Distributed Generation Study/615 kW Waukesha Packaged System + Combined Heat and Power + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Combined Heat and Power + Distributed Generation Study/Arrow Linen + Combined Heat and Power + Distributed Generation Study/Dakota Station (Minnegasco) + Combined Heat and Power + Distributed Generation Study/Elgin Community College + Combined Heat and Power + Distributed Generation Study/Emerling Farm + Combined Heat and Power +

374

Combined heat recovery and dry scrubbing for MWCs to meet the new EPA guidelines  

SciTech Connect (OSTI)

Both the UK and US Municipal Waste Combuster (MWC) markets have undergone upgraded regulatory control. In the UK, the government`s Integrated Pollution Control (IPC) regime, enforced by the 1990 Environmental Protection Act (EPA) Standard IPR5/3 moved control of emissions of MWCs from local councils to the government Environmental Authority (EA). Existing MWCs had until December 1, 1996 to complete environmental upgrades. Simultaneously, the European Community (EC) was finalizing more stringent legislation to take place in the year 2001. In the US, the 1990 Clean Air Act amendments required the Environmental Protection Agency (EPA) to issue emission guidelines for new and existing facilities. Existing facilities are likely to have only until the end of 1999 to complete upgrades. In North America, Procedair Industries Corp had received contracts from Kvaerner EnviroPower AB, for APC systems of four new Refuse Derived Fuel (RDF) fluid bed boilers that incorporated low outlet temperature economizers as part of the original boiler equipment. The Fayetteville, North Carolina facility was designed for 200,000 tpy. What all these facilities have in common is low economizer outlet temperatures of 285{degrees}F coupled with a Total Dry Scrubbing System. MWC or RDF facilities using conventional spray dryer/fabric filter combinations have to have economizer gas outlet temperatures about 430{degrees}F to allow for evaporation of the lime slurry in the spray dryer without the likelihood of wall build up or moisture carry over. Since the Totally Dry Scrubbing System can operate with economizer gas outlet temperatures about 285{degrees}F, the added energy available for sale from adding low outlet temperature economizer heat recovery can be considerable. This paper focuses on Procedair`s new plant and retrofit experience using `Dry Venturi Reactor/Fabric Filter` combinations with the lower inlet temperature operating conditions.

Finnis, P.J. [Procedair Industries Corp., Louisville, KY (United States); Heap, B.M. [Procedair Limited, Wombourne (United Kingdom)

1997-12-01T23:59:59.000Z

375

Application of the integrated gasification combined cycle technology and BGL gasification design for power generation  

SciTech Connect (OSTI)

Integrated gasification combined cycle (IGCC) technology promises to be the power generation technology of choice in the late 1990s and beyond. Based on the principle that almost any fuel can be burned more cleanly and efficiently if first turned into a gas, an IGCC plant extracts more electricity from a ton of coal by burning it as a gas in a turbine rather than as a solid in a boiler. Accordingly, coal gasification is the process of converting coal to a clean-burning synthetic gas. IGCC technology is the integration of the coal-gasification plant with a conventional combined-cycle plant to produce electricity. The benefits of this technology merger are many and result in a highly efficient and environmentally superior energy production facility. The lGCC technology holds significant implications for Asia-Pacific countries and for other parts of the world. High-growth regions require additional baseload capacity. Current low prices for natural gas and minimal emissions that result from its use for power generation favor its selection as the fuel source for new power generation capacity. However, fluctuations in fuel price and fuel availability are undermining the industry`s confidence in planning future capacity based upon gas-fueled generation. With the world`s vast coal reserves, there is a continuing effort to provide coal-fueled power generation technologies that use coal cleanly and efficiently. The lGCC technology accomplishes this objective. This chapter provides a summary of the status of lGCC technology and lGCC projects known to date. It also will present a technical overview of the British Gas/Lurgi (BGL) technology, one of the leading and most promising coal gasifier designs.

Edmonds, R.F. Jr.; Hulkowich, G.J.

1993-12-31T23:59:59.000Z

376

Recovery Act: Brea California Combined Cycle Electric Generating Plant Fueled by Waste Landfill Gas  

SciTech Connect (OSTI)

The primary objective of the Project was to maximize the productive use of the substantial quantities of waste landfill gas generated and collected at the Olinda Landfill near Brea, California. An extensive analysis was conducted and it was determined that utilization of the waste gas for power generation in a combustion turbine combined cycle facility was the highest and best use. The resulting Project reflected a cost effective balance of the following specific sub-objectives: Meeting the environmental and regulatory requirements, particularly the compliance obligations imposed on the landfill to collect, process and destroy landfill gas Utilizing proven and reliable technology and equipment Maximizing electrical efficiency Maximizing electric generating capacity, consistent with the anticipated quantities of landfill gas generated and collected at the Olinda Landfill Maximizing equipment uptime Minimizing water consumption Minimizing post-combustion emissions The Project produced and will produce a myriad of beneficial impacts. o The Project created 360 FTE construction and manufacturing jobs and 15 FTE permanent jobs associated with the operation and maintenance of the plant and equipment. o By combining state-of-the-art gas clean up systems with post combustion emissions control systems, the Project established new national standards for best available control technology (BACT). o The Project will annually produce 280,320 MWhs of clean energy o By destroying the methane in the landfill gas, the Project will generate CO2 equivalent reductions of 164,938 tons annually. The completed facility produces 27.4 MWnet and operates 24 hours a day, seven days a week.

Galowitz, Stephen

2012-12-31T23:59:59.000Z

377

Building America Expert Meeting: Recommendations for Applying Water Heaters in Combination Space and Domestic Water Heating Systems  

Broader source: Energy.gov [DOE]

The topic of this meeting was 'Recommendations For Applying Water Heaters In Combination Space And Domestic Water Heating Systems.' Presentations and discussions centered on the design, performance, and maintenance of these combination systems, with the goal of developing foundational information toward the development of a Building America Measure Guideline on this topic. The meeting was held at the Westford Regency Hotel, in Westford, Massachusetts on 7/31/2011.

378

Evaluation Metrics for Intermediate Heat Exchangers for Next Generation Nuclear Reactors  

SciTech Connect (OSTI)

The Department of Energy (DOE) is working with industry to develop a next generation, high-temperature gas-cooled reactor (HTGR) as a part of the effort to supply the United States with abundant, clean, and secure energy as initiated by the Energy Policy Act of 2005 (EPAct; Public Law 109-58,2005). The NGNP Project, led by the Idaho National Laboratory (INL), will demonstrate the ability of the HTGR to generate hydrogen, electricity, and/or high-quality process heat for a wide range of industrial applications.

Piyush Sabharwall; Eung Soo Kim; Nolan Anderson

2011-06-01T23:59:59.000Z

379

Investigation of the effect of electron cyclotron heating on runaway generation in the KSTAR tokamak  

Science Journals Connector (OSTI)

Wave enhanced runaway generation is expected to play an important role in the conversion of plasma current into runaway current during major disruptions. The fast electrons created by electron cyclotron heating (ECH) were used to study this issue in KSTAR. It is found that the fast electrons driven by ECH can enhance runaway production in the flat top phase with high loop voltage. The runaway current in disruptions was not enhanced by the ECH produced fast electron population due to the strong magnetic fluctuations which inhibited the generation of runaway electrons. It is found that a complete loss of existing \\{REs\\} during thermal quench has occurred in KSTAR limiter configuration discharges.

Z.Y. Chen; W.C. Kim; A.C. England; S.W. Yoon; K.D. Lee; Y.S. Lee; J.W. Yoo; Y.W. Yu; Y.K. Oh; J.G. Kwak; M. Kwon

2011-01-01T23:59:59.000Z

380

Numerical and experimental investigation of melting with internal heat generation within cylindrical enclosures  

SciTech Connect (OSTI)

There have been significant efforts by the heat transfer community to investigate the melting phenomenon of materials. These efforts have included the analytical development of equations to represent melting, numerical development of computer codes to assist in modeling the phenomena, and collection of experimental data. The understanding of the melting phenomenon has application in several areas of interest, for example, the melting of a Phase Change Material (PCM) used as a thermal storage medium as well as the melting of the fuel bundle in a nuclear power plant during an accident scenario. The objective of this research is two-fold. First a numerical investigation, using computational fluid dynamics (CFD), of melting with internal heat generation for a vertical cylindrical geometry is presented. Second, to the best of authors knowledge, there are very limited number of engineering experimental results available for the case of melting with Internal Heat Generation (IHG). An experiment was performed to produce such data using resistive, or Joule, heating as the IHG mechanism. The numerical results are compared against the experimental results and showed favorable correlation. Uncertainties in the numerical and experimental analysis are discussed. Based on the numerical and experimental analysis, recommendations are made for future work.

Amber Shrivastava; Brian Williams; Ali S. Siahpush; Bruce Savage; John Crepeau

2014-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electromagnetic Induction Heat Generation of Nano?ferrofluid and Other Stimulants for Heavy Oil Recovery  

Science Journals Connector (OSTI)

Nano?ferrofluid and graphite?fluid are proposed to be used as stimulants for heavy oil recovery processes using electromagnetic induction. The heat generation in the stimulants will be used for reducing the viscosity of heavy oil. The temperature increase of the stimulants are observed with the presence of electromagnetic induction. These increments are better compared to those of the varying concentration of salt water (brine) usually exist in the oil reservoir.

A. A. Pramana; D. Abdassah; S. Rachmat; A. Mikrajuddin

2010-01-01T23:59:59.000Z

382

Thermoelectric energy converter for generation of electricity from low-grade heat  

DOE Patents [OSTI]

A thermoelectric energy conversion device which includes a plurality of thermoelectric elements is described. A hot liquid is supplied to one side of each element and a cold liquid is supplied to the other side of each element. The thermoelectric generator may be utilized to produce power from low-grade heat sources such as ocean thermal gradients, solar ponds, and low-grade geothermal resources. (WHK)

Jayadev, T.S.; Benson, D.K.

1980-05-27T23:59:59.000Z

383

Assessment of district heating and cooling supply from Goudey Generating Station  

SciTech Connect (OSTI)

This paper addresses the feasibility analysis of retrofitting the New York State Electric and Gas (NYSEG) Goudey Generating Station for district heating and cooling supply to the SUNY-Binghamton Campus. The project involved detailed analysis of the power plant retrofit, dispatch analysis of the retrofitted Goudey Station in the New York Power Pool, environmental and permitting assessment, retrofit analysis of the SUNY campus to low temperature hot water and economic analysis.

McIntire, M.E.; Hall, D.; Beal, D.J. [New York State Electric & Gas Corporation, Binghamton, NY (United States)] [and others

1995-06-01T23:59:59.000Z

384

Analysis of combined cooling, heating, and power systems under a compromised electricthermal load strategy  

Science Journals Connector (OSTI)

Abstract Following the electric load (FE) and following the thermal load (FT) strategies both have advantages and disadvantages for combined cooling, heating and power (CCHP) systems. In this paper, the performance of different strategies is evaluated under operation cost (OC), carbon dioxide emission (CDE) and exergy efficiency (EE). Analysis of different loads in one hour is conducted under the assumption that the additional electricity is not allowed to be sold back to the grid. The results show that FE produces less OC, less CDE, and FT produces higher EE when the electric load is larger. However, FE produces less OC, less CDE and higher EE when the thermal load is larger. Based on a hybrid electricthermal load (HET) strategy, compromised electricthermal (CET) strategies are innovatively proposed using the efficacy coefficient method. Additional, the CCHP system of a hotel in Tianjin is analyzed for all of the strategies. The results for an entire year indicate the first CET strategy is the optimal one when dealing with OC, CDE and EE. And the second CET is the optimal one when dealing with OC and EE. Moreover, the laws are strictly correct for different buildings in qualitative terms.

Gang Han; Shijun You; Tianzhen Ye; Peng Sun; Huan Zhang

2014-01-01T23:59:59.000Z

385

Combined Operation of Solar Energy Source Heat Pump, Low-vale Electricity and Floor Radiant System  

E-Print Network [OSTI]

solar energy, low-vale electricity as heat sources in a floor radiant system are analyzed. This paper presents a new heat pump system and discusses its operational modes in winter....

Liu, G.; Guo, Z.; Hu, S.

2006-01-01T23:59:59.000Z

386

Simulation of hydration/dehydration of CaO/Ca(OH){sub 2} chemical heat pump reactor for cold/hot heat generation  

SciTech Connect (OSTI)

A chemical heat pump (CHP) utilizes reversible reactions involving significant endothermic and exothermic heats of reaction in order to develop a heat pump effect by storing and releasing energy while transforming it from chemical to thermal energy and vice versa. In this paper, the authors present a mathematical model and its numerical solution for the heat and mass transport phenomena occurring in the reactant particle bed of the CHP for heat storage and cold/hot heat generation based on the CaO/Ca(OH){sub 2} reversible hydration/dehydration reaction. Transient conservation equations of mass and energy transport including chemical kinetics are solved numerically subject to appropriate boundary and initial conditions to examine the influence of the mass transfer resistance on the overall performance of this CHP configuration. These results are presented and discussed with the aim of enhancing the CHP performance in the next generation reactor designs. The CHP can store thermal energy in industrial waste heat, solar heat, terrestrial heat, etc. in the form of chemical energy, and release it at various temperature levels during the heat-demand period.

Ogura, Hironao; Shimojyo, Rui; Kage, Hiroyuki; Matsuno, Yoshizo; Mujumdar, A.S.

1999-09-01T23:59:59.000Z

387

110 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review  

Broader source: Energy.gov [DOE]

This independent review examines the status and technical potential of 1-10 kW stationary combined heat and power fuel cell systems and analyzes the achievability of the DOE cost, efficiency, and durability targets for 2012, 2015, and 2020.

388

Combined Flux Compression and Plasma Opening Switch on the Saturn Pulsed Power Generator  

Science Journals Connector (OSTI)

A wire-array flux-compression cartridge installed on Sandias Saturn pulsed power generator doubled the current into a 3-nH load to 6MA and halved its rise time to 100ns. The current into the load, however, was unexpectedly delayed by almost 1???s. Estimates of a plasma flow switch acting as a long-conduction-time opening switch are consistent with key features of the power compression. The results suggest that microsecond-conduction-time plasma flow switches can be combined with flux compression both to amplify currents and to sharpen pulse rise times in pulsed power drivers.

Franklin S. Felber; Eduardo M. Waisman; Michael G. Mazarakis

2010-05-04T23:59:59.000Z

389

Theoretical and experimental estimation of limiting input heat flux for thermoelectric power generators with passive cooling  

Science Journals Connector (OSTI)

Abstract This paper focuses on theoretical and experimental analysis used to establish the limiting heat flux for passively cooled thermoelectric generators (TEG). 2 commercially available TEGs further referred as type A and type B with different allowable hot side temperatures (150C and 250C respectively) were investigated in this research. The thermal resistance of TEG was experimentally verified against the manufacturers specifications and used for theoretical analysis in this paper. A theoretical model is presented to determine the maximum theoretical heat flux capacity of both the TEGs. The conventional methods are used for cooling of TEGs and actual limiting heat flux is experimentally established for various cold end cooling configurations namely bare plate, finned block and heat pipe with finned condenser. Experiments were performed on an indoor setup and outdoor setup to validate the results from the theoretical model. The outdoor test setup consist of a fresnel lens solar concentrator with manual two axis solar tracking system for varying the heat flux, whereas the indoor setup uses electric heating elements to vary the heat flux and a low speed wind tunnel blows the ambient air past the device to simulate the outdoor breezes. It was observed that bare plate cooling can achieve a maximum heat flux of 18,125W/m2 for type A and 31,195W/m2 for type B at ambient wind speed of 5m/s while maintaining respective allowable temperature over the hot side of TEGs. Fin geometry was optimised for the finned block cooling by using the fin length and fin gap optimisation model presented in this paper. It was observed that an optimum finned block cooling arrangement can reach a maximum heat flux of 26,067W/m2 for type A and 52,251W/m2 for type B TEG at ambient wind speed of 5m/s of ambient wind speed. The heat pipe with finned condenser used for cooling can reach 40,375W/m2 for type A TEG and 76,781W/m2 for type B TEG.

Ashwin Date; Abhijit Date; Chris Dixon; Randeep Singh; Aliakbar Akbarzadeh

2015-01-01T23:59:59.000Z

390

High Temperature Fuel Cell Tri-Generation of Power, Heat & H2 from Biogas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

National Fuel Cell Research Center, 2012 1/22 National Fuel Cell Research Center, 2012 1/22 High Temperature Fuel Cell Tri-Generation of Power, Heat & H 2 from Biogas Jack Brouwer, Ph.D. June 19, 2012 DOE/ NREL Biogas Workshop - Golden, CO © National Fuel Cell Research Center, 2012 2/22 Outline * Introduction and Background * Tri-Generation/Poly-Generation Analyses * OCSD Project Introduction © National Fuel Cell Research Center, 2012 3/22 Introduction and Background * Hydrogen fuel cell vehicle performance is outstanding * Energy density of H 2 is much greater than batteries * Rapid fueling, long range ZEV * H 2 must be produced * energy intensive, may have emissions, fossil fuels, economies of scale * Low volumetric energy density of H 2 compared to current infrastructure fuels (@ STP)

391

Hot water tank for use with a combination of solar energy and heat-pump desuperheating  

DOE Patents [OSTI]

A water heater or system is described which includes a hot water tank having disposed therein a movable baffle to function as a barrier between the incoming volume of cold water entering the tank and the volume of heated water entering the tank which is heated by the circulation of the cold water through a solar collector and/or a desuperheater of a heat pump so as to optimize the manner in which heat is imparted to the water in accordance to the demand on the water heater or system. A supplemental heater is also provided and it is connected so as to supplement the heating of the water in the event that the solar collector and/or desuperheater cannot impart all of the desired heat input into the water.

Andrews, J.W.

1980-06-25T23:59:59.000Z

392

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

A Better Steam Engine: Designing a Distributed Concentrating2011 Abstract A Better Steam Engine: Designing a Distributedprovided for a steam Rankine cycle heat engine achieving 50%

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

393

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network [OSTI]

heat and power, and thermally activated cooling equipment.and power system provides electricity and cooling to a dataand power system provides electricity and cooling to a data

Norwood, Zack

2010-01-01T23:59:59.000Z

394

World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station  

Office of Energy Efficiency and Renewable Energy (EERE)

EERE supported the development of the world's first tri-generation station combined heat and power system that produces hydrogen in addition to heat and electricity.

395

Design of the ORC (organic Rankine cycle) condensation temperature with respect to the expander characteristics for domestic CHP (combined heat and power) applications  

Science Journals Connector (OSTI)

Abstract Domestic CHP (combined heat and power) generation is one new application of the ORC (organic Rankine cycle). An environment temperature fluctuation of 40C through the year is common in many areas, where the consumer's demand on heat follows a seasonal cycle. In no demand periods the ORC shall work under lower condensation temperature for more efficient power generation. Off-design operation will be executed, accompanied with a degraded performance of the ORC components especially the expander. The design of the condensation temperature herein becomes crucial. It influences the ORC efficiency in both the CHP and SPG (solo power generation) modes. If the condensation temperature is designed simply based on the CHP mode, the power conversion in the SPG mode will suffer from low expander efficiency. An optimum design of the condensation temperature involves a compromise between the power outputs in the two modes. This paper aims to determine the optimum design condensation temperature for the ORC-CHP system. A new concept, namely the threshold condensation temperature, is introduced and found to be important to the design and operation strategies of the system. The results indicate that via a careful design of the condensation temperature, the annual power output can be increased by 50%.

Jing Li; Gang Pei; Jie Ji; Xiaoman Bai; Pengcheng Li; Lijun Xia

2014-01-01T23:59:59.000Z

396

Development of Design Criteria for Fluid Induced Structural Vibration in Steam Generators and Heat Exchangers  

SciTech Connect (OSTI)

OAK-B135 Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers. In the nuclear industry, steam generators are often affected by this problem. However, flow-induced vibration is not limited to nuclear power plants, but to any type of heat exchanger used in many industrial applications such as chemical processing, refrigeration and air conditioning. Specifically, shell and tube type heat exchangers experience flow-induced vibration due to the high velocity flow over the tube banks. Flow-induced vibration in these heat exchangers leads to equipment breakdown and hence expensive repair and process shutdown. The goal of this research is to provide accurate measurements that can help modelers to validate their models using the measured experimental parameters and thereby develop better design criteria for avoiding fluid-elastic instability in heat exchangers. The research is divided between two primary experimental efforts, the first conducted using water alone (single phase) and the second using a mixture of air or steam and water as the working fluid (two phase). The outline of this report is as follows: After the introduction to fluid-elastic instability, the experimental apparatus constructed to conduct the experiments is described in Chapter 2 along with the measurement procedures. Chapter 3 presents results obtained on the tube array and the flow loop, as well as techniques used in data processing. The project performance is described and evaluated in Chapter 4 followed by a discussion of publications and presentations relevant to the project in Chapter 5, while the conclusions and recommendations for future work are presented in Chapter 6.

Catton, Ivan; Dhir, Vijay K.; Alquaddoomi, O.S.; Mitra, Deepanjan; Adinolfi, Pierangelo

2004-03-26T23:59:59.000Z

397

CHARACTERIZATION OF ELEVATED TEMPERATURE PROPERTIES OF HEAT EXCHANGER AND STEAM GENERATOR ALLOYS  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant project is considering Alloy 800H and Alloy 617 for steam generator and intermediate heat exchangers. It is envisioned that a steam generator would operate with reactor outlet temperatures from 750 to 800 C, while an intermediate heat exchanger for primary to secondary helium would operate up to an outlet temperature of 950 C. Although both alloys are of interest due in part to their technical maturity, a number of specific properties require further characterization for design of nuclear components. Strain rate sensitivity of both alloys has been characterized and is found to be significant above 600 C. Both alloys also exhibit dynamic strain aging, characterized by serrated flow, over a wide range of temperatures and strain rates. High temperature tensile testing of Alloy 617 has been conducted over a range of temperatures. Dynamic strain aging is a concern for these materials since it is observed to result in reduced ductility for many solid solution alloys. Creep, fatigue, and creep-fatigue properties of Alloy 617 have been measured as well, with the goal of determining the influence of the temperature, strain rate and atmosphere on the creep fatigue life of Alloy 617. Elevated temperature properties and implications for codification of the alloys will be described.

J.K. Wright; L.J. Carroll; C.J. Cabet; T. Lillo; J.K. Benz; J.A. Simpson; A. Chapman; R.N. Wright

2012-10-01T23:59:59.000Z

398

Electric Power Generation Using Low Bandgap TPV Cells in a Gas?fired Heating Furnace  

Science Journals Connector (OSTI)

Low bandgap TPV cells are preferred for electric power generation in TPV cogeneration systems. Recently significant progress has been made in fabrication of low bandgap semiconductor TPV devices such as InGaAsSb and InGaAs cells. However it appears that only limited data are available in the literature with respect to the performance of these TPV cells in combustion?driven TPV systems. In the research presented in this paper power generation using recently?developed InGaAsSb TPV cells has been investigated in a gas?fired space heating appliance. The combustion performance of the gas burner associated with a broadband radiator was evaluated experimentally. The radiant power density and radiant efficiency of the gas?heated radiator were determined at different degrees of exhaust heat recuperation. Heat recuperation is shown to have a certain effect on the combustion operation and radiant power output. The electric output characteristics of the InGaAsSb TPV devices were investigated under various combustion conditions. It was found that the cell short circuit density was greater than 1 A/cm2 at a radiator temperature of 930C when an optical filter was used. An electric power density of 0.54 W/cm2 was produced at a radiator temperature of 1190C. Furthermore modeling calculations were carried out to reveal the influence of TPV cell bandgap and radiator temperature on power output and conversion efficiency. Finally the design aspects of combustion?driven TPV systems were analyzed showing that development of a special combustion device with high conversion level of fuel chemical energy to useful radiant energy is required to improve further the system efficiency.

K. Qiu; A. C. S. Hayden

2003-01-01T23:59:59.000Z

399

EIS-0302: Transfer of the Heat Source/Radioisotope Thermoelectric Generator Assembly and Test Operations From the Mound Site  

Broader source: Energy.gov [DOE]

This EIS analyzes DOE's proposed transfer of the Heat Source/Radioisotope Thermoelectric Generator (HS/RTG) operations at the Mound Site near Miamisburg, Ohio, to an alternative DOE site.

400

A fast solver for combined emission/generation allocation using a Hopfield neural network  

Science Journals Connector (OSTI)

The combined economic/emission dispatch (CEED) problem is obtained by considering both the economy and the emission objectives with required constraints. Many optimisation techniques are slow for such complex optimisation tasks and are not suitable for online use. This paper presents an optimisation algorithm for solving constrained CEED, through the application of a flexible Hopfield neural network (HNN). The constrained CEED must satisfy the system load demand and practical operation constraints of generators. The feasibility of the proposed HNN using to solve CEED is demonstrated using a three-unit test system and it is compared with the other methods in terms of solution quality and computation efficiency. The simulation results showed that the proposed HNN method was indeed capable of obtaining higher-quality solutions efficiently in CEED problems with a much shorter computation time compared with other methods.

Farid Benhamida; Belhachem Rachid; Souag Slimane; Ramdani Youcef

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Model predictive control system and method for integrated gasification combined cycle power generation  

SciTech Connect (OSTI)

Control system and method for controlling an integrated gasification combined cycle (IGCC) plant are provided. The system may include a controller coupled to a dynamic model of the plant to process a prediction of plant performance and determine a control strategy for the IGCC plant over a time horizon subject to plant constraints. The control strategy may include control functionality to meet a tracking objective and control functionality to meet an optimization objective. The control strategy may be configured to prioritize the tracking objective over the optimization objective based on a coordinate transformation, such as an orthogonal or quasi-orthogonal projection. A plurality of plant control knobs may be set in accordance with the control strategy to generate a sequence of coordinated multivariable control inputs to meet the tracking objective and the optimization objective subject to the prioritization resulting from the coordinate transformation.

Kumar, Aditya; Shi, Ruijie; Kumar, Rajeeva; Dokucu, Mustafa

2013-04-09T23:59:59.000Z

402

IMPACTS: Industrial Technologies Program, Summary of Program Results for CY2009, Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities  

Broader source: Energy.gov (indexed) [DOE]

87 DOE Industrial Technologies Program 87 DOE Industrial Technologies Program Appendix 6: Method of Calculating Results from DOE's Combined Heat and Power Activities u CHP Table........................................................................................................................................................................................... 189 Method of Calculating Results from DOE's Combined Heat and Power Activities Industrial Distributed Energy, a cross-cutting activity within the Industrial Technologies Program (ITP), builds on activities conducted by DOE's Office of Industrial Technologies

403

Proposing a decision-making model using analytical hierarchy process and fuzzy expert system for prioritizing industries in installation of combined heat and power systems  

Science Journals Connector (OSTI)

Restructuring electric power and increasing energy cost encourage large energy consumers to utilize combined heat and power (CHP) systems. In addition to these two factors, the gradual exclusion of subsidies is the third factor intensifying the utilization ... Keywords: Analytic hierarchy process, Combined heat and power, Decision making, Fuzzy expert system, Industry

Mehdi Piltan; Erfan Mehmanchi; S. F. Ghaderi

2012-01-01T23:59:59.000Z

404

Electronic copy available at: http://ssrn.com/abstract=2014739 Published as: Amir Nosrat and Joshua M. Pearce, "Dispatch Strategy and Model for Hybrid Photovoltaic and Combined Heating,  

E-Print Network [OSTI]

combined heat and power (CHP) systems has provided the opportunity for in- house power backup. In a novel hybrid system is proposed here of PV-trigeneration. In order to reduce waste from excess heat that accounts for electric, domestic hot water, space heating, and space cooling load categories. The dispatch

Paris-Sud XI, Université de

405

1…10 kW Stationary Combined Heat and Power Systems Status and Technical Potential: Independent Review  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

1-10 kW Stationary Combined Heat 1-10 kW Stationary Combined Heat and Power Systems Status and Technical Potential National Renewable Energy Laboratory 1617 Cole Boulevard * Golden, Colorado 80401 303-275-3000 * www.nrel.gov NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Contract No. DE-AC36-08GO28308 Independent Review Published for the U.S. Department of Energy Hydrogen and Fuel Cells Program NREL/BK-6A10-48265 November 2010 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or

406

Numerical simulation of three-dimensional combined convective radiative heat transfer in rectangular channels  

E-Print Network [OSTI]

This dissertation presents a numerical simulation of three-dimensional flow and heat transfer in a channel with a backward-facing step. Flow was considered to be steady, incompressible, and laminar. The flow medium was treated to be radiatively...

Ko, Min Seok

2009-05-15T23:59:59.000Z

407

Combined Heat and Power for Federal Facilities and the DOE CHP...  

Broader source: Energy.gov (indexed) [DOE]

technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, andor district energy with CHP in their facility and to help them through...

408

A Better Steam Engine: Designing a Distributed Concentrating Solar Combined Heat and Power System  

E-Print Network [OSTI]

and decreased cost of heat and electricity grid (Casten andgrid. Chapter 1 begins with analysis of the relative demand for electricity and heatheat can be cost-effectively stored with available technologies. (c) DCS-CHP thus can ameliorate grid-

Norwood, Zachary Mills

2011-01-01T23:59:59.000Z

409

Thermodynamic performance analysis of a combined power cycle using low grade heat source and LNG cold energy  

Science Journals Connector (OSTI)

Abstract Thermodynamic analysis of a combined cycle using a low grade heat source and LNG cold energy was carried out. The combined cycle consisted of an ammoniawater Rankine cycle with and without regeneration and a LNG Rankine cycle. A parametric study was conducted to examine the effects of the key parameters, such as ammonia mass fraction, turbine inlet pressure, condensation temperature. The effects of the ammonia mass fraction on the temperature distributions of the hot and cold streams in heat exchangers were also investigated. The characteristic diagram of the exergy efficiency and heat transfer capability was proposed to consider the system performance and expenditure of the heat exchangers simultaneously. The simulation showed that the system performance is influenced significantly by the parameters with the ammonia mass fraction having largest effect. The net work output of the ammoniawater cycle may have a peak value or increase monotonically with increasing ammonia mass fraction, which depends on turbine inlet pressure or condensation temperature. The exergy efficiency may decrease or increase or have a peak value with turbine inlet pressure depending on the ammonia mass fraction.

Kyoung Hoon Kim; Kyung Chun Kim

2014-01-01T23:59:59.000Z

410

The case for endurance testing of sodium-heated steam generators  

SciTech Connect (OSTI)

It is generally believed that a nuclear power comeback before the end of the century will be through the vehicle of the light water reactor (LWR). The newer designs, with their important technical and economic advances, should attract wide interest and result in commercial success for the manufacturers and their utility customers. To develop the liquid-metal fast breeder reactor (LMFBR), approximately $30 billion has been spent worldwide, a third of which has been spent in the US. As a result of this considerable investment, most of the technical obstacles to deployment of the LMFBR have been removed with a few exceptions, one of which is the long-term performance of sodium-heated steam generators. Of the difficulties that have beset the current vintage of nuclear power plants, the performance of steam generators in pressurized water reactors (PWRs) was the most egregious. There was very little development testing and no model testing of PWR steam generators. Development occurred in the plants themselves resulting in many outages and more than $5 billion in lost revenue and replacement power costs. As a result, the electric utility industry is certain to exercise caution regarding acquisition of the LMFBR and will demand strong objective evidence of steam generator reliability. Only long-term endurance testing of prototypic models under prototypic conditions will satisfy this demand.

Onesto, A.T.; Zweig, H.R.; Gibbs, D.C. (Energy Technology Engineering Center, Canoga Park, CA (United States))

1992-01-01T23:59:59.000Z

411

Development of thermoelectric power generation system utilizing heat of combustible solid waste  

SciTech Connect (OSTI)

The paper presents the development of thermoelectric power generation system utilizing heat of municipal solid waste. The systematic classification and design guideline are proposed in consideration of the characteristics of solid waste processing system. The conceptual design of thermoelectric power generation system is carried out for a typical middle scale incinerator system (200 ton/day) by the local model. Totally the recovered electricity is 926.5 kWe by 445 units (569,600 couples). In order to achieve detailed design, one dimensional steady state model taking account of temperature dependency of the heat transfer performance and thermoelectric properties is developed. Moreover, small scale on-site experiment on 60 W class module installed in the real incinerator is carried out to extract various levels of technological problems. In parallel with the system development, high temperature thermoelectric elements such as Mn-Si and so on are developed aiming the optimization of ternary compound and high performance due to controlled fine-grain boundary effect. The manganese silicide made by shrinking-rate controlled sintering method performs 5 ({mu}W/cm K{cflx 2}) in power factor at 800 K. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

Kajikawa, T.; Ito, M.; Katsube, I. [Shonan Institute of Technology, Fujisawa, Kanagawa, 251 (Japan); Shibuya, E. [NKK Corporation, Yokohama, Kanagawa, 230 (Japan)

1994-08-10T23:59:59.000Z

412

Economizer recirculation for low-load stability in heat recovery steam generator  

SciTech Connect (OSTI)

An economizer system is described for heating feedwater in a heat recovery steam generator which consists of: at least first and second economizer tube planes; each of the economizer tube planes including a plurality of generally parallel tubes; the tubes being generally vertically disposed; each of the economizer tube planes including a top header and a bottom header; all of the plurality of tubes in each economizer tube plane being connected in parallel to their top and bottom headers whereby parallel feedwater flow through the plurality of tubes between the top and bottom headers is enabled; one of the top and bottom headers being an inlet header; a second of the top and bottom headers being an outlet header; a boiler feed pump; the boiler feed pump being effective for applying a flow of feedwater to the inlet header; means for serially interconnecting the economizer tube planes; the means for serially interconnecting including means for flowing the feedwater upward and downward in tubes of alternating ones of the economizer tube planes between the inlet header and the outlet header; means for conveying heated feedwater from the outlet header to a using process; means for recirculating at least a portion of the heated feedwater from the outlet header to an inlet of the boiler feed pump; and the means for recirculating including means for relating the portion to a steam load in the using process whereby an increased flow is produced through all of the economizer tube planes at values of the steam load below a predetermined value and a condition permitting initiation of reverse flow in any of the tubes is substantially reduced.

Cuscino, R.T.; Shade, R.L. Jr.

1986-04-15T23:59:59.000Z

413

Optimal design and control strategies for novel combined heat and power (CHP) fuel cell systems. Part I of II, datum design conditions and approach.  

SciTech Connect (OSTI)

Energy network optimization (ENO) models identify new strategies for designing, installing, and controlling stationary combined heat and power (CHP) fuel cell systems (FCSs) with the goals of (1) minimizing electricity and heating costs for building owners and (2) reducing emissions of the primary greenhouse gas (GHG) - carbon dioxide (CO{sub 2}). A goal of this work is to employ relatively inexpensive simulation studies to discover more financially and environmentally effective approaches for installing CHP FCSs. ENO models quantify the impact of different choices made by power generation operators, FCS manufacturers, building owners, and governments with respect to two primary goals - energy cost savings for building owners and CO{sub 2} emission reductions. These types of models are crucial for identifying cost and CO{sub 2} optima for particular installations. Optimal strategies change with varying economic and environmental conditions, FCS performance, the characteristics of building demand for electricity and heat, and many other factors. ENO models evaluate both 'business-as-usual' and novel FCS operating strategies. For the scenarios examined here, relative to a base case of no FCSs installed, model results indicate that novel strategies could reduce building energy costs by 25% and CO{sub 2} emissions by 80%. Part I of II articles discusses model assumptions and methodology. Part II of II articles illustrates model results for a university campus town and generalizes these results for diverse communities.

Colella, Whitney G.

2010-06-01T23:59:59.000Z

414

Preliminary Estimates of Combined Heat and Power Greenhouse Gas Abatement Potential for California in 2020  

E-Print Network [OSTI]

renewables, including hydroelectric. For this analysis, itin 2010 and 33% in 2020. Hydroelectric generation follows aGas Cogeneration Hydroelectric New Renewables Existing

Firestone, Ryan; Ling, Frank; Marnay, Chris; Hamachi LaCommare, Kristina

2007-01-01T23:59:59.000Z

415

NiSource Energy Technologies: Optimizing Combined Heat and Power Systems  

SciTech Connect (OSTI)

Summarizes NiSource Energy Technologies' work under contract to DOE's Distribution and Interconnection R&D. Includes studying distributed generation interconnection issues and CHP system performance.

Not Available

2003-01-01T23:59:59.000Z

416

An investigation into the performance of a Rankine-heat pump combined cycle / Stephanus Phillipus Oelofse.  

E-Print Network [OSTI]

??The global growth in electricity consumption and the shortcomings of renewable electricity generation technologies are some of the reasons why it is still relevant to (more)

Oelofse, Stephanus Phillipus

2012-01-01T23:59:59.000Z

417

Heat Transfer -2 A heat generating ( ) flat plate fuel element of thickness 2L is covered with flat plate steel cladding of  

E-Print Network [OSTI]

with flat plate steel cladding of thickness b. The heat generated is removed by a fluid at T, which adjoins on both sides On the sketch show regions where dT/dx is zero, constant and increasing. T , h x LL bb SteelSteel

Virginia Tech

418

The radiative and combined mode heat transfer within the L-shaped nonhomogeneous and nongray participating media  

SciTech Connect (OSTI)

The solutions of pure radiative and combined radiative and conductive heat transfer within a L-shaped enclosure are presented. The enclosure contains a mixture of pulverized carbon particles, CO{sub 2}, and N{sub 2}. Three different types of problems are solved: homogeneous radiative properties, nonhomogeneous radiative properties, and combined conduction-radiation problem with nonhomogeneous radiative properties. To obtain solutions for these problems, the YIX method is used. The YIX quadrature uses piecewise constant interpolation of the integrands. To handle the L-shaped enclosure, an ad hoc approach of searching the struck surface node in the line-of-sight is developed. The general approach of handling any arbitrary complex geometry is briefly described. A single point, implicit, quasi-Newton scheme is used to solve the energy equation when both the radiation and conduction heat transfer modes are present. The quasi-Newton works well for a wide range of dimensionless conduction-radiation parameter except when the parameter is less than 0.2, i.e., radiation is the dominant heat transfer mode.

Hsu, P.F. [Florida Inst. of Tech., Melbourne, FL (United States). Mechanical and Aerospace Engineering Programs; Tan, Z. [Univ. of Texas, Austin, TX (United States). Aerospace Engineering and Engineering Mechanics Dept.

1996-11-01T23:59:59.000Z

419

Integration of biomass fast pyrolysis and precedent feedstock steam drying with a municipal combined heat and power plant  

Science Journals Connector (OSTI)

Abstract Biomass fast pyrolysis (BFP) is a promising pre-treatment technology for converting biomass to transport fuel and in the future also for high-grade chemicals. BFP can be integrated with a municipal combined heat and power (CHP) plant. This paper shows the influence of BFP integration on a CHP plant's main parameters and its effect on the energetic and environmental performance of the connected district heating network. The work comprises full- and part-load operation of a CHP plant integrated with BFP and steam drying. It also evaluates different usage alternatives for the BFP products (char and oil). The results show that the integration is possible and strongly beneficial regarding energetic and environmental performance. Offering the possibility to provide lower district heating loads, the operation hours of the plant can be increased by up to 57%. The BFP products should be sold rather than applied for internal use as this increases the district heating network's primary energy efficiency the most. With this integration strategy future CHP plants can provide valuable products at high efficiency and also can help to mitigate global CO2 emissions.

Thomas Kohl; Timo P. Laukkanen; Mika P. Jrvinen

2014-01-01T23:59:59.000Z

420

Using heat demand prediction to optimise Virtual Power Plant production capacity  

E-Print Network [OSTI]

1 Using heat demand prediction to optimise Virtual Power Plant production capacity Vincent Bakker is really produced by the fleet of micro- generators. When using micro Combined Heat and Power micro distributed electricity generation (micro-generation e.g. solar cells, micro Combined Heat and Power (micro

Al Hanbali, Ahmad

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Heat transfer in a visco-elastic fluid past a stretching sheet with viscous dissipation and internal heat generation  

Science Journals Connector (OSTI)

This paper deals with the study of heat transfer characteristics in the laminar boundary layer flow of a visco-elastic fluid over a linearly stretching continuous surface with ... . The study considers the effect...

P. H. Veena; Subhash Abel; K. Rajagopal

2006-05-01T23:59:59.000Z

422

Exergy and exergoeconomic analysis and optimisation of diesel engine based Combined Heat and Power (CHP) system using genetic algorithm  

Science Journals Connector (OSTI)

In the present study, a diesel engine based Combined Heat and Power (CHP) system is optimised using exergoeconomic concept and genetic algorithm. For this purpose, the CHP system is first thermodynamically analysed through energy and exergy. Then cost balances and auxiliary equations are applied to subsystems. Finally an objective function representing fuel cost, cost of exergy loss and destruction and purchase and maintenance cost of the system components is considered for the optimisation study. Furthermore the above procedure is applied for a case study that produces 277 kW of electricity and 282 kW of heat. Also exergetic and exergoeconomic parameters are calculated in optimum case and compared with the base case. The results show that by applying the optimisation approach for our case study, 8.02% reduction in objective function is achieved which is might be considerable in CHP systems optimisation.

Farzad Mohammadkhani; Shahram Khalilarya; Iraj Mirzaee

2013-01-01T23:59:59.000Z

423

Numerical studies for flow and heat transfer of the Powell-Eyring fluid thin film over an unsteady stretching sheet with internal heat generation using the chebyshev finite difference method  

Science Journals Connector (OSTI)

An analysis is carried out to study the unsteady two-dimensional Powell-Eyring flow and heat transfer to a laminar liquid film from a ... horizontal stretching surface in the presence of internal heat generation....

M. M. Khader; A. M. Megahed

2013-05-01T23:59:59.000Z

424

The HIGH-COMBI project: High solar fraction heating and cooling systems with combination of innovative components and methods  

Science Journals Connector (OSTI)

Abstract The scope of the HIGH-COMBI project is the development of high solar fraction systems by innovative combination of optimized solar heating, cooling and storage technologies as well as control strategies, in order to contribute and assist the further deployment of the solar energy market. Within this project, six demonstration plants were installed in four European countries (Greece, Italy, Spain and Austria). The purpose of this article is to assess the result achieved in the technical field of the project and to present the technical aspects of the six innovative demonstration systems realised during the project period.

Vassiliki N. Drosou; Panagiotis D. Tsekouras; Th.I. Oikonomou; Panos I. Kosmopoulos; Constantine S. Karytsas

2014-01-01T23:59:59.000Z

425

Apparatus and method for characterizing thin film and interfaces using an optical heat generator and detector  

DOE Patents [OSTI]

An optical heat generation and detection system generates a first non-destructive pulsed beam of electromagnetic radiation that is directed upon a sample containing at least one interface between similar or dissimilar materials. The first pulsed beam of electromagnetic radiation, a pump beam (21a), produces a non-uniform temperature change within the sample. A second non-destructive pulsed beam of electromagnetic radiation, a probe beam (21b), is also directed upon the sample. Physical and chemical properties of the materials, and of the interface, are measured by observing changes in a transient optical response of the sample to the probe beam, as revealed by a time dependence of changes in, by example, beam intensity, direction, or state of polarization. The system has increased sensitivity to interfacial properties including defects, contaminants, chemical reactions and delaminations, as compared to conventional non-destructive, non-contact techniques. One feature of this invention is a determination of a Kapitza resistance at the interface, and the correlation of the determined Kapitza resistance with a characteristic of the interface, such as roughness, delamination, the presence of contaminants, etc.

Maris, Humphrey J (Barrington, RI); Stoner, Robert J (Duxbury, MA)

1998-01-01T23:59:59.000Z

426

Apparatus and method for characterizing thin film and interfaces using an optical heat generator and detector  

DOE Patents [OSTI]

An optical heat generation and detection system generates a first non-destructive pulsed beam of electromagnetic radiation that is directed upon a sample containing at least one interface between similar or dissimilar materials. The first pulsed beam of electromagnetic radiation, a pump beam, produces a non-uniform temperature change within the sample. A second non-destructive pulsed beam of electromagnetic radiation, a probe beam, is also directed upon the sample. Physical and chemical properties of the materials, and of the interface, are measured by observing changes in a transient optical response of the sample to the probe beam, as revealed by a time dependence of changes in, by example, beam intensity, direction, or state of polarization. The system has increased sensitivity to interfacial properties including defects, contaminants, chemical reactions and delaminations, as compared to conventional non-destructive, non-contact techniques. One feature of this invention is a determination of a Kapitza resistance at the interface, and the correlation of the determined Kapitza resistance with a characteristic of the interface, such as roughness, delamination, the presence of contaminants, etc. 31 figs.

Maris, H.J.; Stoner, R.J.

1998-05-05T23:59:59.000Z

427

Erosion-corrosion modelling of gas turbine materials for coal-fired combined cycle power generation  

Science Journals Connector (OSTI)

The development of coal-fired combined cycle power generation systems is receiving considerable worldwide interest. The successful development and commercialisation of these new systems require that all the component parts are manufactured from appropriate materials and that these materials give predictable in-service performance. Corrosion and erosion-corrosion, resulting from coal derived particulates, deposition and gaseous species, have been identified as potential life limiting factors for these systems. Models to predict these modes of materials degradation are under active development. This paper outlines the development and testing of models suitable for use in gas turbine environments. The complexity of the corrosion processes means that an empirical approach to model development is required whereas a more mechanistic approach can be applied to erosion processes. For hot corrosion conditions, statistically based corrosion models have been produced using laboratory tests for two coatings and a base alloy at typical type I and type II hot corrosion temperatures (900 and 700C). These models use the parameters of alkali sulphate deposition flux and \\{SOx\\} partial pressure (at each temperature and for set \\{HCl\\} partial pressures), to predict the rate of the most likely localised damage associated with hot corrosion reactions. For erosion-corrosion modelling, a series of laboratory tests have been carried out to investigate erosion behaviour in corrosive conditions appropriate to coal-fired gas turbines. Materials performance data have been obtained from samples located in the hot gas path of the Grimethorpe PFBC pilot plant, under well characterised conditions, for testing the corrosion and erosion-corrosion models. The models successfully predict the materials damage observed in the pilot plant environments.

N.J. Simms; J.E. Oakey; D.J. Stephenson; P.J. Smith; J.R. Nicholls

1995-01-01T23:59:59.000Z

428

Economic Passive Solar Warm-Air Heating and Ventilating System Combined with Short Term Storage within Building Components for Residential Houses  

Science Journals Connector (OSTI)

Warm-air heating systems are very suitable for the exploitation of solar energy. A relatively low temperature level combined ... used for transportation and distribution equipment or as storage elements.

K. Bertsch; E. Boy; K.-D. Schall

1984-01-01T23:59:59.000Z

429

Determining the maximal capacity of a combined-cycle plant operating with afterburning of fuel in the gas conduit upstream of the heat-recovery boiler  

Science Journals Connector (OSTI)

The effect gained from afterburning of fuel in the gas conduit upstream of the heat-recovery boiler used as part of a PGU-450T combined-cycle plant is considered. The results obtained from ... electric and therma...

V. M. Borovkov; N. M. Osmanova

2011-01-01T23:59:59.000Z

430

Convective heat and mass transfer and evolution of the moisture distribution in combined convection and radio frequency drying  

SciTech Connect (OSTI)

In a previous study (Dostie and Navarri, 1994), experiments indicated that a non-uniform moisture distribution could develop in radio frequency drying depending on the applied power and initial conditions, making the design and scale-up of such a dryer a more difficult task. Consequently, a thorough study of the combined convection and RF drying process was undertaken. Experimental results have shown that the values of the heat and mass transfer coefficients decrease with an increase in evaporation rate caused by RF energy. This effect is adequately taken into account by the boundary layer theory. Furthermore, the usual analogy between heat and mass transfer has been verified to apply in RF drying. Experiments have also shown that a different mass transfer resistance on both sides of the product should not result in non-uniform drying. However, it appears that non-uniform drying is dependent upon the initial moisture distribution and the relative intensity of heat transfer by convection and RF. It was shown that the maximum drying rate occurs at a higher average water content and that the total drying time increases with non-uniformity of the initial moisture distribution.

Poulin, A.; Dostie, M.; Kendall, J. [LTEE d`Hydro-Quebec, Shawinigan, Quebec (Canada); Proulx, P. [Univ. de Sherbrooke, Quebec (Canada)

1997-10-01T23:59:59.000Z

431

Case Study: Fuel Cells Provide Combined Heat and Power at Verizon's Garden Central Office  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Case Study: Fuel Case Study: Fuel Cells Provide Com- bined Heat and Power at Verizon's Garden City Central Office With more than 67 million customers nationwide, Verizon Communications is one of the largest telecommunica- tions providers in the U.S. Power inter- ruptions can severely impact network operations and could result in losses in excess of $1 million/minute. 1 In 2005, Verizon Communications installed a 1.4 MW phosphoric acid fuel cell (PAFC) system, consisting of seven 200 kW units, at its Central Office in Garden City, New York. This fuel cell power plant, the largest in the United States at the time, is reaping environmental benefits and demonstrating the viabil- ity of fuel cells in a commercial, critical telecommunications setting. Background Verizon's Central Office in Garden City,

432

13 - Micro combined heat and power (CHP) systems for residential and small commercial buildings  

Science Journals Connector (OSTI)

Abstract: The principal market for micro-CHP is as a replacement for gas boilers in the 18 million or so existing homes in the UK currently provided with gas-fired central heating systems. In addition there are a significant number of potential applications of micro-CHP in small commercial and residential buildings. In order to gain the optimum benefit from micro-CHP, it is essential to ensure that an appropriate technology is selected to integrate with the energy systems of the building. This chapter describes the key characteristics of the leading micro-CHP technologies, external and internal combustion engines and fuel cells, and how these align with the relevant applications.

J. Harrison

2011-01-01T23:59:59.000Z

433

THERMODYNAMIC MODELLING OF BIOMASS INTEGRATED GASIFICATION COMBINED CYCLE (BIGCC) POWER GENERATION SYSTEM.  

E-Print Network [OSTI]

??An attractive and practicable possibility of biomass utilization for energy production is gasification integrated with a combined cycle. This technology seems to have the possibility (more)

Desta, Melaku

2011-01-01T23:59:59.000Z

434

Municipal District Heating and Cooling Co-generation System Feasibility Research  

E-Print Network [OSTI]

In summer absorption refrigerating machines provide cold water using excess heat from municipal thermoelectric power plant through district heating pipelines, which reduces peak electric load from electricity networks in summer. The paper simulates...

Zhang, W.; Guan, W.; Pan, Y.; Ding, G.; Song, X.; Zhang, Y.; Li, Y.; Wei, H.; He, Y.

2006-01-01T23:59:59.000Z

435

Development of one-dimensional computer code DESOPT for thermal hydraulic design of sodium-heated once through steam generators  

Science Journals Connector (OSTI)

Once-through Steam Generator (SG) is a critical component of Liquid Metal Fast Breeder Reactor (LMFBR) plant. It is a counter current heat exchanger, in which heat is transferred from the hot sodium flowing on the shell side to water/steam in tube side. High pressure subcooled water enters the SG tube from bottom, gets heated up to saturation, goes through nucleate boiling, dry out and post dry out heat transfer, getting converted to saturated steam and finally gets superheated. For this the process design needs to be carried out accurately. A computer code DESOPT has been developed for the process design of straight vertical, serpentine and helical geometries and validated against reported designs in literature. Recently a test facility to test a 5.5 MWt sodium heated steam generator has been commissioned. The predictions of the code have been compared with the measurements and found satisfactory. This paper brings out different heat transfer mechanisms in SG and describes the one-dimensional code, its validation based on literature and in-house tests and presents the results of comparison between predicted and actual operation at different part loads.

G. Vaidyanathan; A.L. Kothandaraman; L.S. Siva Kumar; V. Vinod; I.B. Noushad; K.K. Rajan; P. Kalyanasundaram

2010-01-01T23:59:59.000Z

436

A Total Cost of Ownership Model for Low Temperature PEM Fuel Cells in Combined Heat and Power and Backup Power Applications  

SciTech Connect (OSTI)

A total cost of ownership model is described for low temperature proton exchange membrane stationary fuel cell systems for combined heat and power (CHP) applications from 1-250kW and backup power applications from 1-50kW. System designs and functional specifications for these two applications were developed across the range of system power levels. Bottom-up cost estimates were made for balance of plant costs, and detailed direct cost estimates for key fuel cell stack components were derived using design-for-manufacturing-and-assembly techniques. The development of high throughput, automated processes achieving high yield are projected to reduce the cost for fuel cell stacks to the $300/kW level at an annual production volume of 100 MW. Several promising combinations of building types and geographical location in the U.S. were identified for installation of fuel cell CHP systems based on the LBNL modelling tool DER CAM. Life-cycle modelling and externality assessment were done for hotels and hospitals. Reduced electricity demand charges, heating credits and carbon credits can reduce the effective cost of electricity ($/kWhe) by 26-44percent in locations such as Minneapolis, where high carbon intensity electricity from the grid is displaces by a fuel cell system operating on reformate fuel. This project extends the scope of existing cost studies to include externalities and ancillary financial benefits and thus provides a more comprehensive picture of fuel cell system benefits, consistent with a policy and incentive environment that increasingly values these ancillary benefits. The project provides a critical, new modelling capacity and should aid a broad range of policy makers in assessing the integrated costs and benefits of fuel cell systems versus other distributed generation technologies.

University of California, Berkeley; Wei, Max; Lipman, Timothy; Mayyas, Ahmad; Chien, Joshua; Chan, Shuk Han; Gosselin, David; Breunig, Hanna; Stadler, Michael; McKone, Thomas; Beattie, Paul; Chong, Patricia; Colella, Whitney; James, Brian

2014-06-23T23:59:59.000Z

437

Economic analysis of residential combined solar-heating and hot-water systems  

SciTech Connect (OSTI)

A brief description of a typical residential solar heating and hot water system and typical cost and performance information are presented. The monthly costs and savings of the typical system are discussed. The economic evaluation of solar residential systems is presented in increasing levels of complexity. Utilizing a typical system, the effective interest rate that the purchaser of a system would receive on money invested is shown for all regions of the country. The importance of numerous variables that can make a significant difference on the economics of the system is described so that it can be determined whether the typical system economics are compatible with the particular situation. Methods for calculating the payback period for any non-typical solar system are described. This calculated payback period is then shown to be related to the effective interest rate that the purchaser of the system would receive for a typical economic condition. A nomagraph is presented that performs this calculation. Finally, a method is presented to calculate the effective interest rate that the solar system would provide. It is shown how to develop the relationship between payback period and the effective interest rate for any economic scenario.

None

1980-09-23T23:59:59.000Z

438

Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust  

DOE Patents [OSTI]

Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

Meisner, Gregory P; Yang, Jihui

2014-02-11T23:59:59.000Z

439

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect (OSTI)

A shielded storage rack has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the U.S. Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which processes and stores assembled GPHS modules, prior to their installation into RTGs. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (United States))

1993-01-15T23:59:59.000Z

440

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect (OSTI)

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy's (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE's Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford's MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford's calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

A shielded storage and processing facility for radioisotope thermoelectric generator heat source production  

SciTech Connect (OSTI)

This report discusses a shielded storage rack which has been installed as part of the Radioisotope Power Systems Facility (RPSF) at the US Department of Energy`s (DOE) Hanford Site in Washington State. The RPSF is designed to replace an existing facility at DOE`s Mound Site near Dayton, Ohio, where General Purpose Heat Source (GPHS) modules are currently assembled and installed into Radioisotope Thermoelectric Generators (RTG). The overall design goal of the RPSF is to increase annual production throughput, while at the same time reducing annual radiation exposure to personnel. The shield rack design successfully achieved this goal for the Module Reduction and Monitoring Facility (MRMF), which process and stores assembled GPHS modules, prior to their installation into RTGS. The shield rack design is simple and effective, with the result that background radiation levels within Hanford`s MRMF room are calculated at just over three percent of those typically experienced during operation of the existing MRMF at Mound, despite the fact that Hanford`s calculations assume five times the GPHS inventory of that assumed for Mound.

Sherrell, D.L.

1992-06-01T23:59:59.000Z

442

CCHP System with Interconnecting Cooling and Heating Network  

E-Print Network [OSTI]

The consistency between building heating load, cooling load and power load are analyzed in this paper. The problem of energy waste and low equipment usage in a traditional CCHP (combined cooling, heating and power) system with generated electricity...

Fu, L.; Geng, K.; Zheng, Z.; Jiang, Y.

2006-01-01T23:59:59.000Z

443

Application of bio-oils from lignocellulosic biomass to transportation, heat and power generationA review  

Science Journals Connector (OSTI)

Abstract This review will be concentrated on the application of bio-oil produced from the cellulosic biomass among the various liquid biofuels to transport fuels, heat and power generation as substitute. Main application of bio-oil and biocrude from two main thermochemical processes, i.e., pyrolysis and liquefaction include boiler for heat and electricity production, diesel engine or gas turbine for power generation, and diesel engine for transportation fuel. Fast pyrolysis is the most popular process for converting cellulosic biomass to high yield of bio-oil with relatively low cost. For the application of bio-oils to transportation, heat and power generation, physical upgrading methods such as emulsions (bio-oil/diesel or bio-oil/biodiesel ) and blends of bio-oil/oxygenated fuel (ethanol, diglyme) were mainly used and tested. The studies on the spray characteristics of emulsions and blends in diesel engine condition are not available in the literature. In most studies on the combustion and emission characteristics of emulsions and blends, CO emission was increased in most fuels and engines tested and HC was increased or comparable to diesel operation. However, \\{NOx\\} and soot emissions were decreased in most case of experiments. In the pressure-swirl nozzle for gas turbine application, preheating and blending techniques were employed to reduce the SMD of spray. In case of blend for the application of heat and power generation, E20 blend was mainly selected in most studies. Most studies related to bio-oil combustion in burners, diesel engines and gas turbines demonstrated the higher HC, CO and soot emissions than the original design fuel. Although the properties of bio-oil/methanol blend were widely investigated, there are no studies available about the application of bio-oil/methanol blend to transportation, heat and power generation in the literature. In addition, more research is required for the combustion of upgraded bio-oils for transportation application.

Soo-Young No

2014-01-01T23:59:59.000Z

444

Study of Climate Change Impact on Flood Frequencies: A Combined Weather Generator and Hydrological Modeling Approach  

Science Journals Connector (OSTI)

Climate change is expected to lead to more frequent and intensive flooding problems for watersheds in the south part of China. This study presented a coupled Long Ashton Research Station Weather Generator (LARS-WG) and Semidistributed Land Use...

X. S. Qin; Y. Lu

2014-06-01T23:59:59.000Z

445

Heat Pump Water Heaters | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Water Heaters Water Heaters Heat Pump Water Heaters May 4, 2012 - 5:21pm Addthis A diagram of a heat pump water heater. A diagram of a heat pump water heater. What does this mean for me? Heat pump water heaters can be two to three times more energy efficient than conventional electric storage water heaters. Heat pump water heaters work in locations that remain in the 40º-90ºF range year-round. Most homeowners who have heat pumps use them to heat and cool their homes. But a heat pump also can be used to heat water -- either as stand-alone water heating system, or as combination water heating and space conditioning system. How They Work Heat pump water heaters use electricity to move heat from one place to another instead of generating heat directly. Therefore, they can be two to

446

Investigating and establishing limiting heat flux for passively cooled and solar concentrated thermoelectric power generation system.  

E-Print Network [OSTI]

??Thermoelectric generators (TEG) working on the principle of Seebeck effect have gathered the attention during this period as a potential device that can generate electricity (more)

Date, A

2014-01-01T23:59:59.000Z

447

Cylinder wall waste heat recovery from liquid-cooled internal combustion engines utilizing thermoelectric generators.  

E-Print Network [OSTI]

?? This report is a dissertation proposal that focuses on the energy balance within an internal combustion engine with a unique coolant-based waste heat recovery (more)

Armstead, John Randall

2012-01-01T23:59:59.000Z

448

Calculation of the heats of combustion of aromatic hydrocarbons contained in power-generating fuel  

Science Journals Connector (OSTI)

The additive method of group contributions is used for the calculation of the heats of combustion of aromatic hydrocarbons of different structures.

E. V. Sagadeev; V. V. Sagadeev

2006-07-01T23:59:59.000Z

449

Calculation of the Heats of Combustion of Saturated Hydrocarbons Contained in Power-Generating Fuels  

Science Journals Connector (OSTI)

An empirical method is suggested for the calculation of the heats of combustion of saturated hydrocarbons by the additive scheme proceeding from their...

E. V. Sagadeev; V. V. Sagadeev

2002-07-01T23:59:59.000Z

450

Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM  

Broader source: Energy.gov [DOE]

Overview of design, fabrication, integration, and test of working prototype TEG for engine waste heat recovery on Suburban test vehicle, and continuing investigation of skutterudite materials systems

451

Development of Design Criteria for Fluid Induced Structural Vibrations in Steam Generators and Heat Exchangers  

SciTech Connect (OSTI)

Flow-induced vibration in heat exchangers has been a major cause of concern in the nuclear industry for several decades. Many incidents of failure of heat exchangers due to apparent flow-induced vibration have been reported through the USNRC incident reporting system. Almost all heat exchangers have to deal with this problem during their operation. The phenomenon has been studied since the 1970s and the database of experimental studies on flow-induced vibration is constantly updated with new findings and improved design criteria for heat exchangers.

Uvan Catton; Vijay K. Dhir; Deepanjan Mitra; Omar Alquaddoomi; Pierangelo Adinolfi

2004-04-06T23:59:59.000Z

452

Realistic fault modeling and quality test generation of combined delay faults  

E-Print Network [OSTI]

for the dynamic behavior of the circuit. Due to the signal integrity problem, the testing of VLSI-chips is becoming more complex. A static test vector generated to test a defect in an integrated chip can be found ineffective under the effect of capacitively...

Thadhlani, Ajaykumar A

2012-06-07T23:59:59.000Z

453

General-purpose heat source: Research and development program. Radioisotope thermoelectric generator impact tests: RTG-1 and RTG-2  

SciTech Connect (OSTI)

The General-Purpose Heat Source (GPHS) provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. The first two RTG Impact Tests were designed to provide information on the response of a fully loaded RTG to end-on impact against a concrete target. The results of these tests indicated that at impact velocities up to 57 m/s the converter shell and internal components protect the GPHS capsules from excessive deformation. At higher velocities, some of the internal components of the RTG interact with the GPHS capsules to cause excessive localized deformation and failure.

Reimus, M.A.H.; Hinckley, J.E.; George, T.G.

1996-07-01T23:59:59.000Z

454

General-purpose heat source: Research and development program, radioisotope thermoelectric generator/thin fragment impact test  

SciTech Connect (OSTI)

The general-purpose heat source provides power for space missions by transmitting the heat of {sup 238}Pu decay to an array of thermoelectric elements in a radioisotope thermoelectric generator (RTG). Because the potential for a launch abort or return from orbit exists for any space mission, the heat source response to credible accident scenarios is being evaluated. This test was designed to provide information on the response of a loaded RTG to impact by a fragment similar to the type of fragment produced by breakup of the spacecraft propulsion module system. The results of this test indicated that impact by a thin aluminum fragment traveling at 306 m/s may result in significant damage to the converter housing, failure of one fueled clad, and release of a small quantity of fuel.

Reimus, M.A.H.; Hinckley, J.E.

1996-11-01T23:59:59.000Z

455

Experimental and thermodynamical analyses of the diesel exhaust vortex generator heat exchanger for optimizing its operating condition  

Science Journals Connector (OSTI)

Abstract In this research, a vortex generator heat exchanger is used to recover exergy from the exhaust of an OM314 diesel engine. Twenty vortex generators with 30 angle of attack are used to increase the heat recovery as well as the low back pressure in the exhaust. The experiments are prepared for five engine loads (0, 20, 40, 60 and 80% of full load), two exhaust gases amount (50and 100%) and four water mass flow rates (50, 40, 30 and 20g/s). After a thermodynamical analysis on the obtained data, an optimization study based on Central Composite Design (CCD) is performed due to complex effect of engine loads and water mass flow rates on exergy recovery and irreversibility to reach the best operating condition.

M. Hatami; D.D. Ganji; M. Gorji-Bandpy

2015-01-01T23:59:59.000Z

456

Under very extreme conditions a flood that threatens to overtop a dam may be combined with strong winds that generate waves in the reservoir.  

E-Print Network [OSTI]

Under very extreme conditions a flood that threatens to overtop a dam may be combined with strong winds that generate waves in the reservoir. Prolonged wave overtopping or a combination of wave the actions of wind generated waves and wave overtopping. The uneven elevations of the dam crest

Bowles, David S.

457

Efficiency combined cycle power plant  

SciTech Connect (OSTI)

This patent describes a method of operating a combined cycle power plant. It comprises: flowing exhaust gas from a combustion turbine through a heat recovery steam generator (HRSG); flowing feed water through an economizer section of the HRSG at a flow rate and providing heated feed water; flowing a first portion of the heated feed water through an evaporator section of the HRSG and producing saturated steam at a production rate, the flow rate of the feed water through the economizer section being greater than required to sustain the production rate of steam in the evaporator section; flowing fuel for the turbine through a heat exchanger; and, flowing a second portion of the heated feed water provided by the economizer section through the heat exchanger then to an inlet of the economizer section, thereby heating the fuel flowing through the heat exchanger.

Pavel, J.; Meyers, G.A.; Baldwin, T.S.

1990-06-12T23:59:59.000Z

458

Generation of high charge state metal ion beams by electron cyclotron resonance heating of vacuum arc plasma in cusp trap  

SciTech Connect (OSTI)

A method for generating high charge state heavy metal ion beams based on high power microwave heating of vacuum arc plasma confined in a magnetic trap under electron cyclotron resonance conditions has been developed. A feature of the work described here is the use of a cusp magnetic field with inherent ''minimum-B'' structure as the confinement geometry, as opposed to a simple mirror device as we have reported on previously. The cusp configuration has been successfully used for microwave heating of gas discharge plasma and extraction from the plasma of highly charged, high current, gaseous ion beams. Now we use the trap for heavy metal ion beam generation. Two different approaches were used for injecting the vacuum arc metal plasma into the trap - axial injection from a miniature arc source located on-axis near the microwave window, and radial injection from sources mounted radially at the midplane of the trap. Here, we describe preliminary results of heating vacuum arc plasma in a cusp magnetic trap by pulsed (400 {mu}s) high power (up to 100 kW) microwave radiation at 37.5 GHz for the generation of highly charged heavy metal ion beams.

Nikolaev, A. G.; Savkin, K. P.; Oks, E. M.; Vizir, A. V.; Yushkov, G. Yu. [High Current Electronics Institute, Siberian Division of Russian Academy Science, Tomsk 634055 (Russian Federation); Vodopyanov, A. V.; Izotov, I. V.; Mansfeld, D. A. [Institute of Applied Physics, Russian Academy of Science, Nizhniy Novgorod 603950 (Russian Federation)

2012-02-15T23:59:59.000Z

459

Status of Segmented Element Thermoelectric Generator for Vehicle Waste Heat Recovery  

Broader source: Energy.gov [DOE]

Discusses progress of thermoelectric generator development at BSST and assessment of potential to enter commercial operation in vehicles

460

A New Generation of Hsp90 Inhibitors: Addressing Isoform Selectivity and Heat Shock Induction  

E-Print Network [OSTI]

The 90 kDa heat shock proteins (Hsp90) are molecular chaperones that are upregulated in response to cellular stress and are responsible for the conformational maturation, activation and/or stability of more than 200 client proteins. Many...

Duerfeldt, Adam Scott

2011-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Project Profile: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage  

Broader source: Energy.gov [DOE]

General Atomics, under the Baseload CSP FOA, is demonstrating the engineering feasibility of using a sulfur-based thermochemical cycle to store heat from a CSP plant and support baseload power...

462

Heating of Coronal Holes and Generation of the Solar Wind by Ion-Cyclotron Resonance  

Science Journals Connector (OSTI)

We discuss a new model to describe the heating of the magnetically open solar corona and ... acceleration of the fast solar wind by the cyclotron resonant interaction of coronal ions with ion-cyclotron waves. Thi...

Philip A. Isenberg

2001-01-01T23:59:59.000Z

463

Design and modeling of 110MWe liquefied natural gas-fueled combined cooling, heating and power plants for building applications  

Science Journals Connector (OSTI)

Abstract Decentralized, liquefied natural gas-fueled, trigeneration plants are considered as alternatives to centralized, electricity-only generating power plants to improve efficiency and minimize running costs. The proposed system is analyzed in terms of efficiency and cost. Electrical power is generated with a gas turbine, while waste heat is recovered and utilized effectively to cover heating and cooling needs for buildings located in the vicinity of the plant. The high quality of cooling energy carried in the LNG fluid is used to cool the air supply to the air compressor. Waste heat is recovered with heat exchangers to generate useful heating in the winter period, while in the summer period an integrated double-effect absorption chiller converts waste heat to useful cooling. For the base system (10MWe), net electrical efficiency is up to 36.5%, while the primary energy ratio reaches 90%. The payback period for the base system is 4 years, for a lifecycle cost of 221.6 million euros and an investment cost of 13 million euros. The base system can satisfy the needs of more than 21,000 average households, while an equivalent conventional system can only satisfy the needs of 12,000 average households.

Alexandros Arsalis; Andreas Alexandrou

2015-01-01T23:59:59.000Z

464

Temperature and thermal stress distributions for the HFIR permanent reflector generated by nuclear heating  

SciTech Connect (OSTI)

The beryllium permanent reflector of the High Flux Isotope Reactor has the main functions for slowing down and reflecting the neutrons and housing the experimental facilities. The reflector is heated as a result of the nuclear reaction. Heat is removed mainly by the cooling water passing through the densely distributed coolant holes along the vertical or axial direction of the reflector. The reflector neutronic distribution and its heating rate are calculated by J.C. Gehin of the Oak Ridge National Laboratory by applying the Monte Carlo Code MCNP. The heat transfer boundary conditions along several reflector interfaces are estimated to remove additional heat from the reflector. The present paper is to report the calculation results of the temperature and the thermal stress distributions of the permanent reflector by applying the computer aided design code I-DEAS and the finite element code ABAQUS. The present calculation is to estimate the high stress areas as a result of the new beam tube cutouts along the horizontal mid-plane of the reflector of the recent reactor upgrade project. These high stresses were not able to be calculated in the preliminary design analysis in earlier 60`s. The heat transfer boundary conditions are used in this redesigned calculation. The material constants and the acceptance criteria for the allowable stresses are mainly based on that assumed in the preliminary design report.

Chang, S.J.

1998-04-01T23:59:59.000Z

465

The case for endurance testing of sodium-heated steam generators  

SciTech Connect (OSTI)

After operating pressurized water reactor (PWR) steam generators in U.S. nuclear plants during the past 33 years and plugging thousands of tubes and replacing numerous steam generators at immense costs, utility and steam generator designers are now confident that they can design, build, and operate PWR steam generators successfully. Deployment of liquid-metal fast breeder reactors (LMFBRs) will likely follow the same scenario if long-term testing is not performed and development completed prior to commercial deployment. A case is made for endurance testing of steam generators to be used in future LMFBRs.

Onesto, A.T.; Zweig, H.R.; Gibbs, D.C. (Rockwell International Corp., Canoga Park, CA (United States). Rocketdyne Division.); Carlson, R.D. (Argonne National Lab., IL (United States)); Rodwell, E. (Electric Power Research Inst., Palo Alto, CA (United States)); Kakarala, C.R. (Babcock and Wilcox Co., Barberton, OH (United States))

1993-08-01T23:59:59.000Z

466

Coal-gasification/MHD/steam-turbine combined-cycle (GMS) power generation  

SciTech Connect (OSTI)

The coal-gasification/MHD/steam-turbine combined cycle (GMS) refers to magnetohydrodynamic (MHD) systems in which coal gasification is used to supply a clean fuel (free of mineral matter and sulfur) for combustion in an MHD electrical power plant. Advantages of a clean-fuel system include the elimination of mineral matter or slag from all components other than the coal gasifier and gas cleanup system; reduced wear and corrosion on components; and increased seed recovery resulting from reduced exposure of seed to mineral matter or slag. Efficiencies in some specific GMS power plants are shown to be higher than for a comparably sized coal-burning MHD power plant. The use of energy from the MHD exhaust gas to gasify coal (rather than the typical approach of burning part of the coal) results in these higher efficiencies.

Lytle, J.M.; Marchant, D.D.

1980-11-01T23:59:59.000Z

467

Multi-criteria assessment of combined cooling, heating and power systems located in different regions in Japan  

Science Journals Connector (OSTI)

Abstract As an efficient measure for rational use of energy, the combined cooling, heating and power (CCHP) system plays an increasingly important role in commercial buildings in Japan. In this study, aiming at examining the influences of building type and climate condition on the introduction of CCHP systems, four representative commercial building categories (hotel, hospital, store and office) located in six major climate zones in Japan are compared and evaluated. In order to have a comprehensive understanding about the performances of the assumed CCHP systems, besides simple assessment from energy, economic and environmental aspects, a multi-criteria evaluation method has been employed for the final determination. According to the assessment results, the CCHP systems in hotels and hospitals enjoy better overall performances than those in stores and offices. On the other hand, the potentials of energy-saving and CO2 emission reduction of the CCHP systems in the mild climate zones are smaller than that in other climate zones. In addition, the performances of CCHP systems in stores and offices located in Kagoshima are superior to those in other cities; while, CCHP systems in hospitals and hotels located in Sapporo illustrate better overall performance.

Qiong Wu; Hongbo Ren; Weijun Gao; Jianxing Ren

2014-01-01T23:59:59.000Z

468

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

solar thermal and heat storage on CO 2 emissions and annual energyenergy costs, heat storage does not directly support solar thermal /energy costs. This paper focuses on analysis of the optimal interaction of solar thermal

Marnay, Chris

2010-01-01T23:59:59.000Z

469

Connecting the second exhaust-heat boiler to the operating first one under the conditions of flow circuits of combined-cycle plants with two gas-turbine units and one steam turbine  

Science Journals Connector (OSTI)

Problems arising with connecting the second exhaust-heat boiler to the first exhaust-heat boiler under load in the case of flow circuits of combined-cycle plants of type PGU-450 are considered. Similar problem...

Yu. A. Radin; I. A. Grishin; T. S. Kontorovich

2006-03-01T23:59:59.000Z

470

Blow-down tests in a sodium-heated steam generator tube. [LMFBR  

SciTech Connect (OSTI)

The design of steam generators for liquid metal fast breeder reactor (LMFBR) electric power plants is based on both normal load operation and plant transient conditions. Perhaps the most severe transient to which an LMFBR steam generator may be subjected is known as the water-side isolation and dump transient, often called the blow-down transient. LMFBR steam generators must be designed to accommodate a small but finite number of the blow-down transients. The purpose of this investigation was to perform a blow-down experiment in a well instrumented, full scale, single tube model of an LMFBR steam generator. The data may be used directly in steam generator design and as a validation point for steam generator mathematical models in plant transient computer codes.

France, D.M.; Carlson, R.D.; Chiang, T.

1983-01-01T23:59:59.000Z

471

NEXT GENERATION COMMERCIAL HEAT PUMPWATER HEATER USING CARBON DIOXIDE USING DIFFERENT IMPROVEMENT APPROACHES  

SciTech Connect (OSTI)

Although heat pump water heaters are today widely accepted in Japan, where energy costs are high and government incentives for their use exist, acceptance of such a product in the U.S. has been slow. This trend is slowly changing with the introduction of heat pump water heaters into the residential market, but remains in the commercial sector. Barriers to heat pump water heater acceptance in the commercial market have historically been performance, reliability and first/operating costs. The use of carbon dioxide (R744) as the refrigerant in such a system can improve performance for relatively small increase in initial cost and make this technology more appealing. What makes R744 an excellent candidate for use in heat pump water heaters is not only the wide range of ambient temperatures within which it can operate, but also the excellent ability to match water to refrigerant temperatures on the high side, resulting in very high exit water temperatures of up to 82?ºC, as required by sanitary codes in the U.S. (Food Code, 2005), in a single pass, temperatures that are much more difficult to reach with other refrigerants. This can be especially attractive in applications where this water is used for the purpose of sanitation. While reliability has also been of concern historically, dramatic improvements have been made over the last several years through research done in the automotive industry and commercialization of R744 technology in residential water heating mainly in Japan. This paper presents the performance results from the development of an R744 commercial heat pump water heater of approximately 35 kW and a comparison to a baseline R134a unit of the same capacity and footprint. In addition, recommendations are made for further improvements of the R744 system which could result in possible energy savings of up to 20 %.

Chad Bowers; Michael Petersen; Stefan Elbel; Pega Hrnjak

2012-04-01T23:59:59.000Z

472

Thermoelectric generator  

SciTech Connect (OSTI)

A thermoelectric generator unit is described comprising: a hot side heat exchanger including a plate having extruded retention posts projecting from one surface of the plate, and fins adapted for contact with a heating source. The fins are positioned between two of the retention posts. Retention rods are inserted between the retention posts and the base of the fins to retain the fin in thermal contact with the plate surface upon insertion of the retention rod between the engaging surface of the post and the corresponding fin. Thermoelectric semi-conductor modules are in thermal contact with the opposite side of the hot side heat exchanger plate from the contact with the fins. The modules are arranged in a grid pattern so that heat flow is directed into each of the modules from the hot side heat exchanger. The modules are connected electrically so as to combine their electrical output; and a cold side heat exchanger is in thermal contact with the modules acting as a heat sink on the opposite side of the module from the hot side heat exchanger plate so as to produce a thermal gradient across the modules.

Shakun, W.; Bearden, J.H.; Henderson, D.R.

1988-03-29T23:59:59.000Z

473

New Li-ion Battery Evaluation Research Based on Thermal Property and Heat Generation Behavior of Battery  

Science Journals Connector (OSTI)

We do a new Li-ion battery evaluation research on the effects of cell resistance and polarization on the energy loss in batteries based on thermal property and heat generation behavior of battery. Series of 18650 cells with different capacities and electrode materials are evaluated by measuring input and output energy which change with charge-discharge time and current. Based on the results of these tests, we build a model of energy loss in cells' charge-discharge process, which include Joule heat and polarization heat impact factors. It was reported that Joule heat was caused by cell resistance, which included DC-resistance and reaction resistance, and reaction resistance could not be easily obtained through routine test method. Using this new method, we can get the total resistance R and the polarization parameter ?. The relationship between R, ?, and temperature is also investigated in order to build a general model for series of different Li-ion batteries, and the research can be used in the performance evaluation, state of charge prediction and the measuring of consistency of the batteries.

Zhe Lv; Xun Guo; Xin-ping Qiu

2012-01-01T23:59:59.000Z

474

Utilizing nonlinear ELF generation in modulated ionospheric heating experiments for communications applications  

E-Print Network [OSTI]

only when these harmonics are below ~4.5 kHz because of radio atmospherics (sferics) generating strong below ~10 kHz. A high-power, high-frequency (HF, 3­10 MHz) beam is directed upward, and the transmitted near the auroral electrojet can generate extremely low frequency (ELF; 3 Hz­3 kHz) radio waves

475

Waste Heat Management Options for Improving Industrial Process Heating Systems  

Broader source: Energy.gov [DOE]

This presentation covers typical sources of waste heat from process heating equipment, characteristics of waste heat streams, and options for recovery including Combined Heat and Power.

476

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

thermal absorption solar photo- storage chiller thermalbetween solar thermal collection and storage systems and CHPimpact of solar thermal and heat storage on CO 2 emissions

Marnay, Chris

2010-01-01T23:59:59.000Z

477

The Added Economic and Environmental Value of Solar Thermal Systems in Microgrids with Combined Heat and Power  

E-Print Network [OSTI]

Environmental Value of Solar Thermal Systems in MicrogridsEnvironmental Value of Solar Thermal Systems in Microgridsa) ABSTRACT The addition of solar thermal and heat storage

Marnay, Chris

2010-01-01T23:59:59.000Z

478

Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems: Part 2: The evaporative gas turbine based system and some discussions  

Science Journals Connector (OSTI)

This is Part 2 of the paper Performance analysis of combined humidified gas turbine power generation and multi-effect thermal vapor compression desalination systems Part 1: The desalination unit and its combination with a steam-injected gas turbine power system. A combined power and water system based on the evaporative gas turbine (EvGT) is studied, and major features such as the fuel saving, power-to-water ratio, energy and exergy utilization, and approaches to performance improvement, are presented and discussed in comparison with STIG- and EvGT- based systems, to further reveal the characteristics of these two types of combined systems. Some of the main results of the paper are: the fuel consumption of water production in STIG-based combined system is, based on reference-cycle method, about 45% of a water-only unit, and that in an EvGT-based system, it is 3154%; compared with the individual power-only and water-only units, the fuel savings of the two combined systems are 12%28% and 10%21%, respectively; a water production gain of more than 15% can be obtained by using a direct-contact gas-saline water heat exchanger to recover the stack heat; and the combined system are more flexible in its power-to-water ratio than currently used dual-purpose systems. Further studies on aspects such as operation, hardware cost, control complexity, and environmental impact, are needed to determine which configuration is more favorable in practice.

Yongqing Wang; Noam Lior

2007-01-01T23:59:59.000Z

479

Latent Heat Based High Temperature Solar Thermal Energy Storage for Power Generation  

Science Journals Connector (OSTI)

Abstract The design of a phase change material based high temperature solar thermal energy storage device is presented. Said unit will be used as an energy reserve for a 1 kWe domestic CCHP system using a Stirling engine to produce electric power. The thermal energy storage is conducted by means of the exploitation of the latent heat of fusion of the material contained inside the tank. This method was chosen because a great energy density is obtained and, at the same time, it is possible to extract the stored energy with very small variations on the temperature, which is a favorable feature for its intended purpose. The selection of the phase change material is discussed and the design of the different components of the proposed storage model is described. It is analyzed, as well, the insulating solution applied that minimizes heat losses. Finally, a comparison between experimental results of the tests performed on the first built to scale prototype and the data obtained from computer simulations is shown.

Bruno Crdenas; Noel Len

2014-01-01T23:59:59.000Z

480

Jobs, sustainable heating coming to Vermont city | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city March 15, 2010 - 6:07pm Addthis A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo Joshua DeLung What will the project do? Their new woodchip-fired combined heat and power system will heat the Capitol Complex, the city's schools, City Hall and as many as 156 other buildings in the downtown area. Montpelier, Vt., netted $8 million in American Recovery and Reinvestment Act funding in January for a woodchip-fired combined heat and power system. The money will help build a 1.8 million kWh-generating plant that will heat the Capitol Complex, the city's schools, City Hall and as many

Note: This page contains sample records for the topic "generators combined heat" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Jobs, sustainable heating coming to Vermont city | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city Jobs, sustainable heating coming to Vermont city March 15, 2010 - 6:07pm Addthis A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo A woodchip-fired combined heat and power system will be built in Montpelier, Vt. | File photo Joshua DeLung What will the project do? Their new woodchip-fired combined heat and power system will heat the Capitol Complex, the city's schools, City Hall and as many as 156 other buildings in the downtown area. Montpelier, Vt., netted $8 million in American Recovery and Reinvestment Act funding in January for a woodchip-fired combined heat and power system. The money will help build a 1.8 million kWh-generating plant that will heat the Capitol Complex, the city's schools, City Hall and as many

482

Development of an Advanced Combined Heat and Power (CHP) System Utilizing Off-Gas from Coke Calcination  

Broader source: Energy.gov [DOE]

Coke calcination is a process that involves the heating of green petroleum coke in order to remove volatile material and purify the coke for further processing. Calcined coke is vital to the...

483

Simulation of processes in natural-circulation circuits of heat-recovery boilers of combined cycle power plants  

Science Journals Connector (OSTI)

Mathematical fundamentals of development of models of natural-circulation circuits of heat-recovery boilers are considered. Processes in the high-pressure circuit of a P-96 boiler are described.

E. K. Arakelyan; A. S. Rubashkin; A. S. Obuvaev; V. A. Rubashkin

2009-02-01T23:59:59.000Z

484

Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

November 13, 2012 | Wong November 13, 2012 | Wong * Conduct laboratory studies on reaction thermodynamics and kinetics of the sulfur generating disproportionation reaction. Effect of various potential catalysts and means to separate the reaction products will be investigated. A kinetic equation for process design will be defined. * Improve the solar reactor design and catalyst performance to increase SO 3 to SO 2 conversion fraction * Preliminary process component design and experimental validation for the three process steps. Carry out process integration design between the CSP plant, the sulfur processing and storage plant and the electricity generation unit. * Design and flowsheet studies to assess the system economics, its environmental impact and pathways to ascertain safe operations of

485

Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

May 15, 2013 | Wong May 15, 2013 | Wong * Conduct laboratory studies on reaction thermodynamics and kinetics of the sulfur generating disproportionation reaction. Effect of various potential catalysts and means to separate the reaction products will be investigated. A kinetic equation for process design will be defined. * Improve the solar reactor design and catalyst performance to increase SO 3 to SO 2 conversion fraction * Preliminary process component design and experimental validation for the three process steps. Carry out process integration design between the CSP plant, the sulfur processing and storage plant and the electricity generation unit. * Design and flowsheet studies to assess the system economics, its environmental impact and pathways to ascertain safe operations of

486

New tube bundle heat transfer correlations and flow regime maps for a Once Through Steam Generator  

E-Print Network [OSTI]

? hydraulic behavior of a, nuclear reactor coolant system. Therefore, extensive analytical and experimental research has been performed to investigate the thermal ? hydraulic behavior of the steam generators dur- ing operational and accident transients... light water reactor system transient analysis code for use in rule making, licensing audit calcula- tions, evaluation of operator guidelines, and as a basis for a, nuclear plant analyzer . The code is used extensively at the Idaho National Engineering...

Blanchat, Thomas Kevin

2012-06-07T23:59:59.000Z

487

Co-generation of electricity and heat from combustion of wood powder utilizing thermophotovoltaic conversion  

SciTech Connect (OSTI)

The development of a thermophotovoltaic converter that uses combustion of wood powder as energy source has started with development of the combustion source. During the last few months, we have constructed and tested a feeding mechanism and a combustion chamber that seem very promising. We manage to keep a 10 kW flame steadily burning for several minutes at the time, generating a temperature exceeding 1400 K. The plans for continued development of this and other components of the converter are discussed in the paper. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

Broman, L. [Solar Energy Research Center, University College of Falun/Borlaenge, P.O. Box 10044, S-781 10 Borlaenge, Sweden, Phone +46 2437 3747, fax 3750, e-mail lbratt.hfb.se (Sweden); Marks, J. [Department of Operational Efficiency, Swedish University of Agricultural Sciences S-776 98 Garpenberg, Sweden, Phone +46 2252 6068, fax 2162 (Sweden)

1995-01-05T23:59:59.000Z

488

Investment and Upgrade in Distributed Generation under Uncertainty  

E-Print Network [OSTI]

tax on microgrid combined heat and power adoption. JournalDG) and combined heat and power (CHP) applications via heatUncertainty Keywords: Combined heat and power applications,

Siddiqui, Afzal

2008-01-01T23:59:59.000Z

489

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers, Volumes 1, 2.  

SciTech Connect (OSTI)

The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001 ???????????????????????????????? September 2004. ???????????????????????????????· Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. ???????????????????????????????· Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. ???????????????????????????????· Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. ???????????????????????????????· Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. ???????????????????????????????· Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. ???????????????????????????????· Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform

Upadhyaya, Belle R.; Hines, J. Wesley; Lu, Baofu; Huang, Xuedong; Penha, Rosani, L.; Perillo, Sergio, R.; Zhao, Ke

2005-06-03T23:59:59.000Z

490

On-Line Monitoring and Diagnostics of the Integrity of Nuclear Plant Steam Generators and Heat Exchangers.  

SciTech Connect (OSTI)

The overall purpose of this Nuclear Engineering Education Research (NEER) project was to integrate new, innovative, and existing technologies to develop a fault diagnostics and characterization system for nuclear plant steam generators (SG) and heat exchangers (HX). Issues related to system level degradation of SG and HX tubing, including tube fouling, performance under reduced heat transfer area, and the damage caused by stress corrosion cracking, are the important factors that influence overall plant operation, maintenance, and economic viability of nuclear power systems. The research at The University of Tennessee focused on the development of techniques for monitoring process and structural integrity of steam generators and heat exchangers. The objectives of the project were accomplished by the completion of the following tasks. All the objectives were accomplished during the project period. This report summarizes the research and development activities, results, and accomplishments during June 2001-September 2004. (1) Development and testing of a high-fidelity nodal model of a U-tube steam generator (UTSG) to simulate the effects of fouling and to generate a database representing normal and degraded process conditions. Application of the group method of data handling (GMDH) method for process variable prediction. (2) Development of a laboratory test module to simulate particulate fouling of HX tubes and its effect on overall thermal resistance. Application of the GMDH technique to predict HX fluid temperatures, and to compare with the calculated thermal resistance. (3) Development of a hybrid modeling technique for process diagnosis and its evaluation using laboratory heat exchanger test data. (4) Development and testing of a sensor suite using piezo-electric devices for monitoring structural integrity of both flat plates (beams) and tubing. Experiments were performed in air, and in water with and without bubbly flow. (5) Development of advanced signal processing methods using wavelet transforms and image processing techniques for isolating flaw types. (6) Development and implementation of a new nonlinear and non-stationary signal processing method, called the Hilbert-Huang transform (HHT), for flaw detection and location. This is a more robust and adaptive approach compared to the wavelet transform. (7) Implementation of a moving-window technique in the time domain for detecting and quantifying flaw types in tubular structures. A window zooming technique was also developed for flaw location in tubes. (8) Theoretical study of elastic wave propagation (longitudinal and shear waves) in metallic flat plates and tubing with and without flaws. (9) Simulation of the Lamb wave propagation using the finite-element code ABAQUS. This enabled the verification of the experimental results. The research tasks included both analytical research and experimental studies. The experimental results helped to enhance the robustness of fault monitoring methods and to provide a systematic verification of the analytical results. The results of this research were disseminated in scientific meetings. A journal manuscript was submitted for publication. The new findings of this research have potential applications in aerospace and civil structures. The report contains a complete bibliography that was developed during the course of the project.

Belle R. Upadhyaya; J. Wesley Hines

2004-09-27T23:59:59.000Z

491

System and method for generating current by selective minority species heating  

DOE Patents [OSTI]

A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of low-frequency waves into the plasma by means of phased antenna arrays or phased waveguide arrays. The plasma is prepared with a minority ion species of different charge state and different gyrofrequency from the majority ion species. The wave frequency and wave phasing are chosen such that the wave energy is absorbed preferentially by minority species ions traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.

Fisch, Nathaniel J. (Princeton, NJ)

1983-01-01T23:59:59.000Z

492

Numerical predictions on fluid flow and heat transfer in U-shaped channel with the combination of ribs, dimples and protrusions under rotational effects  

Science Journals Connector (OSTI)

Abstract Recently, dimple and protrusion structure has been proved as an effective heat transfer augmentation approach on coolant channel due to its advantage on pressure penalty. A compound heat transfer enhancement technique, the combination of ribs, dimples or protrusions, is applied to a U-shaped square channel similar with the gas turbine blade internal passage. Considering the rotational condition of gas turbine blade on operation, the effect of rotation is also investigated for the coolant channel in order to approximate more to the real operation condition. Thus, the objective of this study is to discuss the effect of rotation on fluid flow and heat transfer performance of turbine blade similar U-shaped channel with the combination structure of ribs, dimples or protrusions. The investigated Reynolds number is 1.25 million and considered rotational number includes 0, 0.4 and 0.6. From the results, the fluid patterns of two-pass channel with compound heat transfer enhancement structure are presented for none-rotating and rotating cases. Meanwhile, spatially Nusselt distributions of roughened walls are obtained to reveal the heat transfer rates. Finally, the area averaged Nusselt number ratio and channel friction penalty are evaluated. The results indicate that rib-protrusion structure seems to be the most effective structure while rib-dimple structure has only slight advantage than ribbed channel. Furthermore, the additional friction penalty by dimple and protrusion structure is tiny. It can also be expected that, the thermal performance of this compound structure can be even improved after a denser arrangement of dimple/protrusion structure and optimal shape design.

Zhongyang Shen; Yonghui Xie; Di Zhang

2015-01-01T23:59:59.000Z

493

Journal of Crystal Growth 194 (1998) 321--330 Combined heat transfer in floating zone growth of large silicon  

E-Print Network [OSTI]

of large silicon crystals with radiation on diffuse and specular surfaces Zhixiong Guo , Shigenao Maruyama-8577, Japan Komatsu Electronic Metals Co., Ltd., 2612 Shinomiya, Hiratsuka, Kanagawa 254, Japan Received 30. The radiation element method, REM2, is employed to determine the radiative heat exchange, in which the view

Guo, Zhixiong "James"

494

Simultaneous use of MRM (maximum rectangle method) and optimization methods in determining nominal capacity of gas engines in CCHP (combined cooling, heating and power) systems  

Science Journals Connector (OSTI)

Abstract Energy, economic, and environmental analyses of combined cooling, heating and power (CCHP) systems were performed here to select the nominal capacities of gas engines by combination of optimization algorithm and maximum rectangle method (MRM). The analysis was performed for both priority of providing electricity (PE) and priority of providing heat (PH) operation strategies. Four scenarios (SELL-PE, SELL-PH, No SELL-PE, No SELL-PH) were followed to specify design parameters such as the number and nominal power of prime movers, heating capacities of both backup boiler and energy storage tank, and the cooling capacities of electrical and absorption chillers. By defining an objective function called the Relative Annual Benefit (RAB), Genetic Algorithm optimization method was used for finding the optimal values of design parameters. The optimization results indicated that two gas engines (with nominal powers of 3780 and 3930kW) in SELL-PE scenario, two gas engines (with nominal powers of 5290 and 5300kW) in SELL-PH scenario, one gas engine (with nominal power of 2440kW) in No SELL-PE scenario provided the maximum value of the objective function. Furthermore in No SELL-PE scenario (which had the lowest RAB value in comparison with that for the above mentioned scenarios), thermal energy storage was not required. Due to very low value of RAB, any gas engine in No SELL-PH scenario was not recommended.

Sepehr Sanaye; Navid Khakpaay

2014-01-01T23:59:59.000Z

495

Enhanced geothermal systems (EGS) with CO2 as heat transmission fluid--A scheme for combining recovery of renewable energy with geologic storage of CO2  

SciTech Connect (OSTI)

It has been suggested that enhanced geothermal systems (EGS) may be operated with supercritical CO{sub 2} instead of water as heat transmission fluid (D.W. Brown, 2000). Such a scheme could combine recovery of geothermal energy with simultaneous geologic storage of CO{sub 2}, a greenhouse gas. At geothermal temperature and pressure conditions of interest, the flow and heat transfer behavior of CO{sub 2} would be considerably different from water, and chemical interactions between CO{sub 2} and reservoir rocks would also be quite different from aqueous fluids. This paper summarizes our research to date into fluid flow and heat transfer aspects of operating EGS with CO{sub 2}. (Chemical aspects of EGS with CO{sub 2} are discussed in a companion paper; Xu and Pruess, 2010.) Our modeling studies indicate that CO{sub 2} would achieve heat extraction at larger rates than aqueous fluids. The development of an EGS-CO{sub 2} reservoir would require replacement of the pore water by CO{sub 2} through persistent injection. We find that in a fractured reservoir, CO{sub 2} breakthrough at production wells would occur rapidly, within a few weeks of starting CO{sub 2} injection. Subsequently a two-phase water-CO{sub 2} mixture would be produced for a few years,followed by production of a single phase of supercritical CO{sub 2}. Even after single-phase production conditions are reached,significant dissolved water concentrations will persist in the CO{sub 2} stream for many years. The presence of dissolved water in the production stream has negligible impact on mass flow and heat transfer rates.

Pruess, K.; Spycher, N.

2009-05-01T23:59:59.000Z

496

Unsteady MHD combined convection over a moving vertical sheet in a fluid saturated porous medium with uniform surface heat flux  

Science Journals Connector (OSTI)

The group transformation method is applied for solving the combined convection problem in an unsteady, two-dimensional, laminar, boundary-layer flow of a viscous, incompressible and electrically-conducting fluid along a vertical continuous moving plate ... Keywords: Flow, Group transformation method, MHD, Natural convection, Porous medium

S. M. M. El-Kabeir; A. M. Rashad; Rama Subba Reddy Gorla

2007-08-01T23:59:59.000Z

497

Performance of the Second Generation Solar Heating System in the Solar House of the Eindhoven University of Technology  

Science Journals Connector (OSTI)

Summer 1981 a new solar heating system has been installed in the Solar House at the E.U.T. The principal features of the system are Philips VTR 261 evacuated tube collectors, integration of the auxiliary heate...

R. W. G. Bisschops; C. W. J. van Koppen

1984-01-01T23:59:59.000Z

498

Economic Analysis and Optimization of Exterior Insulation Requirements for Ventilated Buildings at Power Generation Facilities with High Internal Heat Gain  

E-Print Network [OSTI]

Industrial buildings require a large amount of heating and ventilation equipment to maintain the indoor environment within acceptable levels for personnel protection and equipment protection. The required heating and ventilation equipment...

Hughes, Douglas E.

2010-12-17T23:59:59.000Z

499

Efficient 1341-nm Laser Emission and Heat Generation Characteristics in Nd:GdVO4 Laser under Direct 879-nm Pumping  

Science Journals Connector (OSTI)

We report on a highly efficient (over 60% slope efficiency) 1.3-m cw Nd:GdVO4 laser pumped by a 879-nm Ti:Sapphire laser. Non-radiative transition induced heat generation in Nd:GdVO4...

Saikawa, Jiro; Sato, Yoichi; Taira, Takunori; Nakamura, Osamu; Furukawa, Yasunori