Sample records for generation thermochemical code

  1. A comparison of reversible chemical reactions for solar thermochemical power generation

    E-Print Network [OSTI]

    Boyer, Edmond

    453 A comparison of reversible chemical reactions for solar thermochemical power generation O. M storage of the reaction products. A number of reactions have been proposed for solar thermochemical power to be a good choice for first generation solar thermochemical power generation. Revue Phys. Appl. 15 (1980) 453

  2. Membranes for H2 generation from nuclear powered thermochemical cycles.

    SciTech Connect (OSTI)

    Nenoff, Tina Maria; Ambrosini, Andrea; Garino, Terry J.; Gelbard, Fred; Leung, Kevin; Navrotsky, Alexandra (University of California, Davis, CA); Iyer, Ratnasabapathy G. (University of California, Davis, CA); Axness, Marlene

    2006-11-01T23:59:59.000Z

    In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H{sub 2}SO{sub 4} into O{sub 2}, SO{sub 2}, and H{sub 2}O at temperatures around 850 C. In-situ removal of O{sub 2} from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A{sub x}Sr{sub 1-x}Co{sub 1-y}B{sub y}O{sub 3-{delta}} (A=La, Y; B=Cr-Ni), in particular the family La{sub x}Sr{sub 1-x}Co{sub 1-y}Mn{sub y}O{sub 3-{delta}} (LSCM), and doped La{sub 2}Ni{sub 1-x}M{sub x}O{sub 4} (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H{sub 2}SO{sub 4} decomposition reactor study (at Sandia), in which our membranes were tested in the actual H{sub 2}SO{sub 4} decomposition step.

  3. Thermochemical generation of hydrogen and oxygen from water

    DOE Patents [OSTI]

    Robinson, Paul R. (Knoxville, TN); Bamberger, Carlos E. (Oak Ridge, TN)

    1981-01-01T23:59:59.000Z

    A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO.sub.2) and titanium dioxide (TiO.sub.2) to form sodium titanate (Na.sub.2 TiO.sub.3), manganese (II) titanate (MnTiO.sub.3) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.

  4. Thermochemical generation of hydrogen and oxygen from water

    DOE Patents [OSTI]

    Robinson, Paul R. (Knoxville, TN); Bamberger, Carlos E. (Oak Ridge, TN)

    1982-01-01T23:59:59.000Z

    A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO.sub.2) and titanium dioxide (TiO.sub.2) to form sodium titanate (Na.sub.2 TiO.sub.3), manganese (II) titanate (MnTiO.sub.3) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.

  5. MHD Generation Code

    E-Print Network [OSTI]

    Frutos-Alfaro, Francisco

    2015-01-01T23:59:59.000Z

    A program to generate codes in Fortran and C of the full Magnetohydrodynamic equations is shown. The program used the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the MHD equations to obtain a code that can be used as a seed for a MHD code for numerical applications. As an example, we present part of output of our programs for Cartesian coordinates and how to do the discretization.

  6. UCRL-ID-117240 CHEETAH: A Next Generation Thermochemical Code

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin TransitionProgram | Department HomeDialoguet e d N a

  7. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical Cycle Selection and Investment Priority Solar Thermochemical Hydrogen Production Research (STCH):...

  8. High Efficiency Generation of Hydrogen Fuels Using Solar Thermochemical Splitting of Water

    SciTech Connect (OSTI)

    Heske, Clemens; Moujaes, Samir; Weimer, Alan; Wong, Bunsen; Siegal, Nathan; McFarland, Eric; Miller, Eric; Lewis, Michele; Bingham, Carl; Roth, Kurth; Sabacky, Bruce; Steinfeld, Aldo

    2011-09-29T23:59:59.000Z

    The objective of this work is to identify economically feasible concepts for the production of hydrogen from water using solar energy. The ultimate project objective was to select one or more competitive concepts for pilot-scale demonstration using concentrated solar energy. Results of pilot scale plant performance would be used as foundation for seeking public and private resources for full-scale plant development and testing. Economical success in this venture would afford the public with a renewable and limitless source of energy carrier for use in electric power load-leveling and as a carbon-free transportation fuel. The Solar Hydrogen Generation Research (SHGR) project embraces technologies relevant to hydrogen research under the Office of Hydrogen Fuel Cells and Infrastructure Technology (HFCIT) as well as concentrated solar power under the Office of Solar Energy Technologies (SET). Although the photoelectrochemical work is aligned with HFCIT, some of the technologies in this effort are also consistent with the skills and technologies found in concentrated solar power and photovoltaic technology under the Office of Solar Energy Technologies (SET). Hydrogen production by thermo-chemical water-splitting is a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or a combination of heat and electrolysis instead of pure electrolysis and meets the goals for hydrogen production using only water and renewable solar energy as feed-stocks. Photoelectrochemical hydrogen production also meets these goals by implementing photo-electrolysis at the surface of a semiconductor in contact with an electrolyte with bias provided by a photovoltaic source. Here, water splitting is a photo-electrolytic process in which hydrogen is produced using only solar photons and water as feed-stocks. The thermochemical hydrogen task engendered formal collaborations among two universities, three national laboratories and two private sector entities. The photoelectrochemical hydrogen task included formal collaborations with three universities and one national laboratory. The formal participants in these two tasks are listed above. Informal collaborations in both projects included one additional university (the University of Nevada, Reno) and two additional national laboratories (Lawrence Livermore National Laboratory and Lawrence Berkeley National Laboratory).

  9. Generating Code for High-Level Operations through Code Composition

    E-Print Network [OSTI]

    Generating Code for High-Level Operations through Code Composition James M. Stichnoth August 1997 of the authors and should not be interpreted as necessarily representing the official policies or endorsements: Compilers, code generation, parallelism, communication generation #12;Abstract A traditional compiler

  10. Using closures for code generation Marc Feeley

    E-Print Network [OSTI]

    Feeley, Marc

    which offers the advantages of an interpreter with the speed of compiled code. Code generation relies - environment (i.e. the set of current variable bindings). This operation is called closure. We speakUsing closures for code generation Marc Feeley Guy Lapalme D´epartement d'informatique et de

  11. Sulfur Based Thermochemical Heat Storage for Baseload Concentrated Solar Power Generation

    SciTech Connect (OSTI)

    wong, bunsen

    2014-11-20T23:59:59.000Z

    This project investigates the engineering and economic feasibility of supplying baseload power using a concentrating solar power (CSP) plant integrated with sulfur based thermochemical heat storage. The technology stores high temperature solar heat in the chemical bonds of elemental sulfur. Energy is recovered as high temperature heat upon sulfur combustion. Extensive developmental and design work associated with sulfur dioxide (SO2) disproportionation and sulfuric acid (H2SO4) decomposition chemical reactions used in this technology had been carried out in the two completed phases of this project. The feasibility and economics of the proposed concept was demonstrated and determined.

  12. Sandia National Laboratories: Codes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Codes Solar Thermochemical Hydrogen Production On June 13, 2014, in SNL maintains the equipment, experts, and partnerships required to develop technology for solar thermochemical...

  13. Subsystem codes with spatially local generators

    SciTech Connect (OSTI)

    Bravyi, Sergey [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2011-01-15T23:59:59.000Z

    We study subsystem codes whose gauge group has local generators in two-dimensional (2D) geometry. It is shown that there exists a family of such codes defined on lattices of size LxL with the number of logical qubits k and the minimum distance d both proportional to L. The gauge group of these codes involves only two-qubit generators of type XX and ZZ coupling nearest-neighbor qubits (and some auxiliary one-qubit generators). Our proof is not constructive as it relies on a certain version of the Gilbert-Varshamov bound for classical codes. Along the way, we introduce and study properties of generalized Bacon-Shor codes that might be of independent interest. Secondly, we prove that any 2D subsystem [n,k,d] code with spatially local generators obeys upper bounds kd=O(n) and d{sup 2}=O(n). The analogous upper bound proved recently for 2D stabilizer codes is kd{sup 2}=O(n). Our results thus demonstrate that subsystem codes can be more powerful than stabilizer codes under the spatial locality constraint.

  14. Subsystem codes with spatially local generators

    E-Print Network [OSTI]

    Sergey Bravyi

    2010-08-05T23:59:59.000Z

    We study subsystem codes whose gauge group has local generators in the 2D geometry. It is shown that there exists a family of such codes defined on lattices of size LxL with the number of logical qubits k and the minimum distance d both proportional to L. The gauge group of these codes involves only two-qubit generators of type XX and ZZ coupling nearest neighbor qubits (and some auxiliary one-qubit generators). Our proof is not constructive as it relies on a certain version of the Gilbert-Varshamov bound for classical codes. Along the way we introduce and study properties of generalized Bacon-Shor codes which might be of independent interest. Secondly, we prove that any 2D subsystem [n,k,d] code with spatially local generators obeys upper bounds kd=O(n) and d^2=O(n). The analogous upper bound proved recently for 2D stabilizer codes is kd^2=O(n). Our results thus demonstrate that subsystem codes can be more powerful than stabilizer codes under the spatial locality constraint.

  15. Project Profile: Carbon Dioxide Shuttling Thermochemical Storage...

    Office of Environmental Management (EM)

    energy generation by driving the cost towards 0.06kWh through the use of thermochemical energy storage (TCES). The project uses inexpensive, safe, and non-corrosive...

  16. Thermochemical generation of hydrogen and oxygen from water. [NaMnO/sub 2/ and TiO/sub 2/

    DOE Patents [OSTI]

    Robinson, P.R.; Bamberger, C.E.

    1980-02-08T23:59:59.000Z

    A thermochemical cyclic process for the production of hydrogen exploits the reaction between sodium manganate (NaMnO/sub 2/) and titanium dioxide (TiO/sub 2/) to form sodium titanate (Na/sub 2/TiO/sub 3/), manganese (II) titanate (MnTiO/sub 3/) and oxygen. The titanate mixture is treated with sodium hydroxide, in the presence of steam, to form sodium titanate, sodium manganate (III), water and hydrogen. The sodium titanate-manganate (III) mixture is treated with water to form sodium manganate (III), titanium dioxide and sodium hydroxide. Sodium manganate (III) and titanium dioxide are recycled following dissolution of sodium hydroxide in water.

  17. Universal thermochemical energy converter

    DOE Patents [OSTI]

    Labinov, Solomon Davidovich (Oak Ridge, TN); Sand, James R. (Oak Ridge, TN); Conklin, James C. (Knoxville, TN); VanCoevering, James (Oak Ridge, TN); Courville, George E. (Oak Ridge, TN)

    2001-01-01T23:59:59.000Z

    Disclosed are methods and apparatus for a thermochemical closed cycle employing a polyatomic, chemically active working fluid for converting heat energy into useful work.

  18. Adaptive code generators for tree coding of speech at 16 kbps

    E-Print Network [OSTI]

    Haschke, Greg Benjamin

    1987-01-01T23:59:59.000Z

    ADAPTIVE CODE GENERATORS FOR TREE CODING OF SPEECH AT 16 KBPS A Thesis GREG BENJAMIN HASCHKE Submitted to the Graduate College oi' Texas AkM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE Ma. y 1987... Major Subject, : Electrical Engineering ADAPTIVE CODE GENERATORS FOR TREE CODING OF SPEECH AT 16 KBPS A Thesis GREG BENJAMIN HASCHKE Approved as to style and content bJ Jerr . Gibson Chairm of Committee) ~. N. Georghiades (Menrber) S. P...

  19. Toward optimized code generation through model-based optimization

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Toward optimized code generation through model- based optimization Asma Charfi, Chokri Mraidha.gerard, francois.terrier}@cea.fr Pierre Boulet LIFL, CNRS/INRIA, Université de Lille 1, Parc de la Haute Borne, Bât tools like synthesis of system's application by automatic code generation. Real-Time and Embedded

  20. Code Generation in the Programmer's Apprentice

    E-Print Network [OSTI]

    Handsaker, Robert E.

    The Programmer's Apprentice is a highly interactive program development tool. The user interface to the system relies on program text which is generated from an internal plan representation. The programs generated need to ...

  1. Advanced natural gas-fired turbine system utilizing thermochemical recuperation and/or partial oxidation for electricity generation, greenfield and repowering applications

    SciTech Connect (OSTI)

    NONE

    1997-03-01T23:59:59.000Z

    The performance, economics and technical feasibility of heavy duty combustion turbine power systems incorporating two advanced power generation schemes have been estimated to assess the potential merits of these advanced technologies. The advanced technologies considered were: Thermochemical Recuperation (TCR), and Partial Oxidation (PO). The performance and economics of these advanced cycles are compared to conventional combustion turbine Simple-Cycles and Combined-Cycles. The objectives of the Westinghouse evaluation were to: (1) simulate TCR and PO power plant cycles, (2) evaluate TCR and PO cycle options and assess their performance potential and cost potential compared to conventional technologies, (3) identify the required modifications to the combustion turbine and the conventional power cycle components to utilize the TCR and PO technologies, (4) assess the technical feasibility of the TCR and PO cycles, (5) identify what development activities are required to bring the TCR and PO technologies to commercial readiness. Both advanced technologies involve the preprocessing of the turbine fuel to generate a low-thermal-value fuel gas, and neither technology requires advances in basic turbine technologies (e.g., combustion, airfoil materials, airfoil cooling). In TCR, the turbine fuel is reformed to a hydrogen-rich fuel gas by catalytic contact with steam, or with flue gas (steam and carbon dioxide), and the turbine exhaust gas provides the indirect energy required to conduct the endothermic reforming reactions. This reforming process improves the recuperative energy recovery of the cycle, and the delivery of the low-thermal-value fuel gas to the combustors potentially reduces the NO{sub x} emission and increases the combustor stability.

  2. cars: A New Code Generation Framework for Clustered ILP Processors

    E-Print Network [OSTI]

    Kailas, Krishnan

    ??glu z Ashok Agrawala \\Lambda y Department of Electrical & Computer Engineering z T. J. Watson Research are characterized by a large number of non­centralized on­chip re­ sources grouped into clusters. Traditional code we present cars, a code generation framework for Clustered ILP processors, which combines the cluster

  3. The Florida Energy Efficiency Building Code, the Second Generation

    E-Print Network [OSTI]

    Dixon, R. W.

    1985-01-01T23:59:59.000Z

    This paper discusses the Revision of the Residential Sections of the Florida Energy Efficiency Code for Building Construction. The procedures utilized in the Revision and the concepts integrated in to the 2nd Generation of the Florida Specific...

  4. 1982 annual report: Biomass Thermochemical Conversion Program

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1983-01-01T23:59:59.000Z

    This report provides a brief overview of the Thermochemical Conversion Program's activities and major accomplishments during fiscal year 1982. The objective of the Biomass Thermochemical Conversion Program is to generate scientific data and fundamental biomass converison process information that, in the long term, could lead to establishment of cost effective processes for conversion of biomass resources into clean fuels and petrochemical substitutes. The goal of the program is to improve the data base for biomass conversion by investigating the fundamental aspects of conversion technologies and exploring those parameters which are critical to these conversion processes. To achieve this objective and goal, the Thermochemical Conversion Program is sponsoring high-risk, long-term research with high payoff potential which industry is not currently sponsoring, nor is likely to support. Thermochemical conversion processes employ elevated temperatures to convert biomass materials into energy. Process examples include: combustion to produce heat, steam, electricity, direct mechanical power; gasification to produce fuel gas or synthesis gases for the production of methanol and hydrocarbon fuels; direct liquefaction to produce heavy oils or distillates; and pyrolysis to produce a mixture of oils, fuel gases, and char. A bibliography of publications for 1982 is included.

  5. Advanced thermochemical hydrogen cycles

    SciTech Connect (OSTI)

    Hollabaugh, C.M.; Bowman, M.G.

    1981-01-01T23:59:59.000Z

    The overall objective of this program is to contribute to the development of practical thermochemical cycles for the production of hydrogen from water. Specific goals are: investigate and evaluate the technical and economic viability of thermochemical cycles as an advanced technology for producing hydrogen from water; investigate and evaluate the engineering principles involved in interfacing individual thermochemical cycles with the different thermal energy sources (high temperature fission, solar, and fusion); and conduct a continuing research and development effort to evaluate the use of solid sulfates, oxides and other compounds as potentially advanced cycles and as alternates to H/sub 2/SO/sub 4/ based cycles. Basic thermochemistry studies have been completed for two different steps in the decomposition of bismuth sulfate. Two different bismuth sulfate cycles have been defined for different sulfuric acid strengths. The eventual best cycle will depend on energy required to form sulfuric acid at different concentrations. A solids decomposition facility has been constructed and practical studies of solid decompositions are being conducted. The facility includes a rotary kiln system and a dual-particle fluidized bed system. Evaluation of different types of cycles for coupling with different heat sources is continuing.

  6. Sandia National Laboratories: Thermochemical Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Publications Biochemical Conversion Program Lignocellulosic Biomass Microalgae Thermochemical Conversion Sign up for our E-Newsletter Required.gif?3.21 Email...

  7. Clearwater: Extensible, Flexible, Modular Code Generation Galen S. Swint, Calton Pu,

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Clearwater: Extensible, Flexible, Modular Code Generation Galen S. Swint, Calton Pu, Gueyoung Jung address the challenge of implementing code generators for two such DSLs that are flexible (resilient [4]. However, significant research challenges remain for generating flexible, reusable, and modular

  8. Ceria and its derivatives as substrates for solar-driven thermochemical fuel production

    E-Print Network [OSTI]

    Weaver, John H.

    Ceria and its derivatives as substrates for solar-driven thermochemical fuel production Sossina M of solar energy into a storable form suitable for on-demand utilization, i.e., the creation of solar fuels. We have developed a unique thermochemical approach to solar fuel generation using ceria as a reaction

  9. Optimizations enabling transformations and code generation for th HP V class

    E-Print Network [OSTI]

    Carvallo de Ochoa, Julio Antonio

    2000-01-01T23:59:59.000Z

    and unique issues involved in the implementation of the code generation back-end for the HP V class multiprocessor....

  10. Integrated Solar Thermochemical Reaction System

    Broader source: Energy.gov [DOE]

    This fact sheet describes an integrated solar thermochemical reaction system project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by the Pacific Northwest National Laboratory, is working to develop and demonstrate a high-performance solar thermochemical reaction system in an end-to-end demonstration that produces electricity. A highly efficient solar thermochemical reaction system would allow for 24-hour operation without the need for storage technology, and reductions in total system costs while providing a relatively low-risk deployment option for CSP systems.

  11. 2011 Biomass Program Platform Peer Review: Thermochemical Conversion...

    Energy Savers [EERE]

    Thermochemical Conversion 2011 Biomass Program Platform Peer Review: Thermochemical Conversion "This document summarizes the recommendations and evaluations provided by an...

  12. Renewable Energy Requirements for Future Building Codes: Energy Generation and Economic Analysis

    SciTech Connect (OSTI)

    Russo, Bryan J.; Weimar, Mark R.; Dillon, Heather E.

    2011-09-30T23:59:59.000Z

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, installation of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including the building envelope, mechanical systems, and lighting, have been maximized at the most cost-effective limit.

  13. Development of tools for automatic generation of PLC code

    E-Print Network [OSTI]

    Koutli, Maria; Rochez, Jacques

    This Master thesis was performed at CERN and more specifically in the EN-ICE-PLC section. The Thesis describes the integration of two PLC platforms, that are based on CODESYS development tool, to the CERN defined industrial framework, UNICOS. CODESYS is a development tool for PLC programming, based on IEC 61131-3 standard, and is adopted by many PLC manufacturers. The two PLC development environments are, the SoMachine from Schneider and the TwinCAT from Beckhoff. The two CODESYS compatible PLCs, should be controlled by the SCADA system of Siemens, WinCC OA. The framework includes a library of Function Blocks (objects) for the PLC programs and a software for automatic generation of the PLC code based on this library, called UAB. The integration aimed to give a solution that is shared by both PLC platforms and was based on the PLCOpen XML scheme. The developed tools were demonstrated by creating a control application for both PLC environments and testing of the behavior of the code of the library.

  14. Project Profile: Thermochemical Storage with Anhydrous Ammonia...

    Office of Environmental Management (EM)

    Storage with Anhydrous Ammonia: Optimizing the Synthesis Reactor for Direct Production of Supercritical Steam Project Profile: Thermochemical Storage with Anhydrous...

  15. Sandia National Laboratories: Solar Thermochemical Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Materials & Components Compatibility Hydrogen Behavior Quantitative Risk Assessment Hydrogen Infrastructure Solar Thermochemical Hydrogen Production Market Transformation...

  16. Distance Spectrum Analysis of Third Generation Turbo Codes

    E-Print Network [OSTI]

    unknown authors

    Abstract: Turbo Codes are a class of powerful error correction codes that were introduced in 1993 by a group of researchers from France, which has the performance near the limit of Claude Shannon. After the introduction of turbo codes it has given raise a tremendous research work related to the new coding theory. This paper addresses the performance of Turbo codes by examining the codes distance spectrum. It is well known that error floor occurs in the performance curve of turbo codes at moderate to high signal-to-noise ratio. The cause of error floor is due to the relatively low free distance of the codewords. Several techniques were proposed by researchers to lower the error floor. These techniques are assessed in this paper. To determine the free distance several algorithms were developed by different researchers. In this paper we used one of the recent algorithm to evaluate the distance spectrum of Turbo codes. We concentrate our analysis to measure and explain the distance spectrum of UMTS (Universal Mobile Telecommunication System), cdma2000 and CCSDS (Consultative Committee for Space Data Systems) standards Turbo Codes. It is shown that the distance spectrum depends on the code rate, interleaver size and the interleaver type.This distance spectrum of turbo codes can be used to estimate its performance at medium to higher SNR (signal to noise ratio). From our analysis we find out that the distance spectrum is one of the elementary issues using which one can find the optimum architecture of Turbo codes for specific application.

  17. Innovative solar thermochemical water splitting.

    SciTech Connect (OSTI)

    Hogan, Roy E. Jr.; Siegel, Nathan P.; Evans, Lindsey R.; Moss, Timothy A.; Stuecker, John Nicholas (Robocasting Enterprises, Albuquerque, NM); Diver, Richard B., Jr.; Miller, James Edward; Allendorf, Mark D. (Sandia National Laboratories, Livermore, CA); James, Darryl L. (Texas Tech University, Lubbock, TX)

    2008-02-01T23:59:59.000Z

    Sandia National Laboratories (SNL) is evaluating the potential of an innovative approach for splitting water into hydrogen and oxygen using two-step thermochemical cycles. Thermochemical cycles are heat engines that utilize high-temperature heat to produce chemical work. Like their mechanical work-producing counterparts, their efficiency depends on operating temperature and on the irreversibility of their internal processes. With this in mind, we have invented innovative design concepts for two-step solar-driven thermochemical heat engines based on iron oxide and iron oxide mixed with other metal oxides (ferrites). The design concepts utilize two sets of moving beds of ferrite reactant material in close proximity and moving in opposite directions to overcome a major impediment to achieving high efficiency--thermal recuperation between solids in efficient counter-current arrangements. They also provide inherent separation of the product hydrogen and oxygen and are an excellent match with high-concentration solar flux. However, they also impose unique requirements on the ferrite reactants and materials of construction as well as an understanding of the chemical and cycle thermodynamics. In this report the Counter-Rotating-Ring Receiver/Reactor/Recuperator (CR5) solar thermochemical heat engine and its basic operating principals are described. Preliminary thermal efficiency estimates are presented and discussed. Our ferrite reactant material development activities, thermodynamic studies, test results, and prototype hardware development are also presented.

  18. Exploiting Points-to Maps for De-/Serialization Code Generation

    SciTech Connect (OSTI)

    Ciraci, Selim; Villa, Oreste

    2013-03-18T23:59:59.000Z

    Serialization code generators for C++ have restrictions on the implementation of dynamic arrays and void/function pointers. If the target program is not implemented with these restrictions, de- velopers have to manually change the source code to facilitate se- rialization code generation. Unfortunately, such changes hamper the benefits of code generation, and they are not localized. This pa- per presents the de-/serialization code generator Ser++ that does not restrict the implementation of these pointer types and, hence, eliminates the need to adapt the source code for serialization code generation. Ser++ can be considered an aspect weaver that i) traces the pointers, ii) identifies the statements in which properties regard- ing the serialization of pointer attributes can be extracted and, finally, iii) weaves the code to store these properties at runtime. It generates the de-/serialization functions in such a way that they serialize the pointer attributes according to the stored values of the properties. We have successfully used Ser++ to generate de- /serialization methods for a computer architecture and a power- flow simulator, without any modifications to the existing source code.

  19. Development of the Hybrid Sulfur Thermochemical Cycle

    SciTech Connect (OSTI)

    Summers, William A.; Steimke, John L

    2005-09-23T23:59:59.000Z

    The production of hydrogen via the thermochemical splitting of water is being considered as a primary means for utilizing the heat from advanced nuclear reactors to provide fuel for a hydrogen economy. The Hybrid Sulfur (HyS) Process is one of the baseline candidates identified by the U.S. Department of Energy [1] for this purpose. The HyS Process is a two-step hybrid thermochemical cycle that only involves sulfur, oxygen and hydrogen compounds. Recent work has resulted in an improved process design with a calculated overall thermal efficiency (nuclear heat to hydrogen, higher heating value basis) approaching 50%. Economic analyses indicate that a nuclear hydrogen plant employing the HyS Process in conjunction with an advanced gas-cooled nuclear reactor system can produce hydrogen at competitive prices. Experimental work has begun on the sulfur dioxide depolarized electrolyzer, the major developmental component in the cycle. Proof-of-concept tests have established proton-exchange-membrane cells (a state-of-the-art technology) as a viable approach for conducting this reaction. This is expected to lead to more efficient and economical cell designs than were previously available. Considerable development and scale-up issues remain to be resolved, but the development of a viable commercial-scale HyS Process should be feasible in time to meet the commercialization schedule for Generation IV gas-cooled nuclear reactors.

  20. Compositionality in Synchronous Data Flow: Modular Code Generation from Hierarchical SDF Graphs

    E-Print Network [OSTI]

    Compositionality in Synchronous Data Flow: Modular Code Generation from Hierarchical SDF Graphs in Synchronous Data Flow: Modular Code Generation from Hierarchical SDF Graphs Stavros Tripakis, Dai Bui, Bert of California, Berkeley stavros, daib, eal@eecs.berkeley.edu October 20, 2009 Abstract Hierarchical SDF models

  1. NREL: Biomass Research - Thermochemical Conversion Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fuel synthesis reactor. NREL investigates thermochemical processes for converting biomass and its residues to fuels and intermediates using gasification and pyrolysis...

  2. Sandia National Laboratories: Solar Thermochemical Hydrogen Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Publications Biochemical Conversion Program Lignocellulosic Biomass Microalgae Thermochemical Conversion Sign up for our E-Newsletter Required.gif?3.21 Email...

  3. Webinar: Highly Efficient Solar Thermochemical Reaction Systems

    Broader source: Energy.gov [DOE]

    Video recording and text version of the Fuel Cell Technologies Office webinar titled "Highly Efficient Solar Thermochemical Reaction Systems," originally presented on January 13, 2015.

  4. Enabling Low Temperature Combustion Through Thermo-Chemical Recuperati...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion Through Thermo-Chemical Recuperation Enabling Low Temperature Combustion Through Thermo-Chemical Recuperation Poster presentation from the 2007 Diesel...

  5. Low Temperature Combustion with Thermo-chemical Recuperation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low Temperature Combustion with Thermo-chemical Recuperation to Maximize In-use Engine Efficiency Low Temperature Combustion with Thermo-chemical Recuperation to Maximize In-use...

  6. Lessons Learned: Devolping Thermochemical Cycles for Solar Heat...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned: Devolping Thermochemical Cycles for Solar Heat Storage Applications Lessons Learned: Devolping Thermochemical Cycles for Solar Heat Storage Applications This...

  7. Integrated Solar Thermochemical Reaction System for High Efficiency...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Solar Thermochemical Reaction System for High Efficiency Production of Electricity Integrated Solar Thermochemical Reaction System for High Efficiency Production of...

  8. High Performance Code Generation for Stencil Computation on Heterogeneous Multi-device

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    .namyst@inria.fr Abstract--Heterogeneous architectures have been widely used in the domain of high performance computing, Multi- device, Code generation, Heterogeneous architectures I. INTRODUCTION High performance computing

  9. Hybrid Sulfur Thermochemical Process Development Annual Report

    SciTech Connect (OSTI)

    Summers, William A.; Buckner, Melvin R.

    2005-07-21T23:59:59.000Z

    The Hybrid Sulfur (HyS) Thermochemical Process is a means of producing hydrogen via water-splitting through a combination of chemical reactions and electrochemistry. Energy is supplied to the system as high temperature heat (approximately 900 C) and electricity. Advanced nuclear reactors (Generation IV) or central solar receivers can be the source of the primary energy. Large-scale hydrogen production based on this process could be a major contributor to meeting the needs of a hydrogen economy. This project's objectives include optimization of the HyS process design, analysis of technical issues and concerns, creation of a development plan, and laboratory-scale proof-of-concept testing. The key component of the HyS Process is the SO2-depolarized electrolyzer (SDE). Studies were performed that showed that an electrolyzer operating in the range of 500-600 mV per cell can lead to an overall HyS cycle efficiency in excess of 50%, which is superior to all other currently proposed thermochemical cycles. Economic analysis indicated hydrogen production costs of approximately $1.60 per kilogram for a mature nuclear hydrogen production plant. However, in order to meet commercialization goals, the electrolyzer should be capable of operating at high current density, have a long operating lifetime , and have an acceptable capital cost. The use of proton-exchange-membrane (PEM) technology, which leverages work for the development of PEM fuel cells, was selected as the most promising route to meeting these goals. The major accomplishments of this project were the design and construction of a suitable electrolyzer test facility and the proof-of-concept testing of a PEM-based SDE.

  10. System for thermochemical hydrogen production

    DOE Patents [OSTI]

    Werner, R.W.; Galloway, T.R.; Krikorian, O.H.

    1981-05-22T23:59:59.000Z

    Method and apparatus are described for joule boosting a SO/sub 3/ decomposer using electrical instead of thermal energy to heat the reactants of the high temperature SO/sub 3/ decomposition step of a thermochemical hydrogen production process driven by a tandem mirror reactor. Joule boosting the decomposer to a sufficiently high temperature from a lower temperature heat source eliminates the need for expensive catalysts and reduces the temperature and consequent materials requirements for the reactor blanket. A particular decomposer design utilizes electrically heated silicon carbide rods, at a temperature of 1250/sup 0/K, to decompose a cross flow of SO/sub 3/ gas.

  11. Thermochem Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries PvtStratosolarTharaldson Ethanol LLCEnergyo Jump to: navigation, searchThermochem

  12. Thermochemical conversion of waste materials to valuable products

    SciTech Connect (OSTI)

    Saraf, S. [Engineering Technologies, Lombard, IL (United States)

    1997-12-31T23:59:59.000Z

    The potential offered by a large variety of solid and liquid wastes for generating value added products is widely recognized. Extensive research and development has focused on developing technologies to recover energy and valuable products from waste materials. These treatment technologies include use of waste materials for direct combustion, upgrading the waste materials into useful fuel such as fuel gas or fuel oil, and conversion of waste materials into higher value products for the chemical industry. Thermal treatment in aerobic (with oxygen) conditions or direct combustion of waste materials in most cases results in generating air pollution and thereby requiring installation of expensive control devices. Thermochemical conversion in aerobic (without oxygen) conditions, referred to as thermal decomposition (destructive distillation) results in formation of usable liquid, solid, and gaseous products. Thermochemical conversion includes gasification, liquefaction, and thermal decomposition (pyrolysis). Each thermochemical conversion process yields a different range of products and this paper will discuss thermal decomposition in detail. This paper will also present results of a case study for recovering value added products, in the form of a liquid, solid, and gas, from thermal decomposition of waste oil and scrap tires. The product has a high concentration of benzene, xylene, and toluene. The solid product has significant amounts of carbon black and can be used as an asphalt modifier for road construction. The gas product is primarily composed of methane and is used for heating the reactor.

  13. NERSC Leads Next-Generation Code Optimization Effort

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your1AllocationsNOVA Portal:Ott2006.jpg ALeads

  14. Generating Code Structures for Petri NetBased Agent Interaction Protocols Using Net Components

    E-Print Network [OSTI]

    Hamburg.Universit?¤t

    Generating Code Structures for Petri Net­Based Agent Interaction Protocols Using Net Components@informatik.uni­hamburg.de July 31, 2003 Abstract In this paper we introduce a straight forward approach for generating Petri Net of net components which provide basic tasks and the structure for Petri Nets. Agent interaction protocol

  15. Generating Code Structures for Petri Net-Based Agent Interaction Protocols Using Net Components

    E-Print Network [OSTI]

    Hamburg.Universit?¤t

    Generating Code Structures for Petri Net-Based Agent Interaction Protocols Using Net Components@informatik.uni-hamburg.de March 31, 2004 Abstract In this paper we introduce a straight forward approach for generating Petri Net of net components which provide basic tasks and the structure for Petri Nets. Agent interaction protocol

  16. Biomass thermochemical conversion program. 1985 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1986-01-01T23:59:59.000Z

    Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

  17. Optimized Generation of Data-Path from C Codes for FPGAs

    E-Print Network [OSTI]

    Guo, Zhi; Najjar, Walid; Vissers, Kees

    2011-01-01T23:59:59.000Z

    FPGAs, as computing devices, offer significant speedup over microprocessors. Furthermore, their configurability offers an advantage over traditional ASICs. However, they do not yet enjoy high-level language programmability, as microprocessors do. This has become the main obstacle for their wider acceptance by application designers. ROCCC is a compiler designed to generate circuits from C source code to execute on FPGAs, more specifically on CSoCs. It generates RTL level HDLs from frequently executing kernels in an application. In this paper, we describe ROCCC's system overview and focus on its data path generation. We compare the performance of ROCCC-generated VHDL code with that of Xilinx IPs. The synthesis result shows that ROCCC-generated circuit takes around 2x ~ 3x area and runs at comparable clock rate.

  18. Solar Thermochemical Hydrogen Production Research (STCH)

    Fuel Cell Technologies Publication and Product Library (EERE)

    Eight cycles in a coordinated set of projects for Solar Thermochemical Cycles for Hydrogen production (STCH) were self-evaluated for the DOE-EERE Fuel Cell Technologies Program at a Working Group Meet

  19. Highly Efficient Solar Thermochemical Reaction Systems

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Highly Efficient, Solar Thermochemical Reaction Systems (2014 R&D 100 Award Winner) U.S. Department of Energy Fuel Cell Technologies Office 2 Question and Answer * Please type your...

  20. Webinar: Highly Efficient Solar Thermochemical Reaction Systems

    Broader source: Energy.gov [DOE]

    The Fuel Cell Technologies Office will present a live webinar titled "Highly Efficient Solar Thermochemical Reaction Systems" on Tuesday, January 13, from 12:00 to 1:00 p.m. Eastern Standard Time.

  1. tcc: A System for Fast, Flexible, and Highlevel Dynamic Code Generation Massimiliano Poletto, Dawson R. Engler, and M. Frans Kaashoek

    E-Print Network [OSTI]

    Gummadi, Ramakrishna

    tcc: A System for Fast, Flexible, and Highlevel Dynamic Code Generation Massimiliano Poletto language, an extension of ANSI C that supports dynamic code generation [15]. `C gives power and flexibility generation that is both flexible and easy to use. On one side, annotationdriven approaches allow the pro

  2. tcc: A System for Fast, Flexible, and Highlevel Dynamic Code Generation Massimiliano Poletto, Dawson R. Engler, and M. Frans Kaashoek

    E-Print Network [OSTI]

    tcc: A System for Fast, Flexible, and Highlevel Dynamic Code Generation Massimiliano Poletto language, an extension of ANSI C that supports dynamic code generation [15]. `C gives power and flexibility generation that is both flexible and easy to use. On one side, annotationdriven approaches allow the program

  3. DPF: Fast, Flexible Message Demultiplexing using Dynamic Code Generation Dawson R. Engler, and M. Frans Kaashoek

    E-Print Network [OSTI]

    Engler, Dawson

    DPF: Fast, Flexible Message Demultiplexing using Dynamic Code Generation Dawson R. Engler, and M,kaashoekg@lcs.mit.edu Abstract Fast and flexible message demultiplexing are wellestablished goals in the networking community [1 flexibility of packet filters [18] and the speed of handcrafted demultiplexing routines [3]. DPF filters run

  4. Advanced Electrochemical Technologies for Hydrogen Production by Alternative Thermochemical Cycles

    SciTech Connect (OSTI)

    The Pennsylvania State Univeristy: Serguei Lvov, Mike Chung, Mark Fedkin, Victor Balashov, Elena, Chalkova, Nikolay Akinfiev; University of South Carolina: Carol Stork, Thomas Davis, Francis Gadala-Maria, Thomas Stanford, John Weidner; Tulane University: Victor Law, John Prindle; Lewis, ANL: Michele

    2011-01-06T23:59:59.000Z

    Hydrogen fuel is a potentially major solution to the problem of climate change, as well as addressing urban air pollution issues. But a key future challenge for hydrogen as a clean energy carrier is a sustainable, low-cost method of producing it in large capacities. Most of the worldâ??s hydrogen is currently derived from fossil fuels through some type of reforming processes. Nuclear hydrogen production is an emerging and promising alternative to the reforming processes for carbon-free hydrogen production in the future. This report presents the main results of a research program carried out by a NERI Consortium, which consisted of Penn State University (PSU) (lead), University of South Carolina (USC), Tulane University (TU), and Argonne National Laboratory (ANL). Thermochemical water decomposition is an emerging technology for large-scale production of hydrogen. Typically using two or more intermediate compounds, a sequence of chemical and physical processes split water into hydrogen and oxygen, without releasing any pollutants externally to the atmosphere. These intermediate compounds are recycled internally within a closed loop. While previous studies have identified over 200 possible thermochemical cycles, only a few have progressed beyond theoretical calculations to working experimental demonstrations that establish scientific and practical feasibility of the thermochemical processes. The Cu-Cl cycle has a significant advantage over other cycles due to lower temperature requirements - around 530 oC and below. As a result, it can be eventually linked with the Generation IV thermal power stations. Advantages of the Cu-Cl cycle over others include lower operating temperatures, ability to utilize low-grade waste heat to improve energy efficiency, and potentially lower cost materials. Another significant advantage is a relatively low voltage required for the electrochemical step (thus low electricity input). Other advantages include common chemical agents and reactions going to completion without side reactions, and lower demands on materials of construction. Three university research groups from PSU, USC, and TU as well as a group from ANL have been collaborating on the development of enabling technologies for the Cu-Cl cycle, including experimental work on the Cu-Cl cycle reactions, modeling and simulation, and particularly electrochemical reaction for hydrogen production using a CuCl electrolyzer. The Consortium research was distributed over the participants and organized in the following tasks: (1) Development of CuCl electrolyzer (PSU), (2) Thermodynamic modeling of anolyte solution (PSU), (3) Proton conductive membranes for CuCl electrolysis (PSU), (4) Development of an analytical method for online analysis of copper compounds in highly concentrated aqueous solutions (USC), (5) Electrodialysis as a means for separation and purification of the streams exiting the electrolyzer in the Cu-Cl cycle (USC), (6) Development of nanostructured electrocatalysts for the Cu-Cl electrolysis (USC), (7) Cu-Cl electrolyzer modeling (USC), (8) Aspen Plus modeling of the Cu-Cl thermochemical cycle (TU), (9) International coordination of research on the development of the Cu-Cl thermochemical cycle (ANL). The results obtained in the project clearly demonstrate that the Cu-Cl alternative thermochemical cycle is a promising and viable technology to produce hydrogen efficiently.

  5. Intro to NREL's Thermochemical Pilot Plant

    SciTech Connect (OSTI)

    Magrini, Kim

    2013-09-27T23:59:59.000Z

    NREL's Thermochemical Pilot Plant converts biomass into higher hydrocarbon fuels and chemicals.NREL is researching biomass pyrolysis. The lab is examining how to upgrade bio-oils via stabilization. Along with this, NREL is developing the engineering system requirements for producing these fuels and chemicals at larger scales.

  6. Thermochemical Analysis of Hydrogen Absorption in Welding

    E-Print Network [OSTI]

    Eagar, Thomas W.

    '' .' j I ~l Thermochemical Analysis of Hydrogen Absorption in Welding A new model that addresses the shortcomings of Sievert's law for predicting hydrogen absorption is proposed ABSTRACT. A systematic review of diatomic hydrogen) to calcu· late the hydrogen absorption reaction temperature in the weld pool is invalid

  7. Intro to NREL's Thermochemical Pilot Plant

    ScienceCinema (OSTI)

    Magrini, Kim

    2014-06-10T23:59:59.000Z

    NREL's Thermochemical Pilot Plant converts biomass into higher hydrocarbon fuels and chemicals.NREL is researching biomass pyrolysis. The lab is examining how to upgrade bio-oils via stabilization. Along with this, NREL is developing the engineering system requirements for producing these fuels and chemicals at larger scales.

  8. Thermochemical Conversion Pilot Plant (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01T23:59:59.000Z

    The state-of-the-art thermochemical conversion pilot plant includes several configurable, complementary unit operations for testing and developing various reactors, filters, catalysts, and other unit operations. NREL engineers and scientists as well as clients can test new processes and feedstocks in a timely, cost-effective, and safe manner to obtain extensive performance data on processes or equipment.

  9. Revised methods for few-group cross sections generation in the Serpent Monte Carlo code

    SciTech Connect (OSTI)

    Fridman, E. [Reactor Safety Div., Helmholz-Zentrum Dresden-Rossendorf, POB 51 01 19, Dresden, 01314 (Germany); Leppaenen, J. [VTT Technical Research Centre of Finland, POB 1000, FI-02044 VTT (Finland)

    2012-07-01T23:59:59.000Z

    This paper presents new calculation methods, recently implemented in the Serpent Monte Carlo code, and related to the production of homogenized few-group constants for deterministic 3D core analysis. The new methods fall under three topics: 1) Improved treatment of neutron-multiplying scattering reactions, 2) Group constant generation in reflectors and other non-fissile regions and 3) Homogenization in leakage-corrected criticality spectrum. The methodology is demonstrated by a numerical example, comparing a deterministic nodal diffusion calculation using Serpent-generated cross sections to a reference full-core Monte Carlo simulation. It is concluded that the new methodology improves the results of the deterministic calculation, and paves the way for Monte Carlo based group constant generation. (authors)

  10. Pacies (Part Code Identification Expert System): an expert system to generate part codes for the selection of small part feeding and orienting devices for use in automatic assembly

    E-Print Network [OSTI]

    Chen, Yu-Tong

    1985-01-01T23:59:59.000Z

    Coding System B: Existing Expert Systems C: Listing of Consultation Driver D: Listing of the Knowledge Base E: Listing of SIMPLE Front-End Relations F: Procedure to Log on the System G: Procedure to Query the Same Question VITA 74 78 79 90 104... look-up, generates a three-digit part code for a part based upon its shape, important features, and symmetries. The part code is used in a table look-up procedure to determine the proper feeding and orienting device for the part. Hence, the part...

  11. Code Generation Through Annotation of Macromolecular Structure Data John Biggs 1 , Calton Pu 1 , and Philip Bourne 2

    E-Print Network [OSTI]

    Bourne, Philip E.

    Code Generation Through Annotation of Macromolecular Structure Data John Biggs 1 , Calton Pu 1 & Technology P.O. Box 91000 Portland, OR 97291­1000 {biggs,calton}@cse.ogi.edu 2 San Diego Supercomputer Center

  12. A dynamic, dependent type system for nuclear fuel cycle code generation

    SciTech Connect (OSTI)

    Scopatz, A. [The University of Chicago 5754 S. Ellis Ave, Chicago, IL 60637 (United States)

    2013-07-01T23:59:59.000Z

    The nuclear fuel cycle may be interpreted as a network or graph, thus allowing methods from formal graph theory to be used. Nodes are often idealized as nuclear fuel cycle facilities (reactors, enrichment cascades, deep geologic repositories). With the advent of modern object-oriented programming languages - and fuel cycle simulators implemented in these languages - it is natural to define a class hierarchy of facility types. Bright is a quasi-static simulator, meaning that the number of material passes through a facility is tracked rather than natural time. Bright is implemented as a C++ library that models many canonical components such as reactors, storage facilities, and more. Cyclus is a discrete time simulator, meaning that natural time is tracked through out the simulation. Therefore a robust, dependent type system was developed to enable inter-operability between Bright and Cyclus. This system is capable of representing any fuel cycle facility. Types declared in this system can then be used to automatically generate code which binds a facility implementation to a simulator front end. Facility model wrappers may be used either internally to a fuel cycle simulator or as a mechanism for inter-operating multiple simulators. While such a tool has many potential use cases it has two main purposes: enabling easy performance of code-to-code comparisons and the verification and the validation of user input.

  13. Thermochemically Driven Gas-Dynamic Fracturing (TDGF)

    SciTech Connect (OSTI)

    Michael Goodwin

    2008-12-31T23:59:59.000Z

    This report concerns efforts to increase oil well productivity and efficiency via a method of heating the oil-bearing rock of the well, a technique known as Thermochemical Gas-Dynamic Fracturing (TGDF). The technique uses either a chemical reaction or a combustion event to raise the temperature of the rock of the well, thereby increasing oil velocity, and oil pumping rate. Such technology has shown promise for future application to both older wellheads and also new sites. The need for such technologies in the oil extraction field, along with the merits of the TGDF technology is examined in Chapter 1. The theoretical basis underpinning applications of TGDF is explained in Chapter 2. It is shown that productivity of depleted well can be increased by one order of magnitude after heating a reservoir region of radius 15-20 m around the well by 100 degrees 1-2 times per year. Two variants of thermal stimulation are considered: uniform heating and optimal temperature distribution in the formation region around the perforation zone. It is demonstrated that the well productivity attained by using equal amounts of thermal energy is higher by a factor of 3 to 4 in the case of optimal temperature distribution as compared to uniform distribution. Following this theoretical basis, two practical approaches to applying TDGF are considered. Chapter 3 looks at the use of chemical intiators to raise the rock temperature in the well via an exothermic chemical reaction. The requirements for such a delivery device are discussed, and several novel fuel-oxidizing mixtures (FOM) are investigated in conditions simulating those at oil-extracting depths. Such FOM mixtures, particularly ones containing nitric acid and a chemical initiator, are shown to dramatically increase the temperature of the oil-bearing rock, and thus the productivity of the well. Such tests are substantiated by preliminary fieldwork in Russian oil fields. A second, more cost effective approach to TGDF is considered in Chapter 4: use of diesel-fuel to raise the rock temperature by a combustion process in the well. The requirements for such a Gas-Vapor Generator are laid out, and the development of a prototype machine is explained. This is backed up with laboratory experiments showing that the fuel-water mixture used does significantly increase the viscosity of the oil samples. The prototype Gas-Vapor Generator is shown to be able to operate at temperatures of 240 C and pressures of 200 atm. Unfortunately, geopolitical and economic factors outside of our control led to the cancellation of the project before the field testing phase of the generator could be commenced. Nevertheless, it is to be hoped that this report demonstrates both the feasibility and desirability of the Gas-Vapor Generator approach to the application of TDGF technology in both existing and new wells, and provides a foundation for further research in the future.

  14. Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts Thermochemical Conversion: Using Heat and Catalysis to Make Biofuels and Bioproducts The Bioenergy...

  15. Project Profile: Thermochemical Heat Storage for CSP Based on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Multivalent Metal Oxides General Atomics logo General Atomics (GA), under the Thermal Storage FOA, is developing a high-density thermochemical heat storage system based on solid...

  16. University of Colorado-Boulder Researches Solar-Thermochemical...

    Broader source: Energy.gov (indexed) [DOE]

    EERE funds research at the University of Colorado-Boulder for a hydrogen production technology that uses solar energy to produce hydrogen from water. The thermochemical process...

  17. alternative thermochemical cycles: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Balwalli, Namita Ashwin 2013-05-31 35 thermochemical conversion (TCC) process of swine manure as an alternative means of waste Renewable Energy Websites Summary: products of the...

  18. Thermochemical Process Development Unit: Researching Fuels from Biomass, Bioenergy Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01T23:59:59.000Z

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a unique facility dedicated to researching thermochemical processes to produce fuels from biomass.

  19. Physics guide to CEPXS: A multigroup coupled electron-photon cross-section generating code

    SciTech Connect (OSTI)

    Lorence, L.J. Jr.; Morel, J.E.; Valdez, G.D. (Sandia National Labs., Albuquerque, NM (USA); Los Alamos National Lab., NM (USA); Applied Methods, Inc., Albuquerque, NM (USA))

    1989-10-01T23:59:59.000Z

    CEPXS is a multigroup-Legendre cross-section generating code. The multigroup-Legendre cross sections produced by CEPXS enable coupled electron-photon transport calculations to be performed with the one-dimensional discrete ordinates code, ONEDANT. We recommend that the 1989 version of ONEDANT that contains linear-discontinuous spatial differencing and S2 synthetic acceleration be used for such calculations. CEPXS/ONEDANT effectively solves the Boltzmann-CSD transport equation for electrons and the Boltzmann transport equation for photons over the energy range from 100 MeV to 1.0 keV. The continuous slowing-down approximation is used for those electron interactions that result in small-energy losses. The extended transport correction is applied to the forward-peaked elastic scattering cross section for electrons. A standard multigroup-Legendre treatment is used for the other coupled electron-photon cross sections. CEPXS extracts electron cross-section information from the DATAPAC data set and photon cross-section information from Biggs-Lighthill data. The model that is used for ionization/relaxation in CEPXS is essentially the same as that employed in ITS. 43 refs., 8 figs.

  20. Screening analysis of solar thermochemical hydrogen concepts.

    SciTech Connect (OSTI)

    Diver, Richard B., Jr.; Kolb, Gregory J.

    2008-03-01T23:59:59.000Z

    A screening analysis was performed to identify concentrating solar power (CSP) concepts that produce hydrogen with the highest efficiency. Several CSP concepts were identified that have the potential to be much more efficient than today's low-temperature electrolysis technology. They combine a central receiver or dish with either a thermochemical cycle or high-temperature electrolyzer that operate at temperatures >600 C. The solar-to-hydrogen efficiencies of the best central receiver concepts exceed 20%, significantly better than the 14% value predicted for low-temperature electrolysis.

  1. GENII (Generation II): The Hanford Environmental Radiation Dosimetry Software System: Volume 3, Code maintenance manual: Hanford Environmental Dosimetry Upgrade Project

    SciTech Connect (OSTI)

    Napier, B.A.; Peloquin, R.A.; Strenge, D.L.; Ramsdell, J.V.

    1988-09-01T23:59:59.000Z

    The Hanford Environmental Dosimetry Upgrade Project was undertaken to incorporate the internal dosimetry models recommended by the International Commission on Radiological Protection (ICRP) in updated versions of the environmental pathway analysis models used at Hanford. The resulting second generation of Hanford environmental dosimetry computer codes is compiled in the Hanford Environmental Dosimetry System (Generation II, or GENII). This coupled system of computer codes is intended for analysis of environmental contamination resulting from acute or chronic releases to, or initial contamination of, air, water, or soil, on through the calculation of radiation doses to individuals or populations. GENII is described in three volumes of documentation. This volume is a Code Maintenance Manual for the serious user, including code logic diagrams, global dictionary, worksheets to assist with hand calculations, and listings of the code and its associated data libraries. The first volume describes the theoretical considerations of the system. The second volume is a Users' Manual, providing code structure, users' instructions, required system configurations, and QA-related topics. 7 figs., 5 tabs.

  2. Capabilities to Support Thermochemical Hydrogen Production Technology Development

    SciTech Connect (OSTI)

    Daniel M. Ginosar

    2009-05-01T23:59:59.000Z

    This report presents the results of a study to determine if Idaho National Laboratory (INL) has the skilled staff, instrumentation, specialized equipment, and facilities required to take on work in thermochemical research, development, and demonstration currently being performed by the Nuclear Hydrogen Initiative (NHI). This study outlines the beneficial collaborations between INL and other national laboratories, universities, and industries to strengthen INL's thermochemical efforts, which should be developed to achieve the goals of the NHI in the most expeditious, cost effective manner. Taking on this work supports INL's long-term strategy to maintain leadership in thermochemical cycle development. This report suggests a logical path forward to accomplish this transition.

  3. Performance of the fusion code GYRO on four generations of Cray computers

    SciTech Connect (OSTI)

    Fahey, Mark R [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    GYRO is a code used for the direct numerical simulation of plasma microturbulence. It has been ported to a variety of modern MPP platforms including several modern commodity clusters, IBM SPs, and Cray XC, XT, and XE series machines. We briefly describe the mathematical structure of the equations, the data layout, and the redistribution scheme. Also, while the performance and scaling of GYRO on many of these systems has been shown before, here we show the comparative performance and scaling on four generations of Cray supercomputers including the newest addition - the Cray XC30. The more recently added hybrid OpenMP/MPI imple- mentation also shows a great deal of promise on custom HPC systems that utilize fast CPUs and proprietary interconnects. Four machines of varying sizes were used in the experiment, all of which are located at the National Institute for Computational Sciences at the University of Tennessee at Knoxville and Oak Ridge National Laboratory. The advantages, limitations, and performance of using each system are discussed.

  4. Evidence of magnetic isotope effects during thermochemical sulfate reduction

    E-Print Network [OSTI]

    Oduro, Harry D.

    Thermochemical sulfate reduction experiments with simple amino acid and dilute concentrations of sulfate reveal significant degrees of mass-independent sulfur isotope fractionation. Enrichments of up to 13 for [superscript ...

  5. A Continuous Solar Thermochemical Hydrogen Production Plant Design

    E-Print Network [OSTI]

    Luc, Wesley Wai

    A.W. , Likely Near-Term Solar-Thermal Water SplittingFundamentals of s Solar-thermal Mn 2 O 3 /MnO ThermochemicalPower-Photovaltaics or Solar Thermal Power? Proceedings of

  6. A Continuous Solar Thermochemical Hydrogen Production Plant Design

    E-Print Network [OSTI]

    Luc, Wesley Wai

    Plant Production 5000 kg/day Solar Plant Module Cost (with2, which was a solar thermal plant built by the Departmentfor a continuous solar thermochemical plant was modeled and

  7. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    SciTech Connect (OSTI)

    PROJECT STAFF

    2011-10-31T23:59:59.000Z

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and

  8. Testing of an advanced thermochemical conversion reactor system

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This report presents the results of work conducted by MTCI to verify and confirm experimentally the ability of the MTCI gasification process to effectively generate a high-quality, medium-Btu gas from a wider variety of feedstock and waste than that attainable in air-blown, direct gasification systems. The system's overall simplicity, due to the compact nature of the pulse combustor, and the high heat transfer rates attainable within the pulsating flow resonance tubes, provide a decided and near-term potential economic advantage for the MTCI indirect gasification system. The primary objective of this project was the design, construction, and testing of a Process Design Verification System for an indirectly heated, thermochemical fluid-bed reactor and a pulse combustor an an integrated system that can process alternative renewable sources of energy such as biomass, black liquor, municipal solid waste and waste hydrocarbons, including heavy oils into a useful product gas. The test objectives for the biomass portion of this program were to establish definitive performance data on biomass feedstocks covering a wide range of feedstock qualities and characteristics. The test objectives for the black liquor portion of this program were to verify the operation of the indirect gasifier on commercial black liquor containing 65 percent solids at several temperature levels and to characterize the bed carbon content, bed solids particle size and sulfur distribution as a function of gasification conditions. 6 refs., 59 figs., 29 tabs.

  9. FORIG: a computer code for calculating radionuclide generation and depletion in fusion and fission reactors. User's manual

    SciTech Connect (OSTI)

    Blink, J.A.

    1985-03-01T23:59:59.000Z

    In this manual we describe the use of the FORIG computer code to solve isotope-generation and depletion problems in fusion and fission reactors. FORIG runs on a Cray-1 computer and accepts more extensive activation cross sections than ORIGEN2 from which it was adapted. This report is an updated and a combined version of the previous ORIGEN2 and FORIG manuals. 7 refs., 15 figs., 13 tabs.

  10. GETRAN: A generic, modularly structured computer code for simulation of dynamic behavior of aero- and power generation gas turbine engines

    SciTech Connect (OSTI)

    Schobeiri, M.T.; Attia, M.; Lippke, C. (Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering)

    1994-07-01T23:59:59.000Z

    The design concept, the theoretical background essential for the development of the modularly structured simulation code GETRAN, and several critical simulation cases are presented in this paper. The code being developed under contract with NASA Lewis Research Center is capable of simulating the nonlinear dynamic behavior of single- and multispool core engines, turbofan engines, and power generation gas turbine engines under adverse dynamic operating conditions. The modules implemented into GETRAN correspond to components of existing and new-generation aero- and stationary gas turbine engines with arbitrary configuration and arrangement. For precise simulation of turbine and compressor components, row-by-row diabatic and adiabatic calculation procedures are implemented that account for the specific turbine and compressor cascade, blade geometry, and characteristics. The nonlinear, dynamic behavior of the subject engine is calculated solving a number of systems of partial differential equations, which describe the unsteady behavior of each component individually. To identify each differential equation system unambiguously, special attention is paid to the addressing of each component. The code is capable of executing the simulation procedure at four levels, which increase with the degree of complexity of the system and dynamic event. As representative simulations, four different transient cases with single- and multispool thrust and power generation engines were simulated. These transient cases vary from throttling the exit nozzle area, operation with fuel schedule, rotor speed control, to rotating stall and surge.

  11. Uncertainties in source term calculations generated by the ORIGEN2 computer code for Hanford Production Reactors

    SciTech Connect (OSTI)

    Heeb, C.M.

    1991-03-01T23:59:59.000Z

    The ORIGEN2 computer code is the primary calculational tool for computing isotopic source terms for the Hanford Environmental Dose Reconstruction (HEDR) Project. The ORIGEN2 code computes the amounts of radionuclides that are created or remain in spent nuclear fuel after neutron irradiation and radioactive decay have occurred as a result of nuclear reactor operation. ORIGEN2 was chosen as the primary code for these calculations because it is widely used and accepted by the nuclear industry, both in the United States and the rest of the world. Its comprehensive library of over 1,600 nuclides includes any possible isotope of interest to the HEDR Project. It is important to evaluate the uncertainties expected from use of ORIGEN2 in the HEDR Project because these uncertainties may have a pivotal impact on the final accuracy and credibility of the results of the project. There are three primary sources of uncertainty in an ORIGEN2 calculation: basic nuclear data uncertainty in neutron cross sections, radioactive decay constants, energy per fission, and fission product yields; calculational uncertainty due to input data; and code uncertainties (i.e., numerical approximations, and neutron spectrum-averaged cross-section values from the code library). 15 refs., 5 figs., 5 tabs.

  12. Eects of thermo-chemical mantle convection on the thermal evolution of the Earth's core

    E-Print Network [OSTI]

    Tackley, Paul J.

    Eects of thermo-chemical mantle convection on the thermal evolution of the Earth's core Takashi in the core with a fully dynamic thermo-chemical mantle convection model is developed to investigate

  13. Solar Thermochemical Advanced Reactor System, Wins R&D 100 Award...

    Office of Environmental Management (EM)

    Solar Thermochemical Advanced Reactor System, Wins R&D 100 Award Solar Thermochemical Advanced Reactor System, Wins R&D 100 Award October 16, 2014 - 5:24pm Addthis Developed...

  14. The VOLNA code for the numerical modelling of tsunami waves: generation, propagation and

    E-Print Network [OSTI]

    of the finite volume scheme implemented in the code. We explain the numerical treatment of the wet is decided on the base of inundation maps which are produced with this type of numerical tools. Finally we and the perspectives for future research presented. Key words: tsunami waves, shallow water equations, tsunami

  15. Biomass Thermochemical Conversion Program. 1983 Annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1984-08-01T23:59:59.000Z

    Highlights of progress achieved in the program of thermochemical conversion of biomass into clean fuels during 1983 are summarized. Gasification research projects include: production of a medium-Btu gas without using purified oxygen at Battelle-Columbus Laboratories; high pressure (up to 500 psia) steam-oxygen gasification of biomass in a fluidized bed reactor at IGT; producing synthesis gas via catalytic gasification at PNL; indirect reactor heating methods at the Univ. of Missouri-Rolla and Texas Tech Univ.; improving the reliability, performance, and acceptability of small air-blown gasifiers at Univ. of Florida-Gainesville, Rocky Creek Farm Gasogens, and Cal Recovery Systems. Liquefaction projects include: determination of individual sequential pyrolysis mechanisms at SERI; research at SERI on a unique entrained, ablative fast pyrolysis reactor for supplying the heat fluxes required for fast pyrolysis; work at BNL on rapid pyrolysis of biomass in an atmosphere of methane to increase the yields of olefin and BTX products; research at the Georgia Inst. of Tech. on an entrained rapid pyrolysis reactor to produce higher yields of pyrolysis oil; research on an advanced concept to liquefy very concentrated biomass slurries in an integrated extruder/static mixer reactor at the Univ. of Arizona; and research at PNL on the characterization and upgrading of direct liquefaction oils including research to lower oxygen content and viscosity of the product. Combustion projects include: research on a directly fired wood combustor/gas turbine system at Aerospace Research Corp.; adaptation of Stirling engine external combustion systems to biomass fuels at United Stirling, Inc.; and theoretical modeling and experimental verification of biomass combustion behavior at JPL to increase biomass combustion efficiency and examine the effects of additives on combustion rates. 26 figures, 1 table.

  16. Title 20, California Code of Regulations Article 5. Electricity Generation Source Disclosure

    E-Print Network [OSTI]

    fossil fuel may not be included: (1) Biomass and waste. For purposes of these regulations, "biomass type attribute" means the fuel or technology type used to generate a quantity of kilowatt hours

  17. Thermochemical structures within a spherical mantle: Superplumes or piles?

    E-Print Network [OSTI]

    Zhong, Shijie

    Thermochemical structures within a spherical mantle: Superplumes or piles? Allen K. Mc interpreted as being either piles or superplumes of dense material. We perform numerical modeling a dense chemical component into a small number of isolated, rounded piles or superplumes of material. We

  18. Thermochemical Reactions and Equilibria between Fluoromicas and Silicate Matrices

    E-Print Network [OSTI]

    Cooper, Reid F.

    Thermochemical Reactions and Equilibria between Fluoromicas and Silicate Matrices: A Petromimetic matrixes. Studies of the solid- state reaction couples between these silicate phases are pursued to address of polyphase ceramic equilibria of phases--specifically silicates--with a wide variation of mechanical behavior

  19. DOE Thermochemical Users Facility: A Proving Ground for Biomass Technology

    SciTech Connect (OSTI)

    Not Available

    2003-10-01T23:59:59.000Z

    The National Bioenergy Center at the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) provides a state-of-the-art Thermochemical Users Facility (TCUF) for converting renewable, biomass feedstocks into a variety of products, including electricity, high-value chemicals, and transportation fuels.

  20. On-the-fly generation of differential resonance scattering probability distribution functions for Monte Carlo codes

    SciTech Connect (OSTI)

    Sunny, E. E.; Martin, W. R. [University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor MI 48109 (United States)

    2013-07-01T23:59:59.000Z

    Current Monte Carlo codes use one of three models to model neutron scattering in the epithermal energy range: (1) the asymptotic scattering model, (2) the free gas scattering model, or (3) the S({alpha},{beta}) model, depending on the neutron energy and the specific Monte Carlo code. The free gas scattering model assumes the scattering cross section is constant over the neutron energy range, which is usually a good approximation for light nuclei, but not for heavy nuclei where the scattering cross section may have several resonances in the epithermal region. Several researchers in the field have shown that using the free gas scattering model in the vicinity of the resonances in the lower epithermal range can under-predict resonance absorption due to the up-scattering phenomenon. Existing methods all involve performing the collision analysis in the center-of-mass frame, followed by a conversion back to the laboratory frame. In this paper, we will present a new sampling methodology that (1) accounts for the energy-dependent scattering cross sections in the collision analysis and (2) acts in the laboratory frame, avoiding the conversion to the center-of-mass frame. The energy dependence of the scattering cross section was modeled with even-ordered polynomials to approximate the scattering cross section in Blackshaw's equations for the moments of the differential scattering PDFs. These moments were used to sample the outgoing neutron speed and angle in the laboratory frame on-the-fly during the random walk of the neutron. Results for criticality studies on fuel pin and fuel assembly calculations using these methods showed very close comparison to results using the reference Doppler-broadened rejection correction (DBRC) scheme. (authors)

  1. Thermochemical plots using JCZS2i piece-wise curve fits.

    SciTech Connect (OSTI)

    Miller, David L.; Schoof, Justin C.; Hobbs, Michael L.

    2013-10-01T23:59:59.000Z

    This report presents plots of specific heat, enthalpy, entropy, and Gibbs free energy for 1439 species in the JCZS2i database. Included in this set of species are 496 condensed-phase species and 943 gas-phase species. The gas phase species contain 80 anions and 112 cations for a total of 192 ions. The JCZS2i database is used in conjunction with the TIGER thermochemical code to predict thermodynamic states from ambient conditions to high temperatures and pressures. Predictions from the TIGER code using the JCZS2i database can be used in shock physics codes where temperatures may be as high as 20,000 K and ions may be present. Such high temperatures were not considered in the original JCZS database, and extrapolations made for these temperatures were unrealistic. For example, specific heat would sometimes go negative at high temperatures which fails the definition of specific heat. The JCZS2i database is a new version of the JCZS database that is being created to address these inaccuracies. The purpose of the current report is to visualize the high temperature extrapolations to insure that the specific heat, enthalpy, entropy, and Gibbs free energy predictions are reasonable up to 20,000 K.

  2. ALTERNATIVE FLOWSHEETS FOR THE SULFUR-IODINE THERMOCHEMICAL HYDROGEN CYCLE

    SciTech Connect (OSTI)

    BROWN,LC; LENTSCH,RD; BESENBRUCH,GE; SCHULTZ,KR; FUNK,JE

    2003-02-01T23:59:59.000Z

    OAK-B135 A hydrogen economy will need significant new sources of hydrogen. Unless large-scale carbon sequestration can be economically implemented, use of hydrogen reduces greenhouse gases only if the hydrogen is produced with non-fossil energy sources. Nuclear energy is one of the limited options available. One of the promising approaches to produce large quantities of hydrogen from nuclear energy efficiently is the Sulfur-Iodine (S-I) thermochemical water-splitting cycle, driven by high temperature heat from a helium Gas-Cooled Reactor. They have completed a study of nuclear-driven thermochemical water-splitting processes. The final task of this study was the development of a flowsheet for a prototype S-I production plant. An important element of this effort was the evaluation of alternative flowsheets and selection of the reference design.

  3. Thermochemical Ethanol via Indirect Gasification and Mixed Alcohol Synthesis of Lignocellulosic Biomass

    SciTech Connect (OSTI)

    Phillips, S.; Aden, A.; Jechura, J.; Dayton, D.; Eggeman, T.

    2007-04-01T23:59:59.000Z

    This process design and technoeconomic evaluation addresses the conversion of biomass to ethanol via thermochemical pathways that are expected to be demonstrated at the pilot level by 2012.

  4. Project Profile: Integrated Solar Thermochemical Reaction System |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn April 23, 2014, an OHASeptember 2010 | DepartmentEnergyThermal EnergyGeneration

  5. THERMO-CHEMICAL STRUCTURE OF THE LOWER MANTLE: SEISMOLOGICAL EVIDENCE AND

    E-Print Network [OSTI]

    Tackley, Paul J.

    CHAPTER 11 THERMO-CHEMICAL STRUCTURE OF THE LOWER MANTLE: SEISMOLOGICAL EVIDENCE AND CONSEQUENCES and numerical modeling of thermo- chemical convection to infer robust features on mantle structure and dynamics. The tomographic maps of thermo-chemical variations were computed using a new approach that combines a careful

  6. Review and analysis of the 1980-1989 biomass thermochemical conversion program

    SciTech Connect (OSTI)

    Stevens, D.J.

    1994-09-01T23:59:59.000Z

    In the period between 1980 and 1989, the U.S. Department of Energy (DOE) sponsored research and development projects through its Biomass Thermochemical Conversion (BTC) Program. Thermochemical conversion technologies use elevated temperatures to convert biomass into more useful forms of energy such as fuel gases or transportation fuels. The BTC Program included a wide range of biomass conversion projects in the areas of gasification, pyrolysis, liquefaction, and combustion. This work formed the basis of the present DOE research and development efforts on advanced liquid fuel and power generation systems. At the beginning of Fiscal Year 1989, the management of the BTC Program was transferred from Pacific Northwest Laboratory (PNL) to National Renewable Energy Laboratory (NREL, formerly Solar Energy Research Institute). This document presents a summary of the research which was performed under the BTC Program during the 1981-1989 time frame. The document consists of an analysis of the research projects which were funded by the BTC Program and a bibliography of published documents. This work will help ensure that information from PNL`s BTC Program is available to those interested in biomass conversion technologies. The background of the BTC Program is discussed in the first chapter of this report. In addition, a brief summary of other related biomass research and development programs funded by the U.S. Department of Energy and others is presented with references where additional information can be found. The remaining chapters of the report present a detailed summary of the research projects which were funded by the BTC Program. The progress which was made on each project is summarized, the overall impact on biomass conversion is discussed, and selected references are provided.

  7. Multiscale/Multiphysics Modeling of Biomass Thermochemical Processes

    SciTech Connect (OSTI)

    Pannala, Sreekanth [ORNL; Simunovic, Srdjan [ORNL; Frantziskonis, G. [University of Arizona

    2010-01-01T23:59:59.000Z

    Computational problems in simulating biomass thermochemical processes involve coupling processes that span several orders of magnitude in space and time. Computational difficulties arise from the multitude of the problem governing equations, each typically applying over a narrow range of spatiotemporal scales, thus making it necessary to represent the processes as the result of the interaction of multiple physics modules, termed here as multiscale/multiphysics (MSMP) coupling. Predictive simulations for such processes require algorithms that can efficiently integrate the underlying MSMP methods across the scales in order to achieve prescribed accuracy and control the computational cost. In addition, MSMP algorithms must scale to one hundred thousand processors or more in order to effectively harness the new computational resources and accelerate the scientific advances. In this chapter, we discuss the state-of-the-art in modeling the macro-scale phenomena in a biomass pyrolysis reactor along with details of the shortcomings and prospects in improving predictability. We also introduce the various multiphysics modules needed to model thermochemical conversion at lower spatiotemporal scales. Furthermore, we illustrate the need for MSMP coupling for thermochemical processes in biomass and provide an overview of the wavelet-based coupling techniques we have developed recently. In particular, we provide details about the compound wavelet matrix (CWM) and the dynamic CWM (dCWM) methods and show they are highly efficient in transferring information among multiphysics models across multiple temporal and spatial scales. The algorithmic gain is in addition to the parallel spatial scalability from traditional domain decomposition methods. The CWM algorithms are serial in time and limited by the smallest-system time-scales. In order to relax this algorithmic constraint, we have recently coupled time parallel (TP) algorithms to CWM, thus yielding a novel approach termed tpCWM. We present preliminary results from the tpCWM technique, indicating that we can accelerate time-to-solution by 2 to 3-orders of magnitude even on 20-processors and this can potentially constitute a new paradigm for MSMP simulations. If such improvements in simulation capability can be generalized, the tpCWM approach can lead the way to predictive simulations of biomass thermochemical processes.

  8. Hydrogen Production: Thermochemical Water Splitting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination DetectorofThermochemical Water Splitting

  9. Project Profile: Carbon Dioxide Shuttling Thermochemical Storage Using

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of ContaminationHubs+ Report Presentation:in theProjectThermochemical HeatStrontium

  10. Published in proceedings of the 1996 EUROSIM Int'l Conf., June 10--12, 1996, Delft, The Netherlands, pp. 421--428. Automatic Code Generation for High Performance Computing in

    E-Print Network [OSTI]

    van Engelen, Robert A.

    , The Netherlands, pp. 421--428. Automatic Code Generation for High Performance Computing in Environmental Modeling Robert van Engelen a#+ , Lex Wolters a+# , and Gerard Cats b# a High Performance Computing Division, Dept: cats@knmi.nl In this paper we will discuss automatic code generation for high performance computer

  11. Biomass Thermochemical Conversion Program. 1984 annual report

    SciTech Connect (OSTI)

    Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

    1985-01-01T23:59:59.000Z

    The objective of the program is to generate scientific data and conversion process information that will lead to establishment of cost-effective process for converting biomass resources into clean fuels. The goal of the program is to develop the data base for biomass thermal conversion by investigating the fundamental aspects of conversion technologies and by exploring those parameters that are critical to the conversion processes. The research activities can be divided into: (1) gasification technology; (2) liquid fuels technology; (3) direct combustion technology; and (4) program support activities. These activities are described in detail in this report. Outstanding accomplishments during fiscal year 1984 include: (1) successful operation of 3-MW combustor/gas turbine system; (2) successful extended term operation of an indirectly heated, dual bed gasifier for producing medium-Btu gas; (3) determination that oxygen requirements for medium-Btu gasification of biomass in a pressurized, fluidized bed gasifier are low; (4) established interdependence of temperature and residence times on biomass pyrolysis oil yields; and (5) determination of preliminary technical feasibility of thermally gasifying high moisture biomass feedstocks. A bibliography of 1984 publications is included. 26 figs., 1 tab.

  12. Codeword Stabilized Quantum Codes

    E-Print Network [OSTI]

    Andrew Cross; Graeme Smith; John A. Smolin; Bei Zeng

    2007-09-27T23:59:59.000Z

    We present a unifying approach to quantum error correcting code design that encompasses additive (stabilizer) codes, as well as all known examples of nonadditive codes with good parameters. We use this framework to generate new codes with superior parameters to any previously known. In particular, we find ((10,18,3)) and ((10,20,3)) codes. We also show how to construct encoding circuits for all codes within our framework.

  13. An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems

    SciTech Connect (OSTI)

    Pattrick Calderoni

    2010-09-01T23:59:59.000Z

    Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the same project [1]. However, this work focuses on two materials: the LiF-BeF2 eutectic (67 and 33 mol%, respectively, also known as flibe) as primary coolant and the LiF-NaF-KF eutectic (46.5, 11.5, and 52 mol%, respectively, also known as flinak) as secondary heat transport fluid. At first common issues are identified, involving the preparation and purification of the materials as well as the development of suitable diagnostics. Than issues specific to each material and its application are considered, with focus on the compatibility with structural materials and the extension of the existing properties database.

  14. Moving bed reactor for solar thermochemical fuel production

    DOE Patents [OSTI]

    Ermanoski, Ivan

    2013-04-16T23:59:59.000Z

    Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.

  15. Radiation-Generating Devices Guide for Use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-04-15T23:59:59.000Z

    For use with Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection. This Guide provides an acceptable methodology for establishing and operating a sealed radioactive source accountability and control program that will comply with U.S. Department of Energy (DOE) requirements specified in Title 10 of the Code of Federal Regulations (CFR), Part 835, Occupational Radiation Protection (DOE 1998a), hereinafter referred to as 10 CFR 835. In particular, this Guide provides guidance for achieving compliance with subpart M of 10 CFR 835. Canceled by DOE G 441.1-1B.

  16. Synfuels from fusion: producing hydrogen with the Tandem Mirror Reactor and thermochemical cycles

    SciTech Connect (OSTI)

    Werner, R.W.; Ribe, F.L.

    1981-01-21T23:59:59.000Z

    This volume contains the following sections: (1) the Tandem Mirror fusion driver, (2) the Cauldron blanket module, (3) the flowing microsphere, (4) coupling the reactor to the process, (5) the thermochemical cycles, and (6) chemical reactors and process units. (MOW)

  17. On the formation of continental silicic melts in thermo-chemical

    E-Print Network [OSTI]

    van Thienen, Peter

    Chapter 7 On the formation of continental silicic melts in thermo-chemical mantle convection models-consistently produced by numerical thermo- chemical mantle convection models, presented in this paper, including partial

  18. Z .Lithos 48 1999 153170 The evolution of continental roots in numerical thermo-chemical

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Z .Lithos 48 1999 153170 The evolution of continental roots in numerical thermo-chemical mantle by a thick depleted root. q 1999 Elsevier Science B.V. All rights reserved. Keywords: Thermo

  19. Multi-scale chemistry modeling of the thermochemical conversion of biomass in a fluidized bed gasifier

    E-Print Network [OSTI]

    Stark, Addison Killean

    2015-01-01T23:59:59.000Z

    The thermochemical conversion of biomass to fuels via syn-gas offers a promising approach to producing fungible substitutes for petroleum derived fuels and chemicals. In order for these fuels to be adopted, they must be ...

  20. Third millenium ideal gas and condensed phase thermochemical database for combustion (with update from active thermochemical tables).

    SciTech Connect (OSTI)

    Burcat, A.; Ruscic, B.; Chemistry; Technion - Israel Inst. of Tech.

    2005-07-29T23:59:59.000Z

    The thermochemical database of species involved in combustion processes is and has been available for free use for over 25 years. It was first published in print in 1984, approximately 8 years after it was first assembled, and contained 215 species at the time. This is the 7th printed edition and most likely will be the last one in print in the present format, which involves substantial manual labor. The database currently contains more than 1300 species, specifically organic molecules and radicals, but also inorganic species connected to combustion and air pollution. Since 1991 this database is freely available on the internet, at the Technion-IIT ftp server, and it is continuously expanded and corrected. The database is mirrored daily at an official mirror site, and at random at about a dozen unofficial mirror and 'finger' sites. The present edition contains numerous corrections and many recalculations of data of provisory type by the G3//B3LYP method, a high-accuracy composite ab initio calculation. About 300 species are newly calculated and are not yet published elsewhere. In anticipation of the full coupling, which is under development, the database started incorporating the available (as yet unpublished) values from Active Thermochemical Tables. The electronic version now also contains an XML file of the main database to allow transfer to other formats and ease finding specific information of interest. The database is used by scientists, educators, engineers and students at all levels, dealing primarily with combustion and air pollution, jet engines, rocket propulsion, fireworks, but also by researchers involved in upper atmosphere kinetics, astrophysics, abrasion metallurgy, etc. This introductory article contains explanations of the database and the means to use it, its sources, ways of calculation, and assessments of the accuracy of data.

  1. System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals

    DOE Patents [OSTI]

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2014-12-30T23:59:59.000Z

    A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

  2. SummitView 1.0: a code to automatically generate 3D solid models of surface micro-machining based MEMS designs.

    SciTech Connect (OSTI)

    McBride, Cory L. (Elemental Technologies, American Fort, UT); Yarberry, Victor R.; Schmidt, Rodney Cannon; Meyers, Ray J. (Elemental Technologies, American Fort, UT)

    2006-11-01T23:59:59.000Z

    This report describes the SummitView 1.0 computer code developed at Sandia National Laboratories. SummitView is designed to generate a 3D solid model, amenable to visualization and meshing, that represents the end state of a microsystem fabrication process such as the SUMMiT (Sandia Ultra-Planar Multilevel MEMS Technology) V process. Functionally, SummitView performs essentially the same computational task as an earlier code called the 3D Geometry modeler [1]. However, because SummitView is based on 2D instead of 3D data structures and operations, it has significant speed and robustness advantages. As input it requires a definition of both the process itself and the collection of individual 2D masks created by the designer and associated with each of the process steps. The definition of the process is contained in a special process definition file [2] and the 2D masks are contained in MEM format files [3]. The code is written in C++ and consists of a set of classes and routines. The classes represent the geometric data and the SUMMiT V process steps. Classes are provided for the following process steps: Planar Deposition, Planar Etch, Conformal Deposition, Dry Etch, Wet Etch and Release Etch. SummitView is built upon the 2D Boolean library GBL-2D [4], and thus contains all of that library's functionality.

  3. Environmental impacts of thermochemical biomass conversion. Final report

    SciTech Connect (OSTI)

    Elliott, D.C.; Hart, T.R.; Neuenschwander, G.G.; McKinney, M.D.; Norton, M.V.; Abrams, C.W. [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01T23:59:59.000Z

    Thermochemical conversion in this study is limited to fast pyrolysis, upgrading of fast pyrolysis oils, and gasification. Environmental impacts of all types were considered within the project, but primary emphasis was on discharges to the land, air, and water during and after the conversion processes. The project discussed here is divided into five task areas: (1) pyrolysis oil analysis; (2) hydrotreating of pyrolysis oil; (3) gas treatment systems for effluent minimization; (4) strategic analysis of regulatory requirements; and (5) support of the IEA Environmental Systems Activity. The pyrolysis oil task was aimed at understanding the oil contaminants and potential means for their removal. The hydrotreating task was undertaken to better define one potential means for both improving the quality of the oil but also removing contaminants from the oil. Within Task 3, analyses were done to evaluate the results of gasification product treatment systems. Task 4 was a review and collection of regulatory requirements which would be applicable to the subject processes. The IEA support task included input to and participation in the IEA Bioenergy activity which directly relates to the project subject. Each of these tasks is described along with the results. Conclusions and recommendations from the overall project are given.

  4. Simulating the thermo-chemical magmatic and tectonic evolution of1 Venus' mantle and lithosphere 1. two-dimensional models2

    E-Print Network [OSTI]

    Tackley, Paul J.

    1 Simulating the thermo-chemical magmatic and tectonic evolution of1 Venus' mantle and lithosphere Numerical convection models of the thermo-chemical evolution of Venus are compared to present-8 day

  5. Optimized Generation of Data-path from C Codes for FPGAs Zhi Guo Betul Buyukkurt Walid Najjar

    E-Print Network [OSTI]

    Najjar, Walid A.

    on FPGAs, more specifically on CSoCs. It generates RTL level HDLs from frequently executing kernels System- on-a-Chip (CSoC), which has one or more microprocessors integrated with a field-programmable gate in the way of wider acceptance of CSoC platforms is their programmability. Application developers must have

  6. MINTEQ2 geochemical code: provisionary organic data base

    SciTech Connect (OSTI)

    Morrey, J.R.; Krupka, K.M.; Dove, F.H.

    1985-10-01T23:59:59.000Z

    Organic components in aqueous radioactive chemical sources, surface waters, and ground waters could substantially alter the mobility of radioactive and other important nonradioactive elements released from a defense waste disposal system. It is therefore important to be able to predict, as accurately as possible, the effects of selected organic components on the solubilities of radionuclides and important nonradioactive elements. The geochemical code MINTEQ2 can be used to assess solubilities provided that appropriate thermochemical data for organic and inorganic aqueous species and solids are available for its use. The code accepts an assemblage of gaseous and solid phases in contact with an aqueous phase and calculates the thermochemical equilibrium between these phases. Unlike typical hydrologic flow and transport codes where the data base is entirely site specific (i.e., parameters particular to the specific site), MINTEQ2 requires an additional generic thermochemical data base. This report discusses the addition of provisionary organic reactions and associated equilibrium constants to the generic data base that can be used by MINTEQ2 in scoping calculations or preliminary performance assessments.

  7. Shortened Turbo Codes

    E-Print Network [OSTI]

    David J.C. MacKay

    Simple arguments suggest that shortened codes must have distance properties equal to or better than those of their parent codes, and that they should be equally practical to decode. This relationship holds true in the case of low density generator codes and low density parity check codes. We investigate the properties of shortened turbo codes. I. Motivation for Shortening In our previous work on codes based on very sparse matrices we have observed that while codes with a low density generator matrix [1] are asymptotically bad, codes with a low density parity check matrix [2] are asymptotically good [3, 4, 5]. One way of viewing the relationship between low density generator matrix codes and low density parity check matrix codes is that one obtains a low density parity check matrix by taking the M \\Theta N parity check matrix [P IM ] of a (N; K) low density generator matrix code and chopping off its right-most M columns (where M = N \\Gamma K), to yield an M \\Theta K matrix [P], which...

  8. GEOPHYSICAL RESEARCH LETTERS, VOL. 25, NO. 13, PAGES 2345-2348, JULY 1, 1998 High Rayleigh number thermo-chemical models

    E-Print Network [OSTI]

    Manga, Michael

    thermo-chemical models of a dense boundary layer in D Nancy L. Montague, Louise H. Kellogg Department of thermo-chemical convection in 2-D with a Rayleigh number of 107 , we investigate the dy- namic thermal models). Hence a thermo-chemical boundary layer at the CMB may account for the temperature

  9. Thermochemical Kinetics for Multireference Systems: Addition Reactions of Ozone

    SciTech Connect (OSTI)

    Zhao, Yan; Tishchenko, Oksana; Gour, Jeffrey R.; Li, Wei; Lutz, Jesse; Piecuch, Piotr; Truhlar, Donald G.

    2009-05-14T23:59:59.000Z

    The 1,3-dipolar cycloadditions of ozone to ethyne and ethene provide extreme examples of multireference singlet-state chemistry, and they are examined here to test the applicability of several approaches to thermochemical kinetics of systems with large static correlation. Four different multireference diagnostics are applied to measure the multireference characters of the reactants, products, and transition states; all diagnostics indicate significant multireference character in the reactant portion of the potential energy surfaces. We make a more complete estimation of the effect of quadruple excitations than was previously available, and we use this with CCSDT/CBS estimation of Wheeler et al. (Wheeler, S. E.; Ess, D. H.; Houk, K. N. J. Phys. Chem. A 2008, 112, 1798.) to make new best estimates of the van der Waals association energy, the barrier height, and the reaction energy to form the cycloadduct for both reactions. Comparing with these best estimates, we present comprehensive mean unsigned errors for a variety of coupled cluster, multilevel, and density functional methods. Several computational aspects of multireference reactions are considered: (i) the applicability of multilevel theory, (ii) the convergence of coupled cluster theory for reaction barrier heights, (iii) the applicability of completely renormalized coupled cluster methods to multireference systems, (iv) the treatment by density functional theory, (v) the multireference perturbation theory for multireference reactions, and (vi) the relative accuracy of scaling-type multilevel methods as compared with additive ones. It is found that scaling-type multilevel methods do not perform better than the additive-type multilevel methods. Among the 48 tested density functionals, only M05 reproduces the best estimates within their uncertainty. Multireference perturbation theory based on the complete-active-space reference wave functions constructed using a small number of reaction-specific active orbitals gives accurate forward barrier heights; however, it significantly underestimates reaction energies.

  10. Code: A Lightweight and Flexible Mobile Code Toolkit

    E-Print Network [OSTI]

    Picco, Gian Pietro

    evaluation of mobile code technology does not exist yet, some studies already evidenced that the powerful of clientserver and mobile code in reducing the network traffic generated by management. The theoreticalCode: A Lightweight and Flexible Mobile Code Toolkit Gian Pietro Picco Dip. Automatica e

  11. Code Description Code Description

    E-Print Network [OSTI]

    Leave* 5127 Officials 5217 Faculty Sick Leave Payment 5124 Personal Service Contracts 5211 Research Services Contracts Scholarships & Fellowships Faculty Fringe Contract Services #12;Banner Account Code

  12. Data-Parallel Language for Correct and Efficient Sparse Matrix Codes

    E-Print Network [OSTI]

    Arnold, Gilad

    2011-01-01T23:59:59.000Z

    3 Verifying High-Level Sparse Codes 3.1by generated code . . . . . . . . . . . . . . . . . . . .4.7.2 Generating parallel code with OpenMP

  13. Solar Thermochemical Fuels Production: Solar Thermochemical Fuel Production via a Novel Lowe Pressure, Magnetically Stabilized, Non-volatile Iron Oxide Looping Process

    SciTech Connect (OSTI)

    None

    2011-12-19T23:59:59.000Z

    HEATS Project: The University of Florida is developing a windowless high-temperature chemical reactor that converts concentrated solar thermal energy to syngas, which can be used to produce gasoline. The overarching project goal is lowering the cost of the solar thermochemical production of syngas for clean and synthetic hydrocarbon fuels like petroleum. The team will develop processes that rely on water and recycled CO2 as the sole feed-stock, and concentrated solar radiation as the sole energy source, to power the reactor to produce fuel efficiently. Successful large-scale deployment of this solar thermochemical fuel production could substantially improve our national and economic security by replacing imported oil with domestically produced solar fuels.

  14. Prediction of oxy-coal flame stand-off using high-fidelity thermochemical models

    E-Print Network [OSTI]

    Prediction of oxy-coal flame stand-off using high-fidelity thermochemical models and the one Abstract An Eulerian one-dimensional turbulence (ODT) model is applied to simulate oxy-coal combustion temperature and mixing rate on oxy-coal flame is simulated and discussed where flame stand-off is used

  15. Comparison of closed and open thermochemical processes, for long-term thermal energy storage applications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Comparison of closed and open thermochemical processes, for long-term thermal energy storage-term thermal storage, second law analysis * Corresponding author: E-mail: mazet@univ-perp.fr Nomenclature c Energy Tecnosud, Rambla de la thermodynamique, 66100 Perpignan, France b Université de Perpignan Via

  16. HOSSEINI et al Optimization of NaOH thermo-chemical pre-

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    A municipal solid waste produced in urban and rural communities is a serious pollution source of water; Response Surface Method; water resource; pollution INTRODUCTION Large amount of solid waste is producedHOSSEINI et al Optimization of NaOH thermo-chemical pre- treatment for enhancing solubilisation

  17. Rediscovering the Wheel. Thermochemical Analysis of Energetics of the Aromatic Diazines

    E-Print Network [OSTI]

    Chickos, James S.

    calorimetry and vapor pressure measurements. The gas and condensed phase enthalpies of formation of the parent not the case for diazabenzenes. The previous comprehensive experimental study of both the condensed and gasRediscovering the Wheel. Thermochemical Analysis of Energetics of the Aromatic Diazines Sergey P

  18. A Continuous Solar Thermochemical Hydrogen Production Plant Design

    E-Print Network [OSTI]

    Luc, Wesley Wai

    Solar thermal energy is used to drive the overall process and required electricity is generated internally from waste heat.

  19. Effects of Dopant Metal Variation and Material Synthesis Method on the Material Properties of Mixed Metal Ferrites in Yttria Stabilized Zirconia for Solar Thermochemical Fuel Production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Leonard, Jeffrey; Reyes, Nichole; Allen, Kyle M.; Randhir, Kelvin; Li, Like; AuYeung, Nick; Grunewald, Jeremy; Rhodes, Nathan; Bobek, Michael; Klausner, James F.

    2015-01-01T23:59:59.000Z

    Mixed metal ferrites have shown much promise in two-step solar-thermochemical fuel production. Previous work has typically focused on evaluating a particular metal ferrite produced by a particular synthesis process, which makes comparisons between studies performed by independent researchers difficult. A comparative study was undertaken to explore the effects different synthesis methods have on the performance of a particular material during redox cycling using thermogravimetry. This study revealed that materials made via wet chemistry methods and extended periods of high temperature calcination yield better redox performance. Differences in redox performance between materials made via wet chemistry methods were minimal and thesemoredemonstrated much better performance than those synthesized via the solid state method. Subsequently, various metal ferrite samples (NiFe2O4, MgFe2O4, CoFe2O4, and MnFe2O4) in yttria stabilized zirconia (8YSZ) were synthesized via coprecipitation and tested to determine the most promising metal ferrite combination. It was determined that 10?wt.% CoFe2O4in 8YSZ produced the highest and most consistent yields of O2and CO. By testing the effects of synthesis methods and dopants in a consistent fashion, those aspects of ferrite preparation which are most significant can be revealed. More importantly, these insights can guide future efforts in developing the next generation of thermochemical fuel production materials.less

  20. KAOS/LIB-V: A library of nuclear response functions generated by KAOS-V code from ENDF/B-V and other data files

    SciTech Connect (OSTI)

    Farawila, Y.; Gohar, Y.; Maynard, C.

    1989-04-01T23:59:59.000Z

    KAOS/LIB-V: A library of processed nuclear responses for neutronics analyses of nuclear systems has been generated. The library was prepared using the KAOS-V code and nuclear data from ENDF/B-V. The library includes kerma (kinetic energy released in materials) factors and other nuclear response functions for all materials presently of interest in fusion and fission applications for 43 nonfissionable and 15 fissionable isotopes and elements. The nuclear response functions include gas production and tritium-breeding functions, and all important reaction cross sections. KAOS/LIB-V employs the VITAMIN-E weighting function and energy group structure of 174 neutron groups. Auxiliary nuclear data bases, e.g., the Japanese evaluated nuclear data library JENDL-2 were used as a source of isotopic cross sections when these data are not provided in ENDF/B-V files for a natural element. These are needed mainly to estimate average quantities such as effective Q-values for the natural element. This analysis of local energy deposition was instrumental in detecting and understanding energy balance deficiencies and other problems in the ENDF/B-V data. Pertinent information about the library and a graphical display of the main nuclear response functions for all materials in the library are given. 35 refs.

  1. DOE Announces Webinars on Solar Thermochemical Reaction Systems...

    Broader source: Energy.gov (indexed) [DOE]

    and other rural electricity providers. The EECLP supports energy efficiency, demand-side management, and renewable energy generation. Register for the webinar. January 13:...

  2. Tokamak Systems Code

    SciTech Connect (OSTI)

    Reid, R.L.; Barrett, R.J.; Brown, T.G.; Gorker, G.E.; Hooper, R.J.; Kalsi, S.S.; Metzler, D.H.; Peng, Y.K.M.; Roth, K.E.; Spampinato, P.T.

    1985-03-01T23:59:59.000Z

    The FEDC Tokamak Systems Code calculates tokamak performance, cost, and configuration as a function of plasma engineering parameters. This version of the code models experimental tokamaks. It does not currently consider tokamak configurations that generate electrical power or incorporate breeding blankets. The code has a modular (or subroutine) structure to allow independent modeling for each major tokamak component or system. A primary benefit of modularization is that a component module may be updated without disturbing the remainder of the systems code as long as the imput to or output from the module remains unchanged.

  3. On the logical operators of quantum codes

    E-Print Network [OSTI]

    Mark M. Wilde

    2009-03-30T23:59:59.000Z

    I show how applying a symplectic Gram-Schmidt orthogonalization to the normalizer of a quantum code gives a different way of determining the code's logical operators. This approach may be more natural in the setting where we produce a quantum code from classical codes because the generator matrices of the classical codes form the normalizer of the resulting quantum code. This technique is particularly useful in determining the logical operators of an entanglement-assisted code produced from two classical binary codes or from one classical quaternary code. Finally, this approach gives additional formulas for computing the amount of entanglement that an entanglement-assisted code requires.

  4. Spinal codes

    E-Print Network [OSTI]

    Perry, Jonathan, S.M. Massachusetts Institute of Technology

    2012-01-01T23:59:59.000Z

    Spinal codes are a new class of rateless codes that enable wireless networks to cope with time-varying channel conditions in a natural way, without requiring any explicit bit rate selection. The key idea in the code is the ...

  5. BioFacts: Fueling a stronger economy, Thermochemical conversion of biomass

    SciTech Connect (OSTI)

    NONE

    1994-12-01T23:59:59.000Z

    A primary mission of the US DOE is to stimulate the development, acceptance, and use of transportation fuels made from plants and wastes called biomass. Through the National Renewable Energy Laboratory (NREL), Doe is developing and array of biomass conversion technologies that can be easily integrated into existing fuel production and distribution systems. The variety of technology options being developed should enable individual fuel producers to select and implement the most cost-effective biomass conversion process suited to their individual needs. Current DOE biofuels research focuses on the separate and tandem uses of biochemical and thermochemical conversion processes. This overview specifically addresses NREL`s thermochemical conversion technologies, which are largely based on existing refining processes.

  6. Synfuels from fusion: producing hydrogen with the tandem mirror reactor and thermochemical cycles

    SciTech Connect (OSTI)

    Ribe, F.L.; Werner, R.W.

    1981-01-21T23:59:59.000Z

    This report examines, for technical merit, the combination of a fusion reactor driver and a thermochemical plant as a means for producing synthetic fuel in the basic form of hydrogen. We studied: (1) one reactor type - the Tandem Mirror Reactor - wishing to use to advantage its simple central cell geometry and its direct electrical output; (2) two reactor blanket module types - a liquid metal cauldron design and a flowing Li/sub 2/O solid microsphere pellet design so as to compare the technology, the thermal-hydraulics, neutronics and tritium control in a high-temperature operating mode (approx. 1200 K); (3) three thermochemical cycles - processes in which water is used as a feedstock along with a high-temperature heat source to produce H/sub 2/ and O/sub 2/.

  7. DOI: 10.1002/cssc.200900138 Ceria as a Thermochemical Reaction Medium for Selectively Generating

    E-Print Network [OSTI]

    partial pressure. We examined the fuel production half- cycle using porous SDC, pretreated at 15008C for experimental oxygen evolu- tion data). The input H2O and/or CO2 were reacted with the partially reduced SDC

  8. Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage- FY13 Q1

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this General Atomics project, funded by SunShot, for the first quarter of fiscal year 2013.

  9. Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage- FY12 Q4

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this General Atomics project, funded by SunShot, for the fourth quarter of fiscal year 2012.

  10. Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage- FY13 Q2

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this General Atomics project, funded by SunShot, for the second quarter of fiscal year 2013.

  11. Synfuels from fusion: using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    SciTech Connect (OSTI)

    Werner, R.W. (ed.)

    1982-11-01T23:59:59.000Z

    This study is concerned with the following area: (1) the tandem mirror reactor and its physics; (2) energy balance; (3) the lithium oxide canister blanket system; (4) high-temperature blanket; (5) energy transport system-reactor to process; (6) thermochemical hydrogen processes; (7) interfacing the GA cycle; (8) matching power and temperature demands; (9) preliminary cost estimates; (10) synfuels beyond hydrogen; and (11) thermodynamics of the H/sub 2/SO/sub 4/-H/sub 2/O system. (MOW)

  12. Current Research on Thermochemical Conversion of Biomass at the National Renewable Energy Laboratory

    SciTech Connect (OSTI)

    Baldwin, R. M.; Magrini-Bair, K. A.; Nimlos, M. R.; Pepiot, P.; Donohoe, B. S.; Hensley, J. E.; Phillips, S. D.

    2012-04-05T23:59:59.000Z

    The thermochemical research platform at the National Bioenergy Center, National Renewable Energy Laboratory (NREL) is primarily focused on conversion of biomass to transportation fuels using non-biological techniques. Research is conducted in three general areas relating to fuels synthesis via thermochemical conversion by gasification: (1) Biomass gasification fundamentals, chemistry and mechanisms of tar formation; (2) Catalytic tar reforming and syngas cleaning; and (3) Syngas conversion to mixed alcohols. In addition, the platform supports activities in both technoeconomic analysis (TEA) and life cycle assessment (LCA) of thermochemical conversion processes. Results from the TEA and LCA are used to inform and guide laboratory research for alternative biomass-to-fuels strategies. Detailed process models are developed using the best available material and energy balance information and unit operations models created at NREL and elsewhere. These models are used to identify cost drivers which then form the basis for research programs aimed at reducing costs and improving process efficiency while maintaining sustainability and an overall net reduction in greenhouse gases.

  13. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, Paul W. (Longwood, FL); Bannister, Ronald L. (Winter Springs, FL)

    1995-01-01T23:59:59.000Z

    A gas turbine system in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas.

  14. Thermochemically recuperated and steam cooled gas turbine system

    DOE Patents [OSTI]

    Viscovich, P.W.; Bannister, R.L.

    1995-07-11T23:59:59.000Z

    A gas turbine system is described in which the expanded gas from the turbine section is used to generate the steam in a heat recovery steam generator and to heat a mixture of gaseous hydrocarbon fuel and the steam in a reformer. The reformer converts the hydrocarbon gas to hydrogen and carbon monoxide for combustion in a combustor. A portion of the steam from the heat recovery steam generator is used to cool components, such as the stationary vanes, in the turbine section, thereby superheating the steam. The superheated steam is mixed into the hydrocarbon gas upstream of the reformer, thereby eliminating the need to raise the temperature of the expanded gas discharged from the turbine section in order to achieve effective conversion of the hydrocarbon gas. 4 figs.

  15. THERMOCHEMICAL CONVERSION OF FERMENTATION-DERIVED OXYGENATES TO FUELS

    SciTech Connect (OSTI)

    Ramasamy, Karthikeyan K.; Wang, Yong

    2013-06-01T23:59:59.000Z

    At present ethanol generated from renewable resources through fermentation process is the dominant biofuel. But ethanol suffers from undesirable fuel properties such as low energy density and high water solubility. The production capacity of fermentation derived oxygenates are projected to rise in near future beyond the current needs. The conversion of oxygenates to hydrocarbon compounds that are similar to gasoline, diesel and jet fuel is considered as one of the viable option. In this chapter the thermo catalytic conversion of oxygenates generated through fermentation to fuel range hydrocarbons will be discussed.

  16. Application of Gamma code coupled with turbomachinery models for high temperature gas-cooled reactors

    SciTech Connect (OSTI)

    Chang Oh

    2008-02-01T23:59:59.000Z

    The very high-temperature gas-cooled reactor (VHTR) is envisioned as a single- or dual-purpose reactor for electricity and hydrogen generation. The concept has average coolant temperatures above 9000C and operational fuel temperatures above 12500C. The concept provides the potential for increased energy conversion efficiency and for high-temperature process heat application in addition to power generation. While all the High Temperature Gas Cooled Reactor (HTGR) concepts have sufficiently high temperature to support process heat applications, such as coal gasification, desalination or cogenerative processes, the VHTRs higher temperatures allow broader applications, including thermochemical hydrogen production. However, the very high temperatures of this reactor concept can be detrimental to safety if a loss-ofcoolant accident (LOCA) occurs. Following the loss of coolant through the break and coolant depressurization, air will enter the core through the break by molecular diffusion and ultimately by natural convection, leading to oxidation of the in-core graphite structure and fuel. The oxidation will accelerate heatup of the reactor core and the release of a toxic gas, CO, and fission products. Thus, without any effective countermeasures, a pipe break may lead to significant fuel damage and fission product release. Prior to the start of this Korean/United States collaboration, no computer codes were available that had been sufficiently developed and validated to reliably simulate a LOCA in the VHTR. Therefore, we have worked for the past three years on developing and validating advanced computational methods for simulating LOCAs in a VHTR. GAMMA code is being developed to implement turbomachinery models in the power conversion unit (PCU) and ultimately models associated with the hydrogen plant. Some preliminary results will be described in this paper.

  17. Performance Engineering: Understanding and Improving the Performance of Large-Scale Codes

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    An API for Runtime Code Patching, Journal of Highof the Conference on Code Generation and Optimization,Performance of Large-Scale Codes David H. Bailey 1 , Robert

  18. The environment and ASME performance test codes

    SciTech Connect (OSTI)

    Bannister, R.L. [Westinghouse Electric Corp., Orlando, FL (United States); Macak, J.J. III [Mostardi-Platt Associates, Inc., Elmhurst, IL (United States); Newby, R.A. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States)

    1995-12-31T23:59:59.000Z

    Today, federal, state and local governmental agencies have enacted comprehensive legislation on power generation emission limits which affects all aspects of the energy sector. This paper reviews the indirect impact of Performance Test Codes on environmental testing, reviewing past, current, and future practices. Existing codes and three new codes currently under development will be cited along with possible future code development.

  19. Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bennion, Edward P.; Ginosar, Daniel M.; Moses, John; Agblevor, Foster; Quinn, Jason C.

    2015-01-01T23:59:59.000Z

    Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae to biofuel process through life cycle assessment. A system boundary of a well to pump (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimentalmoreand literature data and are representative of an industrial-scale microalgae to biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory- scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development and a comparison of results to literature.less

  20. Lifecycle Assessment of Microalgae to Biofuel: Thermochemical Processing through Hydrothermal Liquefaction or Pyrolysis.

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bennion, Edward P.; Ginosar, Daniel M.; Moses, John; Agblevor, Foster; Quinn, Jason C.

    2015-04-01T23:59:59.000Z

    Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae to biofuel process through life cycle assessment. A system boundary of a well to pump (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae to biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory- scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development and a comparison of results to literature.

  1. Lifecycle assessment of microalgae to biofuel: Comparison of thermochemical processing pathways

    SciTech Connect (OSTI)

    Bennion, Edward P.; Ginosar, Daniel M.; Moses, John; Agblevor, Foster; Quinn, Jason C.

    2015-01-01T23:59:59.000Z

    Microalgae are currently being investigated as a renewable transportation fuel feedstock based on various advantages that include high annual yields, utilization of poor quality land, does not compete with food, and can be integrated with various waste streams. This study focuses on directly assessing the impact of two different thermochemical conversion technologies on the microalgae to biofuel process through life cycle assessment. A system boundary of a well to pump (WTP) is defined and includes sub-process models of the growth, dewatering, thermochemical bio-oil recovery, bio-oil stabilization, conversion to renewable diesel, and transport to the pump. Models were validated with experimental and literature data and are representative of an industrial-scale microalgae to biofuel process. Two different thermochemical bio-oil conversion systems are modeled and compared on a systems level, hydrothermal liquefaction (HTL) and pyrolysis. The environmental impact of the two pathways were quantified on the metrics of net energy ratio (NER), defined here as energy consumed over energy produced, and greenhouse gas (GHG) emissions. Results for WTP biofuel production through the HTL pathway were determined to be 1.23 for the NER and GHG emissions of -11.4 g CO2 eq (MJ renewable diesel)-1. WTP biofuel production through the pyrolysis pathway results in a NER of 2.27 and GHG emissions of 210 g CO2 eq (MJ renewable diesel)-1. The large environmental impact associated with the pyrolysis pathway is attributed to feedstock drying requirements and combustion of co-products to improve system energetics. Discussion focuses on a detailed breakdown of the overall process energetics and GHGs, impact of modeling at laboratory- scale compared to industrial-scale, environmental impact sensitivity to engineering systems input parameters for future focused research and development and a comparison of results to literature.

  2. Code constructions and code families for nonbinary quantum stabilizer code

    E-Print Network [OSTI]

    Ketkar, Avanti Ulhas

    2005-11-01T23:59:59.000Z

    Stabilizer codes form a special class of quantum error correcting codes. Nonbinary quantum stabilizer codes are studied in this thesis. A lot of work on binary quantum stabilizer codes has been done. Nonbinary stabilizer codes have received much...

  3. Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties

    SciTech Connect (OSTI)

    Manohar S. Sohal; Matthias A. Ebner; Piyush Sabharwall; Phil Sharpe

    2010-03-01T23:59:59.000Z

    The purpose of this report is to provide a review of thermodynamic and thermophysical properties of candidate molten salt coolants, which may be used as a primary coolant within a nuclear reactor or heat transport medium from the Next Generation Nuclear Plant (NGNP) to a processing plant, for example, a hydrogen-production plant. Thermodynamic properties of four types of molten salts, including LiF-BeF2 (67 and 33 mol%, respectively; also known as FLiBe), LiF-NaF-KF (46.5, 11.5, and 52 mol%, also known as FLiNaK), and KCl-MgCl2 (67 and 33 mol%), and sodium nitrate-sodium nitrite-potassium nitrate (NaNO3NaNO2KNO3, (7-49-44 or 7-40-53 mol%) have been investigated. Limitations of existing correlations to predict density, viscosity, specific heat capacity, surface tension, and thermal conductivity, were identified. The impact of thermodynamic properties on the heat transfer, especially Nusselt number was also discussed. Stability of the molten salts with structural alloys and their compatibility with the structural alloys was studied. Nickel and alloys with dense Ni coatings are effectively inert to corrosion in fluorides but not so in chlorides. Of the chromium containing alloys, Hastelloy N appears to have the best corrosion resistance in fluorides, while Haynes 230 was most resistant in chloride. In general, alloys with increasing carbon and chromium content are increasingly subject to corrosion by the fluoride salts FLiBe and FLiNaK, due to attack and dissolution of the intergranular chromium carbide. Future research to obtain needed information was identified.

  4. Holographic codes

    E-Print Network [OSTI]

    Latorre, Jose I

    2015-01-01T23:59:59.000Z

    There exists a remarkable four-qutrit state that carries absolute maximal entanglement in all its partitions. Employing this state, we construct a tensor network that delivers a holographic many body state, the H-code, where the physical properties of the boundary determine those of the bulk. This H-code is made of an even superposition of states whose relative Hamming distances are exponentially large with the size of the boundary. This property makes H-codes natural states for a quantum memory. H-codes exist on tori of definite sizes and get classified in three different sectors characterized by the sum of their qutrits on cycles wrapped through the boundaries of the system. We construct a parent Hamiltonian for the H-code which is highly non local and finally we compute the topological entanglement entropy of the H-code.

  5. Holographic codes

    E-Print Network [OSTI]

    Jose I. Latorre; German Sierra

    2015-02-23T23:59:59.000Z

    There exists a remarkable four-qutrit state that carries absolute maximal entanglement in all its partitions. Employing this state, we construct a tensor network that delivers a holographic many body state, the H-code, where the physical properties of the boundary determine those of the bulk. This H-code is made of an even superposition of states whose relative Hamming distances are exponentially large with the size of the boundary. This property makes H-codes natural states for a quantum memory. H-codes exist on tori of definite sizes and get classified in three different sectors characterized by the sum of their qutrits on cycles wrapped through the boundaries of the system. We construct a parent Hamiltonian for the H-code which is highly non local and finally we compute the topological entanglement entropy of the H-code.

  6. Bounds on Effective Hamiltonians for Stabilizer Codes

    E-Print Network [OSTI]

    Stephen S. Bullock; Dianne P. O'Leary

    2008-02-05T23:59:59.000Z

    This manuscript introduces various notions of k-locality of stabilizer codes inherited from the associated stabilizer groups. A choice of generators for the group leads to a Hamiltonian with the code in its groundspace, while a Hamiltonian holding the code in its groundspace might be called effective if its locality is less than that of a natural choice of generators (or any choice). This paper establishes some conditions under which effective Hamiltonians for stabilizer codes do not exist. Our results simplify in the cases of Calderbank-Shor-Steane stabilizer codes and topologically-ordered stabilizer codes arising from surface cellulations.

  7. Thermochemical process for seasonal storage of solar energy: characterization and modeling of a high-density reactive bed

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    1 Thermochemical process for seasonal storage of solar energy: characterization and modeling to maximize the use of solar energy for house heating, it is interesting to valorize the solar energy excess efficiency, and a 20 per cent share of renewable). The use of renewable energies and in particular solar

  8. Codeword stabilized quantum codes on subsystems

    E-Print Network [OSTI]

    Jeonghwan Shin; Jun Heo; Todd A. Brun

    2012-08-29T23:59:59.000Z

    Codeword stabilized quantum codes provide a unified approach to constructing quantum error-correcting codes, including both additive and non-additive quantum codes. Standard codeword stabilized quantum codes encode quantum information into subspaces. The more general notion of encoding quantum information into a subsystem is known as an operator (or subsystem) quantum error correcting code. Most operator codes studied to date are based in the usual stabilizer formalism. We introduce operator quantum codes based on the codeword stabilized quantum code framework. Based on the necessary and sufficient conditions for operator quantum error correction, we derive a error correction condition for operator codeword stabilized quantum codes. Based on this condition, the word operators of a operator codeword stabilized quantum code are constructed from a set of classical binary errors induced by generators of the gauge group. We use this scheme to construct examples of both additive and non-additive codes that encode quantum information into a subsystem.

  9. Thermochemical Interface

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department of Energy (DOE)Department1AOffice

  10. Solar Thermochemical Fuels Production: Solar Fuels via Partial Redox Cycles with Heat Recovery

    SciTech Connect (OSTI)

    None

    2011-12-19T23:59:59.000Z

    HEATS Project: The University of Minnesota is developing a solar thermochemical reactor that will efficiently produce fuel from sunlight, using solar energy to produce heat to break chemical bonds. The University of Minnesota is envisioning producing the fuel by using partial redox cycles and ceria-based reactive materials. The team will achieve unprecedented solar-to-fuel conversion efficiencies of more than 10% (where current state-of-the-art efficiency is 1%) by combined efforts and innovations in material development, and reactor design with effective heat recovery mechanisms and demonstration. This new technology will allow for the effective use of vast domestic solar resources to produce precursors to synthetic fuels that could replace gasoline.

  11. Configuring the thermochemical hydrogen sulfuric acid process step for the Tandem Mirror Reactor

    SciTech Connect (OSTI)

    Galloway, T.R.

    1981-05-01T23:59:59.000Z

    This paper identifies the sulfuric acid step as the critical part of the thermochemical cycle in dictating the thermal demands and temperature requirements of the heat source. The General Atomic Sulfur-Iodine Cycle is coupled to a Tandem Mirror. The sulfuric acid decomposition process step is focused on specifically since this step can use the high efficiency electrical power of the direct converter together with the other thermal-produced electricity to Joule-heat a non-catalytic SO/sub 3/ decomposer to approximately 1250/sup 0/K. This approach uses concepts originally suggested by Dick Werner and Oscar Krikorian. The blanket temperature can be lowered to about 900/sup 0/K, greatly alleviating materials problems, the level of technology required, safety problems, and costs. A moderate degree of heat has been integrated to keep the cycle efficiency around 48%, but the number of heat exchangers has been limited in order to keep hydrogen production costs within reasonable bounds.

  12. Techno-economic Analysis for the Thermochemical Conversion of Biomass to Liquid Fuels

    SciTech Connect (OSTI)

    Zhu, Yunhua; Tjokro Rahardjo, Sandra A.; Valkenburt, Corinne; Snowden-Swan, Lesley J.; Jones, Susanne B.; Machinal, Michelle A.

    2011-06-01T23:59:59.000Z

    ). This study is part of an ongoing effort within the Department of Energy to meet the renewable energy goals for liquid transportation fuels. The objective of this report is to present a techno-economic evaluation of the performance and cost of various biomass based thermochemical fuel production. This report also documents the economics that were originally developed for the report entitled Biofuels in Oregon and Washington: A Business Case Analysis of Opportunities and Challenges (Stiles et al. 2008). Although the resource assessments were specific to the Pacific Northwest, the production economics presented in this report are not regionally limited. This study uses a consistent technical and economic analysis approach and assumptions to gasification and liquefaction based fuel production technologies. The end fuels studied are methanol, ethanol, DME, SNG, gasoline and diesel.

  13. Report to the Legislature in Compliance with Public Utilities Code

    E-Print Network [OSTI]

    "................................................................................................................................8 DISTRIBUTED GENERATION COSTS AND SAVINGSReport to the Legislature in Compliance with Public Utilities Code Section 910 March 2013 #12...................................................................17 Self-Generation Incentive Program (SGIP

  14. High Performance Reach Codes

    E-Print Network [OSTI]

    Edelson, J.

    2011-01-01T23:59:59.000Z

    Jim Edelson New Buildings Institute A Growing Role for Codes and Stretch Codes in Utility Programs Clean Air Through Energy Efficiency November 9, 2011 ESL-KT-11-11-39 CATEE 2011, Dallas, Texas, Nov. 7 ? 9, 2011 New Buildings Institute ESL..., Nov. 7 ? 9, 2011 ?31? Flavors of Codes ? Building Codes Construction Codes Energy Codes Stretch or Reach Energy Codes Above-code programs Green or Sustainability Codes Model Codes ?Existing Building? Codes Outcome-Based Codes ESL-KT-11...

  15. CURRICULUM CODE: 611 & 613 MINOR CODE 061 DEGREE CODE: 31

    E-Print Network [OSTI]

    Qiu, Weigang

    CURRICULUM CODE: 611 & 613 MINOR CODE 061 DEGREE CODE: 31 DAAF 12/09 Hunter College of the City Stamp THIS AUDIT IS NOT OFFICIAL UNTIL APPROVED BY THE OFFICE OF THE REGISTRAR DEGREE AUDIT UNIT Student Specialization Section #12;CURRICULUM CODE: 611 & 613 MINOR CODE 061 DEGREE CODE: 31 DAAF 12/09 *****A SEPARATE

  16. CURRICULUM CODE_611 & 613 MINOR CODE 062 DEGREE CODE _31_

    E-Print Network [OSTI]

    Qiu, Weigang

    CURRICULUM CODE_611 & 613 MINOR CODE 062 DEGREE CODE _31_ 1/24/2006 Hunter College of the City-mail address Department Stamp THIS AUDIT IS NOT OFFICIAL UNTIL APPROVED BY THE OFFICE OF THE REGISTRAR, DEGREE Section Only For January 2010 Graduate #12;CURRICULUM CODE_611 & 613 MINOR CODE 062 DEGREE CODE _31_ 1

  17. Comparison of the efficiency of a thermo-chemical process to that of a fuel cell process when both involve the same chemical reaction

    E-Print Network [OSTI]

    Bulusu, Seshu Periah

    2009-05-15T23:59:59.000Z

    This work assesses if a plausible theoretical thermo-chemical scheme can be conceived of, that is capable of extracting work from chemical reactants which can be compared with work produced by a fuel cell, when both processes are supplied...

  18. Network Coding for Large Scale Content Distribution

    E-Print Network [OSTI]

    Keinan, Alon

    Network Coding for Large Scale Content Distribution IEEE Infocom 2005 Christos Gkantsidis College propose a new scheme for content distribution of large files that is based on network coding. With network coding, each node of the distribution network is able to generate and transmit encoded blocks

  19. Design of additive quantum codes via the code-word-stabilized framework

    SciTech Connect (OSTI)

    Kovalev, Alexey A.; Pryadko, Leonid P. [Department of Physics and Astronomy, University of California, Riverside, California 92521 (United States); Dumer, Ilya [Department of Electrical Engineering, University of California, Riverside, California 92521 (United States)

    2011-12-15T23:59:59.000Z

    We consider design of the quantum stabilizer codes via a two-step, low-complexity approach based on the framework of codeword-stabilized (CWS) codes. In this framework, each quantum CWS code can be specified by a graph and a binary code. For codes that can be obtained from a given graph, we give several upper bounds on the distance of a generic (additive or nonadditive) CWS code, and the lower Gilbert-Varshamov bound for the existence of additive CWS codes. We also consider additive cyclic CWS codes and show that these codes correspond to a previously unexplored class of single-generator cyclic stabilizer codes. We present several families of simple stabilizer codes with relatively good parameters.

  20. Speech coding

    SciTech Connect (OSTI)

    Ravishankar, C., Hughes Network Systems, Germantown, MD

    1998-05-08T23:59:59.000Z

    Speech is the predominant means of communication between human beings and since the invention of the telephone by Alexander Graham Bell in 1876, speech services have remained to be the core service in almost all telecommunication systems. Original analog methods of telephony had the disadvantage of speech signal getting corrupted by noise, cross-talk and distortion Long haul transmissions which use repeaters to compensate for the loss in signal strength on transmission links also increase the associated noise and distortion. On the other hand digital transmission is relatively immune to noise, cross-talk and distortion primarily because of the capability to faithfully regenerate digital signal at each repeater purely based on a binary decision. Hence end-to-end performance of the digital link essentially becomes independent of the length and operating frequency bands of the link Hence from a transmission point of view digital transmission has been the preferred approach due to its higher immunity to noise. The need to carry digital speech became extremely important from a service provision point of view as well. Modem requirements have introduced the need for robust, flexible and secure services that can carry a multitude of signal types (such as voice, data and video) without a fundamental change in infrastructure. Such a requirement could not have been easily met without the advent of digital transmission systems, thereby requiring speech to be coded digitally. The term Speech Coding is often referred to techniques that represent or code speech signals either directly as a waveform or as a set of parameters by analyzing the speech signal. In either case, the codes are transmitted to the distant end where speech is reconstructed or synthesized using the received set of codes. A more generic term that is applicable to these techniques that is often interchangeably used with speech coding is the term voice coding. This term is more generic in the sense that the coding techniques are equally applicable to any voice signal whether or not it carries any intelligible information, as the term speech implies. Other terms that are commonly used are speech compression and voice compression since the fundamental idea behind speech coding is to reduce (compress) the transmission rate (or equivalently the bandwidth) And/or reduce storage requirements In this document the terms speech and voice shall be used interchangeably.

  1. Dehydrogenation of N{sub 2}H{sub X} (X = 2 ? 4) by nitrogen atoms: Thermochemical and kinetics

    SciTech Connect (OSTI)

    Spada, Rene Felipe Keidel; Araujo Ferro, Luiz Fernando de [Departamento de Qumica, Instituto Tecnolgico de Aeronutica, So Jos dos Campos 12.228-900, So Paulo (Brazil); Departamento de Fsica, Instituto Tecnolgico de Aeronutica, So Jos dos Campos 12.228-900, So Paulo (Brazil); Roberto-Neto, Orlando [Diviso de Aerotermodinmica e Hipersnica, Instituto de Estudos Avanados, So Jos dos Campos 12.229-840, So Paulo (Brazil)] [Diviso de Aerotermodinmica e Hipersnica, Instituto de Estudos Avanados, So Jos dos Campos 12.229-840, So Paulo (Brazil); Machado, Francisco Bolivar Correto, E-mail: fmachado@ita.br [Departamento de Qumica, Instituto Tecnolgico de Aeronutica, So Jos dos Campos 12.228-900, So Paulo (Brazil)

    2013-11-21T23:59:59.000Z

    Thermochemical and kinetics of sequential hydrogen abstraction reactions from hydrazine by nitrogen atoms were studied. The dehydrogenation was divided in three steps, N{sub 2}H{sub 4} + N, N{sub 2}H{sub 3} + N, and N{sub 2}H{sub 2} + N. The thermal rate constants were calculated within the framework of canonical variational theory, with zero and small curvature multidimensional tunnelling corrections. The reaction paths were computed with the BB1K/aug-cc-pVTZ method and the thermochemical properties were improved with the CCSD(T)/CBS//BB1K/aug-cc-pVTZ approach. The first dehydrogenation step presents the lowest rate constants, equal to 1.22 10{sup ?20} cm{sup 3}molecule{sup ?1}s{sup ?1} at 298 K.

  2. Conceptual design study FY 1981: synfuels from fusion - using the tandem mirror reactor and a thermochemical cycle to produce hydrogen

    SciTech Connect (OSTI)

    Krikorian, O.H. (ed.)

    1982-02-09T23:59:59.000Z

    This report represents the second year's effort of a scoping and conceptual design study being conducted for the express purpose of evaluating the engineering potential of producing hydrogen by thermochemical cycles using a tandem mirror fusion driver. The hydrogen thus produced may then be used as a feedstock to produce fuels such as methane, methanol, or gasoline. The main objective of this second year's study has been to obtain some approximate cost figures for hydrogen production through a conceptual design study.

  3. Degenerate Quantum Codes for Pauli Channels

    E-Print Network [OSTI]

    Graeme Smith; John A. Smolin

    2006-12-23T23:59:59.000Z

    A striking feature of quantum error correcting codes is that they can sometimes be used to correct more errors than they can uniquely identify. Such degenerate codes have long been known, but have remained poorly understood. We provide a heuristic for designing degenerate quantum codes for high noise rates, which is applied to generate codes that can be used to communicate over almost any Pauli channel at rates that are impossible for a nondegenerate code. The gap between nondegenerate and degenerate code performance is quite large, in contrast to the tiny magnitude of the only previous demonstration of this effect. We also identify a channel for which none of our codes outperform the best nondegenerate code and show that it is nevertheless quite unlike any channel for which nondegenerate codes are known to be optimal.

  4. Flexible Generators for Software Reuse and Evolution (NIER Track)

    E-Print Network [OSTI]

    Jarzabek, Stan

    Flexible Generators for Software Reuse and Evolution (NIER Track) Stan Jarzabek and Ha Duy Trung of sync with code, any future re-generation of code overrides manual modifications. We propose a flexible modifications into the generation process, rather than modify already generated code. A flexible generator

  5. Adaptive code generators for tree coding of speech

    E-Print Network [OSTI]

    Dong, Hui

    1998-01-01T23:59:59.000Z

    (z) are interlaced with each other; and 3. Minimum phase property of A~(z) is easily preserved after quantization of the zeros of P(z) and Q(z). Since zeros of P(z) and Q(z) are on the unit circle, they can be expressed as ef and m's are then called the LSP.... if i = N (analysis order), stop; otherwise, go to (2). The corresponding block diagram is depicted in Figure 12. In this research, the total number of bits used for LSPs is 24, 3 bits for each LSP frequency difference. 26 D. Interpolation...

  6. ASME Code Efforts Supporting HTGRs

    SciTech Connect (OSTI)

    D.K. Morton

    2011-09-01T23:59:59.000Z

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  7. ASME Code Efforts Supporting HTGRs

    SciTech Connect (OSTI)

    D.K. Morton

    2010-09-01T23:59:59.000Z

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  8. ASME Code Efforts Supporting HTGRs

    SciTech Connect (OSTI)

    D.K. Morton

    2012-09-01T23:59:59.000Z

    In 1999, an international collaborative initiative for the development of advanced (Generation IV) reactors was started. The idea behind this effort was to bring nuclear energy closer to the needs of sustainability, to increase proliferation resistance, and to support concepts able to produce energy (both electricity and process heat) at competitive costs. The U.S. Department of Energy has supported this effort by pursuing the development of the Next Generation Nuclear Plant, a high temperature gas-cooled reactor. This support has included research and development of pertinent data, initial regulatory discussions, and engineering support of various codes and standards development. This report discusses the various applicable American Society of Mechanical Engineers (ASME) codes and standards that are being developed to support these high temperature gascooled reactors during construction and operation. ASME is aggressively pursuing these codes and standards to support an international effort to build the next generation of advanced reactors so that all can benefit.

  9. Building Energy Code

    Broader source: Energy.gov [DOE]

    The Bureau of Construction Codes is responsible for the administration of the State Construction Code Act (1972 PA 230), also known as the Uniform Construction Code.

  10. Steam generator tube rupture study

    E-Print Network [OSTI]

    Free, Scott Thomas

    1986-01-01T23:59:59.000Z

    This report describes our investigation of steam generator behavior during a postulated tube rupture accident. Our study was performed using the steam generator, thermal-hydraulic analysis code THERMIT-UTSG. The purpose ...

  11. Confocal coded aperture imaging

    DOE Patents [OSTI]

    Tobin, Jr., Kenneth William (Harriman, TN); Thomas, Jr., Clarence E. (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    A method for imaging a target volume comprises the steps of: radiating a small bandwidth of energy toward the target volume; focusing the small bandwidth of energy into a beam; moving the target volume through a plurality of positions within the focused beam; collecting a beam of energy scattered from the target volume with a non-diffractive confocal coded aperture; generating a shadow image of said aperture from every point source of radiation in the target volume; and, reconstructing the shadow image into a 3-dimensional image of the every point source by mathematically correlating the shadow image with a digital or analog version of the coded aperture. The method can comprise the step of collecting the beam of energy scattered from the target volume with a Fresnel zone plate.

  12. Generalized concatenated quantum codes

    E-Print Network [OSTI]

    Grassl, Markus

    We discuss the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using ...

  13. Low Temperature Combustion with Thermo-Chemical Recuperation to Maximize In-Use Engine Efficiency

    SciTech Connect (OSTI)

    Nigel N. Clark; Francisco Posada; Clinton Bedick; John Pratapas; Aleksandr Kozlov; Martin Linck; Dmitri Boulanov

    2009-03-30T23:59:59.000Z

    The key to overcome Low Temperature Combustion (LTC) load range limitations in reciprocating engines is based on proper control over the thermo-chemical properties of the in-cylinder charge. The studied alternative to achieve the required control of LTC is the use of two separate fuel streams to regulate timing and heat release at specific operational points, where the secondary fuel is a reformed product of the primary fuel in the tank. It is proposed in this report that the secondary fuel can be produced using exhaust heat and Thermo-Chemical Recuperation (TCR). TCR for reciprocating engines is a system that employs high efficiency recovery of sensible heat from engine exhaust gas and uses this energy to transform fuel composition. The recuperated sensible heat is returned to the engine as chemical energy. Chemical conversions are accomplished through catalytic and endothermic reactions in a specially designed reforming reactor. An equilibrium model developed by Gas Technology Institute (GTI) for heptane steam reforming was applied to estimate reformed fuel composition at different reforming temperatures. Laboratory results, at a steam/heptane mole ratio less than 2:1, confirm that low temperature reforming reactions, in the range of 550 K to 650 K, can produce 10-30% hydrogen (by volume, wet) in the product stream. Also, the effect of trading low mean effective pressure for displacement to achieve power output and energy efficiency has been explored by WVU. A zerodimensional model of LTC using heptane as fuel and a diesel Compression Ignition (CI) combustion model were employed to estimate pressure, temperature and total heat release as inputs for a mechanical and thermal loss model. The model results show that the total cooling burden on an LTC engine with lower power density and higher displacement was 14.3% lower than the diesel engine for the same amount of energy addition in the case of high load (43.57mg fuel/cycle). These preliminary modeling and experimental results suggest that the LTC-TCR combination may offer a high efficiency solution to engine operation. A single zone model using a detailed chemical kinetic mechanism was implemented in CHEMKIN and to study the effects of base fuel and steam-fuel reforming products on the ignition timing and heat release characteristics. The study was performed considering the reformed fuel species composition for total n-heptane conversion (ideal case) and also at the composition corresponding to a specific set of operational reforming temperatures (real case). The computational model confirmed that the reformed products have a strong influence on the low temperature heat release (LTHR) region, affecting the onset of the high temperature heat release (HTHR). The ignition timing was proportionally delayed with respect to the baseline fuel case when higher concentrations of reformed gas were used. For stoichiometric concentration of RG, it was found that by increasing the proportion of reformed fuel to total fuel (RG), from 0% to 30%, the amount of energy released during the LTHR regime, or HR{sub L}, was reduced by 48% and the ignition timing was delayed 10.4 CA degrees with respect to the baseline fuel case. For RG composition corresponding to certain operational reforming temperatures, it was found that the most significant effects on the HCCI combustion, regarding HR{sub L} reduction and CA50 delay, was obtained by RG produced at a reforming temperature range of 675 K-725 K.

  14. Concatenated Conjugate Codes

    E-Print Network [OSTI]

    Mitsuru Hamada

    2006-10-31T23:59:59.000Z

    A conjugate code pair is defined as a pair of linear codes either of which contains the dual of the other. A conjugate code pair represents the essential structure of the corresponding Calderbank-Shor-Steane (CSS) quantum code. It is known that conjugate code pairs are applicable to (quantum) cryptography. We give a construction method for efficiently decodable conjugate code pairs.

  15. High pressure sulfuric acid decomposition experiments for the sulfur-iodine thermochemical cycle.

    SciTech Connect (OSTI)

    Velasquez, Carlos E; Reay, Andrew R.; Andazola, James C.; Naranjo, Gerald E.; Gelbard, Fred

    2005-09-01T23:59:59.000Z

    A series of three pressurized sulfuric acid decomposition tests were performed to (1) obtain data on the fraction of sulfuric acid catalytically converted to sulfur dioxide, oxygen, and water as a function of temperature and pressure, (2) demonstrate real-time measurements of acid conversion for use as process control, (3) obtain multiple measurements of conversion as a function of temperature within a single experiment, and (4) assess rapid quenching to minimize corrosion of metallic components by undecomposed acid. All four of these objectives were successfully accomplished. This report documents the completion of the NHI milestone on high pressure H{sub 2}SO{sub 4} decomposition tests for the Sulfur-Iodine (SI) thermochemical cycle project. All heated sections of the apparatus, (i.e. the boiler, decomposer, and condenser) were fabricated from Hastelloy C276. A ceramic acid injection tube and a ceramic-sheathed thermocouple were used to minimize corrosion of hot liquid acid on the boiler surfaces. Negligible fracturing of the platinum on zirconia catalyst was observed in the high temperature decomposer. Temperature measurements at the exit of the decomposer and at the entry of the condenser indicated that the hot acid vapors were rapidly quenched from about 400 C to less than 20 C within a 14 cm length of the flow path. Real-time gas flow rate measurements of the decomposition products provided a direct measurement of acid conversion. Pressure in the apparatus was preset by a pressure-relief valve that worked well at controlling the system pressure. However, these valves sometimes underwent abrupt transitions that resulted in rapidly varying gas flow rates with concomitant variations in the acid conversion fraction.

  16. CURRICULUM CODE 308 DEGREE CODE _40

    E-Print Network [OSTI]

    Qiu, Weigang

    CURRICULUM CODE 308 DEGREE CODE _40 Hunter College of the City University of New York - Office Print) E-mail address OES Stamp THIS AUDIT IS NOT OFFICIAL UNTIL APPROVED BY THE OFFICE OF THE REGISTRAR Specialization Section #12;CURRICULUM CODE_308_ DEGREE CODE _40__ Course Prefix & Number Course Title Credits

  17. MELCOR computer code manuals

    SciTech Connect (OSTI)

    Summers, R.M.; Cole, R.K. Jr.; Smith, R.C.; Stuart, D.S.; Thompson, S.L. [Sandia National Labs., Albuquerque, NM (United States); Hodge, S.A.; Hyman, C.R.; Sanders, R.L. [Oak Ridge National Lab., TN (United States)

    1995-03-01T23:59:59.000Z

    MELCOR is a fully integrated, engineering-level computer code that models the progression of severe accidents in light water reactor nuclear power plants. MELCOR is being developed at Sandia National Laboratories for the U.S. Nuclear Regulatory Commission as a second-generation plant risk assessment tool and the successor to the Source Term Code Package. A broad spectrum of severe accident phenomena in both boiling and pressurized water reactors is treated in MELCOR in a unified framework. These include: thermal-hydraulic response in the reactor coolant system, reactor cavity, containment, and confinement buildings; core heatup, degradation, and relocation; core-concrete attack; hydrogen production, transport, and combustion; fission product release and transport; and the impact of engineered safety features on thermal-hydraulic and radionuclide behavior. Current uses of MELCOR include estimation of severe accident source terms and their sensitivities and uncertainties in a variety of applications. This publication of the MELCOR computer code manuals corresponds to MELCOR 1.8.3, released to users in August, 1994. Volume 1 contains a primer that describes MELCOR`s phenomenological scope, organization (by package), and documentation. The remainder of Volume 1 contains the MELCOR Users Guides, which provide the input instructions and guidelines for each package. Volume 2 contains the MELCOR Reference Manuals, which describe the phenomenological models that have been implemented in each package.

  18. Homological stabilizer codes

    SciTech Connect (OSTI)

    Anderson, Jonas T., E-mail: jonastyleranderson@gmail.com

    2013-03-15T23:59:59.000Z

    In this paper we define homological stabilizer codes on qubits which encompass codes such as Kitaev's toric code and the topological color codes. These codes are defined solely by the graphs they reside on. This feature allows us to use properties of topological graph theory to determine the graphs which are suitable as homological stabilizer codes. We then show that all toric codes are equivalent to homological stabilizer codes on 4-valent graphs. We show that the topological color codes and toric codes correspond to two distinct classes of graphs. We define the notion of label set equivalencies and show that under a small set of constraints the only homological stabilizer codes without local logical operators are equivalent to Kitaev's toric code or to the topological color codes. - Highlights: Black-Right-Pointing-Pointer We show that Kitaev's toric codes are equivalent to homological stabilizer codes on 4-valent graphs. Black-Right-Pointing-Pointer We show that toric codes and color codes correspond to homological stabilizer codes on distinct graphs. Black-Right-Pointing-Pointer We find and classify all 2D homological stabilizer codes. Black-Right-Pointing-Pointer We find optimal codes among the homological stabilizer codes.

  19. Thermochemical water-splitting cycle, bench-scale investigations and process engineering. Annual report, October 1, 1978-September 30, 1979

    SciTech Connect (OSTI)

    Caprioglio, G.; McCorkle, K.H.; Besenbruch, G.E.; Rode, J.S.

    1980-03-01T23:59:59.000Z

    A program to investigate thermochemical water splitting has been under way at General Atomic Company (GA) since October 1972. This document is an annual progress report of Department of Energy (DOE) sponsored process development work on the GA sulfur-iodine thermochemical water splitting cycle. The work consisted of laboratory bench-scale investigations, demonstration of the process in a closed-loop cycle demonstrator, and process engineering design studies. A bench-scale system, consisting of three subunits, has been designed to study the cycle under continuous flow conditions. The designs of subunit I, which models the main solution reaction and product separation, and subunit II, which models the concentration and decomposition of sulfuric acid, were presented in an earlier annual report. The design of subunit III, which models the purification and decomposition of hydrogen iodide, is given in this report. Progress on the installation and operation of subunits I and II is described. A closed-loop cycle demonstrator was installed and operated based on a DOE request. Operation of the GA sulfur-iodine cycle was demonstrated in this system under recycle conditions. The process engineering addresses the flowsheet design of a large-scale production process consisting of four chemical sections (I through IV) and one helium heat supply section (V). The completed designs for sections I through V are presented. The thermal efficiency of the process calculated from the present flowsheet is 47%.

  20. Thermo-refractive and thermo-chemical noise in the beamsplitter of GEO600 gravitational-wave interferometer

    E-Print Network [OSTI]

    Bruin Benthem; Yuri Levin

    2009-07-06T23:59:59.000Z

    Braginsky, Gorodetsky, and Vyatchanin have shown that thermo-refractive fluctuations are an important source of noise in interferometric gravitational-wave detectors. In particular, the thermo-refractive noise in the GEO600 beamsplitter is expected to make a substantial contribution to the interferometer's total noise budget. Here we present a new computation of the GEO600 thermo-refractive noise which takes into account the beam's elliptical profile and, more importantly, the fact that the laser beam induces a standing electromagnetic wave in the beamsplitter. The use of updated parameters results in the overall reduction of the calculated noise amplitude by a factor of about 5 in the low-frequency part of the GEO600 band, compared to the previous estimates. We also find, by contrast with previous calculations, that thermo-refractive fluctuations result in white noise between 600 Hz and 39 MHz, at a level of $8.5\\cdot 10^{-24}$Hz$^{-1/2}$. Finally, we describe a new type of thermal noise, which we call the thermo-chemical noise. This is caused by a random motion of optically-active chemical impurities or structural defects in the direction along a steep intensity gradient of the standing wave. We discuss the potential relevance of the thermo-chemical noise for GEO600.

  1. Local entropy generation analysis

    SciTech Connect (OSTI)

    Drost, M.K.; White, M.D.

    1991-02-01T23:59:59.000Z

    Second law analysis techniques have been widely used to evaluate the sources of irreversibility in components and systems of components but the evaluation of local sources of irreversibility in thermal processes has received little attention. While analytical procedures for evaluating local entropy generation have been developed, applications have been limited to fluid flows with analytical solutions for the velocity and temperature fields. The analysis of local entropy generation can be used to evaluate more complicated flows by including entropy generation calculations in a computational fluid dynamics (CFD) code. The research documented in this report consists of incorporating local entropy generation calculations in an existing CFD code and then using the code to evaluate the distribution of thermodynamic losses in two applications: an impinging jet and a magnetic heat pump. 22 refs., 13 figs., 9 tabs.

  2. Half-Product Codes

    E-Print Network [OSTI]

    Emmadi, Santosh Kumar

    2014-12-11T23:59:59.000Z

    A class of codes, half-product codes, derived from product codes, is characterized. These codes have the implementation advantages of product codes and possess a special structural property which leads them to have larger (at least 3/2 times more...

  3. List of codes Language abbreviation codes

    E-Print Network [OSTI]

    Portugal MT Malta GR Greece SE Sweden TR Turkey Country codes for the ERASMUS Institutional Identification codes A Austria IR L Ireland BG Bulgaria LV Latvia B Belgium IS Iceland CY Cyprus MT Malta D Germany L

  4. Generalized Concatenation for Quantum Codes

    E-Print Network [OSTI]

    Grassl, Markus

    We show how good quantum error-correcting codes can be constructed using generalized concatenation. The inner codes are quantum codes, the outer codes can be linear or nonlinear classical codes. Many new good codes are ...

  5. Quantum convolutional stabilizer codes

    E-Print Network [OSTI]

    Chinthamani, Neelima

    2004-09-30T23:59:59.000Z

    Quantum error correction codes were introduced as a means to protect quantum information from decoherance and operational errors. Based on their approach to error control, error correcting codes can be divided into two different classes: block codes...

  6. Guam- Building Energy Code

    Broader source: Energy.gov [DOE]

    NOTE: In September 2012, The Guam Building Code Council adopted the draft [http://www.guamenergy.com/outreach-education/guam-tropical-energy-code/ Guam Tropical Energy Code]. It must be adopted by...

  7. Building Energy Code

    Broader source: Energy.gov [DOE]

    In 2009S.B. 1182created theOklahoma Uniform Building Code Commission. The 11-member Commission was given the power to conduct rulemaking processes to adopt new building codes. The codes adopted...

  8. Generalized Concatenated Quantum Codes

    E-Print Network [OSTI]

    Markus Grassl; Peter Shor; Graeme Smith; John Smolin; Bei Zeng

    2009-01-09T23:59:59.000Z

    We introduce the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using this method, we construct families of new single-error-correcting nonadditive quantum codes, in both binary and nonbinary cases, which not only outperform any stabilizer codes for finite block length, but also asymptotically achieve the quantum Hamming bound for large block length.

  9. Encoding Subsystem Codes

    E-Print Network [OSTI]

    Pradeep Kiran Sarvepalli; Andreas Klappenecker

    2008-06-30T23:59:59.000Z

    In this paper we investigate the encoding of operator quantum error correcting codes i.e. subsystem codes. We show that encoding of subsystem codes can be reduced to encoding of a related stabilizer code making it possible to use all the known results on encoding of stabilizer codes. Along the way we also show how Clifford codes can be encoded. We also show that gauge qubits can be exploited to reduce the encoding complexity.

  10. On optimal constacyclic codes

    E-Print Network [OSTI]

    Giuliano G. La Guardia

    2013-11-11T23:59:59.000Z

    In this paper we investigate the class of constacyclic codes, which is a natural generalization of the class of cyclic and negacyclic codes. This class of codes is interesting in the sense that it contains codes with good or even optimal parameters. In this light, we propose constructions of families of classical block and convolutional maximum-distance-separable (MDS) constacyclic codes, as well as families of asymmetric quantum MDS codes derived from (classical-block) constacyclic codes. These results are mainly derived from the investigation of suitable properties on cyclotomic cosets of these corresponding codes.

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    The West Virginia State Fire Commission is responsible for adopting and promulgating statewide construction codes. These codes may be voluntarily adopted at the local level. Local jurisdictions...

  12. Sandia National Laboratories: Hydrogen Safety, Codes and Standards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Publications Biochemical Conversion Program Lignocellulosic Biomass Microalgae Thermochemical Conversion Sign up for our E-Newsletter Required.gif?3.21 Email...

  13. Sandia National Laboratories: Policy and Regulatory, Codes and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biofuels Biofuels Publications Biochemical Conversion Program Lignocellulosic Biomass Microalgae Thermochemical Conversion Sign up for our E-Newsletter Required.gif?3.21 Email...

  14. Zebra: An advanced PWR lattice code

    SciTech Connect (OSTI)

    Cao, L.; Wu, H.; Zheng, Y. [School of Nuclear Science and Technology, Xi'an Jiaotong Univ., No. 28, Xianning West Road, Xi'an, ShannXi, 710049 (China)

    2012-07-01T23:59:59.000Z

    This paper presents an overview of an advanced PWR lattice code ZEBRA developed at NECP laboratory in Xi'an Jiaotong Univ.. The multi-group cross-section library is generated from the ENDF/B-VII library by NJOY and the 361-group SHEM structure is employed. The resonance calculation module is developed based on sub-group method. The transport solver is Auto-MOC code, which is a self-developed code based on the Method of Characteristic and the customization of AutoCAD software. The whole code is well organized in a modular software structure. Some numerical results during the validation of the code demonstrate that this code has a good precision and a high efficiency. (authors)

  15. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01T23:59:59.000Z

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

  16. Thermochemical cyclic system for splitting water and/or carbon dioxide by means of cerium compounds and reactions useful therein

    DOE Patents [OSTI]

    Bamberger, Carlos E. (Oak Ridge, TN); Robinson, Paul R. (Knoxville, TN)

    1980-01-01T23:59:59.000Z

    A thermochemical cyclic process for producing hydrogen from water comprises reacting ceric oxide with monobasic or dibasic alkali metal phosphate to yield a solid reaction product, oxygen and water. The solid reaction product, alkali metal carbonate or bicarbonate, and water, are reacted to yield hydrogen, ceric oxide, carbon dioxide and trialkali metal phosphate. Ceric oxide is recycled. Trialkali metal phosphate, carbon dioxide and water are reacted to yield monobasic or dibasic alkali metal phosphate and alkali metal bicarbonate, which are recycled. The cylic process can be modified for producing carbon monoxide from carbon dioxide by reacting the alkali metal cerous phosphate and alkali metal carbonate or bicarbonate in the absence of water to produce carbon monoxide, ceric oxide, carbon dioxide and trialkali metal phosphate. Carbon monoxide can be converted to hydrogen by the water gas shift reaction.

  17. Generalized Concatenation for Quantum Codes

    E-Print Network [OSTI]

    Markus Grassl; Peter W. Shor; Bei Zeng

    2009-05-04T23:59:59.000Z

    We show how good quantum error-correcting codes can be constructed using generalized concatenation. The inner codes are quantum codes, the outer codes can be linear or nonlinear classical codes. Many new good codes are found, including both stabilizer codes as well as so-called nonadditive codes.

  18. Graph concatenation for quantum codes

    E-Print Network [OSTI]

    Beigi, Salman

    Graphs are closely related to quantum error-correcting codes: every stabilizer code is locally equivalent to a graph code and every codeword stabilized code can be described by a graph and a classical code. For the ...

  19. Remote-Handled Transuranic Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2001-08-01T23:59:59.000Z

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document representsthe development of a uniform content code system for RH-TRU waste to be transported in the 72-Bcask. It will be used to convert existing waste form numbers, content codes, and site-specificidentification codes into a system that is uniform across the U.S. Department of Energy (DOE) sites.The existing waste codes at the sites can be grouped under uniform content codes without any lossof waste characterization information. The RH-TRUCON document provides an all-encompassing|description for each content code and compiles this information for all DOE sites. Compliance withwaste generation, processing, and certification procedures at the sites (outlined in this document foreach content code) ensures that prohibited waste forms are not present in the waste. The contentcode gives an overall description of the RH-TRU waste material in terms of processes and|packaging, as well as the generation location. This helps to provide cradle-to-grave traceability ofthe waste material so that the various actions required to assess its qualification as payload for the72-B cask can be performed. The content codes also impose restrictions and requirements on themanner in which a payload can be assembled.The RH-TRU Waste Authorized Methods for Payload Control (RH-TRAMPAC), Appendix 1.3.7of the 72-B Cask Safety Analysis Report (SAR), describes the current governing procedures|applicable for the qualification of waste as payload for the 72-B cask. The logic for this|classification is presented in the 72-B Cask SAR. Together, these documents (RH-TRUCON,|RH-TRAMPAC, and relevant sections of the 72-B Cask SAR) present the foundation and|justification for classifying RH-TRU waste into content codes. Only content codes described in thisdocument can be considered for transport in the 72-B cask. Revisions to this document will be madeas additional waste qualifies for transport. |Each content code uniquely identifies the generated waste and provides a system for tracking theprocess and packaging history. Each content code begins with a two-letter site abbreviation thatindicates the shipper of the RH-TRU waste. The site-specific letter designations for each of the|DOE sites are provided in Table 1. Not all of the sites listed in Table 1 have generated/stored RH-|TRU waste.

  20. CONCATENATED CODES BASED ON MULTIDIMENSIONAL PARITY-CHECK CODES AND TURBO CODES

    E-Print Network [OSTI]

    Wong, Tan F.

    CONCATENATED CODES BASED ON MULTIDIMENSIONAL PARITY-CHECK CODES AND TURBO CODES John M. Shea, Florida Abstract--Turbo-codes provide communications near capac- ity when very large interleavers (and parity-check code can be used as an outer code with a turbo code as an inner code in a serial

  1. Final LDRD report : advanced materials for next generation high-efficiency thermochemistry.

    SciTech Connect (OSTI)

    Ambrosini, Andrea; Miller, James Edward; Allendorf, Mark D. [Sandia National Laboratories, Livermore, CA; Coker, Eric Nicholas; Ermanoski, Ivan; Hogan, Roy E.,; McDaniel, Anthony H. [Sandia National Laboratories, Livermore, CA

    2014-01-01T23:59:59.000Z

    Despite rapid progress, solar thermochemistry remains high risk; improvements in both active materials and reactor systems are needed. This claim is supported by studies conducted both prior to and as part of this project. Materials offer a particular large opportunity space as, until recently, very little effort apart from basic thermodynamic analysis was extended towards understanding this most fundamental component of a metal oxide thermochemical cycle. Without this knowledge, system design was hampered, but more importantly, advances in these crucial materials were rare and resulted more from intuition rather than detailed insight. As a result, only two basic families of potentially viable solid materials have been widely considered, each of which has significant challenges. Recent efforts towards applying an increased level of scientific rigor to the study of thermochemical materials have provided a much needed framework and insights toward developing the next generation of highly improved thermochemically active materials. The primary goal of this project was to apply this hard-won knowledge to rapidly advance the field of thermochemistry to produce a material within 2 years that is capable of yielding CO from CO2 at a 12.5 % reactor efficiency. Three principal approaches spanning a range of risk and potential rewards were pursued: modification of known materials, structuring known materials, and identifying/developing new materials for the application. A newly developed best-of-class material produces more fuel (9x more H2, 6x more CO) under milder conditions than the previous state of the art. Analyses of thermochemical reactor and system efficiencies and economics were performed and a new hybrid concept was reported. The larger case for solar fuels was also further refined and documented.

  2. Survey and Down-Selection of Acid Gas Removal Systems for the Thermochemical Conversion of Biomass to Ethanol with a Detailed Analysis of an MDEA System

    SciTech Connect (OSTI)

    Nexant, Inc., San Francisco, California

    2011-05-01T23:59:59.000Z

    The first section (Task 1) of this report by Nexant includes a survey and screening of various acid gas removal processes in order to evaluate their capability to meet the specific design requirements for thermochemical ethanol synthesis in NREL's thermochemical ethanol design report (Phillips et al. 2007, NREL/TP-510-41168). MDEA and selexol were short-listed as the most promising acid-gas removal agents based on work described in Task 1. The second report section (Task 2) describes a detailed design of an MDEA (methyl diethanol amine) based acid gas removal system for removing CO2 and H2S from biomass-derived syngas. Only MDEA was chosen for detailed study because of the available resources.

  3. Joint Source-Channel Coding via Turbo Codes

    E-Print Network [OSTI]

    Alajaji, Fady

    Joint Source-Channel Coding via Turbo Codes by Guang-Chong Zhu A dissertation submitted coding. One of the most exciting break- throughs in channel coding is the invention of Turbo codes, whose- tigate three joint source-channel coding issues in the context of Turbo codes. In the #12;rst part

  4. Unfolding the color code

    E-Print Network [OSTI]

    Aleksander Kubica; Beni Yoshida; Fernando Pastawski

    2015-03-06T23:59:59.000Z

    The topological color code and the toric code are two leading candidates for realizing fault-tolerant quantum computation. Here we show that the color code on a $d$-dimensional closed manifold is equivalent to multiple decoupled copies of the $d$-dimensional toric code up to local unitary transformations and adding or removing ancilla qubits. Our result not only generalizes the proven equivalence for $d=2$, but also provides an explicit recipe of how to decouple independent components of the color code, highlighting the importance of colorability in the construction of the code. Moreover, for the $d$-dimensional color code with $d+1$ boundaries of $d+1$ distinct colors, we find that the code is equivalent to multiple copies of the $d$-dimensional toric code which are attached along a $(d-1)$-dimensional boundary. In particular, for $d=2$, we show that the (triangular) color code with boundaries is equivalent to the (folded) toric code with boundaries. We also find that the $d$-dimensional toric code admits logical non-Pauli gates from the $d$-th level of the Clifford hierarchy, and thus saturates the bound by Bravyi and K\\"{o}nig. In particular, we show that the $d$-qubit control-$Z$ logical gate can be fault-tolerantly implemented on the stack of $d$ copies of the toric code by a local unitary transformation.

  5. List decoding of subspace codes and rank-metric codes

    E-Print Network [OSTI]

    Mahdavifar, Hessam

    2012-01-01T23:59:59.000Z

    2.2.2 Koetter-Kschischang Codes . . . . . . . . . . . .of Subspace Codes . . . . . . . . . . . . . . 2.3.1 OverviewList-decodable Codes of Arbitrary Dimension . . . . . . .

  6. Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  7. Model Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  8. Compiling Codes on Euclid

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compiling Codes Compiling Codes Overview Open Mpi is the the only MPI library available on Euclid. This implementation of MPI-2 is described at Open MPI: Open Source High...

  9. Coding AuthentiCity

    E-Print Network [OSTI]

    Mercier, Rachel Havens

    2008-01-01T23:59:59.000Z

    This thesis analyzes the impact of form-based codes, focusing on two research questions: (1) What is the underlying motivation for adopting a form-based code? (2) What motivations have the most significant impact on ...

  10. Introduction to Algebraic Codes

    E-Print Network [OSTI]

    for health care. These self-correcting codes that occur in nature might be better than all of. our coding theory based on algebra or algebraic geometry. It is a myth

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  12. Building Energy Code

    Broader source: Energy.gov [DOE]

    ''Note: Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For...

  13. Cellulases and coding sequences

    DOE Patents [OSTI]

    Li, Xin-Liang (Athens, GA); Ljungdahl, Lars G. (Athens, GA); Chen, Huizhong (Lawrenceville, GA)

    2001-02-20T23:59:59.000Z

    The present invention provides three fungal cellulases, their coding sequences, recombinant DNA molecules comprising the cellulase coding sequences, recombinant host cells and methods for producing same. The present cellulases are from Orpinomyces PC-2.

  14. Building Energy Code

    Broader source: Energy.gov [DOE]

    The New Jersey Uniform Construction Code Act provides that model codes and standards publications shall not be adopted more frequently than once every three years. However, a revision or amendment...

  15. Building Energy Code

    Broader source: Energy.gov [DOE]

    All residential and commercial structures are required to comply with the states energy code. The 2009 New Mexico Energy Conservation Code (NMECC), effective June 2013, is based on 2009...

  16. Building Energy Code

    Broader source: Energy.gov [DOE]

    Prior to 1997, South Carolina's local governments adopted and enforced the building codes. In 1997, the law required statewide use of the most up-to-date building codes, which then required the...

  17. Coding for Cooperative Communications

    E-Print Network [OSTI]

    Uppal, Momin Ayub

    2011-10-21T23:59:59.000Z

    of SWCNSQ based CF relaying as a performance benchmark, we will present a practical code design using low-density parity-check (LDPC) codes for error protection at the source, and nested scalar quantization plus irregular repeat-accumulate (IRA) codes... develop and design practical coding strategies which perform very close to the infor- mation theoretic limits. The cooperative communication channels we consider are: (a) The Gaussian re- lay channel, (b) the quasi-static fading relay channel, (c...

  18. Homological Product Codes

    E-Print Network [OSTI]

    Sergey Bravyi; Matthew B. Hastings

    2013-11-04T23:59:59.000Z

    Quantum codes with low-weight stabilizers known as LDPC codes have been actively studied recently due to their simple syndrome readout circuits and potential applications in fault-tolerant quantum computing. However, all families of quantum LDPC codes known to this date suffer from a poor distance scaling limited by the square-root of the code length. This is in a sharp contrast with the classical case where good families of LDPC codes are known that combine constant encoding rate and linear distance. Here we propose the first family of good quantum codes with low-weight stabilizers. The new codes have a constant encoding rate, linear distance, and stabilizers acting on at most $\\sqrt{n}$ qubits, where $n$ is the code length. For comparison, all previously known families of good quantum codes have stabilizers of linear weight. Our proof combines two techniques: randomized constructions of good quantum codes and the homological product operation from algebraic topology. We conjecture that similar methods can produce good stabilizer codes with stabilizer weight $n^a$ for any $a>0$. Finally, we apply the homological product to construct new small codes with low-weight stabilizers.

  19. Understanding Perception Through Neural 'Codes'

    E-Print Network [OSTI]

    Freeman, Walter J III

    2011-01-01T23:59:59.000Z

    Perception Through Neural Codes. In: Special Issue on Perception Through Neural Codes. In: Special Issue on Perception Through Neural Codes. In: Special Issue on

  20. AMPX-77: A modular code system for generating coupled multigroup neutron-gamma cross-section libraries from ENDF/B-IV and/or ENDF/B-V

    SciTech Connect (OSTI)

    Greene, N.M.; Ford, W.E. III; Petrie, L.M.; Arwood, J.W.

    1992-10-01T23:59:59.000Z

    AMPX-77 is a modular system of computer programs that pertain to nuclear analyses, with a primary emphasis on tasks associated with the production and use of multigroup cross sections. AH basic cross-section data are to be input in the formats used by the Evaluated Nuclear Data Files (ENDF/B), and output can be obtained in a variety of formats, including its own internal and very general formats, along with a variety of other useful formats used by major transport, diffusion theory, and Monte Carlo codes. Processing is provided for both neutron and gamma-my data. The present release contains codes all written in the FORTRAN-77 dialect of FORTRAN and wig process ENDF/B-V and earlier evaluations, though major modules are being upgraded in order to process ENDF/B-VI and will be released when a complete collection of usable routines is available.

  1. Direct numerical simulation of a reacting turbulent channel flow with thermo-chemical ablation

    E-Print Network [OSTI]

    Boyer, Edmond

    in the material itself); 3) sublimation of the material at high temperature; 4) mechan- ical erosion due species of the combustion products such as H2O, CO2, H2 or OH. As a consequence, the heterogeneous surface, the use of high energy solid propellant generates an hostile environment and the nozzle structure

  2. Sandia's research spans generation, storage, and load management at

    E-Print Network [OSTI]

    kW diesel genset, fuel cells, and additional interchangeable generators. Storage capabilitiesSandia's research spans generation, storage, and load management at the component and systems participate in the generation of industry guidelines, protocols, electric codes, and national

  3. Universal Framework for Quantum Error-Correcting Codes

    E-Print Network [OSTI]

    Zhuo Li; Li-Juan Xing

    2009-01-04T23:59:59.000Z

    We present a universal framework for quantum error-correcting codes, i.e., the one that applies for the most general quantum error-correcting codes. This framework is established on the group algebra, an algebraic notation for the nice error bases of quantum systems. The nicest thing about this framework is that we can characterize the properties of quantum codes by the properties of the group algebra. We show how it characterizes the properties of quantum codes as well as generates some new results about quantum codes.

  4. Process Design and Economics for Conversion of Lignocellulosic Biomass to Ethanol: Thermochemical Pathway by Indirect Gasification and Mixed Alcohol Synthesis

    SciTech Connect (OSTI)

    Dutta, A.; Talmadge, M.; Hensley, J.; Worley, M.; Dudgeon, D.; Barton, D.; Groendijk, P.; Ferrari, D.; Stears, B.; Searcy, E. M.; Wright, C. T.; Hess, J. R.

    2011-05-01T23:59:59.000Z

    This design report describes an up-to-date benchmark thermochemical conversion process that incorporates the latest research from NREL and other sources. Building on a design report published in 2007, NREL and its subcontractor Harris Group Inc. performed a complete review of the process design and economic model for a biomass-to-ethanol process via indirect gasification. The conceptual design presented herein considers the economics of ethanol production, assuming the achievement of internal research targets for 2012 and nth-plant costs and financing. The design features a processing capacity of 2,205 U.S. tons (2,000 metric tonnes) of dry biomass per day and an ethanol yield of 83.8 gallons per dry U.S. ton of feedstock. The ethanol selling price corresponding to this design is $2.05 per gallon in 2007 dollars, assuming a 30-year plant life and 40% equity financing with a 10% internal rate of return and the remaining 60% debt financed at 8% interest. This ethanol selling price corresponds to a gasoline equivalent price of $3.11 per gallon based on the relative volumetric energy contents of ethanol and gasoline.

  5. Thermochemical properties of gibbsite, bayerite, boehmite, diaspore, and the aluminate ion between 0 and 350/degree/C

    SciTech Connect (OSTI)

    Apps, J.A.; Neil, J.M.; Jun, C.H.

    1989-01-01T23:59:59.000Z

    A requirement for modelling the chemical behavior of groundwater in a nuclear waste repository is accurate thermodynamic data pertaining to the participating minerals and aqueous species. In particular, it is important that the thermodynamic properties of the aluminate ion be accurately determined, because most rock forming minerals in the earth's crust are aluminosilicates, and most groundwaters are neutral to slightly alkaline, where the aluminate ion is the predominant aluminum species in solution. Without a precise knowledge of the thermodynamic properties of the aluminate ion aluminosilicate mineral solubilities cannot be determined. The thermochemical properties of the aluminate ion have been determined from the solubilities of the aluminum hydroxides and oxyhydroxides in alkaline solutions between 20 and 350/degree/C. An internally consistent set of thermodynamic properties have been determined for gibbsite, boehmite, diaspore and corundum. The thermodynamic properties of bayerite have been provisionally estimated and a preliminary value for ..delta..G/sub f, 298//sup 0/ of nordstrandite has been determined. 205 refs., 17 figs., 25 tabs.

  6. Life cycle assessment of hydrogen production from S-I thermochemical process coupled to a high temperature gas reactor

    SciTech Connect (OSTI)

    Giraldi, M. R.; Francois, J. L.; Castro-Uriegas, D. [Departamento de Sistemas Energeticos, Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, Paseo Cuauhnahuac No. 8532, Col. Progreso, C.P. 62550, Jiutepec, Morelos (Mexico)

    2012-07-01T23:59:59.000Z

    The purpose of this paper is to quantify the greenhouse gas (GHG) emissions associated to the hydrogen produced by the sulfur-iodine thermochemical process, coupled to a high temperature nuclear reactor, and to compare the results with other life cycle analysis (LCA) studies on hydrogen production technologies, both conventional and emerging. The LCA tool was used to quantify the impacts associated with climate change. The product system was defined by the following steps: (i) extraction and manufacturing of raw materials (upstream flows), (U) external energy supplied to the system, (iii) nuclear power plant, and (iv) hydrogen production plant. Particular attention was focused to those processes where there was limited information from literature about inventory data, as the TRISO fuel manufacture, and the production of iodine. The results show that the electric power, supplied to the hydrogen plant, is a sensitive parameter for GHG emissions. When the nuclear power plant supplied the electrical power, low GHG emissions were obtained. These results improve those reported by conventional hydrogen production methods, such as steam reforming. (authors)

  7. Thermohydraulic analysis of U-tube steam generators

    E-Print Network [OSTI]

    da Silva, Hugo Cardoso

    1984-01-01T23:59:59.000Z

    Recent trends in plant safety analysis reveal a need for benchmark analytical representations of the steam generators to aid in the improvement of system codes and of fast codes for operator assistance. A model for such ...

  8. Solar Thermochemical Hydrogen Production Research (STCH): Thermochemical

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideo »UsageSecretary ofSmallConfidential,2Cycle Selection and Investment

  9. Mechanical code comparator

    DOE Patents [OSTI]

    Peter, Frank J. (Albuquerque, NM); Dalton, Larry J. (Bernalillo, NM); Plummer, David W. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A new class of mechanical code comparators is described which have broad potential for application in safety, surety, and security applications. These devices can be implemented as micro-scale electromechanical systems that isolate a secure or otherwise controlled device until an access code is entered. This access code is converted into a series of mechanical inputs to the mechanical code comparator, which compares the access code to a pre-input combination, entered previously into the mechanical code comparator by an operator at the system security control point. These devices provide extremely high levels of robust security. Being totally mechanical in operation, an access control system properly based on such devices cannot be circumvented by software attack alone.

  10. Banner Index Codes The Index code is a data-entry shortcut for the Fund code, Org code, and Program code in Banner

    E-Print Network [OSTI]

    Banner Index Codes The Index code is a data-entry shortcut for the Fund code, Org code, and Program code in Banner Finance (FO-P's). Implementation of the Index has greatly decreased data entry coding ­ Account (object) - Program (FOAP) code numbers on any of your accounting forms (Contracts, Purchase Orders

  11. Hydrogen Production from the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    M. Patterson; C. Park

    2008-03-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) is a high temperature gas-cooled reactor that will be capable of producing hydrogen, electricity and/or high temperature process heat for industrial use. The project has initiated the conceptual design phase and when completed will demonstrate the viability of hydrogen generation using nuclear produced process heat. This paper explains how industry and the U.S. Government are cooperating to advance nuclear hydrogen technology. It also describes the issues being explored and the results of recent R&D including materials development and testing, thermal-fluids research, and systems analysis. The paper also describes the hydrogen production technologies being considered (including various thermochemical processes and high-temperature electrolysis).

  12. Transducers for bidirectional decoding of prefix codes

    E-Print Network [OSTI]

    Giambruno, Laura

    that it is bidetermin- istic and that it can be used both for the left-to-right and the right-to-left decoding. We also length code (VLC in short) for source compression (cf. [1], [7]), a single bit error in the transmission generate loose of synchronization; in this way the error is propagated to the following symbols till

  13. Graph Concatenation for Quantum Codes

    E-Print Network [OSTI]

    Salman Beigi; Isaac Chuang; Markus Grassl; Peter Shor; Bei Zeng

    2010-02-03T23:59:59.000Z

    Graphs are closely related to quantum error-correcting codes: every stabilizer code is locally equivalent to a graph code, and every codeword stabilized code can be described by a graph and a classical code. For the construction of good quantum codes of relatively large block length, concatenated quantum codes and their generalizations play an important role. We develop a systematic method for constructing concatenated quantum codes based on "graph concatenation", where graphs representing the inner and outer codes are concatenated via a simple graph operation called "generalized local complementation." Our method applies to both binary and non-binary concatenated quantum codes as well as their generalizations.

  14. Mining API Error-Handling Specifications from Source Code

    E-Print Network [OSTI]

    Xie, Tao

    Mining API Error-Handling Specifications from Source Code Mithun Acharya and Tao Xie Department it difficult to mine error-handling specifications through manual inspection of source code. In this paper, we, without any user in- put. In our framework, we adapt a trace generation technique to distinguish

  15. Layered Wyner-Ziv video coding for noisy channels

    E-Print Network [OSTI]

    Xu, Qian

    2005-11-01T23:59:59.000Z

    The growing popularity of video sensor networks and video celluar phones has generated the need for low-complexity and power-e?cient multimedia systems that can handle multiple video input and output streams. While standard video coding...

  16. ENERGY EFFICIENCY LIMITS FOR A RECUPERATIVE BAYONET SULFURIC ACID DECOMPOSITION REACTOR FOR SULFUR CYCLE THERMOCHEMICAL HYDROGEN PRODUCTION

    SciTech Connect (OSTI)

    Gorensek, M.; Edwards, T.

    2009-06-11T23:59:59.000Z

    A recuperative bayonet reactor design for the high-temperature sulfuric acid decomposition step in sulfur-based thermochemical hydrogen cycles was evaluated using pinch analysis in conjunction with statistical methods. The objective was to establish the minimum energy requirement. Taking hydrogen production via alkaline electrolysis with nuclear power as the benchmark, the acid decomposition step can consume no more than 450 kJ/mol SO{sub 2} for sulfur cycles to be competitive. The lowest value of the minimum heating target, 320.9 kJ/mol SO{sub 2}, was found at the highest pressure (90 bar) and peak process temperature (900 C) considered, and at a feed concentration of 42.5 mol% H{sub 2}SO{sub 4}. This should be low enough for a practical water-splitting process, even including the additional energy required to concentrate the acid feed. Lower temperatures consistently gave higher minimum heating targets. The lowest peak process temperature that could meet the 450-kJ/mol SO{sub 2} benchmark was 750 C. If the decomposition reactor were to be heated indirectly by an advanced gas-cooled reactor heat source (50 C temperature difference between primary and secondary coolants, 25 C minimum temperature difference between the secondary coolant and the process), then sulfur cycles using this concept could be competitive with alkaline electrolysis provided the primary heat source temperature is at least 825 C. The bayonet design will not be practical if the (primary heat source) reactor outlet temperature is below 825 C.

  17. Low-complexity quantum codes designed via codeword-stabilized framework

    E-Print Network [OSTI]

    Alexey A. Kovalev; Ilya Dumer; Leonid P. Pryadko

    2011-08-28T23:59:59.000Z

    We consider design of the quantum stabilizer codes via a two-step, low-complexity approach based on the framework of codeword-stabilized (CWS) codes. In this framework, each quantum CWS code can be specified by a graph and a binary code. For codes that can be obtained from a given graph, we give several upper bounds on the distance of a generic (additive or non-additive) CWS code, and the lower Gilbert-Varshamov bound for the existence of additive CWS codes. We also consider additive cyclic CWS codes and show that these codes correspond to a previously unexplored class of single-generator cyclic stabilizer codes. We present several families of simple stabilizer codes with relatively good parameters.

  18. The Application of the PEBBED Code Suite to the PBMR-400 Coupled Code Benchmark - FY 2006 Annual Report

    SciTech Connect (OSTI)

    Not Available

    2006-09-01T23:59:59.000Z

    This document describes the recent developments of the PEBBED code suite and its application to the PBMR-400 Coupled Code Benchmark. This report addresses an FY2006 Level 2 milestone under the NGNP Design and Evaluation Methods Work Package. The milestone states "Complete a report describing the results of the application of the integrated PEBBED code package to the PBMR-400 coupled code benchmark". The report describes the current state of the PEBBED code suite, provides an overview of the Benchmark problems to which it was applied, discusses the code developments achieved in the past year, and states some of the results attained. Results of the steady state problems generated by the PEBBED fuel management code compare favorably to the preliminary results generated by codes from other participating institutions and to similar non-Benchmark analyses. Partial transient analysis capability has been achieved through the acquisition of the NEM-THERMIX code from Penn State University. Phase I of the task has been achieved through the development of a self-consistent set of tools for generating cross sections for design and transient analysis and in the successful execution of the steady state benchmark exercises.

  19. Reed-Muller Codes: Spherically-Punctured Codes and Decoding Algorithms

    E-Print Network [OSTI]

    Kapralova, Olga

    2013-01-01T23:59:59.000Z

    Linear codes . . . . . . . . . . . . . . . . . . . . . . .3.3 Code parameters . . . . . . . . . . . . . .of linear codes . . . . . . . . . . . . 1.5 Reed-Muller

  20. Universal space-time codes from demultiplexed trellis codes

    E-Print Network [OSTI]

    Kose, Cenk; Wesel, R D

    2006-01-01T23:59:59.000Z

    and A. R. Calderbank, Space-time codes for high data ratePerformance criteria and code construction, IEEE Trans.of spacetime trellis codes, IEEE Trans. Commun. , vol. 51,

  1. Relation Between Surface Codes and Hypermap-Homology Quantum Codes

    E-Print Network [OSTI]

    Pradeep Sarvepalli

    2014-03-14T23:59:59.000Z

    Recently, a new class of quantum codes based on hypermaps were proposed. These codes are obtained from embeddings of hypergraphs as opposed to surface codes which are obtained from the embeddings of graphs. It is natural to compare these two classes of codes and their relation to each other. In this context two related questions are addressed in this paper: Can the parameters of hypermap-homology codes be superior to those of surface codes and what is precisely the relation between these two classes of quantum codes? We show that a canonical hypermap code is identical to a surface code while a noncanonical hypermap code can be transformed to a surface code by CNOT gates alone. Our approach is constructive; we construct the related surface code and the transformation involving CNOT gates.

  2. Value of Laboratory Experiments for Code Validations

    SciTech Connect (OSTI)

    Wawersik, W.R.

    1998-12-14T23:59:59.000Z

    Numerical codes have become indispensable for designing underground structures and interpretating the behavior of geologic systems. Because of the complexities of geologic systems, however, code calculations often are associated with large quantitative uncertainties. This papers presents three examples to demonstrate the value of laboratory(or bench scale) experiments to evaluate the predictive capabilities of such codes with five major conclusions: Laboratory or bench-scale experiments are a very cost-effective, controlled means of evaluating and validating numerical codes, not instead of but before or at least concurrent with the implementation of in situ studies. The design of good laboratory validation tests must identifj what aspects of a code are to be scrutinized in order to optimize the size, geometry, boundary conditions, and duration of the experiments. The design of good and sometimes difficult numerical analyses and sensitivity studies. Laboratory validation tests must involve: Good validation experiments will generate independent data sets to identify the combined effect of constitutive models, model generalizations, material parameters, and numerical algorithms. Successfid validations of numerical codes mandate a close collaboration between experimentalists and analysts drawing from the full gamut of observations, measurements, and mathematical results.

  3. Report number codes

    SciTech Connect (OSTI)

    Nelson, R.N. (ed.)

    1985-05-01T23:59:59.000Z

    This publication lists all report number codes processed by the Office of Scientific and Technical Information. The report codes are substantially based on the American National Standards Institute, Standard Technical Report Number (STRN)-Format and Creation Z39.23-1983. The Standard Technical Report Number (STRN) provides one of the primary methods of identifying a specific technical report. The STRN consists of two parts: The report code and the sequential number. The report code identifies the issuing organization, a specific program, or a type of document. The sequential number, which is assigned in sequence by each report issuing entity, is not included in this publication. Part I of this compilation is alphabetized by report codes followed by issuing installations. Part II lists the issuing organization followed by the assigned report code(s). In both Parts I and II, the names of issuing organizations appear for the most part in the form used at the time the reports were issued. However, for some of the more prolific installations which have had name changes, all entries have been merged under the current name.

  4. Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9:2, 2007, 145152 Gray code order for Lyndon words

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Discrete Mathematics and Theoretical Computer Science DMTCS vol. 9:2, 2007, 145­152 Gray code order order yields a Gray code on the Lyndon family. In this paper we give a positive answer. More precisely and Lyndon words in Gray code order. Keywords: Lyndon words, Gray codes, generating algorithms 1 Introduction

  5. Quantum stabilizer codes and beyond

    E-Print Network [OSTI]

    Pradeep Kiran Sarvepalli

    2008-10-14T23:59:59.000Z

    The importance of quantum error correction in paving the way to build a practical quantum computer is no longer in doubt. This dissertation makes a threefold contribution to the mathematical theory of quantum error-correcting codes. Firstly, it extends the framework of an important class of quantum codes -- nonbinary stabilizer codes. It clarifies the connections of stabilizer codes to classical codes over quadratic extension fields, provides many new constructions of quantum codes, and develops further the theory of optimal quantum codes and punctured quantum codes. Secondly, it contributes to the theory of operator quantum error correcting codes also called as subsystem codes. These codes are expected to have efficient error recovery schemes than stabilizer codes. This dissertation develops a framework for study and analysis of subsystem codes using character theoretic methods. In particular, this work establishes a close link between subsystem codes and classical codes showing that the subsystem codes can be constructed from arbitrary classical codes. Thirdly, it seeks to exploit the knowledge of noise to design efficient quantum codes and considers more realistic channels than the commonly studied depolarizing channel. It gives systematic constructions of asymmetric quantum stabilizer codes that exploit the asymmetry of errors in certain quantum channels.

  6. Rateless Codes for AVC Models

    E-Print Network [OSTI]

    Sarwate, A D; Gastpar, M

    2010-01-01T23:59:59.000Z

    2004. [7] M. Luby, LT codes, in Proc. 43rd Ann. IEEE Symp.8] A. Shokrollahi, Fountain codes, in Proc. 41st AllertonChannel capacities for list codes, J. Appl. Probabil. ,

  7. Unequal Error Protection Turbo Codes

    E-Print Network [OSTI]

    Henkel, Werner

    Unequal Error Protection Turbo Codes Diploma Thesis Neele von Deetzen Arbeitsbereich Nachrichtentechnik School of Engineering and Science Bremen, February 28th, 2005 #12;Unequal Error Protection Turbo Convolutional Codes / Turbo Codes 18 3.1 Structure

  8. Quantum Error Correcting Subsystem Codes From Two Classical Linear Codes

    E-Print Network [OSTI]

    Dave Bacon; Andrea Casaccino

    2006-10-17T23:59:59.000Z

    The essential insight of quantum error correction was that quantum information can be protected by suitably encoding this quantum information across multiple independently erred quantum systems. Recently it was realized that, since the most general method for encoding quantum information is to encode it into a subsystem, there exists a novel form of quantum error correction beyond the traditional quantum error correcting subspace codes. These new quantum error correcting subsystem codes differ from subspace codes in that their quantum correcting routines can be considerably simpler than related subspace codes. Here we present a class of quantum error correcting subsystem codes constructed from two classical linear codes. These codes are the subsystem versions of the quantum error correcting subspace codes which are generalizations of Shor's original quantum error correcting subspace codes. For every Shor-type code, the codes we present give a considerable savings in the number of stabilizer measurements needed in their error recovery routines.

  9. No Code: Null Programs

    E-Print Network [OSTI]

    Montfort, Nick

    2014-06-05T23:59:59.000Z

    To continue the productive discussion of uninscribed artworks in Craig Dworkins No Medium, this report discusses, in detail, those computer programs that have no code, and are thus empty or null. Several specific examples ...

  10. Climate Code Foundation

    E-Print Network [OSTI]

    Barnes, Nick; Jones, David

    2011-07-05T23:59:59.000Z

    Climate Code Foundation - who are we? A non-profit organisation founded in August 2010; our goal is to promote the public understanding of climate science, by increasing the visibility and clarity of the software used in climate science...

  11. Building Energy Code

    Broader source: Energy.gov [DOE]

    Authority for adopting the state energy codes was previously vested in the Energy Security Office of the Department of Commerce (originally the Department of Public Services). In 1999-2000, the...

  12. Quantum error control codes

    E-Print Network [OSTI]

    Abdelhamid Awad Aly Ahmed, Sala

    2008-10-10T23:59:59.000Z

    QUANTUM ERROR CONTROL CODES A Dissertation by SALAH ABDELHAMID AWAD ALY AHMED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 2008 Major... Subject: Computer Science QUANTUM ERROR CONTROL CODES A Dissertation by SALAH ABDELHAMID AWAD ALY AHMED Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

  13. Distinctive characteristics of ASME performance test code 47, and comparison with performance test code 46

    SciTech Connect (OSTI)

    Horazak, D.A.; Bannister, R.L.; Archer, D.H.; Zachary, J.J.

    1998-07-01T23:59:59.000Z

    Performance Test Code 47, Gasification Combined Cycle Plant Performance, is being written to define the significant performance factors in a gasification combined cycle plant and recommend how these factors should be calculated from measurements. PTC 47 is unique in that it provides a test code for a technology that is now being demonstrated, but has not yet been commercialized. PTC 47 is similar to PTC 46, Overall Plant Performance, in its evaluation of overall plant performance, but is unlike PTC 46 in several areas. PTC 47 also extends beyond the scope of PTC 46 into areas of power generation technology now being demonstrated. The code will indicate where improved instrumentation and measurement techniques may be required to achieve a desired degree of certainty in the determination of performance factors. By providing a means for accurate testing, this code should also help develop this important technology, leading to full commercialization.

  14. Nested Quantum Error Correction Codes

    E-Print Network [OSTI]

    Zhuo Wang; Kai Sun; Hen Fan; Vlatko Vedral

    2009-09-28T23:59:59.000Z

    The theory of quantum error correction was established more than a decade ago as the primary tool for fighting decoherence in quantum information processing. Although great progress has already been made in this field, limited methods are available in constructing new quantum error correction codes from old codes. Here we exhibit a simple and general method to construct new quantum error correction codes by nesting certain quantum codes together. The problem of finding long quantum error correction codes is reduced to that of searching several short length quantum codes with certain properties. Our method works for all length and all distance codes, and is quite efficient to construct optimal or near optimal codes. Two main known methods in constructing new codes from old codes in quantum error-correction theory, the concatenating and pasting, can be understood in the framework of nested quantum error correction codes.

  15. Accumulate-Repeat-Accumulate Codes: Systematic Codes Achieving the Binary

    E-Print Network [OSTI]

    Sason, Igal

    Accumulate-Repeat-Accumulate Codes: Systematic Codes Achieving the Binary Erasure Channel Capacity@ee.technion.ac.il Abstract The paper introduces ensembles of accumulate-repeat-accumulate (ARA) codes which asymp- totically by the first capacity-achieving ensembles of ir- regular repeat-accumulate (IRA) codes with bounded complexity

  16. FlexibleSUSY -- A spectrum generator generator for supersymmetric models

    E-Print Network [OSTI]

    Peter Athron; Jae-hyeon Park; Dominik Stckinger; Alexander Voigt

    2015-03-18T23:59:59.000Z

    We introduce FlexibleSUSY, a Mathematica and C++ package, which generates a fast, precise C++ spectrum generator for any SUSY model specified by the user. The generated code is designed with both speed and modularity in mind, making it easy to adapt and extend with new features. The model is specified by supplying the superpotential, gauge structure and particle content in a SARAH model file; specific boundary conditions e.g. at the GUT, weak or intermediate scales are defined in a separate FlexibleSUSY model file. From these model files, FlexibleSUSY generates C++ code for self-energies, tadpole corrections, renormalization group equations (RGEs) and electroweak symmetry breaking (EWSB) conditions and combines them with numerical routines for solving the RGEs and EWSB conditions simultaneously. The resulting spectrum generator is then able to solve for the spectrum of the model, including loop-corrected pole masses, consistent with user specified boundary conditions. The modular structure of the generated code allows for individual components to be replaced with an alternative if available. FlexibleSUSY has been carefully designed to grow as alternative solvers and calculators are added. Predefined models include the MSSM, NMSSM, E$_6$SSM, USSM, R-symmetric models and models with right-handed neutrinos.

  17. Performing aggressive code optimization with an ability to rollback changes made by the aggressive optimizations

    DOE Patents [OSTI]

    Gschwind, Michael K

    2013-07-23T23:59:59.000Z

    Mechanisms for aggressively optimizing computer code are provided. With these mechanisms, a compiler determines an optimization to apply to a portion of source code and determines if the optimization as applied to the portion of source code will result in unsafe optimized code that introduces a new source of exceptions being generated by the optimized code. In response to a determination that the optimization is an unsafe optimization, the compiler generates an aggressively compiled code version, in which the unsafe optimization is applied, and a conservatively compiled code version in which the unsafe optimization is not applied. The compiler stores both versions and provides them for execution. Mechanisms are provided for switching between these versions during execution in the event of a failure of the aggressively compiled code version. Moreover, predictive mechanisms are provided for predicting whether such a failure is likely.

  18. Quantum LDPC Codes Constructed from Point-Line Subsets of the Finite Projective Plane

    E-Print Network [OSTI]

    Jacob Farinholt

    2012-07-03T23:59:59.000Z

    Due to their fast decoding algorithms, quantum generalizations of low-density parity check, or LDPC, codes have been investigated as a solution to the problem of decoherence in fragile quantum states. However, the additional twisted inner product requirements of quantum stabilizer codes force four-cycles and eliminate the possibility of randomly generated quantum LDPC codes. Moreover, the classes of quantum LDPC codes discovered thus far generally have unknown or small minimum distance, or a fixed rate. This paper presents several new classes of quantum LDPC codes constructed from finite projective planes. These codes have rates that increase with the block length $n$ and minimum weights proportional to $n^{1/2}$.

  19. Generation and diagnostics of atmospheric pressure CO{sub 2} plasma by laser driven plasma wind tunnel

    SciTech Connect (OSTI)

    Matsui, Makoto; Yamagiwa, Yoshiki [Department of Mechanical Engineering, Shizuoka University, 3-5-4 Johoku, Naka, Hamamatsu, 432-8561 Shizuoka (Japan); Tanaka, Kensaku; Arakawa, Yoshihiro [Department of Aeronautics and Astronautics, University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033 Tokyo (Japan); Nomura, Satoshi; Komurasaki, Kimiya [Department of Advanced Energy, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, 277-8583 Chiba (Japan)

    2012-08-01T23:59:59.000Z

    Atmospheric pressure CO{sub 2} plasma was generated by a laser driven plasma wind tunnel. At an ambient pressure of 0.38 MPa, a stable plasma was maintained by a laser power of 1000 W for more than 20 min. The translational temperature was measured using laser absorption spectroscopy with the atomic oxygen line at 777.19 nm. The measured absorption profiles were analyzed by a Voigt function considering Doppler, Stark, and pressure-broadening effects. Under the assumption of thermochemical equilibrium, all broadening effects were consistent with each other. The measured temperature ranged from 8500 K to 8900 K.

  20. Thermochemical nitrate destruction

    DOE Patents [OSTI]

    Cox, J.L.; Hallen, R.T.; Lilga, M.A.

    1992-06-02T23:59:59.000Z

    A method is disclosed for denitrification of nitrates and nitrites present in aqueous waste streams. The method comprises the steps of (1) identifying the concentration nitrates and nitrites present in a waste stream, (2) causing formate to be present in the waste stream, (3) heating the mixture to a predetermined reaction temperature from about 200 C to about 600 C, and (4) holding the mixture and accumulating products at heated and pressurized conditions for a residence time, thereby resulting in nitrogen and carbon dioxide gas, and hydroxides, and reducing the level of nitrates and nitrites to below drinking water standards.

  1. NISTIR 6640 Thermochemical and

    E-Print Network [OSTI]

    Perkins, Richard A.

    Sound Speed Measurements and Derived Adiabatic Compressibilities of JP-10.. 27 Thermal Conductivity.............................................................................................................. 51 Appendix 1. Thermal Conductivity Measurements of Liquid JP-10.................... 54 iii #12

  2. Sandia Energy - Thermochemical Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > TheNuclear PressLaboratorySoftware Home

  3. Thermochemical Feedstock Interface

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic|Industrial Sector,Department of Energy (DOE)Department1AOffice

  4. Cyclic simplex coded OTDR SNR enhancement of coded optical time domain reflectometry using cyclic simplex codes

    E-Print Network [OSTI]

    Park, Namkyoo

    Cyclic simplex coded OTDR SNR enhancement of coded optical time domain reflectometry using cyclic simplex codes *, , , e-mail : nkpark@plaza.snu.ac.kr Abstract: We propose and experimentally demonstrate the performance improvement of a coded optical time domain reflectometry using cyclic simplex

  5. Extended quantum color coding

    SciTech Connect (OSTI)

    Hayashi, A.; Hashimoto, T.; Horibe, M. [Department of Applied Physics, Fukui University, Fukui 910-8507 (Japan)

    2005-01-01T23:59:59.000Z

    The quantum color coding scheme proposed by Korff and Kempe [e-print quant-ph/0405086] is easily extended so that the color coding quantum system is allowed to be entangled with an extra auxiliary quantum system. It is shown that in the extended scheme we need only {approx}2{radical}(N) quantum colors to order N objects in large N limit, whereas {approx}N/e quantum colors are required in the original nonextended version. The maximum success probability has asymptotics expressed by the Tracy-Widom distribution of the largest eigenvalue of a random Gaussian unitary ensemble (GUE) matrix.

  6. CONCEPT computer code

    SciTech Connect (OSTI)

    Delene, J.

    1984-01-01T23:59:59.000Z

    CONCEPT is a computer code that will provide conceptual capital investment cost estimates for nuclear and coal-fired power plants. The code can develop an estimate for construction at any point in time. Any unit size within the range of about 400 to 1300 MW electric may be selected. Any of 23 reference site locations across the United States and Canada may be selected. PWR, BWR, and coal-fired plants burning high-sulfur and low-sulfur coal can be estimated. Multiple-unit plants can be estimated. Costs due to escalation/inflation and interest during construction are calculated.

  7. Coding for Transmission Coding for Compression Bonus Section CMPSCI 240: Reasoning about Uncertainty

    E-Print Network [OSTI]

    McGregor, Andrew

    Coding for Transmission Coding for Compression Bonus Section CMPSCI 240: Reasoning about: April 29, 2014 #12;Coding for Transmission Coding for Compression Bonus Section Information Theory. #12;Coding for Transmission Coding for Compression Bonus Section Encoding Messages with Redundancy

  8. Course Code: Course Title

    E-Print Network [OSTI]

    Painter, Kevin

    - Frameworks; Decision Making Development life-cycle of a software system Bi-directional influence between-Critical Systems; Technology & Society. Brave New Worlds - Co-operative Computing; eLife. Learning OutcomesCourse Code: F29PD Course Title: Professional Development Course Co-ordinator: Sandy Jean

  9. The Woodland Carbon Code

    E-Print Network [OSTI]

    The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

  10. Chaotic Turbo Codes

    E-Print Network [OSTI]

    S. Adrian Barbulescu; Andrew Guidi; Steven S. Pietrobon

    This paper describes a new class of codes, chaotic turbo codes. They were born from a symbiosis between a chaotical digital encoder and a turbo code. This paper investigates the most important properties of both chaotic digital encoders and turbo encoders in order to understand how the two complement each other. A Chaotic Turbo Encoder is then described and initial results will be presented. I. INTRODUCTION A chaotic digital encoder was defined for the first time in [1] as a non--linear digital filter with finite precision (8 bits) which behaves in a quasi--chaotic fashion, both with zero and nonzero input sequences. A simple chaotic encoder is shown in Figure 1 [1]. D Y k X k LCIRC D Figure 1: Chaotic Digital Encoder Mapper L L L L L L 1 The main features of chaotic digital encoders that are used in this paper are: # The system is digital which makes possible its integration with a turbo code. # The output of a chaotic digital encoder with arbitrary inputs has a broad...

  11. Erasure Techniques in MRD codes

    E-Print Network [OSTI]

    W. B. Vasantha Kandasamy; Florentin Smarandache; R. Sujatha; R. S. Raja Durai

    2012-05-03T23:59:59.000Z

    This book is organized into six chapters. The first chapter introduces the basic algebraic structures essential to make this book a self contained one. Algebraic linear codes and their basic properties are discussed in chapter two. In chapter three the authors study the basic properties of erasure decoding in maximum rank distance codes. Some decoding techniques about MRD codes are described and discussed in chapter four of this book. Rank distance codes with complementary duals and MRD codes with complementary duals are introduced and their applications are discussed. Chapter five introduces the notion of integer rank distance codes. The final chapter introduces some concatenation techniques.

  12. REDUCED-COMPLEXITY DECODING FOR CONCATENATED CODES BASED ON RECTANGULAR PARITY-CHECK CODES AND TURBO CODES

    E-Print Network [OSTI]

    Wong, Tan F.

    AND TURBO CODES John M. Shea and Tan F. Wong University of Florida Department of Electrical and Computer-check code (RPCC) with a turbo code. These concatenated codes are referred to as RPCC+turbo codes. RPCC+turbo codes have been shown to significantly outperform turbo codes in several scenarios [1],[2]. One

  13. Coded modulation with Low Density Parity Check codes

    E-Print Network [OSTI]

    Narayanaswami, Ravi

    2001-01-01T23:59:59.000Z

    This thesis proposes the design of Low Density Parity Check (LDPC) codes for cases where coded modulation is used. We design these codes by extending the idea of Density Evolution (DE) that has been introduced as a powerful tool to analyze LDPC...

  14. Benchmarking of Neutron Production of Heavy-Ion Transport Codes

    SciTech Connect (OSTI)

    Remec, Igor [ORNL; Ronningen, Reginald M. [Michigan State University, East Lansing; Heilbronn, Lawrence [University of Tennessee, Knoxville (UTK)

    2012-01-01T23:59:59.000Z

    Accurate prediction of radiation fields generated by heavy ion interactions is important in medical applications, space missions, and in design and operation of rare isotope research facilities. In recent years, several well-established computer codes in widespread use for particle and radiation transport calculations have been equipped with the capability to simulate heavy ion transport and interactions. To assess and validate these capabilities, we performed simulations of a series of benchmark-quality heavy ion experiments with the computer codes FLUKA, MARS15, MCNPX, and PHITS. We focus on the comparisons of secondary neutron production. Results are encouraging; however, further improvements in models and codes and additional benchmarking are required.

  15. Foundational development of an advanced nuclear reactor integrated safety code.

    SciTech Connect (OSTI)

    Clarno, Kevin (Oak Ridge National Laboratory, Oak Ridge, TN); Lorber, Alfred Abraham; Pryor, Richard J.; Spotz, William F.; Schmidt, Rodney Cannon; Belcourt, Kenneth (Ktech Corporation, Albuquerque, NM); Hooper, Russell Warren; Humphries, Larry LaRon

    2010-02-01T23:59:59.000Z

    This report describes the activities and results of a Sandia LDRD project whose objective was to develop and demonstrate foundational aspects of a next-generation nuclear reactor safety code that leverages advanced computational technology. The project scope was directed towards the systems-level modeling and simulation of an advanced, sodium cooled fast reactor, but the approach developed has a more general applicability. The major accomplishments of the LDRD are centered around the following two activities. (1) The development and testing of LIME, a Lightweight Integrating Multi-physics Environment for coupling codes that is designed to enable both 'legacy' and 'new' physics codes to be combined and strongly coupled using advanced nonlinear solution methods. (2) The development and initial demonstration of BRISC, a prototype next-generation nuclear reactor integrated safety code. BRISC leverages LIME to tightly couple the physics models in several different codes (written in a variety of languages) into one integrated package for simulating accident scenarios in a liquid sodium cooled 'burner' nuclear reactor. Other activities and accomplishments of the LDRD include (a) further development, application and demonstration of the 'non-linear elimination' strategy to enable physics codes that do not provide residuals to be incorporated into LIME, (b) significant extensions of the RIO CFD code capabilities, (c) complex 3D solid modeling and meshing of major fast reactor components and regions, and (d) an approach for multi-physics coupling across non-conformal mesh interfaces.

  16. Multiclass learning with simplex coding

    E-Print Network [OSTI]

    Mroueh, Youssef

    In this paper we discuss a novel framework for multiclass learning, defined by a suitable coding/decoding strategy, namely the simplex coding, that allows us to generalize to multiple classes a relaxation approach commonly ...

  17. Distributed control of coded networks

    E-Print Network [OSTI]

    Zhao, Fang, Ph. D. Massachusetts Institute of Technology

    2010-01-01T23:59:59.000Z

    The introduction of network coding has the potential to revolutionize the way people operate networks. For the benefits of network coding to be realized, distributed solutions are needed for various network problems. In ...

  18. Nevada Energy Code for Buildings

    Broader source: Energy.gov [DOE]

    ''Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  19. Recent advances in the CONTAIN code

    SciTech Connect (OSTI)

    Bergeron, K.D.; Carroll, D.E.; Gelbard, F.; Murata, K.K.; Valdez, G.D.; Washington, K.E.

    1987-10-01T23:59:59.000Z

    An update is given on very recent developments involving CONTAIN, the USNRC's principal mechanistic code for severe accident containment analysis. First, the features are outlined in two major new releases of CONTAIN. Revision 1.06 was released in February; the major improvements include full integration of the CORCON and VANESA models for debris concrete interactions and concomitant aerosol generation, more detailed and more flexible radiation heat transfer options, and a number of minor improvements. The most recent new version of the code is CONTAIN 1.1, which was released in October. The principal new features relate to the Boiling Water Reactor. In particular, working models are included for Pressure Suppression Pools and Safety Relief Valves. In addition, this version of the code has a much-improved treatment of fision product hosting, user-defined material property options, and a number of other improvements. A second major area of progress involves the aerosol models. Previously, numerical diffusion limited the accuracy of the calculation of the concentration of the smallest particles and, there was no accounting for the effects of soluble salts or surface tension on the equilibrium water vapor pressure. All of these problems have now been solved with a stand-alone aerosol modeling code which uses a suite of new numerical approaches. The new methods have been incorporated into CONTAIN. Example calculations are presented. 7 refs., 4 figs., 1 tab.

  20. Travel Codes Traveler Is Employee

    E-Print Network [OSTI]

    Arnold, Jonathan

    Travel Codes Traveler Is Employee: 64100-Domestic Travel 64150-Mileage 64200-International Travel Supplies & Expense Codes 71410-Office Supplies 71430-Lab/Research Supplies (dollar value of each item less Charges Equipment Codes 84320-Equipment (non-computer & peripherals) with a cost of $5,000.00 or more per

  1. Rotationally invariant multilevel block codes

    E-Print Network [OSTI]

    Kulandaivelu, Anita

    1993-01-01T23:59:59.000Z

    The objective of this thesis is to evaluate the performance of block codes that are designed to be rotationally invariant, in a multilevel coding scheme, over a channel modelled to be white gaussian noise. Also, the use of non-binary codes...

  2. Design of proximity detecting codes

    E-Print Network [OSTI]

    Perisetty, Srinivas

    1997-01-01T23:59:59.000Z

    delay insensitive, codes like unordered codes have been proposed. Although these codes are delay insensitive, the receiver still has to wait for all the 1s in the transmitted data to be received before sending an acknowledge signal to the sender. A new...

  3. Code for Hydrogen Hydrogen Pipeline

    E-Print Network [OSTI]

    #12;2 Code for Hydrogen Pipelines Hydrogen Pipeline Working Group Workshop Augusta, Georgia August development · Charge from BPTCS to B31 Standards Committee for Hydrogen Piping/Pipeline code development · B31.12 Status & Structure · Hydrogen Pipeline issues · Research Needs · Where Do We Go From Here? #12;4 Code

  4. Energy Codes and Standards: Facilities

    SciTech Connect (OSTI)

    Bartlett, Rosemarie; Halverson, Mark A.; Shankle, Diana L.

    2007-01-01T23:59:59.000Z

    Energy codes and standards play a vital role in the marketplace by setting minimum requirements for energy-efficient design and construction. They outline uniform requirements for new buildings as well as additions and renovations. This article covers basic knowledge of codes and standards; development processes of each; adoption, implementation, and enforcement of energy codes and standards; and voluntary energy efficiency programs.

  5. PERFORMANCE EVALUATION OF TURBO CODES

    E-Print Network [OSTI]

    Alajaji, Fady

    PERFORMANCE EVALUATION OF TURBO CODES by Guangchong Zhu A project submitted to the Department named ``Turbo codes'' which claims an extraordinary performance with reasonable decoding complexity. In this project, we begin with a study on the structure and principle of Turbo codes. We then investigate

  6. Southeast Energy Efficiency Alliance's Building Energy Codes...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Southeast Energy Efficiency Alliance's Building Energy Codes Project Southeast Energy Efficiency Alliance's Building Energy Codes Project Building Codes Project for the 2013...

  7. 2013 Reporting Unit Codes | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2013 Reporting Unit Codes 2013 Reporting Unit Codes CFC Reporting Unit Codes 2013.pdf More Documents & Publications EA-0372: Final Environmental Assessment Alignment: Achieving...

  8. Error Floors of LDPC Codes and Related Topics

    E-Print Network [OSTI]

    Butler, Brian K.

    Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2.2 LDPC Codes . . . . . . . .2.1 Binary Linear Block Codes . . . . . . .

  9. NERSC Leads Next-Generation Code Optimization Effort

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    With the promise of exascale supercomputers looming on the horizon, much of the roadmap is dotted with questions about hardware design and how to make these systems energy...

  10. Jitblt : efficient run-time code generation for digital compositing

    E-Print Network [OSTI]

    Amelang, Daniel James

    2008-01-01T23:59:59.000Z

    87. [4] Blinn, J. , 1994: Composting, part 2: practice. IEEEgiven region. For some composting operator and pixel format

  11. Concise specifications of locally optimal code generators Andrew W. Appel

    E-Print Network [OSTI]

    Appel, Andrew W.

    , so it can be much more concise. Twig specifications for the VAX and MC68020 are described. The instruction sets of the DEC VAX and Motorola 68020 are used as a illustrative examples. The VAX architecture

  12. Cooperative Network Coding Next Generation Technology for Today's Warfighter

    E-Print Network [OSTI]

    Haas, Zygmunt J.

    Communications to produce superior network reliability and provide inherent security features, while improving it towards the next cluster. 3.Nodes, in cluster 2 through K, receive the combination packets and act as MISO

  13. Roadmap Toward a Predictive Performance-based Commercial Energy Code

    SciTech Connect (OSTI)

    Rosenberg, Michael I.; Hart, Philip R.

    2014-10-01T23:59:59.000Z

    Energy codes have provided significant increases in building efficiency over the last 38 years, since the first national energy model code was published in late 1975. The most commonly used path in energy codes, the prescriptive path, appears to be reaching a point of diminishing returns. The current focus on prescriptive codes has limitations including significant variation in actual energy performance depending on which prescriptive options are chosen, a lack of flexibility for designers and developers, and the inability to handle control optimization that is specific to building type and use. This paper provides a high level review of different options for energy codes, including prescriptive, prescriptive packages, EUI Target, outcome-based, and predictive performance approaches. This paper also explores a next generation commercial energy code approach that places a greater emphasis on performance-based criteria. A vision is outlined to serve as a roadmap for future commercial code development. That vision is based on code development being led by a specific approach to predictive energy performance combined with building specific prescriptive packages that are designed to be both cost-effective and to achieve a desired level of performance. Compliance with this new approach can be achieved by either meeting the performance target as demonstrated by whole building energy modeling, or by choosing one of the prescriptive packages.

  14. Flowgen: Flowchart-Based Documentation for C++ Codes

    E-Print Network [OSTI]

    David A. Kosower; J. J. Lopez-Villarejo

    2014-05-13T23:59:59.000Z

    We present the Flowgen tool, which generates flowcharts from annotated C++ source code. The tool generates a set of interconnected high-level UML activity diagrams, one for each function or method in the C++ sources. It provides a simple and visual overview of complex implementations of numerical algorithms. Flowgen is complementary to the widely-used Doxygen documentation tool. The ultimate aim is to render complex C++ computer codes accessible, and to enhance collaboration between programmers and algorithm or science specialists. We describe the tool and a proof-of-concept application to the VINCIA plug-in for simulating collisions at CERN's Large Hadron Collider.

  15. Methodology for fast detection of false sharing in threaded scientific codes

    DOE Patents [OSTI]

    Chung, I-Hsin; Cong, Guojing; Murata, Hiroki; Negishi, Yasushi; Wen, Hui-Fang

    2014-11-25T23:59:59.000Z

    A profiling tool identifies a code region with a false sharing potential. A static analysis tool classifies variables and arrays in the identified code region. A mapping detection library correlates memory access instructions in the identified code region with variables and arrays in the identified code region while a processor is running the identified code region. The mapping detection library identifies one or more instructions at risk, in the identified code region, which are subject to an analysis by a false sharing detection library. A false sharing detection library performs a run-time analysis of the one or more instructions at risk while the processor is re-running the identified code region. The false sharing detection library determines, based on the performed run-time analysis, whether two different portions of the cache memory line are accessed by the generated binary code.

  16. Theory and Implementation of Nuclear Safety System Codes - Part II: System Code Closure Relations, Validation, and Limitations

    SciTech Connect (OSTI)

    Glenn A Roth; Fatih Aydogan

    2014-09-01T23:59:59.000Z

    This is Part II of two articles describing the details of thermal-hydraulic sys- tem codes. In this second part of the article series, the system code closure relationships (used to model thermal and mechanical non-equilibrium and the coupling of the phases) for the governing equations are discussed and evaluated. These include several thermal and hydraulic models, such as heat transfer coefficients for various flow regimes, two phase pressure correlations, two phase friction correlations, drag coefficients and interfacial models be- tween the fields. These models are often developed from experimental data. The experiment conditions should be understood to evaluate the efficacy of the closure models. Code verification and validation, including Separate Effects Tests (SETs) and Integral effects tests (IETs) is also assessed. It can be shown from the assessments that the test cases cover a significant section of the system code capabilities, but some of the more advanced reactor designs will push the limits of validation for the codes. Lastly, the limitations of the codes are discussed by considering next generation power plants, such as Small Modular Reactors (SMRs), analyz- ing not only existing nuclear power plants, but also next generation nuclear power plants. The nuclear industry is developing new, innovative reactor designs, such as Small Modular Reactors (SMRs), High-Temperature Gas-cooled Reactors (HTGRs) and others. Sub-types of these reactor designs utilize pebbles, prismatic graphite moderators, helical steam generators, in- novative fuel types, and many other design features that may not be fully analyzed by current system codes. This second part completes the series on the comparison and evaluation of the selected reactor system codes by discussing the closure relations, val- idation and limitations. These two articles indicate areas where the models can be improved to adequately address issues with new reactor design and development.

  17. T ID CODE I

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA Approved:AdministrationAnalysisDarby Dietrich5 | NUMBER 1 | MARCHT ID CODE I

  18. Coding for Transmission Coding for Compression Bonus Section CMPSCI 240: Reasoning about Uncertainty

    E-Print Network [OSTI]

    McGregor, Andrew

    Coding for Transmission Coding for Compression Bonus Section CMPSCI 240: Reasoning about 1, 2013 #12;Coding for Transmission Coding for Compression Bonus Section Information Theory Encoding for Transmission Coding for Compression Bonus Section Encoding Messages with Redundancy: Error Correcting Suppose

  19. Thermoelectric Generators 1. Thermoelectric generator

    E-Print Network [OSTI]

    Lee, Ho Sung

    1 Thermoelectric Generators HoSung Lee 1. Thermoelectric generator 1.1 Basic Equations In 1821 effects are called the thermoelectric effects. The mechanisms of thermoelectricity were not understood. Cold Hot I - -- - - - - -- Figure 1 Electron concentration in a thermoelectric material. #12;2 A large

  20. Quantum serial turbo-codes

    E-Print Network [OSTI]

    David Poulin; Jean-Pierre Tillich; Harold Ollivier

    2009-06-10T23:59:59.000Z

    We present a theory of quantum serial turbo-codes, describe their iterative decoding algorithm, and study their performances numerically on a depolarization channel. Our construction offers several advantages over quantum LDPC codes. First, the Tanner graph used for decoding is free of 4-cycles that deteriorate the performances of iterative decoding. Secondly, the iterative decoder makes explicit use of the code's degeneracy. Finally, there is complete freedom in the code design in terms of length, rate, memory size, and interleaver choice. We define a quantum analogue of a state diagram that provides an efficient way to verify the properties of a quantum convolutional code, and in particular its recursiveness and the presence of catastrophic error propagation. We prove that all recursive quantum convolutional encoder have catastrophic error propagation. In our constructions, the convolutional codes have thus been chosen to be non-catastrophic and non-recursive. While the resulting families of turbo-codes have bounded minimum distance, from a pragmatic point of view the effective minimum distances of the codes that we have simulated are large enough not to degrade the iterative decoding performance up to reasonable word error rates and block sizes. With well chosen constituent convolutional codes, we observe an important reduction of the word error rate as the code length increases.

  1. Conjugate Codes and Applications to Cryptography

    E-Print Network [OSTI]

    Mitsuru Hamada

    2006-10-23T23:59:59.000Z

    A conjugate code pair is defined as a pair of linear codes such that one contains the dual of the other. The conjugate code pair represents the essential structure of the corresponding Calderbank-Shor-Steane (CSS) quantum code. It is argued that conjugate code pairs are applicable to quantum cryptography in order to motivate studies on conjugate code pairs.

  2. Turbo and LDPC Codes: Implementation, Simulation,

    E-Print Network [OSTI]

    Valenti, Matthew C.

    1 Turbo and LDPC Codes: Implementation, Simulation, and Standardization June 7, 2006 Matthew/7/2006 Turbo and LDPC Codes 2/133 Tutorial Overview Channel capacity Convolutional codes ­ the MAP algorithm Turbo codes ­ Standard binary turbo codes: UMTS and cdma2000 ­ Duobinary CRSC turbo codes: DVB

  3. Pradeep Agrawal Dr. Pradeep Agrawal's research is focused on the development of thermochemical pathways for converting ligno-

    E-Print Network [OSTI]

    Gallivan, Martha A.

    high pressure biomass gasification under conditions that mimic the next generation of gasification pressure biomass gasification. Gasification offers the advantage that all types of biomass (including agricultural waste and forest residue) can be gasified to produce syngas (CO + H2). Biomass gasification

  4. Insertion of operation-and-indicate instructions for optimized SIMD code

    DOE Patents [OSTI]

    Eichenberger, Alexander E; Gara, Alan; Gschwind, Michael K

    2013-06-04T23:59:59.000Z

    Mechanisms are provided for inserting indicated instructions for tracking and indicating exceptions in the execution of vectorized code. A portion of first code is received for compilation. The portion of first code is analyzed to identify non-speculative instructions performing designated non-speculative operations in the first code that are candidates for replacement by replacement operation-and-indicate instructions that perform the designated non-speculative operations and further perform an indication operation for indicating any exception conditions corresponding to special exception values present in vector register inputs to the replacement operation-and-indicate instructions. The replacement is performed and second code is generated based on the replacement of the at least one non-speculative instruction. The data processing system executing the compiled code is configured to store special exception values in vector output registers, in response to a speculative instruction generating an exception condition, without initiating exception handling.

  5. Generating Test Data from SOFL Specifications \\Lambda A. Jefferson Offutt

    E-Print Network [OSTI]

    Offutt, Jeff

    Generating Test Data from SOFL Specifications \\Lambda A. Jefferson Offutt ISSE Department, 4A4@cs.hiroshima­cu.ac.jp Abstract Software testing can only be formalized and quantified when a solid basis for test generation can be defined. Tests are commonly generated from the source code, control flow graphs, design representations

  6. 86 Home Power #52 April / May 1996 Code Corner

    E-Print Network [OSTI]

    Johnson, Eric E.

    pumps lock up. Generators and PV arrays develop ground-faults. This Code Corner and the next the source of the potential overcurrent. If the circuit is ungrounded, then overcurrent protection stalled pump motors. These currents can cause long-term deterioration of the cables from overheating

  7. Thermochemical cyclic system for decomposing H/sub 2/O and/or CO/sub 2/ by means of cerium-titanium-sodium-oxygen compounds

    DOE Patents [OSTI]

    Bamberger, C.E.

    1980-04-24T23:59:59.000Z

    A thermochemical closed cyclic process for the decomposition of water and/or carbon dioxide to hydrogen and/or carbon monoxide begins with the reaction of ceric oxide (CeO/sub 2/), titanium dioxide (TiO/sub 2/) and sodium titanate (Na/sub 2/TiO/sub 3/) to form sodium cerous titanate (NaCeTi/sub 2/O/sub 6/) and oxygen. Sodium cerous titanate (NaCeTi/sub 2/O/sub 6/) reacted with sodium carbonate (Na/sub 2/CO/sub 3/) in the presence of steam, produces hydrogen. The same reaction, in the absence of steam, produces carbon monoxide. The products, ceric oxide and sodium titanate, obtained in either case, are treated with carbon dioxide and water to produce ceric oxide, titanium dioxide, sodium titanate, and sodium bicarbonate. After dissolving sodium bicarbonate from the mixture in water, the remaining insoluble compounds are used as starting materials for a subsequent cycle. The sodium bicarbonate can be converted to sodium carbonate by heating and returned to the cycle.

  8. Clark County- Energy Conservation Code

    Broader source: Energy.gov [DOE]

    In September 2010, Clark County adopted Ordinance 3897, implementing the Southern Nevada version of the 2009 International Energy Conservation Code for both residential and commercial buildings...

  9. Nonbinary Codeword Stabilized Quantum Codes

    E-Print Network [OSTI]

    Xie Chen; Bei Zeng; Isaac L. Chuang

    2008-08-22T23:59:59.000Z

    The codeword stabilized (CWS) quantum codes formalism presents a unifying approach to both additive and nonadditive quantum error-correcting codes (arXiv:0708.1021 [quant-ph]), but only for binary states. Here we generalize the CWS framework to the nonbinary case (of both prime and nonprime dimension) and map the search for nonbinary quantum codes to a corresponding search problem for classical nonbinary codes with specific error patterns. We show that while the additivity properties of nonbinary CWS codes are similar to the binary case, the structural properties of the nonbinary codes differ substantially from the binary case, even for prime dimensions. In particular, we identify specific structure patterns of stabilizer groups, based on which efficient constructions might be possible for codes that encode more dimensions than any stabilizer codes of the same length and distance; similar methods cannot be applied in the binary case. Understanding of these structural properties can help prune the search space and facilitate the identification of good nonbinary CWS codes.

  10. Marin County- Solar Access Code

    Broader source: Energy.gov [DOE]

    Marin County's Energy Conservation Code is designed to assure new subdivisions provide for future passive or natural heating or cooling opportunities in the subdivision to the extent feasible. ...

  11. Quantum Quasi-Cyclic LDPC Codes

    E-Print Network [OSTI]

    Manabu Hagiwara; Hideki Imai

    2010-08-28T23:59:59.000Z

    In this paper, a construction of a pair of "regular" quasi-cyclic LDPC codes as ingredient codes for a quantum error-correcting code is proposed. That is, we find quantum regular LDPC codes with various weight distributions. Furthermore our proposed codes have lots of variations for length, code rate. These codes are obtained by a descrete mathematical characterization for model matrices of quasi-cyclic LDPC codes. Our proposed codes achieve a bounded distance decoding (BDD) bound, or known as VG bound, and achieve a lower bound of the code length.

  12. Super Special Codes using Super Matrices

    E-Print Network [OSTI]

    W. B. Vasantha Kandasamy; Florentin Smarandache; K. Ilanthenral

    2010-06-30T23:59:59.000Z

    The new classes of super special codes are constructed in this book using the specially constructed super special vector spaces. These codes mainly use the super matrices. These codes can be realized as a special type of concatenated codes. This book has four chapters. In chapter one basic properties of codes and super matrices are given. A new type of super special vector space is constructed in chapter two of this book. Three new classes of super special codes namely, super special row code, super special column code and super special codes are introduced in chapter three. Applications of these codes are given in the final chapter.

  13. Non-Residential Energy Code National and Regional Codes

    E-Print Network [OSTI]

    Non-Residential Energy Code Comparison National and Regional Codes David Baylon Mike Kennedy #12 2003 · ASHRAE 90.1 2001 & addenda · E-Benchmark Guidelines (NBI) #12;Approach · Comparison of the State;Approach (cont.) · Provisions compared ­ Lighting power ­ Lighting controls ­ Mechanical systems ­ Building

  14. Building and Facility Codes Code Building Location Bldg # Coordinates

    E-Print Network [OSTI]

    Russell, Lynn

    Building and Facility Codes Code Building Location Bldg # Coordinates APM Applied Physics & Mathematics Building Muir 249 F7 ASANT Asante Hall Eleanor Roosevelt 446 F5 BIO Biology Building Muir 259 F7 BIRCH Birch Aquarium SIO 2300 S-D7 BONN Bonner Hall Revelle 131 G8 BSB Biomedical Sciences Building

  15. Space time coded code division multiplexing on SC140 DSP

    E-Print Network [OSTI]

    Menon, Murali P

    2001-01-01T23:59:59.000Z

    The aim of this research is to design a high data rate wireless communication system for multi-path fading channels. Code-division multiplexing is proposed as a modulation scheme for a space-time coded multiple antenna system that would guarantee...

  16. Molecular Cell Interaction of a DNA Zip Code with the Nuclear

    E-Print Network [OSTI]

    Brickner, Jason

    Molecular Cell Article Interaction of a DNA Zip Code with the Nuclear Pore Complex Promotes H2A codes'' in the promoters of yeast genes confer interaction with the NPC and localization at the nuclear, they remain at the nuclear periphery for several generations, primed for reactivation. Tran- scriptional

  17. Weight Distribution of a Class of Binary Linear Block Codes Formed from RCPC Codes

    E-Print Network [OSTI]

    Shen, Yushi Dr.; Cosman, Pamela C; Milstein, Laurence B

    2006-01-01T23:59:59.000Z

    formed from convolutional codes, IEEE Trans. Commun. , vol.terminated convolutional codes, IEEE Trans. Inform. Theory,decoding of linear block codes and related soft- decision

  18. Green Construction Codes

    E-Print Network [OSTI]

    Blake, S.

    2011-01-01T23:59:59.000Z

    % Portfolio) ? Solar Powered Generators ? Hybrid Vehicle Fleet ? EV Charging Station Grid ? Reuse Warehouse ? Brownfields Municiple Setting Designations ? Waterworks Museum ? 1Million Trees / Community Gardens ? Green Office Challenge > 300... of the roof that is a rooftop garden, or green roof or covered by a rooftop deck covering 1/3 or less of the aggregate area of the roof ? Area including and adjacent to rooftop photovoltaic and solar thermal equipment, totaling not more than three...

  19. Introduction Space Time Codes Space Time Coding with Feedback New Thoughts Summary Space-Time Coding for Multi-Antenna

    E-Print Network [OSTI]

    Veeravalli, Venugopal

    Introduction Space Time Codes Space Time Coding with Feedback New Thoughts Summary Space 2007 #12;Introduction Space Time Codes Space Time Coding with Feedback New Thoughts Summary MIMO: Diversity vs Multiplexing Multiplexing Diversity Pictures taken from lectures notes on Space Time Coding

  20. LFSC - Linac Feedback Simulation Code

    SciTech Connect (OSTI)

    Ivanov, Valentin; /Fermilab

    2008-05-01T23:59:59.000Z

    The computer program LFSC (Code>) is a numerical tool for simulation beam based feedback in high performance linacs. The code LFSC is based on the earlier version developed by a collective of authors at SLAC (L.Hendrickson, R. McEwen, T. Himel, H. Shoaee, S. Shah, P. Emma, P. Schultz) during 1990-2005. That code was successively used in simulation of SLC, TESLA, CLIC and NLC projects. It can simulate as pulse-to-pulse feedback on timescale corresponding to 5-100 Hz, as slower feedbacks, operating in the 0.1-1 Hz range in the Main Linac and Beam Delivery System. The code LFSC is running under Matlab for MS Windows operating system. It contains about 30,000 lines of source code in more than 260 subroutines. The code uses the LIAR ('Linear Accelerator Research code') for particle tracking under ground motion and technical noise perturbations. It uses the Guinea Pig code to simulate the luminosity performance. A set of input files includes the lattice description (XSIF format), and plane text files with numerical parameters, wake fields, ground motion data etc. The Matlab environment provides a flexible system for graphical output.

  1. Stabilizer Codes over Frobenius Rings

    E-Print Network [OSTI]

    Nadella, Sushma

    2012-07-16T23:59:59.000Z

    now, the methods for quantum error correction were mainly based on quantum codes that rely on the arithmetic in finite fields. In contrast, this thesis aims to develop a basic framework for quantum error correcting codes over a class of rings known...

  2. Investment and Upgrade in Distributed Generation under Uncertainty

    E-Print Network [OSTI]

    Siddiqui, Afzal

    2008-01-01T23:59:59.000Z

    ment of uncertainty via real options increases the value of2007) and the 2007 Real Options Conference in Berkeley, CA,distributed generation, real options JEL Codes: D81, Q40

  3. Verification and Validation Plan for the Codes LSP and ICARUS (PEGASUS)

    SciTech Connect (OSTI)

    RILEY,MERLE E.; BUSS,RICHARD J.; CAMPBELL,ROBERT B.; HOPKINS,MATTHEW M.; MILLER,PAUL A.; MOATS,ANNE R.; WAMPLER,WILLIAM R.

    2002-02-01T23:59:59.000Z

    This report documents the strategies for verification and validation of the codes LSP and ICARUS used for simulating the operation of the neutron tubes used in all modern nuclear weapons. The codes will be used to assist in the design of next generation neutron generators and help resolve manufacturing issues for current and future production of neutron devices. Customers for the software are identified, tube phenomena are identified and ranked, software quality strategies are given, and the validation plan is set forth.

  4. Entanglement boosts quantum turbo codes

    E-Print Network [OSTI]

    Wilde, Mark M

    2010-01-01T23:59:59.000Z

    One of the unexpected breakdowns in the existing theory of quantum serial turbo coding is that a quantum convolutional encoder cannot simultaneously be recursive and non-catastrophic. These properties are essential for a quantum turbo code to have an unbounded minimum distance and for its iterative decoding algorithm to converge, respectively. Here, we show that the entanglement-assisted paradigm gives a theoretical and practical "turbo boost" to these codes, in the sense that an entanglement-assisted quantum (EAQ) convolutional encoder can possess both of the aforementioned desirable properties, and simulation results indicate that entanglement-assisted turbo codes can operate reliably in a noise regime 5.5 dB beyond that of standard quantum turbo codes. Entanglement is the resource that enables a convolutional encoder to satisfy both properties because an encoder acting on only information qubits, classical bits, gauge qubits, and ancilla qubits cannot simultaneously satisfy them. We give several examples o...

  5. Renewable Energy Requirements for Future Building Codes: Options for Compliance

    SciTech Connect (OSTI)

    Dillon, Heather E.; Antonopoulos, Chrissi A.; Solana, Amy E.; Russo, Bryan J.

    2011-09-30T23:59:59.000Z

    As the model energy codes are improved to reach efficiency levels 50 percent greater than current codes, use of on-site renewable energy generation is likely to become a code requirement. This requirement will be needed because traditional mechanisms for code improvement, including envelope, mechanical and lighting, have been pressed to the end of reasonable limits. Research has been conducted to determine the mechanism for implementing this requirement (Kaufman 2011). Kaufmann et al. determined that the most appropriate way to structure an on-site renewable requirement for commercial buildings is to define the requirement in terms of an installed power density per unit of roof area. This provides a mechanism that is suitable for the installation of photovoltaic (PV) systems on future buildings to offset electricity and reduce the total building energy load. Kaufmann et al. suggested that an appropriate maximum for the requirement in the commercial sector would be 4 W/ft{sup 2} of roof area or 0.5 W/ft{sup 2} of conditioned floor area. As with all code requirements, there must be an alternative compliance path for buildings that may not reasonably meet the renewables requirement. This might include conditions like shading (which makes rooftop PV arrays less effective), unusual architecture, undesirable roof pitch, unsuitable building orientation, or other issues. In the short term, alternative compliance paths including high performance mechanical equipment, dramatic envelope changes, or controls changes may be feasible. These options may be less expensive than many renewable systems, which will require careful balance of energy measures when setting the code requirement levels. As the stringency of the code continues to increase however, efficiency trade-offs will be maximized, requiring alternative compliance options to be focused solely on renewable electricity trade-offs or equivalent programs. One alternate compliance path includes purchase of Renewable Energy Credits (RECs). Each REC represents a specified amount of renewable electricity production and provides an offset of environmental externalities associated with non-renewable electricity production. The purpose of this paper is to explore the possible issues with RECs and comparable alternative compliance options. Existing codes have been examined to determine energy equivalence between the energy generation requirement and the RECs alternative over the life of the building. The price equivalence of the requirement and the alternative are determined to consider the economic drivers for a market decision. This research includes case studies that review how the few existing codes have incorporated RECs and some of the issues inherent with REC markets. Section 1 of the report reviews compliance options including RECs, green energy purchase programs, shared solar agreements and leases, and other options. Section 2 provides detailed case studies on codes that include RECs and community based alternative compliance methods. The methods the existing code requirements structure alternative compliance options like RECs are the focus of the case studies. Section 3 explores the possible structure of the renewable energy generation requirement in the context of energy and price equivalence. The price of RECs have shown high variation by market and over time which makes it critical to for code language to be updated frequently for a renewable energy generation requirement or the requirement will not remain price-equivalent over time. Section 4 of the report provides a maximum case estimate for impact to the PV market and the REC market based on the Kaufmann et al. proposed requirement levels. If all new buildings in the commercial sector complied with the requirement to install rooftop PV arrays, nearly 4,700 MW of solar would be installed in 2012, a major increase from EIA estimates of 640 MW of solar generation capacity installed in 2009. The residential sector could contribute roughly an additional 2,300 MW based on the same code requirement levels of 4 W/ft{sup 2} of r

  6. Breaking the Code on Challenging Waste - 13267

    SciTech Connect (OSTI)

    Witzeman, John; Estes, Charles [URS - CH2M Oak Ridge LLC (United States)] [URS - CH2M Oak Ridge LLC (United States); White, Aaron [U.S. Department of Energy (United States)] [U.S. Department of Energy (United States)

    2013-07-01T23:59:59.000Z

    Mixed low-level wastes (MLLW) with no available path to treatment or disposal have been longstanding challenges for DOE facilities. Today, mixed wastes with no path to treatment or disposal frequently present themselves in the form of combinations of problematic matrixes, problematic EPA Hazardous Waste Codes, and security classification requirements. In order to successfully treat and disposition these challenging wastes, waste management personnel must be more inquisitive and challenge the status quo more than ever before. All aspects of the waste from how it was generated to how the waste is currently being managed must be revisited. Each fact, the basis of each decision, and each regulatory determination must be investigated and validated. Since many of the difficult waste streams were generated several years ago, it can be quite challenging to locate knowledgeable generators from the time of generation. Significant investigation is often required to obtain the needed information to evaluate legacy waste streams. Special attention must be paid to the little things that may not seem central to the issues being investigated. Solutions are sometimes found in these details. (authors)

  7. On Quantum and Classical BCH Codes

    E-Print Network [OSTI]

    Salah A. Aly; Andreas Klappenecker; Pradeep Kiran Sarvepalli

    2006-04-14T23:59:59.000Z

    Classical BCH codes that contain their (Euclidean or Hermitian) dual codes can be used to construct quantum stabilizer codes; this correspondence studies the properties of such codes. It is shown that a BCH code of length n can contain its dual code only if its designed distance d=O(sqrt(n)), and the converse is proved in the case of narrow-sense codes. Furthermore, the dimension of narrow-sense BCH codes with small design distance is completely determined, and - consequently - the bounds on their minimum distance are improved. These results make it possible to determine the parameters of quantum BCH codes in terms of their design parameters.

  8. San Francisco Building Code Amendments to the

    E-Print Network [OSTI]

    Green Building Standards Code 2010 California Residential Code Operative date: January 1, 2011 #12;2 #121 2010 San Francisco Building Code Amendments to the 2010 California Building Code 2010 California;3 CHAPTER 1 SCOPE AND ADMINISTRATION DIVISION I CALIFORNIA ADMINISTRATION No San Francisco Building Code

  9. NHA HYDROGEN SAFETY CODES AND STANDARDS ACTIVITIES

    E-Print Network [OSTI]

    laboratories, code officials and model building code organizations to bring experts together in a focused and other information needed by the Code Officials to complete the development of these new codes needs to be disseminated to building code officials such as National Fire Protection Association (NFPA

  10. Remarkable Degenerate Quantum Stabilizer Codes Derived from Duadic Codes

    E-Print Network [OSTI]

    Salah A. Aly; Andreas Klappenecker; Pradeep Kiran Sarvepalli

    2006-01-18T23:59:59.000Z

    Good quantum codes, such as quantum MDS codes, are typically nondegenerate, meaning that errors of small weight require active error-correction, which is--paradoxically--itself prone to errors. Decoherence free subspaces, on the other hand, do not require active error correction, but perform poorly in terms of minimum distance. In this paper, examples of degenerate quantum codes are constructed that have better minimum distance than decoherence free subspaces and allow some errors of small weight that do not require active error correction. In particular, two new families of [[n,1,>= sqrt(n)

  11. A surface definition code for turbine blade surfaces

    SciTech Connect (OSTI)

    Yang, S.L. (Michigan Technological Univ., Houghton, MI (United States)); Oryang, D.; Ho, M.J. (Tuskegee Univ., AL (United States))

    1992-05-01T23:59:59.000Z

    A numerical interpolation scheme has been developed for generating the three-dimensional geometry of wind turbine blades. The numerical scheme consists of (1) creating the frame of the blade through the input of two or more airfoils at some specific spanwise stations and then scaling and twisting them according to the prescribed distributions of chord, thickness, and twist along the span of the blade; (2) transforming the physical coordinates of the blade frame into a computational domain that complies with the interpolation requirements; and finally (3) applying the bi-tension spline interpolation method, in the computational domain, to determine the coordinates of any point on the blade surface. Detailed descriptions of the overall approach to and philosophy of the code development are given along with the operation of the code. To show the usefulness of the bi-tension spline interpolation code developed, two examples are given, namely CARTER and MICON blade surface generation. Numerical results are presented in both graphic data forms. The solutions obtained in this work show that the computer code developed can be a powerful tool for generating the surface coordinates for any three-dimensional blade.

  12. Surface code quantum communication

    E-Print Network [OSTI]

    Austin G. Fowler; David S. Wang; Charles D. Hill; Thaddeus D. Ladd; Rodney Van Meter; Lloyd C. L. Hollenberg

    2010-02-05T23:59:59.000Z

    Quantum communication typically involves a linear chain of repeater stations, each capable of reliable local quantum computation and connected to their nearest neighbors by unreliable communication links. The communication rate in existing protocols is low as two-way classical communication is used. We show that, if Bell pairs are generated between neighboring stations with a probability of heralded success greater than 0.65 and fidelity greater than 0.96, two-way classical communication can be entirely avoided and quantum information can be sent over arbitrary distances with arbitrarily low error at a rate limited only by the local gate speed. The number of qubits per repeater scales logarithmically with the communication distance. If the probability of heralded success is less than 0.65 and Bell pairs between neighboring stations with fidelity no less than 0.92 are generated only every T_B seconds, the logarithmic resource scaling remains and the communication rate through N links is proportional to 1/(T_B log^2 N).

  13. Surface code implementation of block code state distillation

    E-Print Network [OSTI]

    Austin G. Fowler; Simon J. Devitt; Cody Jones

    2013-01-29T23:59:59.000Z

    State distillation is the process of taking a number of imperfect copies of a particular quantum state and producing fewer better copies. Until recently, the lowest overhead method of distilling states |A>=(|0>+e^{i\\pi/4}|1>)/\\sqrt{2} produced a single improved |A> state given 15 input copies. New block code state distillation methods can produce k improved |A> states given 3k+8 input copies, potentially significantly reducing the overhead associated with state distillation. We construct an explicit surface code implementation of block code state distillation and quantitatively compare the overhead of this approach to the old. We find that, using the best available techniques, for parameters of practical interest, block code state distillation does not always lead to lower overhead, and, when it does, the overhead reduction is typically less than a factor of three.

  14. Multidimensional electron-photon transport with standard discrete ordinates codes

    SciTech Connect (OSTI)

    Drumm, C.R.

    1995-12-31T23:59:59.000Z

    A method is described for generating electron cross sections that are compatible with standard discrete ordinates codes without modification. There are many advantages of using an established discrete ordinates solver, e.g. immediately available adjoint capability. Coupled electron-photon transport capability is needed for many applications, including the modeling of the response of electronics components to space and man-made radiation environments. The cross sections have been successfully used in the DORT, TWODANT and TORT discrete ordinates codes. The cross sections are shown to provide accurate and efficient solutions to certain multidimensional electronphoton transport problems.

  15. Muon simulation codes MUSIC and MUSUN for underground physics

    E-Print Network [OSTI]

    V. A. Kudryavtsev

    2008-10-25T23:59:59.000Z

    The paper describes two Monte Carlo codes dedicated to muon simulations: MUSIC (MUon SImulation Code) and MUSUN (MUon Simulations UNderground). MUSIC is a package for muon transport through matter. It is particularly useful for propagating muons through large thickness of rock or water, for instance from the surface down to underground/underwater laboratory. MUSUN is designed to use the results of muon transport through rock/water to generate muons in or around underground laboratory taking into account their energy spectrum and angular distribution.

  16. Nuclear shell-model code for massive parallel computation, "KSHELL"

    E-Print Network [OSTI]

    Noritaka Shimizu

    2013-10-21T23:59:59.000Z

    A new code for nuclear shell-model calculations, "KSHELL", is developed. It aims at carrying out both massively parallel computation and single-node computation in the same manner. We solve the Schr\\"{o}dinger's equation in the $M$-scheme shell-model model space, utilizing Thick-Restart Lanczos method. During the Lanczos iteration, the whole Hamiltonian matrix elements are generated "on-the-fly" in every matrix-vector multiplication. The vectors of the Lanczos method are distributed and stored on memory of each parallel node. We report that the newly developed code has high parallel efficiency on FX10 supercomputer and a PC with multi-cores.

  17. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Matthew H. Langholtz; Eric C. D. Tan; Jacob J. Jacobson; Amy Schwab; May M. Wu; Andrew Argo; Craig C. Brandt; Kara G. Cafferty; Yi-Wen Chiu; Abhijit Dutta; Laurence M. Eaton; Erin M. Searcy

    2014-08-01T23:59:59.000Z

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the conversion facility.

  18. Entanglement-assisted codeword stabilized quantum codes

    SciTech Connect (OSTI)

    Shin, Jeonghwan; Heo, Jun; Brun, Todd A. [School of Electrical Engineering, Korea University, Seoul (Korea, Republic of); Communication Sciences Institute, University of Southern California, Los Angeles, California 90089 (United States)

    2011-12-15T23:59:59.000Z

    Entangled qubits can increase the capacity of quantum error-correcting codes based on stabilizer codes. In addition, by using entanglement quantum stabilizer codes can be construct from classical linear codes that do not satisfy the dual-containing constraint. We show that it is possible to construct both additive and nonadditive quantum codes using the codeword stabilized quantum code framework. Nonadditive codes may offer improved performance over the more common stabilizer codes. Like other entanglement-assisted codes, the encoding procedure acts only on the qubits on Alice's side, and only these qubits are assumed to pass through the channel. However, errors in the codeword stabilized quantum code framework give rise to effective Z errors on Bob's side. We use this scheme to construct entanglement-assisted nonadditive quantum codes, in particular, ((5,16,2;1)) and ((7,4,5;4)) codes.

  19. Entanglement-assisted codeword stabilized quantum codes

    E-Print Network [OSTI]

    Jeonghwan Shin; Jun Heo; Todd A. Brun

    2011-09-15T23:59:59.000Z

    Entangled qubit can increase the capacity of quantum error correcting codes based on stabilizer codes. In addition, by using entanglement quantum stabilizer codes can be construct from classical linear codes that do not satisfy the dual-containing constraint. We show that it is possible to construct both additive and non-additive quantum codes using the codeword stabilized quantum code framework. Nonadditive codes may offer improved performance over the more common sta- bilizer codes. Like other entanglement-assisted codes, the encoding procedure acts only the qubits on Alice's side, and only these qubits are assumed to pass through the channel. However, errors the codeword stabilized quantum code framework gives rise to effective Z errors on Bob side. We use this scheme to construct new entanglement-assisted non-additive quantum codes, in particular, ((5,16,2;1)) and ((7,4,5;4)) codes.

  20. STDS91.COD: Grief and Mourning Codes

    E-Print Network [OSTI]

    Rosenblatt, Paul C.; Walsh, R. Patricia; Jackson, Douglas A.

    2011-01-01T23:59:59.000Z

    conflict 2000 Age of Marriage, Females (code book variable87) N Code NA Meaning Missing data Scores range from 8.2 toGRIEF AND MOURNING CODES Paul C. Rosenblatt Department of

  1. LDPC codes : structural analysis and decoding techniques

    E-Print Network [OSTI]

    Zhang, Xiaojie

    2012-01-01T23:59:59.000Z

    to Low-Density Parity-Check Codes 2.1 Representation of LDPC4.2 Error Floors of LDPC Codes . . . . . . . . . . . . . . .LP Decoding of LDPC Codes with Alternating Direction Method

  2. Codes for the fast SSS QR eigens

    E-Print Network [OSTI]

    Fortran 90 codes (zip file); Matlab codes (zip file). Please email. A fast O(n^2) time QR eigensolver for companion matrices/polynomials. Fortran 90 codes (zip...

  3. DEPARTMENT CODE Department of Computer Science

    E-Print Network [OSTI]

    DEPARTMENT CODE Department of Computer Science College of Natural Sciences Colorado State and Amendment of this Code 19 #12;1 MISSION AND OBJECTIVES 3 Preamble This Code of the Department of Computer

  4. Example of Environmental Restoration Code of Accounts

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter describes the fundamental structure of an example remediation cost code system, lists and describes the Level 1 cost codes, and lists the Level 2 and Level 3 cost codes.

  5. Arkansas Underground Injection Control Code (Arkansas)

    Broader source: Energy.gov [DOE]

    The Arkansas Underground Injection Control Code (UIC code) is adopted pursuant to the provisions of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-5-11). It is the...

  6. Codeword Stabilized Quantum Codes and Their Error Correction

    E-Print Network [OSTI]

    Li, Yunfan

    2010-01-01T23:59:59.000Z

    5.1.4 Generic CWS codes . . . . . . . . . . .USt codes . . . . . . . . . . . . . . . . . . . . . .Quantum Codes 2.1 Notations . . . . . . . . . . . . . . 2.2

  7. Algebraic list-decoding of error-correcting codes

    E-Print Network [OSTI]

    Parvaresh, Farzad

    2007-01-01T23:59:59.000Z

    Solomon codes . . . . . . . . . . . . . . . 1.2.2 Guruswami-Simple trivariate codes and theirdecoding . . . . . . . . . . . . . 3.3.1 Code parameters and

  8. Budget/Object Codes -REVENUE Budget/Object Codes -REVENUE BUDGET/OBJECT BUDGET/OBJECT

    E-Print Network [OSTI]

    Selmic, Sandra

    Budget/Object Codes -REVENUE Budget/Object Codes - REVENUE BUDGET/OBJECT BUDGET/OBJECT BUDGET CODE DESCRIPTION BUDGET CODE DESCRIPTION 01 30 0101 On-Campus-Full Time 3001 Federal Program 0102 On APPROPRIATIONS #12;Budget/Object Codes -REVENUE Budget/Object Codes - REVENUE BUDGET/OBJECT BUDGET/OBJECT BUDGET

  9. Aspen Code Development Collaboration

    SciTech Connect (OSTI)

    none,; Cherry, Robert S. [INL] INL; Richard, Boardman D. [INL] INL

    2013-10-03T23:59:59.000Z

    Wyoming has a wealth of primary energy resources in the forms of coal, natural gas, wind, uranium, and oil shale. Most of Wyoming?s coal and gas resources are exported from the state in unprocessed form rather than as refined higher value products. Wyoming?s leadership recognizes the opportunity to broaden the state?s economic base energy resources to make value-added products such as synthetic vehicle fuels and commodity chemicals. Producing these higher value products in an environmentally responsible manner can benefit from the use of clean energy technologies including Wyoming?s abundant wind energy and nuclear energy such as new generation small modular reactors including the high temperature gas-cooled reactors.

  10. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01T23:59:59.000Z

    practices among code officials. Stakeholders recommendboth applicants and code officials and help to inform thecomply with the code and code officials to enforce the new

  11. Gas Code of Conduct (Connecticut)

    Broader source: Energy.gov [DOE]

    The Gas Code of Conduct sets forth the standard of conduct for transactions, direct or indirect, between gas companies and their affiliates. The purpose of these regulations is to promote...

  12. Commercial Building Codes and Standards

    Broader source: Energy.gov [DOE]

    Once an energy-efficient technology or practice is widely available in the market, it can become the baseline of performance through building energy codes and equipment standards. The Building...

  13. Montana Coal Mining Code (Montana)

    Broader source: Energy.gov [DOE]

    The Department of Labor and Industry is authorized to adopt rules pertaining to safety standards for all coal mines in the state. The Code requires coal mine operators to make an accurate map or...

  14. Fuel cycle code, "FUELMOVE III"

    E-Print Network [OSTI]

    Sovka, Jerry Alois

    1963-01-01T23:59:59.000Z

    Further modifications to the fuel cycle code FUELMOVE are described which were made in an attempt to obtain results for reflected reactors operated under batch, outin, and bidirectional fueling schemes. Numerical methods ...

  15. LATTICE: AN INTERACTIVE LATTICE COMPUTER CODE

    E-Print Network [OSTI]

    Staples, John

    2010-01-01T23:59:59.000Z

    4500-R65 I LATTICE AN INTERACTIVE LATTICE COMPUTER CODE Johnr LBL-4843 LATTICE An interactive lattice computer code Johncode which enables an interactive user to calculate the

  16. Building Energy Codes Collaborative Technical Assistance for...

    Energy Savers [EERE]

    State Energy Officials - 2014 BTO Peer Review Southeast Energy Efficiency Alliance's Building Energy Codes Project Reducing Energy Demand in Buildings Through State Energy Codes...

  17. Program School/ Career: Descripton ISIS Program Codes

    E-Print Network [OSTI]

    Wisconsin at Madison, University of

    Program School/ Career: Descripton ISIS Program Codes Program Career: Descripton College School;Program School/ Career: Descripton ISIS Program Codes Program Career: Descripton College School/ College 1

  18. Building Energy Code | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Building Codes Assistance Project (BCAP). For more detailed information about building energy codes, visit the http:www.energycodes.govstates DOE and http:...

  19. Quantum stabilizer codes and beyond

    E-Print Network [OSTI]

    Sarvepalli, Pradeep Kiran

    2008-10-10T23:59:59.000Z

    QUANTUM STABILIZER CODES AND BEYOND A Dissertation by PRADEEP KIRAN SARVEPALLI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2008 Major... Subject: Computer Science QUANTUM STABILIZER CODES AND BEYOND A Dissertation by PRADEEP KIRAN SARVEPALLI Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY...

  20. Edge equilibrium code for tokamaks

    SciTech Connect (OSTI)

    Li, Xujing [Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190 (China)] [Institute of Computational Mathematics and Scientific/Engineering Computing, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, P.O. Box 2719, Beijing 100190 (China); Zakharov, Leonid E. [Princeton Plasma Physics Laboratory Princeton, MS-27 P.O. Box 451, New Jersey (United States)] [Princeton Plasma Physics Laboratory Princeton, MS-27 P.O. Box 451, New Jersey (United States); Drozdov, Vladimir V. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)] [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon OX14 3DB (United Kingdom)

    2014-01-15T23:59:59.000Z

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.

  1. Generation Planning (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.Newof EnergyFundingGene ControlsCounselGeneral User Generation

  2. Graphical Quantum Error-Correcting Codes

    E-Print Network [OSTI]

    Sixia Yu; Qing Chen; C. H. Oh

    2007-09-12T23:59:59.000Z

    We introduce a purely graph-theoretical object, namely the coding clique, to construct quantum errorcorrecting codes. Almost all quantum codes constructed so far are stabilizer (additive) codes and the construction of nonadditive codes, which are potentially more efficient, is not as well understood as that of stabilizer codes. Our graphical approach provides a unified and classical way to construct both stabilizer and nonadditive codes. In particular we have explicitly constructed the optimal ((10,24,3)) code and a family of 1-error detecting nonadditive codes with the highest encoding rate so far. In the case of stabilizer codes a thorough search becomes tangible and we have classified all the extremal stabilizer codes up to 8 qubits.

  3. Multi-componenet diffusion analysis and assessment of Gamma code and improved RELAP5 code

    SciTech Connect (OSTI)

    Chang Oh

    2007-05-01T23:59:59.000Z

    A loss-of-coolant accident (LOCA) has been considered a critical event for very high temperature gas-cooled reactor (VHTR). Following helium depressurization, it is anticipated that unless countermeasures are taken, air will enter the core through the break by molecular diffusion and ultimately by natural convection leading to oxidation of the in-core graphite structure. Thus, without any mitigating features, a LOCA will lead to an air ingress event, which will lead to exothermic chemical reactions of graphite with oxygen, potentially resulting in significant increases of the core temperature. New and safer nuclear reactors (Generation IV) are now in the early planning stages in many countries throughout the world. One of the reactor concepts being seriously considered is the VHTR. To achieve public acceptance, these reactor concepts must show an increased level of inherent safety over current reactor designs (i.e., a system must be designed to eliminate any concerns of large radiological releases outside the site boundary). A computer code developed from this study, gas multi-component mixture analysis (GAMMA) code, was assessed using a two-bulb experiment and in addition the molecular diffusion behavior in the prismatic-core gas-cooled reactor was investigated following the guillotine break of the main pipe between the reactor vessel and the power conversion unit. The RELAP5 code was improved for the VHTR air ingress analysis and was assessed using inverse U-tube and NACOK natural circulation data.

  4. Thermochemical Insight into the Reduction of CO to CH3OH with [Re(CO)]+ and [Mn(CO)]+ Complexes

    SciTech Connect (OSTI)

    Wiedner, Eric S.; Appel, Aaron M.

    2014-05-22T23:59:59.000Z

    To gain insight into thermodynamic barriers for reduction of CO into CH3OH, free energies for reduction of [CpRe(PPh3)(NO)(CO)]+ into CpRe(PPh3)(NO)(CH2OH) have been determined from experimental measurements. Using model complexes, the free energies for the transfer of H+, H, and e have been determined. A pKa of 10.6 was estimated for [CpRe(PPh3)(NO)(CHOH)]+ by measuring the pKa for the analogous [CpRe(PPh3)(NO)(CMeOH)]+. The hydride donor ability (?GH) of CpRe(PPh3)(NO)(CH2OH) was estimated to be 58.0 kcal mol1, based on calorimetry measurements of the hydride transfer reaction between CpRe(PPh3)(NO)(CHO) and [CpRe(PPh3)(NO)(CHOMe)]+ to generate the methylated analog, CpRe(PPh3)(NO)(CH2OMe). Cyclic voltammograms recorded on CpRe(PPh3)(NO)(CMeO), CpRe(PPh3)(NO)(CH2OMe), and [CpRe(PPh3)(NO)(CHOMe)]+ displayed either a quasireversible oxidation (neutral species) or reduction (cationic species). These potentials were used as estimates for the oxidation of CpRe(PPh3)(NO)(CHO) or CpRe(PPh3)(NO)(CH2OH), or the reduction of [CpRe(PPh3)(NO)(CHOH)]+. Combination of the thermodynamic data permits construction of three-dimensional free energy landscapes under varying conditions of pH and PH2. The free energy for H2 addition (?GH2) to [CpRe(PPh3)(NO)(CO)]+ (+15 kcal mol1) was identified as the most significant thermodynamic impediment for the reduction of CO. DFT computations indicate that ?GH2 varies by only 4.3 kcal mol1 across a series of [CpXRe(L)(NO)(CO)]+, while the experimental ?GH values for the analogous series of CpRe(PPh3)(NO)(CHO) varies by 12.9 kcal mol1. The small range of ?GH2 values is attributed to a minimal change in the CO bond polarization upon modification of the ancillary ligands, as determined from the computed atomic charges. This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences & Biosciences. Pacific Northwest National Laboratory (PNNL) is a multiprogram national laboratory operated for DOE by Battelle.

  5. JOURNAL DE PHYSIQUEIV Colloque C4, suppldment au JournaI de Physique 111, Volume 5, mai 1995

    E-Print Network [OSTI]

    Boyer, Edmond

    of a new energetic molecule. It can be done with thermochemical codes like BKW [I],TIGER [2], ETARC[3

  6. Code Hunt: Searching for Secret Code for Fun Nikolai Tillmann

    E-Print Network [OSTI]

    Xie, Tao

    externally offers fun user experiences where search-based test generation is manually emulated. Because. of Computer Science Seattle WA 98195, USA perelman@ cs.washington.edu Tao Xie University of Illinois at Urbana is the manual process of con- ducting search-based test generation: the "test data" to be generated

  7. Presented by Campus Services Object Code Classifications

    E-Print Network [OSTI]

    Stephens, Graeme L.

    ) Decrease expense from the wrong object code (From) Example: Expensed a service contract that covered 12

  8. Michigan Technological University_010114 R 10/25/13 Group Number: 71571 Package Code(s): 040 045 Section Code(s): 4000 4200

    E-Print Network [OSTI]

    Section Code(s): 4000 4200 PPO - HuskyCare HDHP Benefits-at-a-Glance Michigan Technological University In% after deductible Maternity Services Provided by a Physician Prenatal and Postnatal Care Visits CoveredMichigan Technological University_010114 R 10/25/13 Group Number: 71571 Package Code(s): 040 045

  9. SECTION GS1020 CONSTRUCTION CODE REQUIREMENTS

    E-Print Network [OSTI]

    Zhang, Yuanlin

    101, Life Safety Code; 5. National Fire Protection Association Codes and Standards; 6. ANSI/ASME A17SECTION GS1020 ­ CONSTRUCTION CODE REQUIREMENTS PART 1 - GENERAL 1.1 RELATED DOCUMENTS A. Drawings includes the following: 1. Construction code requirements for all construction at Texas Tech University. 1

  10. Real-Time Trajectory Generation in Multi-RCCL

    E-Print Network [OSTI]

    Hayward, Vincent

    1992 This article describes the design of the trajectory generator for a robot programming system environment. RCCL has been used successfully in developing robot control applications in numerous research generator with target points for motions in joint or Cartesian coordinates. Other primitives allow the code

  11. A simple family of nonadditive quantum codes

    E-Print Network [OSTI]

    John A. Smolin; Graeme Smith; Stephanie Wehner

    2007-03-20T23:59:59.000Z

    Most known quantum codes are additive, meaning the codespace can be described as the simultaneous eigenspace of an abelian subgroup of the Pauli group. While in some scenarios such codes are strictly suboptimal, very little is understood about how to construct nonadditive codes with good performance. Here we present a family of nonadditive quantum codes for all odd blocklengths, n, that has a particularly simple form. Our codes correct single qubit erasures while encoding a higher dimensional space than is possible with an additive code or, for n of 11 or greater, any previous codes.

  12. Distribution Grid Codes: Opportunities and Challenges N. K. Roy, Student Member, IEEE and H. R. Pota, Member, IEEE

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    , voltage regulation, islanding operation. I. INTRODUCTION Distributed Generation (DG) is an approach of distributed generation (DG) units with significant capacity in these passive networks can cause reverse power the reliability of distribution systems. Index Terms-- Distributed generation (DG), grid code, power quality

  13. Parallization of Stellar Atmosphere Codes

    E-Print Network [OSTI]

    P. Hoeflich

    2002-09-19T23:59:59.000Z

    Parallel computing has turned out to be the enabling technology to solve complex physical systems. However, the transition from shared memory, vector computers to massively parallel, distributed memory systems and, recently, to hybrid systems poses new challenges to the scientist. We want to present a cook-book (with a very strong, personal bias) based on our experience with parallization of our existing codes. Some of the general tools and communication libraries are discussed. Our approach includes a mixture of algorithm, domain and physical module based parallization. The advantages, scalability and limitations of each are discussed at some examples. We want show that it becomes easier to write parallel code with increasing complexity of the physical problem making stellar atmosphere codes beyond the classical assumptions very suitable.

  14. Light-water reactor safety analysis codes

    SciTech Connect (OSTI)

    Jackson, J.F.; Ransom, V.H.; Ybarrondo, L.J.; Liles, D.R.

    1980-01-01T23:59:59.000Z

    A brief review of the evolution of light-water reactor safety analysis codes is presented. Included is a summary comparison of the technical capabilities of major system codes. Three recent codes are described in more detail to serve as examples of currently used techniques. Example comparisons between calculated results using these codes and experimental data are given. Finally, a brief evaluation of current code capability and future development trends is presented.

  15. Energy Codes and the Landlord-Tenant Problem

    E-Print Network [OSTI]

    Papineau, Maya

    2013-01-01T23:59:59.000Z

    of the International Energy Conservation Code 2000 edition (in The International Energy Conservation Code (IECC) is

  16. Turbo Codes are Low Density Parity Check Codes David J. C. MacKay

    E-Print Network [OSTI]

    MacKay, David J.C.

    Turbo Codes are Low Density Parity Check Codes David J. C. MacKay July 8, 1998--- Draft 0.2, not for distribution! (First draft written July 5, 1998) Abstract Turbo codes and Gallager codes (also known as low note that the parity check matrix of a Turbo code can be written as low density parity check matrix

  17. IEEE VEHICULAR TECHNOLOGY CONFERENCE SPRING, 2003 1 Space-Time Block Coding applied to Turbo Coded

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    IEEE VEHICULAR TECHNOLOGY CONFERENCE SPRING, 2003 1 Space-Time Block Coding applied to Turbo Coded and a Turbo Code (TC) as channel code. MC-CDMA is likely to be one of the most promising access technique. Then, since Turbo Coded MC-CDMA was demonstrated to be very efficient for a Single Input Single Output

  18. Validation issues for SSI codes

    SciTech Connect (OSTI)

    Philippacopoulos, A.J.

    1995-02-01T23:59:59.000Z

    The paper describes the results of a recent work which was performed to verify computer code predictions in the SSI area. The first part of the paper is concerned with analytic solutions of the system response. The mathematical derivations are reasonably reduced by the use of relatively simple models which capture fundamental ingredients of the physics of the system motion while allowing for the response to be obtained analytically. Having established explicit forms of the system response, numerical solutions from three computer codes are presented in comparative format.

  19. Texas Energy Code Compliance Collaborative

    E-Print Network [OSTI]

    Herbert, C.

    2013-01-01T23:59:59.000Z

    document these practices? What is the role of alternative code compliance programs like EnergyStar? What is the role of third party inspectors? 15 ESL-KT-13-12-29 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec... Conference, San Antonio, Texas Dec. 16-18 7 Source: ACEEE Building Energy Codes Program 2010 ESL-KT-13-12-29 CATEE 2013: Clean Air Through Energy Efficiency Conference, San Antonio, Texas Dec. 16-18 Residential (Single Family Residences And Duplexes...

  20. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER FINAL RECHNICAL REPORT FOR THE PERIOD AUGUST 1, 1999 THROUGH SEPTEMBER 30, 2002 REV. 1

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH, RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-12-01T23:59:59.000Z

    OAK-B135 Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy [1-1,1-2]. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties [1-3,1-4]. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.''

  1. IEEE COMMUNICATIONS LETTERS, VOL. 5, NO. 6, JUNE 2001 257 Soft-Decision COVQ for Turbo-Coded AWGN and

    E-Print Network [OSTI]

    Alajaji, Fady

    IEEE COMMUNICATIONS LETTERS, VOL. 5, NO. 6, JUNE 2001 257 Soft-Decision COVQ for Turbo-Coded AWGN-decision channel-optimized vector quantization (COVQ) scheme for Turbo-coded additive white Gaussian noise (AWGN) and Rayleigh fading channels is pro- posed. The log likelihood ratio (LLR) generated by the Turbo decoder

  2. Ptolemy Coding Style Christopher Brooks

    E-Print Network [OSTI]

    Ptolemy Coding Style Christopher Brooks Edward A. Lee Electrical Engineering and Computer Sciences was supported in part by the iCyPhy Research Center (Industrial Cyber-Physical Systems, supported by IBM (Industrial Cyber-Physical Systems, supported by IBM and United Technologies), and the Center for Hybrid

  3. Free Energy Code Online Discussion

    E-Print Network [OSTI]

    Free Energy Code Online Discussion for Building Department Personnel Join us for this FREE 90 Bruce Cheney from Anchors Aweigh Energy, LLC want to hear from YOU on residential HVAC changeout issues of the California Energy Commission. Date: 3 dates currently offered, choose the one that works for you

  4. WESTERN MICHIGAN UNIVERSITY STUDENT CODE

    E-Print Network [OSTI]

    de Doncker, Elise

    WESTERN MICHIGAN UNIVERSITY STUDENT CODE Approved by The Western Michigan University Board Michigan University Kalamazoo, MI 49008 Effective August 2008 #12;A UNIVERSITY COMMUNITY IS... ...a for the Advancement of Teaching; Ernest L. Boyer (frwd.); Princeton, New Jersey; 1990 #12;WESTERN MICHIGAN UNIVERSITY

  5. Two-Layer Error Control Codes Combining Rectangular and Hamming Product Codes for Cache Error

    E-Print Network [OSTI]

    Zhang, Meilin

    We propose a novel two-layer error control code, combining error detection capability of rectangular codes and error correction capability of Hamming product codes in an efficient way, in order to increase cache error ...

  6. Code Booster Award-winning research on code optimization explores multicore computing

    E-Print Network [OSTI]

    Knowles, David William

    May 2008 Code Booster Award-winning research on code optimization explores multicore computing paper exploring ways to make a popular scientific analysis code run smoothly on different types of multicore computers. SamuelWilliams,aresearcherfromBerkeleyLab'sComputational

  7. SEE ADDENDUM IS CHECKED CODE 18a. PAYMENT WILL BE MADE BY CODE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SEE ADDENDUM IS CHECKED CODE 18a. PAYMENT WILL BE MADE BY CODE FACILITY CODE 17b. CHECK IF REMITTANCE IS DIFFERENT AND PUT SUCH ADDRESS IN OFFER OFFEROR 00146 Casper WY 82601 Shale...

  8. Quantum Stabilizer Codes Embedding Qubits Into Qudits

    E-Print Network [OSTI]

    Carlo Cafaro; Federico Maiolini; Stefano Mancini

    2012-07-30T23:59:59.000Z

    We study, by means of the stabilizer formalism, a quantum error correcting code which is alternative to the standard block codes since it embeds a qubit into a qudit. The code exploits the non-commutative geometry of discrete phase space to protect the qubit against both amplitude and phase errors. The performance of such code is evaluated on Weyl channels by means of the entanglement fidelity as function of the error probability. A comparison with standard block codes, like five and seven qubit stabilizer codes, shows its superiority.

  9. An Approach for Detecting Inconsistencies between Behavioral Models of the Software Architecture and the Code

    SciTech Connect (OSTI)

    Ciraci, Selim; Sozer, Hasan; Tekinerdogan, Bedir

    2012-07-16T23:59:59.000Z

    In practice, inconsistencies between architectural documentation and the code might arise due to improper implementation of the architecture or the separate, uncontrolled evolution of the code. Several approaches have been proposed to detect the inconsistencies between the architecture and the code but these tend to be limited for capturing inconsistencies that might occur at runtime. We present a runtime verification approach for detecting inconsistencies between the dynamic behavior of the architecture and the actual code. The approach is supported by a set of tools that implement the architecture and the code patterns in Prolog, and support the automatic generation of runtime monitors for detecting inconsistencies. We illustrate the approach and the toolset for a Crisis Management System case study.

  10. Understanding and Managing Generation Y

    E-Print Network [OSTI]

    Wallace, Kevin

    2007-12-14T23:59:59.000Z

    There are four generations in the workplace today; they consist of the Silent Generation, Baby Boom Generation, Generation X, and Generation Y. Generation Y, being the newest generation, is the least understood generation although marketers...

  11. Trellis coded vector quantization for the intraframe coding of images

    E-Print Network [OSTI]

    Chauvin, Todd Henry

    1989-01-01T23:59:59.000Z

    quantization in both conligurations. The design algo- rithm is also developed for the case of a, constrainl, on the entropy of the channel indices. Performance is evaluated by computer simulation for a variety of encoding rates, number of trellis states.... Rate Expansion . 2. Set Partitioning 3. Viterbi Encoding . C. Codebook Design 15 15 17 17 23 28 29 IV PREDICTIVE TRELLIS CODED VECTOR QUANTIZATION. . . 30 A. Implementation Structure . B. Design of Predictive TCVQ Coders 1. Vector...

  12. Thermochemical Conversion | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33Frequently AskedEnergyIssuesEnergy SolarRadioactive LiquidSavings forinitial In thei T

  13. An implicit Smooth Particle Hydrodynamic code

    SciTech Connect (OSTI)

    Charles E. Knapp

    2000-04-01T23:59:59.000Z

    An implicit version of the Smooth Particle Hydrodynamic (SPH) code SPHINX has been written and is working. In conjunction with the SPHINX code the new implicit code models fluids and solids under a wide range of conditions. SPH codes are Lagrangian, meshless and use particles to model the fluids and solids. The implicit code makes use of the Krylov iterative techniques for solving large linear-systems and a Newton-Raphson method for non-linear corrections. It uses numerical derivatives to construct the Jacobian matrix. It uses sparse techniques to save on memory storage and to reduce the amount of computation. It is believed that this is the first implicit SPH code to use Newton-Krylov techniques, and is also the first implicit SPH code to model solids. A description of SPH and the techniques used in the implicit code are presented. Then, the results of a number of tests cases are discussed, which include a shock tube problem, a Rayleigh-Taylor problem, a breaking dam problem, and a single jet of gas problem. The results are shown to be in very good agreement with analytic solutions, experimental results, and the explicit SPHINX code. In the case of the single jet of gas case it has been demonstrated that the implicit code can do a problem in much shorter time than the explicit code. The problem was, however, very unphysical, but it does demonstrate the potential of the implicit code. It is a first step toward a useful implicit SPH code.

  14. Quantifying the Performance of Quantum Codes

    E-Print Network [OSTI]

    C. Cafaro; S. L'Innocente; C. Lupo; S. Mancini

    2011-01-12T23:59:59.000Z

    We study the properties of error correcting codes for noise models in the presence of asymmetries and/or correlations by means of the entanglement fidelity and the code entropy. First, we consider a dephasing Markovian memory channel and characterize the performance of both a repetition code and an error avoiding code in terms of the entanglement fidelity. We also consider the concatenation of such codes and show that it is especially advantageous in the regime of partial correlations. Finally, we characterize the effectiveness of the codes and their concatenation by means of the code entropy and find, in particular, that the effort required for recovering such codes decreases when the error probability decreases and the memory parameter increases. Second, we consider both symmetric and asymmetric depolarizing noisy quantum memory channels and perform quantum error correction via the five qubit stabilizer code. We characterize this code by means of the entanglement fidelity and the code entropy as function of the asymmetric error probabilities and the degree of memory. Specifically, we uncover that while the asymmetry in the depolarizing errors does not affect the entanglement fidelity of the five qubit code, it becomes a relevant feature when the code entropy is used as a performance quantifier.

  15. FREYA-a new Monte Carlo code for improved modeling of fission chains

    SciTech Connect (OSTI)

    Hagmann, C A; Randrup, J; Vogt, R L

    2012-06-12T23:59:59.000Z

    A new simulation capability for modeling of individual fission events and chains and the transport of fission products in materials is presented. FREYA ( Fission Yield Event Yield Algorithm ) is a Monte Carlo code for generating fission events providing correlated kinematic information for prompt neutrons, gammas, and fragments. As a standalone code, FREYA calculates quantities such as multiplicity-energy, angular, and gamma-neutron energy sharing correlations. To study materials with multiplication, shielding effects, and detectors, we have integrated FREYA into the general purpose Monte Carlo code MCNP. This new tool will allow more accurate modeling of detector responses including correlations and the development of SNM detectors with increased sensitivity.

  16. IllinoisGRMHD: An Open-Source, User-Friendly GRMHD Code for Dynamical Spacetimes

    E-Print Network [OSTI]

    Zachariah B. Etienne; Vasileios Paschalidis; Roland Haas; Philipp Moesta; Stuart L. Shapiro

    2015-01-28T23:59:59.000Z

    In the extreme violence of merger and mass accretion, compact objects like black holes and neutron stars are thought to launch some of the most luminous outbursts of electromagnetic and gravitational wave energy in the Universe. Modeling these systems realistically is a central problem in theoretical astrophysics, but has proven extremely challenging, requiring the development of numerical relativity codes that solve Einstein's equations for the spacetime, coupled to the equations of general relativistic (ideal) magnetohydrodynamics (GRMHD) for the magnetized fluids. Over the past decade, the Illinois Numerical Relativity (ILNR) Group's dynamical spacetime, GRMHD code has proven itself as one of the most robust and reliable tools for theoretical modeling of such GRMHD phenomena. Despite the code's outstanding reputation, it was written "by experts and for experts" of the code, with a steep learning curve that would severely hinder community adoption if it were open-sourced. Here we present IllinoisGRMHD, which is an open-source, highly-extensible rewrite of the original closed-source GRMHD code of the ILNR Group. Reducing the learning curve was the primary focus of this rewrite, facilitating community involvement in the code's use and development, as well as the minimization of human effort in generating new science. IllinoisGRMHD also saves computer time, generating roundoff-precision identical output to the original code on adaptive-mesh grids, but nearly twice as fast at scales of hundreds to thousands of cores.

  17. Arkansas Air Pollution Control Code (Arkansas)

    Broader source: Energy.gov [DOE]

    The Arkansas Air Pollution Control code is adopted pursuant to Subchapter 2 of the Arkansas Water and Air Pollution Control Act (Arkansas Code Annotated 8-4-101). ) By authority of the same State...

  18. Quantum error-correcting codes and devices

    DOE Patents [OSTI]

    Gottesman, Daniel (Los Alamos, NM)

    2000-10-03T23:59:59.000Z

    A method of forming quantum error-correcting codes by first forming a stabilizer for a Hilbert space. A quantum information processing device can be formed to implement such quantum codes.

  19. The College Station Residential Energy Compliance Code

    E-Print Network [OSTI]

    Claridge, D. E.; Schrock, D.

    1988-01-01T23:59:59.000Z

    The City of College Station, Texas adopted a new residential Energy Compliance Code in January, 1988. The code, which strengthens compliance requirements in several areas, has received broadly based support and acceptance from all major constituent...

  20. Transforms for prediction residuals in video coding

    E-Print Network [OSTI]

    Kam??l?, Fatih

    2010-01-01T23:59:59.000Z

    Typically the same transform, the 2-D Discrete Cosine Transform (DCT), is used to compress both image intensities in image coding and prediction residuals in video coding. Major prediction residuals include the motion ...

  1. Microsoft Word - Foreign Obligation Codes.docx

    National Nuclear Security Administration (NNSA)

    March 2014 Transaction Code Material Balance Code Obligation 1 31 85 Australia 32 86 Canada 33 87 EURATOM 34 88 Japan 35 89 Peoples' Republic of China 36 C1 Russia 37 A8...

  2. Evolutionary approaches toward practical network coding

    E-Print Network [OSTI]

    Kim, Minkyu, 1976-

    2008-01-01T23:59:59.000Z

    There have been numerous studies showing various benefits of network coding. However, in order to have network coding widely deployed in real networks, it is also important to show that the amount of overhead incurred by ...

  3. N. Mariana Islands- Building Energy Code

    Broader source: Energy.gov [DOE]

    Much of the information presented in this summary is drawn from the U.S. Department of Energys (DOE) Building Energy Codes Program and the Building Codes Assistance Project (BCAP). For more...

  4. A Better Handoff for Code Officials

    SciTech Connect (OSTI)

    Conover, David R.; Yerkes, Sara

    2010-09-24T23:59:59.000Z

    The U.S. Department of Energy's Building Energy Codes Program has partnered with ICC to release the new Building Energy Codes Resource Guide: Code Officials Edition. We created this binder of practical materials for a simple reason: code officials are busy learning and enforcing several codes at once for the diverse buildings across their jurisdictions. This doesnt leave much time to search www.energycodes.gov, www.iccsafe.org, or the range of other helpful web-based resources for the latest energy codes tools, support, and information. So, we decided to bring the most relevant materials to code officials in a way that works best with their daily routine, and point to where they can find even more. Like a coachs game plan, the Resource Guide is an "energy playbook" for code officials.

  5. Green Codes and Programs | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Green Codes and Programs Green Codes and Programs Blue version of the EERE PowerPoint template, for use with PowerPoint 2007. Transcript Presentation More Documents & Publications...

  6. The EGS5 Code System

    SciTech Connect (OSTI)

    Hirayama, Hideo; Namito, Yoshihito; /KEK, Tsukuba; Bielajew, Alex F.; Wilderman, Scott J.; U., Michigan; Nelson, Walter R.; /SLAC

    2005-12-20T23:59:59.000Z

    In the nineteen years since EGS4 was released, it has been used in a wide variety of applications, particularly in medical physics, radiation measurement studies, and industrial development. Every new user and every new application bring new challenges for Monte Carlo code designers, and code refinements and bug fixes eventually result in a code that becomes difficult to maintain. Several of the code modifications represented significant advances in electron and photon transport physics, and required a more substantial invocation than code patching. Moreover, the arcane MORTRAN3[48] computer language of EGS4, was highest on the complaint list of the users of EGS4. The size of the EGS4 user base is difficult to measure, as there never existed a formal user registration process. However, some idea of the numbers may be gleaned from the number of EGS4 manuals that were produced and distributed at SLAC: almost three thousand. Consequently, the EGS5 project was undertaken. It was decided to employ the FORTRAN 77 compiler, yet include as much as possible, the structural beauty and power of MORTRAN3. This report consists of four chapters and several appendices. Chapter 1 is an introduction to EGS5 and to this report in general. We suggest that you read it. Chapter 2 is a major update of similar chapters in the old EGS4 report[126] (SLAC-265) and the old EGS3 report[61] (SLAC-210), in which all the details of the old physics (i.e., models which were carried over from EGS4) and the new physics are gathered together. The descriptions of the new physics are extensive, and not for the faint of heart. Detailed knowledge of the contents of Chapter 2 is not essential in order to use EGS, but sophisticated users should be aware of its contents. In particular, details of the restrictions on the range of applicability of EGS are dispersed throughout the chapter. First-time users of EGS should skip Chapter 2 and come back to it later if necessary. With the release of the EGS4 version, a deliberate attempt was made to present example problems in order to help the user ''get started'', and we follow that spirit in this report. A series of elementary tutorial user codes are presented in Chapter 3, with more sophisticated sample user codes described in Chapter 4. Novice EGS users will find it helpful to read through the initial sections of the EGS5 User Manual (provided in Appendix B of this report), proceeding then to work through the tutorials in Chapter 3. The User Manuals and other materials found in the appendices contain detailed flow charts, variable lists, and subprogram descriptions of EGS5 and PEGS. Included are step-by-step instructions for developing basic EGS5 user codes and for accessing all of the physics options available in EGS5 and PEGS. Once acquainted with the basic structure of EGS5, users should find the appendices the most frequently consulted sections of this report.

  7. CBP PHASE I CODE INTEGRATION

    SciTech Connect (OSTI)

    Smith, F.; Brown, K.; Flach, G.; Sarkar, S.

    2011-09-30T23:59:59.000Z

    The goal of the Cementitious Barriers Partnership (CBP) is to develop a reasonable and credible set of software tools to predict the structural, hydraulic, and chemical performance of cement barriers used in nuclear applications over extended time frames (greater than 100 years for operating facilities and greater than 1000 years for waste management). The simulation tools will be used to evaluate and predict the behavior of cementitious barriers used in near surface engineered waste disposal systems including waste forms, containment structures, entombments, and environmental remediation. These cementitious materials are exposed to dynamic environmental conditions that cause changes in material properties via (i) aging, (ii) chloride attack, (iii) sulfate attack, (iv) carbonation, (v) oxidation, and (vi) primary constituent leaching. A set of state-of-the-art software tools has been selected as a starting point to capture these important aging and degradation phenomena. Integration of existing software developed by the CBP partner organizations was determined to be the quickest method of meeting the CBP goal of providing a computational tool that improves the prediction of the long-term behavior of cementitious materials. These partner codes were selected based on their maturity and ability to address the problems outlined above. The GoldSim Monte Carlo simulation program (GTG 2010a, GTG 2010b) was chosen as the code integration platform (Brown & Flach 2009b). GoldSim (current Version 10.5) is a Windows based graphical object-oriented computer program that provides a flexible environment for model development (Brown & Flach 2009b). The linking of GoldSim to external codes has previously been successfully demonstrated (Eary 2007, Mattie et al. 2007). GoldSim is capable of performing deterministic and probabilistic simulations and of modeling radioactive decay and constituent transport. As part of the CBP project, a general Dynamic Link Library (DLL) interface was developed to link GoldSim with external codes (Smith III et al. 2010). The DLL uses a list of code inputs provided by GoldSim to create an input file for the external application, runs the external code, and returns a list of outputs (read from files created by the external application) back to GoldSim. In this way GoldSim provides: (1) a unified user interface to the applications, (2) the capability of coupling selected codes in a synergistic manner, and (3) the capability of performing probabilistic uncertainty analysis with the codes. GoldSim is made available by the GoldSim Technology Group as a free 'Player' version that allows running but not editing GoldSim models. The player version makes the software readily available to a wider community of users that would wish to use the CBP application but do not have a license for GoldSim.

  8. What's coming in 2012 codes

    E-Print Network [OSTI]

    Lacey, E

    2011-01-01T23:59:59.000Z

    ? High performance HVAC ? On-site renewables 2012 IECC Energy Savings and Environmental Impact ?[The 2012 IECC] represents the largest, one-step efficiency increase in the history of the national model energy code.? ? U.S. Department.... Environmental Impact ? Alliance to Save Energy: ?If all states adopted the 2012 IECC in 2012 and achieved full compliance by 2013 ?? ? 3.5 quadrillion Btu annual energy savings by 2030. ? $40 billion annual energy cost savings by 2030. ? 200 million...

  9. Homological Error Correction: Classical and Quantum Codes

    E-Print Network [OSTI]

    H. Bombin; M. A. Martin-Delgado

    2006-05-10T23:59:59.000Z

    We prove several theorems characterizing the existence of homological error correction codes both classically and quantumly. Not every classical code is homological, but we find a family of classical homological codes saturating the Hamming bound. In the quantum case, we show that for non-orientable surfaces it is impossible to construct homological codes based on qudits of dimension $D>2$, while for orientable surfaces with boundaries it is possible to construct them for arbitrary dimension $D$. We give a method to obtain planar homological codes based on the construction of quantum codes on compact surfaces without boundaries. We show how the original Shor's 9-qubit code can be visualized as a homological quantum code. We study the problem of constructing quantum codes with optimal encoding rate. In the particular case of toric codes we construct an optimal family and give an explicit proof of its optimality. For homological quantum codes on surfaces of arbitrary genus we also construct a family of codes asymptotically attaining the maximum possible encoding rate. We provide the tools of homology group theory for graphs embedded on surfaces in a self-contained manner.

  10. Ultra-narrow bandwidth voice coding

    DOE Patents [OSTI]

    Holzrichter, John F. (Berkeley, CA); Ng, Lawrence C. (Danville, CA)

    2007-01-09T23:59:59.000Z

    A system of removing excess information from a human speech signal and coding the remaining signal information, transmitting the coded signal, and reconstructing the coded signal. The system uses one or more EM wave sensors and one or more acoustic microphones to determine at least one characteristic of the human speech signal.

  11. San Francisco Building Code Amendments to the

    E-Print Network [OSTI]

    1 2010 San Francisco Building Code Amendments to the 2010 California Green Building Standards Code not pertain to energy) Operative date: January 1, 2011 #12;139 Chapter 13C GREEN BUILDING REQUIREMENTS shall be known as the California San Francisco Green Building Standards Code and may be cited

  12. CARD No. 23 Models and Computer Codes

    E-Print Network [OSTI]

    CARD No. 23 Models and Computer Codes 23.A BACKGROUND Section 194.23 addresses the compliance criteria requirements for conceptual models and computer codes. Conceptual models capture a general (PA). The design of computer codes begins with the development of conceptual models. Conceptual models

  13. Cost Codes and the Work Breakdown Structure

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    The chapter discusses the purpose of the work breakdown structure (WBS) and code of account (COA) cost code system, shows the purpose and fundamental structure of both the WBS and the cost code system, and explains the interface between the two systems.

  14. NUMBER: 1530 TITLE: Code of Student Conduct

    E-Print Network [OSTI]

    . For the purposes of this Code, the term "University Official" is inclusive of "Faculty Member" as defined in IV 1530 1 NUMBER: 1530 TITLE: Code of Student Conduct APPROVED: August 27, 1970; Revised June 14, 2012 I. BASIS AND RATIONALE FOR A CODE OF STUDENT CONDUCT Old Dominion University

  15. Update and inclusion of resuspension model codes

    SciTech Connect (OSTI)

    Porch, W.M.; Greenly, G.D.; Mitchell, C.S.

    1983-12-01T23:59:59.000Z

    Model codes for estimating radiation doses from plutonium particles associated with resuspended dust were improved. Only one new code (RSUS) is required in addition to the MATHEW/ADPIC set of codes. The advantage is that it estimates resuspension based on wind blown dust fluxes derived for different soil types. 2 references. (ACR)

  16. A Turbo Code Tutorial William E. Ryan

    E-Print Network [OSTI]

    Shea, John M.

    A Turbo Code Tutorial William E. Ryan New Mexico State University Box 30001 Dept. 3-O, Las Cruces, NM 88003 wryan@nmsu.edu Abstract| We give a tutorial exposition of turbo codes and the associated algorithms. Included are a simple derivation for the performance of turbo codes, and a straightforward

  17. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01T23:59:59.000Z

    S. (2011). Utilities and Building Energy Codes: Air QualityUtility Programs and Building Energy Codes: How utilityUtility Programs and Building Energy Codes: How utility

  18. aeroelastic code hawc: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    placing the stability boundary. Safety and sustainability Gao, Grace Xingxin 50 Spinal codes MIT - DSpace Summary: Spinal codes are a new class of rateless codes that enable...

  19. Technical Assistance: Increasing Code Compliance - 2014 BTO Peer...

    Energy Savers [EERE]

    Code Compliance - 2014 BTO Peer Review More Documents & Publications Building Energy Codes Program - 2014 BTO Peer Review Building Energy Codes Program Overview - 2014 BTO Peer...

  20. Energy Codes and the Landlord-Tenant Problem

    E-Print Network [OSTI]

    Papineau, Maya

    2013-01-01T23:59:59.000Z

    a Commercial Building Energy Code in Michigan, Report PNNL-Grant Summaries, 1999. Office of Codes and Standards. , 2004, , Building Energy Codes: An Introduction, 2010.

  1. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01T23:59:59.000Z

    B. (2005). Residential Energy Code Evaluatinons: Review andProvidence, RI: Building Codes Assistance Project. ZING2007 Commercial Energy Code Compliance Study. Calgary, AB:

  2. Two-Level Nonregular Designs From Quaternary Linear Codes

    E-Print Network [OSTI]

    Hongquan Xu; Alan Wong

    2011-01-01T23:59:59.000Z

    Goethals, and related codes. IEEE Trans. Inform. Theory 40,Theory of Error-Correcting Codes. North- Holland, Amsterdam.1967). An optimum nonlinear code. Inform. Control 11, Sun,

  3. Stationary and Portable Fuel Cell Systems Codes and Standards...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stationary and Portable Fuel Cell Systems Codes and Standards Citations Stationary and Portable Fuel Cell Systems Codes and Standards Citations This document lists codes and...

  4. Discussion on a Code Comparison Effort for the Geothermal Technologies...

    Office of Environmental Management (EM)

    Discussion on a Code Comparison Effort for the Geothermal Technologies Program Discussion on a Code Comparison Effort for the Geothermal Technologies Program Code comparison...

  5. Reducing Energy Demand in Buildings Through State Energy Codes...

    Energy Savers [EERE]

    Reducing Energy Demand in Buildings Through State Energy Codes Reducing Energy Demand in Buildings Through State Energy Codes Building Codes Project for the 2013 Building...

  6. State and Local Code Implementation: Southwest Region - 2014...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Local Code Implementation: Southeast Region - 2014 BTO Peer Review State and Local Code Implementation: State Energy Officials - 2014 BTO Peer Review State and Local Code...

  7. The Cost of Enforcing Building Energy Codes: Phase 1

    E-Print Network [OSTI]

    Williams, Alison

    2013-01-01T23:59:59.000Z

    for 2009 International Energy Conservation Code Compliance.Council International Energy Conservation Code Institute forICCs International Energy Conservation Code (IECC), used

  8. Hydrogen Vehicle and Infrastructure Codes and Standards Citations...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle and Infrastructure Codes and Standards Citations Hydrogen Vehicle and Infrastructure Codes and Standards Citations This document lists codes and standards typically used...

  9. Voltage controlled MESFET pulse shape generator

    SciTech Connect (OSTI)

    Burkhart, S.C.

    1994-10-26T23:59:59.000Z

    A programmable pulse shape generator capable of producing pulse shapes for Nova and Beamlet has been designed and simulated using the circuit code SPICE. The design utilizes power MESFETS, which are commonly used in microwave amplifiers. The pulse shape is varied by setting a bias voltage on each in a chain of MESFETS with a 200 ps temporal resolution. The electrical pulse then drives an integrated electro-optic modulator similar to what is on Beamlet. Pulse shapes 22 and 25, used on Nova, have been generated by this design. There is no fundamental barrier to making such a pulse generator for use on the National Ignition Facility. In fact, the longer time scales on the NIF pulse will ease the high speed requirements of the pulse shape generator allowing the use of less expensive components. The next step will be to build a prototype circuit for initial testing on Beamlet and Nova.

  10. Absorbing Set Analysis of LDPC Codes and Read-Channel Quantization in Flash Memory

    E-Print Network [OSTI]

    Wang, Jiadong

    2012-01-01T23:59:59.000Z

    codes . . . . . . . . . . . . . . . . . . . . . . . . . .61 SCB codes for r = 5 . . . . . . . . . . . . . .63 SCB codes for r =

  11. The Hardness of Code Equivalence over Fq and its Application to Code-based Cryptography

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    The Hardness of Code Equivalence over Fq and its Application to Code-based Cryptography Nicolas {nicolas.sendrier,dimitrios.simos}@inria.fr Abstract. The code equivalence problem is to decide whether two review the hardness of code equivalence over Fq due to some recent negative results and argue

  12. Network Code Design from Unequal Error Protection Coding: Channel-Aware Receiver Design and Diversity Analysis

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Network Code Design from Unequal Error Protection Coding: Channel-Aware Receiver Design.iezzi, fabio.graziosi}@univaq.it Abstract-- In this paper, we propose Unequal Error Protection (UEP) coding theory as a viable and flexible method for the design of network codes for multisource multirelay

  13. Performance of Turbo Coded WCDMA with Downlink Space Time Block Coding in Correlated Fading Channels

    E-Print Network [OSTI]

    Mandayam, Narayan

    Performance of Turbo Coded WCDMA with Downlink Space Time Block Coding in Correlated Fading due to potential high data rate applications such as wireless internet access. Turbo codes. In this paper, we evaluate the performance of turbo coded WCDMA systems with downlink transmit diversity

  14. doi:10.1155/2007/75757 Research Article Performance of JPEG Image Transmission Using Proposed Asymmetric Turbo Code

    E-Print Network [OSTI]

    K. Ramasamy; Mohammad Umar Siddiqi; Mohamad Yusoff Alias; Recommended Richard; J. Barton

    This paper gives the results of a simulation study on the performance of JPEG image transmission over AWGN and Rayleigh fading channels using typical and proposed asymmetric turbo codes for error control coding. The baseline JPEG algorithm is used to compress a QCIF (176 144) Suzie image. The recursive systematic convolutional (RSC) encoder with generator polynomials (1, D 3 +D 2 +1/D 3 + D + 1), that is, (13/11) in decimal, and 3G interleaver are used for the typical WCDMA and CDMA2000 turbo codes. The proposed asymmetric turbo code uses generator polynomials (1, D 3 +D 2 +1/D 3 +D+1;D 3 +D 2 +1/D 3 +1),that is, (13/11; 13/9) in decimal, and a code-matched interleaver. The effect of interleaver in the proposed asymmetric turbo code is studied using weight distribution and simulation. The simulation results and performance bound for proposed asymmetric turbo code for the frame length N = 400, code rate r = 1/3 with Log-MAP decoder over AWGN channel are compared with the typical system. From the simulation results, it is observed that the image transmission using proposed asymmetric turbo code performs better than that with the typical system. Copyright 2007 Hindawi Publishing Corporation. All rights reserved. 1.

  15. ANALYTIC MODEL OF HARMONIC GENERATION IN THE LOW-GAIN FEL REGIME

    E-Print Network [OSTI]

    Wurtele, Jonathan

    ANALYTIC MODEL OF HARMONIC GENERATION IN THE LOW-GAIN FEL REGIME G. Penn, M. Reinsch, J.S. Wurtele , LBNL, Berkeley, CA 94720, USA Abstract Harmonic generation using free electron lasers (FELs) requires with simulation results using the FEL code GENESIS, both for single stages of harmonic generation and for the LUX

  16. High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August, 2000 - July 2001

    SciTech Connect (OSTI)

    Brown, L.C.

    2002-11-01T23:59:59.000Z

    OAK B188 High Efficiency Generation of Hydrogen Fuels using Nuclear Power Annual Report August 2000 - July 2001. Currently no large scale, cost-effective, environmentally attractive hydrogen production process is available for commercialization nor has such a process been identified. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Carbon dioxide emissions from fossil fuel combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. The benefits of this work will include the generation of a low-polluting transportable energy feedstock in an efficient method that has little or no implication for greenhouse gas emissions from a primary energy source whose availability and sources are domestically controlled. This will help to ensure energy for a future transportation/energy infrastructure that is not influenced/controlled by foreign governments. This report describes work accomplished during the second year (Phase 2) of a three year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first year (Phase 1) was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water, in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most, three) for further detailed consideration. Phase 1 met its goals and did select one process, the sulfur-iodine process, for investigation in Phases 2 and 3. The combined goals of Phases 2 and 3 were to select the advanced nuclear reactor best suited to driving the selected thermochemical process and to define the selected reactor and process to the point that capital costs, operating costs and the resultant cost of hydrogen can be estimated. During original contract negotiation, it was necessary to reduce work scope to meet funding limits. As a result, the reactor interface and process will not be iterated to the point that only hydrogen is produced. Rather, hydrogen and electricity will be co-generated and the hydrogen cost will be stated as a function of the electricity sales price.

  17. Efficient Decoding of Topological Color Codes

    E-Print Network [OSTI]

    Pradeep Sarvepalli; Robert Raussendorf

    2011-11-03T23:59:59.000Z

    Color codes are a class of topological quantum codes with a high error threshold and large set of transversal encoded gates, and are thus suitable for fault tolerant quantum computation in two-dimensional architectures. Recently, computationally efficient decoders for the color codes were proposed. We describe an alternate efficient iterative decoder for topological color codes, and apply it to the color code on hexagonal lattice embedded on a torus. In numerical simulations, we find an error threshold of 7.8% for independent dephasing and spin flip errors.

  18. National Agenda for Hydrogen Codes and Standards

    SciTech Connect (OSTI)

    Blake, C.

    2010-05-01T23:59:59.000Z

    This paper provides an overview of hydrogen codes and standards with an emphasis on the national effort supported and managed by the U.S. Department of Energy (DOE). With the help and cooperation of standards and model code development organizations, industry, and other interested parties, DOE has established a coordinated national agenda for hydrogen and fuel cell codes and standards. With the adoption of the Research, Development, and Demonstration Roadmap and with its implementation through the Codes and Standards Technical Team, DOE helps strengthen the scientific basis for requirements incorporated in codes and standards that, in turn, will facilitate international market receptivity for hydrogen and fuel cell technologies.

  19. Modification to ORIGEN2 for generating N Reactor source terms. Volume 1

    SciTech Connect (OSTI)

    Schwarz, R.A.

    1997-04-01T23:59:59.000Z

    This report discusses work that has been done to upgrade the ORIGEN2 code cross sections to be compatible with the WIMS computer code data. Because of the changes in the ORIGEN2 calculations. Details on changes made to the ORIGEN2 computer code and the Radnuc code will be discussed along with additional work that should be done in the future to upgrade both ORIGEN2 and Radnuc. A detailed historical description of how source terms have been generated for N Reactor fuel stored in the K Basins has been generated. The neutron source discussed in this description was generated by the WIMS computer code (Gubbins et al. 1982) because of known shortcomings in the ORIGEN2 (Croff 1980) cross sections. Another document includes a discussion of the ORIGEN2 cross sections.

  20. Generation gaps in engineering?

    E-Print Network [OSTI]

    Kim, David J. (David Jinwoo)

    2008-01-01T23:59:59.000Z

    There is much enthusiastic debate on the topic of generation gaps in the workplace today; what the generational differences are, how to address the apparent challenges, and if the generations themselves are even real. ...

  1. Decoding linear codes via optimization and graph-based techniques

    E-Print Network [OSTI]

    Taghavi, Mohammad H.

    2008-01-01T23:59:59.000Z

    2.2.1 Linear Codes on1.1.2 Graph-Based Codes 1.2 Dissertation Overview . . .versus the length of the code for (3,6)-regular LDPC codes (

  2. Virtual Private Environments for Multiphysics Code Validation on Computing Grids

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Virtual Private Environments for Multiphysics Code Validation on Computing Grids Toan Nguyen-based computing environments and deploys, tests and analyzes multiphysics codes. A second approach executes model coupling, error correlations, alert definitions, best usage practices, code verification and code

  3. Nuclear data to support computer code validation

    SciTech Connect (OSTI)

    Fisher, S.E.; Broadhead, B.L.; DeHart, M.D.; Primm, R.T. III

    1997-04-01T23:59:59.000Z

    The rate of plutonium disposition will be a key parameter in determining the degree of success of the Fissile Materials Disposition Program. Estimates of the disposition rate are dependent on neutronics calculations. To ensure that these calculations are accurate, the codes and data should be validated against applicable experimental measurements. Further, before mixed-oxide (MOX) fuel can be fabricated and loaded into a reactor, the fuel vendors, fabricators, fuel transporters, reactor owners and operators, regulatory authorities, and the Department of Energy (DOE) must accept the validity of design calculations. This report presents sources of neutronics measurements that have potential application for validating reactor physics (predicting the power distribution in the reactor core), predicting the spent fuel isotopic content, predicting the decay heat generation rate, certifying criticality safety of fuel cycle facilities, and ensuring adequate radiation protection at the fuel cycle facilities and the reactor. The U.S. in-reactor experience with MOX fuel is first presented, followed by information related to other aspects of the MOX fuel performance information that is valuable to this program, but the data base remains largely proprietary. Thus, this information is not reported here. It is expected that the selected consortium will make the necessary arrangements to procure or have access to the requisite information.

  4. Building Energy Codes Program (BECP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartmentDavid CohanEnergy Codes

  5. Building Energy Codes Program Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: Theof Energy Future ofHydronicBuildingDepartmentDavid CohanEnergy CodesProgram

  6. GENII Code | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directed offOCHCO2: FinalOffers3.pdf0-45.pdf0 Budget Fossil EnergyFull Text ManagementDOEGEGEAGENII Code

  7. ALOHA Code | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartmentDepartment of2 of 5) ALARA Training forCentral Registry Toolbox Code

  8. Technical Assistance: Increasing Code Compliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOriginEducationVideoStrategic| Department ofGeneralWind »Assistance: Increasing Code Compliance

  9. Small Generator Aggregation (Maine)

    Broader source: Energy.gov [DOE]

    This section establishes requirements for electricity providers to purchase electricity from small generators, with the goal of ensuring that small electricity generators (those with a nameplate...

  10. Streamlining of the RELAP5-3D Code

    SciTech Connect (OSTI)

    Mesina, George L; Hykes, Joshua; Guillen, Donna Post

    2007-11-01T23:59:59.000Z

    RELAP5-3D is widely used by the nuclear community to simulate general thermal hydraulic systems and has proven to be so versatile that the spectrum of transient two-phase problems that can be analyzed has increased substantially over time. To accommodate the many new types of problems that are analyzed by RELAP5-3D, both the physics and numerical methods of the code have been continuously improved. In the area of computational methods and mathematical techniques, many upgrades and improvements have been made decrease code run time and increase solution accuracy. These include vectorization, parallelization, use of improved equation solvers for thermal hydraulics and neutron kinetics, and incorporation of improved library utilities. In the area of applied nuclear engineering, expanded capabilities include boron and level tracking models, radiation/conduction enclosure model, feedwater heater and compressor components, fluids and corresponding correlations for modeling Generation IV reactor designs, and coupling to computational fluid dynamics solvers. Ongoing and proposed future developments include improvements to the two-phase pump model, conversion to FORTRAN 90, and coupling to more computer programs. This paper summarizes the general improvements made to RELAP5-3D, with an emphasis on streamlining the code infrastructure for improved maintenance and development. With all these past, present and planned developments, it is necessary to modify the code infrastructure to incorporate modifications in a consistent and maintainable manner. Modifying a complex code such as RELAP5-3D to incorporate new models, upgrade numerics, and optimize existing code becomes more difficult as the code grows larger. The difficulty of this as well as the chance of introducing errors is significantly reduced when the code is structured. To streamline the code into a structured program, a commercial restructuring tool, FOR_STRUCT, was applied to the RELAP5-3D source files. The methodology employed follows Dijkstra's structured programming paradigm, which is based on splitting programs into sub-sections, each with single points of entry and exit and in which control is passed downward through the structure with no unconditional branches to higher levels. GO TO commands are typically avoided, since they alter the flow and control of a programs execution by allowing a jump from one place in the routine to another. The restructuring of RELAP5-3D subroutines is complicated by several issues. The first is use of code other than standard FORTRAN77. The second is restructuring limitations of FOR_STRUCT. The third is existence of pre-compiler directives and the complication of nested directives. Techniques were developed to overcome all these difficulties and more and these are reported. By implementing these developments, all subroutines of RELAP were restructured. Measures of code improvement relative to maintenance and development are presented.

  11. Application Filing Requirements for Wind-Powered Electric Generation Facilities (Ohio)

    Broader source: Energy.gov [DOE]

    Chapter 4906-17 of the Ohio Administrative Code states the Application Filing Requirements for wind-powered electric generating facilities in Ohio. The information requested in this rule shall be...

  12. Coded aperture imaging with self-supporting uniformly redundant arrays

    DOE Patents [OSTI]

    Fenimore, Edward E. (Los Alamos, NM)

    1983-01-01T23:59:59.000Z

    A self-supporting uniformly redundant array pattern for coded aperture imaging. The present invention utilizes holes which are an integer times smaller in each direction than holes in conventional URA patterns. A balance correlation function is generated where holes are represented by 1's, nonholes are represented by -1's, and supporting area is represented by 0's. The self-supporting array can be used for low energy applications where substrates would greatly reduce throughput. The balance correlation response function for the self-supporting array pattern provides an accurate representation of the source of nonfocusable radiation.

  13. Effects of color coding on keying time and errors

    E-Print Network [OSTI]

    Wooldridge, Brenda Gail

    1983-01-01T23:59:59.000Z

    were to determine the effects if any oi' color coding upon the error rate and location time of special func- tion keys on a computer keyboard. An ACT-YA CRT keyboard interfaced with a Kromemco microcomputer was used. There were 84 high schoool... to comnunicate with more and more computer-like devices. The most common computer/human interface is the terminal, consisting of a display screen, and keyboard. The format and layout on the display screen of computer-generated information is generally...

  14. Studies of the steam generator degraded tubes behavior on BRUTUS test loop

    SciTech Connect (OSTI)

    Chedeau, C.; Rassineux, B. [EDF/DER/MTC, Moret Sur Loing (France); Flesch, B. [EDF/EPN/DMAINT, Paris (France)] [and others

    1997-04-01T23:59:59.000Z

    Studies for the evaluation of steam generator tube bundle cracks in PWR power plants are described. Global tests of crack leak rates and numerical calculations of crack opening area are discussed in some detail. A brief overview of thermohydraulic studies and the development of a mechanical probabilistic design code is also given. The COMPROMIS computer code was used in the studies to quantify the influence of in-service inspections and maintenance work on the risk of a steam generator tube rupture.

  15. Coding Theorems for "Turbo-Like" Codes Dariush Divsalar, Hui Jin, and Robert J. McEliece

    E-Print Network [OSTI]

    Abu-Mostafa, Yaser S.

    Coding Theorems for "Turbo-Like" Codes Dariush Divsalar, Hui Jin, and Robert J. McEliece Jet call these systems "turbo-like" codes and they include as special cases both the classical turbo codes for turbo-like codes. 1. Introduction. The 1993 discovery of turbo codes by Berrou, Glavieux

  16. HERCULES: A Pattern Driven Code Transformation System

    SciTech Connect (OSTI)

    Kartsaklis, Christos [ORNL; Hernandez, Oscar R [ORNL; Hsu, Chung-Hsing [ORNL; Ilsche, Thomas [Technische Universitat Dresden; Joubert, Wayne [ORNL; Graham, Richard L [ORNL

    2012-01-01T23:59:59.000Z

    New parallel computers are emerging, but developing efficient scientific code for them remains difficult. A scientist must manage not only the science-domain complexity but also the performance-optimization complexity. HERCULES is a code transformation system designed to help the scientist to separate the two concerns, which improves code maintenance, and facilitates performance optimization. The system combines three technologies, code patterns, transformation scripts and compiler plugins, to provide the scientist with an environment to quickly implement code transformations that suit his needs. Unlike existing code optimization tools, HERCULES is unique in its focus on user-level accessibility. In this paper we discuss the design, implementation and an initial evaluation of HERCULES.

  17. Analysis and Design of Tuned Turbo Codes

    E-Print Network [OSTI]

    Koller, Christian; Kliewer, Joerg; Vatta, Francesca; Zigangirov, Kamil S; Costello, Daniel J

    2010-01-01T23:59:59.000Z

    It has been widely observed that there exists a fundamental trade-off between the minimum distance properties and the iterative decoding convergence behavior of turbo-like codes. While capacity achieving code ensembles typically are asymptotically bad in the sense that their minimum distance does not grow linearly with block length, and they therefore exhibit an error floor at moderate-to-high signal to noise ratios, asymptotically good codes usually converge further away from channel capacity. In this paper, we introduce the concept of tuned turbo codes, a family of asymptotically good hybrid concatenated code ensembles, where minimum distance growth rates, convergence thresholds, and code rates can be traded-off using two tuning parameters, {\\lambda} and {\\mu}. By decreasing {\\lambda}, the asymptotic minimum distance growth rate is reduced for the sake of improved iterative decoding convergence behavior, while increasing {\\lambda} raises the growth rate at the expense of worse convergence behavior, and thus...

  18. SAFE: A computer code for the steady-state and transient thermal analysis of LMR fuel elements

    SciTech Connect (OSTI)

    Hayes, S.L.

    1993-12-01T23:59:59.000Z

    SAFE is a computer code developed for both the steady-state and transient thermal analysis of single LMR fuel elements. The code employs a two-dimensional control-volume based finite difference methodology with fully implicit time marching to calculate the temperatures throughout a fuel element and its associated coolant channel for both the steady-state and transient events. The code makes no structural calculations or predictions whatsoever. It does, however, accept as input structural parameters within the fuel such as the distributions of porosity and fuel composition, as well as heat generation, to allow a thermal analysis to be performed on a user-specified fuel structure. The code was developed with ease of use in mind. An interactive input file generator and material property correlations internal to the code are available to expedite analyses using SAFE. This report serves as a complete design description of the code as well as a user`s manual. A sample calculation made with SAFE is included to highlight some of the code`s features. Complete input and output files for the sample problem are provided.

  19. Generation to Generation: The Heart of Family Medicine

    E-Print Network [OSTI]

    Winter, Robin O

    2012-01-01T23:59:59.000Z

    Ageism in the Workplace. Generations Spring, 5. Westman,of caring for multiple generations simultaneously. StronglyGeneration to Generation: The Heart of Family Medicine

  20. Gamma ray generator

    DOE Patents [OSTI]

    Firestone, Richard B; Reijonen, Jani

    2014-05-27T23:59:59.000Z

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  1. Codes and Supersymmetry in One Dimension

    E-Print Network [OSTI]

    C. F. Doran; M. G. Faux; S. J. Gates Jr.; T. Hbsch; K. M. Iga; G. D. Landweber; R. L. Miller

    2011-08-20T23:59:59.000Z

    Adinkras are diagrams that describe many useful supermultiplets in D=1 dimensions. We show that the topology of the Adinkra is uniquely determined by a doubly even code. Conversely, every doubly even code produces a possible topology of an Adinkra. A computation of doubly even codes results in an enumeration of these Adinkra topologies up to N=28, and for minimal supermultiplets, up to N=32.

  2. Material model library for explicit numerical codes

    SciTech Connect (OSTI)

    Hofmann, R.; Dial, B.W.

    1982-08-01T23:59:59.000Z

    A material model logic structure has been developed which is useful for most explicit finite-difference and explicit finite-element Lagrange computer codes. This structure has been implemented and tested in the STEALTH codes to provide an example for researchers who wish to implement it in generically similar codes. In parallel with these models, material parameter libraries have been created for the implemented models for materials which are often needed in DoD applications.

  3. 2-D color code quantum computation

    E-Print Network [OSTI]

    Austin G. Fowler

    2011-01-10T23:59:59.000Z

    We describe in detail how to perform universal fault-tolerant quantum computation on a 2-D color code, making use of only nearest neighbor interactions. Three defects (holes) in the code are used to represent logical qubits. Triple defect logical qubits are deformed into isolated triangular sections of color code to enable transversal implementation of all single logical qubit Clifford group gates. CNOT is implemented between pairs of triple defect logical qubits via braiding.

  4. Malicious Code Execution Detection and Response Immune System inpired by the Danger Theory

    E-Print Network [OSTI]

    Aickelin, Uwe

    Malicious Code Execution Detection and Response Immune System inpired by the Danger Theory Jungwon an artificial immune system. A recently developed hypothesis in immunology, the Danger The- ory, states that our invaders, plus signals generated by the host indic- ating danger and damage. We propose the incorporation

  5. Proceedings of 2009 Nanyang Research Programme NRP Project Code SPMS4

    E-Print Network [OSTI]

    Ohl, Claus-Dieter

    Proceedings of 2009 Nanyang Research Programme NRP Project Code SPMS4 Fluid Needles: transforming. In this project, a shock-wave generator imposes this acceleration onto a liquid meniscus inside a capillary to an external power source that discharges voltages according to user settings. A simplified sketch

  6. MINET (momentum integral network) code documentation

    SciTech Connect (OSTI)

    Van Tuyle, G J; Nepsee, T C; Guppy, J G [Brookhaven National Lab., Upton, NY (USA)

    1989-12-01T23:59:59.000Z

    The MINET computer code, developed for the transient analysis of fluid flow and heat transfer, is documented in this four-part reference. In Part 1, the MINET models, which are based on a momentum integral network method, are described. The various aspects of utilizing the MINET code are discussed in Part 2, The User's Manual. The third part is a code description, detailing the basic code structure and the various subroutines and functions that make up MINET. In Part 4, example input decks, as well as recent validation studies and applications of MINET are summarized. 32 refs., 36 figs., 47 tabs.

  7. Entanglement properties of topological color codes

    E-Print Network [OSTI]

    Mehdi Kargarian

    2008-12-07T23:59:59.000Z

    The entanglement properties of a class of topological stabilizer states, the so called \\emph{topological color codes} defined on a two-dimensional lattice or \\emph{2-colex}, are calculated. The topological entropy is used to measure the entanglement of different bipartitions of the 2-colex. The dependency of the ground state degeneracy on the genus of the surface shows that the color code can support a topological order, and the contribution of the color in its structure makes it interesting to compare with the Kitaev's toric code. While a qubit is maximally entangled with rest of the system, two qubits are no longer entangled showing that the color code is genuinely multipartite entangled. For a convex region, it is found that entanglement entropy depends only on the degrees of freedom living on the boundary of two subsystems. The boundary scaling of entropy is supplemented with a topological subleading term which for a color code defined on a compact surface is twice than the toric code. From the entanglement entropy we construct a set of bipartitions in which the diverging term arising from the boundary term is washed out, and the remaining non-vanishing term will have a topological nature. Besides the color code on the compact surface, we also analyze the entanglement properties of a version of color code with border, i.e \\emph{triangular color code}.

  8. Codes and Standards Support Vehicle Electrification

    Broader source: Energy.gov (indexed) [DOE]

    (Ford, GM, Chrysler, BMW) National Labs (INL, PNNL, ORNL) 2 Objectives Address codes and standards requirements to enable wide-spread adoption of electric-drive...

  9. Example Cost Codes for Construction Projects

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-03-28T23:59:59.000Z

    This chapter provides an example outline of cost items and their corresponding cost codes that may be used for construction projects.

  10. City of San Francisco- Green Building Code

    Broader source: Energy.gov [DOE]

    San Francisco adopted a mandatory green building code for new construction projects in September 2008, establishing strict guidelines for residential and commercial buildings according to the...

  11. Alarm Code Request Office of Physical Security

    E-Print Network [OSTI]

    Moore, Paul A.

    Alarm Code Request Office of Physical Security 101 Campus Operations Bowling Green State University Bowling Green, Ohio 43403 (419) 3727661 lockalarm@bgsu.edu By signing this authorization

  12. Source Code Retrieval using Conceptual Similarity

    E-Print Network [OSTI]

    de Rijke, Maarten

    researched at least since the mid-late 1980s (Frakes and Ne- jmeh, 1987). Early forms of code retrieval were

  13. Semidefinite code bounds based on quadruple distances

    E-Print Network [OSTI]

    2010-05-20T23:59:59.000Z

    Acknowledgement. We thank Niels Oosterling for very helpful comments on the method. References. [1] E. Agrell, Bounds for unrestricted binary codes,.

  14. Secure Symmetrical Multilevel Diversity Coding

    E-Print Network [OSTI]

    Li, Shuo

    2012-07-16T23:59:59.000Z

    such that: 17 (Rate constraints) 1 n logMl Rl + ; 8l = 1; : : : ; L; (3.3) (Asymptotically perfect reconstruction at the legitimate receiver) PrfdU(XU) 6= (Sn1 ; : : : ; SnjU j N)g ; 8U L s.t. jU j N + 1 (3.4) where Xl := el((Sn1..., in Chapter IV we conclude the thesis with some remarks. 5 CHAPTER II SECURE SYMMETRICAL SINGLE-LEVEL DIVERSITY CODING A. Problem Statement Let fS[t]g1t=1 be a discrete memoryless source with time index t and let Sn := (S[1]; : : : ; S[n]). An (L;N;m) S...

  15. Hydrogen Safety, Codes and Standards Challenges | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking of Blythe SolarContamination DetectorofThermochemical WaterEducationCurrent

  16. MARS15 Code Developments Driven by the Intensity Frontier Needs

    E-Print Network [OSTI]

    Mokhov, N V; Rakhno, I L; Striganov, S I; Tropin, I S; Eidelman, Yu I; Aarnio, P; Gudima, K K; Konobeev, A Yu

    2014-01-01T23:59:59.000Z

    The MARS15(2012) is the latest version of a multi-purpose Monte-Carlo code developed since 1974 for detailed simulation of hadronic and electromagnetic cascades in an arbitrary 3-D geometry of shielding, accelerator, detector and spacecraft components with energy ranging from a fraction of an electronvolt to 100 TeV. Driven by needs of the intensity frontier projects with their Megawatt beams, e.g., ESS, FAIR and Project X, the code has been recently substantially improved and extended. These include inclusive and exclusive particle event generators in the 0.7 to 12 GeV energy range, proton inelastic interaction modeling below 20 MeV, implementation of the EGS5 code for electromagnetic shower simulation at energies from 1 keV to 20 MeV, stopping power description in compound materials, new module for DPA calculations for neutrons from a fraction of eV to 20-150 MeV, user-friendly DeTra-based method to calculate nuclide inventories, and new ROOT-based geometry.

  17. EXTENSION OF THE EMPIRE CODE TO THE RESONANCE REGION.

    SciTech Connect (OSTI)

    CHO,Y.S.; HERMAN, M.; MUGHABGHAB, S.F.; OBLOZINSKY, P.; ROCHMAN, D.; LEE, Y.O.

    2007-04-22T23:59:59.000Z

    The preliminary version of a new module has been developed to be added to a nuclear reaction model code EMPIRE to allow for an evaluation of neutron cross sections in a resonance region. It automates most of the evaluation procedures and can be executed within EMPIRE or as a stand-alone program. The module includes a graphic user interface (GUI) and a number of codes and scripts that read individual, as well as average, resonance parameters from the Atlas of Neutron Resonances and other physical constants from RIPL-2, perform an analysis of the available resonances, carry out statistical distributions, and compute cross sections in resolved and unresolved resonance regions which are then compared with experimental data. The module also provides an ENDF-formatted file for a resonance region and various plots allowing for a verification of the procedure. The formatted file can be integrated later into the final ENDF-6 file as generated by the EMPIRE code. However, as a preliminary version, extensive testing and further improvements are needed before this new capability can be incorporated into the production version of EMPIRE.

  18. ICOOL: A SIMULATION CODE FOR IONIZATION COOLING OF MUON BEAMS.

    SciTech Connect (OSTI)

    FERNOW,R.C.

    1999-03-25T23:59:59.000Z

    Current ideas [1,2] for designing a high luminosity muon collider require significant cooling of the phase space of the muon beams. The only known method that can cool the beams in a time comparable to the muon lifetime is ionization cooling [3,4]. This method requires directing the particles in the beam at a large angle through a low Z absorber material in a strong focusing magnetic channel and then restoring the longitudinal momentum with an rf cavity. We have developed a new 3-D tracking code ICOOL for examining possible configurations for muon cooling. A cooling system is described in terms of a series of longitudinal regions with associated material and field properties. The tracking takes place in a coordinate system that follows a reference orbit through the system. The code takes into account decays and interactions of {approx}50-500 MeV/c muons in matter. Material geometry regions include cylinders and wedges. A number of analytic models are provided for describing the field configurations. Simple diagnostics are built into the code, including calculation of emittances and correlations, longitudinal traces, histograms and scatter plots. A number of auxiliary files can be generated for post-processing analysis by the user.

  19. Validation of the THIRMAL-1 melt-water interaction code

    SciTech Connect (OSTI)

    Chu, C.C.; Sienicki, J.J.; Spencer, B.W.

    1995-05-01T23:59:59.000Z

    The THIRMAL-1 computer code has been used to calculate nonexplosive LWR melt-water interactions both in-vessel and ex-vessel. To support the application of the code and enhance its acceptability, THIRMAL-1 has been compared with available data from two of the ongoing FARO experiments at Ispra and two of the Corium Coolant Mixing (CCM) experiments performed at Argonne. THIRMAL-1 calculations for the FARO Scoping Test and Quenching Test 2 as well as the CCM-5 and -6 experiments were found to be in excellent agreement with the experiment results. This lends confidence to the modeling that has been incorporated in the code describing melt stream breakup due to the growth of both Kelvin-Helmholtz and large wave instabilities, the sizes of droplets formed, multiphase flow and heat transfer in the mixing zone surrounding and below the melt stream, as well as hydrogen generation due to oxidation of the melt metallic phase. As part of the analysis of the FARO tests, a mechanistic model was developed to calculate the prefragmentation as it may have occurred when melt relocated from the release vessel to the water surface and the model was compared with the relevant data from FARO.

  20. Verification of unfold error estimates in the unfold operator code

    SciTech Connect (OSTI)

    Fehl, D.L.; Biggs, F. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    1997-01-01T23:59:59.000Z

    Spectral unfolding is an inverse mathematical operation that attempts to obtain spectral source information from a set of response functions and data measurements. Several unfold algorithms have appeared over the past 30 years; among them is the unfold operator (UFO) code written at Sandia National Laboratories. In addition to an unfolded spectrum, the UFO code also estimates the unfold uncertainty (error) induced by estimated random uncertainties in the data. In UFO the unfold uncertainty is obtained from the error matrix. This built-in estimate has now been compared to error estimates obtained by running the code in a Monte Carlo fashion with prescribed data distributions (Gaussian deviates). In the test problem studied, data were simulated from an arbitrarily chosen blackbody spectrum (10 keV) and a set of overlapping response functions. The data were assumed to have an imprecision of 5{percent} (standard deviation). One hundred random data sets were generated. The built-in estimate of unfold uncertainty agreed with the Monte Carlo estimate to within the statistical resolution of this relatively small sample size (95{percent} confidence level). A possible 10{percent} bias between the two methods was unresolved. The Monte Carlo technique is also useful in underdetermined problems, for which the error matrix method does not apply. UFO has been applied to the diagnosis of low energy x rays emitted by Z-pinch and ion-beam driven hohlraums. {copyright} {ital 1997 American Institute of Physics.}