National Library of Energy BETA

Sample records for generation utility purchases

  1. Sustainable Electric Utility (SEU)- SREC Purchase Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    SREC purchase program is a joint incentive of Delaware Division of Energy and Climate (DNREC) and the state’s Sustainable Energy Utility (SEU). The program offers a standard onetime payment of $450...

  2. Appendix S-50 - Power Purchase Agreement (PPA) - Public Utilities...

    Open Energy Info (EERE)

    "http:en.openei.orgwindex.php?titleAppendixS-50-PowerPurchaseAgreement(PPA)-PublicUtilitiesCommission&oldid800827" Feedback Contact needs updating Image needs...

  3. Utility Static Generation Reliability

    Energy Science and Technology Software Center (OSTI)

    1993-03-05

    PICES (Probabilistic Investigation of Capacity and Energy Shortages) was developed for estimating an electric utility''s expected frequency and duration of capacity deficiencies on a daily on and off-peak basis. In addition to the system loss-of-load probability (LOLP) and loss-of-load expectation (LOLE) indices, PICES calculates the expected frequency and duration of system capacity deficiencies and the probability, expectation, and expected frequency and duration of a range of system reserve margin states. Results are aggregated and printedmore » on a weekly, monthly, or annual basis. The program employs hourly load data and either the two-state (on/off) or a more sophisticated three-state (on/partially on/fully off) generating unit representation. Unit maintenance schedules are determined on a weekly, levelized reserve margin basis. In addition to the 8760-hour annual load record, the user provides the following information for each unit: plant capacity, annual maintenance requirement, two or three-state unit failure and repair rates, and for three-state models, the partial state capacity deficiency. PICES can also supply default failure and repair rate values, based on the Edison Electric Institute''s 1979 Report on Equipment Availability for the Ten-Year Period 1968 Through 1977, for many common plant types. Multi-year analysis can be performed by specifying as input data the annual peak load growth rates and plant addition and retirement schedules for each year in the study.« less

  4. Table 11.6 Electricity: Sales to Utility and Nonutility Purchasers, 2010;

    U.S. Energy Information Administration (EIA) Indexed Site

    6 Electricity: Sales to Utility and Nonutility Purchasers, 2010; Level: National and Regional Data; Row: Values of Shipments and Employment Sizes; Column: Utility and Nonutility Purchasers; Unit: Million Kilowatthours. Total of Economic Sales and Utility Nonutility Characteristic(a) Transfers Offsite Purchaser(b) Purchaser(c) Total United States Value of Shipments and Receipts (million dollars) Under 20 194 100 93 20-49 282 280 3 50-99 1,115 922 194 100-249 5,225 4,288 936 250-499 5,595 2,696

  5. Table A31. Quantity of Electricity Sold to Utility and Nonutility Purchasers

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Electricity Sold to Utility and Nonutility Purchasers by Census Region," " Census Division, and Economic Characteristics of the Establishment, 1994" " (Estimates in Million Kilowatthours)" ,,,,"RSE" " "," ","Utility ","Nonutility","Row" "Economic Characteristics(a)","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,"Total United

  6. Financial impacts of nonutility power purchases on investor-owned electric utilities

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    To assist in its these responsibilities in the area of electric power, EIA has prepared this report, Financial Impacts of Nonutility Power Purchases on Investor-Owned Electric Utilities. The primary purpose of this report is to provide an overview of the issues surrounding the financial impacts of nonutility generation contracts (since the passage of the Public Utility Regulatory Policies Act of 1978) on investor-owned utilities. The existing concern in this area is manifest in the provisions of Section 712 of the Energy Policy Act of 1992, which required State regulatory commissions to evaluate various aspects of long-term power purchase contracts, including their impact on investor-owned utilities` cost of capital and rates charged to customers. The EIA does not take positions on policy questions. The EIA`s responsibility is to provide timely, high quality information and to perform objective, credible analyses in support of the deliberations by both public and private decision-makers. Accordingly, this report does not purport to represent the policy positions of the US Department of Energy or the Administration.

  7. Table 11.5 Electricity: Sales to Utility and Nonutility Purchasers, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    5 Electricity: Sales to Utility and Nonutility Purchasers, 2002;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." " "," ",,,," " " "," ","Total of",,,"RSE" "NAICS"," ","Sales and","Utility","Nonutility","Row"

  8. Table 11.6 Electricity: Sales to Utility and Nonutility Purchasers, 2002

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity: Sales to Utility and Nonutility Purchasers, 2002;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." ,"Total of",,,"RSE" "Economic","Sales and","Utility","Nonutility","Row" "Characteristic(a)","Transfers

  9. Table E13.3. Electricity: Sales to Utility and Nonutility Purchasers, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" " Level: National and Regional Data; " " Row: Values of Shipments and Employment Sizes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." ,"Total of",,,"RSE" "Economic","Sales and","Utility","Nonutility","Row" "Characteristic(a)","Transfers

  10. Table N13.3. Electricity: Sales to Utility and Nonutility Purchasers, 1998

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Electricity: Sales to Utility and Nonutility Purchasers, 1998;" " Level: National and Regional Data; " " Row: NAICS Codes;" " Column: Utility and Nonutility Purchasers;" " Unit: Million Kilowatthours." " "," ",,,," " " "," ","Total of",,,"RSE" "NAICS"," ","Sales and","Utility","Nonutility","Row"

  11. Utility to Purchase Electricity from Innovative DOE-Supported Clean Coal Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    An innovative clean coal technology project in Texas will supply electricity to the largest municipally owned utility in the United States under a recently signed Power Purchase Agreement, the U.S. Department of Energy announced today.

  12. Table A21. Quantity of Electricity Sold to Utility and Nonutility Purchasers

    U.S. Energy Information Administration (EIA) Indexed Site

    1. Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region and Economic Characteristics of the Establishment, 1991" " (Estimates in Million Kilowatthours)" ,,,,"RSE" " "," ","Utility ","Nonutility","Row" "Economic Characteristics(a)","Total Sold","Purchaser(b)","Purchaser(c)","Factors" ,"Total United States",,, "RSE

  13. Utility Solar Generation Valuation Methods

    SciTech Connect (OSTI)

    Hansen, Thomas N.; Dion, Phillip J.

    2009-06-30

    Tucson Electric Power (TEP) developed, tested and verified the results of a new and appropriate method for accurately evaluating the capacity credit of time variant solar generating sources and reviewed new methods to appropriately and fairly evaluate the value of solar generation to electric utilities. The project also reviewed general integrated approaches for adequately compensating owners of solar generation for their benefits to utilities. However, given the limited funding support and time duration of this project combined with the significant differences between utilities regarding rate structures, solar resource availability and coincidence of solar generation with peak load periods, it is well beyond the scope of this project to develop specific rate, rebate, and interconnection approaches to capture utility benefits for all possible utilities. The project developed computer software based evaluation method models to compare solar generation production data measured in very short term time increments called Sample Intervals over a typical utility Dispatch Cycle during an Evaluation Period against utility system load data. Ten second resolution generation production data from the SGSSS and actual one minute resolution TEP system load data for 2006 and 2007, along with data from the Pennington Street Garage 60 kW DC capacity solar unit installed in downtown Tucson will be applied to the model for testing and verification of the evaluation method. Data was provided by other utilities, but critical time periods of data were missing making results derived from that data inaccurate. The algorithms are based on previous analysis and review of specific 2005 and 2006 SGSSS production data. The model was built, tested and verified by in house TEP personnel. For this phase of the project, TEP communicated with, shared solar production data with and collaborated on the development of solar generation valuation tools with other utilities, including Arizona Public

  14. Economic and legal aspects of utility consortiums for heliostat purchase

    SciTech Connect (OSTI)

    Cole, R.J.; Sommers, P.; Sheppard, W.J.; Nesse, R.J.

    1982-07-01

    A preliminary exploration is given of the legal and economic considerations surrounding the formation and operation of some form of utility-sponsored collective buying arrangement for heliostats. Particular attention is focused on considerations of federal antitrust law surrounding collective buying and other joint operations by electric utilities. Attention is also given to considerations suggested by the economic theory of monopsony (markets with a single buyer) and oligopsony (markets with a small number of buyers). The advantages and disadvantages of such arrangements are examined from the viewpoints of the buyer and the seller. (LEW)

  15. Highly Insulating R-5 Windows Volume Purchase - How Utilities Can Participate Fact Sheet

    SciTech Connect (OSTI)

    2010-03-01

    This fact sheet describes DOEs Windows Volume Purchase, the benefits of highly insulated R-5 windows and low-e storm windows, and the important role that utilities can play in expanding the market for these highly insulated windows.

  16. Table A18. Quantity of Electricity Sold to Utility and Nonutility Purchasers

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region, Industry Group, and Selected Industries, 1991" " (Estimates in Million Kilowatthours)" " "," "," "," "," ","RSE" "SIC"," "," ","Utility ","Nonutility","Row" "Code(a)","Industry Groups and Industry","Total

  17. Table A30. Quantity of Electricity Sold to Utility and Nonutility Purchasers

    U.S. Energy Information Administration (EIA) Indexed Site

    Quantity of Electricity Sold to Utility and Nonutility Purchasers" " by Census Region, Census Division, Industry Group, and Selected Industries, 1994" " (Estimates in Million Kilowatthours)" " "," "," "," "," ","RSE" "SIC"," "," ","Utility ","Nonutility","Row" "Code(a)","Industry Group and Industry","Total

  18. Cosmic Ray Shower Generation Utility

    Energy Science and Technology Software Center (OSTI)

    2007-01-18

    Generates correlated cosmic-ray particle showers at one of three elevations (sea level, 2100m, and 11300m) for use as input transport and detector simulation codes.

  19. Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchasing Green Power Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation DOE/EE-0307 This guide can be downloaded from: www1.eere.energy.gov/femp/technologies/renewable_purchasingpower.html www.epa.gov/greenpower/ www.wri.org/publications www.resource-solutions.org/publications.php Office of Air (6202J) EPA430-K-04-015 www.epa.gov/greenpower March 2010 ISBN: 1-56973-577-8 Guide to Purchasing Green Power i Table of Contents Summary

  20. The Treatment of Solar Generation in Electric Utility Resource...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Treatment of Solar Generation in Electric Utility Resource Planning NREL Webinar ... benefits and challenges of incorporating solar generation into the resource planning ...

  1. Low Cost High Concentration PV Systems for Utility Power Generation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Cost High Concentration PV Systems for Utility Power Generation An overview of the Low Cost High Concentration PV Systems for Utility Power Generation project to transition Amonix's concentrating photovoltaic (PV) systems from low-volume to high-volume production. Low Cost High Concentration PV Systems for Utility Power Generation (972.55 KB) More Documents & Publications Solar America Initiative Low Cost High Concentration PV Systems for Utility Power

  2. EIS-0362: Colorado Springs Utilities' Next Generation CFB Coal Generating Unit, CO

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve Colorado Springs Utilities design, construction, and operation of their Next- Generation Circulating Fluidized Bed (CFB) Coal Generating Unit demonstration plant near Fountain, El Paso County, Colorado.

  3. Guide to purchasing green power. Renewable electricity, renewable energy certificates and on-site renewable generation

    SciTech Connect (OSTI)

    2004-09-30

    The Guide to Purchasing Green Power is intended for organizations that are considering the merits of buying green power as well as those that have decided to buy it and want help doing so. The Guide was written for a broad audience, including businesses, government agencies, universities, and all organizations wanting to diversify their energy supply and to reduce the environmental impact of their electricity use.The Guide provides an overview of green power markets and describes the necessary steps to buying green power. This section summarizes the Guide to help readers find the information they need.

  4. Power Purchase Agreements

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Purchase Agreements Chandra Shah, NREL 303-384-7557 chandra.shah@nrel.gov February 2011 revised 2 | Federal Energy Management Program eere.energy.gov Overview * Customer-sited power purchase agreement (PPA) definition * Project process * Project examples * Utility Renewable Energy Services Contract (URESC) * Enhanced use lease (EUL) * PPA support, resources and key points 3 | Federal Energy Management Program eere.energy.gov * Private entity purchases, installs, owns, operates and

  5. Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Newark, Delaware) - JCAP Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop (Newark, Delaware) Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop (Newark, Delaware) Mon, Mar 7, 2016 11:30am 11:30 Tue, Mar 8, 2016 12:30pm 12:30 University of Delaware Newark, Delaware Frances Houle, "Solar Fuels Systems Research in the Joint Center for Artificial Photosynthesis" March 6 80th Annual Conference of the DPG & DPG Spring Meeting

  6. Treatment of Solar Generation in Electric Utility Resource Planning

    SciTech Connect (OSTI)

    Sterling, J.; McLaren, J.; Taylor, M.; Cory, K.

    2013-10-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. State and federal support policies, solar photovoltaic (PV) price declines, and the introduction of new business models for solar PV 'ownership' are leading to increasing interest in solar technologies (especially PV); however, solar introduces myriad new variables into the utility resource planning decision. Most, but not all, utility planners have less experience analyzing solar than conventional generation as part of capacity planning, portfolio evaluation, and resource procurement decisions. To begin to build this knowledge, utility staff expressed interest in one effort: utility exchanges regarding data, methods, challenges, and solutions for incorporating solar in the planning process. Through interviews and a questionnaire, this report aims to begin this exchange of information and capture utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  7. Green Purchasing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green Purchasing Green Purchasing LANL is committed to purchasing and using environmentally preferable products. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Purchasing Green Products Our goal is to purchase items that contain recycled content except when the items are not available at a reasonable price or do not meet performance standards. Environmentally preferable means products or services that have a smaller

  8. Treatment of Solar Generation in Electric Utility Resource Planning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Treatment of Solar Generation in Electric Utility Resource Planning John Sterling Solar Electric Power Association Joyce McLaren National Renewable Energy Laboratory Mike Taylor Solar Electric Power Association Karlynn Cory National Renewable Energy Laboratory Technical Report NREL/TP-6A20-60047 October 2013 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is

  9. INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION

    SciTech Connect (OSTI)

    Peet M. Soot; Dale R. Jesse; Michael E. Smith

    2005-08-01

    An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM

  10. NREL Webinar: Treatment of Solar Generation in Electric Utility Resource Planning

    Broader source: Energy.gov [DOE]

    In this free webinar, you will hear how utilities are incorporating solar generation into their resource planning processes.

  11. Treatment of Solar Generation in Electric Utility Resource Planning (Presentation)

    SciTech Connect (OSTI)

    Cory, K.; Sterling, J.; Taylor, M.; McLaren, J.

    2014-01-01

    Today's utility planners have a different market and economic context than their predecessors, including planning for the growth of renewable energy. Through interviews and a questionnaire, the authors gathered information on utility supply planning and how solar is represented. Utilities were asked to provide their resource planning process details, key assumptions (e.g. whether DG is represented as supply or negative load), modeling methodology (e.g. type of risk analytics and candidate portfolio development), capacity expansion and production simulation model software, and solar project representation (project size, capacity value and integration cost adder). This presentation aims to begin the exchange of information between utilities, regulators and other stakeholders by capturing utility-provided information about: 1) how various utilities approach long-range resource planning; 2) methods and tools utilities use to conduct resource planning; and, 3) how solar technologies are considered in the resource planning process.

  12. Low Cost High Concentration PV Systems for Utility Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity ... for Residential and Commercial Photovoltaic Energy Generation,A Value Chain ...

  13. Guide to Purchasing Green Power: Renewable Electricity, Renewable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity, ...

  14. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

    Reports and Publications (EIA)

    2013-01-01

    The current and future projected cost and performance characteristics of new electric generating capacity are a critical input into the development of energy projections and analyses.

  15. Green Purchasing & Green Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchasing & Technology Goals 6 & 7: Green Purchasing & Green Technology Our goal is to purchase and use environmentally sustainable products whenever possible and to implement...

  16. Segregated exhaust SOFC generator with high fuel utilization capability

    DOE Patents [OSTI]

    Draper, Robert; Veyo, Stephen E.; Kothmann, Richard E.

    2003-08-26

    A fuel cell generator contains a plurality of fuel cells (6) in a generator chamber (1) and also contains a depleted fuel reactor or a fuel depletion chamber (2) where oxidant (24,25) and fuel (81) is fed to the generator chamber (1) and the depleted fuel reactor chamber (2), where both fuel and oxidant react, and where all oxidant and fuel passages are separate and do not communicate with each other, so that fuel and oxidant in whatever form do not mix and where a depleted fuel exit (23) is provided for exiting a product gas (19) which consists essentially of carbon dioxide and water for further treatment so that carbon dioxide can be separated and is not vented to the atmosphere.

  17. Low Cost High Concentration PV Systems for Utility Power Generation Amonix,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. | Department of Energy Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief fact sheet on various topics including:Low Cost High Concentration PV Systems for Utility Power Generation,High Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity Using BP Solar Crystalline Silicon Technology, Fully Integrated Building Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain

  18. Hydrogen generation utilizing integrated CO2 removal with steam reforming

    DOE Patents [OSTI]

    Duraiswamy, Kandaswamy; Chellappa, Anand S

    2013-07-23

    A steam reformer may comprise fluid inlet and outlet connections and have a substantially cylindrical geometry divided into reforming segments and reforming compartments extending longitudinally within the reformer, each being in fluid communication. With the fluid inlets and outlets. Further, methods for generating hydrogen may comprise steam reformation and material adsorption in one operation followed by regeneration of adsorbers in another operation. Cathode off-gas from a fuel cell may be used to regenerate and sweep the adsorbers, and the operations may cycle among a plurality of adsorption enhanced reformers to provide a continuous flow of hydrogen.

  19. Microsoft Word - Mid South and Southeast Wind Power Purchase...

    Broader source: Energy.gov (indexed) [DOE]

    Mid-South and Southeast Wind Power Purchase Agreements Utility Purchaser Power (MW) Wind Project Name Location (State) TVA 300 Cayuga Ridge Iowa TVA 198 Pioneer Prairie Iowa TVA ...

  20. Power Purchase Agreements

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentation covers the power purchase agreements taken from the FEMP Alternative Finance Options (AFO) webinar.

  1. Assessing the Economic Value of New Utility-Scale Generation Projects

    Gasoline and Diesel Fuel Update (EIA)

    LCOE/LACE Workshop July 25, 2013 Chris Namovicz Assessing the Economic Value of New Utility-Scale Generation Projects Overview * Levelized cost of energy (LCOE) has been used by planners, analysts, policymakers, advocates and others to assess the economic competitiveness of technology options in the electric power sector * While of limited usefulness in the analysis of "conventional" utility systems, this approach is not generally appropriate when considering "unconventional"

  2. The role of distributed generation (DG) in a restructured utility environment

    SciTech Connect (OSTI)

    Feibus, H.

    1999-07-01

    A major consequence of the restructuring of the electric utility industry is disintegration, by which the traditional integrated utility is spinning off its generation business and becoming a power distribution company, or distco. This company will be the remaining entity of the traditional electric utility that continues to be regulated. The world in which the distco functions is becoming a very different place. The distco will be called upon to deliver not only power, but a range of ancillary services, defined by the Federal Energy Regulatory Commission, including spinning reserves, voltage regulation, reactive power, energy imbalance and network stability, some of which may be obtained from the independent system operator, and some of which may be provided by the distco. In this environment the distco must maintain system reliability and provide service to the customer at the least cost. Meanwhile, restructuring is spawning a new generation of unregulated energy service companies that threaten to win the most attractive customers from the distco. Fortunately there is a new emerging generation of technologies, distributed resources, that provide options to the distco to help retain prime customers, by improving reliability and lowering costs. Specifically, distributed generation and storage systems if dispersed into the distribution system can provide these benefits, if generators with the right characteristics are selected, and the integration into the distribution system is done skillfully. The Electric Power Research Institute has estimated that new distributed generation may account for 30% of new generation. This presentation will include the characteristics of several distributed resources and identify potential benefits that can be obtained through the proper integration of distributed generation and storage systems.

  3. Utilities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 July 2016 ______________________________________________________________________________ 1 Utilities [References: FAR 41, DEAR 941 and 970.4102] 1.0 Summary of Latest Changes This update includes administrative changes. 2.0 Discussion This chapter supplements other more primary acquisition regulations and policies contained in the references above and should be considered in the context of those references. 2.1 Overview. This section discusses the acquisition and sales of utility services by

  4. Federal On-Site Renewable Power Purchasing Issues

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—covers on-site renewable power purchasing issues for federal facilities.

  5. Green Power Purchasing

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: The green power purchasing goal has a target date of 2011. It has not been increased subsequently.

  6. Hardware-in-the-Loop Testing of Utility-Scale Wind Turbine Generators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hardware-in-the-Loop Testing of Utility-Scale Wind Turbine Generators Ryan Schkoda, Curtiss Fox, and Ramtin Hadidi Clemson University Vahan Gevorgian, Robb Wallen, and Scott Lambert National Renewable Energy Laboratory Technical Report NREL/TP-5000-64787 January 2016 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable

  7. Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators

    SciTech Connect (OSTI)

    McDermott, K.A.; Bailey, K.A.; South, D.W.

    1993-08-01

    Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

  8. Commercialization of a 2.5kW Utility Interactive Inverter for Distributed Generation

    SciTech Connect (OSTI)

    Torrey, David A.

    2006-05-26

    Through this project, Advanced Energy Conversion (AEC) has developed, tested, refined and is preparing to commercialize a 2.5kW utility-interactive inverter system for distributed generation. The inverter technology embodies zero-voltage switching technology that will ultimately yield a system that is smaller, less expensive and more efficient than existing commercial technologies. This program has focused on commercial success through careful synthesis of technology, market-focus and business development. AEC was the primary participant. AEC is utilizing contract manufacturers in the early stages of production, allowing its technical staff to focus on quality control issues and product enhancements. The objective of this project was to bring the AEC inverter technology from its current pre-production state to a commercial product. Federal funds have been used to build and test production-intent inverters, support the implementation of the commercialization plan and bring the product to the point of UL certification.

  9. Trends in Utility Green Pricing Programs (2006)

    SciTech Connect (OSTI)

    Bird, L.; Kaiser, M.

    2007-10-01

    In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, more than 750 utilities--or about 25% of all utilities nationally--provide their customers a "green power" option. Through these programs, more than 70 million customers have the ability to purchase renewable energy to meet some portion or all of their electricity needs--or make contributions to support the development of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2006 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities to benchmark the success of their green power programs.

  10. Purchasing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 44 states. Purchased Items and supplier base: Biological Materials Chemicals Computers, Monitors and Printers Furniture Laboratory Supplies Metals Office Supplies...

  11. Power Purchase Agreement Webinars

    Broader source: Energy.gov [DOE]

    Provides a listing of past power purchase agreement webinars and associated files. Author: U. S. Department of Energy, Energy Efficiency & Renewable Energy

  12. Solar Power Purchase Agreements

    Broader source: Energy.gov [DOE]

    Provides an overview of solar power purchase agreements including how they work, benefits and challenges and eligibility. Author: United States Environmental Protection Agency (EPA)

  13. Uranium Purchases Report

    Reports and Publications (EIA)

    1996-01-01

    Final issue. This report details natural and enriched uranium purchases as reported by owners and operators of commercial nuclear power plants. 1996 represents the most recent publication year.

  14. The ENERGY STAR Purchasing Initiative

    SciTech Connect (OSTI)

    Dolin, Jennifer, R.; Raynolds, Ned, R.

    1998-08-23

    Federal, state, and local governments could save at least $139 million annually by reducing energy waste through the purchase and use of energy-efficient products. Reducing this waste would reduce annual greenhouse gas emissions by 4.1 million metric tons of carbon (MMTCs) by the year 2010; the equivalent of planting an area of trees the size of Yellowstone National Park. In addition, with $50-70 billion in purchasing power for energy-related products, specifying energy efficiency could significantly shift the market for these products. The Federal government recently launched the ENERGY STAR® Purchasing Initiative to channel the purchasing power of state and local governments -and its environmental impact- in the direction of energy-efficient products to capture significant environmental benefits and increase the demand in the marketplace. Part of this effort studied why governments don’t currently procure the most efficient products, and attempted to identify the changes that would be necessary to allow many governments to do so. Some of the initial barriers to energy-efficient procurement that were found are: • Lack of information about the availability of energy-efficient products; • Split incentives, where the agency purchasing the products do not pay for the utility bills directly and, therefore, have little interest, or incentive, to save energy; • Misinformation about the benefits of energy efficiency; • Energy efficiency not seen as a value-added aspect of procurement; • Budget constraints; and • Lowest first-cost bias. This paper will present the results of this study and describe the mechanisms that will be put into place to address each of these barriers.

  15. Guide to Purchasing Green Power

    Broader source: Energy.gov [DOE]

    The Guide to Purchasing Green Power is intended for organizations that are considering the merits of buying green power as well as those that have decided to buy it and want help doing so. The guide was written for a broad audience, including businesses, government agencies, universities, and all organizations wanting to diversify their energy supply and reduce the environmental impact of their electricity use. The Guide can help with planning an on-site renewable generation project.

  16. Simulation of one-minute power output from utility-scale photovoltaic generation systems.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Ellis, Abraham; Hansen, Clifford W.

    2011-08-01

    We present an approach to simulate time-synchronized, one-minute power output from large photovoltaic (PV) generation plants in locations where only hourly irradiance estimates are available from satellite sources. The approach uses one-minute irradiance measurements from ground sensors in a climatically and geographically similar area. Irradiance is translated to power using the Sandia Array Performance Model. Power output is generated for 2007 in southern Nevada are being used for a Solar PV Grid Integration Study to estimate the integration costs associated with various utility-scale PV generation levels. Plant designs considered include both fixed-tilt thin-film, and single-axis-tracked polycrystalline Si systems ranging in size from 5 to 300 MW{sub AC}. Simulated power output profiles at one-minute intervals were generated for five scenarios defined by total PV capacity (149.5 MW, 222 WM, 292 MW, 492 MW, and 892 MW) each comprising as many as 10 geographically separated PV plants.

  17. Federal On-Site Renewable Power Purchase Agreements | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Federal On-Site Renewable Power Purchase Agreements On-site renewable power ... to fund renewable energy projects with minimal ... Distributed Generation Projects: Webinar ...

  18. Alternatives for management of wastes generated by the formerly utilized sites remedial action program and supplement

    SciTech Connect (OSTI)

    Gilbert, T.L.; Peterson, J.M.; Vocke, R.W.; Alexander, J.K.

    1983-03-01

    Alternatives for disposal or stabilization of the wastes generated by the US Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP) are identified and compared, with emphasis on the long-term aspects. These wastes consist of soil material and rubble containing trace amounts of radionuclides. A detailed pathway analysis for the dose to the maximally exposed individual is carried out using an adaptation of the natural analogue method. Comparisons of the different alternatives, based on the results of the pathway analysis and qualitative cost considerations, indicate that, if the hazard is such that the wastes must be removed and disposed of rather than stabilized in place, disposal by immediate dispersal is preferable to containment, and containment followed by slow planned dispersal is preferable to containment without dispersal. The Supplement presents refinements of work that was reported at the 1982 International Decommissioning Symposium. The new material consists of revisions of the estimates of the predicted potential dose to the maximally exposed individual and a more detailed comparative assessment of the radiological impacts of alternatives for management of wastes generated by the US Department of Energy's Formerly Utilized Sites Remedial Action Program (FUSRAP).

  19. Trends in Utility Green Pricing Programs (2006)

    SciTech Connect (OSTI)

    Bird, Lori; Kaiser, Marshall

    2007-10-01

    In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, more than 750 utilities—or about 25% of all utilities nationally—provide their customers a “green power” option. Through these programs, more than 70 million customers have the ability to purchase renewable energy to meet some portion or all of their electricity needs—or make contributions to support the development of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2006 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities to benchmark the success of their green power programs.

  20. Integrated Simulation Development and Decision Support Tool-Set for Utility Market and Distributed Solar Power Generation Electricore, Inc.

    SciTech Connect (OSTI)

    Daye, Tony

    2013-09-30

    This project will enable utilities to develop long-term strategic plans that integrate high levels of renewable energy generation, and to better plan power system operations under high renewable penetration. The program developed forecast data streams for decision support and effective integration of centralized and distributed solar power generation in utility operations. This toolset focused on real time simulation of distributed power generation within utility grids with the emphasis on potential applications in day ahead (market) and real time (reliability) utility operations. The project team developed and demonstrated methodologies for quantifying the impact of distributed solar generation on core utility operations, identified protocols for internal data communication requirements, and worked with utility personnel to adapt the new distributed generation (DG) forecasts seamlessly within existing Load and Generation procedures through a sophisticated DMS. This project supported the objectives of the SunShot Initiative and SUNRISE by enabling core utility operations to enhance their simulation capability to analyze and prepare for the impacts of high penetrations of solar on the power grid. The impact of high penetration solar PV on utility operations is not only limited to control centers, but across many core operations. Benefits of an enhanced DMS using state-of-the-art solar forecast data were demonstrated within this project and have had an immediate direct operational cost savings for Energy Marketing for Day Ahead generation commitments, Real Time Operations, Load Forecasting (at an aggregate system level for Day Ahead), Demand Response, Long term Planning (asset management), Distribution Operations, and core ancillary services as required for balancing and reliability. This provided power system operators with the necessary tools and processes to operate the grid in a reliable manner under high renewable penetration.

  1. NREL: Sustainable NREL -Green Purchasing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green Purchasing Committed to protecting the natural environment, NREL promotes green purchasing-also referred to as sustainable acquisition-by: Implementing new policies,...

  2. Power Sales to Electric Utilities

    SciTech Connect (OSTI)

    1989-02-01

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities

  3. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    SciTech Connect (OSTI)

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz

    2004-11-01

    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water system cost

  4. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Prikhodko, Vitaly Y.; James E. Parks, II; Pihl, Josh A.; Toops, Todd J.

    2016-04-05

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in oxidizing exhaust. For these lean gasoline engines, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCRmore » approach is of interest. In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. At an SCR average inlet temperature of 350 °C, an NH3:NOX ratio of 1.15:1 (achieved through longer rich cycle timing) resulted in 99.7 % NOX conversion. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher underfloor temperatures, NH3 oxidation over the SCR limited NH3 availability for NOX reduction. At the engine conditions studied, greater than 99 % NOX conversion was achieved with passive SCR while delivering

  5. Ammonia Generation and Utilization in a Passive SCR (TWC+SCR) System on Lean Gasoline Engine

    SciTech Connect (OSTI)

    Prikhodko, Vitaly Y; Parks, II, James E; Pihl, Josh A; Toops, Todd J

    2016-01-01

    Lean gasoline engines offer greater fuel economy than the common stoichiometric gasoline engine, but the current three-way catalyst (TWC) on stoichiometric engines is unable to control nitrogen oxide (NOX) emissions in the oxygen-rich exhaust. Thus, lean NOX emission control is required to meet existing Tier 2 and upcoming Tier 3 emission regulations set by the U.S. Environmental Protection Agency (EPA). While urea-based selective catalytic reduction (SCR) has proven effective in controlling NOX from diesel engines, the urea storage and delivery components can add significant size and cost. As such, onboard NH3 production via a passive SCR approach is of interest. In a passive SCR system, NH3 is generated over a close-coupled TWC during periodic slightly rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean operation, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. In this work, a passive SCR system was evaluated on a 2.0-liter BMW lean burn gasoline direct injection engine to assess NH3 generation over a Pd-only TWC and utilization over a Cu-based SCR catalyst. System NOX reduction efficiency and fuel efficiency improvement compared to stoichiometric engine operation were measured. A feedback control strategy based on cumulative NH3 produced by the TWC during rich operation and NOX emissions during lean operation was implemented on the engine to control lean/rich cycle timing. 15% excess NH3 production over a 1:1 NH3:NOX ratio was required (via longer rich cycle timing) to achieve 99.7% NOX conversion at an SCR average inlet temperature of 350 C. Increasing NH3 generation further resulted in even higher NOX conversion; however, tailpipe NH3 emissions resulted. At higher temperatures, NH3 oxidation becomes important and limits NH3 availability for NOX reduction. At the engine conditions studied here, greater than 99% NOX conversion was achieved with passive SCR while delivering fuel

  6. Use of New Strategically Sourced Blanket Purchase Agreement for Domestic

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delivery Services with United Parcel Service | Department of Energy Use of New Strategically Sourced Blanket Purchase Agreement for Domestic Delivery Services with United Parcel Service Use of New Strategically Sourced Blanket Purchase Agreement for Domestic Delivery Services with United Parcel Service The Department of Energy (DOE) is participating as an authorized user of the second generation General Services Administration (GSA) Blanket Purchase Agreement (BPA) GS-33F-BQV08 for Express

  7. Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certificates, and On-Site Renewable Generation | Department of Energy Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Guide to Purchasing Green Power: Renewable Electricity, Renewable Energy Certificates, and On-Site Renewable Generation Document describes renewable electricity, renewable energy certificates, and on-site renewable generation, which agencies and organizations can consider to diversify their energy supply and

  8. CONDITIONS OF PURCHASE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of 2 GE Global Research CONDITIONS OF PURCHASE - SHORT FORM (May 2013) 1. ACCEPTANCE AND TERMS AND CONDITIONS: This purchase is subject to all of the terms and conditions set forth herein. This Order does not constitute an acceptance by GE of any offer to sell, quotation, or proposal. Any variation of the terms of this Order is not binding upon GE unless specifically accepted by GE in writing, and GE hereby rejects such proposed modifications. This Order is intended by the parties as a final,

  9. High Energy Utilization, Co-Generation Nuclear power Plants With Static Energy Conversion

    SciTech Connect (OSTI)

    El-Genk, Mohamed S.; Tournier, Jean-Michel P.

    2002-07-01

    In addition to being cost effective, very small nuclear power plants with static energy conversion could meet the needs and the energy mix in underdeveloped countries and remote communities, which may include electricity, residential and industrial space heating, seawater desalination, and/or high temperature process heat or steam for industrial uses. These plants are also an attractive option in naval, marine, and undersea applications, when the absence of a sound signature is highly desirable. An Analysis is performed of Gas Cooled Reactor (CGR) and Liquid Metal Cooled Reactor (LMR), very small nuclear power plants with static energy conversion, using a combination of options. These include Alkali Metal Thermal-to-Electric Converters (AMTECs) and both single segment and segmented thermoelectric converters. The total energy utilization of these plants exceeds 88%. It includes the fraction of the reactor's thermal power converted into electricity and delivered to the Grid at 6.6 kVA and those used for residential and industrial space heating at {approx}370 K, seawater desalination at 400 K, and/or high temperature process heat or steam at {approx}850 K. In addition to its inherently high reliability, modularity, low maintenance and redundancy, static energy conversion used in the present study could deliver electricity to the Grid at a net efficiency of 29.5%. A LMR plant delivers 2-3 times the fraction of the reactor thermal power converted into electricity in a GCR plant, but could not provide for both seawater desalination and high temperature process heat/steam concurrently, which is possible in GCR plants. The fraction of the reactor's thermal power used for non-electrical power generation in a GCR plant is {approx} 10 - 15% higher than in a LMR plant. (authors)

  10. Purchasing Renewable Power for Federal Facilities | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchasing Renewable Power for Federal Facilities Purchasing Renewable Power for Federal Facilities Federal agencies can purchase renewable power or renewable energy certificates ...

  11. Energy Department Works with Sacramento Municipal Utility District on Renewable Electricity Generation and Delivery

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Sacramento Municipal Utility District (SMUD) in Sacramento, California, is looking to local renewable resources to help meet its aggressive goal of supplying 37% of its power from renewables in 2020.

  12. CONTRACTOR PURCHASING SYSTEM REVIEWS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Page 1 APPENDIX C CONTRACTOR PURCHASING SYSTEM REVIEWS RISK ASSESSMENT MATRIX RISK CATEGORY PERFORMANCE SCHEDULE COST HIGH (3) --Performance data casts significant doubt on the ability of the system or key process ability to meet requirements. A major disruption is highly probable and the likelihood is that the supplier will not achieve the performance, schedule or cost objectives * Delinquent end item delivery * Poor or nonexistent internal audit/self governance * Failure to meet

  13. CONDITIONS OF PURCHASE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GEGR-N Goods PO 1 of 8 GE Global Research CONDITIONS OF PURCHASE (May 2013) INTEGRITY STATEMENT: If you as a Supplier become aware of any situation that appears to be inconsistent with GE's Policy to maintain lawful and fair practices in its supplier relationships, you may write to our GEGR Ombudsman at: Global Research, One Research Circle, Niskayuna, NY 12309. 1. ACCEPTANCE AND TERMS AND CONDITIONS: (a) Seller accepts this Order and any amendments thereto by signing the acceptance copy and

  14. Mandatory Utility Green Power Option

    Broader source: Energy.gov [DOE]

    Beginning January 1, 2002, each electric utility must inform its customers on a quarterly basis of the voluntary option to purchase green power. The details of each utility's program must be...

  15. Renewable Electricity Generation and Delivery at the Sacramento Municipal Utility District

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Sacramento Municipal Utility District (SMUD) in Sacramento, California, is looking to local renewable resources to help meet its aggressive goal of supplying 37% of its power from renewables by 2020. To help achieve this goal, the U.S. Department of Energy (DOE) provided more than $5 million in funding for several SMUD Community Renewable Energy Deployment (CommRE) projects.

  16. The Flexible Solar Utility: Preparing for Solar's Impacts to...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    purchased resources Natural gas (NG ) pipeline expansion limits and NG fracking environmental restrictions Utility Business Models Evolved business models...

  17. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System Paul Denholm, Robert Margolis, Bryan Palmintier, Clayton Barrows, Eduardo Ibanez, and Lori Bird National Renewable Energy Laboratory Jarett Zuboy Independent Consultant Technical Report NREL/TP-6A20-62447 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable

  18. Hydrogen generation systems utilizing sodium silicide and sodium silica gel materials

    DOE Patents [OSTI]

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-07-14

    Systems, devices, and methods combine reactant materials and aqueous solutions to generate hydrogen. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Multiple inlets of varied placement geometries deliver aqueous solution to the reaction. The reactant materials and aqueous solution are churned to control the state of the reaction. The aqueous solution can be recycled and returned to the reaction. One system operates over a range of temperatures and pressures and includes a hydrogen separator, a heat removal mechanism, and state of reaction control devices. The systems, devices, and methods of generating hydrogen provide thermally stable solids, near-instant reaction with the aqueous solutions, and a non-toxic liquid by-product.

  19. Optimal utilization of field generated analytical data for site characterization and remedial decision making. Master's thesis

    SciTech Connect (OSTI)

    Lester, R.J.

    1994-09-01

    This study developed data quality standards for assessing environmental analytical data quality and its use in remedial decision making, specifically in risk assessment calculations. The primary purpose was to increase the use of field generated data in environmental site investigations versus the continued reliance on costly and time consuming EPA Contract Lab Program data. Increased reliance on field lab data could significantly reduce remedial investigation costs. The standards developed are based on regulatory criteria for data useability, achievable quality in a CLP lab setting, and basic statistical methods. The standards were applied to sets of Volatile Organic Compound data in water and soil matrices from CLP generated data from one Installation Restoration Program site and field lab generated data from another site. The CLP data failed the test for data useability based on the standards as established where the field generated data performed much better but also had its specific failures. The results of the test of the standards on actual data sets indicate that the standards may be more stringent than necessary. Also seen in the results is a strong performance of field labs in generating data of acceptable quality.

  20. Hydrogen generation systems and methods utilizing sodium silicide and sodium silica gel materials

    DOE Patents [OSTI]

    Wallace, Andrew P.; Melack, John M.; Lefenfeld, Michael

    2015-08-11

    Systems, devices, and methods combine thermally stable reactant materials and aqueous solutions to generate hydrogen and a non-toxic liquid by-product. The reactant materials can sodium silicide or sodium silica gel. The hydrogen generation devices are used in fuels cells and other industrial applications. One system combines cooling, pumping, water storage, and other devices to sense and control reactions between reactant materials and aqueous solutions to generate hydrogen. Springs and other pressurization mechanisms pressurize and deliver an aqueous solution to the reaction. A check valve and other pressure regulation mechanisms regulate the pressure of the aqueous solution delivered to the reactant fuel material in the reactor based upon characteristics of the pressurization mechanisms and can regulate the pressure of the delivered aqueous solution as a steady decay associated with the pressurization force. The pressure regulation mechanism can also prevent hydrogen gas from deflecting the pressure regulation mechanism.

  1. Using Renewable Energy Purchases to Achieve Institutional Carbon Goals. A Review of Current Practices and Considerations.

    SciTech Connect (OSTI)

    Bird, Lori; Sumner, Jenny

    2011-01-01

    With organizations and individuals increasingly interested in accounting for their carbon emissions, greater attention is being placed on how to account for the benefits of various carbon mitigation actions available to consumers and businesses. Generally, organizations can address their own carbon emissions through energy efficiency, fuel switching, on-site renewable energy systems, renewable energy purchased from utilities or in the form of renewable energy certificates (RECs), and carbon offsets. This paper explores the role of green power and carbon offsets in carbon "footprinting" and the distinctions between the two products. It reviews how leading greenhouse gas (GHG) reporting programs treat green power purchases and discusses key issues regarding how to account for the carbon benefits of renewable energy. It also discusses potential double counting if renewable energy generation is used in multiple markets.

  2. Using Renewable Energy Purchases to Achieve Institutional Carbon Goals. A Review of Current Practices and Considerations

    SciTech Connect (OSTI)

    Bird, Lori; Sumner, Jenny

    2011-01-01

    With organizations and individuals increasingly interested in accounting for their carbon emissions, greater attention is being placed on how to account for the benefits of various carbon mitigation actions available to consumers and businesses. Generally, organizations can address their own carbon emissions through energy efficiency, fuel switching, on-site renewable energy systems, renewable energy purchased from utilities or in the form of renewable energy certificates (RECs), and carbon offsets. This paper explores the role of green power and carbon offsets in carbon footprinting and the distinctions between the two products. It reviews how leading greenhouse gas (GHG) reporting programs treat green power purchases and discusses key issues regarding how to account for the carbon benefits of renewable energy. It also discusses potential double counting if renewable energy generation is used in multiple markets.

  3. Using Renewable Energy Purchases to Achieve Institutional Carbon Goals: A Review of Current Practices and Considerations

    SciTech Connect (OSTI)

    Bird, L.; Sumner, J.

    2011-01-01

    With organizations and individuals increasingly interested in accounting for their carbon emissions, greater attention is being placed on how to account for the benefits of various carbon mitigation actions available to consumers and businesses. Generally, organizations can address their own carbon emissions through energy efficiency, fuel switching, on-site renewable energy systems, renewable energy purchased from utilities or in the form of renewable energy certificates (RECs), and carbon offsets. This paper explores the role of green power and carbon offsets in carbon footprinting and the distinctions between the two products. It reviews how leading greenhouse gas (GHG) reporting programs treat green power purchases and discusses key issues regarding how to account for the carbon benefits of renewable energy. It also discusses potential double counting if renewable energy generation is used in multiple markets.

  4. Electricity-producing heating apparatus utilizing a turbine generator in a semi-closed brayton cycle

    DOE Patents [OSTI]

    Labinov, Solomon D.; Christian, Jeffrey E.

    2003-10-07

    The present invention provides apparatus and methods for producing both heat and electrical energy by burning fuels in a stove or boiler using a novel arrangement of a surface heat exchanger and microturbine-powered generator and novel surface heat exchanger. The equipment is particularly suited for use in rural and relatively undeveloped areas, especially in cold regions and highlands.

  5. Sustainable Purchasing Leadership Council Summit

    Broader source: Energy.gov [DOE]

    The Summit brings together 300 leaders in sustainable purchasing from the public, private, and NGO sectors to share best and emerging practices across sectors and regions.

  6. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOE Patents [OSTI]

    Dawson, J.M.; Mori, W.B.; Lai, C.H.; Katsouleas, T.C.

    1998-07-14

    Method and apparatus ar disclosed for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing. 4 figs.

  7. Method and apparatus for generating radiation utilizing DC to AC conversion with a conductive front

    DOE Patents [OSTI]

    Dawson, John M.; Mori, Warren B.; Lai, Chih-Hsiang; Katsouleas, Thomas C.

    1998-01-01

    Method and apparatus for generating radiation of high power, variable duration and broad tunability over several orders of magnitude from a laser-ionized gas-filled capacitor array. The method and apparatus convert a DC electric field pattern into a coherent electromagnetic wave train when a relativistic ionization front passes between the capacitor plates. The frequency and duration of the radiation is controlled by the gas pressure and capacitor spacing.

  8. Sacramento Municipal Utility District Solar Array | Open Energy...

    Open Energy Info (EERE)

    Municipal Utility District Solar Array Sector Solar Facility Type Ground-mounted fixed tilt Owner EnXco Developer EnXco Energy Purchaser Sacramento Municipal Utility District...

  9. Stuart Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Stuart Municipal Utilities Energy Purchaser Stuart Municipal Utilities Location Stuart IA Coordinates 41.493988, -94.327403 Show Map Loading map... "minzoom":false,"mappings...

  10. Lenox Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Lenox Municipal Utilities Energy Purchaser Lenox Municipal Utilities Location Lenox IA Coordinates 40.880592, -94.559029 Show Map Loading map... "minzoom":false,"mappings...

  11. Wall Lake Municipal Utilities Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    Municipal Utilities Energy Purchaser Wall Lake Municipal Utilities Location Wall Lake IA Coordinates 42.281965, -95.094098 Show Map Loading map... "minzoom":false,"mappings...

  12. Trends in Utility Green Pricing Programs (2003)

    SciTech Connect (OSTI)

    Bird, L.; Cardinal, K.

    2004-09-01

    Utilities first began offering consumers a choice of purchasing electricity generated from renewable energy sources in the early 1990s. Since then, the number of U.S. utilities offering green pricing programs has steadily grown. Today, more than 500 utilities in regulated electricity markets--or about 16% of all utilities nationally--offer their customers green power options. Because some of these utilities offer programs in conjunction with cooperative associations or other public power entities, the number of distinct programs is slightly more than 100. Through these programs, more than 33 million customers spanning 34 states have the ability to purchase renewable energy to meet some portion or all of their electricity needs, or make contributions to support the development of renewable energy resources. Typically, customers must pay a premium above standard electricity rates for this service. This report presents year-end 2003 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data provided in this report can be used by utilities as benchmarks by which to gauge the success of their green power programs.

  13. Trends in Utility Green Pricing Programs (2004)

    SciTech Connect (OSTI)

    Bird, L.; Brown, E.

    2005-10-01

    In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, nearly 600 utilities in regulated electricity markets--or almost 20% of all utilities nationally--provide their customers a "green power" option. Because some utilities offer programs in conjunction with cooperative associations or other publicly owned power entities, the number of distinct programs totals about 125. Through these programs, more than 40 million customers spanning 34 states have the ability to purchase renewable energy to meet some portion or all of their electricity needs--or make contributions to support the development of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2004 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities as benchmarks by which to gauge the success of their green power programs.

  14. Utilizing Electric Vehicles to Assist Integration of Large Penetrations of Distributed Photovoltaic Generation Capacity

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Chassin, Forrest S.; Kintner-Meyer, Michael CW; Gowri, Krishnan

    2012-11-30

    Executive Summary Introduction and Motivation This analysis provides the first insights into the leveraging potential of distributed photovoltaic (PV) technologies on rooftop and electric vehicle (EV) charging. Either of the two technologies by themselves - at some high penetrations – may cause some voltage control challenges or overloading problems, respectively. But when combined, there – at least intuitively – could be synergistic effects, whereby one technology mitigates the negative impacts of the other. High penetration of EV charging may overload existing distribution system components, most prominently the secondary transformer. If PV technology is installed at residential premises or anywhere downstream of the secondary transformer, it will provide another electricity source thus, relieving the loading on the transformers. Another synergetic or mitigating effect could be envisioned when high PV penetration reverts the power flow upward in the distribution system (from the homes upstream into the distribution system). Protection schemes may then no longer work and voltage violation (exceeding the voltage upper limited of the ANSI voltage range) may occur. In this particular situation, EV charging could absorb the electricity from the PV, such that the reversal of power flow can be reduced or alleviated. Given these potential mutual synergistic behaviors of PV and EV technologies, this project attempted to quantify the benefits of combining the two technologies. Furthermore, of interest was how advanced EV control strategies may influence the outcome of the synergy between EV charging and distributed PV installations. Particularly, Californian utility companies with high penetration of the distributed PV technology, who have experienced voltage control problems, are interested how intelligent EV charging could support or affect the voltage control

  15. Renewable Electricity Purchases: History and Recent Developments

    Reports and Publications (EIA)

    1999-01-01

    This article presents an analysis of prices of renewable-based electricity that utilities have paid to nonutilities, the primary generators of renewable electricity.

  16. Methods for Analyzing the Benefits and Costs of Distributed Photovoltaic Generation to the U.S. Electric Utility System

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.; Palmintier, B.; Barrows, C.; Ibanez, E.; Bird, L.; Zuboy, J.

    2014-09-01

    This report outlines the methods, data, and tools that could be used at different levels of sophistication and effort to estimate the benefits and costs of DGPV. In so doing, we identify the gaps in current benefit-cost-analysis methods, which we hope will inform the ongoing research agenda in this area. The focus of this report is primarily on benefits and costs from the utility or electricity generation system perspective. It is intended to provide useful background information to utility and regulatory decision makers and their staff, who are often being asked to use or evaluate estimates of the benefits and cost of DGPV in regulatory proceedings. Understanding the technical rigor of the range of methods and how they might need to evolve as DGPV becomes a more significant contributor of energy to the electricity system will help them be better consumers of this type of information. This report is also intended to provide information to utilities, policy makers, PV technology developers, and other stakeholders, which might help them maximize the benefits and minimize the costs of integrating DGPV into a changing electricity system.

  17. Low-Cost High-Concentration Photovoltaic Systems for Utility Power Generation

    SciTech Connect (OSTI)

    McConnell, R.; Garboushian, V.; Gordon, R.; Dutra, D.; Kinsey, G.; Geer, S.; Gomez, H.; Cameron, C.

    2012-03-31

    Under DOE's Technology Pathway Partnership (TPP) program, Amonix, Inc. developed a new generation of high-concentration photovoltaic systems using multijunction technology and established the manufacturing capacity needed to supply multi-megawatt power plants buing using the new Amonix 7700-series solar energy systems. For this effort, Amonix Collaborated with a variety of suppliers and partners to complete project tasks. Subcontractors included: Evonik/Cyro; Hitek; the National Renewable Energy Laboratory (NREL); Raytech; Spectrolab; UL; University of Nevada, Las Vegas; and TUV Rheinland PTL. The Amonix TPP tasks included: Task 1: Multijunction Cell Optimization for Field Operation, Task 2: Fresnel Lens R&D, Task 3: Cell Package Design & Production, Task 4: Standards Compliance and Reliability Testing, Task 5: Receiver Plate Production, Task 6: MegaModule Performance, Task 7: MegaModule Cost Reduction, Task 8: Factory Setup and MegaModule Production, Task 9: Tracker and Tracking Controller, Task 10: Installation and Balance of System (BOS), Task 11: Field Testing, and Task 12: Solar Advisor Modeling and Market Analysis. Amonix's TPP addressed nearly the complete PV value chain from epitaxial layer design and wafer processing through system design, manufacturing, deployment and O&M. Amonix has made progress toward achieving these reduced costs through the development of its 28%+ efficient MegaModule, reduced manufacturing and installation cost through design for manufacturing and assembly, automated manufacturing processes, and reduced O&M costs. Program highlights include: (1) Optimized multijunction cell and cell package design to improve performance by > 10%; (2) Updated lens design provided 7% increased performance and higher concentration; (3) 28.7% DC STC MegaModule efficiency achieved in Phase II exceeded Phase III performance goal; (4) New 16' focal length MegaModule achieved target materials and manufacturing cost reduction; (5) Designed and placed into

  18. Utilization of General Services Administration Federal Strategic Sourcing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative Blanket Purchase Agreements for Office Supplies | Department of Energy Utilization of General Services Administration Federal Strategic Sourcing Initiative Blanket Purchase Agreements for Office Supplies Utilization of General Services Administration Federal Strategic Sourcing Initiative Blanket Purchase Agreements for Office Supplies The Deputy Secretary's Memorandum signed July 25, 2013, requires the use of the General Services Administration's (GSA) Federal Strategic Sourcing

  19. Trends in Utility Green Pricing Programs (2005)

    SciTech Connect (OSTI)

    Bird, Lori; Brown, Elizabeth

    2006-10-01

    In the early 1990s, only a handful of utilities offered their customers a choice of purchasing electricity generated from renewable energy sources. Today, more than 600 utilities—or about 20% of all utilities nationally—provide their customers a “green power” option. Because some utilities offer programs in conjunction with cooperative associations or other publicly owned power entities, the number of distinct programs totals more than 130. Through these programs, more than 50 million customers have the ability to purchase renewable energy to meet some portion or all of their electricity needs—or make contributions to support the development of renewable energy resources. Typically, customers pay a premium above standard electricity rates for this service. This report presents year-end 2005 data on utility green pricing programs, and examines trends in consumer response and program implementation over time. The data in this report, which were obtained via a questionnaire distributed to utility green pricing program managers, can be used by utilities to benchmark the success of their green power programs.

  20. Jackson Purchase Energy Corporation | Open Energy Information

    Open Energy Info (EERE)

    Jackson Purchase Energy Corporation Jump to: navigation, search Name: Jackson Purchase Energy Corporation Place: Kentucky Phone Number: 270.442.7321 or 800.633.4044 Website:...

  1. Power Purchase Agreements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Purchase Agreements Presentation covers the power purchase agreements taken from the FEMP Alternative Finance Options (AFO) webinar. PDF icon afoppapres.pdf More Documents ...

  2. Purchasing Solar Collectively with Solarize

    Broader source: Energy.gov [DOE]

    This video provides an overview of the concept behind The Solarize Guidebook, which offers neighborhoods a plan for getting volume discounts when making group purchases of rooftop solar energy...

  3. Green Purchasing & Green Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Green Leases Green Leases Green Lease Policies and Procedures for Lease Acquisition Green Lease Policies and Procedures Policy Memorandum Attachment 1: Green Lease Policies and Procedures for Lease Acquisition Attachment 2: Solicitation for Offers with New and Revised Green Lease Text Attachment 3: Instructions for Use of Green Lease Solicitation Paragraph Reference Chart Attachment 4: Unrevised SFO Paragraphs Reissued

    Purchasing & Technology Goals 6 & 7: Green Purchasing & Green

  4. Low NO{sub x} turbine power generation utilizing low Btu GOB gas. Final report, June--August 1995

    SciTech Connect (OSTI)

    Ortiz, I.; Anthony, R.V.; Gabrielson, J.; Glickert, R.

    1995-08-01

    Methane, a potent greenhouse gas, is second only to carbon dioxide as a contributor to potential global warming. Methane liberated by coal mines represents one of the most promising under exploited areas for profitably reducing these methane emissions. Furthermore, there is a need for apparatus and processes that reduce the nitrogen oxide (NO{sub x}) emissions from gas turbines in power generation. Consequently, this project aims to demonstrate a technology which utilizes low grade fuel (CMM) in a combustion air stream to reduce NO{sub x} emissions in the operation of a gas turbine. This technology is superior to other existing technologies because it can directly use the varying methane content gases from various streams of the mining operation. The simplicity of the process makes it useful for both new gas turbines and retrofitting existing gas turbines. This report evaluates the feasibility of using gob gas from the 11,000 acre abandoned Gateway Mine near Waynesburg, Pennsylvania as a fuel source for power generation applying low NO{sub x} gas turbine technology at a site which is currently capable of producing low grade GOB gas ({approx_equal} 600 BTU) from abandoned GOB areas.

  5. DOE Purchase Card Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchase Card Policy DOE Purchase Card Policy Purchase Card Policies for Hq epp-training-P-Card.pptx (722.23 KB) Sustainable Acquisition Training for Purchase Cardholders and Approving.pptx (718.92 KB) More Documents & Publications Microsoft PowerPoint - ShanasBioSlides121307 Updated Section H Greening Clauses Webinar: Bioproducts in the Federal Bioeconomy Portfolio Webinar

  6. Economic and regulatory aspects of cogeneration: the implementation of Section 210 of the Public Utility Regulatory Policies Act of 1978

    SciTech Connect (OSTI)

    Vincent, J.W.

    1982-01-01

    In February of 1980 the Federal Energy Regulatory Commission (FERC) promulgated a set of rules that were to commence the implementation process of Section 210 of the Public Utility Regulatory Policies Act of 1978 (PURPA). Of particular interest to economists are the pricing provisions in the rules that pertain to integrating dispersed sources of electric power generation into conventional electric utility systems. The full avoided cost pricing provision couples a utility mandate to purchase power from qualified dispersed facilities (cogenerators, wind power, small hydro facilities, etc., hereafter denoted QFs) with the requirement that the price the utility pays for such purchases be equal to the full extent of the cost it avoids by not generating the power itself. The simultaneous purchase and sale billing scheme requires a utility to purchase the gross power output of a QF at the full avoided cost rate and simultaneously sell back to the QF its power requirement on the applicable retail tariff. Theoretical investigation of these two provisions reveals that, properly defined, they are consistent with improving economic signals with respect to electricity generation.

  7. Table A39. Total Expenditures for Purchased Electricity and Steam

    U.S. Energy Information Administration (EIA) Indexed Site

    9. Total Expenditures for Purchased Electricity and Steam" " by Type of Supplier, Census Region, Census Division, and" " Economic Characteristics of the Establishment, 1994" " (Estimates in Million Dollars)" ," Electricity",," Steam" ,,,,,"RSE" ,"Utility","Nonutility","Utility","Nonutility","Row" "Economic

  8. Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth Aggregated Purchasing and Workplace Charging Can Drive EV Market Growth November 24, 2014 - 11:06am Addthis Secretary of Energy Ernest Moniz with the utility industry's first plug-in electric hybrid drivetrain Class 5 bucket truck at the White House event on November 18, 2014. The truck, which is owned by Pacific Gas and Electric (PG&E), features up to 40 miles of all-electric range and

  9. Optimized Energy Management for Large Organizations Utilizing an On-Site PHEV fleet, Storage Devices and Renewable Electricity Generation

    SciTech Connect (OSTI)

    Dashora, Yogesh; Barnes, J. Wesley; Pillai, Rekha S; Combs, Todd E; Hilliard, Michael R

    2012-01-01

    Abstract This paper focuses on the daily electricity management problem for organizations with a large number of employees working within a relatively small geographic location. The organization manages its electric grid including limited on-site energy generation facilities, energy storage facilities, and plug-in hybrid electric vehicle (PHEV) charging stations installed in the parking lots. A mixed integer linear program (MILP) is modeled and implemented to assist the organization in determining the temporal allocation of available resources that will minimize energy costs. We consider two cost compensation strategies for PHEV owners: (1) cost equivalent battery replacement reimbursement for utilizing vehicle to grid (V2G) services from PHEVs; (2) gasoline equivalent cost for undercharging of PHEV batteries. Our case study, based on the Oak Ridge National Laboratory (ORNL) campus, produced encouraging results and substantiates the importance of controlled PHEV fleet charging as opposed to uncontrolled charging methods. We further established the importance of realizing V2G capabilities provided by PHEVs in terms of significantly reducing energy costs for the organization.

  10. Analysis of the value of battery storage with wind and photovoltaic generation to the Sacramento Municipal Utility District

    SciTech Connect (OSTI)

    Zaininger, H.W. [Zaininger Engineering Co., Inc., Roseville, CA (United States)

    1998-08-01

    This report describes the results of an analysis to determine the economic and operational value of battery storage to wind and photovoltaic (PV) generation technologies to the Sacramento Municipal Utility District (SMUD) system. The analysis approach consisted of performing a benefit-cost economic assessment using established SMUD financial parameters, system expansion plans, and current system operating procedures. This report presents the results of the analysis. Section 2 describes expected wind and PV plant performance. Section 3 describes expected benefits to SMUD associated with employing battery storage. Section 4 presents preliminary benefit-cost results for battery storage added at the Solano wind plant and the Hedge PV plant. Section 5 presents conclusions and recommendations resulting from this analysis. The results of this analysis should be reviewed subject to the following caveat. The assumptions and data used in developing these results were based on reports available from and interaction with appropriate SMUD operating, planning, and design personnel in 1994 and early 1995 and are compatible with financial assumptions and system expansion plans as of that time. Assumptions and SMUD expansion plans have changed since then. In particular, SMUD did not install the additional 45 MW of wind that was planned for 1996. Current SMUD expansion plans and assumptions should be obtained from appropriate SMUD personnel.

  11. El Paso Electric Company- Small and Medium System Renewable Energy Certificate Purchase Program

    Broader source: Energy.gov [DOE]

    Only systems connected to the utility's grid and net-metered are eligible. RECs will be measured by a separate REC meter and purchased by El Paso Electric on a monthly basis. For contracts signed...

  12. Utility-scale variable-speed wind turbines using a doubly-fed generator with a soft-switching power converter

    SciTech Connect (OSTI)

    Weigand, C.H.; Lauw, H.K.; Marckx, D.A.

    1996-12-31

    Utility-scale wind turbines operating at variable RPM have been studied for a considerable period of time. Whereas the increase in energy output originally has been considered the principal benefit of variable-speed operation, the ability to tightly control the drive-train torque by electronic means is becoming another very important cost factor, especially for turbine ratings above 500 kilowatts. This cost benefit becomes even more significant as optimum turbine ratings today are approaching (and surpassing) 1 Megawatt. Having identified the benefits for the turbine, the designer is confronted with the task of finding the most cost-effective variable-speed generation system which allows him to make use of the benefits, yet does not introduce well-known electrical problems associated with state-of-the-art variable-speed generator controls, such as drastically reduced generator winding life, excessive harmonics on the utility, and poor utility power factor. This paper will indicate that for high-power (> 500 kW), utility-scale wind turbines a doubly-fed generator system in connection with a soft-switching resonant power converter is the least-cost variable-speed generation system offering all of the desired benefits, yet avoids the introduction of the potential electrical problems stated above. 3 refs., 3 figs., 1 tab.

  13. Utilization Graphs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that use data from the PDSF batch scheduler (SGE) to show the utilization of the cluster over the past 24 hours. The graphs were generated with RRDTool and are updated...

  14. On-Site Renewable Power Purchase Agreements for Renewable Energy Projects

    Office of Energy Efficiency and Renewable Energy (EERE)

    An on-site renewable power purchase agreement (PPA) enables Federal agencies to fund a renewable energy project by contracting to purchase the power generated by the system. The renewable energy equipment is installed and owned by a developer but located on-site at the agency facility.

  15. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the...

  16. City of Philadelphia- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    *In contrast to renewable energy purchasing goals of many local governments, Philadelphia's initiative targets total electricity use within the city as opposed to only purchases made by the city ...

  17. South Carolina Municipalities- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    Participating residential customers are able to purchase this green power for $3 per 100 kWh block. Commercial participants are able to purchase the power for $6 per 200 kWh block.

  18. Quick Guide: Power Purchase Agreements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quick Guide: Power Purchase Agreements Quick Guide: Power Purchase Agreements Fact sheet explains on-site renewable power purchase agreements (PPAs) and includes which questions to...

  19. Community Wind Handbook/Purchase Equipment | Open Energy Information

    Open Energy Info (EERE)

    * Submit Permit Applications * Find an Installer * Purchase Equipment * Plan for Maintenance Purchase Equipment The purchase of a turbine for a small community wind project is...

  20. ,"Domestic Crude Oil First Purchase Prices for Selected Crude...

    U.S. Energy Information Administration (EIA) Indexed Site

    Purchase Price (Dollars per Barrel)","Heavy Louisiana Sweet First Purchase Price (Dollars per Barrel)","Light Louisiana Sweet First Purchase Price (Dollars per Barrel)","Mars Blend ...

  1. Idaho Public Utilities Commission Approves Neal Hot Springs Power...

    Open Energy Info (EERE)

    Geothermal Area Regions (0) Retrieved from "http:en.openei.orgwindex.php?titleIdahoPublicUtilitiesCommissionApprovesNealHotSpringsPowerPurchaseAgreement&oldid76143...

  2. Norwich Public Utilities (Electric)- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Norwich Public Utilities (NPU) provides residential customers with rebates on the ENERGY STAR-qualified appliances and energy efficient HVAC equipment. Eligible appliance purchases include...

  3. Lassen Municipal Utility District- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Lassen Municipal Utility District (LMUD) offers an incentive for residential customers who purchase and install energy efficient equipment. Contact LMUD for information regarding which local...

  4. A Guide to Community Shared Solar: Utility, Private, and Nonprofit...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... costs (reducing the cost by the proportioned ... When individuals purchase panels in the solar farm, the utility ... means the cost of buying and installing the facility. ...

  5. City of Tallahassee Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    City of Tallahassee Utilities (CTU) offers residential customers rebates for the purchase of ENERGY STAR appliances and heating and cooling equipment. Qualifying appliances include refrigerators,...

  6. Springfield Utility Board- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    The Springfield Utility Board offers qualifying customers a 0% loan for the purchase of qualifying energy-efficient heat pumps, insulation upgrades, duct sealing, and energy efficient windows.

  7. Montana-Dakota Utilities- Commercial Energy Efficiency Incentive Program

    Broader source: Energy.gov [DOE]

    Montana-Dakota Utilities (MDU) offers a variety of rebates to commercial customers for the purchase and installation of energy efficient lighting measures, air conditioning equipment, variable...

  8. Orange and Rockland Utilities (Gas)- Residential Efficiency Program

    Broader source: Energy.gov [DOE]

    Orange and Rockland Utilities provides rebates for residential customers purchasing energy efficient natural gas equipment. Rebates exist for furnaces, water boilers and controls, steam boilers,...

  9. City of Lompoc Utilities- Commercial Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    City of Lompoc Utilities offers rebates to commercial customers for the purchase and installation of energy efficiency lighting, clothes washers, dishwashers, replaced refrigerators, new...

  10. City of Chicago- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    For more green power purchasing program listings, visit the U.S. Department of Energy Green Power Network.

  11. purchasing | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    purchasing Supply Chain Management Center event highlights how small businesses can help NNSA carry out its missions The Supply Chain Management Center (SCMC) has been an important tool for NNSA to save taxpayer dollars. At the event on Feb. 18, NNSA leadership and the New Mexico congressional delegation were well represented. From left, Scott Bissen, SCMC Director; Rep. Steve Pearce (R-NM); NNSA Administrator

  12. Solar power purchase for DOE laboratories | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    Administration | (NNSA) Solar power purchase for DOE laboratories January 13, 2015 WASHINGTON D.C. -- The U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) announced today it has finalized the license agreement with Whitethorn Solar, a wholly owned subsidiary of Juwi Solar Inc. (Juwi), for a solar electrical generation system onsite at Lawrence Livermore National Laboratory. When completed, the power generated by this system will represent the DOE/NNSA's largest

  13. Selected antitrust issues in utility fuels and equipment purchases

    SciTech Connect (OSTI)

    Sanger, H.S. Jr.

    1980-11-10

    The effects of cartels on the acquisition of fuels and equipment for US power plants and examples of antitrust suits dealing with this subject are discussed. (LCL)

  14. Utility rebates for efficient motors -- The outlook for demand-side management

    SciTech Connect (OSTI)

    Nailen, R.L.

    1997-01-01

    Since 1987, many electric utilities throughout North America have been actively promoting demand-side management (DSM), the attempt to conserve fuels and postpone costly generating capacity increases by encouraging customers to use more efficient electrical equipment, including motors. One popular DSM program has been utility payment of cash rebates to purchasers of more efficient motors. Today, such payments face extinction in a rapidly changing utility economic climate based on deregulation. How rebates originated, the basis for such payments, how successful rebate programs have been, and what the future holds for them are the subjects of this paper.

  15. Utility rebates for efficient motors -- The outlook for demand-side management

    SciTech Connect (OSTI)

    Nailen, R.L.

    1995-12-31

    Since 1987, many electric utilities throughout North America have been actively promoting DSM--demand-side management, the attempt to conserve fuels and postpone costly generating capacity increases by encouraging customers to use more efficient electrical equipment, including motors. One popular DSM program has been utility payment of cash rebates to purchasers of more efficient motors. Today, such payments face extinction in a rapidly changing utility economic climate based on deregulation. How rebates originated, the basis for such payments, how successful rebate programs have been, and what the future holds for them--these are the subjects of this paper.

  16. Reliable, Low-Cost Distributed Generator/Utility System Interconnect: Final Subcontract Report, November 2001-March 2004

    SciTech Connect (OSTI)

    Ye, Z.; Walling, R.; Miller, N.; Du, P.; Nelson, K.; Li, L.; Zhou, R.; Garces, L.; Dame, M.

    2006-03-01

    This report summarizes the detailed study and development of new GE anti-islanding controls for two classes of distributed generation. One is inverter-interfaced, while the other is synchronous machine interfaced.

  17. Production Tax Credit for Renewable Electricity Generation (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10% federal tax credit on new investment in capital-intensive wind and solar generation technologies.

  18. Groton Utilities- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Groton Utilities offers a variety of rebates to residential customers for the purchase and installation of energy efficient equipment. Rebates are available for CFLs, HVAC, HVAC controls, and heat...

  19. City of Lompoc Utilities- PV Rebate Program

    Broader source: Energy.gov [DOE]

    City of Lompoc Utilities provides rebates to its electric customers who purchase and install photovoltaic (PV) systems. The rebate is $1.00 per watt-AC. The incentive amount may not exceed 50% the...

  20. Liberty Utilities Iowa High Efficiency Equipment Rebate

    Broader source: Energy.gov [DOE]

    Liberty Utilities offers a rebate to its Iowa residential and small business customers for the purchase of high efficiency ENERGY STAR natural gas home heating and water heating equipment....

  1. Workplace Charging Challenge Partner: Purchase College, State...

    Energy Savers [EERE]

    Purchase College, State University of New York can accommodate six vehicles at four charging stations throughout campus. In addition to the two charging stations installed in 2012, ...

  2. Power Purchase Agreements | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A Power Purchase Agreement (PPA) is a financing structure that enables property owners or tenants, including state and local governments, to realize the benefits of renewable...

  3. Purchasing Energy-Efficient Residential Furnaces | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Furnaces Purchasing Energy-Efficient Residential Furnaces The Federal Energy Management Program (FEMP) provides acquisition guidance for residential furnaces, a product category ...

  4. Final Report on Utilization of TRU TRISO Fuel as Applied to HTR Systems Part II: Prismatic Reactor Cross Section Generation

    SciTech Connect (OSTI)

    Vincent Descotes

    2011-03-01

    The deep-burn prismatic high temperature reactor is made up of an annular core loaded with transuranic isotopes and surrounded in the center and in the periphery by reflector blocks in graphite. This disposition creates challenges for the neutronics compared to usual light water reactor calculation schemes. The longer mean free path of neutrons in graphite affects the neutron spectrum deep inside the blocks located next to the reflector. The neutron thermalisation in the graphite leads to two characteristic fission peaks at the inner and outer interfaces as a result of the increased thermal flux seen in those assemblies. Spectral changes are seen at least on half of the fuel blocks adjacent to the reflector. This spectral effect of the reflector may prevent us from successfully using the two step scheme -lattice then core calculation- typically used for light water reactors. We have been studying the core without control mechanisms to provide input for the development of a complete calculation scheme. To correct the spectrum at the lattice level, we have tried to generate cross-sections from supercell calculations at the lattice level, thus taking into account part of the graphite surrounding the blocks of interest for generating the homogenised cross-sections for the full-core calculation. This one has been done with 2 to 295 groups to assess if increasing the number of groups leads to more accurate results. A comparison with a classical single block model has been done. Both paths were compared to a reference calculation done with MCNP. It is concluded that the agreement with MCNP is better with supercells, but that the single block model remains quite close if enough groups are kept for the core calculation. 26 groups seems to be a good compromise between time and accu- racy. However, some trials with depletion have shown huge variations of the isotopic composition across a block next to the reflector. It may imply that at least an in- core depletion for the

  5. A new absorption chiller to establish combined cold, heat, and power generation utilizing low-temperature heat

    SciTech Connect (OSTI)

    Schweigler, C.J.; Riesch, P.; Demmel, S.; Alefeld, G.

    1996-11-01

    Presently available absorption machines for air conditioning are driven with heat of a minimum of 80 C (176 F). A combination of the standard single-effect and a double-lift process has been identified as a new cycle that can use driving heat down to return temperatures of about 55 C (131 F) and permits temperature glides in generation of more than 30 K (54 F). Thus a larger cooling capacity can be produced from the same heat source compared to a single-effect chiller run with the same heat carrier supply temperature and mass flow. According to the estimated heat exchanger area, competitive machine costs for this new chiller can be expected. This single-effect/double-lift absorption chiller can be operated with waste heat from industrial processes, as well as with low-temperature heat (e.g., heat from solar collectors) as driving heat for air conditioning. The large temperature glide and the low return temperature especially fit the operating conditions in district heating networks during the summer. The cycle will be presented, followed by a discussion of suitable operating conditions.

  6. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » Pumped Storage Hydropower Pumped Storage Hydropower In addition to traditional hydropower, pumped-storage hydropower (PSH)-A type of hydropower that works like a battery, pumping water from a lower reservoir to an upper reservoir for storage and later generation-is an important piece of DOE's renewable energy portfolio because it acts as a utility-scale grid storage technology. DOE's Water Power Program plays a supportive role in demonstrating the benefits of PSH and its role in our

  7. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab

  8. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab

  9. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab

  10. Purchase, Delivery, and Storage of Gases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchase, Delivery, and Storage of Gases Print ALS users should follow Berkeley Lab policy, as described below, for the purchase, delivery, storage, and use of all gases at the ALS. See Shipping and Receiving for information on any non-gas deliveries. Contacts: Gas purchase or delivery: ALS Receiving, 510-486-4494 Gas use and storage: Experiment Coordination, 510-486-7222, This e-mail address is being protected from spambots. You need JavaScript enabled to view it Gas Storage: Berkeley Lab

  11. Energy Department Issues Tribal Renewable Energy Purchase Guidance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Department Issues Tribal Renewable Energy Purchase Guidance and Project Development Resources Energy Department Issues Tribal Renewable Energy Purchase Guidance and Project...

  12. Energy Department Issues Tribal Renewable Energy Purchase Guidance...

    Energy Savers [EERE]

    Renewable Energy Purchase Guidance and Project Development Resources Energy Department Issues Tribal Renewable Energy Purchase Guidance and Project Development Resources December ...

  13. Boulder Valley School District (Colorado) Power Purchase Agreement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School District (Colorado) Power Purchase Agreement Case Study Boulder Valley School ...

  14. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    U.S. Energy Information Administration (EIA) Indexed Site

    Form EIA-182, "Domestic Crude Oil First Purchase Report." 22. Domestic Crude Oil First Purchase Prices for Selected Crude Streams 44 Energy Information Administration ...

  15. ,"Domestic Crude Oil First Purchase Prices by Area"

    U.S. Energy Information Administration (EIA) Indexed Site

    "Back to Contents","Data 1: Domestic Crude Oil First Purchase Prices by Area" ...0050063","F0050743" "Date","U.S. Crude Oil First Purchase Price (Dollars per ...

  16. Municipal Bond - Power Purchase Agreement Model Continues to...

    Broader source: Energy.gov (indexed) [DOE]

    power purchase agreement model to provide low-cost solar energy. Author: National Renewable Energy Laboratory Municipal Bond - Power Purchase Agreement Model Continues to Provide...

  17. Use of New Strategically Sourced Blanket Purchase Agreement....

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Use of New Strategically Sourced Blanket Purchase Agreement. . . Use of New Strategically Sourced Blanket Purchase Agreement. . . Policy Flash More Documents & Publications Policy ...

  18. Initial Application for FAC-C, Purchasing, Financial Assistance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initial Application for FAC-C, Purchasing, Financial Assistance and Property Management Certification Initial Application for FAC-C, Purchasing, Financial Assistance and Property ...

  19. Table A27. Quantity of Purchased Electricity, Steam, and Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... purchased by a central purchasing office offsite, and quantities for" "which payment is made in-kind." " Source: Energy Information Administration, Office of Energy ...

  20. Federal Government Awards Multi-Agency Solar Power Purchase in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Government Awards Multi-Agency Solar Power Purchase in California, Nevada Federal Government Awards Multi-Agency Solar Power Purchase in California, Nevada December 17, ...

  1. 2015 Awards For Leadership In Sustainable Purchasing Announced...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5 Awards For Leadership In Sustainable Purchasing Announced 2015 Awards For Leadership In Sustainable Purchasing Announced June 3, 2015 - 8:32am Addthis (L to R) Anastasia ...

  2. Buy Energy-Efficient Products: A Guide for Federal Purchasers...

    Energy Savers [EERE]

    Buy Energy-Efficient Products: A Guide for Federal Purchasers and Specifiers Buy Energy-Efficient Products: A Guide for Federal Purchasers and Specifiers Document encourages ...

  3. Purchasing Energy-Efficient Water-Cooled Ice Machines | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Purchasing Energy-Efficient Water-Cooled Ice Machines Purchasing Energy-Efficient Water-Cooled Ice Machines The Federal Energy Management Program (FEMP) provides efficiency ...

  4. Avista Utilities- Net Metering

    Broader source: Energy.gov [DOE]

    For Avista Utilities customers, any net excess generation (NEG) during a monthly billing period is credited to the customer's next bill at the utility's retail rate. At the beginning of each ca...

  5. Important Idaho habitat now protected through purchase

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4.2 million purchase of Hammer Flat. The City of Boise, Idaho Department of Fish and Game, and the Bonneville Power Administration worked together to protect the nearly 705 acre...

  6. DOE ORP Purchase Card Buyers - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10,000.00 50,000.00 Layne Papenfuss Paper 10,000.00 50,000.00 *Marc McCusker or Kelly Brazil may purchase for any category in case of emergency, for any contractual...

  7. Quick Guide: Power Purchase Agreements (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    Introduction to Federal power purchase agreements (PPAs), including available FEMP services and technical assistance as well as questions to ask when evaluating PPAs for a Federal renewable energy project.

  8. Quick Guide: Power Purchase Agreements (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Introduction to Federal power purchase agreements (PPAs), including available FEMP services and technical assistance as well as questions to ask when evaluating PPAs for a Federal renewable energy project.

  9. Upcoming Purchasing and Subcontracting Opportunities | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Upcoming Purchasing and Subcontracting Opportunities NREL's procurement policy is based on effective and meaningful competition. View all upcoming purchasing and subcontracting opportunities below and email the assigned contact for more information. Recurring Products and/or Services Solicitation Time Frame Point of Contact Banking Agreement Fall 2016 Jeffrey.Soltesz@nrel.gov Basic IT Support Fall 2016 Kimberley.Lopez@nrel.gov IT Scientific and Business Support Fall 2016 Kimberley.Lopez@nrel.gov

  10. Office of Small and Disadvantaged Business Utilization

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Small and Disadvantaged Business Utilization Office of Economic Impact and Diversity 1000 Independence Avenue, SW Washington, DC 20585 http://smallbusiness.energy.gov 202.586.7377 The Department purchases a wide variety of goods and services, including, but not limited to: What Does DOE Purchase? 202.586.7377 http://smallbusiness.energy.gov * Facility Management * Construction * R&D * Management/Scientific Consultation and Analysis * Administrative Services * IT and Data Processing *

  11. Utilities' Use of Nuclear Generation

    SciTech Connect (OSTI)

    Ray, Harold B.

    2002-09-30

    This PowerPoint presentation was given at the Nuclear Energy Research Advisory Committee meeting, held 30 September 2002 in Arlington, VA.

  12. Workplace Charging Challenge Partner: Purchase College, State University of New York

    Broader source: Energy.gov [DOE]

    Joined the Challenge: June 2015Headquarters: Purchase, NYCharging Location: Purchase, NYDomestic Employees: 678

  13. "Table A38. Total Expenditures for Purchased Electricity, Steam, and Natural Gas"

    U.S. Energy Information Administration (EIA) Indexed Site

    8. Total Expenditures for Purchased Electricity, Steam, and Natural Gas" " by Type of Supplier, Census Region, Census Division, Industry Group," " and Selected Industries, 1994" " (Estimates in Million Dollars)" ,," Electricity",," Steam" ,,,,,,"RSE" "SIC",,"Utility","Nonutility","Utility","Nonutility","Row" "Code(a)","Industry Group and

  14. City Utilities of Springfield | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 17833 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes...

  15. Kentucky Utilities Co | Open Energy Information

    Open Energy Info (EERE)

    EIA Form 861 Data Utility Id 10171 Utility Location Yes Ownership I NERC SERC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes...

  16. Federal Off-Site Renewable Energy Purchases and Renewable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Certificates | Department of Energy Renewable Energy Procurement » Federal Off-Site Renewable Energy Purchases and Renewable Energy Certificates Federal Off-Site Renewable Energy Purchases and Renewable Energy Certificates If developing an on-site renewable energy project is impractical, federal agencies can purchase renewable energy from off-site renewable energy projects or purchase renewable energy certificates (RECs). Renewable energy purchases do not require project financing and can

  17. TurboGenerator Power Systems{trademark} for distributed generation

    SciTech Connect (OSTI)

    Weinstein, C.H.

    1998-12-31

    The AlliedSignal TurboGenerator is a cost effective, environmentally benign, low cost, highly reliable and simple to maintain generation source. Market Surveys indicate that the significant worldwide market exists, for example, the United States Electric Power Research Institute (EPRI) which is the uniform research facility for domestic electric utilities, predicts that up to 40% of all new generation could be distributed generation by the year 2006. In many parts of the world, the lack of electric infrastructure (transmission and distribution lines) will greatly expedite the commercialization of distributed generation technologies since central plants not only cost more per kW, but also must have expensive infrastructure installed to deliver the product to the consumer. Small, multi-fuel, modular distributed generation units, such as the TurboGenerator, can help alleviate current afternoon brownouts and blackouts prevalent in many parts of the world. Its simple, one moving part concept allows for low technical skill maintenance and its low overall cost allows for wide spread purchase in those parts of the world where capital is sparse. In addition, given the United States emphasis on electric deregulation and the world trend in this direction, consumers of electricity will now have not only the right to choose the correct method of electric service but also a new cost effective choice from which to choose.

  18. Distributed Generation Investment by a Microgrid under Uncertainty

    SciTech Connect (OSTI)

    Marnay, Chris; Siddiqui, Afzal; Marnay, Chris

    2008-08-11

    This paper examines a California-based microgrid?s decision to invest in a distributed generation (DG) unit fuelled by natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find a natural gas generation cost threshold that triggers DG investment. Furthermore, the consideration of operational flexibility by the microgrid increases DG investment, while the option to disconnect from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generation cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit when two sources of uncertainty exist.

  19. Distributed Generation Investment by a Microgrid UnderUncertainty

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Marnay, Chris

    2006-06-16

    This paper examines a California-based microgrid s decision to invest in a distributed generation (DG) unit that operates on natural gas. While the long-term natural gas generation cost is stochastic, we initially assume that the microgrid may purchase electricity at a fixed retail rate from its utility. Using the real options approach, we find natural gas generating cost thresholds that trigger DG investment. Furthermore, the consideration of operational flexibility by the microgrid accelerates DG investment, while the option to disconnect entirely from the utility is not attractive. By allowing the electricity price to be stochastic, we next determine an investment threshold boundary and find that high electricity price volatility relative to that of natural gas generating cost delays investment while simultaneously increasing the value of the investment. We conclude by using this result to find the implicit option value of the DG unit.

  20. Purchase and Installation of a Geothermal Power Plant to Generate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    feasibility of the use of an existing low-temperature geothermal resource for combined heat and power; and Maintain and enhance existing geothermal district heating operation. ...

  1. Purchase and Installation of a Geothermal Power Plant to Generate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CW-1 CW-2 Heat Exchanger Building 8" Supply Pipeline 4" - 6"- 8" Distribution System 4" - ... production * Oregon DEQ: Injection permit modification for power production * FERC ...

  2. Advanced natural gas-fired turbine system utilizing thermochemical recuperation and/or partial oxidation for electricity generation, greenfield and repowering applications

    SciTech Connect (OSTI)

    1997-03-01

    The performance, economics and technical feasibility of heavy duty combustion turbine power systems incorporating two advanced power generation schemes have been estimated to assess the potential merits of these advanced technologies. The advanced technologies considered were: Thermochemical Recuperation (TCR), and Partial Oxidation (PO). The performance and economics of these advanced cycles are compared to conventional combustion turbine Simple-Cycles and Combined-Cycles. The objectives of the Westinghouse evaluation were to: (1) simulate TCR and PO power plant cycles, (2) evaluate TCR and PO cycle options and assess their performance potential and cost potential compared to conventional technologies, (3) identify the required modifications to the combustion turbine and the conventional power cycle components to utilize the TCR and PO technologies, (4) assess the technical feasibility of the TCR and PO cycles, (5) identify what development activities are required to bring the TCR and PO technologies to commercial readiness. Both advanced technologies involve the preprocessing of the turbine fuel to generate a low-thermal-value fuel gas, and neither technology requires advances in basic turbine technologies (e.g., combustion, airfoil materials, airfoil cooling). In TCR, the turbine fuel is reformed to a hydrogen-rich fuel gas by catalytic contact with steam, or with flue gas (steam and carbon dioxide), and the turbine exhaust gas provides the indirect energy required to conduct the endothermic reforming reactions. This reforming process improves the recuperative energy recovery of the cycle, and the delivery of the low-thermal-value fuel gas to the combustors potentially reduces the NO{sub x} emission and increases the combustor stability.

  3. City of Shasta Lake Electric Utility- PV Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    City of Shasta Lake Electric Utility is providing rebates to their customers for the purchase of photovoltaic (PV) systems. The rebate levels will decrease annually over the life of the program. ...

  4. Utility Partnerships

    Broader source: Energy.gov [DOE]

    Utility Partnerships 7/10/12. Provides an overview of LEAP's (Charlottesville, VA) partnership with local utilities.

  5. Purchasing Energy-Efficient Commercial Steam Cookers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial steam cookers, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  6. Purchasing Energy-Efficient Residential Furnaces

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for residential furnaces, a product category covered by ENERGY STAR. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  7. Purchasing Energy-Efficient Commercial Fryers

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for commercial fryers, a product category covered by ENERGY STAR efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  8. Purchasing Energy-Efficient Light Bulbs

    Broader source: Energy.gov [DOE]

    The Federal Energy Management Program (FEMP) provides acquisition guidance for light bulbs, a product category covered by ENERGY STAR. Federal laws and requirements mandate that agencies purchase ENERGY STAR qualified products or FEMP designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  9. Purchasing Energy-Efficient Geothermal Heat Pumps

    Broader source: Energy.gov [DOE]

    FEMP provides acquisition guidance for geothermal heat pumps, a product category covered by ENERGY STAR. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified products or FEMP-designated products in all product categories covered by these programs and in any acquisition actions that are not specifically exempted by law.

  10. Microsoft PowerPoint - Purchasing Guidelines at CAMD.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BASICS OF BASICS OF PURCHASING AT CAMD CAMD Purchasing Reminders: 1.Request for Purchase Forms is 1.Request for Purchase Forms is mandatory , especially for: * University Stores University Stores * Petty cash * Purchases using a departmental credit * Purchases using a departmental credit card. Th i f ti id th * The more information you provide the less confusion and problems occur. Completed Request For Purchase Form Completed Request For Purchase Form Purchasing Reminders: 2 A P h F i 2. A

  11. What Is Your Latest Energy Efficient Purchase? | Department of...

    Office of Environmental Management (EM)

    Is Your Latest Energy Efficient Purchase? What Is Your Latest Energy Efficient Purchase? February 10, 2011 - 6:30am Addthis On Tuesday, Andrea told us about her new door and the ...

  12. Energy Department Receives EPA Award for Top Green Power Purchase...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Receives EPA Award for Top Green Power Purchase Energy Department Receives EPA Award for Top Green Power Purchase September 24, 2013 - 12:19pm Addthis The Energy Department ...

  13. Leveraging Utility Resources to Boost Efficiency for the Next Generation of Space Travel: An Energy Efficiency Case Study of ATK Launch Systems

    Broader source: Energy.gov [DOE]

    This case study describes how Alliant Techsystems, Incorporated (ATK) leveraged utility incentives from Rocky Mountain Power to realize cost savings identified during a DOE plant-wide assessment.

  14. GovEnergy 2008 Session Presentation on Power Purchase Agreements |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy GovEnergy 2008 Session Presentation on Power Purchase Agreements GovEnergy 2008 Session Presentation on Power Purchase Agreements Presentation describes an overview of power purchase agreements given at GovEnergy 2008. The document includes several case studies and considerations for Federal agencies. Download the GovEnergy 2008 session presentation on power purchase agreements. (1.53 MB) More Documents & Publications GovEnergy 2008 Session Presentation on Power

  15. WPN 13-7: Vehicle and Equipment Purchases

    Broader source: Energy.gov [DOE]

    To provide Grantee with guidance on purchasing vehicles and equipment for use in the Weatherization Assistance Program (WAP).

  16. Self-Purchased Airline Tickets | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Self-Purchased Airline Tickets Self-Purchased Airline Tickets Conditions where you should not purchase your own ticket: Foreign travel Personal time mixed with business Personal destination mixed with business Rules: Travel advances will not be made to facilitate ticket purchases. Reimbursement must wait until the conclusion of the trip. If you do not take the trip you will not be reimbursed for the ticket. The lowest available fare is required by the contract. Insurance is not reimbursable.

  17. DOE Princeton Plasma Physics Laboratory Purchase Power Agreement Request

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Proposal | Department of Energy Princeton Plasma Physics Laboratory Purchase Power Agreement Request for Proposal DOE Princeton Plasma Physics Laboratory Purchase Power Agreement Request for Proposal Document shows a purchase power agreement (PPA) request for proposal issued by DLA Energy on behalf of Princeton Plasma Physics Laboratory. Download the DOE Princeton Plasma Physics Laboratory purchase power agreement request for proposal. (348.79 KB) More Documents & Publications

  18. Purchase Card (P-Card) | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Purchasing Purchase Card (P-Card) Ames Laboratory uses the Government Services Administration (GSA) Smart Pay cards as a tool to simplify its small purchases and offers an alternative to the use of purchase orders. It also streamlines the acquisition process by reducing paperwork, improving lead times, and expediting supplier payments. Cardholders are required to abide by GSA, DOE and Ames Laboratory policies. Resources: Credit Card Approval Form - If you are interested in becoming a

  19. Contract Language for Energy-Consuming Product Purchases | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Products & Technologies » Energy-Efficient Products » Contract Language for Energy-Consuming Product Purchases Contract Language for Energy-Consuming Product Purchases Federal agencies are required to use specific contract language when purchasing energy-consuming products that are qualified by ENERGY STAR or designated by the Federal Energy Management Program (FEMP). See energy-efficient product purchasing requirements. Federal Acquisition Regulation Contract Language Federal

  20. Golden Reading Room: Office of Acquisition Documents, Small Purchases |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Small Purchases Golden Reading Room: Office of Acquisition Documents, Small Purchases Below are electronic versions of Golden Field Office Reading Room documents that were created after November 1, 1996, per the requirements of the Electronic Freedom of Information Act Amendment of 1996. Most documents are available in Adobe Acrobat Portable Document Format (PDF). Small Purchases

  1. Purchase Card Policies for Hq | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services » Procurement Services » Purchase Card Policies for Hq Purchase Card Policies for Hq HQ Procurement Services Policies & Operating Procedures Table of Contents PURPOSE RESPONSIBILITIES PERSONAL PROPERTY MANAGEMENT AND PROPERTY ACCOUNTABILITY ADDITIONAL PROHIBITIONS AND RESTRICTIONS PURCHASE CARD FINANCIAL PROCEDURES EMPLOYEES TRANSFERRING WITHIN HEADQUARTERS PROGRAM SUPPORT ADDITIONAL CARDHOLDER AND APPROVING OFFICIAL TRAINING USE OF PRIVATE SECTOR TEMPORARIES STRIPES Purpose To

  2. DOE Indian Energy Purchase Preference Policy Guidance | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Indian Energy Purchase Preference Policy Guidance DOE Indian Energy Purchase Preference Policy Guidance PDF_FINAL DOE Indian Energy purchase preference policy guidance.pdf (266.84 KB) More Documents & Publications State Energy Program Notice 14-2, Implementation Model Guidance FY 2014-2024 Ten Year Site Plan Preparation Guidance Revised Guidance for Recruitment, Retention and Relocation Incentives

  3. Distributed Generation with Heat Recovery and Storage

    SciTech Connect (OSTI)

    Siddiqui, Afzal; Marnay, Chris; Firestone, Ryan M.; Zhou, Nan

    2005-07-29

    Electricity generated by distributed energy resources (DER) located close to end-use loads has the potential to meet consumer requirements more efficiently than the existing centralized grid. Installation of DER allows consumers to circumvent the costs associated with transmission congestion and other non-energy costs of electricity delivery and potentially to take advantage of market opportunities to purchase energy when attractive. On-site thermal power generation is typically less efficient than central station generation, but by avoiding non-fuel costs of grid power and utilizing combined heat and power (CHP) applications, i.e., recovering heat from small-scale on-site generation to displace fuel purchases, then DER can become attractive to a strictly cost-minimizing consumer. In previous efforts, the decisions facing typical commercial consumers have been addressed using a mixed-integer linear programme, the DER Customer Adoption Model(DER-CAM). Given the site s energy loads, utility tariff structure, and information (both technical and financial) on candidate DER technologies, DER-CAM minimizes the overall energy cost for a test year by selecting the units to install and determining their hourly operating schedules. In this paper, the capabilities of DER-CAM are enhanced by the inclusion of the option to store recovered low-grade heat. By being able to keep an inventory of heat for use in subsequent periods, sites are able to lower costs even further by reducing off-peak generation and relying on storage. This and other effects of storages are demonstrated by analysis of five typical commercial buildings in San Francisco, California, and an estimate of the cost per unit capacity of heat storage is calculated.

  4. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized

  5. Economic and Technical Feasibility Study of Utility-Scale Wind Generation for the New York Buffalo River and South Buffalo Brownfield Opportunity Areas

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2014-04-01

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing contaminated lands in the Buffalo, New York, area for utility-scale wind development is explored. The study found that there is available land, electrical infrastructure, wind resource, and local interest to support a commercial wind project; however, economies of scale and local electrical markets may need further investigation before significant investment is made into developing a wind project at the Buffalo Reuse Authority site.

  6. VACASULF operation at Citizens Gas and Coke Utility

    SciTech Connect (OSTI)

    Currey, J.H.

    1995-12-01

    Citizens Gas and Coke Utility is a Public Charitable Trust which operates as the Department of Utilities of the City of Indianapolis, Indiana. Indianapolis Coke, the trade name for the Manufacturing Division of the Utility, operates a by-products coke plant in Indianapolis, Indiana. The facility produces both foundry and blast furnace coke. Surplus Coke Oven gas, generated by the process, is mixed with Natural Gas for sale to industrial and residential customers. In anticipation of regulatory developments, beginning in 1990, Indianapolis Coke undertook the task to develop an alternate Coke Oven Gas desulfurization technology for its facility. The new system was intended to perform primary desulfurization of the gas, dramatically extending the oxide bed life, thus reducing disposal liabilities. Citizens Gas chose the VACASULF technology for its primary desulfurization system. VACASULF requires a single purchased material, Potassium Hydroxide (KOH). The KOH reacts with Carbon Dioxide in the coke Oven Gas to form Potassium Carbonate (potash) which in turn absorbs the Hydrogen Sulfide. The rich solution releases the absorbed sulfide under strong vacuum in the desorber column. Operating costs are reduced through utilization of an inherent heat source which is transferred indirectly via attendant reboilers. The Hydrogen Sulfide is transported by the vacuum pumps to the Claus Kiln and Reactor for combustion, reaction, and elemental Sulfur recovery. Regenerated potash solution is returned to the Scrubber.

  7. Labview utilities

    Energy Science and Technology Software Center (OSTI)

    2011-09-30

    The software package provides several utilities written in LabView. These utilities don't form independent programs, but rather can be used as a library or controls in other labview programs. The utilities include several new controls (xcontrols), VIs for input and output routines, as well as other 'helper'-functions not provided in the standard LabView environment.

  8. Rural Utilities Service Electric Program

    Broader source: Energy.gov [DOE]

    The Rural Utilities Service Electric Program’s loans and loan guarantees finance the construction of electric distribution, transmission, and generation facilities, including system improvements...

  9. Initial Application for FAC-C, Purchasing, Financial Assistance and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Property Management Certification | Department of Energy Initial Application for FAC-C, Purchasing, Financial Assistance and Property Management Certification Initial Application for FAC-C, Purchasing, Financial Assistance and Property Management Certification Application Form (.pdf fillable) (76.53 KB) FAC-C Worksheet.xlsx (11.26 KB) Purchasing Worksheet (10.58 KB) CFA Worksheet (11.44 KB) Property Mgt Worksheet (11.15 KB) More Documents & Publications Systems and Professional

  10. Purchasing Energy-Efficient General Service Fluorescent Lamps | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Purchasing Energy-Efficient General Service Fluorescent Lamps Purchasing Energy-Efficient General Service Fluorescent Lamps The Federal Energy Management Program (FEMP) provides acquisition guidance for general service fluorescent lamps (GSFLs), a product category covered by FEMP efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR qualified or FEMP designated products in all product categories covered by these programs and in any

  11. Purchasing Energy-Efficient Suspended Fluorescent Luminaires | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Products & Technologies » Energy-Efficient Products » Purchasing Energy-Efficient Suspended Fluorescent Luminaires Purchasing Energy-Efficient Suspended Fluorescent Luminaires The Federal Energy Management Program (FEMP) provides acquisition guidance for suspended fluorescent luminaires, a product category covered by FEMP efficiency requirements. Federal laws and requirements mandate that agencies purchase ENERGY STAR-qualified or FEMP-designated products in all product

  12. Monitoring and control requirement definition study for dispersed storage and generation (DSG). Volume IV. Final report, Appendix C: identification from utility visits of present and future approaches to integration of DSG into distribution networks

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    A major aim of the US National Energy Policy, as well as that of the New York State Energy Research and Development Authority, is to conserve energy and to shift from oil to more abundant domestic fuels and renewable energy sources. Dispersed Storage and Generation (DSG) is the term that characterizes the present and future dispersed, relatively small (<30 MW) energy systems, such as solar thermal electric, photovoltaic, wind, fuel cell, storage battery, hydro, and cogeneration, which can help achieve these national energy goals and can be dispersed throughout the distribution portion of an electric utility system. As a result of visits to four utilities concerned with the use of DSG power sources on their distribution networks, some useful impressions of present and future approaches to the integration of DSGs into electrical distribution network have been obtained. A more extensive communications and control network will be developed by utilities for control of such sources for future use. Different approaches to future utility systems with DSG are beginning to take shape. The new DSG sources will be in decentralized locations with some measure of centralized control. The utilities have yet to establish firmly the communication and control means or their organization. For the present, the means for integrating the DSGs and their associated monitoring and control equipment into a unified system have not been decided.

  13. DOE Princeton Plasma Physics Laboratory Purchase Power Agreement...

    Broader source: Energy.gov (indexed) [DOE]

    for proposal issued by DLA Energy on behalf of Princeton Plasma Physics Laboratory. Download the DOE Princeton Plasma Physics Laboratory purchase power agreement request for ...

  14. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Petroleum Marketing Annual 1996 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  15. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    AdministrationPetroleum Marketing Annual 1998 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  16. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    U.S. Energy Information Administration (EIA) Indexed Site

    data. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 44 Energy Information AdministrationPetroleum Marketing Annual...

  17. Table 21. Domestic Crude Oil First Purchase Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  18. Table 22. Domestic Crude Oil First Purchase Prices for Selected...

    U.S. Energy Information Administration (EIA) Indexed Site

    data. Source: Energy Information Administration, Form EIA-182, "Domestic Crude Oil First Purchase Report." 44 Energy Information Administration Petroleum Marketing Annual...

  19. Crude Oil Prices Table 21. Domestic Crude Oil First Purchase...

    U.S. Energy Information Administration (EIA) Indexed Site

    Information Administration Petroleum Marketing Annual 1995 41 Table 21. Domestic Crude Oil First Purchase Prices (Dollars per Barrel) - Continued Year Month PAD District II...

  20. Energy Department Announces Funding to Develop Aggregate Purchasing Models

    Broader source: Energy.gov [DOE]

    The Energy Department today announced up to $2 million to support aggregate purchasing models for plug-in electric and other alternative fuel and advanced technology vehicles, subsystems,...

  1. NREL-Third-Party Financing and Power Purchasing Agreements for...

    Open Energy Info (EERE)

    to: navigation, search Tool Summary LAUNCH TOOL Name: Third-Party Financing and Power Purchasing Agreements for Public Sector PV Projects AgencyCompany Organization: National...

  2. Hurricane Sandy Contingency Operation -- Increase in Micro-Purchase...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hurricane Sandy Contingency Operation -- Increase in Micro-Purchase and Simplified Acquisition Thresholds for Specific States and Counties Hurricane Sandy Contingency Operation -- ...

  3. Microsoft Word - Energy OIG Statement on Purchase Cards _May...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    at Idaho disclosed that a contractor project manager was allowed to approve and process his own purchase card orders. The investigation focused on an allegation that the...

  4. When to Purchase Premium Efficiency Motors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    When to Purchase Premium Efficiency Motors Consider premium efficiency motors for new motor procurements when specifying motor-driven equipment, repairing or rewinding failed ...

  5. Power Purchase Agreement Checklist for State and Local Governments

    Broader source: Energy.gov [DOE]

    Provides a detailed guide to power purchase agreements for state and local governments including financial and contractual considerations. Author: National Renewable Energy Laboratory

  6. Table N11.4. Expenditures for Purchased Electricity, Natural...

    U.S. Energy Information Administration (EIA) Indexed Site

    ... for which" "payment was not made, quantities purchased centrally within the company but separate" "from the reporting establishment, and quantities for which payment was made ...

  7. Table 7.10 Expenditures for Purchased Electricity, Natural Gas...

    Gasoline and Diesel Fuel Update (EIA)

    ... for which payment was not made, quantities purchased centrally within the company but separate from the reporting establishment, and quantities for which payment was made ...

  8. ,"Domestic Crude Oil First Purchase Prices by API Gravity"

    U.S. Energy Information Administration (EIA) Indexed Site

    API Gravity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet ... Crude Oil First Purchase Prices by API Gravity",6,"Monthly","22016","10151993" ...

  9. Highly Insulating Windows Volume Purchase Program Final Report

    SciTech Connect (OSTI)

    Parker, Graham B.; Mapes, Terry S.; Zalis, WJ

    2013-02-01

    This report summarizes the Highly Insulating Windows Volume Purchase Program, conduced by PNNL for DOE-BTP, including a summary of outcomes and lessons learned.

  10. Purchasing Energy-Efficient Residential Gas Boilers | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Boilers Purchasing Energy-Efficient Residential Gas Boilers The Federal Energy Management Program (FEMP) provides acquisition guidance for residential gas boilers, a product ...

  11. Purchasing Energy-Efficient Residential Air Source Heat Pumps...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Air Source Heat Pumps Purchasing Energy-Efficient Residential Air Source Heat Pumps The Federal Energy Management Program (FEMP) provides acquisition guidance for residential air ...

  12. Purchasing Energy-Efficient Residential Central Air Conditioners...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Central Air Conditioners Purchasing Energy-Efficient Residential Central Air Conditioners The Federal Energy Management Program (FEMP) provides acquisition guidance for residential ...

  13. Purchasing Energy-Efficient Residential Electric Storage Water...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy-Efficient Residential Electric Storage Water Heaters Purchasing Energy-Efficient Residential Electric Storage Water Heaters The Federal Energy Management Program (FEMP) ...

  14. Purchasing Energy-Efficient Residential Solar Water Heaters ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Water Heaters Purchasing Energy-Efficient Residential Solar Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for residential solar ...

  15. Purchasing Energy-Efficient Residential Gas Storage Water Heaters...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gas Storage Water Heaters Purchasing Energy-Efficient Residential Gas Storage Water Heaters The Federal Energy Management Program (FEMP) provides acquisition guidance for ...

  16. Purchasing Energy-Efficient Residential Whole-Home Gas Tankless...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Whole-Home Gas Tankless Water Heaters Purchasing Energy-Efficient Residential Whole-Home Gas Tankless Water Heaters The Federal Energy Management Program (FEMP) provides ...

  17. City of Sturgis, Michigan (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 18252 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes...

  18. City of Wahoo, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 19968 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  19. Village of Spalding, Nebraska (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Data Utility Id 17727 Utility Location Yes Ownership M NERC Location MRO NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  20. City of Malden, Missouri (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 11540 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying...

  1. City of Oxford, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 14276 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  2. City of Higginsville, Missouri (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    861 Data Utility Id 8567 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying...

  3. City of St John, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 17879 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  4. City of Orrville, Ohio (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 14194 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes...

  5. City of Burlington, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 2551 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying...

  6. Village of Winnetka, Illinois (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Data Utility Id 20824 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  7. City of Wellington, Kansas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 20315 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying...

  8. City of Lubbock, Texas (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 11292 Utility Location Yes Ownership M NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes...

  9. City of Franklin, Virginia (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Data Utility Id 6715 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes RTO PJM Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes...

  10. City of Nebraska City, Nebraska (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Data Utility Id 13334 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Buying...