National Library of Energy BETA

Sample records for generation spent fuel

  1. Neutron Generators for Spent Fuel Assay

    SciTech Connect (OSTI)

    Ludewigt, Bernhard A

    2010-12-30

    The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel (SNF) assemblies with non-destructive assay (NDA). The 14 NDA techniques being studied include several that require an external neutron source: Delayed Neutrons (DN), Differential Die-Away (DDA), Delayed Gammas (DG), and Lead Slowing-Down Spectroscopy (LSDS). This report provides a survey of currently available neutron sources and their underlying technology that may be suitable for NDA of SNF assemblies. The neutron sources considered here fall into two broad categories. The term 'neutron generator' is commonly used for sealed devices that operate at relatively low acceleration voltages of less than 150 kV. Systems that employ an acceleration structure to produce ion beam energies from hundreds of keV to several MeV, and that are pumped down to vacuum during operation, rather than being sealed units, are usually referred to as 'accelerator-driven neutron sources.' Currently available neutron sources and future options are evaluated within the parameter space of the neutron generator/source requirements as currently understood and summarized in section 2. Applicable neutron source technologies are described in section 3. Commercially available neutron generators and other source options that could be made available in the near future with some further development and customization are discussed in sections 4 and 5, respectively. The pros and cons of the various options and possible ways forward are discussed in section 6. Selection of the best approach must take a number of parameters into account including cost, size, lifetime, and power consumption, as well as neutron flux, neutron energy spectrum, and pulse structure that satisfy the requirements of the NDA instrument to be built.

  2. Neutron Generators for Spent Fuel Assay

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01

    13, 2010. [11] D-D Neutron Generator Development at LBNL, J.12] High-yield DT Neutron Generator, B.A. Ludewigt et al. ,a Compact High-Yield Neutron Generator, O. Waldmann and B.

  3. Neutron Generators for Spent Fuel Assay

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01

    EUTRON G ENERATOR High-output DD generators developed at theoffers a high-output, pulsable neutron generator, the GENIEneutron generators. High neutron outputs of ~10 8 n/s and 10

  4. Neutron Generators for Spent Fuel Assay

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01

    of a High Fluence Neutron Source for NondestructiveAugust 8-13, 2010. [11] D-D Neutron Generator Development at2005. [12] High-yield DT Neutron Generator, B.A. Ludewigt et

  5. TEPP- Spent Nuclear Fuel

    Broader source: Energy.gov [DOE]

    This scenario provides the planning instructions, guidance, and evaluation forms necessary to conduct an exercise involving a highway shipment of spent nuclear fuel.  This exercise manual is one in...

  6. Spent Fuel Transportation Risk Assessment

    Office of Environmental Management (EM)

    Spent Fuel Transportation Risk Assessment (SFTRA) Draft NUREG-2125 Overview for National Transportation Stakeholders Forum John Cook Division of Spent Fuel Storage and...

  7. Reprocessing option for spent fuel

    SciTech Connect (OSTI)

    Woolf, D.N. (British Nuclear Fuels PLC, Risley (United Kingdom))

    1991-11-01

    The options available to utilities for disposal of fuel discharged from their nuclear reactors is not limited to bury or burn. Many utilities in Europe and Japan have already opted to reprocess their spent fuel in the United Kingdom and/or France. This enables the utility to recycle the recovered uranium and plutonium and allows the utilities' countries to formulate a waste disposal policy without the time constraints that would otherwise be placed on them. This paper gives an insight into how and why British Nuclear Fuels plc (BNFL) is continuing to provide services to reprocess and recycle spent nuclear fuel. The closed fuel cycle represents the complete irradiated fuel management option and, with its use of well-established technologies, reprocessing of spent fuel is the only option that is available to utilities now.

  8. Spent-fuel-storage alternatives

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

  9. Spent graphite fuel element processing

    SciTech Connect (OSTI)

    Holder, N.D.; Olsen, C.W.

    1981-07-01

    The Department of Energy currently sponsors two programs to demonstrate the processing of spent graphite fuel elements. General Atomic in San Diego operates a cold pilot plant to demonstrate the processing of both US and German high-temperature reactor fuel. Exxon Nuclear Idaho Company is demonstrating the processing of spent graphite fuel elements from Rover reactors operated for the Nuclear Rocket Propulsion Program. This work is done at Idaho National Engineering Laboratory, where a hot facility is being constructed to complete processing of the Rover fuel. This paper focuses on the graphite combustion process common to both programs.

  10. Spent Nuclear Fuel project, project management plan

    SciTech Connect (OSTI)

    Fuquay, B.J.

    1995-10-25

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  11. Spent Nuclear Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|SensitiveApril 2, 2014 SmithSpectroscopy ofSpectroscopy

  12. Reforming of fuel inside fuel cell generator

    DOE Patents [OSTI]

    Grimble, Ralph E. (Finleyville, PA)

    1988-01-01

    Disclosed is an improved method of reforming a gaseous reformable fuel within a solid oxide fuel cell generator, wherein the solid oxide fuel cell generator has a plurality of individual fuel cells in a refractory container, the fuel cells generating a partially spent fuel stream and a partially spent oxidant stream. The partially spent fuel stream is divided into two streams, spent fuel stream I and spent fuel stream II. Spent fuel stream I is burned with the partially spent oxidant stream inside the refractory container to produce an exhaust stream. The exhaust stream is divided into two streams, exhaust stream I and exhaust stream II, and exhaust stream I is vented. Exhaust stream II is mixed with spent fuel stream II to form a recycle stream. The recycle stream is mixed with the gaseous reformable fuel within the refractory container to form a fuel stream which is supplied to the fuel cells. Also disclosed is an improved apparatus which permits the reforming of a reformable gaseous fuel within such a solid oxide fuel cell generator. The apparatus comprises a mixing chamber within the refractory container, means for diverting a portion of the partially spent fuel stream to the mixing chamber, means for diverting a portion of exhaust gas to the mixing chamber where it is mixed with the portion of the partially spent fuel stream to form a recycle stream, means for injecting the reformable gaseous fuel into the recycle stream, and means for circulating the recycle stream back to the fuel cells.

  13. Dependence of transuranic content in spent fuel on fuel burnup

    E-Print Network [OSTI]

    Reese, Drew A. (Drew Amelia)

    2007-01-01

    As the increasing demand for nuclear energy results in larger spent fuel volume, implementation of longer fuel cycles incorporating higher burnup are becoming common. Understanding the effect of higher burnup on the spent ...

  14. Spent nuclear fuel reprocessing modeling

    SciTech Connect (OSTI)

    Tretyakova, S.; Shmidt, O.; Podymova, T.; Shadrin, A.; Tkachenko, V. [Bochvar Institute, 5 Rogova str., Moscow 123098 (Russian Federation); Makeyeva, I.; Tkachenko, V.; Verbitskaya, O.; Schultz, O.; Peshkichev, I. [Russian Federal Nuclear Center - VNIITF E.I. Zababakhin, p.o.box 245, Snezhinsk, 456770 (Russian Federation)

    2013-07-01

    The long-term wide development of nuclear power requires new approaches towards the realization of nuclear fuel cycle, namely, closed nuclear fuel cycle (CNFC) with respect to fission materials. Plant nuclear fuel cycle (PNFC), which is in fact the reprocessing of spent nuclear fuel unloaded from the reactor and the production of new nuclear fuel (NF) at the same place together with reactor plant, can be one variant of CNFC. Developing and projecting of PNFC is a complicated high-technology innovative process that requires modern information support. One of the components of this information support is developed by the authors. This component is the programme conducting calculations for various variants of process flow sheets for reprocessing SNF and production of NF. Central in this programme is the blocks library, where the blocks contain mathematical description of separate processes and operations. The calculating programme itself has such a structure that one can configure the complex of blocks and correlations between blocks, appropriate for any given flow sheet. For the ready sequence of operations balance calculations are made of all flows, i.e. expenses, element and substance makeup, heat emission and radiation rate are determined. The programme is open and the block library can be updated. This means that more complicated and detailed models of technological processes will be added to the library basing on the results of testing processes using real equipment, in test operating mode. The development of the model for the realization of technical-economic analysis of various variants of technologic PNFC schemes and the organization of 'operator's advisor' is expected. (authors)

  15. Spent Nuclear Fuel (SNF) Project Execution Plan

    SciTech Connect (OSTI)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  16. Spent Nuclear Fuel Project Safety Management Plan

    SciTech Connect (OSTI)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities.

  17. Determination of Plutonium Content in Spent Fuel with Nondestructive Assay

    E-Print Network [OSTI]

    Tobin, S. J.

    2010-01-01

    LBNL- Determination of Plutonium Content in Spent Fuel withSwinhoe. “Determination of Plutonium Content in Spent FuelS. Tobin, “Measurement of Plutonium in Spent Nuclear Fuel by

  18. An experiment to simulate the heat transfer properties of a dry, horizontal spent nuclear fuel assembly

    E-Print Network [OSTI]

    Lovett, Phyllis Maria

    1991-01-01

    Nuclear power reactors generate highly radioactive spent fuel assemblies. Initially, the spent fuel assemblies are stored for a period of several years in an on-site storage facility to allow the radioactivity levels of ...

  19. Spent Nuclear Fuel Project dose management plan

    SciTech Connect (OSTI)

    Bergsman, K.H.

    1996-03-01

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts.

  20. Deep Borehole Disposal of Spent Fuel. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Deep Borehole Disposal of Spent Fuel. Citation Details In-Document Search Title: Deep Borehole Disposal of Spent Fuel. Abstract not provided. Authors: Brady, Patrick V. Publication...

  1. Naval Spent Fuel Rail Shipment Accident Exercise Objectives

    Office of Environmental Management (EM)

    NAVAL SPENT FUEL RAIL SHIPMENT ACCIDENT EXERCISE OBJECTIVES * Familiarize stakeholders with the Naval spent fuel ACCIDENT EXERCISE OBJECTIVES Familiarize stakeholders with the...

  2. Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

    Energy Savers [EERE]

    Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition Strategy Lessons Learned Report, NNSA, Feb 2010 Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition...

  3. Current Status of the Spent Nuclear Fuel Management Program in...

    Office of Scientific and Technical Information (OSTI)

    Current Status of the Spent Nuclear Fuel Management Program in the United States. Citation Details In-Document Search Title: Current Status of the Spent Nuclear Fuel Management...

  4. Pyrochemical processing of DOE spent nuclear fuel

    SciTech Connect (OSTI)

    Laidler, J.J.

    1995-02-01

    A compact, efficient method for conditioning spent nuclear fuel is under development. This method, known as pyrochemical processing, or {open_quotes}pyroprocessing,{close_quotes} provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (>99.9%) separation of transuranics. The resultant waste forms from the pyroprocess, are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and avoid the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory.

  5. Spent Fuel Background Report Volume I

    SciTech Connect (OSTI)

    Abbott, D.

    1994-03-01

    This report is an overview of current spent nuclear fuel management in the DOE complex. Sources of information include published literature, internal DOE documents, interviews with site personnel, and information provided by individual sites. Much of the specific information on facilities and fuels was provided by the DOE sites in response to the questionnaire for data for spent fuels and facilities data bases. This information is as accurate as is currently available, but is subject to revision pending results of further data calls. Spent fuel is broadly classified into three categories: (a) production fuels, (b) special fuels, and (c) naval fuels. Production fuels, comprising about 80% of the total inventory, are those used at Hanford and Savannah River to produce nuclear materials for defense. Special fuels are those used in a wide variety of research, development, and testing activities. Special fuels include fuel from DOE and commercial reactors used in research activities at DOE sites. Naval fuels are those developed and used for nuclear-powered naval vessels and for related research and development. Given the recent DOE decision to curtail reprocessing, the topic of main concern in the management of spent fuel is its storage. Of the DOE sites that have spent nuclear fuel, the vast majority is located at three sites-Hanford, INEL, and Savannah River. Other sites with spent fuel include Oak Ridge, West Valley, Brookhaven, Argonne, Los Alamos, and Sandia. B&W NESI Lynchburg Technology Center and General Atomics are commercial facilities with DOE fuel. DOE may also receive fuel from foreign research reactors, university reactors, and other commercial and government research reactors. Most DOE spent fuel is stored in water-filled pools at the reactor facilities. Currently an engineering study is being performed to determine the feasibility of using dry storage for DOE-owned spent fuel currently stored at various facilities. Delays in opening the deep geologic repository and the decision to phase out reprocessing of production fuels are extending the need for interim storage. The report describes the basic storage conditions and the general SNF inventory at individual DOE facilities.

  6. Hanford spent fuel inventory baseline

    SciTech Connect (OSTI)

    Bergsman, K.H.

    1994-07-15

    This document compiles technical data on irradiated fuel stored at the Hanford Site in support of the Hanford SNF Management Environmental Impact Statement. Fuel included is from the Defense Production Reactors (N Reactor and the single-pass reactors; B, C, D, DR, F, H, KE and KW), the Hanford Fast Flux Test Facility Reactor, the Shipping port Pressurized Water Reactor, and small amounts of miscellaneous fuel from several commercial, research, and experimental reactors.

  7. Spent Nuclear Fuel Alternative Technology Decision Analysis

    SciTech Connect (OSTI)

    Shedrow, C.B.

    1999-11-29

    The Westinghouse Savannah River Company (WSRC) made a FY98 commitment to the Department of Energy (DOE) to recommend a technology for the disposal of aluminum-based spent nuclear fuel (SNF) at the Savannah River Site (SRS). The two technologies being considered, direct co-disposal and melt and dilute, had been previously selected from a group of eleven potential SNF management technologies by the Research Reactor Spent Nuclear Fuel Task Team chartered by the DOE''s Office of Spent Fuel Management. To meet this commitment, WSRC organized the SNF Alternative Technology Program to further develop the direct co-disposal and melt and dilute technologies and ultimately provide a WSRC recommendation to DOE on a preferred SNF alternative management technology.

  8. Activities Related to Storage of Spent Nuclear Fuel | Department...

    Office of Environmental Management (EM)

    Related to Storage of Spent Nuclear Fuel More Documents & Publications Nuclear Regulatory Commission Fifth National Report for the Joint Convention on the Safety of Spent...

  9. National Report Joint Convention on the Safety of Spent Fuel...

    Office of Environmental Management (EM)

    National Report Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management National Report Joint Convention on the Safety of Spent...

  10. Nondestructive Spent Fuel Assay Using Nuclear Resonance Fluorescence

    E-Print Network [OSTI]

    Quiter, Brian

    2010-01-01

    spent fuel is to quantify the concentrations of fissile isotopes before any materials handling activities, such as transporting fuel, reprocessing,

  11. DECONTAMINATION OF ZIRCALOY SPENT FUEL CLADDING HULLS

    SciTech Connect (OSTI)

    Rudisill, T; John Mickalonis, J

    2006-09-27

    The reprocessing of commercial spent nuclear fuel (SNF) generates a Zircaloy cladding hull waste which requires disposal as a high level waste in the geologic repository. The hulls are primarily contaminated with fission products and actinides from the fuel. During fuel irradiation, these contaminants are deposited in a thin layer of zirconium oxide (ZrO{sub 2}) which forms on the cladding surface at the elevated temperatures present in a nuclear reactor. Therefore, if the hulls are treated to remove the ZrO{sub 2} layer, a majority of the contamination will be removed and the hulls could potentially meet acceptance criteria for disposal as a low level waste (LLW). Discard of the hulls as a LLW would result in significant savings due to the high costs associated with geologic disposal. To assess the feasibility of decontaminating spent fuel cladding hulls, two treatment processes developed for dissolving fuels containing zirconium (Zr) metal or alloys were evaluated. Small-scale dissolution experiments were performed using the ZIRFLEX process which employs a boiling ammonium fluoride (NH{sub 4}F)/ammonium nitrate (NH{sub 4}NO{sub 3}) solution to dissolve Zr or Zircaloy cladding and a hydrofluoric acid (HF) process developed for complete dissolution of Zr-containing fuels. The feasibility experiments were performed using Zircaloy-4 metal coupons which were electrochemically oxidized to produce a thin ZrO{sub 2} layer on the surface. Once the oxide layer was in place, the ease of removing the layer using methods based on the two processes was evaluated. The ZIRFLEX and HF dissolution processes were both successful in removing a 0.2 mm (thick) oxide layer from Zircaloy-4 coupons. Although the ZIRFLEX process was effective in removing the oxide layer, two potential shortcomings were identified. The formation of ammonium hexafluorozirconate ((NH{sub 4}){sub 2}ZrF{sub 6}) on the metal surface prior to dissolution in the bulk solution could hinder the decontamination process by obstructing the removal of contamination. The thermal decomposition of this material is also undesirable if the cladding hulls are melted for volume reduction or to produce waste forms. Handling and disposal of the corrosive off-gas stream and ZrO{sub 2}-containing dross must be addressed. The stability of Zr{sup 4+} in the NHF{sub 4}/NH{sub 4}NO{sub 3} solution is also a concern. Precipitation of ammonium zirconium fluorides upon cooling of the dissolving solution was observed in the feasibility experiments. Precipitation of the solids was attributed to the high fluoride to Zr ratios used in the experiments. The solubility of Zr{sup 4+} in NH{sub 4}F solutions decreases as the free fluoride concentration increases. The removal of the ZrO{sub 2} layer from Zircaloy-4 coupons with HF showed a strong dependence on both the concentration and temperature. Very rapid dissolution of the oxide layer and significant amounts of metal was observed in experiments using HF concentrations {ge} 2.5 M. Treatment of the coupons using HF concentrations {le} 1.0 M was very effective in removing the oxide layer. The most effective conditions resulted in dissolution rates which were less than approximately 2 mg/cm{sup 2}-min. With dissolution rates in this range, uniform removal of the oxide layer was obtained and a minimal amount of Zircaloy metal was dissolved. Future HF dissolution studies should focus on the decontamination of actual spent fuel cladding hulls to determine if the treated hulls meet criteria for disposal as a LLW.

  12. Spent fuel container alignment device and method

    DOE Patents [OSTI]

    Jones, Stewart D. (Mechanicville, NY); Chapek, George V. (Scotia, NY)

    1996-01-01

    An alignment device is used with a spent fuel shipping container including a plurality of fuel pockets for spent fuel arranged in an annular array and having a rotatable cover including an access opening therein. The alignment device includes a lightweight plate which is installed over the access opening of the cover. A laser device is mounted on the plate so as to emit a laser beam through a laser admittance window in the cover into the container in the direction of a pre-established target associated with a particular fuel pocket. An indexing arrangement on the container provides an indication of the angular position of the rotatable cover when the laser beam produced by the laser is brought into alignment with the target of the associated fuel pocket.

  13. Spent nuclear fuel project integrated schedule plan

    SciTech Connect (OSTI)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  14. Pyrochemical Treatment of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    K. M. Goff; K. L. Howden; G. M. Teske; T. A. Johnson

    2005-10-01

    Over the last 10 years, pyrochemical treatment of spent nuclear fuel has progressed from demonstration activities to engineering-scale production operations. As part of the Advanced Fuel Cycle Initiative within the U.S. Department of Energy’s Office of Nuclear Energy, Science and Technology, pyrochemical treatment operations are being performed as part of the treatment of fuel from the Experimental Breeder Reactor II at the Idaho National Laboratory. Integral to these treatment operations are research and development activities that are focused on scaling further the technology, developing and implementing process improvements, qualifying the resulting high-level waste forms, and demonstrating the overall pyrochemical fuel cycle.

  15. Overview of the spent nuclear fuel project at Hanford

    SciTech Connect (OSTI)

    Daily, J.L. [Dept. of Energy, Richland, WA (United States). Richland Operations Office; Fulton, J.C.; Gerber, E.W.; Culley, G.E. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-02-01

    The Spent Nuclear Fuel Project`s mission at Hanford is to {open_quotes}Provide safe, economic and environmentally sound management of Hanford spent nuclear fuel in a manner which stages it to final disposition.{close_quotes} The inventory of spent nuclear fuel (SNF) at the Hanford Site covers a wide variety of fuel types (production reactor to space reactor) in many facilities (reactor fuel basins to hot cells) at locations all over the Site. The 2,129 metric tons of Hanford SNF represents about 80% of the total US Department of Energy (DOE) inventory. About 98.5% of the Hanford SNF is 2,100 metric tons of metallic uranium production reactor fuel currently stored in the 1950s vintage K Basins in the 100 Area. This fuel has been slowly corroding, generating sludge and contaminating the basin water. This condition, coupled with aging facilities with seismic vulnerabilities, has been identified by several groups, including stakeholders, as being one of the most urgent safety and environmental concerns at the Hanford Site. As a direct result of these concerns, the Spent Nuclear Fuel Project was recently formed to address spent fuel issues at Hanford. The Project has developed the K Basins Path Forward to remove fuel from the basins and place it in dry interim storage. Alternatives that addressed the requirements were developed and analyzed. The result is a two-phased approach allowing the early removal of fuel from the K Basins followed by its stabilization and interim storage consistent with the national program.

  16. Spent fuel pool analysis using TRACE code

    SciTech Connect (OSTI)

    Sanchez-Saez, F.; Carlos, S.; Villanueva, J. F.; Martorell, S.

    2012-07-01

    The storage requirements of Spent Fuel Pools have been analyzed with the purpose to increase their rack capacities. In the past, the thermal limits have been mainly evaluated with conservative codes developed for this purpose, although some works can be found in which a best estimate code is used. The use of best estimate codes is interesting as they provide more realistic calculations and they have the capability of analyzing a wide range of transients that could affect the Spent Fuel Pool. Two of the most representative thermal-hydraulic codes are RELAP-5 and TRAC. Nowadays, TRACE code is being developed to make use of the more favorable characteristics of RELAP-5 and TRAC codes. Among the components coded in TRACE that can be used to construct the model, it is interesting to use the VESSEL component, which has the capacity of reproducing three dimensional phenomena. In this work, a thermal-hydraulic model of the Maine Yankee spent fuel pool using the TRACE code is developed. Such model has been used to perform a licensing calculation and the results obtained have been compared with experimental measurements made at the pool, showing a good agreement between the calculations predicted by TRACE and the experimental data. (authors)

  17. Spent Fuel Working Group Report. Volume 1

    SciTech Connect (OSTI)

    O`Toole, T.

    1993-11-01

    The Department of Energy is storing large amounts of spent nuclear fuel and other reactor irradiated nuclear materials (herein referred to as RINM). In the past, the Department reprocessed RINM to recover plutonium, tritium, and other isotopes. However, the Department has ceased or is phasing out reprocessing operations. As a consequence, Department facilities designed, constructed, and operated to store RINM for relatively short periods of time now store RINM, pending decisions on the disposition of these materials. The extended use of the facilities, combined with their known degradation and that of their stored materials, has led to uncertainties about safety. To ensure that extended storage is safe (i.e., that protection exists for workers, the public, and the environment), the conditions of these storage facilities had to be assessed. The compelling need for such an assessment led to the Secretary`s initiative on spent fuel, which is the subject of this report. This report comprises three volumes: Volume I; Summary Results of the Spent Fuel Working Group Evaluation; Volume II, Working Group Assessment Team Reports and Protocol; Volume III; Operating Contractor Site Team Reports. This volume presents the overall results of the Working Group`s Evaluation. The group assessed 66 facilities spread across 11 sites. It identified: (1) facilities that should be considered for priority attention. (2) programmatic issues to be considered in decision making about interim storage plans and (3) specific vulnerabilities for some of these facilities.

  18. Report on interim storage of spent nuclear fuel

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  19. Thermoelectric powered wireless sensors for spent fuel monitoring

    SciTech Connect (OSTI)

    Carstens, T.; Corradini, M.; Blanchard, J. [Dept. of Engineering Physics, Univ. of Wisconsin-Madison, Madison, WI 53706 (United States); Ma, Z. [Dept. of Electrical and Computer Engineering, Univ. of Wisconsin-Madison, Madison, WI 53706 (United States)

    2011-07-01

    This paper describes using thermoelectric generators to power wireless sensors to monitor spent nuclear fuel during dry-cask storage. OrigenArp was used to determine the decay heat of the spent fuel at different times during the service life of the dry-cask. The Engineering Equation Solver computer program modeled the temperatures inside the spent fuel storage facility during its service life. The temperature distribution in a thermoelectric generator and heat sink was calculated using the computer program Finite Element Heat Transfer. From these temperature distributions the power produced by the thermoelectric generator was determined as a function of the service life of the dry-cask. In addition, an estimation of the path loss experienced by the wireless signal can be made based on materials and thickness of the structure. Once the path loss is known, the transmission power and thermoelectric generator power requirements can be determined. This analysis estimates that a thermoelectric generator can produce enough power for a sensor to function and transmit data from inside the dry-cask throughout its service life. (authors)

  20. A Monte Carlo based spent fuel analysis safeguards strategy assessment

    SciTech Connect (OSTI)

    Fensin, Michael L [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Sandoval, Nathan P [Los Alamos National Laboratory

    2009-01-01

    Safeguarding nuclear material involves the detection of diversions of significant quantities of nuclear materials, and the deterrence of such diversions by the risk of early detection. There are a variety of motivations for quantifying plutonium in spent fuel assemblies by means of nondestructive assay (NDA) including the following: strengthening the capabilities of the International Atomic Energy Agencies ability to safeguards nuclear facilities, shipper/receiver difference, input accountability at reprocessing facilities and burnup credit at repositories. Many NDA techniques exist for measuring signatures from spent fuel; however, no single NDA technique can, in isolation, quantify elemental plutonium and other actinides of interest in spent fuel. A study has been undertaken to determine the best integrated combination of cost effective techniques for quantifying plutonium mass in spent fuel for nuclear safeguards. A standardized assessment process was developed to compare the effective merits and faults of 12 different detection techniques in order to integrate a few techniques and to down-select among the techniques in preparation for experiments. The process involves generating a basis burnup/enrichment/cooling time dependent spent fuel assembly library, creating diversion scenarios, developing detector models and quantifying the capability of each NDA technique. Because hundreds of input and output files must be managed in the couplings of data transitions for the different facets of the assessment process, a graphical user interface (GUI) was development that automates the process. This GUI allows users to visually create diversion scenarios with varied replacement materials, and generate a MCNPX fixed source detector assessment input file. The end result of the assembly library assessment is to select a set of common source terms and diversion scenarios for quantifying the capability of each of the 12 NDA techniques. We present here the generalized assessment process, the techniques employed to automate the coupled facets of the assessment process, and the standard burnup/enrichment/cooling time dependent spent fuel assembly library. We also clearly define the diversion scenarios that will be analyzed during the standardized assessments. Though this study is currently limited to generic PWR assemblies, it is expected that the results of the assessment will yield an adequate spent fuel analysis strategy knowledge that will help the down-select process for other reactor types.

  1. EIS-0015: U.S. Spent Fuel Policy

    Broader source: Energy.gov [DOE]

    Subsumed DOE/EIS-0040 and DOE/EIS-0041. The Savannah River Laboratory prepared this EIS to analyze the impacts of implementing or not implementing the policy for interim storage of spent power reactor fuel. This Final EIS is a compilation of three Draft EISs and one Supplemental Draft EIS: DOE/EIS-0015-D, Storage of U.S. Spent Power Reactor Fuel; DOE/EIS-0015-DS, Storage of U.S. Spent Power Reactor Fuel - Supplement; DOE/EIS-0040-D, Storage of Foreign Spent Power Reactor Fuel; and DOE/EIS-0041-D, Charge for Spent Fuel Storage.

  2. Surrogate Spent Nuclear Fuel Vibration Integrity Investigation

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L

    2014-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading encountered during road or rail shipment. ORNL has been developing testing capabilities that can be used to improve our understanding of the impacts of vibration loading on SNF integrity, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety of SNF storage and transportation operations.

  3. Systems impacts of spent fuel disassembly alternatives

    SciTech Connect (OSTI)

    Not Available

    1984-07-01

    Three studies were completed to evaluate four alternatives to the disposal of intact spent fuel assemblies in a geologic repository. A preferred spent fuel waste form for disposal was recommended on consideration of (1) package design and fuel/package interaction, (2) long-term, in-repository performance of the waste form, and (3) overall process performance and costs for packaging, handling, and emplacement. The four basic alternative waste forms considered were (1) end fitting removal, (2) fission gas venting, (3) disassembly and close packing, and (4) shearing/immobilization. None of the findings ruled out any alternative on the basis of waste package considerations or long-term performance of the waste form. The third alternative offers flexibility in loading that may prove attractive in the various geologic media under consideration, greatly reduces the number of packages, and has the lowest unit cost. These studies were completed in October, 1981. Since then Westinghouse Electric Corporation and the Office of Nuclear Waste Isolation have completed studies in related fields. This report is now being published to provide publicly the background material that is contained within. 47 references, 28 figures, 31 tables.

  4. Pyroprocess for processing spent nuclear fuel

    DOE Patents [OSTI]

    Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Lockport, IL)

    2002-01-01

    This is a pyroprocess for processing spent nuclear fuel. The spent nuclear fuel is chopped into pieces and placed in a basket which is lowered in to a liquid salt solution. The salt is rich in ZrF.sub.4 and containing alkali or alkaline earth fluorides, and in particular, the salt chosen was LiF-50 mol % ZrF.sub.4 with a eutectic melting point of 500.degree. C. Prior to lowering the basket, the salt is heated to a temperature of between 550.degree. C. and 700.degree. C. in order to obtain a molten solution. After dissolution the oxides of U, Th, rare earth and other like oxides, the salt bath solution is subject to hydro-fluorination to remove the oxygen and then to a fluorination step to remove U as gaseous UF.sub.6. In addition, after dissolution, the basket contains PuO.sub.2 and undissolved parts of the fuel rods, and the basket and its contents are processed to remove the Pu.

  5. Method of cleaning a spent fuel assembly

    SciTech Connect (OSTI)

    Chung, D.K.; Jones, C.E. Jr.

    1989-05-09

    A method is described of cleaning a fuel assembly including surfaces thereof prior to decladding, each assembly surface contaminated with a radioactive alkali metal and comprising a plurality of pressurized metallic fuel pins containing a spent fissible material, the method comprising the sequential steps of: (a) placing the fuel assembly in a sealed chamber; (b) passing a heated, inert gas through the chamber to heat the fuel assembly to a temperature sufficient to cause volatilization of the alkali metal but insufficient to rupture the pressurized metal pins; (c) evacuating the chamber to a pressure of less than 0.5 mm of Hg to further enhance volatilization and removal of the alkali metal and maintaining the chamber at that pressure until the decay heat of the fissile materials causes the temperature of the fuel assembly to increase to a level which would be detrimental to the integrity of the metal pins; (d) cooling the fuel assembly by passing a cool, inert gas through the chamber to reduce the temperature of the fuel assembly to a desired level; (e) repeating the evacuation and cooling steps as required to insure removal of substantially all of the radioactive alkali metal from the assembly surface; and (f) recovering the cleaned fuel assembly from the chamber.

  6. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths

    DOE Patents [OSTI]

    Reichner, P.; Dollard, W.J.

    1991-01-08

    An electrochemical apparatus is made having a generator section containing axially elongated electrochemical cells, a fresh gaseous feed fuel inlet, a gaseous feed oxidant inlet, and at least one gaseous spent fuel exit channel, where the spent fuel exit channel passes from the generator chamber to combine with the fresh feed fuel inlet at a mixing apparatus, reformable fuel mixture channel passes through the length of the generator chamber and connects with the mixing apparatus, that channel containing entry ports within the generator chamber, where the axis of the ports is transverse to the fuel electrode surfaces, where a catalytic reforming material is distributed near the reformable fuel mixture entry ports. 2 figures.

  7. Spent Fuel Reprocessing: More Value for Money Spent in a Geological Repository?

    SciTech Connect (OSTI)

    Kaplan, P.; Vinoche, R.; Devezeaux, J-G.; Bailly, F.

    2003-02-25

    Today, each utility or country operating nuclear power plants can select between two long-term spent fuel management policies: either, spent fuel is considered as waste to dispose of through direct disposal or, spent fuel is considered a resource of valuable material through reprocessing-recycling. Reading and listening to what is said in the nuclear community, we understand that most people consider that the choice of policy is, actually, a choice among two technical paths to handle spent fuel: direct disposal versus reprocessing. This very simple situation has been recently challenged by analysis coming from countries where both policies are on survey. For example, ONDRAF of Belgium published an interesting study showing that, economically speaking for final disposal, it is worth treating spent fuel rather than dispose of it as a whole, even if there is no possibility to recycle the valuable part of it. So, the question is raised: is there such a one-to-one link between long term spent fuel management political option and industrial option? The purpose of the presentation is to discuss the potential advantages and drawbacks of spent fuel treatment as an implementation of the policy that considers spent fuel as waste to dispose of. Based on technical considerations and industrial experience, we will study qualitatively, and quantitatively when possible, the different answers proposed by treatment to the main concerns of spent-fuel-as-a-whole geological disposal.

  8. Spent fuel management fee methodology and computer code user's manual.

    SciTech Connect (OSTI)

    Engel, R.L.; White, M.K.

    1982-01-01

    The methodology and computer model described here were developed to analyze the cash flows for the federal government taking title to and managing spent nuclear fuel. The methodology has been used by the US Department of Energy (DOE) to estimate the spent fuel disposal fee that will provide full cost recovery. Although the methodology was designed to analyze interim storage followed by spent fuel disposal, it could be used to calculate a fee for reprocessing spent fuel and disposing of the waste. The methodology consists of two phases. The first phase estimates government expenditures for spent fuel management. The second phase determines the fees that will result in revenues such that the government attains full cost recovery assuming various revenue collection philosophies. These two phases are discussed in detail in subsequent sections of this report. Each of the two phases constitute a computer module, called SPADE (SPent fuel Analysis and Disposal Economics) and FEAN (FEe ANalysis), respectively.

  9. Characterization plan for Hanford spent nuclear fuel

    SciTech Connect (OSTI)

    Abrefah, J.; Thornton, T.A.; Thomas, L.E.; Berting, F.M.; Marschman, S.C.

    1994-12-01

    Reprocessing of spent nuclear fuel (SNF) at the Hanford Site Plutonium-Uranium Extraction Plant (PUREX) was terminated in 1972. Since that time a significant quantity of N Reactor and Single-Pass Reactor SNF has been stored in the 100 Area K-East (KE) and K-West (KW) reactor basins. Approximately 80% of all US Department of Energy (DOE)-owned SNF resides at Hanford, the largest portion of which is in the water-filled KE and KW reactor basins. The basins were not designed for long-term storage of the SNF and it has become a priority to move the SNF to a more suitable location. As part of the project plan, SNF inventories will be chemically and physically characterized to provide information that will be used to resolve safety and technical issues for development of an environmentally benign and efficient extended interim storage and final disposition strategy for this defense production-reactor SNF.

  10. Deep Borehole Disposal of Spent Fuel. Brady, Patrick V. Abstract...

    Office of Scientific and Technical Information (OSTI)

    Spent Fuel. Brady, Patrick V. Abstract not provided. Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States) USDOE National Nuclear Security Administration (NNSA)...

  11. Spent Nuclear Fuel project integrated safety management plan

    SciTech Connect (OSTI)

    Daschke, K.D.

    1996-09-17

    This document is being revised in its entirety and the document title is being revised to ``Spent Nuclear Fuel Project Integrated Safety Management Plan.

  12. President Reagan Calls for a National Spent Fuel Storage Facility...

    National Nuclear Security Administration (NNSA)

    Reagan Calls for a National Spent Fuel Storage Facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile...

  13. Huizenga leads safety of spent fuel management, radioactive waste...

    National Nuclear Security Administration (NNSA)

    Huizenga leads safety of spent fuel management, radioactive waste management meeting in Vienna | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People...

  14. Waste management plan for Hanford spent nuclear fuel characterization activities

    SciTech Connect (OSTI)

    Chastain, S.A. [Westinghouse Hanford Co., Richland, WA (United States); Spinks, R.L. [Pacific Northwest Lab., Richland, WA (United States)

    1994-10-17

    A joint project was initiated between Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratory (PNL) to address critical issues associated with the Spent Nuclear Fuel (SNF) stored at the Hanford Site. Recently, particular attention has been given to remediation of the SNF stored in the K Basins. A waste management plan (WMP) acceptable to both parties is required prior to the movement of selected material to the PNL facilities for examination. N Reactor and Single Pass Reactor (SPR) fuel has been stored for an extended period of time in the N Reactor, PUREX, K-East, and K-West Basins. Characterization plans call for transport of fuel material form the K Basins to the 327 Building Postirradiation Testing Laboratory (PTL) in the 300 Area for examination. However, PNL received a directive stating that no examination work will be started in PNL hot cell laboratories without an approved disposal route for all waste generated related to the activity. Thus, as part of the Characterization Program Management Plan for Hanford Spent Nuclear Fuel, a waste management plan which will ensure that wastes generated as a result of characterization activities conducted at PNL will be accepted by WHC for disposition is required. This document contains the details of the waste handling plan that utilizes, to the greatest extent possible, established waste handling and disposal practices at Hanford between PNL and WHC. Standard practices are sufficient to provides for disposal of most of the waste materials, however, special consideration must be given to the remnants of spent nuclear fuel elements following examination. Fuel element remnants will be repackaged in an acceptable container such as the single element canister and returned to the K Basins for storage.

  15. Determination of Plutonium Content in Spent Fuel with Nondestructive Assay

    SciTech Connect (OSTI)

    Tobin, S. J.; Sandoval, N. P.; Fensin, M. L.; Lee, S. Y.; Ludewigt, Bernhard A.; Menlovea, H. O.; Quiter, B. J.; Rajasingume, A.; Schearf, M. A.; Smith, L. E.; Swinhoe, M. T.; Thompson, S. J.

    2009-06-30

    There are a variety of reasons for quantifying plutonium (Pu) in spent fuel such as independently verifying the Pu content declared by a regulated facility, making shipper/receiver mass declarations, and quantifying the input mass at a reprocessing facility. As part of the Next Generation Safeguards Initiative, NA-241 has recently funded a multilab/university collaboration to determine the elemental Pu mass in spent fuel assemblies. This research effort is anticipated to be a five year effort: the first part of which is a two years Monte Carlo modeling effort to integrate and down-select among 13 nondestructive assay (NDA) technologies, followed by one year for fabricating instruments and then two years for measuring spent fuel. This paper gives a brief overview of the approach being taken for the Monte Carlo research effort. In addition, preliminary results for the first NDA instrument studied in detail, delayed neutron detection, will be presented. In order to cost effectively and robustly model the performance of several NDA techniques, an"assembly library" was created that contains a diverse range of pressurized water reactor spent fuel assemblies (burnup, enrichment, cooling time) similar to that which exists in spent pools today and in the future, diversion scenarios that capture a range of possible rod removal options, spatial and isotopic detail needed to accurately quantify the capability of all the NDA techniques so as to enable integration. Integration is being designed into this study from the beginning since it is expected that the best performance will be obtained by combining a few NDA techniques. The performance of each instrument will be quantified for the full assembly library in three different media: air, water and borated water. In this paper the preliminary capability of delayed neutron detection will be quantified for the spent fuel library for all three media. The 13 NDA techniques being researched are the following: Delayed Gamma, Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Lead Slowing Down Spectrometer, Neutron Multiplicity, Nuclear Resonance Fluorescence, Passive Prompt Gamma, Passive Neutron Albedo Reactivity, Self-integration Neutron Resonance Densitometry, Total Neutron (Gross Neutron), X-Ray Fluorescence, 252Cf Interrogation with Prompt Neutron Detection.

  16. Arrival condition of spent fuel after storage, handling, and transportation

    SciTech Connect (OSTI)

    Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

    1982-11-01

    This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

  17. Technical bases for interim storage of spent nuclear fuel

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.

    1981-06-01

    The experience base for water storage of spent nuclear fuel has evolved since 1943. The technology base includes licensing documentation, standards, technology studies, pool operator experience, and documentation from public hearings. That base reflects a technology which is largely successful and mundane. It projects probable satisfactory water storage of spent water reactor fuel for several decades. Interim dry storage of spent water reactor fuel is not yet licensed in the US, but a data base and documentation have developed. There do not appear to be technological barriers to interim dry storage, based on demonstrations with irradiated fuel. Water storage will continue to be a part of spent fuel management at reactors. Whether dry storage becomes a prominent interim fuel management option depends on licensing and economic considerations. National policies will strongly influence how long the spent fuel remains in interim storage and what its final disposition will be.

  18. An approach to determine a defensible spent fuel ratio.

    SciTech Connect (OSTI)

    Durbin, Samuel G.; Lindgren, Eric Richard

    2014-03-01

    Sabotage of spent nuclear fuel casks remains a concern nearly forty years after attacks against shipment casks were first analyzed and has a renewed relevance in the post-9/11 environment. A limited number of full-scale tests and supporting efforts using surrogate materials, typically depleted uranium dioxide (DUO2), have been conducted in the interim to more definitively determine the source term from these postulated events. In all the previous studies, the postulated attack of greatest interest was by a conical shape charge (CSC) that focuses the explosive energy much more efficiently than bulk explosives. However, the validity of these large-scale results remain in question due to the lack of a defensible Spent Fuel Ratio (SFR), defined as the amount of respirable aerosol generated by an attack on a mass of spent fuel compared to that of an otherwise identical DUO2 surrogate. Previous attempts to define the SFR have resulted in estimates ranging from 0.42 to 12 and include suboptimal experimental techniques and data comparisons. Different researchers have suggested using SFR values of 3 to 5.6. Sound technical arguments exist that the SFR does not exceed a value of unity. A defensible determination of the SFR in this lower range would greatly reduce the calculated risk associated with the transport and dry storage of spent nuclear fuel. Currently, Oak Ridge National Laboratory (ORNL) is in possession of several samples of spent nuclear fuel (SNF) that were used in the original SFR studies in the 1980's and were intended for use in a modern effort at Sandia National Laboratories (SNL) in the 2000's. A portion of these samples are being used for a variety of research efforts. However, the entirety of SNF samples at ORNL is scheduled for disposition at the Waste Isolation Pilot Plant (WIPP) by approximately the end of 2015. If a defensible SFR is to be determined for use in storage and transportation security analyses, the need to begin this effort is urgent in order to secure the only known available SNF samples with a clearly defined path to disposal.

  19. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques

    E-Print Network [OSTI]

    Tobin, S. J.

    2010-01-01

    LBNL- Determining Plutonium Mass in Spent Fuel withSwinhoe. “Determination of Plutonium Content in Spent FuelS. Tobin, “Measurement of Plutonium in Spent Nuclear Fuel by

  20. Spent fuel dry storage technology development: thermal evaluation of sealed storage cask containing spent fuel

    SciTech Connect (OSTI)

    Schmitten, P.F.; Wright, J.B.

    1980-08-01

    A PWR spent fuel assembly was encapsulated inside the E-MAD Hot Bay and placed in a instrumented above surface storage cell during December 1978 for thermal testing. Instrumentation provided to measure canister, liner and concrete temperatures consisted of thermocouples which were inserted into tubes on the outside of the canister and liner and in three radial positions in the concrete. Temperatures from the SSC test assembly have been recorded throughout the past 16 months. Canister and liner temperatures have reached their peak values of 200{sup 0}F and 140{sup 0}F, respectively. Computer predictions of the transient and steady-state temperatures show good agreement with the test data.

  1. Accelerator-driven transmutation of spent fuel elements

    DOE Patents [OSTI]

    Venneri, Francesco (Los Alamos, NM); Williamson, Mark A. (Los Alamos, NM); Li, Ning (Los Alamos, NM)

    2002-01-01

    An apparatus and method is described for transmuting higher actinides, plutonium and selected fission products in a liquid-fuel subcritical assembly. Uranium may also be enriched, thereby providing new fuel for use in conventional nuclear power plants. An accelerator provides the additional neutrons required to perform the processes. The size of the accelerator needed to complete fuel cycle closure depends on the neutron efficiency of the supported reactors and on the neutron spectrum of the actinide transmutation apparatus. Treatment of spent fuel from light water reactors (LWRs) using uranium-based fuel will require the largest accelerator power, whereas neutron-efficient high temperature gas reactors (HTGRs) or CANDU reactors will require the smallest accelerator power, especially if thorium is introduced into the newly generated fuel according to the teachings of the present invention. Fast spectrum actinide transmutation apparatus (based on liquid-metal fuel) will take full advantage of the accelerator-produced source neutrons and provide maximum utilization of the actinide-generated fission neutrons. However, near-thermal transmutation apparatus will require lower standing

  2. Spent Fuel Transportation Package Performance Study - Experimental Design Challenges

    SciTech Connect (OSTI)

    Snyder, A. M.; Murphy, A. J.; Sprung, J. L.; Ammerman, D. J.; Lopez, C.

    2003-02-25

    Numerous studies of spent nuclear fuel transportation accident risks have been performed since the late seventies that considered shipping container design and performance. Based in part on these studies, NRC has concluded that the level of protection provided by spent nuclear fuel transportation package designs under accident conditions is adequate. [1] Furthermore, actual spent nuclear fuel transport experience showcase a safety record that is exceptional and unparalleled when compared to other hazardous materials transportation shipments. There has never been a known or suspected release of the radioactive contents from an NRC-certified spent nuclear fuel cask as a result of a transportation accident. In 1999 the United States Nuclear Regulatory Commission (NRC) initiated a study, the Package Performance Study, to demonstrate the performance of spent fuel and spent fuel packages during severe transportation accidents. NRC is not studying or testing its current regulations, a s the rigorous regulatory accident conditions specified in 10 CFR Part 71 are adequate to ensure safe packaging and use. As part of this study, NRC currently plans on using detailed modeling followed by experimental testing to increase public confidence in the safety of spent nuclear fuel shipments. One of the aspects of this confirmatory research study is the commitment to solicit and consider public comment during the scoping phase and experimental design planning phase of this research.

  3. Spent nuclear fuel discharges from U.S. reactors 1994

    SciTech Connect (OSTI)

    1996-02-01

    Spent Nuclear Fuel Discharges from US Reactors 1994 provides current statistical data on fuel assemblies irradiated at commercial nuclear reactors operating in the US. This year`s report provides data on the current inventories and storage capacities at these reactors. Detailed statistics on the data are presented in four chapters that highlight 1994 spent fuel discharges, storage capacities and inventories, canister and nonfuel component data, and assembly characteristics. Five appendices, a glossary, and bibliography are also included. 10 figs., 34 tabs.

  4. Thermal Cooling Limits of Sbotaged Spent Fuel Pools

    SciTech Connect (OSTI)

    Dr. Thomas G. Hughes; Dr. Thomas F. Lin

    2010-09-10

    To develop the understanding and predictive measures of the post “loss of water inventory” hazardous conditions as a result of the natural and/or terrorist acts to the spent fuel pool of a nuclear plant. This includes the thermal cooling limits to the spent fuel assembly (before the onset of the zircaloy ignition and combustion), and the ignition, combustion, and the subsequent propagation of zircaloy fire from one fuel assembly to others

  5. Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01

    and S.J. Thompson,“Determining Plutonium in Spent Fuel withTobin, “Determination of Plutonium Content in Spent FuelFluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

  6. The united kingdom's changing requirements for spent fuel storage

    SciTech Connect (OSTI)

    Hodgson, Z.; Hambley, D.I.; Gregg, R.; Ross, D.N.

    2013-07-01

    The UK is adopting an open fuel cycle, and is necessarily moving to a regime of long term storage of spent fuel, followed by geological disposal once a geological disposal facility (GDF) is available. The earliest GDF receipt date for legacy spent fuel is assumed to be 2075. The UK is set to embark on a programme of new nuclear build to maintain a nuclear energy contribution of 16 GW. Additionally, the UK are considering a significant expansion of nuclear energy in order to meet carbon reduction targets and it is plausible to foresee a scenario where up to 75 GW from nuclear power production could be deployed in the UK by the mid 21. century. Such an expansion, could lead to spent fuel storage and its disposal being a dominant issue for the UK Government, the utilities and the public. If the UK were to transition a closed fuel cycle, then spent fuel storage should become less onerous depending on the timescales. The UK has demonstrated a preference for wet storage of spent fuel on an interim basis. The UK has adopted an approach of centralised storage, but a 16 GW new build programme and any significant expansion of this may push the UK towards distributed spent fuel storage at a number of reactors station sites across the UK.

  7. Safety Aspects of Dry Spent Fuel Storage and Spent Fuel Management - 13559

    SciTech Connect (OSTI)

    Botsch, W.; Smalian, S.; Hinterding, P.

    2013-07-01

    Dry storage systems are characterized by passive and inherent safety systems ensuring safety even in case of severe incidents or accidents. After the events of Fukushima, the advantages of such passively and inherently safe dry storage systems have become more and more obvious. As with the storage of all radioactive materials, the storage of spent nuclear fuel (SF) and high-level radioactive waste (HLW) must conform to safety requirements. Following safety aspects must be achieved throughout the storage period: - safe enclosure of radioactive materials, - safe removal of decay heat, - securing nuclear criticality safety, - avoidance of unnecessary radiation exposure. The implementation of these safety requirements can be achieved by dry storage of SF and HLW in casks as well as in other systems such as dry vault storage systems or spent fuel pools, where the latter is neither a dry nor a passive system. Furthermore, transport capability must be guaranteed during and after storage as well as limitation and control of radiation exposure. The safe enclosure of radioactive materials in dry storage casks can be achieved by a double-lid sealing system with surveillance of the sealing system. The safe removal of decay heat must be ensured by the design of the storage containers and the storage facility. The safe confinement of radioactive inventory has to be ensured by mechanical integrity of fuel assembly structures. This is guaranteed, e.g. by maintaining the mechanical integrity of the fuel rods or by additional safety measures for defective fuel rods. In order to ensure nuclear critically safety, possible effects of accidents have also to be taken into consideration. In case of dry storage it might be necessary to exclude the re-positioning of fissile material inside the container and/or neutron moderator exclusion might be taken into account. Unnecessary radiation exposure can be avoided by the cask or canister vault system itself. In Germany dry storage of SF in casks fulfills both transport and storage requirements. Mostly, storage facilities are designed as concrete buildings above the ground, but due to regional constraints, one storage facility has also been built as a rock tunnel. The decay heat is always removed by natural air flow; further technical equipment is not needed. The removal of decay heat and shielding had been modeled and calculated by state-of-the-art computer codes before such a facility has been built. TueV and BAM present their long experience in the licensing process for sites and casks and inform about spent nuclear fuel management and issues concerning dry storage of spent nuclear fuel. Different storage systems and facilities in Germany, Europe and world-wide are compared with respect to the safety aspects mentioned above. Initial points are the safety issues of wet storage of SF, and it is shown how dry storage systems can ensure the compliance with the mentioned safety criteria over a long storage period. The German storage concept for dry storage of SF and HLW is presented and discussed. Exemplarily, the process of licensing, erection and operation of selected German dry storage facilities is presented. (authors)

  8. Natural convection heat transfer within horizontal spent nuclear fuel assemblies

    SciTech Connect (OSTI)

    Canaan, R.E.

    1995-12-01

    Natural convection heat transfer is experimentally investigated in an enclosed horizontal rod bundle, which characterizes a spent nuclear fuel assembly during dry storage and/or transport conditions. The basic test section consists of a square array of sixty-four stainless steel tubular heaters enclosed within a water-cooled rectangular copper heat exchanger. The heaters are supplied with a uniform power generation per unit length while the surrounding enclosure is maintained at a uniform temperature. The test section resides within a vacuum/pressure chamber in order to subject the assembly to a range of pressure statepoints and various backfill gases. The objective of this experimental study is to obtain convection correlations which can be used in order to easily incorporate convective effects into analytical models of horizontal spent fuel systems, and also to investigate the physical nature of natural convection in enclosed horizontal rod bundles in general. The resulting data consist of: (1) measured temperatures within the assembly as a function of power, pressure, and backfill gas; (2) the relative radiative contribution for the range of observed temperatures; (3) correlations of convective Nusselt number and Rayleigh number for the rod bundle as a whole; and (4) correlations of convective Nusselt number as a function of Rayleigh number for individual rods within the array.

  9. Risk and Responsibility Sharing in Nuclear Spent Fuel Management

    E-Print Network [OSTI]

    De Roo, Guillaume

    With the Nuclear Waste Policy Act of 1982, the responsibility of American utilities in the long-term management of spent nuclear fuel was limited to the payment of a fee. This narrow involvement did not result in faster ...

  10. Development of Technical Nuclear Forensics for Spent Research Reactor Fuel 

    E-Print Network [OSTI]

    Sternat, Matthew Ryan 1982-

    2012-11-20

    Pre-detonation technical nuclear forensics techniques for research reactor spent fuel were developed in a collaborative project with Savannah River National Lab ratory. An inverse analysis method was employed to reconstruct ...

  11. Spent nuclear fuel Canister Storage Building CDR Review Committee report

    SciTech Connect (OSTI)

    Dana, W.P.

    1995-12-01

    The Canister Storage Building (CSB) is a subproject under the Spent Nuclear Fuels Major System Acquisition. This subproject is necessary to design and construct a facility capable of providing dry storage of repackaged spent fuels received from K Basins. The CSB project completed a Conceptual Design Report (CDR) implementing current project requirements. A Design Review Committee was established to review the CDR. This document is the final report summarizing that review

  12. EM Prepares Report for Convention on Safety of Spent Fuel and...

    Office of Environmental Management (EM)

    Prepares Report for Convention on Safety of Spent Fuel and Radioactive Waste Management EM Prepares Report for Convention on Safety of Spent Fuel and Radioactive Waste Management...

  13. Conditioning of spent nuclear fuel for permanent disposal

    SciTech Connect (OSTI)

    Laidler, J.J.

    1994-10-01

    A compact, efficient method for conditioning spent nuclear fuel is under development This method, known as pyrochemical processing, or {open_quotes}pyroprocessing,{close_quotes} provides a separation of fission products from the actinide elements present in spent fuel and further separates pure uranium from the transuranic elements. The process can facilitate the timely and environmentally-sound treatment of the highly diverse collection of spent fuel currently in the inventory of the United States Department of Energy (DOE). The pyroprocess utilizes elevated-temperature processes to prepare spent fuel for fission product separation; that separation is accomplished by a molten salt electrorefining step that provides efficient (99.9%) separation of transuranics. The resultant waste forms from the pyroprocess are stable under envisioned repository environment conditions and highly leach-resistant. Treatment of any spent fuel type produces a set of common high-level waste forms, one a mineral and the other a metal alloy, that can be readily qualified for repository disposal and preclude the substantial costs that would be associated with the qualification of the numerous spent fuel types included in the DOE inventory.

  14. Advanced dry head-end reprocessing of light water reactor spent nuclear fuel

    SciTech Connect (OSTI)

    Collins, Emory D.; Delcul, Guillermo D.; Hunt, Rodney D.; Johnson, Jared A.; Spencer, Barry B.

    2014-06-10

    A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

  15. Advanced dry head-end reprocessing of light water reactor spent nuclear fuel

    DOE Patents [OSTI]

    Collins, Emory D; Delcul, Guillermo D; Hunt, Rodney D; Johnson, Jared A; Spencer, Barry B

    2013-11-05

    A method for reprocessing spent nuclear fuel from a light water reactor includes the step of reacting spent nuclear fuel in a voloxidation vessel with an oxidizing gas having nitrogen dioxide and oxygen for a period sufficient to generate a solid oxidation product of the spent nuclear fuel. The reacting step includes the step of reacting, in a first zone of the voloxidation vessel, spent nuclear fuel with the oxidizing gas at a temperature ranging from 200-450.degree. C. to form an oxidized reaction product, and regenerating nitrogen dioxide, in a second zone of the voloxidation vessel, by reacting oxidizing gas comprising nitrogen monoxide and oxygen at a temperature ranging from 0-80.degree. C. The first zone and the second zone can be separate. A voloxidation system is also disclosed.

  16. Electrochemical cell apparatus having axially distributed entry of a fuel-spent fuel mixture transverse to the cell lengths

    DOE Patents [OSTI]

    Reichner, Philip (Plum Borough, PA); Dollard, Walter J. (Churchill Borough, PA)

    1991-01-01

    An electrochemical apparatus (10) is made having a generator section (22) containing axially elongated electrochemical cells (16), a fresh gaseous feed fuel inlet (28), a gaseous feed oxidant inlet (30), and at least one gaseous spent fuel exit channel (46), where the spent fuel exit channel (46) passes from the generator chamber (22) to combine with the fresh feed fuel inlet (28) at a mixing apparatus (50), reformable fuel mixture channel (52) passes through the length of the generator chamber (22) and connects with the mixing apparatus (50), that channel containing entry ports (54) within the generator chamber (22), where the axis of the ports is transverse to the fuel electrode surfaces (18), where a catalytic reforming material is distributed near the reformable fuel mixture entry ports (54).

  17. Spent nuclear fuel discharges from US reactors 1993

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    The Energy Information Administration (EIA) of the U.S. Department of Energy (DOE) administers the Nuclear Fuel Data Survey, Form RW-859. This form is used to collect data on fuel assemblies irradiated at commercial nuclear reactors operating in the United States, and the current inventories and storage capacities of those reactors. These data are important to the design and operation of the equipment and facilities that DOE will use for the future acceptance, transportation, and disposal of spent fuels. The data collected and presented identifies trends in burnup, enrichment, and spent nuclear fuel discharged form commercial light-water reactor as of December 31, 1993. The document covers not only spent nuclear fuel discharges; but also site capacities and inventories; canisters and nonfuel components; and assembly type characteristics.

  18. Recycling of nuclear spent fuel with AIROX processing

    SciTech Connect (OSTI)

    Majumdar, D.; Jahshan, S.N.; Allison, C.M.; Kuan, P.; Thomas, T.R.

    1992-12-01

    This report examines the concept of recycling light water reactor (LWR) fuel through use of a dry-processing technique known as the AIROX (Atomics International Reduction Oxidation) process. In this concept, the volatiles and the cladding from spent LWR fuel are separated from the fuel by the AIROX process. The fuel is then reenriched and made into new fuel pins with new cladding. The feasibility of the concept is studied from a technical and high level waste minimization perspective.

  19. Impacts of a high-burnup spent fuel on a geological disposal system design

    SciTech Connect (OSTI)

    Cho, D.K.; Lee, Y.; Lee, J.Y.; Choi, H.J.; Choi, J.W. [Korea Atomic Energy Research Institute, Yuseong-gu, Daejeon-city (Korea, Republic of)

    2007-07-01

    The influence of a burnup increase of a spent nuclear fuel on a deep geological disposal system was evaluated in this study. First, the impact of a burnup increase on each aspect related to thermal and nuclear safety concerns was quantified. And then, the tunnel length, excavation volume, and the raw materials for a cast insert, copper, bentonite, and backfill needed to constitute a disposal system were comprehensively analyzed based on the spent fuel inventory to generate 1 Terawatt-year (TWa), to establish the overall effects and consequences on a geological disposal. As a result, impact of a burnup increase on the criticality safety and radiation shielding was shown to be negligible. The disposal area, however, is considerably affected because of a higher thermal load. And, it is reasonable to use a canister such as the Korean Reference Disposal Canister (KDC-1) containing 4 spent fuels up to 50 GWD/MtU, and to use a canister containing 3 spent fuels beyond 50 GWD/MtU. Although a considerable increased, 33 % in the tunnel length and 30 % in the excavation volume, was observed as the burnup increases from 50 to 60 GWD/MtU, because a decrease in the canister needs can offset an increase in the excavation volume, it can be concluded that a burnup increase of a spent fuel is not a critical concern for a geological disposal of a spent fuel. (authors)

  20. Separator assembly for use in spent nuclear fuel shipping cask

    DOE Patents [OSTI]

    Bucholz, James A. (Oak Ridge, TN)

    1983-01-01

    A separator assembly for use in a spent nuclear fuel shipping cask has a honeycomb-type wall structure defining parallel cavities for holding nuclear fuel assemblies. Tubes formed of an effective neutron-absorbing material are embedded in the wall structure around each of the cavities and provide neutron flux traps when filled with water.

  1. Shippingport Spent Fuel Canister (SSFC) Design Report Project W-518

    SciTech Connect (OSTI)

    JOHNSON, D.M.

    2000-01-27

    The SSFC Design Report Describes A spent fuel canister for Shippingport Core 2 blanket fuel assemblies. The design of the SSFC is a minor modification of the MCO. The modification is limited to the Shield Plug which remains unchanged with regard to interfaces with the canister shell. The performance characteristics remain those for the MCO, which bounds the payload of the SSFC.

  2. The burnup dependence of light water reactor spent fuel oxidation

    SciTech Connect (OSTI)

    Hanson, B.D.

    1998-07-01

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO{sub 2} is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO{sub 2} to higher oxides. The oxidation of UO{sub 2} has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO{sub 2} oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO{sub 2} to UO{sub 2.4} was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO{sub 2.4} to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO{sub 2} oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO{sub 2} and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies associated with spent fuel oxidation (Section 5).

  3. Mission Need Statement: Idaho Spent Fuel Facility Project

    SciTech Connect (OSTI)

    Barbara Beller

    2007-09-01

    Approval is requested based on the information in this Mission Need Statement for The Department of Energy, Idaho Operations Office (DOE-ID) to develop a project in support of the mission established by the Office of Environmental Management to "complete the safe cleanup of the environmental legacy brought about from five decades of nuclear weapons development and government-sponsored nuclear energy research". DOE-ID requests approval to develop the Idaho Spent Fuel Facility Project that is required to implement the Department of Energy's decision for final disposition of spent nuclear fuel in the Geologic Repository at Yucca Mountain. The capability that is required to prepare Spent Nuclear Fuel for transportation and disposal outside the State of Idaho includes characterization, conditioning, packaging, onsite interim storage, and shipping cask loading to complete shipments by January 1,2035. These capabilities do not currently exist in Idaho.

  4. Status of Proposed Repository for Latin-American Spent Fuel

    SciTech Connect (OSTI)

    Ferrada, J.J.

    2004-10-04

    This report compiles preliminary information that supports the premise that a repository is needed in Latin America and analyzes the nuclear situation (mainly in Argentina and Brazil) in terms of nuclear capabilities, inventories, and regional spent-fuel repositories. The report is based on several sources and summarizes (1) the nuclear capabilities in Latin America and establishes the framework for the need of a permanent repository, (2) the International Atomic Energy Agency (IAEA) approach for a regional spent-fuel repository and describes the support that international institutions are lending to this issue, (3) the current situation in Argentina in order to analyze the Argentinean willingness to find a location for a deep geological repository, and (4) the issues involved in selecting a location for the repository and identifies a potential location. This report then draws conclusions based on an analysis of this information. The focus of this report is mainly on spent fuel and does not elaborate on other radiological waste sources.

  5. Systems for the Intermodal Routing of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Peterson, Steven K; Liu, Cheng

    2015-01-01

    The safe and secure movement of spent nuclear fuel from shutdown and active reactor facilities to intermediate or long term storage sites may, in some instances, require the use of several modes of transportation to accomplish the move. To that end, a fully operable multi-modal routing system is being developed within Oak Ridge National Laboratory s (ORNL) WebTRAGIS (Transportation Routing Analysis Geographic Information System). This study aims to provide an overview of multi-modal routing, the existing state of the TRAGIS networks, the source data needs, and the requirements for developing structural relationships between various modes to create a suitable system for modeling the transport of spent nuclear fuel via a multimodal network. Modern transportation systems are comprised of interconnected, yet separate, modal networks. Efficient transportation networks rely upon the smooth transfer of cargoes at junction points that serve as connectors between modes. A key logistical impediment to the shipment of spent nuclear fuel is the absence of identified or designated transfer locations between transport modes. Understanding the potential network impacts on intermodal transportation of spent nuclear fuel is vital for planning transportation routes from origin to destination. By identifying key locations where modes intersect, routing decisions can be made to prioritize cost savings, optimize transport times and minimize potential risks to the population and environment. In order to facilitate such a process, ORNL began the development of a base intermodal network and associated routing code. The network was developed using previous intermodal networks and information from publicly available data sources to construct a database of potential intermodal transfer locations with likely capability to handle spent nuclear fuel casks. The coding development focused on modifying the existing WebTRAGIS routing code to accommodate intermodal transfers and the selection of prioritization constraints and modifiers to determine route selection. The limitations of the current model and future directions for development are discussed, including the current state of information on possible intermodal transfer locations for spent fuel.

  6. NUHOMS modular spent-fuel storage system: Performance testing

    SciTech Connect (OSTI)

    Strope, L.A.; McKinnon, M.A. ); Dyksterhouse, D.J.; McLean, J.C. )

    1990-09-01

    This report documents the results of a heat transfer and shielding performance evaluation of the NUTECH HOrizontal MOdular Storage (NUHOMS{reg sign}) System utilized by the Carolina Power and Light Co. (CP L) in an Independent Spent Fuel Storage Installation (ISFSI) licensed by the US Nuclear Regulatory Commission (NRC). The ISFSI is located at CP L's H. B. Robinson Nuclear Plant (HBR) near Hartsville, South Carolina. The demonstration included testing of three modules, first with electric heaters and then with spent fuel. The results indicated that the system was conservatively designed, with all heat transfer and shielding design criteria easily met. 5 refs., 45 figs., 9 tabs.

  7. Spent fuel dissolution studies FY 1991 to 1994

    SciTech Connect (OSTI)

    Gray, W.J.; Wilson, C.N.

    1995-12-01

    Dissolution and transport as a result of groundwater flow are generally accepted as the primary mechanisms by which radionuclides from spent fuel placed in a geologic repository could be released to the biosphere. To help provide a source term for performance assessment calculations, dissolution studies on spent fuel and unirradiated uranium oxides have been conducted over the past few years at Pacific Northwest National Laboratory (PNNL) in support of the Yucca Mountain Site Characterization Project. This report describes work for fiscal years 1991 through 1994. The objectives of these studies and the associated conclusions, which were based on the limited number of tests conducted so far, are described in the following subsections.

  8. Hanford`s spent nuclear fuel retrieval: an agressive agenda

    SciTech Connect (OSTI)

    Shen, E.J., Westinghouse Hanford

    1996-12-06

    Starting December 1997, spent nuclear fuel that has been stored in the K Reactor Fuel Storage Basins will be retrieved over a two year period and repackaged for long term dry storage. The aging and sometimes corroding fuel elements will be recovered and processed using log handled tools and teleoperated manipulator technology. The U.S. Department of Energy (DOE) is committed to this urgent schedule because of the environmental threats to the groundwater and nearby the Columbia River.

  9. Spent Fuel Transportation Risk Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo.Hydrogen4EnergySolidof2 SpecialSpent Fuel Transportation Risk

  10. Air Shipment of Spent Nuclear Fuel from Romania to Russia

    SciTech Connect (OSTI)

    Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

    2010-10-01

    Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

  11. Quality assurance implementation plan for spent nuclear fuel characterization

    SciTech Connect (OSTI)

    Horhota, M.J.; Lawrence, L.A.

    1997-07-10

    A plan was prepared to implement the Quality Assurance requirements of the Office of Civilian Radioactive Waste Management RW-0333P to the Spent Nuclear Fuel Characterization activities. The plan was based on an evaluation of the current characterization activities against the RW-0333P requirements.

  12. Pinhole Breaches in Spent Fuel Containers: Some Modeling Considerations

    SciTech Connect (OSTI)

    Casella, Andrew M.; Loyalka, Sudarsham K.; Hanson, Brady D.

    2006-06-04

    This paper replaces PNNL-SA-48024 and incorporates the ANS reviewer's comments, including the change in the title. Numerical methods to solve the equations for gas diffusion through very small breaches in spent fuel containers are presented and compared with previous literature results.

  13. Spent nuclear fuel project design basis capacity study

    SciTech Connect (OSTI)

    Cleveland, K.J.

    1996-09-09

    A parametric study of the Spent Nuclear Fuel Project system capacity is presented. The study was completed using a commercially available software package to develop a summary level model of the major project systems. Alternative configurations, sub-system cycle times, and operating scenarios were tested to identify their impact on total project duration and equipment requirements.

  14. Effects of Burnable Absorbers on PWR Spent Nuclear Fuel

    SciTech Connect (OSTI)

    P.M. O'Leary; Dr. M.L. Pitts

    2000-08-21

    Burnup credit is an ongoing issue in designing and licensing transportation and storage casks for spent nuclear fuel (SNF). To address this issue, in July 1999, the U.S. Nuclear Regulatory Commission (NRC), Spent Fuel Project Office, issued Interim Staff Guidance-8 (ISG-8), Revision 1 allowing limited burnup credit for pressurized water reactor (PWR) spent nuclear fuel (SNF) to be used in transport and storage casks. However, one of the key limitations for a licensing basis analysis as stipulated in ISG-8, Revision 1 is that ''burnup credit is restricted to intact fuel assemblies that have not used burnable absorbers''. Because many PWR fuel designs have incorporated burnable-absorber rods for more than twenty years, this restriction places an unnecessary burden on the commercial nuclear power industry. This paper summarizes the effects of in-reactor irradiation on the isotopic inventory of PWR fuels containing different types of integral burnable absorbers (BAs). The work presented is illustrative and intended to represent typical magnitudes of the reactivity effects from depleting PWR fuel with different types of burnable absorbers.

  15. The EU Approach for Responsible and Safe Management of Spent Fuel and Radioactive Waste - 12118

    SciTech Connect (OSTI)

    Blohm-Hieber, Ute; Necheva, Christina [European Commission, Directorate-General for Energy, Luxembourg L-2920 (Luxembourg)

    2012-07-01

    In July 2011 legislation on responsible and safe management of spent fuel and radioactive waste was adopted in the European Union (EU). It aims at ensuring a high level of safety, avoiding undue burdens on future generations and enhancing transparency. EU Member States are responsible for the management of their spent fuel and/or radioactive waste. Each Member State remains free to define its fuel cycle policy. The spent fuel can be regarded either as a valuable resource that may be reprocessed or as radioactive waste that is destined for direct disposal. Whatever option is chosen, the disposal of high level waste, separated at reprocessing, or of spent fuel regarded as waste should be considered. The storage of radioactive waste, including long-term storage, is an interim solution, but not an alternative to disposal. To this end, each Member State has to establish, maintain and implement national policy, framework and programme for management of spent fuel and/or radioactive waste in the long term. Member States will invite international peer reviews to ensure that high safety standards are achieved. The EU approach is anchored in internationally endorsed principles and requirements of the IAEA safety standards and the Joint Convention and in this context makes them legally binding and enforceable in the EU. The EU approach of regulating the management of spent fuel and radioactive waste is anchored in the competence of the national regulatory authorities and in the internationally endorsed principles and requirements of the IAEA Safety Standards and the Joint Convention. Member States have to report to the Commission on the implementation of Directive 2011/70/Euratom for the first time by 23 August 2015, and every 3 years thereafter, taking advantage of the review and reporting under the Joint Convention. On the basis of the Member States' reports, the Commission will submit to the European Parliament and the Council a report on progress made and an inventory of radioactive waste and spent fuel present in the EU territory and the future prospects. Directive 2011/70/Euratom is a logical next step after the Council Directive 2009/71/Euratom on the nuclear safety of nuclear installations. The EU is the first major regional actor providing a binding legal framework on nuclear safety and on responsible and safe management of spent fuel and radioactive waste, and thus is a real model to progress spent fuel and waste management in a safe and responsible manner. (authors)

  16. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    SciTech Connect (OSTI)

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0{sub 2}) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations.

  17. Irradiation of Microbes from Spent Nuclear Fuel Storage Pool Environments

    SciTech Connect (OSTI)

    Breckenridge, C.R.; Watkins, C.S.; Bruhn, D.F.; Roberto, F.F.; Tsang, M.N.; Pinhero, P.J.; Brey, R.F.; Wright, R.N.; Windes, W.F.

    1999-09-03

    Microbes have been isolated and identified from spent nuclear fuel storage pools at the Idaho National Engineering and Environmental Laboratory (INEEL). Included among these are Corynebacterium aquaticum, Pseudomonas putida, Comamonas acidovorans, Gluconobacter cerinus, Micrococcus diversus, Rhodococcus rhodochrous, and two strains of sulfate-reducing bacteria (SRB). We examined the sensitivity of these microbes to a variety of total exposures of radiation generated by a 6-MeV linear accelerator (LINAC). The advantage of using a LINAC is that it provides a relatively quick screen of radiation tolerance. In the first set of experiments, we exposed each of the aforementioned microbes along with four additional microbes, pseudomonas aeruginosa, Micrococcus luteus, Escherchia coli, and Deinococcus radiodurans to exposures of 5 x 10{sup 3} and 6 x 10{sup 4} rad. All microbial specimens withstood the lower exposure with little or no reduction in cell population. Upon exposing the microbes to the larger dose of 6 x 10{sup 4} rad, we observed two distinct groupings: microbes that demonstrate resistance to radiation, and microbes that display intolerance through a dramatic reduction from their initial population. Microbes in the radiation tolerant grouping were exposed to 1.1 x 10{sup 5} rad to examine the extent of their resistance. We observe a correlation between radiation resistance and gram stain. The gram-positive species we examined seem to demonstrate a greater radiation resistance.

  18. A NOVEL APPROACH TO SPENT FUEL POOL DECOMMISSIONING

    SciTech Connect (OSTI)

    R. L. Demmer

    2011-04-01

    The Idaho National Laboratory (INL) has been at the forefront of developing methods to reduce the cost and schedule of deactivating spent fuel pools (SFP). Several pools have been deactivated at the INL using an underwater approach with divers. These projects provided a basis for the INL cooperation with the Dresden Nuclear Power Station Unit 1 SFP (Exelon Generation Company) deactivation. It represents the first time that a commercial nuclear power plant (NPP) SFP was decommissioned using this underwater coating process. This approach has advantages in many aspects, particularly in reducing airborne contamination and allowing safer, more cost effective deactivation. The INL pioneered underwater coating process was used to decommission three SFPs with a total combined pool volume of over 900,000 gallons. INL provided engineering support and shared project plans to successfully initiate the Dresden project. This report outlines the steps taken by INL and Exelon to decommission SFPs using the underwater coating process. The rationale used to select the underwater coating process and the advantages and disadvantages are described. Special circumstances are also discussed, such as the use of a remotely-operated underwater vehicle to visually and radiologically map the pool areas that were not readily accessible. A larger project, the INTEC-603 SFP in-situ (grouting) deactivation, is reviewed. Several specific areas where special equipment was employed are discussed and a Lessons Learned evaluation is included.

  19. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (1.4 kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.

    1981-09-01

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.4 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a stainless steel canister representative of actual fuel canisters, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel near-surface drywell tests being conducted at E-MAD, the spent fuel deep geologic storage test being conducted in Climax granite on the Nevada Test Site, and for five constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  20. Annual report, FY 1979 Spent fuel and fuel pool component integrity.

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Bailey, W.J.; Schreiber, R.E.; Kustas, F.M.

    1980-05-01

    International meetings under the BEFAST program and under INFCE Working Group No. 6 during 1978 and 1979 continue to indicate that no cases of fuel cladding degradation have developed on pool-stored fuel from water reactors. A section from a spent fuel rack stand, exposed for 1.5 y in the Yankee Rowe (PWR) pool had 0.001- to 0.003-in.-deep (25- to 75-..mu..m) intergranular corrosion in weld heat-affected zones but no evidence of stress corrosion cracking. A section of a 304 stainless steel spent fuel storage rack exposed 6.67 y in the Point Beach reactor (PWR) spent fuel pool showed no significant corrosion. A section of 304 stainless steel 8-in.-dia pipe from the Three Mile Island No. 1 (PWR) spent fuel pool heat exchanger plumbing developed a through-wall crack. The crack was intergranular, initiating from the inside surface in a weld heat-affected zone. The zone where the crack occurred was severely sensitized during field welding. The Kraftwerk Union (Erlangen, GFR) disassembled a stainless-steel fuel-handling machine that operated for 12 y in a PWR (boric acid) spent fuel pool. There was no evidence of deterioration, and the fuel-handling machine was reassembled for further use. A spent fuel pool at a Swedish PWR was decontaminated. The procedure is outlined in this report.

  1. An overview of spent-fuel processing in the global nuclear-energy partnership

    SciTech Connect (OSTI)

    Laidler, James J.

    2008-07-01

    Spent nuclear fuel is being generated at a prodigious rate in the U.S. and in other countries with robust nuclear-power-generation infrastructures, and the annual rate of production is likely to triple by 2050. The U.S. is engaged in the development of commercial light-water-reactor spent- fuel-treatment processes that are intended to meet certain rigorous criteria for separations efficiency, waste management benefits, and economy of industrial-scale operations. Aqueous solvent-extraction processes are the technology of choice, and a variety of process options have been designed and tested for technical feasibility. In general, the processes involve substantial partitioning of the constituents of spent nuclear fuel, so that effective use can be made of the recovered unburned uranium and other fissile isotopes that can be recycled as fuel for contemporary or advanced reactors. Those constituents that are destined for disposal as waste are also separated in order that they can be placed into durable waste forms that are expressly tailored for a particular disposition pathway. The U.S. is also working with international partners as part of the Global Nuclear Energy Partnership (GNEP) to develop a consistent worldwide approach to the treatment of spent fuel and the disposition of wastes arising from such processing. (authors)

  2. Spent fuel dry storage technology development: fuel temperature measurements under imposed dry storage conditions (I kW PWR spent fuel assembly)

    SciTech Connect (OSTI)

    Unterzuber, R.; Wright, J.B.

    1980-09-01

    A spent fuel assembly temperature test under imposed dry storage conditions was conducted at the Engine Maintenance Assembly and Disassembly (E-MAD) facility on the Nevada Test Site in support of spent fuel dry storage technology development. This document presents the test data and results obtained from an approximately 1.0 kW decay heat level PWR spent fuel assembly. A spent fuel test apparatus was designed to utilize a representative stainless steel spent fuel canister, a canister lid containing internal temperature instrumentation to measure fuel cladding temperatures, and a carbon steel liner that encloses the canister and lid. Electrical heaters along the liner length, on the lid, and below the canister are used to impose dry storage canister temperature profiles. Temperature instrumentation is provided on the liner and canister. The liner and canister are supported by a test stand in one of the large hot cells (West Process Cell) inside E-MAD. Fuel temperature measurements have been performed using imposed canister temperature profiles from the electrically heated and spent fuel drywell tests being conducted at E-MAD as well as for four constant canister temperature profiles, each with a vacuum, helium and air backfill. Computer models have been utilized in conjunction with the test to predict the thermal response of the fuel cladding. Computer predictions are presented, and they show good agreement with the test data.

  3. Nuclear Waste Imaging and Spent Fuel Verification by Muon Tomography

    E-Print Network [OSTI]

    Jonkmans, G; Jewett, C; Thompson, M

    2012-01-01

    This paper explores the use of cosmic ray muons to image the contents of shielded containers and detect high-Z special nuclear materials inside them. Cosmic ray muons are a naturally occurring form of radiation, are highly penetrating and exhibit large scattering angles on high Z materials. Specifically, we investigated how radiographic and tomographic techniques can be effective for non-invasive nuclear waste characterization and for nuclear material accountancy of spent fuel inside dry storage containers. We show that the tracking of individual muons, as they enter and exit a structure, can potentially improve the accuracy and availability of data on nuclear waste and the contents of Dry Storage Containers (DSC) used for spent fuel storage at CANDU plants. This could be achieved in near real time, with the potential for unattended and remotely monitored operations. We show that the expected sensitivity, in the case of the DSC, exceeds the IAEA detection target for nuclear material accountancy.

  4. Molten tin reprocessing of spent nuclear fuel elements

    DOE Patents [OSTI]

    Heckman, Richard A. (Castro Valley, CA)

    1983-01-01

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support the liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  5. EA-0912: Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts of a proposal to accept 409 spent fuel elements from eight foreign research reactors in seven European countries.  The spent fuel would be shipped across...

  6. What to Expect When Readying to Move Spent Nuclear Fuel from...

    Energy Savers [EERE]

    What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power Plants What to Expect When Readying to Move Spent Nuclear Fuel from Commercial Nuclear Power...

  7. Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY12 Status...

    Office of Scientific and Technical Information (OSTI)

    Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY12 Status Report Citation Details In-Document Search Title: Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY12 Status...

  8. Naval Spent Nuclear Fuel disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Naval Spent Nuclear Fuel Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers/waste packages are loaded and sealed in the surface waste handling facilities, transferred underground through the access drifts using a rail mounted transporter, and emplaced in emplacement drifts. The Naval Spent Nuclear Fuel Disposal Container System provides long term confinement of the naval spent nuclear fuel (SNF) placed within the disposal containers, and withstands the loading, transfer, emplacement, and retrieval operations. The Naval Spent Nuclear Fuel Disposal Container System provides containment of waste for a designated period of time and limits radionuclide release thereafter. The waste package maintains the waste in a designated configuration, withstands maximum credible handling and rockfall loads, limits the waste form temperature after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Each naval SNF disposal container will hold a single naval SNF canister. There will be approximately 300 naval SNF canisters, composed of long and short canisters. The disposal container will include outer and inner cylinder walls and lids. An exterior label will provide a means by which to identify a disposal container and its contents. Different materials will be selected for the waste package inner and outer cylinders. The two metal cylinders, in combination with the Emplacement Drift System, drip shield, and the natural barrier will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel while the outer cylinder and outer cylinder lids will be made of high-nickel alloy.

  9. Method For Processing Spent (Trn,Zr)N Fuel

    DOE Patents [OSTI]

    Miller, William E. (Naperville, IL); Richmann, Michael K. (Woodridge, IL)

    2004-07-27

    A new process for recycling spent nuclear fuels, in particular, mixed nitrides of transuranic elements and zirconium. The process consists of two electrorefiner cells in series configuration. A transuranic element such as plutonium is reduced at the cathode in the first cell, zirconium at the cathode in the second cell, and nitrogen-15 is released and captured for reuse to make transuranic and zirconium nitrides.

  10. Oxidative alteration of spent fuel in a silica-rich environment...

    Office of Scientific and Technical Information (OSTI)

    NUCLEAR FACILITIES; DISSOLUTION; HYDRATES; PERFORMANCE; SILICATES; SPENT FUELS; THERMODYNAMICS; URANINITES; URANIUM CARBONATES; URANIUM DEPOSITS; URANIUM ORES; URANYL SILICATES;...

  11. Report on interim storage of spent nuclear fuel. Midwestern high-level radioactive waste transportation project

    SciTech Connect (OSTI)

    Not Available

    1993-04-01

    The report on interim storage of spent nuclear fuel discusses the technical, regulatory, and economic aspects of spent-fuel storage at nuclear reactors. The report is intended to provide legislators state officials and citizens in the Midwest with information on spent-fuel inventories, current and projected additional storage requirements, licensing, storage technologies, and actions taken by various utilities in the Midwest to augment their capacity to store spent nuclear fuel on site.

  12. Electrometallurgical treatment of oxide spent fuel - engineering-scale development.

    SciTech Connect (OSTI)

    Karell, E. J.

    1998-04-22

    Argonne National Laboratory (ANL) has developed the electrometallurgical treatment process for conditioning various Department of Energy (DOE) spent fuel types for long-term storage or disposal. This process uses electrorefining to separate the constituents of spent fuel into three product streams: metallic uranium, a metal waste form containing the cladding and noble metal fission products, and a ceramic waste form containing the transuranics, and rare earth, alkali, and alkaline earth fission products. While metallic fuels can be directly introduced into the electrorefiner, the actinide components of oxide fuels must first be reduced to the metallic form. The Chemical Technology Division of AFT has developed a process to reduce the actinide oxides that uses lithium at 650 C in the presence of molten LiCl, yielding the actinide metals and Li{sub 2}O. A significant amount of work has already been accomplished to investigate the basic chemistry of the lithium reduction process and to demonstrate its applicability to the treatment of light-water reactor- (LWR-) type spent fuel. The success of this work has led to conceptual plans to construct a pilot-scale oxide reduction facility at ANL's Idaho site. In support of the design effort, a series of laboratory- and engineering-scale experiments is being conducted using simulated fuel. These experiments have focused on the engineering issues associated with scaling-up the process and proving compatibility between the reduction and electrorefining steps. Specific areas of investigation included reduction reaction kinetics, evaluation of various fuel basket designs, and issues related to electrorefining the reduced product. This paper summarizes the results of these experiments and outlines plans for future work.

  13. Comparative analysis of LWR and FBR spent fuels for nuclear forensics evaluation

    SciTech Connect (OSTI)

    Permana, Sidik; Suzuki, Mitsutoshi; Su'ud, Zaki

    2012-06-06

    Some interesting issues are attributed to nuclide compositions of spent fuels from thermal reactors as well as fast reactors such as a potential to reuse as recycled fuel, and a possible capability to be manage as a fuel for destructive devices. In addition, analysis on nuclear forensics which is related to spent fuel compositions becomes one of the interesting topics to evaluate the origin and the composition of spent fuels from the spent fuel foot-prints. Spent fuel compositions of different fuel types give some typical spent fuel foot prints and can be estimated the origin of source of those spent fuel compositions. Some technics or methods have been developing based on some science and technological capability including experimental and modeling or theoretical aspects of analyses. Some foot-print of nuclear forensics will identify the typical information of spent fuel compositions such as enrichment information, burnup or irradiation time, reactor types as well as the cooling time which is related to the age of spent fuels. This paper intends to evaluate the typical spent fuel compositions of light water (LWR) and fast breeder reactors (FBR) from the view point of some foot prints of nuclear forensics. An established depletion code of ORIGEN is adopted to analyze LWR spent fuel (SF) for several burnup constants and decay times. For analyzing some spent fuel compositions of FBR, some coupling codes such as SLAROM code, JOINT and CITATION codes including JFS-3-J-3.2R as nuclear data library have been adopted. Enriched U-235 fuel composition of oxide type is used for fresh fuel of LWR and a mixed oxide fuel (MOX) for FBR fresh fuel. Those MOX fuels of FBR come from the spent fuels of LWR. Some typical spent fuels from both LWR and FBR will be compared to distinguish some typical foot-prints of SF based on nuclear forensic analysis.

  14. Neutron Generators for Spent Fuel Assay

    E-Print Network [OSTI]

    Ludewigt, Bernhard A

    2011-01-01

    likely be employed in a reprocessing facility. For such ain the context of a reprocessing facility. The EADS Sodern

  15. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques NGSI Research Overview and Update on NDA Techniques

    E-Print Network [OSTI]

    A., V. Mozin, S.J. Tobin, L.W. Cambell, J.R. Cheatham, C.R. Freeman, C.J. Gesh,

    2012-01-01

    Determining Plutonium Mass in Spent Fuel with Non-CN-184/137 Determining Plutonium Mass in Spent Fuel withthe Direct Measurement of Plutonium in Spent LWR Fuels by

  16. Method for reprocessing and separating spent nuclear fuels

    DOE Patents [OSTI]

    Krikorian, Oscar H. (Danville, CA); Grens, John Z. (Livermore, CA); Parrish, Sr., William H. (Walnut Creek, CA)

    1983-01-01

    Spent nuclear fuels, including actinide fuels, volatile and non-volatile fission products, are reprocessed and separated in a molten metal solvent housed in a separation vessel made of a carbon-containing material. A first catalyst, which promotes the solubility and permeability of carbon in the metal solvent, is included. By increasing the solubility and permeability of the carbon in the solvent, the rate at which actinide oxides are reduced (carbothermic reduction) is greatly increased. A second catalyst, included to increase the affinity for nitrogen in the metal solvent, is added to increase the rate at which actinide nitrides form after carbothermic reduction is complete.

  17. Method for reprocessing and separating spent nuclear fuels. [Patent application

    DOE Patents [OSTI]

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.

    1982-01-19

    Spent nuclear fuels, including actinide fuels, volatile and nonvolatile fission products, are reprocessed and separated in a molten metal solvent housed in a separation vessel made of a carbon-containing material. A first catalyst, which promotes the solubility and permeability of carbon in the metal solvent, is included. By increasing the solubility and permeability of the carbon in the solvent, the rate at which actinide oxides are reduced (carbothermic reduction) is greatly increased. A second catalyst, included to increase the affinity for nitrogen in the metal solvent, is added to increase the rate at which actinide nitrides form after carbothermic reduction is complete.

  18. A method for determining the spent-fuel contribution to transport cask containment requirements

    SciTech Connect (OSTI)

    Sanders, T.L.; Seager, K.D.; Rashid, Y.R.; Barrett, P.R.; Malinauskas, A.P.; Einziger, R.E.; Jordan, H.; Duffey, T.A.; Sutherland, S.H.; Reardon, P.C.

    1992-11-01

    This report examines containment requirements for spent-fuel transport containers that are transported under normal and hypothetical accident conditions. A methodology is described that estimates the probability of rod failure and the quantity of radioactive material released from breached rods. This methodology characterizes the dynamic environment of the cask and its contents and deterministically models the peak stresses that are induced in spent-fuel cladding by the mechanical and thermal dynamic environments. The peak stresses are evaluated in relation to probabilistic failure criteria for generated or preexisting ductile tearing and material fractures at cracks partially through the wall in fuel rods. Activity concentrations in the cask cavity are predicted from estimates of the fraction of gases, volatiles, and fuel fines that are released when the rod cladding is breached. Containment requirements based on the source term are calculated in terms of maximum permissible volumetric leak rates from the cask. Calculations are included for representative cask designs.

  19. APPLICATIONS OF CURRENT TECHNOLOGY FOR CONTINUOUS MONITORING OF SPENT FUEL

    SciTech Connect (OSTI)

    Drayer, R.

    2013-06-09

    Advancements in technology have opened many opportunities to improve upon the current infrastructure surrounding the nuclear fuel cycle. Embedded devices, very small sensors, and wireless technology can be applied to Security, Safety, and Nonproliferation of Spent Nuclear Fuel. Security, separate of current video monitoring systems, can be improved by integrating current wireless technology with a variety of sensors including motion detection, altimeter, accelerometer, and a tagging system. By continually monitoring these sensors, thresholds can be set to sense deviations from nominal values. Then alarms or notifications can be activated as needed. Safety can be improved in several ways. First, human exposure to ionizing radiation can be reduced by using a wireless sensor package on each spent fuel cask to monitor radiation, temperature, humidity, etc. Since the sensor data is monitored remotely operator stay-time is decreased and distance from the spent fuel increased, so the overall radiation exposure is reduced as compared to visual inspections. The second improvement is the ability to monitor continuously rather than periodically. If changes occur to the material, alarm thresholds could be set and notifications made to provide advanced notice of negative data trends. These sensor packages could also record data to be used for scientific evaluation and studies to improve transportation and storage safety. Nonproliferation can be improved for spent fuel transportation and storage by designing an integrated tag that uses current infrastructure for reporting and in an event; tracking can be accomplished using the Iridium satellite system. This technology is similar to GPS but with higher signal strength and penetration power, but lower accuracy. A sensor package can integrate all or some of the above depending on the transportation and storage requirements and regulations. A sensor package can be developed using off the shelf technology and applying it to each specific need. There are products on the market for smart meters, industrial lighting control and home automation that can be applied to the Back End Fuel Cycle. With a little integration and innovation a cost effective solution is achievable.

  20. A Second Look at Neutron Resonance Transmission Analysis as a Spent Fuel NDA Technique

    SciTech Connect (OSTI)

    James W .Sterbentz; David L. Chichester

    2011-07-01

    Many different nondestructive analysis techniques are currently being investigated as a part of the United States Department of Energy's Next Generation Safeguards Initiative (NGSI) seeking methods to quantify plutonium in spent fuel. Neutron Resonance Transmission Analysis (NRTA) is one of these techniques. Having first been explored in the mid-1970s for the analysis of individual spent-fuel pins a second look, using advanced simulation and modeling methods, is now underway to investigate the suitability of the NRTA technique for assaying complete spent nuclear fuel assemblies. The technique is similar to neutron time-of-flight methods used for cross-section determinations but operates over only the narrow 0.1-20 eV range where strong, distinguishable resonances exist for both the plutonium (239, 240, 241,242Pu) and uranium (235,236,238U) isotopes of interest in spent fuel. Additionally, in this energy range resonances exists for six important fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm) which provide additional information to support spent fuel plutonium assay determinations. Initial modeling shows excellent agreement with previously published experimental data for measurements of individual spent-fuel pins where plutonium assays were demonstrated to have a precision of 2-4%. Within the simulation and modeling analyses of this project scoping studies have explored fourteen different aspects of the technique including the neutron source, drift tube configurations, and gross neutron transmission as well as the impacts of fuel burn up, cooling time, and fission-product interferences. These results show that NRTA may be a very capable experimental technique for spent-fuel assay measurements. The results suggest sufficient transmission strength and signal differentiability is possible for assays through up to 8 pins. For an 8-pin assay (looking at an assembly diagonally), 64% of the pins in a typical 17 ? 17 array of a pressurized water reactor fuel assembly can be part of a complete transmission assay measurement with high precision. Analysis of rows with up to 12 pins may also be feasible but with diminished precision. Preliminary data analysis of an NRTA simulation has demonstrated the simplicity of the technique.

  1. COGEMA operating experience in the transportation of spent fuel, nuclear materials and radioactive waste

    SciTech Connect (OSTI)

    Bernard, H. [COGEMA, Velizy-Villacoublay (France)

    1993-12-31

    Were a spent fuel transportation accident to occur, no matter how insignificant, the public outcry could jeopardize both reprocessing operations and power plant operations for utilities that have elected to reprocess their spent fuel. Aware of this possibility, COGEMA has become deeply involved in spent fuel transportation to ensure that it is performed according to the highest standards of transportation safety. Spent fuel transportation is a vital link between the reactor site and the reprocessing plant. This paper gives an overview of COGEMA`s experience in the transportation of spent fuel.

  2. Fuel cell generator energy dissipator

    DOE Patents [OSTI]

    Veyo, Stephen Emery (Murrysville, PA); Dederer, Jeffrey Todd (Valencia, PA); Gordon, John Thomas (Ambridge, PA); Shockling, Larry Anthony (Pittsburgh, PA)

    2000-01-01

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a fuel cell generator when the electrical power output of the fuel cell generator is terminated. During a generator shut down condition, electrically resistive elements are automatically connected across the fuel cell generator terminals in order to draw current, thereby depleting the fuel

  3. Interface agreement for the management of FFTF Spent Nuclear Fuel

    SciTech Connect (OSTI)

    McCormack, R.L.

    1995-02-02

    The Hanford Site Spent Nuclear Fuel (SNF) Project was formed to manage the SNF at Hanford. The mission of the Fast Flux Test Facility (FFTF) Transition Project is to place the facility in a radiologically and industrially safe shutdown condition for turnover to the Environmental Restoration Contractor (ERC) for subsequent D&D. To satisfy both project missions, FFTF SNF must be removed from the FFTF and subsequently dispositioned. This documented provides the interface agreement between FFTF Transition Project and SNF Project for management of the FFTF SNF.

  4. Closure mechanism and method for spent nuclear fuel canisters

    DOE Patents [OSTI]

    Doman, Marvin J. (Monroeville, PA)

    2004-11-23

    A canister is provided for storing, transporting, and/or disposing of spent nuclear fuel. The canister includes a canister shell, a top shield plug disposed within the canister, and a leak-tight closure arrangement. The closure arrangement includes a shear ring which forms a containment boundary of the canister, and which is welded to the canister shell and top shield plug. An outer seal plate, forming an outer seal, is disposed above the shear ring and is welded to the shield plug and the canister.

  5. Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel

    SciTech Connect (OSTI)

    J. W. Sterbentz; D. L. Chichester

    2011-09-01

    This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620).

  6. AP1000{sup R} nuclear power plant safety overview for spent fuel cooling

    SciTech Connect (OSTI)

    Gorgemans, J.; Mulhollem, L.; Glavin, J.; Pfister, A.; Conway, L.; Schulz, T.; Oriani, L.; Cummins, E.; Winters, J. [Westinghouse Electric Company LLC, 1000 Westinghouse Drive, Cranberry Township, PA 16066 (United States)

    2012-07-01

    The AP1000{sup R} plant is an 1100-MWe class pressurized water reactor with passive safety features and extensive plant simplifications that enhance construction, operation, maintenance, safety and costs. The AP1000 design uses passive features to mitigate design basis accidents. The passive safety systems are designed to function without safety-grade support systems such as AC power, component cooling water, service water or HVAC. Furthermore, these passive features 'fail safe' during a non-LOCA event such that DC power and instrumentation are not required. The AP1000 also has simple, active, defense-in-depth systems to support normal plant operations. These active systems provide the first level of defense against more probable events and they provide investment protection, reduce the demands on the passive features and support the probabilistic risk assessment. The AP1000 passive safety approach allows the plant to achieve and maintain safe shutdown in case of an accident for 72 hours without operator action, meeting the expectations provided in the U.S. Utility Requirement Document and the European Utility Requirements for passive plants. Limited operator actions are required to maintain safe conditions in the spent fuel pool via passive means. In line with the AP1000 approach to safety described above, the AP1000 plant design features multiple, diverse lines of defense to ensure spent fuel cooling can be maintained for design-basis events and beyond design-basis accidents. During normal and abnormal conditions, defense-in-depth and other systems provide highly reliable spent fuel pool cooling. They rely on off-site AC power or the on-site standby diesel generators. For unlikely design basis events with an extended loss of AC power (i.e., station blackout) or loss of heat sink or both, spent fuel cooling can still be provided indefinitely: - Passive systems, requiring minimal or no operator actions, are sufficient for at least 72 hours under all possible pool heat load conditions. - After 3 days, several different means are provided to continue spent fuel cooling using installed plant equipment as well as off-site equipment with built-in connections. Even for beyond design basis accidents with postulated pool damage and multiple failures in the passive safety-related systems and in the defense-in-depth active systems, the AP1000 multiple spent fuel pool spray and fill systems provide additional lines of defense to prevent spent fuel damage. (authors)

  7. Spent Fuel and High-Level Radioactive Waste Transportation Report

    SciTech Connect (OSTI)

    Not Available

    1992-03-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by SSEB in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste Issues. In addition. this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  8. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages sew be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  9. Spent fuel and high-level radioactive waste transportation report

    SciTech Connect (OSTI)

    Not Available

    1990-11-01

    This publication is intended to provide its readers with an introduction to the issues surrounding the subject of transportation of spent nuclear fuel and high-level radioactive waste, especially as those issues impact the southern region of the United States. It was originally issued by the Southern States Energy Board (SSEB) in July 1987 as the Spent Nuclear Fuel and High-Level Radioactive Waste Transportation Primer, a document patterned on work performed by the Western Interstate Energy Board and designed as a ``comprehensive overview of the issues.`` This work differs from that earlier effort in that it is designed for the educated layman with little or no background in nuclear waste issues. In addition, this document is not a comprehensive examination of nuclear waste issues but should instead serve as a general introduction to the subject. Owing to changes in the nuclear waste management system, program activities by the US Department of Energy and other federal agencies and developing technologies, much of this information is dated quickly. While this report uses the most recent data available, readers should keep in mind that some of the material is subject to rapid change. SSEB plans periodic updates in the future to account for changes in the program. Replacement pages will be supplied to all parties in receipt of this publication provided they remain on the SSEB mailing list.

  10. Spent nuclear fuel recycling with plasma reduction and etching

    DOE Patents [OSTI]

    Kim, Yong Ho

    2012-06-05

    A method of extracting uranium from spent nuclear fuel (SNF) particles is disclosed. Spent nuclear fuel (SNF) (containing oxides of uranium, oxides of fission products (FP) and oxides of transuranic (TRU) elements (including plutonium)) are subjected to a hydrogen plasma and a fluorine plasma. The hydrogen plasma reduces the uranium and plutonium oxides from their oxide state. The fluorine plasma etches the SNF metals to form UF6 and PuF4. During subjection of the SNF particles to the fluorine plasma, the temperature is maintained in the range of 1200-2000 deg K to: a) allow any PuF6 (gas) that is formed to decompose back to PuF4 (solid), and b) to maintain stability of the UF6. Uranium (in the form of gaseous UF6) is easily extracted and separated from the plutonium (in the form of solid PuF4). The use of plasmas instead of high temperature reactors or flames mitigates the high temperature corrosive atmosphere and the production of PuF6 (as a final product). Use of plasmas provide faster reaction rates, greater control over the individual electron and ion temperatures, and allow the use of CF4 or NF3 as the fluorine sources instead of F2 or HF.

  11. A Non-Proliferating Fuel Cycle: No Enrichment, Reprocessing or Accessible Spent Fuel - 12375

    SciTech Connect (OSTI)

    Parker, Frank L. [Vanderbilt University (United States)

    2012-07-01

    Current fuel cycles offer a number of opportunities for access to plutonium, opportunities to create highly enriched uranium and access highly radioactive wastes to create nuclear weapons and 'dirty' bombs. The non-proliferating fuel cycle however eliminates or reduces such opportunities and access by eliminating the mining, milling and enrichment of uranium. The non-proliferating fuel cycle also reduces the production of plutonium per unit of energy created, eliminates reprocessing and the separation of plutonium from the spent fuel and the creation of a stream of high-level waste. It further simplifies the search for land based deep geologic repositories and interim storage sites for spent fuel in the USA by disposing of the spent fuel in deep sub-seabed sediments after storing the spent fuel at U.S. Navy Nuclear Shipyards that have the space and all of the necessary equipment and security already in place. The non-proliferating fuel cycle also reduces transportation risks by utilizing barges for the collection of spent fuel and transport to the Navy shipyards and specially designed ships to take the spent fuel to designated disposal sites at sea and to dispose of them there in deep sub-seabed sediments. Disposal in the sub-seabed sediments practically eliminates human intrusion. Potential disposal sites include Great Meteor East and Southern Nares Abyssal Plain. Such sites then could easily become international disposal sites since they occur in the open ocean. It also reduces the level of human exposure in case of failure because of the large physical and chemical dilution and the elimination of a major pathway to man-seawater is not potable. Of course, the recovery of uranium from sea water and the disposal of spent fuel in sub-seabed sediments must be proven on an industrial scale. All other technologies are already operating on an industrial scale. If externalities, such as reduced terrorist threats, environmental damage (including embedded emissions), long term care, reduced access to 'dirty' bomb materials, the social and political costs of siting new facilities and the psychological impact of no solution to the nuclear waste problem, were taken into account, the costs would be far lower than those of the present fuel cycle. (authors)

  12. Fuel dissipater for pressurized fuel cell generators

    DOE Patents [OSTI]

    Basel, Richard A.; King, John E.

    2003-11-04

    An apparatus and method are disclosed for eliminating the chemical energy of fuel remaining in a pressurized fuel cell generator (10) when the electrical power output of the fuel cell generator is terminated during transient operation, such as a shutdown; where, two electrically resistive elements (two of 28, 53, 54, 55) at least one of which is connected in parallel, in association with contactors (26, 57, 58, 59), a multi-point settable sensor relay (23) and a circuit breaker (24), are automatically connected across the fuel cell generator terminals (21, 22) at two or more contact points, in order to draw current, thereby depleting the fuel inventory in the generator.

  13. Nuclear power generation and fuel cycle report 1996

    SciTech Connect (OSTI)

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  14. Eddy Current Examination of Spent Nuclear Fuel Canister Closure Welds

    SciTech Connect (OSTI)

    Arthur D. Watkins; Dennis C. Kunerth; Timothy R. McJunkin

    2006-04-01

    The National Spent Nuclear Fuel Program (NSNFP) has developed standardized DOE SNF canisters for handling and interim storage of SNF at various DOE sites as well as SNF transport to and SNF handling and disposal at the repository. The final closure weld of the canister will be produced remotely in a hot cell after loading and must meet American Society of Mechanical Engineers (ASME) Section III, Division 3 code requirements thereby requiring volumetric and surface nondestructive evaluation to verify integrity. This paper discusses the use of eddy current testing (ET) to perform surface examination of the completed welds and repair cavities. Descriptions of integrated remote welding/inspection system and how the equipment is intended function will also be discussed.

  15. Training implementation matrix, Spent Nuclear Fuel Project (SNFP)

    SciTech Connect (OSTI)

    EATON, G.L.

    2000-06-08

    This Training Implementation Matrix (TIM) describes how the Spent Nuclear Fuel Project (SNFP) implements the requirements of DOE Order 5480.20A, Personnel Selection, Qualification, and Training Requirements for Reactor and Non-Reactor Nuclear Facilities. The TIM defines the application of the selection, qualification, and training requirements in DOE Order 5480.20A at the SNFP. The TIM also describes the organization, planning, and administration of the SNFP training and qualification program(s) for which DOE Order 5480.20A applies. Also included is suitable justification for exceptions taken to any requirements contained in DOE Order 5480.20A. The goal of the SNFP training and qualification program is to ensure employees are capable of performing their jobs safely and efficiently.

  16. Utilizing Divers in Support of Spent Fuel Basin Closure Subproject

    SciTech Connect (OSTI)

    Allen Nellesen

    2005-01-01

    A number of nuclear facilities in the world are aging and with this comes the fact that we have to either keep repairing them or decommission them. At the Department of Energy Idaho Site (DOEID) there are a number of facilities that are being decommissioned, but the facilities that pose the highest risk to the large aquifer that flows under the site are given highest priorities. Aging spent nuclear fuel pools at DOE-ID are among the facilities that pose the highest risk, therefore four pools were targeted for decommissioning in Fiscal Year 2004. To accomplish this task the Idaho Completion Project (ICP) of Bechtel BWXT Idaho, LLC, put together an integrated Basin Closure Subproject team. The team was assigned a goal to look beyond traditional practices at the Idaho National Engineering and Environmental Laboratory (INEEL) to find ways to get the basin closure work done safer and more efficiently. The Idaho Completion Project (ICP) was faced with a major challenge – cleaning and preparing aging spent nuclear fuel basins for closure by removing sludge and debris, as necessary, and removing water to eliminate a potential risk to the Snake River Plain Aquifer. The project included cleaning and removing water from four basins. Two of the main challenges to a project like this is the risk of contamination from the basin walls and floors becoming airborne as the water is removed and keeping personnel exposures ALARA. ICP’s baseline plan had workers standing at the edges of the basins and on rafts or bridge cranes and then using long-handled tools to manually scrub the walls of basin surfaces. This plan had significant risk of skin contamination events, workers falling into the water, or workers sustaining injuries from the awkward working position. Analysis of the safety and radiation dose risks presented by this approach drove the team to look for smarter ways to get the work done.

  17. Supplement Analysis ? Spent Nuclear Fuel and SRS H-Canyon Operations

    Energy Savers [EERE]

    DOEEIS-0218-SA-07 SUPPLEMENT ANALYSIS FOR THE FOREIGN RESEARCH REACTOR SPENT NUCLEAR FUEL ACCEPTANCE PROGRAM Highly Enriched Uranium Target Residue Material Transportation U.S....

  18. EIS-0306: Treatment and Management of Sodium-Bonded Spent Nuclear Fuel

    Broader source: Energy.gov [DOE]

    DOE prepared a EIS that evaluated the potential environmental impacts of treatment and management of DOE-owned sodium bonded spent nuclear fuel.

  19. Safe Advantage on Dry Interim Spent Nuclear Fuel Storage

    SciTech Connect (OSTI)

    Romanato, L.S. [Centro Tecnologico da Marinha em S.Paulo, Brazilian Navy Technological Center, Sao Paulo (Brazil)

    2008-07-01

    This paper aims to present the advantages of dry cask storage in comparison with the wet storage (cooling water pools) for SNF. When the nuclear fuel is removed from the core reactor, it is moved to a storage unit and it wait for a final destination. Generally, the spent nuclear fuel (SNF) remains inside water pools within the reactors facility for the radioactive activity decay. After some period of time in pools, SNF can be sent to a definitive deposition in a geological repository and handled as radioactive waste or to reprocessing facilities, or still, wait for a future solution. Meanwhile, SNF remains stored for a period of time in dry or wet facilities, depending on the method adopted by the nuclear power plant or other plans of the country. Interim storage, up to 20 years ago, was exclusively wet and if the nuclear facility had to be decommissioned another storage solution had to be found. At the present time, after a preliminary cooling of the SNF elements inside the water pool, the elements can be stored in dry facilities. This kind of storage does not need complex radiation monitoring and it is safer then wet one. Casks, either concrete or metallic, are safer, especially on occurrence of earthquakes, like that occurred at Kashiwazaki-Kariwa nuclear power plant, in Japan on July 16, 2007. (authors)

  20. Direct Investigations of the Immobilization of Radionuclides in the Alteration Products of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Peter C. Burns; Robert J. Finch; David J. Wronkiewicz

    2004-12-27

    Safe disposal of the nation's nuclear waste in a geological repository involves unique scientific and engineering challenges owing to the very long-lived radioactivity of the waste. The repository must retain a variety of radionuclides that have vastly different chemical characters for several thousand years. Most of the radioactivity that will be housed in the proposed repository at Yucca Mountain will be associated with spent nuclear fuel, much of which is derived from commercial reactors. DOE is custodian of approximately 8000 tons of spent nuclear fuel that is also intended for eventual disposal in a geological repository. Unlike the spent fuel from commercial reactors, the DOE fuel is diverse in composition with more than 250 varieties. Safe disposal of spent fuel requires a detailed knowledge of its long-term behavior under repository conditions, as well as the fate of radionuclides released from the spent fuel as waste containers are breached.

  1. Thermal performance of a buried nuclear waste storage container storing a hybrid mix of PWR and BWR spent fuel rods

    SciTech Connect (OSTI)

    Johnson, G.L.

    1988-09-01

    Lawrence Livermore National Laboratory will design, model, and test nuclear waste packages for use at the Nevada Nuclear Waste Storage Repository at Yucca Mountain, Nevada. One such package would store lightly packed spent fuel rods from both pressurized and boiling water reactors. The storage container provides the primary containment of the nuclear waste and the spent fuel rod cladding provides secondary containment. A series of transient conduction and radiation heat transfer analyses was run to determine for the first 1000 yr of storage if the temperature of the tuff at the borehole wall ever falls below 97{degree}C and whether the cladding of the stored spent fuel ever exceeds 350{degree}C. Limiting the borehole to temperatures of 97{degree}C or greater helps minimize corrosion by assuring that no condensed water collects on the container. The 350{degree}C cladding limit minimizes the possibility of creep-related failure in the spent fuel rod cladding. For a series of packages stored in a 8 x 30 m borehole grid where each package contains 10-yr-old spent fuel rods generating 4.74 kW or more, the borehole wall stays above 97{degree}C for the full 1000-yr analysis period.

  2. Development of Gd-Enriched Alloys for Spent Nuclear Fuel Applications--Part 1: Preliminary Characterization

    E-Print Network [OSTI]

    DuPont, John N.

    composition for any Gd level. Keywords gadolinium, neutron absorbing material, nuclear criticality safety support, (2) spent nuclear fuel geometry control, and (3) nuclear criticality safety. In additionDevelopment of Gd-Enriched Alloys for Spent Nuclear Fuel Applications--Part 1: Preliminary

  3. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A. Michael (Murrysville, PA); Draper, Robert (Churchill Boro, PA)

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row.

  4. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Di Croce, A.M.; Draper, R.

    1993-11-02

    A solid oxide fuel cell generator has a plenum containing at least two rows of spaced apart, annular, axially elongated fuel cells. An electrical conductor extending between adjacent rows of fuel cells connects the fuel cells of one row in parallel with each other and in series with the fuel cells of the adjacent row. 5 figures.

  5. Development of a Reliable Fuel Depletion Methodology for the HTR-10 Spent Fuel Analysis

    SciTech Connect (OSTI)

    Chung, Kiwhan [Los Alamos National Laboratory; Beddingfield, David H. [Los Alamos National Laboratory; Geist, William H. [Los Alamos National Laboratory; Lee, Sang-Yoon [unaffiliated

    2012-07-03

    A technical working group formed in 2007 between NNSA and CAEA to develop a reliable fuel depletion method for HTR-10 based on MCNPX and to analyze the isotopic inventory and radiation source terms of the HTR-10 spent fuel. Conclusions of this presentation are: (1) Established a fuel depletion methodology and demonstrated its safeguards application; (2) Proliferation resistant at high discharge burnup ({approx}80 GWD/MtHM) - Unfavorable isotopics, high number of pebbles needed, harder to reprocess pebbles; (3) SF should remain under safeguards comparable to that of LWR; and (4) Diversion scenarios not considered, but can be performed.

  6. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    SciTech Connect (OSTI)

    N. E. Pettit

    2001-07-13

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident.

  7. Shipper/receiver difference verification of spent fuel by use of PDET

    SciTech Connect (OSTI)

    Ham, Y. S.; Sitaraman, S.

    2011-07-01

    Spent fuel storage pools in most countries are rapidly approaching their design limits with the discharge of over 10,000 metric tons of heavy metal from global reactors. Countries like UK, France or Japan have adopted a closed fuel cycle by reprocessing spent fuel and recycling MOX fuel while many other countries opted for above ground interim dry storage for their spent fuel management strategy. Some countries like Finland and Sweden are already well on the way to setting up a conditioning plant and a deep geological repository for spent fuel. For all these situations, shipments of spent fuel are needed and the number of these shipments is expected to increase significantly. Although shipper/receiver difference (SRD) verification measurements are needed by IAEA when the recipient facility receives spent fuel, these are not being practiced to the level that IAEA has desired due to lack of a credible measurement methodology and instrument that can reliably perform these measurements to verify non-diversion of spent fuel during shipment and confirm facility operator declarations on the spent fuel. In this paper, we describe a new safeguards method and an associated instrument, Partial Defect Tester (PDET), which can detect pin diversion from Pressurized Water Reactor (PWR) Spent Fuel Assemblies in an in-situ condition. The PDET uses multiple tiny neutron and gamma detectors in the form of a cluster and a simple, yet highly precise, gravity-driven system to obtain underwater radiation measurements inside a Pressurized Water Reactor (PWR) spent fuel assembly. The method takes advantage of the PWR fuel design which contains multiple guide tubes which can be accessed from the top. The data obtained in such a manner can provide spatial distribution of neutron and gamma flux within a spent fuel assembly. Our simulation study as well as validation measurements indicated that the ratio of the gamma signal to the thermal neutron signal at each detector location normalized to the peak ratio of all the detector locations gives a unique signature that is sensitive to missing pins. The signature is principally dependent on the geometry of the detector locations, and little sensitive to enrichment or burn-up variations. A small variation in the fuel bundle, such as a few missing pins, changes the shape of the signature to enable detection. After verification of the non-diversion of spent fuel pins, the neutron signal and gamma signal are subsequently used to verify the consistency of the operator declaration on the fuel burn-up and cooling time. (authors)

  8. Spent nuclear fuel retrieval system fuel handling development testing. Final report

    SciTech Connect (OSTI)

    Jackson, D.R.; Meeuwsen, P.V.

    1997-09-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin, clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge), remove the contents from the canisters and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. This report describes fuel handling development testing performed from May 1, 1997 through the end of August 1997. Testing during this period was mainly focused on performance of a Schilling Robotic Systems` Conan manipulator used to simulate a custom designed version, labeled Konan, being fabricated for K-Basin deployment. In addition to the manipulator, the camera viewing system, process table layout, and fuel handling processes were evaluated. The Conan test manipulator was installed and fully functional for testing in early 1997. Formal testing began May 1. The purposes of fuel handling development testing were to provide proof of concept and criteria, optimize equipment layout, initialize the process definition, and identify special needs/tools and required design changes to support development of the performance specification. The test program was set up to accomplish these objectives through cold (non-radiological) development testing using simulated and prototype equipment.

  9. Spent-fuel dry-storage testing at E-MAD (March 1978-March 1982)

    SciTech Connect (OSTI)

    Unterzuber, R.; Milnes, R.D.; Marinkovich, B.A.; Kubancsek, G.M.

    1982-09-01

    From March 1978 through March 1982, spent fuel dry storage tests were conducted at the Engine Maintenance, Assembly and Disassembly (E-MAD) facility on the Nevada Test Site to confirm that commercial reactor spent fuel could be encapsulated and passively stored in one or more interim dry storage cell concepts. These tests were: electrically heated drywell, isolated and adjacent drywell, concrete silo, fuel assembly internal temperature measurement, and air-cooled vault. This document presents the test data and results as well as results from supporting test operations (spent fuel calorimetry and canister gas sampling).

  10. ON-LINE MONITORING FOR CONTROL AND SAFEGUARDING OF RADIOCHEMICAL STREAMS AT SPENT FUEL REPROCESSING PLANT

    SciTech Connect (OSTI)

    Bryan, Samuel A.; Levitskaia, Tatiana G.; Lines, Amanda M.; Billing, Justin M.; Casella, Amanda J.; Johnsen, Amanda M.; Peterson, James M.; Thomas, Elizabeth M.

    2009-11-10

    Advanced techniques that enhance safeguarding of spent fuel reprocessing plants are urgently needed. Our approach is based on the prerequisite that real-time monitoring of solvent extraction flowsheets at a spent fuel reprocessing plant provides the unique capability to quickly detect unwanted manipulations with fissile isotopes present in the radiochemical streams during reprocessing activities. The methods used to monitor these processes must be robust and capable of withstanding harsh radiation and chemical environments. A new on-line monitoring system satisfying these requirements and featuring Raman spectroscopy combined with a Coriolis and conductivity probes recently has been developed by our research team for tank waste retrieval. It provides immediate chemical data and flow parameters of high-level radioactive waste streams with high brine content generated during retrieval activities from nuclear waste storage tanks at the Hanford Site. The nature of the radiochemical streams at the spent fuel reprocessing plant calls for additional spectroscopic information that can be gained by using Vis-NIR capabilities augmenting Raman spectroscopy. A fiber optic Raman probe allows monitoring of high concentration species encountered in both aqueous and organic phases within the UREX suite of flowsheets, including metal oxide ions, such as uranyl, components of the organic solvent, inorganic oxo-anions, and water. Actinides and lanthanides are monitored remotely by Vis-NIR spectroscopy in aqueous and organic phases. In this report, we present our results on spectroscopic measurements of simulant flowsheet solutions and commercial fuels designed to demonstrate the applicability of Raman and Vis-NIR spectroscopic analysis for actual dissolver feed solutions.

  11. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Draper, R.; George, R.A.; Shockling, L.A.

    1993-04-06

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  12. Solid oxide fuel cell generator

    DOE Patents [OSTI]

    Draper, Robert (Churchill Boro, PA); George, Raymond A. (Pittsburgh, PA); Shockling, Larry A. (Plum Borough, PA)

    1993-01-01

    A solid oxide fuel cell generator has a pair of spaced apart tubesheets in a housing. At least two intermediate barrier walls are between the tubesheets and define a generator chamber between two intermediate buffer chambers. An array of fuel cells have tubes with open ends engaging the tubesheets. Tubular, axially elongated electrochemical cells are supported on the tubes in the generator chamber. Fuel gas and oxidant gas are preheated in the intermediate chambers by the gases flowing on the other side of the tubes. Gas leakage around the tubes through the tubesheets is permitted. The buffer chambers reentrain the leaked fuel gas for reintroduction to the generator chamber.

  13. Uncanistered Spent Nuclear fuel Disposal Container System Description Document

    SciTech Connect (OSTI)

    2000-10-12

    The Uncanistered Spent Nuclear Fuel (SNF) Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded with intact uncanistered assemblies and/or individually canistered SNF assemblies and sealed in the surface waste handling facilities, transferred to the underground through the access drifts, and emplaced in the emplacement drifts. The Uncanistered SNF Disposal Container provides long-term confinement of the commercial SNF placed inside, and withstands the loading, transfer, emplacement, and retrieval loads and environments. The Uncanistered SNF Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual SNF assembly temperatures after emplacement, limits the introduction of moderator into the disposal container during the criticality control period, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Multiple boiling water reactor (BWR) and pressurized water reactor (PWR) disposal container designs are needed to accommodate the expected range of spent fuel assemblies and provide long-term confinement of the commercial SNF. The disposal container will include outer and inner cylinder walls, outer cylinder lids (two on the top, one on the bottom), inner cylinder lids (one on the top, one on the bottom), and an internal metallic basket structure. Exterior labels will provide a means by which to identify the disposal container and its contents. The two metal cylinders, in combination with the cladding, Emplacement Drift System, drip shield, and natural barrier, will support the design philosophy of defense-in-depth. The use of materials with different properties prevents a single mode failure from breaching the waste package. The inner cylinder and inner cylinder lids will be constructed of stainless steel and the outer cylinder and outer cylinder lid will be made of high-nickel alloy. The basket will assist criticality control, provide structural support, and improve heat transfer. The Uncanistered SNF Disposal Container System interfaces with the emplacement drift environment and internal waste by transferring heat from the SNF to the external environment and by protecting the SFN assemblies and their contents from damage/degradation by the external environment. The system also interfaces with the SFN by limiting access of moderator and oxidizing agents of the SFN. The waste package interfaces with the Emplacement Drift System's emplacement drift pallets upon which the wasted packages are placed. The disposal container interfaces with the Assembly Transfer System, Waste Emplacement/Retrieval System, Disposal Container Handling System, and Waste Package Remediation System during loading, handling, transfer, emplacement and retrieval of the disposal container/waste package.

  14. Spent fuel management in France: Reprocessing, conditioning, recycling

    SciTech Connect (OSTI)

    Giraud, J.P.; Montalembert, J.A. de [COGEMA, Cedex (France)

    1994-12-31

    The French energy policy has been based for 20 years on the development of nuclear power. The some 75% share of nuclear in the total electricity generation, representing an annual production of 317 TWh requires full fuel cycle control from the head-end to the waste management. This paper presents the RCR concept (Reprocessing, Conditioning, Recycling) with its industrial implementation. The long lasting experience acquired in reprocessing and MOX fuel fabrication leads to a comprehensive industrial organization with minimized impact on the environment and waste generation. Each 900 MWe PWR loaded with MOX fuel avoids piling up 2,500 m{sup 3} per year of mine tailings. By the year 2000, less than 500 m{sup 3} of high-level and long-lived waste will be annually produced at La Hague for the French program. The fuel cycle facilities and the associated MOX loading programs are ramping-up according to schedule. Thus, the RCR concept is a reality as well as a policy adopted in several countries. Last but not least, RCR represents a strong commitment to non-proliferation as it is the way to fully control and master the plutonium inventory.

  15. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques NGSI Research Overview and Update on NDA Techniques

    E-Print Network [OSTI]

    A., V. Mozin, S.J. Tobin, L.W. Cambell, J.R. Cheatham, C.R. Freeman, C.J. Gesh,

    2012-01-01

    considered one of the 17x17 PWR assemblies from the NGSIplutonium signal because in a PWR spent fuel its content isspectra for a single PWR fuel pin with fresh and spent UO 2

  16. Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements

    SciTech Connect (OSTI)

    Luksic, A.T.; McKee, R.W.; Daling, P.M.; Konzek, G.J.; Ludwick, J.D.; Purcell, W.L.

    1986-10-01

    There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction.

  17. Spent Fuel Test-Climax: technical measurements data management system description and data presentation

    SciTech Connect (OSTI)

    Carlson, R.C.

    1985-08-01

    The Spent Fuel Test-Climax (SFT-C) was located 420 m below surface in the Climax Stock granite on the Nevada Test Site. The test was conducted under the technical direction of the Lawrence Livermore National Laboratory (LLNL) as part of the Nevada Nuclear Waste Storage Investigations (NNWSI) for the US Department of Energy. Eleven canisters of spent nuclear reactor fuel were emplaced, along with six electrical simulators, in April-May 1980. The spent fuel canisters were retrieved and the electrical simulators de-energized in March-April 1983. During the test, just over 1000 MW-hr of thermal energy was deposited in the site, causing temperature changes 100{sup 0}C near the canisters, and about 5{sup 0} in the tunnels. More than 900 channels of geotechnical, seismological, and test status data were recorded on nearly continuous basis for about 3-1/2 years, ending in September 1983. Most geotechnical instrumentation was known to be temperature sensitive, and thus would require temperature compensation before interpretation. Accordingly, a 10-in. reel of digital tape was off-loaded and shipped to Livermore every 4 to 8 weeks, where the data were verified, organized into 45 one-million-word files, and temperature corrected. The purpose of this report is to document the receipt and processing of the data by LLNL Livermore personnel, present facts about the history of the instruments which may be important to the interpretation of the data, present the data themselves in graphical form for each instrument over its operating lifetime, document the forms and locations in which the data will be archived, and offer the data to the geotechnical community for future use in understanding and predicting the effects of the storage of heat-generating waste in hard rocks such as granite.

  18. Spent-Fuel Test - Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Executive summary of final results

    SciTech Connect (OSTI)

    Patrick, W.C.

    1986-09-02

    This summary volume outlines results that are covered in more detail in the final report of the Spent-Fuel Test - Climate project. The project was conducted between 1978 and 1983 in the granitic Climax stock at the Nevada Test Site. Results indicate that spent fuel can be safely stored for periods of years in this host medium and that nuclear waste so emplaced can be safely retrieved. We also evaluated the effects of heat and radiation (alone and in combination) on emplacement canisters and the surrounding rock mass. Storage of the spent-fuel affected the surrounding rock mass in measurable ways, but did not threaten the stability or safety of the facility at any time.

  19. OVERVIEW OF CRITERIA FOR INTERIM WET & DRY STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL

    SciTech Connect (OSTI)

    Sindelar, R.; Vinson, D.; Iyer, N.; Fisher, D.

    2010-11-03

    Following discharge from research reactors, spent nuclear fuel may be stored 'wet' in water pools or basins, or it may be stored 'dry' in various configurations including non-sealed or sealed containers until retrieved for ultimate disposition. Interim safe storage practices are based on avoiding degradation to the fuel that would impact functions related to safety. Recommended practices including environmental controls with technical bases, are outlined for wet storage and dry storage of aluminum-clad, aluminum-based research reactor fuel. For wet storage, water quality must be maintained to minimize corrosion degradation of aluminum fuel. For dry storage, vented canister storage of aluminum fuel readily provides a safe storage configuration. For sealed dry storage, drying must be performed so as to minimize water that would cause additional corrosion and hydrogen generation. Consideration must also be given to the potential for radiolytically-generated hydrogen from the bound water in the attendant oxyhydroxides on aluminum fuel from reactor operation for dry storage systems.

  20. An Analysis of Dual Zone Loading for Shipping Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Allen, William Christopher; Yim, Man-Sung

    2007-07-01

    The bumps current fuel assembly designs can achieve exceeds the fuel assembly burnups the current fleet of shipping casks can ship. One method of handling this situation which has been proposed is regionalized loading. This concept involves administratively separating the fuel basket of a shipping cask into two or more regions and loading fuel with different burnup, cooling times and enrichments into these regions. To evaluate how regionalized loading patterns might affect shipping spent nuclear fuel in comparison to uniform loading, a test case study was performed using fuel assemblies discharged from an actual nuclear plant and a shipping cask licensed by the NRC. Using the same fuel assemblies and shipping cask, results were obtained assuming a uniform loading pattern and compared to the results obtained assuming a dual zone loading pattern. Source terms for the analysis were generated using SAS2 and the dose levels were calculated using MCNPS. The analysis showed that the dual zone loading reduced the amount of time required to ship the given quantity of fuel by roughly thirty percent compared to the uniform loading. The average dose rate to the transportation workers and the public due to the implementation of dual zone loading increased. Implications of these increases are discussed. (authors)

  1. Licensing of spent fuel dry storage and consolidated rod storage: A Review of Issues and Experiences

    SciTech Connect (OSTI)

    Bailey, W.J.

    1990-02-01

    The results of this study, performed by Pacific Northwest Laboratory (PNL) and sponsored by the US Department of Energy (DOE), respond to the nuclear industry's recommendation that a report be prepared that collects and describes the licensing issues (and their resolutions) that confront a new applicant requesting approval from the US Nuclear Regulatory Commission (NRC) for dry storage of spent fuel or for large-scale storage of consolidated spent fuel rods in pools. The issues are identified in comments, questions, and requests from the NRC during its review of applicants' submittals. Included in the report are discussions of (1) the 18 topical reports on cask and module designs for dry storage fuel that have been submitted to the NRC, (2) the three license applications for dry storage of spent fuel at independent spent fuel storage installations (ISFSIs) that have been submitted to the NRC, and (3) the three applications (one of which was later withdrawn) for large-scale storage of consolidated fuel rods in existing spent fuel storage pools at reactors that were submitted tot he NRC. For each of the applications submitted, examples of some of the issues (and suggestions for their resolutions) are described. The issues and their resolutions are also covered in detail in an example in each of the three subject areas: (1) the application for the CASTOR V/21 dry spent fuel storage cask, (2) the application for the ISFSI for dry storage of spent fuel at Surry, and (3) the application for full-scale wet storage of consolidated spent fuel at Millstone-2. The conclusions in the report include examples of major issues that applicants have encountered. Recommendations for future applicants to follow are listed. 401 refs., 26 tabs.

  2. EM Prepares Report for Convention on Safety of Spent Fuel and Radioactive Waste Management

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – EM supported DOE in its role as the lead technical agency to produce a report recently for the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management.

  3. EA-1117: Management of Spent Nuclear Fuel on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal for the management of spent nuclear fuel on the U.S. Department of Energy's Oak Ridge Reservation to implement the preferred alternative...

  4. Design criteria for an independent spent fuel storage installation (water pool type)

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    This standard is intended to be used by those involved in the ownership and operation of an Independent Spent Fuel Storage Installation (ISFSI) in specifying the design requirements and by the designer in meeting the minimum design requirements of such installations. This standard continues the set of American National Standards on spent fuel storage design. Similar standards are: Design Objectives for Light Water Reactor Spent Fuel Storage Facilities at Nuclear Power Stations, N210-1976 (ANS-57.2); Design Objectives for Highly Radioactive Solid Material Handling and Storage Facilities in a Reprocessing Plant, ANSI N305-1975; and Guidelines for Evaluating Site-Related Parameters for an Independent Spent Fuel Storage Installation, ANSI/ANS-2.19-1981.

  5. Effective thermal conductivity method for predicting spent nuclear fuel cladding temperatures in a dry fill gas

    SciTech Connect (OSTI)

    Bahney, Robert

    1997-12-19

    This paper summarizes the development of a reliable methodology for the prediction of peak spent nuclear fuel cladding temperature within the waste disposal package. The effective thermal conductivity method replaces other older methodologies.

  6. International management of spent fuel storage : technical alternatives and constraints, topical report

    E-Print Network [OSTI]

    Miller, Marvin M.

    1978-01-01

    Some of the important technical issues involved in the implementation of a spent fuel storage regime under international auspices are discussed. In particular, we consider: the state of the art as far as the different ...

  7. Re-evaluation of Spent Nuclear Fuel Assay Data for the Three...

    Office of Scientific and Technical Information (OSTI)

    Re-evaluation of Spent Nuclear Fuel Assay Data for the Three Mile Island Unit 1 Reactor and Application to Code Validation Gauld, Ian C. Oak Ridge National Lab. (ORNL), Oak Ridge,...

  8. Standard guide for characterization of spent nuclear fuel in support of geologic repository disposal

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This guide provides guidance for the types and extent of testing that would be involved in characterizing the physical and chemical nature of spent nuclear fuel (SNF) in support of its interim storage, transport, and disposal in a geologic repository. This guide applies primarily to commercial light water reactor (LWR) spent fuel and spent fuel from weapons production, although the individual tests/analyses may be used as applicable to other spent fuels such as those from research and test reactors. The testing is designed to provide information that supports the design, safety analysis, and performance assessment of a geologic repository for the ultimate disposal of the SNF. 1.2 The testing described includes characterization of such physical attributes as physical appearance, weight, density, shape/geometry, degree, and type of SNF cladding damage. The testing described also includes the measurement/examination of such chemical attributes as radionuclide content, microstructure, and corrosion product c...

  9. Re-evaluation of Spent Nuclear Fuel Assay Data for the Three...

    Office of Scientific and Technical Information (OSTI)

    DOE PAGES Search Results Accepted Manuscript: Re-evaluation of Spent Nuclear Fuel Assay Data for the Three Mile Island Unit 1 Reactor and Application to Code Validation This...

  10. Interim report spent nuclear fuel retrieval system fuel handling development testing

    SciTech Connect (OSTI)

    Ketner, G.L.; Meeuwsen, P.V.; Potter, J.D.; Smalley, J.T.; Baker, C.P.; Jaquish, W.R.

    1997-06-01

    Fuel handling development testing was performed in support of the Fuel Retrieval System (FRS) Sub-Project at the Hanford Site. The project will retrieve spent nuclear fuel, clean and remove fuel from canisters, repackage fuel into baskets, and load fuel into a multi-canister overpack (MCO) for vacuum drying and interim dry storage. The FRS is required to retrieve basin fuel canisters, clean fuel elements sufficiently of uranium corrosion products (or sludge), empty fuel from canisters, sort debris and scrap from whole elements, and repackage fuel in baskets in preparation for MCO loading. The purpose of fuel handling development testing was to examine the systems ability to accomplish mission activities, optimization of equipment layouts for initial process definition, identification of special needs/tools, verification of required design changes to support performance specification development, and validation of estimated activity times/throughput. The test program was set up to accomplish this purpose through cold development testing using simulated and prototype equipment; cold demonstration testing using vendor expertise and systems; and graphical computer modeling to confirm feasibility and throughput. To test the fuel handling process, a test mockup that represented the process table was fabricated and installed. The test mockup included a Schilling HV series manipulator that was prototypic of the Schilling Hydra manipulator. The process table mockup included the tipping station, sorting area, disassembly and inspection zones, fuel staging areas, and basket loading stations. The test results clearly indicate that the Schilling Hydra arm cannot effectively perform the fuel handling tasks required unless it is attached to some device that can impart vertical translation, azimuth rotation, and X-Y translation. Other test results indicate the importance of camera locations and capabilities, and of the jaw and end effector tool design. 5 refs., 35 figs., 3 tabs.

  11. EIS-0453: Recapitalization of Infrastructure Supporting Naval Spent Nuclear Fuel Handling at the Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    The Draft EIS evaluates the potential environmental impacts associated with recapitalizing the infrastructure needed to ensure the long-term capability of the Naval Nuclear Propulsion Program (NNPP) to support naval spent nuclear fuel handling capabilities provided by the Expended Core Facility (ECF). Significant upgrades are necessary to ECF infrastructure and water pools to continue safe and environmentally responsible naval spent nuclear fuel handling until at least 2060.

  12. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect (OSTI)

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  13. Assessment of the impacts of spent fuel disassembly alternatives on the Nuclear Waste Isolation System. [Preparing and packaging spent fuel assemblies for geologic disposal

    SciTech Connect (OSTI)

    Not Available

    1984-07-01

    The objective of this report was to evaluate four possible alternative methods of preparing and packaging spent fuel assemblies for geologic disposal against the Reference Process of unmodified spent fuel. The four alternative processes were: (1) End fitting removal, (2) Fission gas venting and resealing, (3) Fuel bundle disassembly and close packing of fuel pins, and (4) Fuel shearing and immobilization. Systems analysis was used to develop a basis of comparison of the alternatives. Conceptual processes and facility layouts were devised for each of the alternatives, based on technology deemed feasible for the purpose. Assessments were made of 15 principal attributes from the technical, operational, safety/risk, and economic considerations related to each of the alternatives, including both the surface packaging and underground repository operations. Specific attributes of the alternative processes were evaluated by assigning a number for each that expressed its merit relative to the corresponding attribute of the Reference Process. Each alternative process was then ranked by summing the numbers for attributes in each of the four assessment areas and collectively. Fuel bundle disassembly and close packing of fuel pins was ranked the preferred method of disposal of spent fuel. 63 references, 46 figures, 46 tables.

  14. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix D, Part B: Naval spent nuclear fuel management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This volume contains the following attachments: transportation of Naval spent nuclear fuel; description of Naval spent nuclear receipt and handling at the Expended Core Facility at the Idaho National Engineering Laboratory; comparison of storage in new water pools versus dry container storage; description of storage of Naval spent nuclear fuel at servicing locations; description of receipt, handling, and examination of Naval spent nuclear fuel at alternate DOE facilities; analysis of normal operations and accident conditions; and comparison of the Naval spent nuclear fuel storage environmental assessment and this environmental impact statement.

  15. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques NGSI Research Overview and Update on NDA Techniques

    E-Print Network [OSTI]

    A., V. Mozin, S.J. Tobin, L.W. Cambell, J.R. Cheatham, C.R. Freeman, C.J. Gesh,

    2012-01-01

    spent fuel safeguards applications, contribute to the establishment of Pu inventories and determine fissile material diversions at fuel storage, handling and reprocessing

  16. AIR SHIPMENT OF HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL FROM ROMANIA AND LIBYA

    SciTech Connect (OSTI)

    Christopher Landers; Igor Bolshinsky; Ken Allen; Stanley Moses

    2010-07-01

    In June 2009 Romania successfully completed the world’s first air shipment of highly enriched uranium (HEU) spent nuclear fuel transported in Type B(U) casks under existing international laws and without special exceptions for the air transport licenses. Special 20-foot ISO shipping containers and cask tiedown supports were designed to transport Russian TUK 19 shipping casks for the Romanian air shipment and the equipment was certified for all modes of transport, including road, rail, water, and air. In December 2009 Libya successfully used this same equipment for a second air shipment of HEU spent nuclear fuel. Both spent fuel shipments were transported by truck from the originating nuclear facilities to nearby commercial airports, were flown by commercial cargo aircraft to a commercial airport in Yekaterinburg, Russia, and then transported by truck to their final destinations at the Production Association Mayak facility in Chelyabinsk, Russia. Both air shipments were performed under the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI). The Romania air shipment of 23.7 kg of HEU spent fuel from the VVR S research reactor was the last of three HEU fresh and spent fuel shipments under RRRFR that resulted in Romania becoming the 3rd RRRFR participating country to remove all HEU. Libya had previously completed two RRRFR shipments of HEU fresh fuel so the 5.2 kg of HEU spent fuel air shipped from the IRT 1 research reactor in December made Libya the 4th RRRFR participating country to remove all HEU. This paper describes the equipment, preparations, and license approvals required to safely and securely complete these two air shipments of spent nuclear fuel.

  17. Characteristics of fuel crud and its impact on storage, handling, and shipment of spent fuel. [Fuel crud

    SciTech Connect (OSTI)

    Hazelton, R.F.

    1987-09-01

    Corrosion products, called ''crud,'' form on out-of-reactor surfaces of nuclear reactor systems and are transported by reactor coolant to the core, where they deposit on external fuel-rod cladding surfaces and are activated by nuclear reactions. After discharge of spent fuel from a reactor, spallation of radioactive crud from the fuel rods could impact wet or dry storage operations, handling (including rod consolidation), and shipping. It is the purpose of this report to review earlier (1970s) and more recent (1980s) literature relating to crud, its characteristics, and any impact it has had on actual operations. Crud characteristics vary from reactor type to reactor type, reactor to reactor, fuel assembly to fuel assembly in a reactor, circumferentially and axially in an assembly, and from cycle to cycle for a specific facility. To characterize crud of pressurized-water (PWRs) and boiling-water reactors (BWRs), published information was reviewed on appearance, chemical composition, areal density and thickness, structure, adhesive strength, particle size, and radioactivity. Information was also collected on experience with crud during spent fuel wet storage, rod consolidation, transportation, and dry storage. From experience with wet storage, rod consolidation, transportation, and dry storage, it appears crud spallation can be managed effectively, posing no significant radiological problems. 44 refs., 11 figs.

  18. 105-K Basin material design basis feed description for spent nuclear fuel project facilities

    SciTech Connect (OSTI)

    Praga, A.N.

    1998-01-08

    Revisions 0 and 0A of this document provided estimated chemical and radionuclide inventories of spent nuclear fuel and sludge currently stored within the Hanford Site`s 105-K Basins. This Revision (Rev. 1) incorporates the following changes into Revision 0A: (1) updates the tables to reflect: improved cross section data, a decision to use accountability data as the basis for total Pu, a corrected methodology for selection of the heat generation basis fee, and a revised decay date; (2) adds section 3.3.3.1 to expand the description of the approach used to calculate the inventory values and explain why that approach yields conservative results; (3) changes the pre-irradiation braze beryllium value.

  19. Evaluation of the Strategic Value of Fully Burnt PBMR Spent Fuel - A Report to ISPO in Response to IAEA Letter Request (2004-08-30)

    SciTech Connect (OSTI)

    A. M. Ougouag; H. D. Gougar; T. A. Todd

    2006-05-01

    The IAEA needs to determine the value of imposing safeguards on the spent fuel storage at the Pebble Bed Modular Reactor (PBMR) planned for construction in the Republic of South Africa. The PBMR will use hundreds of thousands of fuel elements in the shape of small spheres (6 cm in diameter). The PBMR plant design calls for the storage on site of all the spent fuel generated during the whole life of the reactor, expected to span 40 years. The spent fuel storage system is designed (or to be designed) for a functional life of 80 years. If it is determined that the spent fuel contains materials of interest to a would-be proliferant, then safeguards would have to be imposed and maintained until the spent fuel elements are processed into a form and composition that no longer requires safeguards. The problem addressed in this report is the determination of the strategic value of the spent fuel to such a would-be proliferant.

  20. Validation of SCALE (SAS2H) isotopic predictions for BWR spent fuel

    SciTech Connect (OSTI)

    Hermann, O.W.; DeHart, M.D.

    1998-09-01

    Thirty spent fuel samples obtained from boiling-water-reactor (BWR) fuel pins have been modeled at Oak Ridge National Laboratory using the SAS2H sequence of the SCALE code system. The SAS2H sequence uses transport methods combined with the depletion and decay capabilities of the ORIGEN-S code to estimate the isotopic composition of fuel as a function of its burnup history. Results of these calculations are compared with chemical assay measurements of spent fuel inventories for each sample. Results show reasonable agreement between measured and predicted isotopic concentrations for important actinides; however, little data are available for most fission products considered to be important for spent fuel concerns (e.g., burnup credit, shielding, source-term calculations, etc.). This work is a follow-up to earlier works that studied the ability to predict spent fuel compositions in pressurized-water-reactor (PWR) fuel pins. Biases and uncertainties associated with BWR isotopic predictions are found to be larger than those of PWR calculations. Such behavior is expected, as the operation of a BWR is significantly more complex than that of a PWR plant, and in general the design of a BWR has a more heterogeneous configuration than that of a PWR. Nevertheless, this work shows that the simple models employed using SAS2H to represent such complexities result in agreement to within 5% (and often less than 1%) or less for most nuclides important for spent fuel applications. On the other hand, however, the set of fuel samples analyzed represent a small subset of the BWR fuel population, and results reported herein may not be representative of the full population of BWR spent fuel.

  1. Determining Reactor Flux from Xenon-136 and Cesium-135 in Spent Fuel

    E-Print Network [OSTI]

    A. C. Hayes; Gerard Jungman

    2012-05-30

    The ability to infer the reactor flux from spent fuel or seized fissile material would enhance the tools of nuclear forensics and nuclear nonproliferation significantly. We show that reactor flux can be inferred from the ratios of xenon-136 to xenon-134 and cesium-135 to cesium-137. If the average flux of a reactor is known, the flux inferred from measurements of spent fuel could help determine whether that spent fuel was loaded as a blanket or close to the mid-plane of the reactor. The cesium ratio also provides information on reactor shutdowns during the irradiation of fuel, which could prove valuable for identifying the reactor in question through comparisons with satellite reactor heat monitoring data. We derive analytic expressions for these correlations and compare them to experimental data and to detailed reactor burn simulations. The enrichment of the original uranium fuel affects the correlations by up to 3 percent, but only at high flux.

  2. Savannah River Site Spent Nuclear Fuel Management Final Environmental Impact Statement

    SciTech Connect (OSTI)

    N /A

    2000-04-14

    The proposed DOE action considered in this environmental impact statement (EIS) is to implement appropriate processes for the safe and efficient management of spent nuclear fuel and targets at the Savannah River Site (SRS) in Aiken County, South Carolina, including placing these materials in forms suitable for ultimate disposition. Options to treat, package, and store this material are discussed. The material included in this EIS consists of approximately 68 metric tons heavy metal (MTHM) of spent nuclear fuel 20 MTHM of aluminum-based spent nuclear fuel at SRS, as much as 28 MTHM of aluminum-clad spent nuclear fuel from foreign and domestic research reactors to be shipped to SRS through 2035, and 20 MTHM of stainless-steel or zirconium-clad spent nuclear fuel and some Americium/Curium Targets stored at SRS. Alternatives considered in this EIS encompass a range of new packaging, new processing, and conventional processing technologies, as well as the No Action Alternative. A preferred alternative is identified in which DOE would prepare about 97% by volume (about 60% by mass) of the aluminum-based fuel for disposition using a melt and dilute treatment process. The remaining 3% by volume (about 40% by mass) would be managed using chemical separation. Impacts are assessed primarily in the areas of water resources, air resources, public and worker health, waste management, socioeconomic, and cumulative impacts.

  3. SUPPLEMENT ANALYSIS PROPOSED SHIPMENT OF COMMERCIAL SPENT NUCLEAR FUEL

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics AndBeryllium Disease |Records Management FieldSOLANA SOLANA SOLANA SOLANA-2020 STRATEGIC

  4. Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel

    SciTech Connect (OSTI)

    Schneider, K.J.; Mitchell, S.J.

    1992-04-01

    This report summarizes the results of a survey of foreign experience in dry storage of spent fuel from nuclear power reactors that was carried out for the US Department of Energy`s (DOE) Office of Civilian Radioactive Waste Management (OCRWM). The report reviews the mechanisms for degradation of spent fuel cladding and fuel materials in dry storage, identifies the status and plans of world-wide experience and applications, and documents the available information on the expected long-term integrity of the dry-stored spent fuel from actual foreign experience. Countries covered in this survey are: Argentina, Canada, Federal Republic of Germany (before reunification with the former East Germany), former German Democratic Republic (former East Germany), France, India, Italy, Japan, South Korea, Spain, Switzerland, United Kingdom, and the former USSR (most of these former Republics are now in the Commonwealth of Independent States [CIS]). Industrial dry storage of Magnox fuels started in 1972 in the United Kingdom; Canada began industrial dry storage of CANDU fuels in 1980. The technology for safe storage is generally considered to be developed for time periods of 30 to 100 years for LWR fuel in inert gas and for some fuels in oxidizing gases at low temperatures. Because it will probably be decades before countries will have a repository for spent fuels and high-level wastes, the plans for expanded use of dry storage have increased significantly in recent years and are expected to continue to increase in the near future.

  5. Foreign experience on effects of extended dry storage on the integrity of spent nuclear fuel

    SciTech Connect (OSTI)

    Schneider, K.J.; Mitchell, S.J.

    1992-04-01

    This report summarizes the results of a survey of foreign experience in dry storage of spent fuel from nuclear power reactors that was carried out for the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM). The report reviews the mechanisms for degradation of spent fuel cladding and fuel materials in dry storage, identifies the status and plans of world-wide experience and applications, and documents the available information on the expected long-term integrity of the dry-stored spent fuel from actual foreign experience. Countries covered in this survey are: Argentina, Canada, Federal Republic of Germany (before reunification with the former East Germany), former German Democratic Republic (former East Germany), France, India, Italy, Japan, South Korea, Spain, Switzerland, United Kingdom, and the former USSR (most of these former Republics are now in the Commonwealth of Independent States (CIS)). Industrial dry storage of Magnox fuels started in 1972 in the United Kingdom; Canada began industrial dry storage of CANDU fuels in 1980. The technology for safe storage is generally considered to be developed for time periods of 30 to 100 years for LWR fuel in inert gas and for some fuels in oxidizing gases at low temperatures. Because it will probably be decades before countries will have a repository for spent fuels and high-level wastes, the plans for expanded use of dry storage have increased significantly in recent years and are expected to continue to increase in the near future.

  6. A COMPARISON OF CHALLENGES ASSOCIATED WITH SLUDGE REMOVAL & TREATMENT & DISPOSAL AT SEVERAL SPENT FUEL STORAGE LOCATIONS

    SciTech Connect (OSTI)

    PERES, M.W.

    2007-01-09

    Challenges associated with the materials that remain in spent fuel storage pools are emerging as countries deal with issues related to storing and cleaning up nuclear fuel left over from weapons production. The K Basins at the Department of Energy's site at Hanford in southeastern Washington State are an example. Years of corrosion products and piles of discarded debris are intermingled in the bottom of these two pools that stored more 2,100 metric tons (2,300 tons) of spent fuel. Difficult, costly projects are underway to remove radioactive material from the K Basins. Similar challenges exist at other locations around the globe. This paper compares the challenges of handling and treating radioactive sludge at several locations storing spent nuclear fuel.

  7. Extended Storage for Research and Test Reactor Spent Fuel for 2006 and Beyond

    SciTech Connect (OSTI)

    Hurt, William Lon; Moore, K.M.; Shaber, Eric Lee; Mizia, Ronald Eugene

    1999-10-01

    This paper will examine issues associated with extended storage of a variety of spent nuclear fuels. Recent experiences at the Idaho National Engineering and Environmental Laboratory and Hanford sites will be described. Particular attention will be given to storage of damaged or degraded fuel. The first section will address a survey of corrosion experience regarding wet storage of spent nuclear fuel. The second section will examine issues associated with movement from wet to dry storage. This paper also examines technology development needs to support storage and ultimate disposition.

  8. Carbon-14 in waste packages for spent fuel in a tuff repository

    SciTech Connect (OSTI)

    Van Konynenburg, R.A.; Smith, C.F.; Culham, H.W.; Smith, H.D.

    1986-10-14

    Carbon-14 is produced naturally by cosmic ray neutrons in the upper atmosphere. It is also produced in nuclear reactors, in amounts much smaller than the global inventory. About one-third of this is released directly to the atmosphere, and the other two-thirds remains in the spent fuel. Both the Environmental Protection Agency and the Nuclear Regulatory Commission have established limits on release of the {sup 14}C in spent fuel. This is of particular concern for the proposed repository in tuff, because of the unsaturated conditions and the consequent possibility of gaseous transport of {sup 14}C as CO{sub 2}. Existing measurements and calculations of the {sup 14}C inventory in spent fuel are reviewed. The physical distribution and chemical forms of the {sup 14}C are discussed. Available data on the release of {sup 14}C from spent fuel in aqueous solutions and in gaseous environments of air, nitrogen, and helium are reviewed. Projected {sup 14}C behavior in a tuff repository is described. It is concluded that {sup 14}C release measurements from spent fuel into moist air at temperatures both above and below the in situ boiling point of water as well as detailed transport calculations for the tuff geological environment will be needed to determine whether the 10CFR60 and 40CFR191 requirements can be met. 56 refs., 1 tab.

  9. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

  10. Comparison of selected foreign plans and practices for spent fuel and high-level waste management

    SciTech Connect (OSTI)

    Schneider, K.J.; Mitchell, S.J.; Lakey, L.T.; Johnson, A.B. Jr.; Hazelton, R.F.; Bradley, D.J.

    1990-04-01

    This report describes the major parameters for management of spent nuclear fuel and high-level radioactive wastes in selected foreign countries as of December 1989 and compares them with those in the United States. The foreign countries included in this study are Belgium, Canada, France, the Federal Republic of Germany, Japan, Sweden, Switzerland, and the United Kingdom. All the countries are planning for disposal of spent fuel and/or high-level wastes in deep geologic repositories. Most countries (except Canada and Sweden) plan to reprocess their spent fuel and vitrify the resultant high-level liquid wastes; in comparison, the US plans direct disposal of spent fuel. The US is planning to use a container for spent fuel as the primary engineered barrier. The US has the most developed repository concept and has one of the earliest scheduled repository startup dates. The repository environment presently being considered in the US is unique, being located in tuff above the water table. The US also has the most prescriptive regulations and performance requirements for the repository system and its components. 135 refs., 8 tabs.

  11. Spent Fuel Test-Climax: An evaluation of the technical feasibility of geologic storage of spent nuclear fuel in granite: Final report

    SciTech Connect (OSTI)

    Patrick, W.C.

    1986-03-30

    In the Climax stock granite on the Nevada Test Site, eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized. When test data indicated that the test objectives were met during the 3-year storage phase, the spent-fuel canisters were retrieved and the thermal sources were de-energized. The project demonstrated the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner. In addition to emplacement and retrieval operations, three exchanges of spent-fuel assemblies between the SFT-C and a surface storage facility, conducted during the storage phase, furthered this demonstration. The test led to development of a technical measurements program. To meet these objectives, nearly 1000 instruments and a computer-based data acquisition system were deployed. Geotechnical, seismological, and test status data were recorded on a continuing basis for the three-year storage phase and six-month monitored cool-down of the test. This report summarizes the engineering and scientific endeavors which led to successful design and execution of the test. The design, fabrication, and construction of all facilities and handling systems are discussed, in the context of test objectives and a safety assessment. The discussion progresses from site characterization and experiment design through data acquisition and analysis of test data in the context of design calculations. 117 refs., 52 figs., 81 tabs.

  12. Nondestructive Spent Fuel Assay Using Nuclear Resonance Fluorescence

    E-Print Network [OSTI]

    Quiter, Brian

    2010-01-01

    isotopic input masses at a reprocessing facility. As part ofas transporting fuel, reprocessing, and also while it is

  13. Assessment of Nuclear Resonance Fluorescence for Spent Nuclear Fuel Assay

    E-Print Network [OSTI]

    Quiter, Brian

    2012-01-01

    the mass of 239 Pu in a 17x17 PWR fuel assembly with 45 GWd/center of 40 GWd/MTU burn-up PWR fuel assembly with coolingrate for the 11 y cooled PWR fuel was used as a source term

  14. DOCUMENTATION OF NATIONAL WEATHER CONDITIONS AFFECTING LONG-TERM DEGRADATION OF COMMERCIAL SPENT NUCLEAR FUEL AND DOE SPENT NUCLEAR FUEL AND HIGH-LEVEL WASTE

    SciTech Connect (OSTI)

    W. L. Poe, Jr.; P.F. Wise

    1998-11-01

    The U.S. Department of Energy (DOE) is preparing a proposal to construct, operate 2nd monitor, and eventually close a repository at Yucca Mountain in Nye County, Nevada, for the geologic disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). As part of this effort, DOE has prepared a viability assessment and an assessment of potential consequences that may exist if the repository is not constructed. The assessment of potential consequences if the repository is not constructed assumes that all SNF and HLW would be left at the generator sites. These include 72 commercial generator sites (three commercial facility pairs--Salem and Hope Creek, Fitzpatrick and Nine Mile Point, and Dresden and Morris--would share common storage due to their close proximity to each other) and five DOE sites across the country. DOE analyzed the environmental consequences of the effects of the continued storage of these materials at these sites in a report titled Continued Storage Analysis Report (CSAR; Reference 1 ) . The CSAR analysis includes a discussion of the degradation of these materials when exposed to the environment. This document describes the environmental parameters that influence the degradation analyzed in the CSAR. These include temperature, relative humidity, precipitation chemistry (pH and chemical composition), annual precipitation rates, annual number of rain-days, and annual freeze/thaw cycles. The document also tabulates weather conditions for each storage site, evaluates the degradation of concrete storage modules and vaults in different regions of the country, and provides a thermal analysis of commercial SNF in storage.

  15. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    SciTech Connect (OSTI)

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  16. OECD NEA Benchmark Database of Spent Nuclear Fuel Isotopic Compositions for World Reactor Designs

    SciTech Connect (OSTI)

    Gauld, Ian C; Sly, Nicholas C; Michel-Sendis, Franco

    2014-01-01

    Experimental data on the isotopic concentrations in irradiated nuclear fuel represent one of the primary methods for validating computational methods and nuclear data used for reactor and spent fuel depletion simulations that support nuclear fuel cycle safety and safeguards programs. Measurement data have previously not been available to users in a centralized or searchable format, and the majority of accessible information has been, for the most part, limited to light-water-reactor designs. This paper describes a recent initiative to compile spent fuel benchmark data for additional reactor designs used throughout the world that can be used to validate computer model simulations that support nuclear energy and nuclear safeguards missions. Experimental benchmark data have been expanded to include VVER-440, VVER-1000, RBMK, graphite moderated MAGNOX, gas cooled AGR, and several heavy-water moderated CANDU reactor designs. Additional experimental data for pressurized light water and boiling water reactor fuels has also been compiled for modern assembly designs and more extensive isotopic measurements. These data are being compiled and uploaded to a recently revised structured and searchable database, SFCOMPO, to provide the nuclear analysis community with a centrally-accessible resource of spent fuel compositions that can be used to benchmark computer codes, models, and nuclear data. The current version of SFCOMPO contains data for eight reactor designs, 20 fuel assembly designs, more than 550 spent fuel samples, and measured isotopic data for about 80 nuclides.

  17. EIS-0203: Spent Nuclear Fuel Management and Idaho National Engineering

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematics And StatisticsProgramof Energy12-98SouthDetailedDon0:Laboratory Environmental Restoration and

  18. EIS-0279: Spent Nuclear Fuel Management, Aiken, South Carolina | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of5 PeerRecord of Decision EIS-0279: Record of Decisionof

  19. Differential Die-Away Instrument: Report on Initial Simulations of Spent Fuel Experiment

    SciTech Connect (OSTI)

    Goodsell, Alison V.; Henzl, Vladimir; Swinhoe, Martyn T.

    2014-04-01

    New Monte Carlo simulations of the differential die-away (DDA) instrument response to the assay of spent and fresh fuel helped to redefine the signal-to-Background ratio and the effects of source neutron tailoring on the system performance. Previously, burst neutrons from the neutron generator together with all neutrons from a fission chain started by a fast fission of 238U were considered to contribute to active background counts. However, through additional simulations, the magnitude of the 238U first fission contribution was found to not affect the DDA performance in reconstructing 239Pueff. As a result, the newly adopted DDA active background definition considers now any neutrons within a branch of the fission chain that does not include at least one fission event induced by a thermal neutron, before being detected, to be the active background. The active background, consisting thus of neutrons from a fission chain or its individual branches composed entirely of sequence of fast fissions on any fissile or fissionable nuclei, is not expected to change significantly with different fuel assemblies. Additionally, while source tailoring materials surrounding the neutron generator were found to influence and possibly improve the instrument performance, the effect was not substantial.

  20. Evaluation of measured LWR spent fuel composition data for use in code validation

    SciTech Connect (OSTI)

    Hermann, O.W.; DeHart, M.D.; Murphy, B.D.

    1998-02-01

    Burnup credit (BUC) is a concept applied in the criticality safety analysis of spent nuclear fuel in which credit or partial credit is taken for the reduced reactivity worth of the fuel due to both fissile depletion and the buildup of actinides and fission products that act as net neutron absorbers. Typically, a two-step process is applied in BUC analysis: first, depletion calculations are performed to estimate the isotopic content of spent fuel based on its burnup history; second, three-dimensional (3-D) criticality calculations are performed based on specific spent fuel packaging configurations. In seeking licensing approval of any BUC approach (e.g., disposal, transportation, or storage) both of these two computational procedures must be validated. This report was prepared in support of the validation process for depletion methods applied in the analysis of spent fuel from commercial light-water-reactor (LWR) designs. Such validation requires the comparison of computed isotopic compositions with those measured via radiochemical assay to assess the ability of a computer code to predict the contents of spent fuel samples. The purpose of this report is to address the availability and appropriateness of measured data for use in the validation of isotopic depletion methods. Although validation efforts to date at ORNL have been based on calculations using the SAS2H depletion sequence of the SCALE code system, this report has been prepared as an overview of potential sources of validation data independent of the code system used. However, data that are identified as in use in this report refer to earlier validation work performed using SAS2H in support of BUC. This report is the result of a study of available assay data, using the experience gained in spent fuel isotopic validation and with a consideration of the validation issues described earlier. This report recommends the suitability of each set of data for validation work similar in scope to the earlier work.

  1. Spent fuel dissolution rates as a function of burnup and water chemistry

    SciTech Connect (OSTI)

    Gray, W.J.

    1998-06-01

    To help provide a source term for performance-assessment calculations, dissolution studies on light-water-reactor (LWR) spent fuel have been conducted over the past few years at Pacific Northwest National Laboratory in support of the Yucca Mountain Site Characterization Project. This report describes that work for fiscal years 1996 through mid-1998 and includes summaries of some results from previous years for completeness. The following conclusions were based on the results of various flowthrough dissolution rate tests and on tests designed to measure the inventories of {sup 129}I located within the fuel/cladding gap region of different spent fuels: (1) Spent fuels with burnups in the range 30 to 50 MWd/kgM all dissolved at about the same rate over the conditions tested. To help determine whether the lack of burnup dependence extends to higher and lower values, tests are in progress or planned for spent fuels with burnups of 13 and {approximately} 65 MWd/kgM. (2) Oxidation of spent fuel up to the U{sub 4}O{sub 9+x} stage does not have a large effect on intrinsic dissolution rates. However, this degree of oxidation could increase the dissolution rates of relatively intact fuel by opening the grain boundaries, thereby increasing the effective surface area that is available for contact by water. From a disposal viewpoint, this is a potentially more important consideration than the effect on intrinsic rates. (3) The gap inventories of {sup 129}I were found to be smaller than the fission gas release (FGR) for the same fuel rod with the exception of the rod with the highest FGR. Several additional fuels would have to be tested to determine whether a generalized relationship exists between FGR and {sup 129}I gap inventory for US LWR fuels.

  2. Assessment of spent-fuel waste-form/stabilizer alternatives for geologic disposal

    SciTech Connect (OSTI)

    Einziger, R.E.; Himes, D.A.

    1982-06-01

    The Office of Nuclear Waste Isolation (ONWI) is studying the possibility of burying canisterized unreprocessed spent fuel in a deep geologic repository. One aspect of this study is an assessment of the possible spent fuel waste forms. The fuel performance portion of the Waste Form Assessment was to evaluate five candidate spent fuel waste forms for postemplacement performance with emphasis on their ability to retard the release of radionuclides to the repository geology. Spent fuel waste forms under general consideration were: (1) unaltered fuel assembly; (2) fuel assembly with end fittings removed to shorten the length; (3 rods vented to remove gases and resealed; (4) disassembled fuel bundles to close-pack the rods; and (5) rods chopped and fragments immobilized in a matrix material. Thirteen spent fuel waste forms, classified by generic stabilizer type, were analyzed for relative in-repository performance based on: (1) waste form/stabilizer support against lithostatic pressure; (2) long-term stability for radionuclide retention; (3) minimization of cladding degradation; (4) prevention of canister/repository breach due to pressurization; (5) stabilizer heat transfer; (6) the stabilizer as an independent barrier to radionuclide migration; and (7) prevention of criticality. The waste form candidates were ranked as follows: (1) the best waste form/stabilizer combination is the intact assembly, with or without end bells, vented (and resealed) or unvented, with a solid stabilizer; (2) a suitable alternative is the combination of bundled close-packed rods with a solid stabilizer around the outside of the bundle to resist lithostatic pressure; and (3) the other possible waste forms are of lower ranking with the worst waste form/stabilizer combination being the intact assembly with a gas stabilizer or the chopped fuel.

  3. Foreign Research Reactor Spent Nuclear Fuel Acceptance Program

    National Nuclear Security Administration (NNSA)

    * Complete reactor control rod system. * Note: Does not include the steam turbine generator portion of the power plant. - Sensitive nuclear technology: Any information...

  4. Idaho Spent Fuel Facility (ISFF) Project, Appropriate Acquisition Strategy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11,SecurityHome . FormDepartmentIVANPAHDemolitionLessons

  5. Safeguards Guidance for Independent Spent Fuel Storage Installations (ISFSI)

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4) August 20123/%2A en NNSAReference to Mod/%2A19FY41)

  6. Behavior of Spent Nuclear Fuel in Water Pool Storage

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report: Achievements of structural genomicsOffice ofobservations

  7. President Reagan Calls for a National Spent Fuel Storage Facility |

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal of HonorPosterNational Nuclear SecuritySecurityNuclearNational

  8. Huizenga leads safety of spent fuel management, radioactive waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (JournalvivoHigh energyHighlandWorkshop-SummerHow is theHugh O'Neill

  9. Table 3. Annual commercial spent fuel discharges and burnup

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979 1.988 1.996Deutsche Bank AGTotal96 Created on:

  10. Spent fuel sabotage aerosol test program :FY 2005-06 testing and aerosol data summary.

    SciTech Connect (OSTI)

    Gregson, Michael Warren; Brockmann, John E.; Nolte, O. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Loiseau, O. (Institut de radioprotection et de Surete Nucleaire, France); Koch, W. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno (Institut de radioprotection et de Surete Nucleaire, France); Pretzsch, Gunter Guido (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Billone, M. C. (Argonne National Laboratory, USA); Lucero, Daniel A.; Burtseva, T. (Argonne National Laboratory, USA); Brucher, W (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

    2006-10-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides source-term data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This document focuses on an updated description of the test program and test components for all work and plans made, or revised, primarily during FY 2005 and about the first two-thirds of FY 2006. It also serves as a program status report as of the end of May 2006. We provide details on the significant findings on aerosol results and observations from the recently completed Phase 2 surrogate material tests using cerium oxide ceramic pellets in test rodlets plus non-radioactive fission product dopants. Results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; status on determination of the spent fuel ratio, SFR (the ratio of respirable particles from real spent fuel/respirables from surrogate spent fuel, measured under closely matched test conditions, in a contained test chamber); and, measurements of enhanced volatile fission product species sorption onto respirable particles. We discuss progress and results for the first three, recently performed Phase 3 tests using depleted uranium oxide, DUO{sub 2}, test rodlets. We will also review the status of preparations and the final Phase 4 tests in this program, using short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. These data plus testing results and design are tailored to support and guide, follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage--aerosol test program, performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission, had significant inputs from, and is strongly supported and coordinated by both the U.S. and international program participants in Germany, France, and the U.K., as part of the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC.

  11. Colloids generation from metallic uranium fuel

    SciTech Connect (OSTI)

    Metz, C.; Fortner, J.; Goldberg, M.; Shelton-Davis, C.

    2000-07-20

    The possibility of colloid generation from spent fuel in an unsaturated environment has significant implications for storage of these fuels in the proposed repository at Yucca Mountain. Because colloids can act as a transport medium for sparingly soluble radionuclides, it might be possible for colloid-associated radionuclides to migrate large distances underground and present a human health concern. This study examines the nature of colloidal materials produced during corrosion of metallic uranium fuel in simulated groundwater at elevated temperature in an unsaturated environment. Colloidal analyses of the leachates from these corrosion tests were performed using dynamic light scattering and transmission electron microscopy. Results from both techniques indicate a bimodal distribution of small discrete particles and aggregates of the small particles. The average diameters of the small, discrete colloids are {approximately}3--12 nm, and the large aggregates have average diameters of {approximately}100--200 nm. X-ray diffraction of the solids from these tests indicates a mineral composition of uranium oxide or uranium oxy-hydroxide.

  12. Literature review of intrinsic actinide colloids related to spent fuel waste package release rates

    SciTech Connect (OSTI)

    Zhao, P.; Steward, S.A.

    1997-01-01

    Existence of actinide colloids provides an important mechanism in the migration of radionuclides and will be important in performance of a geologic repository for high-level nuclear waste. Actinide colloids have been formed during long-term unsaturated dissolution of spent fuel by groundwater. This article summarizes a literature search of actinide colloids. This report emphasizes the formation of intrinsic actinide colloids, because they would have the opportunity to form soon after groundwater contact with the spent fuel and before actinide-bearing groundwater reaches the surrounding geologic formations.

  13. Spent fuel performance data: An analysis of data relevant to the NNWSI Project

    SciTech Connect (OSTI)

    Oversby, V.M.; Shaw, H.F.

    1987-08-01

    This paper summarizes the physical and chemical properties of spent light water reactor fuel that might influence its performance as a waste form under geologic disposal conditions at Yucca Mountain, Nevada. Results obtained on the dissolution testing of spent fuel conducted by the NNWSI Project are presented and discussed. Work published by other programs, in particular those of Canada and Sweden, are reviewed and compared with the NNWSI testing results. An attempt is made to relate all of the results to a common basis of presentation and to rationalize apparent conflicts between sets of results obtained under different experimental conditions.

  14. Assessment of the safety of spent fuel transportation in urban environs

    SciTech Connect (OSTI)

    Sandoval, R.P.; Weber, J.P.; Levine, H.S.; Romig, A.D.; Johnson, J.D.; Luna, R.E.; Newton, G.J.; Wong, B.A.; Marshall, R.W. Jr.; Alvarez, J.L.

    1983-06-01

    The results of a program to provide an experimental data base for estimating the radiological consequences from a hypothetical sabotage attack on a light-water-reactor spent fuel shipping cask in a densely populated area are presented. The results of subscale and full-scale experiments in conjunction with an analytical modeling study are described. The experimental data were used as input to a reactor-safety consequence model to predict radiological health consequences resulting from a hypothetical sabotage attack on a spent-fuel shipping cask in the Manhattan borough of New York City. The results of these calculations are presented.

  15. Chemical Reactivity Testing for the National Spent Nuclear Fuel Program. Quality Assurance Project Plan

    SciTech Connect (OSTI)

    Newsom, H.C.

    1999-01-24

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of Work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, QA-101PD, revision 1, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted.

  16. Implementation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    SciTech Connect (OSTI)

    Stewart, L.; Tonkay, D.

    2004-10-03

    This paper discusses the implementation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. The Joint Convention: establishes a commitment with respect to safe management of spent nuclear fuel and radioactive waste; requires the Parties to ''take appropriate steps'' to ensure the safety of their spent fuel and waste management activities, but does not delineate standards the Parties must meet; and seeks to attain, through its Contracting Parties, a higher level of safety with respect to management of their spent nuclear fuel, disused sealed sources, and radioactive waste.

  17. Spent Nuclear Fuel Self-Induced XRF to Predict Pu to U Content 

    E-Print Network [OSTI]

    Stafford, Alissa Sarah

    2010-10-12

    Los Alamos National Laboratory LEGe Low Energy Germanium Detector LWR Light Water Reactor MC&A Material Control and Accountability MCNP Monte Carlo N?Particle NDA Nondestructive Assay NRC Nuclear Regulatory Committee NRF... measurements would not reflect the Pu to U ratio measured results. Also, for LWR fuel the Pu content is ~1% whereas for fast reactor fuel the Pu content may be 40%. Bushuev?s work showed that distinguishing Pu x-rays in the spent fuel gamma spectrum...

  18. Spent nuclear fuel discharges from US reactors 1992

    SciTech Connect (OSTI)

    Not Available

    1994-05-05

    This report provides current statistical data on every fuel assembly irradiated in commercial nuclear reactors operating in the United States. It also provides data on the current inventories and storage capacities of those reactors to a wide audience, including Congress, Federal and State agencies, the nuclear and electric industries and the general public. It uses data from the mandatory, ``Nuclear Fuel Data`` survey, Form RW-859 for 1992 and historical data collected by the Energy Information Administration (EIA) on previous Form RW-859 surveys. The report was prepared by the EIA under a Memorandum of Understanding with the Office of Civilian Radioactive Waste Management.

  19. Behavior of Spent Nuclear Fuel in Water Pool Storage

    Office of Scientific and Technical Information (OSTI)

    Chief, Waste Management Branch NRC D i v i s i o n o f M a t e r i a l s and Fuel Cycle F a c i l i t y L i c e n s i n g Washington, DC 20555 W. G. Be1 t e r ERDA D i v i s...

  20. Plan for characterization of K Basin spent nuclear fuel and sludge

    SciTech Connect (OSTI)

    Lawrence, L.A.; Marschman, S.C.

    1995-06-01

    This plan outlines a characterization program that supports the accelerated Path Forward scope and schedules for the Spent Nuclear Fuel stored in the Hanford K Basins. This plan is driven by the schedule to begin fuel transfer by December 1997. The program is structured for 4 years and is limited to in-situ and laboratory examinations of the spent nuclear fuel and sludge in the K East and K West Basins. The program provides bounding behavior of the fuel, and verification and acceptability for three different sludge disposal pathways. Fuel examinations are based on two shipping campaigns for the K West Basin and one from the K East Basin. Laboratory examinations include physical condition, hydride and oxide content, conditioning testing, and dry storage behavior.

  1. LWR fuel assembly designs for the transmutation of LWR Spent Fuel TRU with FCM and UO{sub 2}-ThO{sub 2} Fuels

    SciTech Connect (OSTI)

    Bae, G.; Hong, S. G.

    2013-07-01

    In this paper, transmutation of transuranic (TRU) nuclides from LWR spent fuels is studied by using LWR fuel assemblies which consist of UO{sub 2}-ThO{sub 2} fuel pins and FCM (Fully Ceramic Microencapsulated) fuel pins. TRU from LWR spent fuel is loaded in the kernels of the TRISO particle fuels of FCM fuel pins. In the FCM fuel pins, the TRISO particle fuels are distributed in SiC matrix having high thermal conductivity. The loading patterns of fuel pins and the fuel compositions are searched to have high transmutation rate and feasible neutronic parameters including pin power peaking, temperature reactivity coefficients, and cycle length. All studies are done only in fuel assembly calculation level. The results show that our fuel assembly designs have good transmutation performances without multi-recycling and without degradation of the safety-related neutronic parameters. (authors)

  2. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOE Patents [OSTI]

    Gillett, J.E.; Dederer, J.T.; Zafred, P.R.; Collie, J.C.

    1998-04-21

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack. 8 figs.

  3. Solid oxide fuel cell generator with removable modular fuel cell stack configurations

    DOE Patents [OSTI]

    Gillett, James E. (Greensburg, PA); Dederer, Jeffrey T. (Valencia, PA); Zafred, Paolo R. (Pittsburgh, PA); Collie, Jeffrey C. (Pittsburgh, PA)

    1998-01-01

    A high temperature solid oxide fuel cell generator produces electrical power from oxidation of hydrocarbon fuel gases such as natural gas, or conditioned fuel gases, such as carbon monoxide or hydrogen, with oxidant gases, such as air or oxygen. This electrochemical reaction occurs in a plurality of electrically connected solid oxide fuel cells bundled and arrayed in a unitary modular fuel cell stack disposed in a compartment in the generator container. The use of a unitary modular fuel cell stack in a generator is similar in concept to that of a removable battery. The fuel cell stack is provided in a pre-assembled self-supporting configuration where the fuel cells are mounted to a common structural base having surrounding side walls defining a chamber. Associated generator equipment may also be mounted to the fuel cell stack configuration to be integral therewith, such as a fuel and oxidant supply and distribution systems, fuel reformation systems, fuel cell support systems, combustion, exhaust and spent fuel recirculation systems, and the like. The pre-assembled self-supporting fuel cell stack arrangement allows for easier assembly, installation, maintenance, better structural support and longer life of the fuel cells contained in the fuel cell stack.

  4. Spent fuel sabotage test program, characterization of aerosol dispersal : interim final report.

    SciTech Connect (OSTI)

    Gregson, Michael Warren; Brockmann, John E.; Loiseau, Olivier (Institut de Radioprotection et de Surete Nucleaire, France); Klennert, Lindsay A.; Nolte, Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno A. (Institut de Radioprotection et de Surete Nucleaire, France); Koch, Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Brucher, Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

    2008-03-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO{sub 2}, CeO{sub 2}, plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively supported and coordinated by both the U.S. and international program participants in Germany, France, and others, as part of the International Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC).

  5. Acceptance of spent nuclear fuel in multiple element sealed canisters by the Federal Waste Management System

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    This report is one of a series of eight prepared by E.R. Johnson Associates, Inc. (JAI) under ORNL's contract with DOE's OCRWM Systems Integration Program and in support of the Annual Capacity Report (ACR) Issue Resolution Process. The report topics relate specifically to the list of high priority technical waste acceptance issues developed jointly by DOE and a utility-working group. JAI performed various analyses and studies on each topic to serve as starting points for further discussion and analysis leading eventually to finalizing the process by which DOE will accept spent fuel and waste into its waste management system. The eight reports are concerned with the conditions under which spent fuel and high level waste will be accepted in the following categories: (1) failed fuel; (2) consolidated fuel and associated structural parts; (3) non-fuel-assembly hardware; (4) fuel in metal storage casks; (5) fuel in multi-element sealed canisters; (6) inspection and testing requirements for wastes; (7) canister criteria; (8) spent fuel selection for delivery; and (9) defense and commercial high-level waste packages. 14 refs., 27 figs.

  6. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1, Appendix C, Savannah River Site Spent Nuclear Fuel Mangement Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The US Department of Energy (DOE) is engaged in two related decision making processes concerning: (1) the transportation, receipt, processing, and storage of spent nuclear fuel (SNF) at the DOE Idaho National Engineering Laboratory (INEL) which will focus on the next 10 years; and (2) programmatic decisions on future spent nuclear fuel management which will emphasize the next 40 years. DOE is analyzing the environmental consequences of these spent nuclear fuel management actions in this two-volume Environmental Impact Statement (EIS). Volume 1 supports broad programmatic decisions that will have applicability across the DOE complex and describes in detail the purpose and need for this DOE action. Volume 2 is specific to actions at the INEL. This document, which limits its discussion to the Savannah River Site (SRS) spent nuclear fuel management program, supports Volume 1 of the EIS. Following the introduction, Chapter 2 contains background information related to the SRS and the framework of environmental regulations pertinent to spent nuclear fuel management. Chapter 3 identifies spent nuclear fuel management alternatives that DOE could implement at the SRS, and summarizes their potential environmental consequences. Chapter 4 describes the existing environmental resources of the SRS that spent nuclear fuel activities could affect. Chapter 5 analyzes in detail the environmental consequences of each spent nuclear fuel management alternative and describes cumulative impacts. The chapter also contains information on unavoidable adverse impacts, commitment of resources, short-term use of the environment and mitigation measures.

  7. FIELD-DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    SciTech Connect (OSTI)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-09-12

    Methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of aqueous spent fuel storage basins and determine the oxide thickness on the spent fuel basin materials were developed to assess the corrosion potential of a basin. this assessment can then be used to determine the amount of time fuel has spent in a storage basin to ascertain if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations and assist in evaluating general storage basin operations. The test kit was developed based on the identification of key physical, chemical and microbiological parameters identified using a review of the scientific and basin operations literature. The parameters were used to design bench scale test cells for additional corrosion analyses, and then tools were purchased to analyze the key parameters. The tools were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The sampling kit consisted of a total organic carbon analyzer, an YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization confirmed that the L Area basin is a well operated facility with low corrosion potential.

  8. Evaluation of Radiation Impacts of Spent Nuclear Fuel Storage (SNFS-2) of Chernobyl NPP - 13495

    SciTech Connect (OSTI)

    Paskevych, Sergiy; Batiy, Valiriy; Sizov, Andriy; Schmieman, Eric

    2013-07-01

    Radiation effects are estimated for the operation of a new dry storage facility for spent nuclear fuel (SNFS-2) of Chernobyl NPP RBMK reactors. It is shown that radiation exposure during normal operation, design and beyond design basis accidents are minor and meet the criteria for safe use of radiation and nuclear facilities in Ukraine. (authors)

  9. Nuclear forensics: attributing the source of spent fuel used in an RDD event 

    E-Print Network [OSTI]

    Scott, Mark Robert

    2005-08-29

    . Project Overview ...................................... 6 C. The Theory Behind the Inverse Problem................... 11 II MONITOR DEVELOPMENT.................................... 15 A. Burnup ............................................. 15 B... for PWR spent fuel and a large 60Co source. ................................................... 5 Overview of RDD material attribution project .................... 7 235U fission yield curve versus isotope mass for a U.S. PWR ........ 11 Comparison...

  10. Assessment of the Fingerprinting Method for Spent Fuel Verification in MACSTOR KN-400 CANDU Dry Storage 

    E-Print Network [OSTI]

    Gowthahalli Chandregowda, Nandan

    2012-10-19

    The Korea Hydro and Nuclear Power has built a new modular type of dry storage facility, known as MACSTOR KN-400 at Wolsong reactor site. The building has the capacity to store up to 24000 CANDU spent fuel bundles in a 4 rows by 10 columns...

  11. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    SciTech Connect (OSTI)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented. 6 references, 4 figures.

  12. Radionuclide release from PWR spent fuel specimens with induced cladding defects

    SciTech Connect (OSTI)

    Wilson, C.N.; Oversby, V.M.

    1984-03-01

    Radionuclide releases from pressurized water reactor (PWR) spent fuel rod specimens containing various artificially induced cladding defects were compared by leach testing. The study was conducted in support of the Nevada Nuclear Waste Storage Investigations (NNWSI) Waste Package Task to evaluate the effectiveness of failed cladding as a barrier to radionuclide release. Test description and results are presented.

  13. Preliminary waste acceptance criteria for the ICPP spent fuel and waste management technology development program

    SciTech Connect (OSTI)

    Taylor, L.L.; Shikashio, R.

    1993-09-01

    The purpose of this document is to identify requirements to be met by the Producer/Shipper of Spent Nuclear Fuel/High-LeveL Waste SNF/HLW in order for DOE to be able to accept the packaged materials. This includes defining both standard and nonstandard waste forms.

  14. Characterization program management plan for Hanford K basin spent nuclear fuel

    SciTech Connect (OSTI)

    TRIMBLE, D.J.

    1999-07-19

    The program management plan for characterization of the K Basin spent nuclear fuel was revised to incorporate corrective actions in response to SNF Project QA surveillance 1K-FY-99-060. This revision of the SNF Characterization PMP replaces Duke Eng.

  15. Characterization program management plan for Hanford K Basin spent nuclear fuel

    SciTech Connect (OSTI)

    Lawrence, L.A.

    1998-05-14

    The management plan developed to characterize the K Basin Spent Nuclear Fuel was revised to incorporate actions necessary to comply with the Office of Civilian Radioactive Waste Management Quality Assurance Requirements Document 0333P. This plan was originally developed for Westinghouse Hanford Company and Pacific Northwest National Laboratory to work together on a program to provide characterization data to support removal, conditioning, and subsequent dry storage of the spent nuclear fuels stored at the Hanford K Basins. This revision to the Program Management Plan replaces Westinghouse Hanford Company with Duke Engineering and Services Hanford, Inc., updates the various activities where necessary, and expands the Quality Assurance requirements to meet the applicable requirements document. Characterization will continue to utilize the expertise and capabilities of both organizations to support the Spent Nuclear Fuels Project goals and objectives. This Management Plan defines the structure and establishes the roles for the participants providing the framework for Duke Engineering and Services Hanford, Inc. and Pacific Northwest National Laboratory to support the Spent Nuclear Fuels Project at Hanford.

  16. TOPICAL REPORT ON ACTINIDE-ONLY BURNUP CREDIT FOR PWR SPENT NUCLEAR FUEL PACKAGES

    SciTech Connect (OSTI)

    DOE

    1997-04-01

    A methodology for performing and applying nuclear criticality safety calculations, for PWR spent nuclear fuel (SNF) packages with actinide-only burnup credit, is described. The changes in the U-234, U-235, U-236, U-238, Pu-238, Pu-239, Pu-240, Pu-241, Pu-242, and Am-241 concentration with burnup are used in burnup credit criticality analyses. No credit for fission product neutron absorbers is taken. The methodology consists of five major steps. (1) Validate a computer code system to calculate isotopic concentrations of SNF created during burnup in the reactor core and subsequent decay. A set of chemical assay benchmarks is presented for this purpose as well as a method for assessing the calculational bias and uncertainty, and conservative correction factors for each isotope. (2) Validate a computer code system to predict the subcritical multiplication factor, k{sub eff}, of a spent nuclear fuel package. Fifty-seven UO{sub 2}, UO{sub 2}/Gd{sub 2}O{sub 3}, and UO{sub 2}/PuO{sub 2} critical experiments have been selected to cover anticipated conditions of SNF. The method uses an upper safety limit on k{sub eff} (which can be a function of the trending parameters) such that the biased k{sub eff}, when increased for the uncertainty is less than 0.95. (3) Establish bounding conditions for the isotopic concentration and criticality calculations. Three bounding axial profiles have been established to assure the ''end effect'' is accounted for conservatively. (4) Use the validated codes and bounding conditions to generate package loading criteria (burnup credit loading curves). Burnup credit loading curves show the minimum burnup required for a given initial enrichment. The utility burnup record is compared to this requirement after the utility accounts for the uncertainty in its record. Separate curves may be generated for each assembly design, various minimum cooling times and burnable absorber histories. (5) Verify that SNF assemblies meet the package loading criteria and confirm proper assembly selection prior to loading. A measurement of the average assembly burnup is required and that measurement must be within 10% of the utility burnup record for the assembly to be accepted. The measurement device must be accurate to within 10%. Each step is described in detail for use with any computer code system and is then demonstrated with the SCALE 4.2 computer code package using 27BURNUPLIB cross sections.

  17. An integrated approach for determining plutonium mass in spent fuel assemblies with nondestructive assay

    SciTech Connect (OSTI)

    Swinhoe, Martyn T [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Fensin, Mike L [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory

    2009-01-01

    There are a variety of reasons for quantifying plutonium (Pu) in spent fuel. Below, five motivations are listed: (1) To verify the Pu content of spent fuel without depending on unverified information from the facility, as requested by the IAEA ('independent verification'). New spent fuel measurement techniques have the potential to allow the IAEA to recover continuity of knowledge and to better detect diversion. (2) To assure regulators that all of the nuclear material of interest leaving a nuclear facility actually arrives at another nuclear facility ('shipper/receiver'). Given the large stockpile of nuclear fuel at reactor sites around the world, it is clear that in the coming decades, spent fuel will need to be moved to either reprocessing facilities or storage sites. Safeguarding this transportation is of significant interest. (3) To quantify the Pu in spent fuel that is not considered 'self-protecting.' Fuel is considered self-protecting by some regulatory bodies when the dose that the fuel emits is above a given level. If the fuel is not self-protecting, then the Pu content of the fuel needs to be determined and the Pu mass recorded in the facility's accounting system. This subject area is of particular interest to facilities that have research-reactor spent fuel or old light-water reactor (LWR) fuel. It is also of interest to regulators considering changing the level at which fuel is considered self-protecting. (4) To determine the input accountability value at an electrochemical processing facility. It is not expected that an electrochemical reprocessing facility will have an input accountability tank, as is typical in an aqueous reprocessing facility. As such, one possible means of determining the input accountability value is to measure the Pu content in the spent fuel that arrives at the facility. (5) To fully understand the composition of the fuel in order to efficiently and safely pack spent fuel into a long-term repository. The NDA of spent fuel can be part of a system that cost-effectively meets the burnup credit needs of a repository. Behind each of these reasons is a regulatory structure with MC&A requirements. In the case of the IAEA, the accountable quantity is elemental plutonium. The material in spent fuel (fissile isotopes, fission products, etc.) emits signatures that provide information about the content and history of the fuel. A variety of nondestructive assay (NDA) techniques are available to quantify these signatures. The effort presented in this paper is investigation of the capabilities of 12 NDA techniques. For these 12, none is conceptually capable of independently determining the Pu content in a spent fuel assembly while at the same time being able to detect the diversion of a significant quantity of rods. For this reason the authors are investigating the capability of 12 NDA techniques with the end goal of integrating a few techniques together into a system that is capable of measuring Pu mass in an assembly. The work described here is the beginning of what is anticipated to be a five year effort: (1) two years of modeling to select the best technologies, (2) one year fabricating instruments and (3) two years measuring spent fuel. This paper describes the first two years of this work. In order to cost effectively and robustly model the performance of the 12 NDA techniques, an 'assembly library' was created. The library contains the following: (a) A diverse range of PWR spent fuel assemblies (burnup, enrichment, cooling time) similar to that which exists in spent pools today and in the future. (b) Diversion scenarios that capture a range of possible rod removal options. (c) The spatial and isotopic detail needed to accurately quantify the capability of all the NDA techniques so as to enable integration. It is our intention to make this library available to other researchers in the field for inter-comparison purposes. The performance of each instrument will be quantified for the full assembly library for measurements in three different media: air, water and borated water. The 12 NDA te

  18. Analysis of Experimental Data for High Burnup PWR Spent Fuel Isotopic Validation - Vandellos II Reactor

    SciTech Connect (OSTI)

    Ilas, Germina; Gauld, Ian C

    2011-01-01

    This report is one of the several recent NUREG/CR reports documenting benchmark-quality radiochemical assay data and the use of the data to validate computer code predictions of isotopic composition for spent nuclear fuel, to establish the uncertainty and bias associated with code predictions. The experimental data analyzed in the current report were acquired from a high-burnup fuel program coordinated by Spanish organizations. The measurements included extensive actinide and fission product data of importance to spent fuel safety applications, including burnup credit, decay heat, and radiation source terms. Six unique spent fuel samples from three uranium oxide fuel rods were analyzed. The fuel rods had a 4.5 wt % {sup 235}U initial enrichment and were irradiated in the Vandellos II pressurized water reactor operated in Spain. The burnups of the fuel samples range from 42 to 78 GWd/MTU. The measurements were used to validate the two-dimensional depletion sequence TRITON in the SCALE computer code system.

  19. Microstructural characteristics of PWR spent fuel relative to its leaching behavior

    SciTech Connect (OSTI)

    Wilson, C.N.

    1985-11-01

    Microstructural, compositional and thermochemical properties of spent nuclear fuel are discussed relative to its potential performance as a high-level waste form under proposed Nevada Nuclear Waste Storage Investigations Project tuff repository conditions. Pressurized water reactor spent fuel specimens with various artificially induced cladding defects were leach tested in deionized water and in a reference tuff groundwater under ambient hot cell air and temperature conditions. Greater fractional actinide release was observed with bare fuel than with clad fuel leached through a cladding defect. Congruent actinide release and preferential release of cesium and technetium were observed in both water types. Selected summary radionuclide release data are presented and correlated to pre- and post-test microstructural characterization data.

  20. Microstructural characteristics of PWR [pressurized water reactor] spent fuel relative to its leaching behavior

    SciTech Connect (OSTI)

    Wilson, C.N.

    1986-01-01

    Microstructural, compositional and thermochemical properties of spent nuclear fuel are discussed relative to its potential performance as a high-level waste form under proposed Nevada Nuclear Waste Storage Investigations Project tuff repository conditions. Pressurized water reactor spent fuel specimens with various artificially induced cladding defects were leach tested in deionized water and in a reference tuff groundwater under ambient hot cell air and temperature conditions. Greater fractional actinide release was observed with bare fuel than with clad fuel leached through a cladding defect. Congruent actinide release and preferential release of cesium and technetium were observed in both water types. Selected summary radionuclide release data are presented and correlated to pre- and post-test microstructural characterization data.

  1. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs draft environmental impact statement. Volume 1, Appendix B: Idaho National Engineering Laboratory Spent Nuclear Fuel Management Program

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    The US Department of Energy (DOE) has prepared this report to assist its management in making two decisions. The first decision, which is programmatic, is to determine the management program for DOE spent nuclear fuel. The second decision is on the future direction of environmental restoration, waste management, and spent nuclear fuel management activities at the Idaho National Engineering Laboratory. Volume 1 of the EIS, which supports the programmatic decision, considers the effects of spent nuclear fuel management on the quality of the human and natural environment for planning years 1995 through 2035. DOE has derived the information and analysis results in Volume 1 from several site-specific appendixes. Volume 2 of the EIS, which supports the INEL-specific decision, describes environmental impacts for various environmental restoration, waste management, and spent nuclear fuel management alternatives for planning years 1995 through 2005. This Appendix B to Volume 1 considers the impacts on the INEL environment of the implementation of various DOE-wide spent nuclear fuel management alternatives. The Naval Nuclear Propulsion Program, which is a joint Navy/DOE program, is responsible for spent naval nuclear fuel examination at the INEL. For this appendix, naval fuel that has been examined at the Naval Reactors Facility and turned over to DOE for storage is termed naval-type fuel. This appendix evaluates the management of DOE spent nuclear fuel including naval-type fuel.

  2. Investigation of Electrochemical Recovery of Zirconium from Spent Nuclear Fuels

    SciTech Connect (OSTI)

    Michael Simpson; II-Soon Hwang

    2014-06-01

    This project uses both modeling and experimental studies to design optimal electrochemical technology methods for recovery of zirconium from used nuclear fuel rods for more effective waste management. The objectives are to provide a means of efficiently separating zirconium into metallic high-level waste forms and to support development of a process for decontamination of zircaloy hulls to enable their disposal as low- and intermediate-level waste. Modeling work includes extension of a 3D model previously developed by Seoul National University for uranium electrorefining by adding the ability to predict zirconium behavior. Experimental validation activities include tests for recovery of zirconium from molten salt solutions and aqueous tests using surrogate materials. *This is a summary of the FY 2013 progress for I-NERI project # 2010-001-K provided to the I-NERI office.

  3. MELCOR model for an experimental 17x17 spent fuel PWR assembly.

    SciTech Connect (OSTI)

    Cardoni, Jeffrey

    2010-11-01

    A MELCOR model has been developed to simulate a pressurized water reactor (PWR) 17 x 17 assembly in a spent fuel pool rack cell undergoing severe accident conditions. To the extent possible, the MELCOR model reflects the actual geometry, materials, and masses present in the experimental arrangement for the Sandia Fuel Project (SFP). The report presents an overview of the SFP experimental arrangement, the MELCOR model specifications, demonstration calculation results, and the input model listing.

  4. Interface agreement for the management of 308 Building Spent Nuclear Fuel. Revision 1

    SciTech Connect (OSTI)

    Danko, A.D.

    1995-12-22

    The Hanford Site Spent Nuclear Fuel (SNF) Project was formed to manage the SNF at Hanford. Specifically, the mission of the SNF Project on the Hanford Site is to ``provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it for final disposition.`` The current mission of the Fuel Fabrication Facilities Transition Project (FFFTP) is to transition the 308 Building for turn over to the Environmental Restoration Contractor for decontamination and decommissioning.

  5. Disposal options for burner ash from spent graphite fuel. Final study report November 1993

    SciTech Connect (OSTI)

    Pinto, A.P.

    1994-08-01

    Three major disposal alternatives are being considered for Fort St. Vrain Reactor (FSVR) and Peach Bottom Reactor (PBR) spent fuels: direct disposal of packaged, intact spent fuel elements; (2) removal of compacts to separate fuel into high-level waste (HLW) and low-level waste (LLW); and (3) physical/chemical processing to reduce waste volumes and produce stable waste forms. For the third alternative, combustion of fuel matrix graphite and fuel particle carbon coatings is a preferred technique for head-end processing as well as for volume reduction and chemical pretreatment prior to final fixation, packaging, and disposal of radioactive residuals (fissile and fertile materials together with fission and activation products) in a final repository. This report presents the results of a scoping study of alternate means for processing and/or disposal of fissile-bearing particles and ash remaining after combustion of FSVR and PBR spent graphite fuels. Candidate spent fuel ash (SFA) waste forms in decreasing order of estimated technical feasibility include glass-ceramics (GCs), polycrystalline ceramic assemblages (PCAs), and homogeneous amorphous glass. Candidate SFA waste form production processes in increasing order of estimated effort and cost for implementation are: low-density GCs via fuel grinding and simultaneous combustion and waste form production in a slagging cyclone combustor (SCC); glass or low-density GCs via fluidized bed SFA production followed by conventional melting of SFA and frit; PCAs via fluidized bed SFA production followed by hot isostatic pressing (HIPing) of SFA/frit mixtures; and high-density GCs via fluidized bed SFA production followed by HIPing of Calcine/Frit/SFA mixtures.

  6. Precisely determined the spent nuclear fuel antineutrino flux and spectrum for Daya Bay antineutrino experiment

    E-Print Network [OSTI]

    Ma, X B; Chen, Y X; Zhong, W L; An, F P

    2015-01-01

    Spent nuclear fuel (SNF) antineutrino flux is an important source of uncertainties for a reactor neutrino flux prediction. However, if one want to determine the contribution of spent fuel, many data are needed, such as the amount of spent fuel in the pool, the time after discharged from the reactor core, the burnup of each assembly, and the antineutrino spectrum of the isotopes in the spend fuel. A method to calculate the contribution of SNF is proposed in this study. In this method, reactor simulation code verified by experiment have been used to simulate the fuel depletion by taking into account more than 2000 isotopes and fission products, the quantity of SNF in each six spend fuel pool, and the antineutrino spectrum of SNF varying with time after SNF discharged from core. Results show that the contribution of SNF to the total antineutrino flux is about 0.26%~0.34%, and the shutdown impact is about 20%. The SNF spectrum would distort the softer part of antineutrino spectra, and the maximum contribution fro...

  7. Precisely determined the spent nuclear fuel antineutrino flux and spectrum for Daya Bay antineutrino experiment

    E-Print Network [OSTI]

    X. B. Ma; Y. F. Zhao; Y. X. Chen; W. L. Zhong; F. P. An

    2015-12-23

    Spent nuclear fuel (SNF) antineutrino flux is an important source of uncertainties for a reactor neutrino flux prediction. However, if one want to determine the contribution of spent fuel, many data are needed, such as the amount of spent fuel in the pool, the time after discharged from the reactor core, the burnup of each assembly, and the antineutrino spectrum of the isotopes in the spend fuel. A method to calculate the contribution of SNF is proposed in this study. In this method, reactor simulation code verified by experiment have been used to simulate the fuel depletion by taking into account more than 2000 isotopes and fission products, the quantity of SNF in each six spend fuel pool, and the antineutrino spectrum of SNF varying with time after SNF discharged from core. Results show that the contribution of SNF to the total antineutrino flux is about 0.26%~0.34%, and the shutdown impact is about 20%. The SNF spectrum would distort the softer part of antineutrino spectra, and the maximum contribution from SNF is about 3.0%, but there is 18\\% difference between line evaluate method and under evaluate method. In addition, non-equilibrium effects are also discussed, and the results are compatible with theirs considering the uncertainties.

  8. Full-Scale Cask Testing and Public Acceptance of Spent Nuclear Fuel Shipments - 12254

    SciTech Connect (OSTI)

    Dilger, Fred; Halstead, Robert J.; Ballard, James D.

    2012-07-01

    Full-scale physical testing of spent fuel shipping casks has been proposed by the National Academy of Sciences (NAS) 2006 report on spent nuclear fuel transportation, and by the Presidential Blue Ribbon Commission (BRC) on America's Nuclear Future 2011 draft report. The U.S. Nuclear Regulatory Commission (NRC) in 2005 proposed full-scale testing of a rail cask, and considered 'regulatory limits' testing of both rail and truck casks (SRM SECY-05-0051). The recent U.S. Department of Energy (DOE) cancellation of the Yucca Mountain project, NRC evaluation of extended spent fuel storage (possibly beyond 60-120 years) before transportation, nuclear industry adoption of very large dual-purpose canisters for spent fuel storage and transport, and the deliberations of the BRC, will fundamentally change assumptions about the future spent fuel transportation system, and reopen the debate over shipping cask performance in severe accidents and acts of sabotage. This paper examines possible approaches to full-scale testing for enhancing public confidence in risk analyses, perception of risk, and acceptance of spent fuel shipments. The paper reviews the literature on public perception of spent nuclear fuel and nuclear waste transportation risks. We review and summarize opinion surveys sponsored by the State of Nevada over the past two decades, which show consistent patterns of concern among Nevada residents about health and safety impacts, and socioeconomic impacts such as reduced property values along likely transportation routes. We also review and summarize the large body of public opinion survey research on transportation concerns at regional and national levels. The paper reviews three past cask testing programs, the way in which these cask testing program results were portrayed in films and videos, and examines public and official responses to these three programs: the 1970's impact and fire testing of spent fuel truck casks at Sandia National Laboratories, the 1980's regulatory and demonstration testing of MAGNOX fuel flasks in the United Kingdom (the CEGB 'Operation Smash Hit' tests), and the 1980's regulatory drop and fire tests conducted on the TRUPACT II containers used for transuranic waste shipments to the Waste Isolation Pilot Plant in New Mexico. The primary focus of the paper is a detailed evaluation of the cask testing programs proposed by the NRC in its decision implementing staff recommendations based on the Package Performance Study, and by the State of Nevada recommendations based on previous work by Audin, Resnikoff, Dilger, Halstead, and Greiner. The NRC approach is based on demonstration impact testing (locomotive strike) of a large rail cask, either the TAD cask proposed by DOE for spent fuel shipments to Yucca Mountain, or a similar currently licensed dual-purpose cask. The NRC program might also be expanded to include fire testing of a legal-weight truck cask. The Nevada approach calls for a minimum of two tests: regulatory testing (impact, fire, puncture, immersion) of a rail cask, and extra-regulatory fire testing of a legal-weight truck cask, based on the cask performance modeling work by Greiner. The paper concludes with a discussion of key procedural elements - test costs and funding sources, development of testing protocols, selection of testing facilities, and test peer review - and various methods of communicating the test results to a broad range of stakeholder audiences. (authors)

  9. Plutonium Discharge Rates and Spent Nuclear Fuel Inventory Estimates for Nuclear Reactors Worldwide

    SciTech Connect (OSTI)

    Brian K. Castle; Shauna A. Hoiland; Richard A. Rankin; James W. Sterbentz

    2012-09-01

    This report presents a preliminary survey and analysis of the five primary types of commercial nuclear power reactors currently in use around the world. Plutonium mass discharge rates from the reactors’ spent fuel at reload are estimated based on a simple methodology that is able to use limited reactor burnup and operational characteristics collected from a variety of public domain sources. Selected commercial reactor operating and nuclear core characteristics are also given for each reactor type. In addition to the worldwide commercial reactors survey, a materials test reactor survey was conducted to identify reactors of this type with a significant core power rating. Over 100 material or research reactors with a core power rating >1 MW fall into this category. Fuel characteristics and spent fuel inventories for these material test reactors are also provided herein.

  10. Apparatus and method for reprocessing and separating spent nuclear fuels. [Patent application

    DOE Patents [OSTI]

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.; Coops, M.S.

    1982-01-19

    A method and apparatus for separating and reprocessing spent nuclear fuels includes a separation vessel housing a molten metal solvent in a reaction region, a reflux region positioned above and adjacent to the reaction region, and a porous filter member defining the bottom of the separation vessel in a supporting relationship with the metal solvent. Spent fuels are added to the metal solvent. A nonoxidizing nitrogen-containing gas is introduced into the separation vessel, forming solid actinide nitrides in the metal solvent from actinide fuels, while leaving other fission products in solution. A pressure of about 1.1 to 1.2 atm is applied in the reflux region, forcing the molten metal solvent and soluble fission products out of the vessel, while leaving the solid actinide nitrides in the separation vessel.

  11. Determining plutonium mass in spent fuel using Cf-252 interrogation with prompt neutron detection

    SciTech Connect (OSTI)

    Hu, Jianwei; Tobin, Stephen J; Menlove, Howard O; Croft, Stephen

    2010-01-01

    {sup 252}Cf Interrogation with Prompt Neutron (CIPN) detection is proposed as one of 14 NDA techniques to determine Pu mass in spent fuel assemblies (FAs). CIPN is a low-cost and portable instrument, and it looks like a modified fork detector combined with an active interrogation source. Fission chamber (FC) is chosen as neutron detector because of its insensitivity to {gamma} radiation. The CIPN assay is comprised of two measurements, a background count and an active count, without and with the {sup 252}Cf source next to the fuel respectively. The net signal above background is primarily due to the multiplication of Cf source neutrons caused by the fissile content. The capability of CIPN to detect diversion and to determine fissile content was quantified using MCNPX simulations. New schemes were proposed (such as burnup and cooling time correction, etc.) and the results show that the fissile content of a target spent fuel assembly can be determined using CIPN signal.

  12. Spent Fuel Test - Climax: technical measurements. Interim report, fiscal year 1982

    SciTech Connect (OSTI)

    Patrick, W.C.; Ballou, L.B.; Butkovich, T.R.; Carlson, R.C.; Durham, W.B.; Hage, G.L.; Majer, E.L.; Montan, D.N.; Nyholm, R.A.; Rector, N.L.

    1983-02-01

    The Spent Fuel Test - Climax (SFT-C) is located 420 m below surface in the Climax stock granite on the Nevada Test Site. The test is being conducted for the US Department of Energy (DOE) under the technical direction of the Lawrence Livermore National Laboratory (LLNL). Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized April to May 1980, thus initiating a test with a planned 3- to 5-year fuel storage phase. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. Three exchanges of spent fuel between the SFT-C and a surface storage facility furthered this demonstration. Technical objectives of the test led to development of a technical measurements program, which is the subject of this and two previous interim reports. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the first 2-1/2 years of the test on more than 900 channels. Data continue to be acquired from the test. Some data are now available for analysis and are presented here. Highlights of activities this year include analysis of fracture data obtained during site characterization, laboratory studies of radiation effects and drilling damage in Climax granite, improved calculations of near-field heat transfer and thermomechanical response, a ventilation effects study, and further development of the data acquisition and management systems.

  13. Measurement of plutonium in spent nuclear fuel by self-induced x-ray fluorescence

    SciTech Connect (OSTI)

    Hoover, Andrew S; Rudy, Cliff R; Tobin, Steve J; Charlton, William S; Stafford, A; Strohmeyer, D; Saavadra, S

    2009-01-01

    Direct measurement of the plutonium content in spent nuclear fuel is a challenging problem in non-destructive assay. The very high gamma-ray flux from fission product isotopes overwhelms the weaker gamma-ray emissions from plutonium and uranium, making passive gamma-ray measurements impossible. However, the intense fission product radiation is effective at exciting plutonium and uranium atoms, resulting in subsequent fluorescence X-ray emission. K-shell X-rays in the 100 keV energy range can escape the fuel and cladding, providing a direct signal from uranium and plutonium that can be measured with a standard germanium detector. The measured plutonium to uranium elemental ratio can be used to compute the plutonium content of the fuel. The technique can potentially provide a passive, non-destructive assay tool for determining plutonium content in spent fuel. In this paper, we discuss recent non-destructive measurements of plutonium X-ray fluorescence (XRF) signatures from pressurized water reactor spent fuel rods. We also discuss how emerging new technologies, like very high energy resolution microcalorimeter detectors, might be applied to XRF measurements.

  14. Characterization program management plan for Hanford K Basin Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Lawrence, L.A.

    1995-10-18

    A management plan was developed for Westinghouse Hanford Company (WHC) and Pacific Northwest Laboratories (PNL) to work together on a program to provide characterization data to support removal, conditioning and subsequent dry storage of the spent nuclear fuels stored at the Hanford K Basins. The Program initially supports gathering data to establish the current state of the fuel in the two basins. Data Collected during this initial effort will apply to all SNF Project objectives. N Reactor fuel has been degrading with extended storage resulting in release of material to the basin water in K East and to the closed conisters in K West. Characterization of the condition of these materials and their responses to various conditioning processes and dry storage environments are necessary to support disposition decisions. Characterization will utilize the expertise and capabilities of WHC and PNL organizations to support the Spent Nuclear Fuels Project goals and objectives. This Management Plan defines the structure and establishes the roles for the participants providing the framework for WHC and PNL to support the Spent Nuclear Fuels Project at Hanford

  15. Final Report - Spent Nuclear Fuel Retrieval System Manipulator System Cold Validation Testing

    SciTech Connect (OSTI)

    D.R. Jackson; G.R. Kiebel

    1999-08-24

    Manipulator system cold validation testing (CVT) was performed in support of the Fuel Retrieval System (FRS) Sub-Project, a subtask of the Spent Nuclear Fuel Project at the Hanford Site in Richland, Washington. The FRS will be used to retrieve and repackage K-Basin Spent Nuclear Fuel (SNF) currently stored in old K-Plant storage basins. The FRS is required to retrieve full fuel canisters from the basin; clean the fuel elements inside the canister to remove excessive uranium corrosion products (or sludge); remove the contents from the canisters; and sort the resulting debris, scrap, and fuel for repackaging. The fuel elements and scrap will be collected in fuel storage and scrap baskets in preparation for loading into a multi canister overpack (MCO), while the debris is loaded into a debris bin and disposed of as solid waste. The FRS is composed of three major subsystems. The Manipulator Subsystem provides remote handling of fuel, scrap, and debris; the In-Pool Equipment subsystem performs cleaning of fuel and provides a work surface for handling materials; and the Remote Viewing Subsystem provides for remote viewing of the work area by operators. There are two complete and identical FRS systems, one to be installed in the K-West basin and one to be installed in the K-East basin. Another partial system will be installed in a cold test facility to provide for operator training.

  16. The CASTOR-V/21 PWR spent-fuel storage cask: Testing and analyses: Interim report

    SciTech Connect (OSTI)

    Dziadosz, D.; Moore, E.V.; Creer, J.M.; McCann, R.A.; McKinnon, M.A.; Tanner, J.E.; Gilbert, E.R.; Goodman, R.L.; Schoonen, D.H.; Jensen, M.

    1986-11-01

    A performance test of a Gesellschaft fuer Nuklear Service CASTOR-V/21 pressurized water reactor (PWR) spent fuel storage cask was performed. The test was the first of a series of cask performance tests planned under a cooperative agreement between Virginia Power and the US Department of Energy. The performance test consisted of loading the CASTOR-V/21 cask with 21 PWR spent fuel assemblies from Virginia Power's Surry reactor. Cask surface and fuel assembly guide tube temperatures, and cask surface gamma and neutron dose rates were measured. Testing was performed with vacuum, nitrogen, and helium backfill environments in both vertical and horizontal cask orientations. Limited spent fuel integrity data were also obtained. Results of the performance test indicate the CASTOR-V/21 cask exhibited exceptionally good heat transfer performance which exceeded design expectations. Peak cladding temperatures with helium and nitrogen backfills in a vertical cast orientation and with helium in a horizontal orientation were less than the allowable of 380/sup 0/C with a total cask heat load of 28 kW. Significant convection heat transfer was present in vertical nitrogen and helium test runs as indicated by peak temperatures occurring in the upper regions of the fuel assemblies. Pretest temperature predictions of the HYDRA heat transfer computer program were in good agreement with test data, and post-test predictions agreed exceptionally well (25/sup 0/C) with data. Cask surface gamma and neutron dose rates were measured to be less than the design goal of 200 mrem/h. Localized peaks as high as 163 mrem/h were measured on the side of the cask, but peak dose rates of <75 mrem/h can easily be achieved with minor refinements to the gamma shielding design. From both heat transfer and shielding perspectives, the CASTOR-V/21 cask can, with minor refinements, be effectively implemented at reactor sites and central storage facilities for safe storage of spent fuel.

  17. Regulatory Perspective on Potential Fuel Reconfiguration and Its Implication to High Burnup Spent Fuel Storage and Transportation - 13042

    SciTech Connect (OSTI)

    Li, Zhian; Rahimi, Meraj; Tang, David; Aissa, Mourad; Flaganan, Michelle; Wagner, John C.

    2013-07-01

    The recent experiments conducted by Argonne National Laboratory on high burnup fuel cladding material property show that the ductile to brittle transition temperature of high burnup fuel cladding is dependent on: (1) cladding material, (2) irradiation conditions, and (3) drying-storage histories (stress at maximum temperature) [1]. The experiment results also show that the ductile to brittle temperature increases as the fuel burnup increases. These results indicate that the current knowledge in cladding material property is insufficient to determine the structural performance of the cladding of high burnup fuel after it has been stored in a dry cask storage system for some time. The uncertainties in material property and the elevated ductile to brittle transition temperature impose a challenge to the storage cask and transportation packaging designs because the cask designs may not be able to rely on the structural integrity of the fuel assembly for control of fissile material, radiation source, and decay heat source distributions. The fuel may reconfigure during further storage and/or the subsequent transportation conditions. In addition, the fraction of radioactive materials available for release from spent fuel under normal condition of storage and transport may also change. The spent fuel storage and/or transportation packaging vendors, spent fuel shippers, and the regulator may need to consider this possible fuel reconfiguration and its impact on the packages' ability to meet the safety requirements of Part 72 and Part 71 of Title 10 of the Code of Federal Regulations. The United States Nuclear Regulatory Commission (NRC) is working with the scientists at Oak Ridge National Laboratory (ORNL) to assess the impact of fuel reconfiguration on the safety of the dry storage systems and transportation packages. The NRC Division of Spent Fuel Storage and Transportation has formed a task force to work on the safety and regulatory concerns in relevance to high burnup fuel storage and transportation. This paper discusses the staff's preliminary considerations on the safety implication of fuel reconfiguration with respect to nuclear safety (subcriticality control), radiation shielding, containment, the performance of the thermal functions of the packages, and the retrievability of the contents from regulatory perspective. (authors)

  18. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs, Draft Environmental Impact Statement. Volume 1, Appendix D: Part A, Naval Spent Nuclear Fuel Management

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    Volume 1 to the Department of Energy`s Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Management Programs Environmental Impact Statement evaluates a range of alternatives for managing naval spent nuclear fuel expected to be removed from US Navy nuclear-powered vessels and prototype reactors through the year 2035. The Environmental Impact Statement (EIS) considers a range of alternatives for examining and storing naval spent nuclear fuel, including alternatives that terminate examination and involve storage close to the refueling or defueling site. The EIS covers the potential environmental impacts of each alternative, as well as cost impacts and impacts to the Naval Nuclear Propulsion Program mission. This Appendix covers aspects of the alternatives that involve managing naval spent nuclear fuel at four naval shipyards and the Naval Nuclear Propulsion Program Kesselring Site in West Milton, New York. This Appendix also covers the impacts of alternatives that involve examining naval spent nuclear fuel at the Expended Core Facility in Idaho and the potential impacts of constructing and operating an inspection facility at any of the Department of Energy (DOE) facilities considered in the EIS. This Appendix also considers the impacts of the alternative involving limited spent nuclear fuel examinations at Puget Sound Naval Shipyard. This Appendix does not address the impacts associated with storing naval spent nuclear fuel after it has been inspected and transferred to DOE facilities. These impacts are addressed in separate appendices for each DOE site.

  19. Spent Nuclear Fuel Project FY 1996 Multi-Year Program Plan WBS No. 1.4.1, Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    This document describes the Spent Nuclear Fuel (SNF) Project portion of the Hanford Strategic Plan for the Hanford Reservation in Richland, Washington. The SNF Project was established to evaluate and integrate the urgent risks associated with N-reactor fuel currently stored at the Hanford site in the K Basins, and to manage the transfer and disposition of other spent nuclear fuels currently stored on the Hanford site. An evaluation of alternatives for the expedited removal of spent fuels from the K Basin area was performed. Based on this study, a Recommended Path Forward for the K Basins was developed and proposed to the U.S. DOE.

  20. Thermoelectric Generator (TEG) Fuel Displacement Potential using...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Displacement Potential using Engine-in-the-Loop and Simulation Thermoelectric Generator (TEG) Fuel Displacement Potential using Engine-in-the-Loop and Simulation Assessment...

  1. A GAMMA RAY SCANNING APPROACH TO QUANTIFY SPENT FUEL CASK RADIONUCLIDE CONTENTS

    SciTech Connect (OSTI)

    Branney, S.

    2011-07-01

    The International Atomic Energy Agency (IAEA) has outlined a need to develop methods of allowing re-verification of LWR spent fuel stored in dry storage casks without the need of a reference baseline measurement. Some scanning methods have been developed, but improvements can be made to readily provide required data for spent fuel cask verification. The scanning process should be conditioned to both confirm the contents and detect any changes due to container/contents degradation or unauthorized removal or tampering. Savannah River National Laboratory and The University of Tennessee are exploring a new method of engineering a high efficiency, cost effective detection system, capable of meeting the above defined requirements in a variety of environmental situations. An array of NaI(Tl) detectors, arranged to form a 'line scan' along with a matching array of 'honeycomb' collimators provide a precisely defined field of view with minimal degradation of intrinsic detection efficiency and with significant scatter rejection. Scanning methods are adapted to net optimum detection efficiency of the combined system. In this work, and with differing detectors, a series of experimental demonstrations are performed that map system spatial performance and counting capability before actual spent fuel cask scans are performed. The data are evaluated to demonstrate the prompt ability to identify missing fuel rods or other content abnormalities. To also record and assess cask tampering, the cask is externally examined utilizing FTIR hyper spectral and other imaging/sensing approaches. This provides dated records and indications of external abnormalities (surface deposits, smears, contaminants, corrosion) attributable to normal degradation or to tampering. This paper will describe the actual gathering of data in both an experimental climate and from an actual spent fuel dry storage cask, and how an evaluation may be performed by an IAEA facility inspector attempting to draw an independent safeguards conclusion concerning the status of the special nuclear material.

  2. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    SciTech Connect (OSTI)

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

    2010-07-01

    Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

  3. Integrated data base report - 1994: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1995-09-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel and commercial and U.S. government-owned radioactive wastes. Except for transuranic wastes, inventories of these materials are reported as of December 31, 1994. Transuranic waste inventories are reported as of December 31, 1993. All spent nuclear fuel and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  4. Apparatus and method for reprocessing and separating spent nuclear fuels. [Patent application

    DOE Patents [OSTI]

    Krikorian, O.H.; Grens, J.Z.; Parrish, W.H. Sr.

    1982-01-19

    Spent nuclear fuels, including actinide fuels, volatile and non-volatile fission products, are reprocessed and separated in a molten metal solvent housed in the reaction region of a separation vessel which includes a reflux region positioned above the molten tin solvent. The reflux region minimizes loss of evaporated solvent during the separation of the actinide fuels from the volatile fission products. Additionally, inclusion of the reflux region permits the separation of the more volatile fission products (noncondensable) from the less volatile ones (condensable).

  5. Dry-vault storage of spent fuel at the CASCAD facility

    SciTech Connect (OSTI)

    Baillif, L.; Guay, M.

    1989-01-01

    A new modular dry storage vault concept using vertical metallic wells cooled by natural convection has been developed by the Commissariat a l'Energie Atomique and Societe Generale pour les Techniques Nouvelles to accommodate special fuels for high-level wastes. Basic specifications and design criteria have been followed to guarantee a double containment system and cooling to maintain the fuel below an acceptable temperature. The double containment is provided by two static barriers: At the reactor, fuels are placed in containers playing the role of the first barrier; the storage wells constitute the second barrier. Spent fuel placed in wells is cooled by natural convection: a boundary layer is created along the outer side of the well. The heated air rises along the well leading to a thermosiphon flow that extracts the heat released. For heat transfer, studies, computations, and experimental tests have been carried out to calculate and determine the temperature of the containers and the fuel rod temperatures in various situations. The CASCAD vault storage can be applied to light water reactor (LWR) fuels without any difficulties if two requirements are satisfied: (1) Spend fuels have to be inserted in tight canisters. (2) Spent fuels have to be received only after a minimum decay time of 5 yr.

  6. Corrosion testing of spent nuclear fuel performed at Argonne National Laboratory for repository acceptance

    SciTech Connect (OSTI)

    Goldberg, M. M.

    2000-07-20

    Corrosion tests of DOE-owned spent nuclear fuel are performed at Argonne National Laboratory to support the license application for the Yucca Mountain Repository. The tests are designed to determine corrosion rates and degradation products formed when fuel is reacted at elevated temperature in different aqueous environments, including vapor, dripping water, submersion, and liquid film contact. Corrosion rates are determined from the quantity of radionuclides released from wetted fuel and from the weight loss of the test fuel specimen as a function of time. Degradation products include secondary mineral phases and dissolved, adsorbed, and colloidal species. Solid phase examinations determine fuel/mineral interface relationships, characterize radionuclide incorporation into secondary phases, and determine corrosion mechanisms at grain interfaces within the fuel. Leachate solution analyses quantify released radionuclides and determine the size and charge distribution of colloids. This paper presents selected results from corrosion tests on metallic fuels.

  7. Non-Destructive Spent Fuel Characterization with Semi-Conducting Gallium Arsinde Neutron Imaging Arrays

    SciTech Connect (OSTI)

    Douglas S. McGregor; Holly K. Gersch; Jeffrey D. Sanders; John C. Lee; Mark D. Hammig; Michael R. Hartman; Yong Hong Yang; Raymond T. Klann; Brian Van Der Elzen; John T. Lindsay; Philip A. Simpson

    2002-01-30

    High resistivity bulk grown GaAs has been used to produce thermal neutron imaging devices for use in neutron radiography and characterizing burnup in spent fuel. The basic scheme utilizes a portable Sb/Be source for monoenergetic (24 keV) neutron radiation source coupled to an Fe filter with a radiation hard B-coated pixellated GaAs detector array as the primary neutron detector. The coated neutron detectors have been tested for efficiency and radiation hardness in order to determine their fitness for the harsh environments imposed by spent fuel. Theoretical and experimental results are presented, showing detector radiation hardness, expected detection efficiency and the spatial resolution from such a scheme. A variety of advanced neutron detector designs have been explored, with experimental results achieving 13% thermal neutron detection efficiency while projecting the possibility of over 30% thermal neutron detection efficiency.

  8. Long-term kinetic effects and colloid formations in dissolution of LWR spent fuels

    SciTech Connect (OSTI)

    Ahn, T.M.

    1996-11-01

    This report evaluates continuous dissolution and colloid formation during spent-fuel performance under repository conditions in high-level waste disposal. Various observations suggest that reprecipitated layers formed on spent-fuel surfaces may not be protective. This situation may lead to continuous dissolution of highly soluble radionuclides such as C-14, Cl-36, Tc-99, I-129, and Cs-135. However, the diffusion limits of various species involved may retard dissolution significantly. For low-solubility actinides such as Pu-(239+240) or Am-(241+243), various processes regarding colloid formation have been analyzed. The processes analyzed are condensation, dispersion, and sorption. Colloid formation may lead to significant releases of low-solubility actinides. However, because there are only limited data available on matrix dissolution, colloid formation, and solubility limits, many uncertainties still exist. These uncertainties must be addressed before the significance of radionuclide releases can be determined. 118 refs.

  9. Chemical reactivity testing for the National Spent Nuclear Fuel Program. Revision 2

    SciTech Connect (OSTI)

    Koester, L.W.

    2000-02-08

    This quality assurance project plan (QAPjP) summarizes requirements used by Lockheed Martin Energy Systems, Incorporated (LMES) Development Division at Y-12 for conducting chemical reactivity testing of Department of Energy (DOE) owned spent nuclear fuel, sponsored by the National Spent Nuclear Fuel Program (NSNFP). The requirements are based on the NSNFP Statement of work PRO-007 (Statement of Work for Laboratory Determination of Uranium Hydride Oxidation Reaction Kinetics.) This QAPjP will utilize the quality assurance program at Y-12, Y60-101PD, Quality Program Description, and existing implementing procedures for the most part in meeting the NSNFP Statement of Work PRO-007 requirements, exceptions will be noted. The project consists of conducting three separate series of related experiments, ''Passivation of Uranium Hydride Powder With Oxygen and Water'', '''Passivation of Uranium Hydride Powder with Surface Characterization'', and ''Electrochemical Measure of Uranium Hydride Corrosion Rate''.

  10. Molten tin reprocessing of spent nuclear fuel elements. [Patent application; continuous process

    DOE Patents [OSTI]

    Heckman, R.A.

    1980-12-19

    A method and apparatus for reprocessing spent nuclear fuel is described. Within a containment vessel, a solid plug of tin and nitride precipitates supports a circulating bath of liquid tin therein. Spent nuclear fuel is immersed in the liquid tin under an atmosphere of nitrogen, resulting in the formation of nitride precipitates. The layer of liquid tin and nitride precipitates which interfaces the plug is solidified and integrated with the plug. Part of the plug is melted, removing nitride precipitates from the containment vessel, while a portion of the plug remains solidified to support te liquid tin and nitride precipitates remaining in the containment vessel. The process is practiced numerous times until substantially all of the precipitated nitrides are removed from the containment vessel.

  11. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 2: Appendices

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste, as mandated by the Nuclear Waste Policy Act of 1982. The waste forms comprised about 700 metric tons of initial heavy metal (or equivalent units) stored at the INEL: graphite spent fuel, experimental low enriched and highly enriched spent fuel, and high-level waste generated during reprocessing of some spent fuel. Five different waste treatment options were studied; in the analysis, the options and resulting waste forms were analyzed separately and in combination as five waste disposal groups. When the waste forms were studied in combination, the repository was assumed to also contain vitrified high-level waste from three DOE sites for a common basis of comparison and to simulate the impact of the INEL waste forms on a moderate-sized repository, The performance of the waste form was assessed within the context of a whole disposal system, using the U.S. Environmental Protection Agency`s Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes, 40 CFR 191, promulgated in 1985. Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  12. Second generation Research Reactor Fuel Container (RRFC-II).

    SciTech Connect (OSTI)

    Abhold, M. E.; Baker, M. C.; Bourret, S. C.; Harker, W. C.; Pelowitz, D. G.; Polk, P. J.

    2001-01-01

    The second generation Research Reactor Fuel Counter (RRFC-II) has been developed to measure the remaining {sup 235}U content in foreign spent Material Test Reactor (MTR)-type fuel being returned to the Westinghouse Savannah River Site (WSRS) for interim storage and subsequent disposal. The fuel to be measured started as fresh fuel nominally with 93% enriched Uraniuin alloyed with A1 clad in Al. The fuel was irradiated to levels of up to 65% burnup. The RRFC-II, which will be located in the L-Basin spent fuel pool, is intended to assay the {sup 235}U content using a combination of passive neutron coincidence counting, active neutron coincidence counting, and active-multiplicity analysis. Measurements will be done underwater, eliminating the need for costly and hazardous handling operations of spent fuel out of water. The underwater portion of the RRFC-II consists of a watertight stainless steel housing containing neutron and gamma detectors and a scanning active neutron source. The portion of the system that resides above water consists of data-processing electronics; electromechanical drive electronics; a computer to control the operation of the counter, to collect, and to analyze data; and a touch screen interface located at the equipment rack. The RRFC-II is an improved version of the Los Alamos-designed RRFC already installed in the SRS Receipts Basin for Offsite Fuel. The RRFC-II has been fabricated and is scheduled for installation in late FY 2001 pending acceptance testing by Savannah River Site personnel.

  13. THE ECONOMICS OF REPROCESSING vs DIRECT DISPOSAL OF SPENT NUCLEAR FUEL

    SciTech Connect (OSTI)

    Matthew Bunn; Steve Fetter; John P. Holdren; Bob van der Zwaan

    2003-07-01

    This report assesses the economics of reprocessing versus direct disposal of spent nuclear fuel. The breakeven uranium price at which reprocessing spent nuclear fuel from existing light-water reactors (LWRs) and recycling the resulting plutonium and uranium in LWRs would become economic is assessed, using central estimates of the costs of different elements of the nuclear fuel cycle (and other fuel cycle input parameters), for a wide range of range of potential reprocessing prices. Sensitivity analysis is performed, showing that the conclusions reached are robust across a wide range of input parameters. The contribution of direct disposal or reprocessing and recycling to electricity cost is also assessed. The choice of particular central estimates and ranges for the input parameters of the fuel cycle model is justified through a review of the relevant literature. The impact of different fuel cycle approaches on the volume needed for geologic repositories is briefly discussed, as are the issues surrounding the possibility of performing separations and transmutation on spent nuclear fuel to reduce the need for additional repositories. A similar analysis is then performed of the breakeven uranium price at which deploying fast neutron breeder reactors would become competitive compared with a once-through fuel cycle in LWRs, for a range of possible differences in capital cost between LWRs and fast neutron reactors. Sensitivity analysis is again provided, as are an analysis of the contribution to electricity cost, and a justification of the choices of central estimates and ranges for the input parameters. The equations used in the economic model are derived and explained in an appendix. Another appendix assesses the quantities of uranium likely to be recoverable worldwide in the future at a range of different possible future prices.

  14. Radionuclide release from spent fuel under geologic disposal conditions: An overview of experimental and theoretical work through 1985

    SciTech Connect (OSTI)

    Reimus, P.W.; Simonson, S.A.

    1988-04-01

    This report presents an overview of experimental and theoretical work on radionuclide release from spent fuel and uranium dioxide (UO/sub 2/) under geologic disposal conditions. The purpose of the report is to provide a source book of information that can be used to develop models that describe radionuclide release from spent fuel waste packages. Modeling activities of this nature will be conducted within the Waste Package Program (WPP) of the Department of Energy's Salt Repository Project (SRP). The topics discussed include experimental methods for investigating radionuclide release, how results have been reported from radionuclide release experiments, theoretical studies of UO/sub 2/ and actinide solubility, results of experimental studies of radionuclide release from spent fuel and UO/sub 2/ (i.e., the effects of different variables on radionuclide release), characteristics of spent fuel pertinent to radionuclide release, and status of modeling of radionuclide release from spent fuel. Appendix A presents tables of data from spent fuel radionuclide release experiments. These data have been digitized from graphs that appear in the literature. An annotated bibliography of literature on spent fuel characterization is provided in Appendix B.

  15. Annual Radiological Environmental Monitoring Program Report for the Fort St. Vrain Independent Spent Fuel Storage Installation

    SciTech Connect (OSTI)

    Hall, Gregory Graham; Newkirk, Jay Ronald; Borst, Frederick Jon

    2002-02-01

    This report presents the results of the 2001 Radiological Environmental Monitoring Program conducted in accordance with 10 CFR 72.44 for the Fort St. Vrain Independent Spent Fuel Storage Installation. A description of the facility and the monitoring program is provided. The results of monitoring the predominant radiation exposure pathway, direct and scattered radiation exposure, indicate the facility operation has not contributed to any increase in the estimated maximum potential dose commitment to the general public.

  16. Conceptual design of the Clinch River Breeder Reactor spent-fuel shipping cask

    SciTech Connect (OSTI)

    Pope, R B; Diggs, J M [eds.

    1982-04-01

    Details of a baseline conceptual design of a spent fuel shipping cask for the Clinch River Breeder Reactor (CRBR) are presented including an assessment of shielding, structural, thermal, fabrication and cask/plant interfacing problems. A basis for continued cask development and for new technological development is established. Alternates to the baseline design are briefly presented. Estimates of development schedules, cask utilization and cost schedules, and of personnel dose commitments during CRBR in-plant handling of the cask are also presented.

  17. Process and apparatus for recovery of fissionable materials from spent reactor fuel by anodic dissolution

    DOE Patents [OSTI]

    Tomczuk, Zygmunt (Orland Park, IL); Miller, William E. (Naperville, IL); Wolson, Raymond D. (Lockport, IL); Gay, Eddie C. (Park Forest, IL)

    1991-01-01

    An electrochemical process and apparatus for the recovery of uranium and plutonium from spent metal clad fuel pins is disclosed. The process uses secondary reactions between U.sup.+4 cations and elemental uranium at the anode to increase reaction rates and improve anodic efficiency compared to prior art processes. In another embodiment of the process, secondary reactions between Cd.sup.+2 cations and elemental uranium to form uranium cations and elemental cadmium also assists in oxidizing the uranium at the anode.

  18. Separation of uranium from technetium in recovery of spent nuclear fuel

    DOE Patents [OSTI]

    Pruett, D.J.; McTaggart, D.R.

    1983-08-31

    Uranium and technetium in the product stream of the Purex process for recovery of uranium in spent nuclear fuel are separated by (1) contacting the aqueous Purex product stream with hydrazine to reduce Tc/sup +7/ therein to a reduced species, and (2) contacting said aqueous stream with an organic phase containing tributyl phosphate and an organic diluent to extract uranium from said aqueous stream into said organic phase.

  19. Calculated and measured drift closure during the spent-fuel test in Climax granite

    SciTech Connect (OSTI)

    Yow, J.L. Jr.; Butkovich, T.R.

    1982-04-01

    Horizontal and vertical measurements of drift closures have been made with a manually operated tape extensometer since about 6 weeks after the emplacement of the spent fuel at various locations along the length of the drifts. The averaged closures are less than 0.6 mm from the onset of measurements through about two years after the spent fuel emplacement. These results have been compared with thermo-elastic finite element calculations using measured medium properties. The comparisons show that most of the closure of the drifts occurred between the time the spent fuel was emplaced and the time of first measurement. The comparisons show that the results track each other, in that where closure followed by dilation is measured, the calculations also show this effect. The agreement is excellent, although where closures of less than 0.2 mm are measured the comparison with calculations is limited by measurement reproducability. Once measurements commenced the averaged measured closures remain to within 30% of the calculated total closure in each drift. 9 figures, 1 table.

  20. Development of INSPCT-S for inspection of spent fuel pool

    SciTech Connect (OSTI)

    Walters, W.; Haghighat, A. [Nuclear Engineering Program, Mechanical Engineering Dept., Virginia Tech., Blacksburg, VA 24061 (United States); Sitaraman, S.; Ham, Y. [Lawrence Livermore National Laboratory, 7000 East Ave., Livermore, CA 94550 (United States)

    2011-07-01

    In this paper, we discuss an accurate and fast software tool (INSPCT-S, Inspection of Nuclear Spent fuel-Pool Calculation Tool, version Spreadsheet) developed for calculation of the response of fission chambers placed in a spent fuel pool, such as Atucha-I. INSPCT-S is developed for identification of suspicious regions of the pool that may have missing or substitute assemblies. INSPCT-S uses a hybrid algorithm based on the adjoint function methodology. The neutron source is comprised of spontaneous fission, ({alpha}, n) interactions, and subcritical multiplication. The former is evaluated using the ORIGEN-ARP code, and the latter is obtained with the fission matrix (FM) formulation. The FM coefficients are determined using the MCNP Monte Carlo code, and the importance function is determined using the PENTRAN 3-D parallel Sn code. Three databases for the neutron source, FM elements, and adjoint flux are prepared as functions of different parameters including burnup, cooling time, enrichment, and pool lattice size. INSPCT-S uses the aforementioned databases and systems of equations to calculate detector responses, which are subsequently compared with normalized experimental data. If this comparison is not satisfied, INSPCT-S utilizes color coding to identify the suspicious regions of a spent fuel pool. (authors)

  1. Dry halide method for separating the components of spent nuclear fuels

    DOE Patents [OSTI]

    Christian, J.D.; Thomas, T.R.; Kessinger, G.F.

    1998-06-30

    The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200 C to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400 C; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164 to 2 C; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic. 3 figs.

  2. Dry halide method for separating the components of spent nuclear fuels

    DOE Patents [OSTI]

    Christian, Jerry Dale (Idaho Falls, ID); Thomas, Thomas Russell (Rigby, ID); Kessinger, Glen F. (Idaho Falls, ID)

    1998-01-01

    The invention is a nonaqueous, single method for processing multiple spent nuclear fuel types by separating the fission- and transuranic products from the nonradioactive and fissile uranium product. The invention has four major operations: exposing the spent fuels to chlorine gas at temperatures preferably greater than 1200.degree. C. to form volatile metal chlorides; removal of the fission product chlorides, transuranic product chlorides, and any nickel chloride and chromium chloride in a molten salt scrubber at approximately 400.degree. C.; fractional condensation of the remaining volatile chlorides at temperatures ranging from 164.degree. C. to 2.degree. C.; and regeneration and recovery of the transferred spent molten salt by vacuum distillation. The residual fission products, transuranic products, and nickel- and chromium chlorides are converted to fluorides or oxides for vitrification. The method offers the significant advantages of a single, compact process that is applicable to most of the diverse nuclear fuels, minimizes secondary wastes, segregates fissile uranium from the high level wastes to resolve potential criticality concerns, segregates nonradioactive wastes from the high level wastes for volume reduction, and produces a common waste form glass or glass-ceramic.

  3. DEVELOPMENT OF METHODOLOGY AND FIELD DEPLOYABLE SAMPLING TOOLS FOR SPENT NUCLEAR FUEL INTERROGATION IN LIQUID STORAGE

    SciTech Connect (OSTI)

    Berry, T.; Milliken, C.; Martinez-Rodriguez, M.; Hathcock, D.; Heitkamp, M.

    2012-06-04

    This project developed methodology and field deployable tools (test kits) to analyze the chemical and microbiological condition of the fuel storage medium and determine the oxide thickness on the spent fuel basin materials. The overall objective of this project was to determine the amount of time fuel has spent in a storage basin to determine if the operation of the reactor and storage basin is consistent with safeguard declarations or expectations. This project developed and validated forensic tools that can be used to predict the age and condition of spent nuclear fuels stored in liquid basins based on key physical, chemical and microbiological basin characteristics. Key parameters were identified based on a literature review, the parameters were used to design test cells for corrosion analyses, tools were purchased to analyze the key parameters, and these were used to characterize an active spent fuel basin, the Savannah River Site (SRS) L-Area basin. The key parameters identified in the literature review included chloride concentration, conductivity, and total organic carbon level. Focus was also placed on aluminum based cladding because of their application to weapons production. The literature review was helpful in identifying important parameters, but relationships between these parameters and corrosion rates were not available. Bench scale test systems were designed, operated, harvested, and analyzed to determine corrosion relationships between water parameters and water conditions, chemistry and microbiological conditions. The data from the bench scale system indicated that corrosion rates were dependent on total organic carbon levels and chloride concentrations. The highest corrosion rates were observed in test cells amended with sediment, a large microbial inoculum and an organic carbon source. A complete characterization test kit was field tested to characterize the SRS L-Area spent fuel basin. The sampling kit consisted of a TOC analyzer, a YSI multiprobe, and a thickness probe. The tools were field tested to determine their ease of use, reliability, and determine the quality of data that each tool could provide. Characterization was done over a two day period in June 2011, and confirmed that the L Area basin is a well operated facility with low corrosion potential.

  4. An Empirical Approach to Bounding the Axial Reactivity Effects of PWR Spent Nuclear Fuel

    SciTech Connect (OSTI)

    P. M. O'Leary; J. M. Scaglione

    2001-04-04

    One of the significant issues yet to be resolved for using burnup credit (BUC) for spent nuclear fuel (SNF) is establishing a set of depletion parameters that produce an adequately conservative representation of the fuel's isotopic inventory. Depletion parameters (such as local power, fuel temperature, moderator temperature, burnable poison rod history, and soluble boron concentration) affect the isotopic inventory of fuel that is depleted in a pressurized water reactor (PWR). However, obtaining the detailed operating histories needed to model all PWR fuel assemblies to which BUC would be applied is an onerous and costly task. Simplifications therefore have been suggested that could lead to using ''bounding'' depletion parameters that could be broadly applied to different fuel assemblies. This paper presents a method for determining a set of bounding depletion parameters for use in criticality analyses for SNF.

  5. Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying (CVD) Facility Operations Manual

    SciTech Connect (OSTI)

    IRWIN, J.J.

    2000-11-18

    The mission of the Spent Nuclear Fuel (SNF) Project Cold Vacuum Drying Facility (CVDF) is to achieve the earliest possible removal of free water from Multi-Canister Overpacks (MCOs). The MCOs contain metallic uranium SNF that have been removed from the 100K Area fuel storage water basins (i.e., the K East and K West Basins) at the US. Department of Energy Hanford Site in Southeastern Washington state. Removal of free water is necessary to halt water-induced corrosion of exposed uranium surfaces and to allow the MCOs and their SNF payloads to be safely transported to the Hanford Site 200 East Area and stored within the SNF Project Canister Storage Building (CSB). The CVDF is located within a few hundred yards of the basins, southwest of the 165KW Power Control Building and the 105KW Reactor Building. The site area required for the facility and vehicle circulation is approximately 2 acres. Access and egress is provided by the main entrance to the 100K inner area using existing roadways. The CVDF will remove free. water from the MCOs to reduce the potential for continued fuel-water corrosion reactions. The cold vacuum drying process involves the draining of bulk water from the MCO and subsequent vacuum drying. The MCO will be evacuated to a pressure of 8 torr or less and backfilled with an inert gas (helium). The MCO will be sealed, leak tested, and then transported to the CSB within a sealed shipping cask. (The MCO remains within the same shipping Cask from the time it enters the basin to receive its SNF payload until it is removed from the Cask by the CSB MCO handling machine.) The CVDF subproject acquired the required process systems, supporting equipment, and facilities. The cold vacuum drying operations result in an MCO containing dried fuel that is prepared for shipment to the CSB by the Cask transportation system. The CVDF subproject also provides equipment to dispose of solid wastes generated by the cold vacuum drying process and transfer process water removed from the MCO back to the K Basins.

  6. Automated Characterization of Spent Fuel through the Multi-Isotope Process (MIP) Monitor

    SciTech Connect (OSTI)

    Coble, Jamie B.; Orton, Christopher R.; Schwantes, Jon M.

    2012-07-31

    This research developed an algorithm for characterizing spent nuclear fuel (SNF) samples based on simulated gamma spectra. The gamma spectra for a variety of light water reactor fuels typical of those found in the United States were simulated. Fuel nuclide concentrations were simulated in ORIGEN-ARP for 1296 fuel samples with a variety of reactor designs, initial enrichments, burn ups, and cooling times. The results of the ORIGEN-ARP simulation were then input to SYNTH to simulate the gamma spectrum for each sample. These spectra were evaluated with partial least squares (PLS)-based multivariate analysis methods to characterize the fuel according to reactor type (pressurized or boiling water reactor), enrichment, burn up, and cooling time. Characterizing some of the features in series by using previously estimated features in the prediction greatly improves the performance. By first classifying the spent fuel reactor type and then using type-specific models, the prediction error for enrichment, burn up, and cooling time improved by a factor of two to four. For some features, the prediction was further improved by including additional information, such as including the predicted burn up in the estimation of cooling time. The optimal prediction flow was determined based on the simulated data. A PLS discriminate analysis model was developed which perfectly classified SNF reactor type. Burn up was predicted within 0.1% root mean squared percent error (RMSPE) and both cooling time and initial enrichment within approximately 2% RMSPE.

  7. Fate of Noble Metals during the Pyroprocessing of Spent Nuclear Fuel

    SciTech Connect (OSTI)

    B.R. Westphal; D. Vaden; S.X. Li; G.L. Fredrickson; R.D. Mariani

    2009-09-01

    During the pyroprocessing of spent nuclear fuel by electrochemical techniques, fission products are separated as the fuel is oxidized at the anode and refined uranium is deposited at the cathode. Those fission products that are oxidized into the molten salt electrolyte are considered active metals while those that do not react are considered noble metals. The primary noble metals encountered during pyroprocessing are molybdenum, zirconium, ruthenium, rhodium, palladium, and technetium. Pyroprocessing of spent fuel to date has involved two distinctly different electrorefiner designs, in particular the anode to cathode configuration. For one electrorefiner, the anode and cathode collector are horizontally displaced such that uranium is transported across the electrolyte medium. As expected, the noble metal removal from the uranium during refining is very high, typically in excess of 99%. For the other electrorefiner, the anode and cathode collector are vertically collocated to maximize uranium throughput. This arrangement results in significantly less noble metals removal from the uranium during refining, typically no better than 20%. In addition to electrorefiner design, operating parameters can also influence the retention of noble metals, albeit at the cost of uranium recovery. Experiments performed to date have shown that as much as 100% of the noble metals can be retained by the cladding hulls while affecting the uranium recovery by only 6%. However, it is likely that commercial pyroprocessing of spent fuel will require the uranium recovery to be much closer to 100%. The above mentioned design and operational issues will likely be driven by the effects of noble metal contamination on fuel fabrication and performance. These effects will be presented in terms of thermal properties (expansion, conductivity, and fusion) and radioactivity considerations. Ultimately, the incorporation of minor amounts of noble metals from pyroprocessing into fast reactor metallic fuel will be shown to be of no consequence to reactor performance.

  8. Spent Nuclear Fuel Project technical baseline document. Fiscal year 1995: Volume 1, Baseline description

    SciTech Connect (OSTI)

    Womack, J.C. [Westinghouse Hanford Co., Richland, WA (United States); Cramond, R. [TRW (United States); Paedon, R.J. [SAIC (United States)] [and others

    1995-03-13

    This document is a revision to WHC-SD-SNF-SD-002, and is issued to support the individual projects that make up the Spent Nuclear Fuel Project in the lower-tier functions, requirements, interfaces, and technical baseline items. It presents results of engineering analyses since Sept. 1994. The mission of the SNFP on the Hanford site is to provide safety, economic, environmentally sound management of Hanford SNF in a manner that stages it to final disposition. This particularly involves K Basin fuel, although other SNF is involved also.

  9. Container for reprocessing and permanent storage of spent nuclear fuel assemblies

    DOE Patents [OSTI]

    Forsberg, Charles W. (Oak Ridge, TN)

    1992-01-01

    A single canister process container for reprocessing and permanent storage of spent nuclear fuel assemblies comprising zirconium-based cladding and fuel, which process container comprises a collapsible container, having side walls that are made of a high temperature alloy and an array of collapsible support means wherein the container is capable of withstanding temperature necessary to oxidize the zirconium-based cladding and having sufficient ductility to maintain integrity when collapsed under pressure. The support means is also capable of maintaining their integrity at temperature necessary to oxide the zirconium-based cladding. The process container also has means to introduce and remove fluids to and from the container.

  10. Wastes associated with recycling spent MOX fuel into fast reactor oxide fuel

    SciTech Connect (OSTI)

    Foare, G.; Meze, F. [AREVA EP, SGN - 1, rue des Herons, 18182 Montigny-le-Bretonneux (France); McGee, D.; Murray, P.; Bader, S. [AREVA Federal Services LLC - 7207 IBM Drive, Charlotte, NC 28262 (United States)

    2013-07-01

    A study sponsored by the DOE has been performed by AREVA to estimate the process and secondary wastes produced from an 800 MTIHM/yr (initial metric tons heavy metal a year) recycling plant proposed to be built in the U.S. utilizing the COEX process and utilized some DOE defined assumptions and constraints. In this paper, this plant has been analyzed for a recycling campaign that included 89% UO{sub x} and 11% MOX UNF to estimate process and secondary waste quantities produced while manufacturing 28 MTIHM/yr of SFR fuel. AREVA utilized operational data from its backend facilities in France (La Hague and MELOX), and from recent advances in waste treatment technology to estimate the waste quantities. A table lists the volumes and types of the different final wastes for a recycling plant. For instance concerning general fission products the form of the final wastes is vitrified glass and its volume generation rate is 135 l/MTHM, concerning Iodine 129 waste its final form is synthetic rock and its volume generation rate is 0.625 l/MTIHM.

  11. 105-K Basin Material Design Basis Feed Description for Spent Nuclear Fuel (SNF) Project Facilities VOL 1 Fuel

    SciTech Connect (OSTI)

    PACKER, M.J.

    1999-11-04

    Metallic uranium Spent Nuclear Fuel (SNF) is currently stored within two water filled pools, 105-KE Basin (KE Basin) and 105-KW Basin (KW Basin), at the United States Department of Energy (U.S. DOE) Hanford Site, in southeastern Washington State. The Spent Nuclear Fuel Project (SNF Project) is responsible to DOE for operation of these fuel storage pools and for the 2100 metric tons of SNF materials that they contain. The SNF Project mission includes safe removal and transportation of all SNF from these storage basins to a new storage facility in the 200 East Area. To accomplish this mission, the SNF Project modifies the existing KE Basin and KW Basin facilities and constructs two new facilities: the 100 K Area Cold Vacuum Drying Facility (CVDF), which drains and dries the SNF; and the 200 East Area Canister Storage Building (CSB), which stores the SNF. The purpose of this document is to describe the design basis feed compositions for materials stored or processed by SNF Project facilities and activities. This document is not intended to replace the Hanford Spent Fuel Inventory Baseline (WHC 1994b), but only to supplement it by providing more detail on the chemical and radiological inventories in the fuel (this volume) and sludge. A variety of feed definitions is required to support evaluation of specific facility and process considerations during the development of these new facilities. Six separate feed types have been identified for development of new storage or processing facilities. The approach for using each feed during design evaluations is to calculate the proposed facility flowsheet assuming each feed. The process flowsheet would then provide a basis for material compositions and quantities which are used in follow-on calculations.

  12. Dose Rate Analysis Capability for Actual Spent Fuel Transportation Cask Contents

    SciTech Connect (OSTI)

    Radulescu, Georgeta; Lefebvre, Robert A; Peplow, Douglas E.; Williams, Mark L; Scaglione, John M

    2014-01-01

    The approved contents for a U.S. Nuclear Regulatory Commission (NRC) licensed spent nuclear fuel casks are typically based on bounding used nuclear fuel (UNF) characteristics. However, the contents of the UNF canisters currently in storage at independent spent fuel storage installations are considerably heterogeneous in terms of fuel assembly burnup, initial enrichment, decay time, cladding integrity, etc. Used Nuclear Fuel Storage, Transportation & Disposal Analysis Resource and Data System (UNF ST&DARDS) is an integrated data and analysis system that facilitates automated cask-specific safety analyses based on actual characteristics of the as-loaded UNF. The UNF-ST&DARDS analysis capabilities have been recently expanded to include dose rate analysis of as-loaded transportation packages. Realistic dose rate values based on actual canister contents may be used in place of bounding dose rate values to support development of repackaging operations procedures, evaluation of radiation-related transportation risks, and communication with stakeholders. This paper describes the UNF-ST&DARDS dose rate analysis methodology based on actual UNF canister contents and presents sample dose rate calculation results.

  13. Foreign travel report: Visits to UK, Belgium, Germany, and France to benchmark European spent fuel and waste management technology

    SciTech Connect (OSTI)

    Ermold, L.F.; Knecht, D.A.

    1993-08-01

    The ICPP WINCO Spent Fuel and Waste Management Development Program recently was funded by DOE-EM to develop new technologies for immobilizing ICPP spent fuels, sodium-bearing liquid waste, and calcine to a form suitable for disposal. European organizations are heavily involved, in some cases on an industrial scale in areas of waste management, including spent fuel disposal and HLW vitrification. The purpose of this trip was to acquire first-hand European efforts in handling of spent reactor fuel and nuclear waste management, including their processing and technical capabilities as well as their future planning. Even though some differences exist in European and U.S. DOE waste compositions and regulations, many aspects of the European technologies may be applicable to the U.S. efforts, and several areas offer potential for technical collaboration.

  14. Differential Die-Away Instrument: Report on Fuel Assembly Mock-up Measurements with Neutron Generator

    SciTech Connect (OSTI)

    Goodsell, Alison Victoria; Swinhoe, Martyn Thomas; Henzl, Vladimir; Rael, Carlos D.; Desimone, David J.

    2014-09-18

    Fresh fuel experiments for the differential die-away (DDA) project were performed using a DT neutron generator, a 15x15 PWR fuel assembly, and nine 3He detectors in a water tank inside of a shielded cell at Los Alamos National Laboratory (LANL). Eight different fuel enrichments were created using low enriched (LEU) and depleted uranium (DU) dioxide fuel rods. A list-mode data acquisition system recorded the time-dependent signal and analysis of the DDA signal die-away time was performed. The die-away time depended on the amount of fissile material in the fuel assembly and the position of the detector. These experiments were performed in support of the spent nuclear fuel Next Generation Safeguards Initiative DDA project. Lessons learned from the fresh fuel DDA instrument experiments and simulations will provide useful information to the spent fuel project.

  15. A Technical Review of Non-Destructive Assay Research for the Characterization of Spent Nuclear Fuel Assemblies Being Conducted Under the US DOE NGSI - 11544

    E-Print Network [OSTI]

    Croft, S.

    2012-01-01

    Determining Fissile Content in PWR Spent Fuel Assembliesalong the length of several PWR fuel rods (including somebeen studied for a wide range of PWR assembly cases and two

  16. U.S. Spent Nuclear Fuel Data as of December 31, 1998

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    fuel (SNF) data includes detailed characteristics of SNF generated by commercial U.S. nuclear power plants. From 1983 through 1995 this data was collected annually. Since 1996...

  17. Technical data summary supporting the spent nuclear fuel environment impact statement, March 1994

    SciTech Connect (OSTI)

    Geddes, R.L.; Claxton, R.E.; Lengel, J.D. [and others

    1994-03-01

    This report has been compiled by the WSRC Nuclear Materials Processing Division`s Planning Section at the request of the Office of Spent Fuel Management and Special Projects (EM-37) to support issuance of the Spent Nuclear Fuel Environmental Impact Statement. Savannah River Site input data evaluates five programmatic options (including {open_quotes}No Action{close_quotes}) ranging up to transfer of all DOE responsibility spent fuel to the SRS. For each option, a range of management/disposition scenarios has been examined. Each case summary provides information relative to the technical proposal, technical issues, environmental impacts, and projected costs for a forty year period (FY-35) when it is assumed that the material will be dispositioned from the SRS. The original issue of the report which was prepared under severe time constraints contained many simplifications and assumptions. Although the revisions have corrected some of the shortcomings of the original report, it is still highly recommended that significant additional study be performed before basing key decisions upon the data contained in this report. The data represents the best effort by a significant group of technical personnel familiar with nuclear materials processing, handling, and storage; but it is likely that careful scrutiny will reveal numerous discrepancies, inconsistencies and omissions. Nor does this report attempt to analyze every potential disposal pathway, but probably establishes the bounds for the most of the viable pathways. The bulk of the effort went into defining the engineering approaches necessary to execute the various mission scenarios which were changed since the last revision. The decision to limit reprocessing to only SRS aluminum clad required a major alteration of the TDS. Collection and/or calculation of much of the various waste, emission, and utility consumption data, so important to an EIS, has been updated since the last revision, but not thoroughly completed.

  18. Truck and rail charges for shipping spent fuel and nuclear waste

    SciTech Connect (OSTI)

    McNair, G.W.; Cole, B.M.; Cross, R.E.; Votaw, E.F.

    1986-06-01

    The Pacific Northwest Laboratory developed techniques for calculating estimates of nuclear-waste shipping costs and compiled a listing of representative data that facilitate incorporation of reference shipping costs into varius logistics analyses. The formulas that were developed can be used to estimate costs that will be incurred for shipping spent fuel or nuclear waste by either legal-weight truck or general-freight rail. The basic data for this study were obtained from tariffs of a truck carrier licensed to serve the 48 contiguous states and from various rail freight tariff guides. Also, current transportation regulations as issued by the US Department of Transportation and the Nuclear Regulatory Commission were investigated. The costs that will be incurred for shipping spent fuel and/or nuclear waste, as addressed by the tariff guides, are based on a complex set of conditions involving the shipment origin, route, destination, weight, size, and volume and the frequency of shipments, existing competition, and the length of contracts. While the complexity of these conditions is an important factor in arriving at a ''correct'' cost, deregulation of the transportation industry means that costs are much more subject to negotiation and, thus, the actual fee that will be charged will not be determined until a shipping contract is actually signed. This study is designed to provide the baseline data necessary for making comparisons of the estimated costs of shipping spent fuel and/or nuclear wastes by truck and rail transportation modes. The scope of the work presented in this document is limited to the costs incurred for shipping, and does not include packaging, cask purchase/lease costs, or local fees placed on shipments of radioactive materials.

  19. Hybrid solar-fossil fuel power generation

    E-Print Network [OSTI]

    Sheu, Elysia J. (Elysia Ja-Zeng)

    2012-01-01

    In this thesis, a literature review of hybrid solar-fossil fuel power generation is first given with an emphasis on system integration and evaluation. Hybrid systems are defined as those which use solar energy and fuel ...

  20. Integrated data base report--1995: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1996-12-01

    The information in this report summarizes the U.S. Department of Energy (DOE) data base for inventories, projections, and characteristics of domestic spent nuclear fuel and radioactive waste. This report is updated annually to keep abreast of continual waste inventory and projection changes in both the government and commercial sectors. Baseline information is provided for DOE program planning purposes and to support DOE program decisions. Although the primary purpose of this document is to provide background information for program planning within the DOE community, it has also been found useful by state and local governments, the academic community, and some private citizens.

  1. Bread: CDC 7600 program that processes Spent Fuel Test Climax data

    SciTech Connect (OSTI)

    Hage, G.L.

    1983-04-01

    BREAD will process a family of files copied from a data tape made by Hewlett-Packard equipment employed for data acquisition on the Spent Fuel Test-Climax at NTS. Tapes are delivered to Livermore approximately monthly. The process at this stage consists of four steps: read the binary files and convert from H-P 16-bit words to CDC 7600 60-bit words; check identification and data ranges; write the data in 6-bit ASCII (BCD) format, one data point per line; then sort the file by identifier and time.

  2. What are Spent Nuclear Fuel and High-Level Radioactive Waste ?

    SciTech Connect (OSTI)

    DOE

    2002-12-01

    Spent nuclear fuel and high-level radioactive waste are materials from nuclear power plants and government defense programs. These materials contain highly radioactive elements, such as cesium, strontium, technetium, and neptunium. Some of these elements will remain radioactive for a few years, while others will be radioactive for millions of years. Exposure to such radioactive materials can cause human health problems. Scientists worldwide agree that the safest way to manage these materials is to dispose of them deep underground in what is called a geologic repository.

  3. Spent fuel test - Climax: technical measurements. Interim report, fiscal year 1981

    SciTech Connect (OSTI)

    Patrick, W.C.; Ballou, L.B.; Butkovich, T.R.

    1982-04-30

    The Spent Fuel Test-Climax (SFT-C) is located 420 m below surface in the Climax granite stock on the Nevada Test Site. Eleven canisters of spent nuclear reactor fuel were emplaced, and six electrical simulators were energized from April to May 1980, initiating the 3- to 5-year-duration test. The SFT-C operational objective of demonstrating the feasibility of packaging, transporting, storing, and retrieving highly radioactive fuel assemblies in a safe and reliable manner has been met. Technical objectives of the test led to development of a technical measurements program, which is the subject of this report. Geotechnical, seismological, and test status data have been recorded on a continuing basis for the first 1-1/2 years of the test on more than 900 channels. Much of the acquired data are now available for analysis and are presented here. Highlights of activities this year include completion of site characterization field work, major modifications to the data acquisition and the management systems, and the addition of instrument evaluation as an explicit objective of the test.

  4. Analysis of dose consequences arising from the release of spent nuclear fuel from dry storage casks.

    SciTech Connect (OSTI)

    Durbin, Samuel G.; Morrow, Charles W.

    2013-01-01

    The resulting dose consequences from releases of spent nuclear fuel (SNF) residing in a dry storage casks are examined parametrically. The dose consequences are characterized by developing dose versus distance curves using simplified bounding assumptions. The dispersion calculations are performed using the MELCOR Accident Consequence Code System (MACCS2) code. Constant weather and generic system parameters were chosen to ensure that the results in this report are comparable with each other and to determine the relative impact on dose of each variable. Actual analyses of site releases would need to accommodate local weather and geographic data. These calculations assume a range of fuel burnups, release fractions (RFs), three exposure scenarios (2 hrs and evacuate, 2 hrs and shelter, and 24 hrs exposure), two meteorological conditions (D-4 and F-2), and three release heights (ground level - 1 meter (m), 10 m, and 100 m). This information was developed to support a policy paper being developed by U.S. Nuclear Regulatory Commission (NRC) staff on an independent spent fuel storage installation (ISFSI) and monitored retrievable storage installation (MRS) security rulemaking.

  5. Preliminary Simulations for Geometric Optimization of a High-Energy Delayed Gamma Spectrometer for Direct Assay of Pu in Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Kulisek, Jonathan A.; Campbell, Luke W.; Rodriguez, Douglas C.

    2012-06-07

    High-energy, beta-delayed gamma-ray spectroscopy is under investigation as part of the Next Generation Safeguard Initiative effort to develop non-destructive assay instruments for plutonium mass quantification in spent nuclear fuel assemblies. Results obtained to date indicate that individual isotope-specific signatures contained in the delayed gamma-ray spectra can potentially be used to quantify the total fissile content and individual weight fractions of fissile and fertile nuclides present in spent fuel. Adequate assay precision for inventory analysis can be obtained using a neutron generator of sufficient strength and currently available detection technology. In an attempt to optimize the geometric configuration and material composition for a delayed gamma measurement on spent fuel, the current study applies MCNPX, a Monte Carlo radiation transport code, in order to obtain the best signal-to-noise ratio. Results are presented for optimizing the neutron spectrum tailoring material, geometries to maximize thermal or fast fissions from a given neutron source, and detector location to allow an acceptable delayed gamma-ray signal while achieving a reasonable detector lifetime while operating in a high-energy neutron field. This work is supported in part by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.

  6. Nonproliferation impacts assessment for the management of the Savannah River Site aluminum-based spent nuclear fuel

    SciTech Connect (OSTI)

    NONE

    1998-12-01

    On May 13, 1996, the US established a new, 10-year policy to accept and manage foreign research reactor spent nuclear fuel containing uranium enriched in the US. The goal of this policy is to reduce civilian commerce in weapons-usable highly enriched uranium (HEU), thereby reducing the risk of nuclear weapons proliferation. Two key disposition options under consideration for managing this fuel include conventional reprocessing and new treatment and packaging technologies. The Record of Decision specified that, while evaluating the reprocessing option, ``DOE will commission or conduct an independent study of the nonproliferation and other (e.g., cost and timing) implications of chemical separation of spent nuclear fuel from foreign research reactors.`` DOE`s Office of Arms Control and Nonproliferation conducted this study consistent with the aforementioned Record of Decision. This report addresses the nonproliferation implications of the technologies under consideration for managing aluminum-based spent nuclear fuel at the Savannah River Site. Because the same technology options are being considered for the foreign research reactor and the other aluminum-based spent nuclear fuels discussed in Section ES.1, this report addresses the nonproliferation implications of managing all the Savannah River Site aluminum-based spent nuclear fuel, not just the foreign research reactor spent nuclear fuel. The combination of the environmental impact information contained in the draft EIS, public comment in response to the draft EIS, and the nonproliferation information contained in this report will enable the Department to make a sound decision regarding how to manage all aluminum-based spent nuclear fuel at the Savannah River Site.

  7. Initial evaluation of dry storage issues for spent nuclear fuels in wet storage at the Idaho Chemical Processing Plant

    SciTech Connect (OSTI)

    Guenther, R.J.; Johnson, A.B. Jr.; Lund, A.L.; Gilbert, E.R. [and others

    1996-07-01

    The Pacific Northwest Laboratory has evaluated the basis for moving selected spent nuclear fuels in the CPP-603 and CPP-666 storage pools at the Idaho Chemical Processing Plant from wet to dry interim storage. This work is being conducted for the Lockheed Idaho Technologies Company as part of the effort to determine appropriate conditioning and dry storage requirements for these fuels. These spent fuels are from 22 test reactors and include elements clad with aluminum or stainless steel and a wide variety of fuel materials: UAl{sub x}, UAl{sub x}-Al and U{sub 3}O{sub 8}-Al cermets, U-5% fissium, UMo, UZrH{sub x}, UErZrH, UO{sub 2}-stainless steel cermet, and U{sub 3}O{sub 8}-stainless steel cermet. The study also included declad uranium-zirconium hydride spent fuel stored in the CPP-603 storage pools. The current condition and potential failure mechanisms for these spent fuels were evaluated to determine the impact on conditioning and dry storage requirements. Initial recommendations for conditioning and dry storage requirements are made based on the potential degradation mechanisms and their impacts on moving the spent fuel from wet to dry storage. Areas needing further evaluation are identified.

  8. National spent fuel program preliminary report RCRA characteristics of DOE-owned spent nuclear fuel DOE-SNF-REP-002. Revision 3

    SciTech Connect (OSTI)

    NONE

    1995-07-01

    This report presents information on the preliminary process knowledge to be used in characterizing all Department of Energy (DOE)-owned Spent Nuclear Fuel (SNF) types that potentially exhibit a Resource Conservation and Recovery Act (RCRA) characteristic. This report also includes the process knowledge, analyses, and rationale used to preliminarily exclude certain SNF types from RCRA regulation under 40 CFR {section}261.4(a)(4), ``Identification and Listing of Hazardous Waste,`` as special nuclear and byproduct material. The evaluations and analyses detailed herein have been undertaken as a proactive approach. In the event that DOE-owned SNF is determined to be a RCRA solid waste, this report provides general direction for each site regarding further characterization efforts. The intent of this report is also to define the path forward to be taken for further evaluation of specific SNF types and a recommended position to be negotiated and established with regional and state regulators throughout the DOE Complex regarding the RCRA-related policy issues.

  9. COBRA-SFS (Spent Fuel Storage): A thermal-hydraulic analysis computer code: Volume 3, Validation assessments

    SciTech Connect (OSTI)

    Lombardo, N.J.; Cuta, J.M.; Michener, T.E.; Rector, D.R.; Wheeler, C.L.

    1986-12-01

    This report presents the results of the COBRA-SFS (Spent Fuel Storage) computer code validation effort. COBRA-SFS, while refined and specialized for spent fuel storage system analyses, is a lumped-volume thermal-hydraulic analysis computer code that predicts temperature and velocity distributions in a wide variety of systems. Through comparisons of code predictions with spent fuel storage system test data, the code's mathematical, physical, and mechanistic models are assessed, and empirical relations defined. The six test cases used to validate the code and code models include single-assembly and multiassembly storage systems under a variety of fill media and system orientations and include unconsolidated and consolidated spent fuel. In its entirety, the test matrix investigates the contributions of convection, conduction, and radiation heat transfer in spent fuel storage systems. To demonstrate the code's performance for a wide variety of storage systems and conditions, comparisons of code predictions with data are made for 14 runs from the experimental data base. The cases selected exercise the important code models and code logic pathways and are representative of the types of simulations required for spent fuel storage system design and licensing safety analyses. For each test, a test description, a summary of the COBRA-SFS computational model, assumptions, and correlations employed are presented. For the cases selected, axial and radial temperature profile comparisons of code predictions with test data are provided, and conclusions drawn concerning the code models and the ability to predict the data and data trends. Comparisons of code predictions with test data demonstrate the ability of COBRA-SFS to successfully predict temperature distributions in unconsolidated or consolidated single and multiassembly spent fuel storage systems.

  10. DEMONSTRATION OF LONG-TERM STORAGE CAPABILITY FOR SPENT NUCLEAR FUEL IN L BASIN

    SciTech Connect (OSTI)

    Sindelar, R.; Deible, R.

    2011-04-27

    The U.S. Department of Energy decisions for the ultimate disposition of its inventory of used nuclear fuel presently in, and to be received and stored in, the L Basin at the Savannah River Site, and schedule for project execution have not been established. A logical decision timeframe for the DOE is following the review of the overall options for fuel management and disposition by the Blue Ribbon Commission on America's Nuclear Future (BRC). The focus of the BRC review is commercial fuel; however, the BRC has included the DOE fuel inventory in their review. Even though the final report by the BRC to the U.S. Department of Energy is expected in January 2012, no timetable has been established for decisions by the U.S. Department of Energy on alternatives selection. Furthermore, with the imminent lay-up and potential closure of H-canyon, no ready path for fuel disposition would be available, and new technologies and/or facilities would need to be established. The fuel inventory in wet storage in the 3.375 million gallon L Basin is primarily aluminum-clad, aluminum-based fuel of the Materials Test Reactor equivalent design. An inventory of non-aluminum-clad fuel of various designs is also stored in L Basin. Safe storage of fuel in wet storage mandates several high-level 'safety functions' that would be provided by the Structures, Systems, and Components (SSCs) of the storage system. A large inventory of aluminum-clad, aluminum-based spent nuclear fuel, and other nonaluminum fuel owned by the U.S. Department of Energy is in wet storage in L Basin at the Savannah River Site. An evaluation of the present condition of the fuel, and the Structures, Systems, or Components (SSCs) necessary for its wet storage, and the present programs and storage practices for fuel management have been performed. Activities necessary to validate the technical bases for, and verify the condition of the fuel and the SSCs under long-term wet storage have also been identified. The overall conclusion is that the fuel can be stored in L Basin, meeting general safety functions for fuel storage, for an additional 50 years and possibly beyond contingent upon continuation of existing fuel management activities and several augmented program activities. It is concluded that the technical bases and well-founded technologies have been established to store spent nuclear fuel in the L Basin. Methodologies to evaluate the fuel condition and characteristics, and systems to prepare fuel, isolate damaged fuel, and maintain water quality storage conditions have been established. Basin structural analyses have been performed against present NPH criteria. The aluminum fuel storage experience to date, supported by the understanding of the effects of environmental variables on materials performance, demonstrates that storage systems that minimize degradation and provide full retrievability of the fuel up to and greater than 50 additional years will require maintaining the present management programs, and with the recommended augmented/additional activities in this report.

  11. Nuclear Solid Waste Processing Design at the Idaho Spent Fuels Facility

    SciTech Connect (OSTI)

    Dippre, M. A.

    2003-02-25

    A spent nuclear fuels (SNF) repackaging and storage facility was designed for the Idaho National Engineering and Environmental Laboratory (INEEL), with nuclear solid waste processing capability. Nuclear solid waste included contaminated or potentially contaminated spent fuel containers, associated hardware, machinery parts, light bulbs, tools, PPE, rags, swabs, tarps, weld rod, and HEPA filters. Design of the nuclear solid waste processing facilities included consideration of contractual, regulatory, ALARA (as low as reasonably achievable) exposure, economic, logistical, and space availability requirements. The design also included non-attended transfer methods between the fuel packaging area (FPA) (hot cell) and the waste processing area. A monitoring system was designed for use within the FPA of the facility, to pre-screen the most potentially contaminated fuel canister waste materials, according to contact- or non-contact-handled capability. Fuel canister waste materials which are not able to be contact-handled after attempted decontamination will be processed remotely and packaged within the FPA. Noncontact- handled materials processing includes size-reduction, as required to fit into INEEL permitted containers which will provide sufficient additional shielding to allow contact handling within the waste areas of the facility. The current design, which satisfied all of the requirements, employs mostly simple equipment and requires minimal use of customized components. The waste processing operation also minimizes operator exposure and operator attendance for equipment maintenance. Recently, discussions with the INEEL indicate that large canister waste materials can possibly be shipped to the burial facility without size-reduction. New waste containers would have to be designed to meet the drop tests required for transportation packages. The SNF waste processing facilities could then be highly simplified, resulting in capital equipment cost savings, operational time savings, and significantly improved ALARA exposure.

  12. Occupational radiation dose assessment for the DOE spent-fuel storage facility

    SciTech Connect (OSTI)

    Hadley, J. [Duke Engineering and Services, Charlotte, NC (United States); Eble, R.G. Jr. [Duke Engineering & Services, Vienna, VA (United States)

    1997-12-01

    To expedite the licensing process of the centralized interim storage facility (CISF), the U.S. Department of Energy has completed a CISF topical safety analysis report (TSAR). The TSAR will be used in licensing the CISF when a site is designated. An occupational radiation dose assessment of the facility operations is performed as part of the CISF design. The first phase of the CISF has the capability to receive, transfer, and store spent nuclear fuel (SNF) in dual-purpose casks. Currently, there are five vendor technologies under consideration. The preliminary dose assessment is based on estimated occupational exposures using traditional power plant independent spent-fuel storage installation (ISFSI) and transport cask-handling processes. The second step in the process is to recommend as-low-as-reasonably-achievable (ALARA) techniques to reduce potential exposures. A final dose assessment is completed implementing the ALARA techniques, and a review is performed to ensure that the design is in compliance with regulatory criteria. The dose assessment and ALARA evaluation are determined using the following input information: dose estimates from vendor safety analysis reports, ISFSI experience with similar systems, traditional methods of operations, expected CISF cask receipt rates, and feasible ALARA techniques.

  13. Geant4 Model Validation of Compton Suppressed System for Process monitoring of Spent Fuel

    SciTech Connect (OSTI)

    Bender, Sarah; Unlu, Kenan; Orton, Christopher R.; Schwantes, Jon M.

    2013-05-01

    Nuclear material accountancy is of continuous concern for the regulatory, safeguards, and verification communities. In particular, spent nuclear fuel reprocessing facilities pose one of the most difficult accountancy challenges: monitoring highly radioactive, fluid sample streams in near real-time. The Multi-Isotope Process monitor will allow for near-real-time indication of process alterations using passive gamma-ray detection coupled with multivariate analysis techniques to guard against potential material diversion or to enhance domestic process monitoring. The Compton continuum from the dominant 661.7 keV 137Cs fission product peak obscures lower energy lines which could be used for spectral and multivariate analysis. Compton suppression may be able to mitigate the challenges posed by the high continuum caused by scattering. A Monte Carlo simulation using the Geant4 toolkit is being developed to predict the expected suppressed spectrum from spent fuel samples to estimate the reduction in the Compton continuum. Despite the lack of timing information between decay events in the particle management of Geant4, encouraging results were recorded utilizing only the information within individual decays without accounting for accidental coincidences. The model has been validated with single and cascade decay emitters in two steps: as an unsuppressed system and with suppression activated. Results of the Geant4 model validation will be presented.

  14. Container for reprocessing and permanent storage of spent nuclear fuel assemblies

    DOE Patents [OSTI]

    Forsberg, C.W.

    1992-03-24

    A single canister process container is described for reprocessing and permanent storage of spent nuclear fuel assemblies comprising zirconium-based cladding and fuel, which process container comprises a collapsible container, having side walls that are made of a high temperature alloy and an array of collapsible support means wherein the container is capable of withstanding temperature necessary to oxidize the zirconium-based cladding and having sufficient ductility to maintain integrity when collapsed under pressure. The support means is also capable of maintaining its integrity at a temperature necessary to oxidize the zirconium-based cladding. The process container also has means to introduce and remove fluids to and from the container. 10 figs.

  15. Management Of Hanford KW Basin Knockout Pot Sludge As Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Raymond, R. E. [CH2M HIll Plateau Remediation Company, Richland, WA (United States); Evans, K. M. [AREVA, Avignon (France)

    2012-10-22

    CH2M HILL Plateau Remediation Company (CHPRC) and AREVA Federal Services, LLC (AFS) have been working collaboratively to develop and deploy technologies to remove, transport, and interim store remote-handled sludge from the 10S-K West Reactor Fuel Storage Basin on the U.S. Department of Energy (DOE) Hanford Site near Richland, WA, USA. Two disposal paths exist for the different types of sludge found in the K West (KW) Basin. One path is to be managed as Spent Nuclear Fuel (SNF) with eventual disposal at an SNF at a yet to be licensed repository. The second path will be disposed as remote-handled transuranic (RH-TRU) waste at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM. This paper describes the systems developed and executed by the Knockout Pot (KOP) Disposition Subproject for processing and interim storage of the sludge managed as SNF, (i.e., KOP material).

  16. Nuclear Resonance Fluorescence to Measure Plutonium Mass in Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Ludewigt, Bernhard A; Quiter, Brian J.; Ambers, Scott D.

    2011-01-14

    The Next Generation Safeguard Initiative (NGSI) of the U.S Department of Energy is supporting a multi-lab/university collaboration to quantify the plutonium (Pu) mass in spent nuclear fuel (SNF) assemblies and to detect the diversion of pins with non-destructive assay (NDA) methods. The following 14 NDA techniques are being studied: Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Lead Slowing Down Spectrometer, Neutron Multiplicity, Passive Neutron Albedo Reactivity, Total Neutron (Gross Neutron), X-Ray Fluorescence, {sup 252}Cf Interrogation with Prompt Neutron Detection, Delayed Gamma, Nuclear Resonance Fluorescence, Passive Prompt Gamma, Self-integration Neutron Resonance Densitometry, and Neutron Resonance Transmission Analysis. Understanding and maturity of the techniques vary greatly, ranging from decades old, well-understood methods to new approaches. Nuclear Resonance Fluorescence (NRF) is a technique that had not previously been studied for SNF assay or similar applications. Since NRF generates isotope-specific signals, the promise and appeal of the technique lies in its potential to directly measure the amount of a specific isotope in an SNF assay target. The objectives of this study were to design and model suitable NRF measurement methods, to quantify capabilities and corresponding instrumentation requirements, and to evaluate prospects and the potential of NRF for SNF assay. The main challenge of the technique is to achieve the sensitivity and precision, i.e., to accumulate sufficient counting statistics, required for quantifying the mass of Pu isotopes in SNF assemblies. Systematic errors, considered a lesser problem for a direct measurement and only briefly discussed in this report, need to be evaluated for specific instrument designs in the future. Also, since the technical capability of using NRF to measure Pu in SNF has not been established, this report does not directly address issues such as cost, size, development time, nor concerns related to the use of Pu in measurement systems. This report discusses basic NRF measurement concepts, i.e., backscatter and transmission methods, and photon source and {gamma}-ray detector options in Section 2. An analytical model for calculating NRF signal strengths is presented in Section 3 together with enhancements to the MCNPX code and descriptions of modeling techniques that were drawn upon in the following sections. Making extensive use of the model and MCNPX simulations, the capabilities of the backscatter and transmission methods based on bremsstrahlung or quasi-monoenergetic photon sources were analyzed as described in Sections 4 and 5. A recent transmission experiment is reported on in Appendix A. While this experiment was not directly part of this project, its results provide an important reference point for our analytical estimates and MCNPX simulations. Used fuel radioactivity calculations, the enhancements to the MCNPX code, and details of the MCNPX simulations are documented in the other appendices.

  17. Long-term, low-temperature oxidation of PWR spent fuel: Interim transition report

    SciTech Connect (OSTI)

    Einziger, R.E.; Buchanan, H.C.

    1988-05-01

    Since some of the fuel rods will be breached and eventually most of the cladding will corrode, exposing fuel, one factor influencing the ability of spent fuel to retain radionuclides is its oxidation state in the expected moist air atmosphere. Oxidation of the fuel could split the cladding, exposing additional fuel and changing the leaching characteristics. Thermodynamically, there is no reason why UO{sub 2} should not oxidize completely to UO{sub 3} at repository temperatures. The underlying uncertainty is the rate of oxidation. Extrapolation of higher temperature data indicates that insufficient oxidation to convert all of the fuel to U{sub 3}O{sub 8} will occur during the first 10,000 years. However, lower oxidation states, such as U{sub 4}O{sub 9} and U{sub 3}O{sub 7}, might form. To date, the tests have run between 3200 and 4100 hours out of a planned 16,000-hour duration. Some preliminary conclusions can be drawn: (1) Moisture content of the air has no significant effect on oxidation rate, (2) the data have an uncertainty of 15 to 20%, which must be accounted for in the interpretation of single sample tests, and (3) below 175{degree}C, the oxidation rate is dependent on the particle size in the sample. The smaller particles oxidize more rapidly. 19 refs., 23 figs., 7 tabs.

  18. Testing of a Transport Cask for Research Reactor Spent Fuel - 13003

    SciTech Connect (OSTI)

    Mourao, Rogerio P.; Leite da Silva, Luiz; Miranda, Carlos A.; Mattar Neto, Miguel; Quintana, Jose F.A.; Saliba, Roberto O.; Novara, Oscar E.

    2013-07-01

    Since the beginning of the last decade three Latin American countries that operate research reactors - Argentina, Brazil and Chile - have been joining efforts to improve the regional capability in the management of spent fuel elements from the TRIGA and MTR reactors operated in the region. A main drive in this initiative, sponsored by the International Atomic Energy Agency, is the fact that no definite solution regarding the back end of the research reactor fuel cycle has been taken by any of the participating country. However, any long-term solution - either disposition in a repository or storage away from reactor - will involve at some stage the transportation of the spent fuel through public roads. Therefore, a licensed cask that provides adequate shielding, assurance of subcriticality, and conformance to internationally accepted safety, security and safeguards regimes is considered a strategic part of any future solution to be adopted at a regional level. As a step in this direction, a packaging for the transport of irradiated fuel for MTR and TRIGA research reactors was designed by the tri-national team and a half-scale model equipped with the MTR version of the internal basket was constructed in Argentina and Brazil and tested in Brazil. Three test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions. After failing the tests in the first two test series, the specimen successfully underwent the last test sequence. A second specimen, incorporating the structural improvements in view of the previous tests results, will be tested in the near future. Numerical simulations of the free drop and thermal tests are being carried out in parallel, in order to validate the computational modeling that is going to be used as a support for the package certification. (authors)

  19. Performance Spec. for Fuel Drying and Canister Inerting System for PWR Core 2 Blanket Fuel Assemblies Stored within Shipping Port Spent Fuel Canisters

    SciTech Connect (OSTI)

    JOHNSON, D.M.

    2000-03-14

    This specification establishes the performance requirements and basic design requirements imposed on the fuel drying and canister inerting system for Shippingport Pressurized Water Reactor (PWR) Core 2 blanket fuel assemblies (BFAs) stored within Shippingport spent fuel (SSFCs) canisters (fuel drying and canister inerting system). This fuel drying and canister inerting system is a component of the U.S. Department of Energy, Richland Operations Office (RL) Spent Nuclear Fuels Project at the Hanford Site. The fuel drying and canister inerting system provides for removing water and establishing an inert environment for Shippingport PWR Core 2 BFAs stored within SSFCs. A policy established by the U.S. Department of Energy (DOE) states that new SNF facilities (this is interpreted to include structures, systems and components) shall achieve nuclear safety equivalence to comparable U.S. Nuclear Regulatory Commission (NRC)-licensed facilities. This will be accomplished in part by applying appropriate NRC requirements for comparable NRC-licensed facilities to the fuel drying and canister inerting system, in addition to applicable DOE regulations and orders.

  20. Foreign programs for the storage of spent nuclear power plant fuels, high-level waste canisters and transuranic wastes

    SciTech Connect (OSTI)

    Harmon, K.M.; Johnson, A.B. Jr.

    1984-04-01

    The various national programs for developing and applying technology for the interim storage of spent fuel, high-level radioactive waste, and TRU wastes are summarized. Primary emphasis of the report is on dry storage techniques for uranium dioxide fuels, but data are also provided concerning pool storage.

  1. Criticality Safety Analysis Of As-loaded Spent Nuclear Fuel Casks

    SciTech Connect (OSTI)

    Banerjee, Kaushik; Scaglione, John M

    2015-01-01

    The final safety analysis report (FSAR) or the safety analysis report (SAR) for a particular spent nuclear fuel (SNF) cask system documents models and calculations used to demonstrate that a system meets the regulatory requirements under all normal, off-normal, and accident conditions of spent fuel storage, and normal and accident conditions of transportation. FSAR/SAR calculations and approved content specifications are intended to be bounding in nature to certify cask systems for a variety of fuel characteristics with simplified SNF loading requirements. Therefore, in general, loaded cask systems possess excess and uncredited criticality margins (i.e., the difference between the licensing basis and the as-loaded calculations). This uncredited margin could be quantified by employing more detailed cask-specific evaluations that credit the actual as-loaded cask inventory, and taking into account full (actinide and fission product) burnup credit. This uncredited criticality margin could be potentially used to offset (1) uncertainties in the safety basis that needs to account for the effects of system aging during extended dry storage prior to transportation, and (2) increases in SNF system reactivity over a repository performance period (e.g., 10,000 years or more) as the system undergoes degradation and internal geometry changes. This paper summarizes an assessment of cask-specific, as-loaded criticality margins for SNF stored at eight reactor sites (215 loaded casks were analyzed) under fully flooded conditions to assess the margins available during transportation after extended storage. It is observed that the calculated keff margin varies from 0.05 to almost 0.3 keff for the eight selected reactor sites, demonstrating that significant uncredited safety margins are present. In addition, this paper evaluates the sufficiency of this excess margin in applications involving direct disposal of currently loaded SNF casks.

  2. Comparison and Analysis of Regulatory and Derived Requirements for Certain DOE Spent Nuclear Fuel Shipments; Lessons Learned for Future Spent Fuel Transportation Campaigns

    SciTech Connect (OSTI)

    Kramer, George L., Ph.D.; Fawcett, Rick L.; Rieke, Philip C.

    2003-02-27

    Radioactive materials transportation is stringently regulated by the Department of Transportation and the Nuclear Regulatory Commission to protect the public and the environment. As a Federal agency, however, the U.S. Department of Energy (DOE) must seek State, Tribal and local input on safety issues for certain transportation activities. This interaction has invariably resulted in the imposition of extra-regulatory requirements, greatly increasing transportation costs and delaying schedules while not significantly enhancing the level of safety. This paper discusses the results an analysis of the regulatory and negotiated requirements established for a July 1998 shipment of spent nuclear fuel from foreign countries through the west coast to the Idaho National Engineering and Environmental Laboratory (INEEL). Staff from the INEEL Nuclear Materials Engineering and Disposition Department undertook the analysis in partnership with HMTC, to discover if there were instances where requirements derived from stakeholder interactions duplicate, contradict, or otherwise overlap with regulatory requirements. The study exhaustively lists and classifies applicable Department of Transportation (DOT) and Nuclear Regulatory Commission (NRC) regulations. These are then compared with a similarly classified list of requirements from the Environmental Impact Statements (EIS) and those developed during stakeholder negotiations. Comparison and analysis reveals numerous attempts to reduce transportation risk by imposing more stringent safety measures than those required by DOT and NRC. These usually took the form of additional inspection, notification and planning requirements. There are also many instances of overlap with, and duplication of regulations. Participants will gain a greater appreciation for the need to understand the risk-oriented basis of the radioactive materials regulations and their effectiveness in ensuring safety when negotiating extra-regulatory requirements.

  3. Spent Fuel Transportation Cask Response to the Caldecott Tunnel Fire Scenario

    SciTech Connect (OSTI)

    Adkins, Harold E.; Koeppel, Brian J.; Cuta, Judith M.

    2007-01-01

    On April 7, 1982, a tank truck and trailer carrying 8,800 gallons of gasoline was involved in an accident in the Caldecott tunnel on State Route 24 near Oakland, California. The tank trailer overturned and subsequently caught fire. The United States Nuclear Regulatory Commission (USNRC), one of the agencies responsible for ensuring the safe transportation of radioactive materials in the United States, undertook analyses to determine the possible regulatory implications of this particular event for the transportation of spent nuclear fuel by truck. The Fire Dynamics Simulator (FDS) code developed by National Institute of Standards and Technology (NIST) was used to determine the thermal environment in the Caldecott tunnel during the fire. The FDS results were used to define boundary conditions for a thermal transient model of a truck transport cask containing spent nuclear fuel. The Nuclear Assurance Corporation (NAC) Legal Weight Truck (LWT) transportation cask was selected for this evaluation, as it represents a typical truck (over-the-road) cask, and can be used to transport a wide variety of spent nuclear fuels. Detailed analysis of the cask response to the fire was performed using the ANSYS® computer code to evaluate the thermal performance of the cask design in this fire scenario. This report describes the methods and approach used to assess the thermal response of the selected cask design to the conditions predicted in the Caldecott tunnel fire. The results of the analysis are presented in detail, with an evaluation of the cask response to the fire. The staff concluded that some components of smaller transportation casks resembling the NAC LWT, despite placement within an ISO container, could degrade significantly. Small transportation casks similar to the NAC LWT would probably experience failure of seals in this severe accident scenario. USNRC staff evaluated the radiological consequences of the cask response to the Caldecott tunnel fire. Although some components heated up beyond their service temperatures, the staff determined that there would be no significant release as a result of the fire for the NAC LWT and similar casks.

  4. MODELING HEAT TRANSFER IN SPENT FUEL TRANSFER CASK NEUTRON SHIELDS – A CHALLENGING PROBLEM IN NATURAL CONVECTION

    SciTech Connect (OSTI)

    Fort, James A.; Cuta, Judith M.; Bajwa, C.; Baglietto, E.

    2010-07-18

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 10-15 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper proposes that there may be reliable CFD approaches to the transfer cask problem, specifically coupled steady-state solvers or unsteady simulations; however, both of these solutions take significant computational effort. Segregated (uncoupled) steady state solvers that were tested did not accurately capture the flow field and heat transfer distribution in this application. Mesh resolution, turbulence modeling, and the tradeoff between steady state and transient solutions are addressed. Because of the critical nature of this application, the need for new experiments at representative scales is clearly demonstrated.

  5. Generator configuration for solid oxide fuel cells

    DOE Patents [OSTI]

    Reichner, Philip (Plum Boro, PA)

    1989-01-01

    Disclosed are improvements in a solid oxide fuel cell generator 1 having a multiplicity of electrically connected solid oxide fuel cells 2, where a fuel gas is passed over one side of said cells and an oxygen-containing gas is passed over the other side of said cells resulting in the generation of heat and electricity. The improvements comprise arranging the cells in the configuration of a circle, a spiral, or folded rows within a cylindrical generator, and modifying the flow rate, oxygen concentration, and/or temperature of the oxygen-containing gases that flow to those cells that are at the periphery of the generator relative to those cells that are at the center of the generator. In these ways, a more uniform temperature is obtained throughout the generator.

  6. Simulated dry storage test of a spent PWR nuclear fuel assembly in air

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Gilbert, E.R.; Oden, D.R.; Stidham, D.L.; Garnier, J.E.; Weeks, D.L.; Dobbins, J.C.

    1985-02-01

    The purpose of the dry storage test was to investigate the behavior of Zircaloy-clad spent fuel in air between 200 and 275/sup 0/C. Atmospheric air was used for the cover gas because of the interest in establishing regimes where air inleakage into an initially inert system would not cause potential fuel degradation. Samples of the cover gas atmosphere were extracted monthly to determine fission gas concentrations as a function of time. The oxygen concentration was monitored to detect oxygen depletion, which would signal oxidation of the fuel. The gas analyses indicated very low but detectable levels of /sup 85/Kr during the first month of the test. A large increase (five orders of magnitude) in /sup 85/Kr and the appearance of helium in the cover gas indicated that a fuel rod had breached during the second month of the test. Stress rupture calculations showed that the stresses and temperatures were too low to expect breaches to form in defect-free cladding. It is theorized that the breach occurred in a fuel rod weakened by an existing cladding or end cap defect. Calculations based on the rate of /sup 85/Kr release suggest that the diameter of the initial breach was about 25 microns. A post-test fuel examination will be performed to locate and investigate the cause of the cladding breach and to determine if detectable fuel degradation progressed after the breach occurred. The post-test evaluation will define the consequences of a fuel rod breach occurring in an air cover gas at 270/sup 0/C, followed by subsequent exposure to air at a prototypic descending temperature.

  7. Final report spent nuclear fuel retrieval system primary cleaning development testing

    SciTech Connect (OSTI)

    Ketner, G.L.; Meeuwsen, P.V.

    1997-09-01

    Developmental testing of the primary cleaning station for spent nuclear fuel (SNF) and canisters is reported. A primary clean machine will be used to remove the gross sludge from canisters and fuel while maintaining water quality in the downstream process area. To facilitate SNF separation from canisters and minimize the impact to water quality, all canisters will be subjected to mechanical agitation and flushing with the Primary Clean Station. The Primary Clean Station consists of an outer containment box with an internally mounted, perforated wash basket. A single canister containing up to 14 fuel assemblies will be loaded into the wash basket, the confinement box lid closed, and the wash basket rotated for a fixed cycle time. During this cycle, basin water will be flushed through the wash basket and containment box to remove and entrain the sludge and carry it out of the box. Primary cleaning tests were performed to provide information concerning the removal of sludge from the fuel assemblies while in the basin canisters. The testing was also used to determine if additional fuel cleaning is required outside of the fuel canisters. Hydraulic performance and water demand requirements of the cleaning station were also evaluated. Thirty tests are reported in this document. Tests demonstrated that sludge can be dislodged and suspended sufficiently to remove it from the canister. Examination of fuel elements after cleaning suggested that more than 95% of the exposed fuel surfaces were cleaned so that no visual evidence of remained. As a result of testing, recommendations are made for the cleaning cycle. 3 refs., 16 figs., 4 tabs.

  8. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOE Patents [OSTI]

    Ackerman, John P. (Downers Grove, IL); Miller, William E. (Naperville, IL)

    1989-01-01

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuel using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuel, and two cathodes, the first cathode composed of either a solid alloy or molten cadmium and the second cathode composed of molten cadmium. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then substantially pure uranium is electrolytically transported and deposited on the first alloy or molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on the second molten cadmium cathode.

  9. Electrorefining process and apparatus for recovery of uranium and a mixture of uranium and plutonium from spent fuels

    DOE Patents [OSTI]

    Ackerman, J.P.; Miller, W.E.

    1987-11-05

    An electrorefining process and apparatus for the recovery of uranium and a mixture of uranium and plutonium from spent fuels is disclosed using an electrolytic cell having a lower molten cadmium pool containing spent nuclear fuel, an intermediate electrolyte pool, an anode basket containing spent fuels, two cathodes and electrical power means connected to the anode basket, cathodes and lower molten cadmium pool for providing electrical power to the cell. Using this cell, additional amounts of uranium and plutonium from the anode basket are dissolved in the lower molten cadmium pool, and then purified uranium is electrolytically transported and deposited on a first molten cadmium cathode. Subsequently, a mixture of uranium and plutonium is electrotransported and deposited on a second cathode. 3 figs.

  10. AIR SHIPMENT OF SPENT NUCLEAR FUEL FROM THE BUDAPEST RESEARCH REACTOR

    SciTech Connect (OSTI)

    Dewes, J.

    2014-02-24

    The shipment of spent nuclear fuel is usually done by a combination of rail, road or sea, as the high activity of the SNF needs heavy shielding. Air shipment has advantages, e.g. it is much faster than any other shipment and therefore minimizes the transit time as well as attention of the public. Up to now only very few and very special SNF shipments were done by air, as the available container (TUK6) had a very limited capacity. Recently Sosny developed a Type C overpack, the TUK-145/C, compliant with IAEA Standard TS-R-1 for the VPVR/M type Skoda container. The TUK-145/C was first used in Vietnam in July 2013 for a single cask. In October and November 2013 a total of six casks were successfully shipped from Hungary in three air shipments using the TUK-145/C. The present paper describes the details of these shipments and formulates the lessons learned.

  11. Down Select Report of Chemical Hydrogen Storage Materials, Catalysts, and Spent Fuel Regeneration Processes

    SciTech Connect (OSTI)

    Ott, Kevin; Linehan, Sue; Lipiecki, Frank; Aardahl, Christopher L.

    2008-08-24

    The DOE Hydrogen Storage Program is focused on identifying and developing viable hydrogen storage systems for onboard vehicular applications. The program funds exploratory research directed at identifying new materials and concepts for storage of hydrogen having high gravimetric and volumetric capacities that have the potential to meet long term technical targets for onboard storage. Approaches currently being examined are reversible metal hydride storage materials, reversible hydrogen sorption systems, and chemical hydrogen storage systems. The latter approach concerns materials that release hydrogen in endothermic or exothermic chemical bond-breaking processes. To regenerate the spent fuels arising from hydrogen release from such materials, chemical processes must be employed. These chemical regeneration processes are envisioned to occur offboard the vehicle.

  12. United States Program on Spent Nuclear Fuel and High-Level Radioactive Waste Management

    SciTech Connect (OSTI)

    Stewart, L.

    2004-10-03

    The President signed the Congressional Joint Resolution on July 23, 2002, that designated the Yucca Mountain site for a proposed geologic repository to dispose of the nation's spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The United States (U.S.) Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) is currently focusing its efforts on submitting a license application to the U.S. Nuclear Regulatory Commission (NRC) in December 2004 for construction of the proposed repository. The legislative framework underpinning the U.S. repository program is the basis for its continuity and success. The repository development program has significantly benefited from international collaborations with other nations in the Americas.

  13. Spent Nuclear Fuel Transportation: An Examination of Potential Lessons Learned From Prior Shipping Campaigns

    SciTech Connect (OSTI)

    Marsha Keister; Kathryn McBride

    2006-08-01

    The Nuclear Waste Policy Act of 1982 (NWPA), as amended, assigned the Department of Energy (DOE) responsibility for developing and managing a Federal system for the disposal of spent nuclear fuel (SNF) and high-level radioactive waste (HLW). The Office of Civilian Radioactive Waste Management (OCRWM) is responsible for accepting, transporting, and disposing of SNF and HLW at the Yucca Mountain repository in a manner that protects public health, safety, and the environment; enhances national and energy security; and merits public confidence. OCRWM faces a near-term challenge—to develop and demonstrate a transportation system that will sustain safe and efficient shipments of SNF and HLW to a repository. To better inform and improve its current planning, OCRWM has extensively reviewed plans and other documents related to past high-visibility shipping campaigns of SNF and other radioactive materials within the United States. This report summarizes the results of this review and, where appropriate, lessons learned.

  14. Plan for characterization of K Basin Spent Nuclear Fuel and sludge. Revision 1

    SciTech Connect (OSTI)

    Lawrence, L.A.

    1995-10-05

    This plan outlines a Characterization Program that provides the necessary data to support the Integrated Process Strategy scope and schedules for the Spent Nuclear Fuel (SNF) and sludge stored in the Hanford K Basins. The plan is driven by the schedule to begin fuel transfer by December 1997. The program is structured for 4 years (i.e., FY 1995 through FY 1998) and is limited to in-situ and laboratory examinations of the SNF and sludge in the K East and K West Basins. In order to assure the scope and schedule of the Characterization Program fully supports the Integrated Process Strategy, key project management has approved the plan. The intent of the program is to provide bounding behavior for the fuel, and acceptability for the transfer of the sludge to the Double Shell Tanks. Fuel examinations are based on two shipping compains from the K West Basin and one from the K East Basin with coincident sludge sampling campaings for the associated canister sludge. Sampling of the basin floor and pit sludge will be conducted independent of the fuel and canister sludge shipping activities. Fuel behavior and properties investigated in the laboratory include physical condition, hydride and oxide content, conditioning testing, oxidation kinetics, and dry storage behavior. These laboratory examinations are expected to provide the necessary data to establish or confirm fuel conditioning process limits and support safety analysis. Sludge laboratory examinations include measurement of quantity and content, measurement of properties for equipment design and recovery process limits and support safety analysis. Sludge laboratory examinations include measurement of quantity and content, measurement of properties for equipment design and recovery precesses, tank farm acceptance, simulant development, measurement of corrosion products, and measurements of drying behavior.

  15. Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel

    SciTech Connect (OSTI)

    Radulescu, Georgeta; Mueller, Don; Goluoglu, Sedat; Hollenbach, Daniel F; Fox, Patricia B

    2007-10-01

    The purpose of this calculation report, Range of Applicability and Bias Determination for Postclosure Criticality of Commercial Spent Nuclear Fuel, is to validate the computational method used to perform postclosure criticality calculations. The validation process applies the criticality analysis methodology approach documented in Section 3.5 of the Disposal Criticality Analysis Methodology Topical Report. The application systems for this validation consist of waste packages containing transport, aging, and disposal canisters (TAD) loaded with commercial spent nuclear fuel (CSNF) of varying assembly types, initial enrichments, and burnup values that are expected from the waste stream and of varying degree of internal component degradation that may occur over the 10,000-year regulatory time period. The criticality computational tool being evaluated is the general-purpose Monte Carlo N-Particle (MCNP) transport code. The nuclear cross-section data distributed with MCNP 5.1.40 and used to model the various physical processes are based primarily on the Evaluated Nuclear Data File/B Version VI (ENDF/B-VI) library. Criticality calculation bias and bias uncertainty and lower bound tolerance limit (LBTL) functions for CSNF waste packages are determined based on the guidance in ANSI/ANS 8.1-1998 (Ref. 4) and ANSI/ANS 8.17-2004 (Ref. 5), as described in Section 3.5.3 of Ref. 1. The development of this report is consistent with Test Plan for: Range of Applicability and Bias Determination for Postclosure Criticality. This calculation report has been developed in support of licensing activities for the proposed repository at Yucca Mountain, Nevada, and the results of the calculation may be used in the criticality evaluation for CSNF waste packages based on a conceptual TAD canister.

  16. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, Michael M. (New Kensington, PA); Lau, Louis K. (Monroeville, PA); Schulz, Terry L. (Murrysville Boro, PA)

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  17. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    DOE Patents [OSTI]

    Corletti, M.M.; Lau, L.K.; Schulz, T.L.

    1993-12-14

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps. 1 figures.

  18. Graphical and tabular summaries of decay characteristics for once-through PWR, LMFBR, and FFTF fuel cycle materials. [Spent fuel, high-level waste fuel can scrap

    SciTech Connect (OSTI)

    Croff, A.G.; Liberman, M.S.; Morrison, G.W.

    1982-01-01

    Based on the results of ORIGEN2 and a newly developed code called ORMANG, graphical and summary tabular characteristics of spent fuel, high-level waste, and fuel assembly structural material (cladding) waste are presented for a generic pressurized-water reactor (PWR), a liquid-metal fast breeder reactor (LMFBR), and the Fast Flux Test Facility (FFTF). The characteristics include radioactivity, thermal power, and toxicity (water dilution volume). Given are graphs and summary tables containing characteristic totals and the principal nuclide contributors as well as graphs comparing the three reactors for a single material and the three materials for a single reactor.

  19. EIS-0251: Department of the Navy Final Environmental Impact Statement for a Container System for the Management of Naval Spent Nuclear Fuel (November 1996)

    Broader source: Energy.gov [DOE]

    This Final Environmental Impact Statement addresses six general alternative systems for the loading, storage, transport, and possible disposal of naval spent nuclear fuel following examination.

  20. Plan for Characterization of K Basin Spent Nuclear Fuel (SNF) and Sludge (OCRWM)

    SciTech Connect (OSTI)

    TRIMBLE, D.J.

    2000-08-24

    This is an update of the plan for the characterization of spent nuclear fuel (SNF) and sludge stored in the Hanford K West and K East Basins. The purpose of the characterization program is to provide fuel and sludge data in support of the SNF Project in the effort to remove the fuel from the K Basins and place it into dry storage. Characterization of the K Basin fuel and sludge was initiated in 1994 and has been guided by the characterization plans (Abrefah 1994, Lawrence 1995a, Lawrence 1995b) and the characterization program management plan (PMP) (Lawrence 1995c, Lawrence 1998, Trimble 1999). The fuel characterization was completed in 1999. Summaries of these activities were documented by Lawrence (1999) and Suyama (1999). Lawrence (1999) is a summary report providing a road map to the detailed documentation of the fuel characterization. Suyama (1999) provides a basis for the limited characterization sample size as it relates to supporting design limits and the operational safety envelope for the SNF Project. The continuing sludge characterization is guided by a data quality objective (DQO) (Makenas 2000) and a sampling and analysis plan (SAP) (Baker, Welsh and Makenas 2000) The original intent of the characterization program was ''to provide bounding behavior for the fuel'' (Lawrence 1995a). To accomplish this objective, a fuel characterization program was planned that would provide data to augment data from the literature. The program included in-situ examinations of the stored fuel and laboratory testing of individual elements and small samples of fuel (Lawrence 1995a). Some of the planned tests were scaled down or canceled due to the changing needs of the SNF Project. The fundamental technical basis for the process that will be used to place the K Basin fuel into dry storage was established by several key calculations. These calculations characterized nominal and bounding behavior of fuel in Multi-Canister Overpacks (MCOs) during processing and storage. Characterization data supported input parameters that were used for the calculations. These parameters are documented in the Project Technical Databook (Reilly 1998). Calculations and reviews used in developing the parameters describe how characterization data were used in the parameter development, e.g. statistically based, added factors of conservatism, etc.

  1. FATE Unified Modeling Method for Spent Nuclear Fuel and Sludge Processing, Shipping and Storage - 13405

    SciTech Connect (OSTI)

    Plys, Martin; Burelbach, James; Lee, Sung Jin; Apthorpe, Robert

    2013-07-01

    A unified modeling method applicable to the processing, shipping, and storage of spent nuclear fuel and sludge has been incrementally developed, validated, and applied over a period of about 15 years at the US DOE Hanford site. The software, FATE{sup TM}, provides a consistent framework for a wide dynamic range of common DOE and commercial fuel and waste applications. It has been used during the design phase, for safety and licensing calculations, and offers a graded approach to complex modeling problems encountered at DOE facilities and abroad (e.g., Sellafield). FATE has also been used for commercial power plant evaluations including reactor building fire modeling for fire PRA, evaluation of hydrogen release, transport, and flammability for post-Fukushima vulnerability assessment, and drying of commercial oxide fuel. FATE comprises an integrated set of models for fluid flow, aerosol and contamination release, transport, and deposition, thermal response including chemical reactions, and evaluation of fire and explosion hazards. It is one of few software tools that combine both source term and thermal-hydraulic capability. Practical examples are described below, with consideration of appropriate model complexity and validation. (authors)

  2. COMPLETION OF THE FIRST INTEGRATED SPENT NUCLEAR FUEL TRANSSHIPMENT/INTERIM STORAGE FACILITY IN NW RUSSIA

    SciTech Connect (OSTI)

    Dyer, R.S.; Barnes, E.; Snipes, R.L.; Hoeibraaten, S.; Gran, H.C.; Foshaug, E.; Godunov, V.

    2003-02-27

    Northwest and Far East Russia contain large quantities of unsecured spent nuclear fuel (SNF) from decommissioned submarines that potentially threaten the fragile environments of the surrounding Arctic and North Pacific regions. The majority of the SNF from the Russian Navy, including that from decommissioned nuclear submarines, is currently stored in on-shore and floating storage facilities. Some of the SNF is damaged and stored in an unstable condition. Existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing this amount of fuel. Additional interim storage capacity is required. Most of the existing storage facilities being used in Northwest Russia do not meet health and safety, and physical security requirements. The United States and Norway are currently providing assistance to the Russian Federation (RF) in developing systems for managing these wastes. If these wastes are not properly managed, they could release significant concentrations of radioactivity to these sensitive environments and could become serious global environmental and physical security issues. There are currently three closely-linked trilateral cooperative projects: development of a prototype dual-purpose transport and storage cask for SNF, a cask transshipment interim storage facility, and a fuel drying and cask de-watering system. The prototype cask has been fabricated, successfully tested, and certified. Serial production is now underway in Russia. In addition, the U.S. and Russia are working together to improve the management strategy for nuclear submarine reactor compartments after SNF removal.

  3. US Department of Energy Storage of Spent Fuel and High Level Waste

    SciTech Connect (OSTI)

    Sandra M Birk

    2010-10-01

    ABSTRACT This paper provides an overview of the Department of Energy's (DOE) spent nuclear fuel (SNF) and high level waste (HLW) storage management. Like commercial reactor fuel, DOE's SNF and HLW were destined for the Yucca Mountain repository. In March 2010, the DOE filed a motion with the Nuclear Regulatory Commission (NRC) to withdraw the license application for the repository at Yucca Mountain. A new repository is now decades away. The default for the commercial and DOE research reactor fuel and HLW is on-site storage for the foreseeable future. Though the motion to withdraw the license application and delay opening of a repository signals extended storage, DOE's immediate plans for management of its SNF and HLW remain the same as before Yucca Mountain was designated as the repository, though it has expanded its research and development efforts to ensure safe extended storage. This paper outlines some of the proposed research that DOE is conducting and will use to enhance its storage systems and facilities.

  4. Present experience of NRI REZ with preparation of spent nuclear fuel shipment to Russian Federation

    SciTech Connect (OSTI)

    Svitak, F.; Broz, V.; Hrehor, M.; Marek, M.; Novosad, P.; Podlaha, J.; Rychecky, J. [Nuclear Research Institute Rez plc, Husinec 130, CZ-25068 (Czech Republic)

    2008-07-15

    The Nuclear Research Institute Rez plc (NRI) jointed the Russian Research Reactor Fuel Return (RRRFR) programme under the US-Russian Global Threat Reduction Initiative (GTRI) initiative and started the preparation of the spent nuclear fuel (SNF) shipment from the LVR-15 research reactor back to the Russian Federation (RF). The transport of 16 SKODA VPVR/M casks with EK-10, IRT-2M 80 %, and IRT-2M 36% fuel types is planned for the autumn of 2007. The paper describes the experience gained so far during the preparatory works for the SNF shipment (facility equipment modification, cask licenses) and the actual preparation of the SNF for transport, in particular its checking, repacking in a hot cell, loading into the VPVR/M casks, drying, manipulation, completion of the transport documentation, etc., including its transport to the SNF storage facility at the NRI before it is shipped to the RF. The paper also briefly describes a regulatory framework for these activities with a focus on legislative and methodological aspects of the return of vitrified waste back to the Czech Republic. (author)

  5. Application of Neutron-Absorbing Structural-Amorphous metal (SAM) Coatings for Spent Nuclear Fuel (SNF) Container to Enhance Criticality Safety Controls

    E-Print Network [OSTI]

    2006-01-01

    enhance criticality safety for spent nuclear fuel in basketsNuclear Fuel (SNF) Container to Enhance Criticality SafetyNuclear Fuel (SNF) Containers: Use of Novel Coating Materials to Enhance Criticality Safety

  6. CONTAINMENT ANALYSIS METHODOLOGY FOR TRANSPORT OF BREACHED CLAD ALUMINUM SPENT FUEL

    SciTech Connect (OSTI)

    Vinson, D.

    2010-07-11

    Aluminum-clad, aluminum-based spent nuclear fuel (Al-SNF) from foreign and domestic research reactors (FRR/DRR) is being shipped to the Savannah River Site and placed in interim storage in a water basin. To enter the United States, a cask with loaded fuel must be certified to comply with the requirements in the Title 10 of the U.S. Code of Federal Regulations, Part 71. The requirements include demonstration of containment of the cask with its contents under normal and accident conditions. Many Al-SNF assemblies have suffered corrosion degradation in storage in poor quality water, and many of the fuel assemblies are 'failed' or have through-clad damage. A methodology was developed to evaluate containment of Al-SNF even with severe cladding breaches for transport in standard casks. The containment analysis methodology for Al-SNF is in accordance with the methodology provided in ANSI N14.5 and adopted by the U. S. Nuclear Regulatory Commission in NUREG/CR-6487 to meet the requirements of 10CFR71. The technical bases for the inputs and assumptions are specific to the attributes and characteristics of Al-SNF received from basin and dry storage systems and its subsequent performance under normal and postulated accident shipping conditions. The results of the calculations for a specific case of a cask loaded with breached fuel show that the fuel can be transported in standard shipping casks and maintained within the allowable release rates under normal and accident conditions. A sensitivity analysis has been conducted to evaluate the effects of modifying assumptions and to assess options for fuel at conditions that are not bounded by the present analysis. These options would include one or more of the following: reduce the fuel loading; increase fuel cooling time; reduce the degree of conservatism in the bounding assumptions; or measure the actual leak rate of the cask system. That is, containment analysis for alternative inputs at fuel-specific conditions and at cask-loading-specific conditions could be performed to demonstrate that release is within the allowable leak rates of the cask.

  7. Reversible Bending Fatigue Test System for Investigating Vibration Integrity of Spent Nuclear Fuel during Transportation

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L; Flanagan, Michelle

    2013-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy, and SS cladding with alumina pellets inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The failure behaviors observed from tested surrogate rods provides a fundamental understanding of the underlying failure mechanisms of the SNF surrogate rod under vibration which has not been achieved previously. The newly developed device is scheduled to be installed in the hot-cell in summer 2013 to test high burnup SNF.

  8. Instrumented, Shielded Test Canister System for Evaluation of Spent Nuclear Fuel in Dry Storage

    SciTech Connect (OSTI)

    Sindelar, R.L.

    1999-10-21

    This document describes the development of an instrumented, shielded test canister system to store and monitor aluminum-based spent nuclear duel under dry storage conditions.

  9. A comparison of spent fuel shipping cask response to 10 CFR 71 normal conditions and realistic hot day extremes

    SciTech Connect (OSTI)

    Manson, S.J.; Gianoulakis, S.E.

    1994-02-01

    The structural properties of spent nuclear fuel shipping containers vary as a function of the cask wall temperature. An analysis is performed to determine the effect of a realistic, though bounding, hot day environment on the thermal behavior of spent fuel shipping casks. These results are compared to those which develop under a steady-state application of the prescribed normal thermal conditions of 10CFR71. The completed analysis revealed that the majority of wall temperatures, for a wide variety of spent fuel shipping cask configurations, fall well below those predicted by using the steady-state application of the regulatory boundary conditions. It was found that maximum temperatures at the cask surface occasionally lie above temperatures predicted under the regulatory condition. This is due to the conservative assumptions present in the ambient conditions used. The analysis demonstrates that diurnal temperature variations which penetrate the cask wall have maxima substantially less than the corresponding temperatures obtained when applying the steady-state regulatory boundary conditions. Therefore, it is certain that vital cask components and the spent fuel itself will not exceed the temperatures calculated by use of the steady-state interpretation of the 10CFR71 normal conditions.

  10. Cost probability analysis of reprocessing spent nuclear fuel in the US G.D. Recktenwald, M.R. Deinert

    E-Print Network [OSTI]

    Deinert, Mark

    a b s t r a c ta r t i c l e i n f o Article history: Received 1 July 2011 Received in revised form 20 sustained transuranic recycle by the year 2100 (DOE, 2005). Here, all spent nuclear fuel from light­ water

  11. High Burn-Up Spent Nuclear Fuel Vibration Integrity Study 15134

    SciTech Connect (OSTI)

    Wang, Jy-An John; Wang, Hong; Jiang, Hao; Bevard, Bruce Balkcom; Howard, Rob L; Scaglione, John M

    2015-01-01

    The Oak Ridge National Laboratory (ORNL) has developed the cyclic integrated reversible-bending fatigue tester (CIRFT) approach to successfully demonstrate the controllable fatigue fracture on high burnup (HBU) spent nuclear fuel (SNF) in a normal vibration mode. CIRFT enables examination of the underlying mechanisms of SNF system dynamic performance. Due to the inhomogeneous composite structure of the SNF system, the detailed mechanisms of the pellet-pellet and pellet-clad interactions and the stress concentration effects at the pellet-pellet interface cannot be readily obtained from a CIRFT system measurement. Therefore, finite element analyses (FEAs) are used to translate the global moment-curvature measurement into local stress-strain profiles for further investigation. The major findings of CIRFT on the HBU SNF are as follows: SNF system interface bonding plays an important role in SNF vibration performance. Fuel structure contributes to SNF system stiffness. There are significant variations in stress and curvature of SNF systems during vibration cycles resulting from segment pellets and clad interactions. SNF failure initiates at the pellet-pellet interface region and appears to be spontaneous.

  12. Spent Fuel Transportation Package Response to the Baltimore Tunnel Fire Scenario

    SciTech Connect (OSTI)

    Adkins, Harold E.; Cuta, Judith M.; Koeppel, Brian J.; Guzman, Anthony D.; Bajwa, Christopher S.

    2006-11-15

    On July 18, 2001, a freight train carrying hazardous (non-nuclear) materials derailed and caught fire while passing through the Howard Street railroad tunnel in downtown Baltimore, Maryland. The United States Nuclear Regulatory Commission (USNRC), one of the agencies responsible for ensuring the safe transportation of radioactive materials in the United States, undertook an investigation of the train derailment and fire to determine the possible regulatory implications of this particular event for the transportation of spent nuclear fuel by railroad. Shortly after the accident occurred, the USNRC met with the National Transportation Safety Board (NTSB, the U.S. agency responsible for determining the cause of transportation accidents), to discuss the details of the accident and the ensuing fire. Following these discussions, the USNRC assembled a team of experts from the National Institute of Standards and Technology (NIST), the Center for Nuclear Waste Regulatory Analyses (CNWRA), and Pacific Northwest National Laboratory (PNNL) to determine the thermal conditions that existed in the Howard Street tunnel fire and analyze the effects of this fire on various spent fuel transportation package designs. The Fire Dynamics Simulator (FDS) code, developed by NIST, was used to determine the thermal environment present in the Howard Street tunnel during the fire. The FDS results were used as boundary conditions in the COBRA-SFS and ANSYS® computer codes to evaluate the thermal performance of different package designs. The staff concluded that larger transportation packages resembling the HOLTEC Model No. HI STAR 100 and TransNuclear Model No. TN-68 would withstand a fire with thermal conditions similar to those that existed in the Baltimore tunnel fire event with only minor damage to peripheral components. This is due to their sizable thermal inertia and design specifications in compliance with currently imposed regulatory requirements. The staff also concluded that some components of smaller transportation packages resembling the NAC Model No. LWT, despite placement within an ISO container, could degrade. USNRC staff evaluated the radiological consequences of the package responses to the Baltimore tunnel fire. Though components in some packages heated up beyond their service temperatures, the staff determined that there would be no significant dose as a result of the fire for any of these and similar packages.

  13. Hanford spent nuclear fuel project recommended path forward, volume III: Alternatives and path forward evaluation supporting documentation

    SciTech Connect (OSTI)

    Fulton, J.C.

    1994-10-01

    Volume I of the Hanford Spent Nuclear Fuel Project - Recommended Path Forward constitutes an aggressive series of projects to construct and operate systems and facilities to safely retrieve, package, transport, process, and store K Basins fuel and sludge. Volume II provided a comparative evaluation of four Alternatives for the Path Forward and an evaluation for the Recommended Path Forward. Although Volume II contained extensive appendices, six supporting documents have been compiled in Volume III to provide additional background for Volume II.

  14. Fuel cell using a hydrogen generation system

    DOE Patents [OSTI]

    Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

    2010-10-19

    A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

  15. An Assessment of Spent Fuel Reprocessing for Actinide Destruction and Resource Sustainability.

    SciTech Connect (OSTI)

    Cipiti, Benjamin B.; Smith, James D.

    2008-09-01

    The reprocessing and recycling of spent nuclear fuel can benefit the nuclear fuel cycle by destroying actinides or extending fissionable resources if uranium supplies become limited. The purpose of this study was to assess reprocessing and recycling in both fast and thermal reactors to determine the effectiveness for actinide destruction and resource utilization. Fast reactor recycling will reduce both the mass and heat load of actinides by a factor of 2, but only after 3 recycles and many decades. Thermal reactor recycling is similarly effective for reducing actinide mass, but the heat load will increase by a factor of 2. Economically recoverable reserves of uranium are estimated to sustain the current global fleet for the next 100 years, and undiscovered reserves and lower quality ores are estimated to contain twice the amount of economically recoverable reserves--which delays the concern of resource utilization for many decades. Economic analysis reveals that reprocessed plutonium will become competitive only when uranium prices rise to about %24360 per kg. Alternative uranium sources are estimated to be competitive well below that price. Decisions regarding the development of a near term commercial-scale reprocessing fuel cycle must partially take into account the effectiveness of reactors for actnides destruction and the time scale for when uranium supplies may become limited. Long-term research and development is recommended in order to make more dramatic improvements in actinide destruction and cost reductions for advanced fuel cycle technologies.The original scope of this work was to optimize an advanced fuel cycle using a tool that couples a reprocessing plant simulation model with a depletion analysis code. Due to funding and time constraints of the late start LDRD process and a lack of support for follow-on work, the project focused instead on a comparison of different reprocessing and recycling options. This optimization study led to new insight into the fuel cycle. AcknowledgementThe authors would like to acknowledge the support of Laboratory Directed Research and Development Project 125862 for funding this research.

  16. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    SciTech Connect (OSTI)

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.

  17. Performance assessment for the geological disposal of Deep Burn spent fuel using TTBX

    SciTech Connect (OSTI)

    Van den Akker, B.P.; Ahn, J. [Department of Nuclear Engineering, University of California, Berkeley, CA 94720 (United States)

    2013-07-01

    The behavior of Deep Burn Modular High Temperature Reactor Spent Fuel (DBSF) is investigated in the Yucca Mountain geological repository (YMR) with respect to the annual dose (Sv/yr) delivered to the Reasonably Maximally Exposed Individual (RMEI) from the transport of radionuclides released from the graphite waste matrix. Transport calculations are performed with a novel computer code, TTBX which is capable of modeling transport pathways that pass through heterogeneous geological formations. TTBX is a multi-region extension of the existing single region TTB transport code. Overall the peak annual dose received by the RMEI is seen to be four orders of magnitude lower than the regulatory threshold for exposure, even under pessimistic scenarios. A number of factors contribute to the favorable performance of DBSF. A reduction of one order of magnitude in the peak annual dose received by the RMEI is observed for every order of magnitude increase in the waste matrix lifetime, highlighting the importance of the waste matrix durability and suggesting graphite's utility as a potential waste matrix for the disposal of high-level waste. Furthermore, we see that by incorporating a higher fidelity far-field model the peak annual dose calculated to be received by the RMEI is reduced by two orders of magnitude. By accounting for the heterogeneities of the far field we have simultaneously removed unnecessary conservatisms and improved the fidelity of the transport model. (authors)

  18. Maine Yankee: Making the Transition from an Operating Plant to an Independent Spent Fuel Storage Installation (ISFSI)

    SciTech Connect (OSTI)

    Norton, W.; McGough, M. S.

    2002-02-26

    The purpose of this paper is to describe the challenges faced by Maine Yankee Atomic Power Company in making the transition from an operating nuclear power plant to an Independent Spent Fuel Storage Installation (ISFSI). Maine Yankee (MY) is a 900-megawatt Combustion Engineering pressurized water reactor whose architect engineer was Stone & Webster. Maine Yankee was put into commercial operation on December 28, 1972. It is located on an 820-acre site, on the shores of the Back River in Wiscasset, Maine about 40 miles northeast of Portland, Maine. During its operating life, it generated about 1.2 billion kilowatts of power, providing 25% of Maine's electric power needs and serving additional customers in New England. Maine Yankee's lifetime capacity factor was about 67% and it employed more than 450 people. The decision was made to shutdown Maine Yankee in August of 1997, based on economic reasons. Once this decision was made planning began on how to accomplish safe and cost effective decommissioning of the plant by 2004 while being responsive to the community and employees.

  19. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California.

    SciTech Connect (OSTI)

    Bryan, Charles R.; Enos, David George

    2014-07-01

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  20. BWR spent fuel storage cask performance test. Volume 1. Cask handling experience and decay heat, heat transfer, and shielding data

    SciTech Connect (OSTI)

    McKinnon, M.A.; Doman, J.W.; Tanner, J.E.; Guenther, R.J.; Creer, J.M.; King, C.E.

    1986-02-01

    This report documents a heat transfer and shielding performance test conducted on a Ridihalgh, Eggers and Associates REA 2023 boiling water reactor (BWR) spent fuel storage cask. The testing effort consisted of three parts: pretest preparations, performance testing, and post-test activities. Pretest preparations included conducting cask handling dry runs and characterizing BWR spent fuel assemblies from Nebraska Public Power District's Cooper Nuclear Station. The performance test matrix included 14 runs consisting of two loadings, two cask orientations, and three backfill environments. Post-test activities included calorimetry and axial radiation scans of selected fuel assemblies, in-basin sipping of each assembly, crud collection, video and photographic scans, and decontamination of the cask interior and exterior.

  1. Calculation Method for the Projection of Future Spent Nuclear Fuel Discharges

    SciTech Connect (OSTI)

    B. McLeod

    2002-02-28

    This report describes the calculation method developed for the projection of future utility spent nuclear fuel (SNF) discharges in regard to their timing, quantity, burnup, and initial enrichment. This projection method complements the utility-supplied RW-859 data on historic discharges and short-term projections of SNF discharges by providing long-term projections that complete the total life cycle of discharges for each of the current U.S. nuclear power reactors. The method was initially developed in mid-1999 to update the SNF discharge projection associated with the 1995 RW-859 utility survey (CRWMS M&O 1996). and was further developed as described in Rev. 00 of this report (CRWMS M&O 2001a). Primary input to the projection of SNF discharges is the utility projection of the next five discharges from each nuclear unit, which is provided via the revised final version of the Energy Information Administration (EIA) 1998 RW-859 utility survey (EIA 2000a). The projection calculation method is implemented via a set of Excel 97 spreadsheets. These calculations provide the interface between receipt of the utility five-discharge projections that are provided in the RW-859 survey, and the delivery of projected life-cycle SNF discharge quantities and characteristics in the format requisite for performing logistics analysis to support design of the Civilian Radioactive Waste Management System (CRWMS). Calculation method improvements described in this report include the addition of a reactor-specific maximum enrichment-based discharge burnup limit. This limit is the consequence of the enrichment limit, currently 5 percent. which is imposed as a Nuclear Regulatory Commission (NRC) license condition on nuclear fuel fabrication plants. In addition, the calculation method now includes the capability for projecting future nuclear plant power upratings, consistent with many such recent plant uprates and the prospect of additional future uprates. Finally. this report summarizes the results of the 2002 Reference SNF Discharge Projection.

  2. Characterization Program Management Plan for Hanford K Basin Spent Nuclear Fuel (SNF) (OCRWM)

    SciTech Connect (OSTI)

    BAKER, R.B.; TRIMBLE, D.J.

    2000-12-12

    The management plan developed to characterize the K Basin spent nuclear fuel (SNF) and sludge was originally developed for Westinghouse Hanford Company and Pacific Northwest National Laboratory to work together on a program to provide characterization data to support removal, conditioning, and subsequent dry storage of the SNF stored at the Hanford K Basins. The plan also addressed necessary characterization for the removal, transport, and storage of the sludge from the Hanford K Basins. This plan was revised in 1999 (i.e., Revision 2) to incorporate actions necessary to respond to the deficiencies revealed as the result of Quality Assurance surveillances and audits in 1999 with respect to the fuel characterization activities. Revision 3 to this Program Management Plan responds to a Worker Assessment resolution determined in Fical Year 2000. This revision includes an update to current organizational structures and other revisions needed to keep this management plan consistent with the current project scope. The plan continues to address both the SNF and the sludge accumulated at K Basins. Most activities for the characterization of the SNF have been completed. Data validation, Office of Civilian Radioactive Waste Management (OCRWM) document reviews, and OCRWM data qualification are the remaining SNF characterization activities. The transport and storage of K Basin sludge are affected by recent path forward revisions. These revisions require additional laboratory analyses of the sludge to complete the acquisition of required supporting engineering data. Hence, this revision of the management plan provides the overall work control for these remaining SNF and sludge characterization activities given the current organizational structure of the SNF Project.

  3. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings Document details Fossil Fuel-Generated Energy...

  4. Proton Exchange Membrane Fuel Cells for Electrical Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board...

  5. Fuel cell generator with fuel electrodes that control on-cell fuel reformation

    DOE Patents [OSTI]

    Ruka, Roswell J. (Pittsburgh, PA); Basel, Richard A. (Pittsburgh, PA); Zhang, Gong (Murrysville, PA)

    2011-10-25

    A fuel cell for a fuel cell generator including a housing including a gas flow path for receiving a fuel from a fuel source and directing the fuel across the fuel cell. The fuel cell includes an elongate member including opposing first and second ends and defining an interior cathode portion and an exterior anode portion. The interior cathode portion includes an electrode in contact with an oxidant flow path. The exterior anode portion includes an electrode in contact with the fuel in the gas flow path. The anode portion includes a catalyst material for effecting fuel reformation along the fuel cell between the opposing ends. A fuel reformation control layer is applied over the catalyst material for reducing a rate of fuel reformation on the fuel cell. The control layer effects a variable reformation rate along the length of the fuel cell.

  6. Lead Slowing-Down Spectrometry Time Spectral Analysis for Spent Fuel Assay: FY11 Status Report

    SciTech Connect (OSTI)

    Kulisek, Jonathan A.; Anderson, Kevin K.; Bowyer, Sonya M.; Casella, Andrew M.; Gesh, Christopher J.; Warren, Glen A.

    2011-09-30

    Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration, of which PNNL is a part, to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10% typical of today's confirmatory assay methods. This document is a progress report for FY2011 PNNL analysis and algorithm development. Progress made by PNNL in FY2011 continues to indicate the promise of LSDS analysis and algorithms applied to used fuel. PNNL developed an empirical model based on calibration of the LSDS to responses generated from well-characterized used fuel. The empirical model, which accounts for self-shielding effects using empirical basis vectors calculated from the singular value decomposition (SVD) of a matrix containing the true self-shielding functions of the used fuel assembly models. The potential for the direct and independent assay of the sum of the masses of 239Pu and 241Pu to within approximately 3% over a wide used fuel parameter space was demonstrated. Also, in FY2011, PNNL continued to develop an analytical model. Such efforts included the addition of six more non-fissile absorbers in the analytical shielding function and the non-uniformity of the neutron flux across the LSDS assay chamber. A hybrid analytical-empirical approach was developed to determine the mass of total Pu (sum of the masses of 239Pu, 240Pu, and 241Pu), which is an important quantity in safeguards. Results using this hybrid method were of approximately the same accuracy as the pure empirical approach. In addition, total Pu with much better accuracy with the hybrid approach than the pure analytical approach. In FY2012, PNNL will continue efforts to optimize its empirical model and minimize its reliance on calibration data. In addition, PNNL will continue to develop an analytical model, considering effects such as neutron-scattering in the fuel and cladding, as well as neutrons streaming through gaps between fuel pins in the fuel assembly.

  7. Preparation for the Recovery of Spent Nuclear Fuel (SNF) at Andreeva Bay, North West Russia - 13309

    SciTech Connect (OSTI)

    Field, D.; McAtamney, N. [Nuvia Limited (United Kingdom)] [Nuvia Limited (United Kingdom)

    2013-07-01

    Andreeva Bay is located near Murmansk in the Russian Federation close to the Norwegian border. The ex-naval site was used to de-fuel nuclear-powered submarines and icebreakers during the Cold War. Approximately 22,000 fuel assemblies remain in three Dry Storage Units (DSUs) which means that Andreeva Bay has one of the largest stockpiles of highly enriched spent nuclear fuel (SNF) in the world. The high contamination and deteriorating condition of the SNF canisters has made improvements to the management of the SNF a high priority for the international community for safety, security and environmental reasons. International Donors have, since 2002, provided support to projects at Andreeva concerned with improving the management of the SNF. This long-term programme of work has been coordinated between the International Donors and responsible bodies within the Russian Federation. Options for the safe and secure management of SNF at Andreeva Bay were considered in 2004 and developed by a number of Russian Institutes with international participation. This consisted of site investigations, surveys and studies to understand the technical challenges. A principal agreement was reached that the SNF would be removed from the site altogether and transported to Russia's reprocessing facility at Mayak in the Urals. The analytical studies provided the information necessary to develop the construction plan for the site. Following design and regulatory processes, stakeholders endorsed the technical solution in April 2007. This detailed the processes, facilities and equipment required to safely remove the SNF and identified other site services and support facilities required on the site. Implementation of this strategy is now well underway with the facilities in various states of construction. Physical works have been performed to address the most urgent tasks including weather protection over one of the DSUs, installation of shielding over the cells, provision of radiation protection infrastructure and general preparation of the site for construction of the facilities for the removal of the SNF. This paper describes the development and implementation of the strategy and work to improve the safe and secure management of SNF, preparing it for retrieval and removal from Andreeva Bay. (authors)

  8. Effects of the MacArthur Maze Fire and Roadway Collapse on a Spent Nuclear Fuel Transportation Package

    SciTech Connect (OSTI)

    Bajwa, Christopher S.; Easton, Earl P.; Adkins, Harold E.; Cuta, Judith M.; Klymyshyn, Nicholas A.; Suffield, Sarah R.

    2011-03-03

    In 2007, a severe transportation accident occurred near Oakland, California, on a section of Interstate 880 known as the "MacArthur Maze," involving a tractor trailer carrying gasoline which impacted an overpass support column and burst into flames. The subsequent fire caused the collapse of portions of the Interstate 580 overpass onto the remains of the tractor-trailer in less than 20 minutes, due to a reduction of strength in the structural steel exposed to the fire. The US Nuclear Regulatory Commission is in the process of examining the impacts of this accident on the performance of a spent nuclear fuel transportation package, using detailed analysis models, in order to determine the potential regulatory implications related to the safe transport of spent nuclear fuel in the United States. This paper will provide a summary of this ongoing effort and present some preliminary results and conclusions.

  9. The MacArthur Maze Fire and Roadway Collapse: A "Worst Case Scenario" for Spent Nuclear Fuel Transportation?

    SciTech Connect (OSTI)

    Bajwa, Christopher S.; Easton, Earl P.; Adkins, Harold E.; Cuta, Judith M.; Klymyshyn, Nicholas A.; Suffield, Sarah R.

    2012-07-06

    In 2007, a severe transportation accident occurred near Oakland, California, at the interchange known as the "MacArthur Maze." The accident involved a double tanker truck of gasoline overturning and bursting into flames. The subsequent fire reduced the strength of the supporting steel structure of an overhead interstate roadway causing the collapse of portions of that overpass onto the lower roadway in less than 20 minutes. The US Nuclear Regulatory Commission has analyzed what might have happened had a spent nuclear fuel transportation package been involved in this accident, to determine if there are any potential regulatory implications of this accident to the safe transport of spent nuclear fuel in the United States. This paper provides a summary of this effort, presents preliminary results and conclusions, and discusses future work related to the NRC's analysis of the consequences of this type of severe accident.

  10. FY13 Summary Report on the Augmentation of the Spent Fuel Composition Dataset for Nuclear Forensics: SFCOMPO/NF

    SciTech Connect (OSTI)

    Brady Raap, Michaele C.; Lyons, Jennifer A.; Collins, Brian A.; Livingston, James V.

    2014-03-31

    This report documents the FY13 efforts to enhance a dataset of spent nuclear fuel isotopic composition data for use in developing intrinsic signatures for nuclear forensics. A review and collection of data from the open literature was performed in FY10. In FY11, the Spent Fuel COMPOsition (SFCOMPO) excel-based dataset for nuclear forensics (NF), SFCOMPO/NF was established and measured data for graphite production reactors, Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs) were added to the dataset and expanded to include a consistent set of data simulated by calculations. A test was performed to determine whether the SFCOMPO/NF dataset will be useful for the analysis and identification of reactor types from isotopic ratios observed in interdicted samples.

  11. A methodology for estimating the residual contamination contribution to the source term in a spent-fuel transport cask

    SciTech Connect (OSTI)

    Sanders, T.L. ); Jordan, H. . Rocky Flats Plant); Pasupathi, V. ); Mings, W.J. ); Reardon, P.C. )

    1991-09-01

    This report describes the ranges of the residual contamination that may build up in spent-fuel transport casks. These contamination ranges are calculated based on data taken from published reports and from previously unpublished data supplied by cask transporters. The data involve dose rate measurements, interior smear surveys, and analyses of water flushed out of cask cavities during decontamination operations. A methodology has been developed to estimate the effect of residual contamination on spent-fuel cask containment requirements. Factors in estimating the maximum permissible leak rates include the form of the residual contamination; possible release modes; internal gas-borne depletion; and the temperature, pressure, and vibration characteristics of the cask during transport under normal and accident conditions. 12 refs., 9 figs., 4 tabs.

  12. Standard guide for pyrophoricity/combustibility testing in support of pyrophoricity analyses of metallic uranium spent nuclear fuel

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2007-01-01

    1.1 This guide covers testing protocols for testing the pyrophoricity/combustibility characteristics of metallic uranium-based spent nuclear fuel (SNF). The testing will provide basic data for input into more detailed computer codes or analyses of thermal, chemical, and mechanical SNF responses. These analyses would support the engineered barrier system (EBS) design bases and safety assessment of extended interim storage facilities and final disposal in a geologic repository. The testing also could provide data related to licensing requirements for the design and operation of a monitored retrievable storage facility (MRS) or independent spent fuel storage installation (ISFSI). 1.2 This guide describes testing of metallic uranium and metallic uranium-based SNF in support of transportation (in accordance with the requirements of 10CFR71), interim storage (in accordance with the requirements of 10CFR72), and geologic repository disposal (in accordance with the requirements of 10CFR60/63). The testing described ...

  13. Expected environments in high-level nuclear waste and spent fuel repositories in salt

    SciTech Connect (OSTI)

    Claiborne, H.C.; Rickertsen, L.D., Graham, R.F.

    1980-08-01

    The purpose of this report is to describe the expected environments associated with high-level waste (HLW) and spent fuel (SF) repositories in salt formations. These environments include the thermal, fluid, pressure, brine chemistry, and radiation fields predicted for the repository conceptual designs. In this study, it is assumed that the repository will be a room and pillar mine in a rock-salt formation, with the disposal horizon located approx. 2000 ft (610 m) below the surface of the earth. Canistered waste packages containing HLW in a solid matrix or SF elements are emplaced in vertical holes in the floor of the rooms. The emplacement holes are backfilled with crushed salt or other material and sealed at some later time. Sensitivity studies are presented to show the effect of changing the areal heat load, the canister heat load, the barrier material and thickness, ventilation of the storage room, and adding a second row to the emplacement configuration. The calculated thermal environment is used as input for brine migration calculations. The vapor and gas pressure will gradually attain the lithostatic pressure in a sealed repository. In the unlikely event that an emplacement hole will become sealed in relatively early years, the vapor space pressure was calculated for three scenarios (i.e., no hole closure - no backfill, no hole closure - backfill, and hole closure - no backfill). It was assumed that the gas in the system consisted of air and water vapor in equilibrium with brine. A computer code (REPRESS) was developed assuming that these changes occur slowly (equilibrium conditions). The brine chemical environment is outlined in terms of brine chemistry, corrosion, and compositions. The nuclear radiation environment emphasized in this report is the stored energy that can be released as a result of radiation damage or crystal dislocations within crystal lattices.

  14. NRC Technical Research Program to Evaluate Extended Storage and Transportation of Spent Nuclear Fuel - 12547

    SciTech Connect (OSTI)

    Einziger, R.E.; Compton, K.; Gordon, M.; Ahn, T.; Gonzales, H.; Pan, Y.

    2012-07-01

    Any new direction proposed for the back-end of spent nuclear fuel (SNF) cycle will require storage of SNF beyond the current licensing periods. The Nuclear Regulatory Commission (NRC) has established a technical research program to determine if any changes in the 10 CFR part 71, and 72 requirements, and associated guidance might be necessary to regulate the safety of anticipated extended storage, and subsequent transport of SNF. This three part program of: 1) analysis of knowledge gaps in the potential degradation of materials, 2) short-term research and modeling, and 3) long-term demonstration of systems, will allow the NRC to make informed regulatory changes, and determine when and if additional monitoring and inspection of the systems is necessary. The NRC has started a research program to obtain data necessary to determine if the current regulatory guidance is sufficient if interim dry storage has to be extended beyond the currently approved licensing periods. The three-phased approach consists of: - the identification and prioritization of potential degradation of the components related to the safe operation of a dry cask storage system, - short-term research to determine if the initial analysis was correct, and - a long-term prototypic demonstration project to confirm the models and results obtained in the short-term research. The gap analysis has identified issues with the SCC of the stainless steel canisters, and SNF behavior. Issues impacting the SNF and canister internal performance such as high and low temperature distributions, and drying have also been identified. Research to evaluate these issues is underway. Evaluations have been conducted to determine the relative values that various types of long-term demonstration projects might provide. These projects or follow-on work is expected to continue over the next five years. (authors)

  15. Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY11 Status Report

    SciTech Connect (OSTI)

    Warren, Glen A.; Casella, Andrew M.; Haight, R. C.; Anderson, Kevin K.; Danon, Yaron; Hatchett, D.; Becker, Bjorn; Devlin, M.; Imel, G. R.; Beller, D.; Gavron, A.; Kulisek, Jonathan A.; Bowyer, Sonya M.; Gesh, Christopher J.; O'Donnell, J. M.

    2011-08-01

    Executive Summary Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10% typical of today’s confirmatory assay methods. This document is a progress report for FY2011 collaboration activities. Progress made by the collaboration in FY2011 continues to indicate the promise of LSDS techniques applied to used fuel. PNNL developed an empirical model based on calibration of the LSDS to responses generated from well-characterized used fuel. The empirical model demonstrated the potential for the direct and independent assay of the sum of the masses of 239Pu and 241Pu to within approximately 3% over a wide used fuel parameter space. Similar results were obtained using a perturbation approach developed by LANL. Benchmark measurements have been successfully conducted at LANL and at RPI using their respective LSDS instruments. The ISU and UNLV collaborative effort is focused on the fabrication and testing of prototype fission chambers lined with ultra-depleted 238U and 232Th, and uranium deposition on a stainless steel disc using spiked U3O8 from room temperature ionic liquid was successful, with improving thickness obtained. In FY2012, the collaboration plans a broad array of activities. PNNL will focus on optimizing its empirical model and minimizing its reliance on calibration data, as well continuing efforts on developing an analytical model. Additional measurements are planned at LANL and RPI. LANL measurements will include a Pu sample, which is expected to provide more counts at longer slowing-down times to help identify discrepancies between experimental data and MCNPX simulations. RPI measurements will include the assay of an entire fresh fuel assembly for the study of self-shielding effects as well as the ability to detect diversion by detecting a missing fuel pin in the fuel assembly. The development of threshold neutron sensors will continue, and UNLV will calibrate existing ultra-depleted uranium deposits at ISU.

  16. Assessing the Feasibility of Using Neutron Resonance Transmission Analysis (NRTA) for Assaying Plutonium in Spent Fuel Assemblies

    SciTech Connect (OSTI)

    D. L. Chichester; J. W. Sterbentz

    2012-07-01

    Neutron resonance transmission analysis (NRTA) is an active-interrogation nondestructive assay (NDA) technique capable of assaying spent nuclear fuel to determine plutonium content. Prior experimental work has definitively shown the technique capable of assaying plutonium isotope composition in spent-fuel pins to a precision of approximately 3%, with a spatial resolution of a few millimeters. As a Grand Challenge to investigate NDA options for assaying spent fuel assemblies (SFAs) in the commercial fuel cycle, Idaho National Laboratory has explored the feasibility of using NRTA to assay plutonium in a whole SFA. The goal is to achieve a Pu assay precision of 1%. The NRTA technique uses low-energy neutrons from 0.1-40 eV, at the bottom end of the actinide-resonance range, in a time-of-flight arrangement. Isotopic composition is determined by relating absorption of the incident neutrons to the macroscopic cross-section of the actinides of interest in the material, and then using this information to determine the areal density of the isotopes in the SFA. The neutrons used for NRTA are produced using a pulsed, accelerator-based neutron source. Distinguishable resonances exist for both the plutonium (239,240,241,242Pu) and uranium (235,236,238U) isotopes of interest in spent fuel. Additionally, in this energy range resonances exists for six important fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm) which provide additional information to support spent fuel plutonium assay determinations. Based on extensive modeling of the problem using Monte Carlo-based simulation codes, our preliminary results suggest that by rotating an SFA to acquire four symmetric views, sufficient neutron transmission can be achieved to assay a SFA. In this approach multiple scan information for the same pins may also be unfolded to potentially allow the determination of plutonium for sub-regions of the assembly. For a 17 ? 17 pressurized water reactor SFA, a simplistic preliminary analysis indicates the mass of 239Pu may be determined with a precision on the order of 5%, without the need for operator-supplied fuel information or operational histories. This paper will present our work to date on this topic, indicate our preliminary findings for a conceptual assay approach, discuss resilience against spoofing, and outline our future plans for evaluating the NRTA technique for SFA plutonium determination.

  17. Draft Supplement Analysis: Two Proposed Shipments of Commercial Spent Nuclear Fuel to Idaho National Laboratory for Research and Development Purposes

    Broader source: Energy.gov [DOE]

    DOE is proposing to transport, in two separate truck shipments, small quantities of commercial power spent nuclear fuel (SNF) to the Idaho National Laboratory (INL) Site for research purposes consistent with the mission of the DOE Office of Nuclear Energy. DOE is preparing a Supplement Analysis to determine whether an existing environmental impact statement should be supplemented, a new environmental impact statement should be prepared, or that no further NEPA documentation is required for this proposed action.

  18. Technical Approach and Plan for Transitioning Spent Nuclear Fuel (SNF) Project Facilities to the Environmental Restoration Program

    SciTech Connect (OSTI)

    SKELLY, W.A.

    1999-10-06

    This document describes the approach and process in which the 100-K Area Facilities are to be deactivated and transitioned over to the Environmental Restoration Program after spent nuclear fuel has been removed from the K Basins. It describes the Transition Project's scope and objectives, work breakdown structure, activity planning, estimated cost, and schedule. This report will be utilized as a planning document for project management and control and to communicate details of project content and integration.

  19. Simultaneous separation of cesium and strontium from spent nuclear fuel using the fission-product extraction process

    SciTech Connect (OSTI)

    Law, J.D.; Peterman, D.R.; Riddle, C.L.; Meikrantz, D.A.; Todd, T.A.

    2008-07-01

    The Fission-Product Extraction (FPEX) Process is being developed as part of the United States Department of Energy Global Nuclear Energy Partnership (GNEP) for the simultaneous separation of cesium and strontium from spent LWR fuel. Separation of the Cs and Sr will reduce the short-term heat load in a geological repository and, when combined with the separation of Am and Cm, could increase the capacity of the geological repository by a factor of approximately 100. The FPEX process is based on two highly-specific extractants: 4,4',(5')-di-(t-butyl-dicyclohexano)- 18-crown-6 (DtBuCH18C6) and calix[4]arene-bis-(t-octyl-benzo-crown-6 ) (BOBCalixC6). The DtBuCH18C6 extractant is selective for strontium, and the BOBCalixC6 extractant is selective for cesium. Results of flowsheet testing of the FPEX process with simulated and actual spent-nuclear-fuel feed solution in centrifugal contactors are detailed. Removal efficiencies, co-extraction of metals, and process hydrodynamic performance ar e discussed along with recommendations for future flowsheet testing with actual spent nuclear fuel. Recent advances in the evaluation of alternative calixarenes with increased solubility and stability are also detailed. (authors)

  20. Fuel processor and method for generating hydrogen for fuel cells

    DOE Patents [OSTI]

    Ahmed, Shabbir (Naperville, IL); Lee, Sheldon H. D. (Willowbrook, IL); Carter, John David (Bolingbrook, IL); Krumpelt, Michael (Naperville, IL); Myers, Deborah J. (Lisle, IL)

    2009-07-21

    A method of producing a H.sub.2 rich gas stream includes supplying an O.sub.2 rich gas, steam, and fuel to an inner reforming zone of a fuel processor that includes a partial oxidation catalyst and a steam reforming catalyst or a combined partial oxidation and stream reforming catalyst. The method also includes contacting the O.sub.2 rich gas, steam, and fuel with the partial oxidation catalyst and the steam reforming catalyst or the combined partial oxidation and stream reforming catalyst in the inner reforming zone to generate a hot reformate stream. The method still further includes cooling the hot reformate stream in a cooling zone to produce a cooled reformate stream. Additionally, the method includes removing sulfur-containing compounds from the cooled reformate stream by contacting the cooled reformate stream with a sulfur removal agent. The method still further includes contacting the cooled reformate stream with a catalyst that converts water and carbon monoxide to carbon dioxide and H.sub.2 in a water-gas-shift zone to produce a final reformate stream in the fuel processor.

  1. Lead Slowing-Down Spectrometry Time Spectral Analysis for Spent Fuel Assay: FY12 Status Report

    SciTech Connect (OSTI)

    Kulisek, Jonathan A.; Anderson, Kevin K.; Casella, Andrew M.; Siciliano, Edward R.; Warren, Glen A.

    2012-09-28

    Executive Summary Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R&D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration, of which PNNL is a part, to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10% typical of today’s confirmatory methods. This document is a progress report for FY2012 PNNL analysis and algorithm development. Progress made by PNNL in FY2012 continues to indicate the promise of LSDS analysis and algorithms applied to used fuel assemblies. PNNL further refined the semi-empirical model developed in FY2011 based on singular value decomposition (SVD) to numerically account for the effects of self-shielding. The average uncertainty in the Pu mass across the NGSI-64 fuel assemblies was shown to be less than 3% using only six calibration assemblies with a 2% uncertainty in the isotopic masses. When calibrated against the six NGSI-64 fuel assemblies, the algorithm was able to determine the total Pu mass within <2% uncertainty for the 27 diversion cases also developed under NGSI. Two purely empirical algorithms were developed that do not require the use of Pu isotopic fission chambers. The semi-empirical and purely empirical algorithms were successfully tested using MCNPX simulations as well applied to experimental data measured by RPI using their LSDS. The algorithms were able to describe the 235U masses of the RPI measurements with an average uncertainty of 2.3%. Analyses were conducted that provided valuable insight with regard to design requirements (e.g. Pb stack size, neutron source location) of an LSDS for the purpose of assaying used fuel assemblies. Sensitivity studies were conducted that provide insight as to how the LSDS instrument can be improved by making it more sensitive to the center of the fuel assemblies. In FY2013, PNNL will continue efforts to develop and refine design requirements of an LSDS for the ultimate purpose of assaying used fuel assemblies. Future efforts will be directed toward more extensive experimental benchmarking of currently implemented time-spectra analysis algorithms.

  2. World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station...

    Energy Savers [EERE]

    World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station World's First Tri-Generation Fuel Cell and Hydrogen Fueling Station April 18, 2013 - 12:00am Addthis EERE...

  3. Development of a New Generation, High Efficiency PEM Fuel Cell...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Development of a New Generation, High Efficiency PEM Fuel Cell Based, CHP System Part of a 100 million fuel cell...

  4. Benchmark the Fuel Cost of Steam Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benchmark the Fuel Cost of Steam Generation Benchmark the Fuel Cost of Steam Generation This tip sheet on benchmarking the fuel cost of steam provides how-to advice for improving...

  5. Progress Letter Report on Bending Fatigue Test System Development for Spent Nuclear Fuel Vibration Integrity Study (Out-of-cell fatigue testing development - Task 2.4)

    SciTech Connect (OSTI)

    Wang, Jy-An John [ORNL; Wang, Hong [ORNL; Cox, Thomas S [ORNL; Baldwin, Charles A [ORNL; Bevard, Bruce Balkcom [ORNL

    2013-08-01

    Vibration integrity of high burn-up spent nuclear fuel in transportation remains to be a critical component of US nuclear waste management system. The structural evaluation of package for spent fuel transportation eventually will need to see if the content or spent fuel is in a subcritical condition. However, a system for testing and characterizing such spent fuel is still lacking mainly due to the complication involved with dealing radioactive specimens in a hot cell environment. Apparently, the current state-of-the-art in spent fuel research and development is quite far away from the delivery of reliable mechanical property data for the assessment of spent fuels in the transport package evaluation. Under the sponsorship of US NRC, ORNL has taken the challenge in developing a robust testing system for spent fuel in hot cell. An extensive literature survey was carried out and unique requirements of such testing system were identified. The U-frame setup has come to the top among various designs examined for reverse bending fatigue test of spent fuel rod. The U-frame has many features that deserve mentioned here: Easy to install spent fuel rod in test; Less linkages than in conventional bending test setup such as three-point or four-point bending; Target the failure mode relevant to the fracture of spent fuel rod in transportation by focusing on pure bending; The continuous calibrations and modifications resulted in the third generation (3G) U-frame testing setup. Rigid arms are split along the LBB axis at rod sample ends. For each arm, this results in a large arm body and an end piece. Mating halves of bushings were modified into two V-shaped surfaces on which linear roller bearings (LRB) are embedded. The rod specimen is installed into the test fixture through opening and closing slide end-pieces. The 3G apparently has addressed major issues of setup identified in the previous stage and been proven to be eligible to be further pursued in this project. On the other hand, the purchase of universal testing machine or Bose dual LM2 TB was completed and the testing system was delivered to ORNL in August 2012. The preliminary confirmation of the system and on-site training were given by Bose field engineer and regional manager on 8/1-8/2/2012. The calibration of Bose testing system has been performed by ORNL because the integration of ORNL setup into the Bose TestBench occurred after the installation. Major challenge with this process arose from two aspects: 1) the load control involves two load cells, and 2) U-frame setup itself is a non-standard specimen. ORNL has been able to implement the load control through Cycle Indirect along with pinning the U-frame setup. Two meetings with ORNL hot-cell group (November 2012 and January 2013) were held to discuss the potential issues with both epoxy mounting of rigid sleeve and U-frame setup. Many suggestions were provided to make the procedure friendlier to the manipulator in hot cell. Addressing of these suggestions resulted in another cycle of modifications of both vise mold and setup. The initial meeting with ORNL I&C group occurred in November 2012 with regard to the Bose cable modification and design of central panel to integrate the cables and wires. The first round of cable modification and central panel fabrication was completed in February 2012. The testing with the modified cables exhibited substantial noises and the testing system was not shown to be stable. It was believed the cross talk was responsible to the noise, and a central panel with a better grounding and shielding was highly recommended. The central panel has been re-designed and fabricated in March 2013. In the subsequent period, the ORNL made substantial effort to debug the noises with the load cell channel, and to resolve the noises and nonlinearity with RDP LVDTs related to the integration of RDP LVDTs to Bose system. At the same time, ORNL has completed the verification tests of Bose test system, including cycle tests under reversal bending in load control, bending tests under monotonic load, and cycle test

  6. Simulated Performance of the Integrated Passive Neutron Albedo Reactivity and Self-Interrogation Neutron Resonance Densitometry Detector Designed for Spent Fuel Measurement at the Fugen Reactor in Japan

    SciTech Connect (OSTI)

    Ulrich, Timothy J. II [Los Alamos National Laboratory; Lafleur, Adrienne M. [Los Alamos National Laboratory; Menlove, Howard O. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory; Seya, Michio [Los Alamos National Laboratory; Bolind, Alan M. [Los Alamos National Laboratory

    2012-07-16

    An integrated nondestructive assay instrument, which combined the Passive Neutron Albedo Reactivity (PNAR) and the Self-Interrogation Neutron Resonance Densitometry (SINRD) techniques, is the research focus for a collaborative effort between Los Alamos National Laboratory (LANL) and the Japanese Atomic Energy Agency as part of the Next Generation Safeguard Initiative. We will quantify the anticipated performance of this experimental system in two physical environments: (1) At LANL we will measure fresh Low Enriched Uranium (LEU) assemblies for which the average enrichment can be varied from 0.2% to 3.2% and for which Gd laced rods will be included. (2) At Fugen we will measure spent Mixed Oxide (MOX-B) and LEU spent fuel assemblies from the heavy water moderated Fugen reactor. The MOX-B assemblies will vary in burnup from {approx}3 GWd/tHM to {approx}20 GWd/tHM while the LEU assemblies ({approx}1.9% initial enrichment) will vary from {approx}2 GWd/tHM to {approx}7 GWd/tHM. The estimated count rates will be calculated using MCNPX. These preliminary results will help the finalization of the hardware design and also serve a guide for the experiment. The hardware of the detector is expected to be fabricated in 2012 with measurements expected to take place in 2012 and 2013. This work is supported by the Next Generation Safeguards Initiative, Office of Nuclear Safeguards and Security, National Nuclear Security Administration.

  7. EIS-0250: Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's proposed action to construct, operate, monitor, and eventually close a geologic repository at Yucca Mountain  for the disposal of spent nuclear fuel and high-level...

  8. User`s guide to REVERT. A CDC 7600 program for converting Spent Fuel Test - Climax data to engineering units, with corrections

    SciTech Connect (OSTI)

    Hage, G.

    1984-10-01

    A CDC 7600 computer program, REVERT, can revise Spent Fuel Test - Climax data files using one of several algorithms, depending on the type of data. The algorithms use coefficients from a separate file organized by data type identifiers. REVERT can also make that file of coefficients, using data from tapes made by Hewlett-Packard equipment employed for data acquisition on the spent Fuel Test - Climax at NTS. 12 references.

  9. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 3, Site team reports

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    A self assessment was conducted of those Hanford facilities that are utilized to store Reactor Irradiated Nuclear Material, (RINM). The objective of the assessment is to identify the Hanford inventories of RINM and the ES & H concerns associated with such storage. The assessment was performed as proscribed by the Project Plan issued by the DOE Spent Fuel Working Group. The Project Plan is the plan of execution intended to complete the Secretary`s request for information relevant to the inventories and vulnerabilities of DOE storage of spent nuclear fuel. The Hanford RINM inventory, the facilities involved and the nature of the fuel stored are summarized. This table succinctly reveals the variety of the Hanford facilities involved, the variety of the types of RINM involved, and the wide range of the quantities of material involved in Hanford`s RINM storage circumstances. ES & H concerns are defined as those circumstances that have the potential, now or in the future, to lead to a criticality event, to a worker radiation exposure event, to an environmental release event, or to public announcements of such circumstances and the sensationalized reporting of the inherent risks.

  10. Determining plutonium mass in spent fuel with non-destructive assay techniques - NGSU research overview and update on 6 NDA techniques

    SciTech Connect (OSTI)

    Tobin, Stephen J [Los Alamos National Laboratory; Conlin, Jeremy L [Los Alamos National Laboratory; Evans, Louise G [Los Alamos National Laboratory; Hu, Jianwei [Los Alamos National Laboratory; Blanc, Pauline C [Los Alamos National Laboratory; Lafleur, Adrienne M [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Schear, Melissa A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Fensin, Michael L [Los Alamos National Laboratory; Freeman, Corey R [Los Alamos National Laboratory; Koehler, William E [Los Alamos National Laboratory; Mozin, V [Los Alamos National Laboratory; Sandoval, N P [Los Alamos National Laboratory; Lee, T H [KAERI; Cambell, L W [PNNL; Cheatham, J R [ORNL; Gesh, C J [PNNL; Hunt, A [IDAHO STATE UNIV; Ludewigt, B A [LBNL; Smith, L E [PNNL; Sterbentz, J [INL

    2010-09-15

    This poster is one of two complementary posters. The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel assemblies with non-destructive assay (NDA). This research effort has the goal of quantifying the capability of 14 NDA techniques as well as training a future generation of safeguards practitioners. By November of 2010, we will be 1.5 years into the first phase (2.5 years) of work. This first phase involves primarily Monte Carlo modelling while the second phase (also 2.5 years) will focus on experimental work. The goal of phase one is to quantify the detection capability of the various techniques for the benefit of safeguard technology developers, regulators, and policy makers as well as to determine what integrated techniques merit experimental work, We are considering a wide range of possible technologies since our research horizon is longer term than the focus of most regulator bodies. The capability of all of the NDA techniques will be determined for a library of 64 17 x 17 PWR assemblies [burnups (15, 30, 45, 60 GWd/tU), initial enrichments (2, 3, 4, 5%) and cooling times (1, 5, 20, 80 years)]. The burnup and cooling time were simulated with each fuel pin being comprised of four radial regions. In this paper an overview of the purpose will be given as well as a technical update on the following 6 neutron techniques: {sup 252}Cf Interrogation with Prompt Neutron Detection, Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Passive Neutron Albedo Reactivity, Self-Integration Neutron Resonance Densitometry. The technical update will quantify the anticipated performance of each technique for the 64 assemblies of the spent fuel library.

  11. A technical review of non-destructive assay research for the characterization of spent nuclear fuel assemblies being conducted under the US DOE NGSI

    SciTech Connect (OSTI)

    Croft, Stephen; Tobin, Stephen J

    2010-12-06

    There is a growing belief that expansion of nuclear energy generation will be needed in the coming decades as part of a mixed supply chain to meet global energy demand. At stake is the health of the economic engine that delivers human prosperity. As a consequence renewed interest is being paid to the safe management of spent nuclear fuel (SNF) and the plutonium it contains. In addition to being an economically valuable resource because it can be used to construct explosive devices, Pu must be placed on an inventory and handled securely. A multiinstitutional team of diverse specialists has been assembled under a project funded by the US Department of Energy (DOE) Next Generation Safeguards Initiative (NGSI) to address ways to nondestructively quantify the plutonium content of spent nuclear fuel assemblies, and to also detect the potential diversion of pins from those assemblies. Studies are underway using mostly Monte Carlo tools to assess the feasibility, individual and collective performance capability of some fourteen nondestructive assay methods. Some of the methods are familiar but are being applied in a new way against a challenging target which is being represented with a higher degree of realism in simulation space than has been done before, while other methods are novel. In this work we provide a brief review of the techniques being studied and highlight the main achievements to date. We also draw attention to the deficiencies identified in for example modeling capability and available basic nuclear data. We conclude that this is an exciting time to be working in the NDA field and that much work, both fundamental and applied, remains ahead if we are to advance the state of the practice to meet the challenges posed to domestic and international safeguards by the expansion of nuclear energy together with the emergence of alternative fuel cycles.

  12. A comparison of spent fuel shipping cask response to 10 CFR 71 normal conditions and realistic hot day extremes

    SciTech Connect (OSTI)

    Manson, S.J.; Gianoulakis, S.E.

    1994-04-01

    An examination of the effect of a realistic (though conservative) hot day environment on the thermal transient behavior of spent fuel shipping casks is made. These results are compared to those that develop under the prescribed normal thermal condition of 10 CFR 71. Of specific concern are the characteristics of propagating thermal waves, which are set up by diurnal variations of temperature and insolation in the outdoor environment. In order to arrive at a realistic approximation of these variations on a conservative hot day, actual temperature and insolation measurements have been obtained from the National Climatic Data Center (NCDC) for representatively hot and high heat flux days. Thus, the use of authentic meteorological data ensures the realistic approach sought. Further supporting the desired realism of the modeling effort is the use of realistic cask configurations in which multiple laminations of structural, shielding, and other materials are expected to attenuate the propagating thermal waves. The completed analysis revealed that the majority of wall temperatures, for a wide variety of spent fuel shipping cask configurations, fall well below those predicted by enforcement of the regulatory environmental conditions of 10 CFR 71. It was found that maximum temperatures at the cask surface occasionally lie above temperatures predicted under the prescribed regulatory conditions. However, the temperature differences are small enough that the normal conservative assumptions that are made in the course of typical cask evaluations should correct for any potential violations. The analysis demonstrates that diurnal temperature variations that penetrate the cask wall all have maxima substantially less than the corresponding regulatory solutions. Therefore it is certain that vital cask components and the spent fuel itself will not exceed the temperatures calculated by use of the conditions of 10 CFR 71.

  13. Integrated Data Base for 1992: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 8

    SciTech Connect (OSTI)

    Payton, M. L.; Williams, J. T.; Tolbert-Smith, M.; Klein, J. A.

    1992-10-01

    The Integrated Data Base (IDB) Program has compiled current data on inventories and characteristics of commercial spent fuel and both commercial and US government-owned radioactive wastes through December 31, 1991. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration (DOE/EIA) projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through the year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  14. Integrated Data Base report--1993: U.S. spent nuclear fuel and radioactive waste inventories, projections, and characteristics. Revision 10

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and DOE spent nuclear fuel; also, commercial and US government-owned radioactive wastes through December 31, 1993. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest US Department of Energy/Energy Information Administration projections of US commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste, transuranic waste, low-level waste, commercial uranium mill tailings, DOE Environmental Restoration Program wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given the calendar-year 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal. 256 refs., 38 figs., 141 tabs.

  15. Integrated data base for 1993: US spent fuel and radioactive waste inventories, projections, and characteristics. Revision 9

    SciTech Connect (OSTI)

    Klein, J.A.; Storch, S.N.; Ashline, R.C.

    1994-03-01

    The Integrated Data Base (IDB) Program has compiled historic data on inventories and characteristics of both commercial and DOE spent fuel; also, commercial and U.S. government-owned radioactive wastes through December 31, 1992. These data are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecasted is consistent with the latest U.S. Department of Energy/Energy Information Administration (DOE/EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional (I/I) activities. The radioactive materials considered, on a chapter-by-chapter basis, are spent nuclear fuel, high-level waste (HLW), transuranic (TRU), waste, low-level waste (LLW), commercial uranium mill tailings, environmental restoration wastes, commercial reactor and fuel-cycle facility decommissioning wastes, and mixed (hazardous and radioactive) LLW. For most of these categories, current and projected inventories are given through the calendar-year (CY) 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions. In addition, characteristics and current inventories are reported for miscellaneous radioactive materials that may require geologic disposal.

  16. Standard guide for evaluation of materials used in extended service of interim spent nuclear fuel dry storage systems

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 Part of the total inventory of commercial spent nuclear fuel (SNF) is stored in dry cask storage systems (DCSS) under licenses granted by the U.S. Nuclear Regulatory Commission (NRC). The purpose of this guide is to provide information to assist in supporting the renewal of these licenses, safely and without removal of the SNF from its licensed confinement, for periods beyond those governed by the term of the original license. This guide provides information on materials behavior under conditions that may be important to safety evaluations for the extended service of the renewal period. This guide is written for DCSS containing light water reactor (LWR) fuel that is clad in zirconium alloy material and stored in accordance with the Code of Federal Regulations (CFR), at an independent spent-fuel storage installation (ISFSI). The components of an ISFSI, addressed in this document, include the commercial SNF, canister, cask, and all parts of the storage installation including the ISFSI pad. The language of t...

  17. Performance assessment of the direct disposal in unsaturated tuff or spent nuclear fuel and high-level waste owned by USDOE: Volume 2, Methodology and results

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1995-03-01

    This assessment studied the performance of high-level radioactive waste and spent nuclear fuel in a hypothetical repository in unsaturated tuff. The results of this 10-month study are intended to help guide the Office of Environment Management of the US Department of Energy (DOE) on how to prepare its wastes for eventual permanent disposal. The waste forms comprised spent fuel and high-level waste currently stored at the Idaho National Engineering Laboratory (INEL) and the Hanford reservations. About 700 metric tons heavy metal (MTHM) of the waste under study is stored at INEL, including graphite spent nuclear fuel, highly enriched uranium spent fuel, low enriched uranium spent fuel, and calcined high-level waste. About 2100 MTHM of weapons production fuel, currently stored on the Hanford reservation, was also included. The behavior of the waste was analyzed by waste form and also as a group of waste forms in the hypothetical tuff repository. When the waste forms were studied together, the repository was assumed also to contain about 9200 MTHM high-level waste in borosilicate glass from three DOE sites. The addition of the borosilicate glass, which has already been proposed as a final waste form, brought the total to about 12,000 MTHM.

  18. EM Completes Project to Maintain Water Quality of Spent Nuclear Fuel Basin

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatement |toDepartment ofDepartmentDepartment ofCommunicatorsat

  19. Evaluation of Options for Permanent Geologic Disposal of Spent NuclearFuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015 InfographiclighbulbsDepartmentDeveloping new U.S.UseDepartment

  20. Supplement Analysis Â… Spent Nuclear Fuel and SRS H-Canyon Operations

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory Authority forPerk |Department

  1. Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-A Wholesale Power Rate ScheduleSHERMAN STREET,and

  2. Safety Aspects of Wet Storage of Spent Nuclear Fuel, OAS-L-13-11

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTION JSTEM-ing the Tideautomotive units |

  3. Second National Report for the Joint Convention on the Safety of Spent Fuel

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterestedReplacement-2-AA-1 SECTIONEnergy Scientists AssessSecond Annual

  4. Thermoelectric Generator (TEG) Fuel Displacement Potential using

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsState ofSavings for Specific Measures

  5. Methodology and Determination of Field of View of Neutron and Gamma Detectors in the Atucha Spent Fuel Storage Pool

    SciTech Connect (OSTI)

    Walters, W; Wenner, M; Haghighat, A; Sitaraman, S; Ham, Y S

    2009-06-15

    In this paper we seek to create a model by determining the field of view (FOV) of a detector (i.e. which assemblies contribute to the detector response) in the Atucha-I spent fuel pool. The FOV is determined by solving the adjoint transport equation using the 3-D, parallel PENTRAN (Parallel Environment Neutral-particle TRANsport) Sn code, with the detector cross section as the adjoint source. If this adjoint function is coupled with the source spectrum, then the contribution to the detector from each assembly can be determined. First, the reactor criticality was modeled using the MCNP5 (Monte Carlo N-Particle) Monte Carlo code in order to determine the power distribution in each assembly. Using the power distribution data, the assemblies were divided and homogenized into 8 axial and 3 radial zones for burnup analysis. Depletion calculations were performed for each zone using the ORIGEN-ARP (Automatic Rapid Processing) utility from the SCALE 5.1 (Standardized Computer Analyses for Licensing Evaluation) code package. Spent fuel pool and detector were modeled in 2-D in PENTRAN as the detector plus 3 fuel assemblies along both x and y axes. Using the resulting adjoint function combined with the source spectrum, they have determined the FOVs of the fission chamber neutron detector that was used at Atucha, and concluded that 2 assemblies along x and y axes are needed for both cases (i.e. the 4 adjacent assemblies plus the next surrounding 12). For the neutron detector, 88% of the response comes from the nearest 4 assemblies, with 99% from the nearest 16. Results for a uniformly sensitive gamma detector indicate that 2 assemblies in both directions are also needed, with 89% of the response coming from the adjacent assemblies. A Monte Carlo calculation using MCNP was performed to benchmark the neutron result, giving a similar result (87% MCNP vs. 88% PENTRAN). Based on these studies, we have developed a database of FOVs as a function of burnup and decay conditions for different detector types, and a methodology/algorithm which uses this database to analyze the response of a detector placed in a spent fuel pool with the aim of detecting gross defects.

  6. Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY12 Status Report

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy of

  7. Fourth National Report for the Joint Convention on the Safety of Spent Fuel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)Forthcoming Upgrades to the ARMD.

  8. Report to Congress on Plan for Interim Storage of Spent Nuclear Fuel from Decommissioned Reactors

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 - Oct.7, 2015Verizon and VerizonCells: S.6 Report to Congress

  9. DOE-Managed High-Level Radioactive Waste and Spent Nuclear Fuel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8, 2015 GATEWAY6.1viii ACRONYMS,4-97 January27-99

  10. Third National Report for the Joint Convention on the Safety of Spent Fuel

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLEStatutory Authority J-I-12 GeVAuditThe SmartwithThinking

  11. National Report Joint Convention on the Safety of Spent Fuel Management and

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department ofDepartment ofEnergy NationalNationalon the Safety of

  12. Locations of Spent Nuclear Fuel and High-Level Radioactive Waste |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPA PublicLED1,400 Jobs | Department ofEnergy LocalProjects

  13. What to Expect When Readying to Move Spent Nuclear Fuel from Commercial

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulatorsEnergyDepartment ofNuclear Power Plants |

  14. The potential pyrophoricity of BMI-SPEC and aluminum plate spent fuels retrieved from underwater storage

    SciTech Connect (OSTI)

    Ebner, M.A.

    1996-08-01

    Physical/chemical factors in U metal and hydride combustion, particularly pyrophoricity in ambient environment, were evaluated for BMI-SPEC and UAl{sub x} plate fuels. Some metal fuels may be highly reactive (spontaneously igniting in air) due to high specific surface area, high decay heat, or a high U hydride content from corrosion during underwater storage. However, for the BMI-SPEC and the aluminum plate fuels, this reactivity is too low to present a realistic threat of uncontrolled spontaneous combustion at ambient conditions. While residual U hydride is expected in these corroded fuels, the hydride levels are expected to be too low and the configuration too unfavorable to ignite the fuel meat when the fuels are retrieved from the basin and dried. Furthermore the composition and microstructure of the UAl{sub x} fuels further mitigate that risk.

  15. A 2-D Test Problem for CFD Modeling Heat Transfer in Spent Fuel Transfer Cask Neutron Shields

    SciTech Connect (OSTI)

    Zigh, Ghani; Solis, Jorge; Fort, James A.

    2011-01-14

    In the United States, commercial spent nuclear fuel is typically moved from spent fuel pools to outdoor dry storage pads within a transfer cask system that provides radiation shielding to protect personnel and the surrounding environment. The transfer casks are cylindrical steel enclosures with integral gamma and neutron radiation shields. Since the transfer cask system must be passively cooled, decay heat removal from spent nuclear fuel canister is limited by the rate of heat transfer through the cask components, and natural convection from the transfer cask surface. The primary mode of heat transfer within the transfer cask system is conduction, but some cask designs incorporate a liquid neutron shield tank surrounding the transfer cask structural shell. In these systems, accurate prediction of natural convection within the neutron shield tank is an important part of assessing the overall thermal performance of the transfer cask system. The large-scale geometry of the neutron shield tank, which is typically an annulus approximately 2 meters in diameter but only 5-10 cm in thickness, and the relatively small scale velocities (typically less than 5 cm/s) represent a wide range of spatial and temporal scales that contribute to making this a challenging problem for computational fluid dynamics (CFD) modeling. Relevant experimental data at these scales are not available in the literature, but some recent modeling studies offer insights into numerical issues and solutions; however, the geometries in these studies, and for the experimental data in the literature at smaller scales, all have large annular gaps that are not prototypic of the transfer cask neutron shield. This paper presents results for a simple 2-D problem that is an effective numerical analog for the neutron shield application. Because it is 2-D, solutions can be obtained relatively quickly allowing a comparison and assessment of sensitivity to model parameter changes. Turbulence models are considered as well as the tradeoff between steady state and transient solutions. Solutions are compared for two commercial CFD codes, FLUENT and STAR-CCM+. The results can be used to provide input to the CFD Best Practices for this application. Following study results for the 2-D test problem, a comparison of simulation results is provided for a high Rayleigh number experiment with large annular gap. Because the geometry of this validation is significantly different from the neutron shield, and due to the critical nature of this application, the argument is made for new experiments at representative scales

  16. Optimization of combined delayed neutron and differential die-away prompt neutron signal detection for characterization of spent nuclear fuel assemblies

    SciTech Connect (OSTI)

    Blanc, Pauline; Tobin, Stephen J; Croft, Stephen; Menlove, Howard O; Swinhoe, M; Lee, T

    2010-12-02

    The Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy (DOE) has funded multiple laboratories and universities to develop a means to accurately quantify the Plutonium (Pu) mass in spent nuclear fuel assemblies and ways to also detect potential diversion of fuel pins. Delayed Neutron (DN) counting provides a signature somewhat more sensitive to {sup 235}U than Pu while Differential Die-Away (DDA) is complementary in that it has greater sensitivity to Pu. The two methods can, with care, be combined into a single instrument which also provides passive neutron information. Individually the techniques cannot robustly quantify the Pu content but coupled together the information content in the signatures enables Pu quantification separate to the total fissile content. The challenge of merging DN and DDA, prompt neutron (PN) signal, capabilities in the same design is the focus of this paper. Other possibilities also suggest themselves, such as a direct measurement of the reactivity (multiplication) by either the boost in signal obtained during the active interrogation itself or by the extension of the die-away profile. In an early study, conceptual designs have been modeled using a neutron detector comprising fission chambers or 3He proportional counters and a {approx}14 MeV neutron Deuterium-Tritium (DT) generator as the interrogation source. Modeling was performed using the radiation transport code Monte Carlo N-Particles eXtended (MCNPX). Building on this foundation, the present paper quantifies the capability of a new design using an array of {sup 3}He detectors together with fission chambers to optimize both DN and PN detections and active characterization, respectively. This new design was created in order to minimize fission in {sup 238}U (a nuisance DN emitter), to use a realistic neutron generator, to reduce the cost and to achieve near spatial interrogation and detection of the DN and PN, important for detection of diversion, all within the constraints of a single practical instrument. Both DN and PN detections are active techniques using the signal from the most prominent fissile isotopes of spent nuclear fuel that respond the best to a slow neutron interrogation, {sup 235}U, {sup 239}U and {sup 241}PU. The performance is characterized against a library of 64 assemblies and 40 diversion scenarios at different burnup (BU), cooling-time (CT) and initial enrichment (IE) in fresh water.

  17. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part A

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document analyzes at a programmatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For programmatic spent nuclear fuel management this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  18. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 1

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    This document analyzes at a pregrammatic level the potential environmental consequences over the next 40 years of alternatives related to the transportation, receipt, processing, and storage of spent nuclear fuel under the responsibility of the US Department of Energy. It also analyzes the site-specific consequences of the Idaho National Engineering Laboratory sitewide actions anticipated over the next 10 years for waste and spent nuclear fuel management and environmental restoration. For pregrammatic spent nuclear fuel management, this document analyzes alternatives of no action, decentralization, regionalization, centralization and the use of the plans that existed in 1992/1993 for the management of these materials. For the Idaho National Engineering Laboratory, this document analyzes alternatives of no action, ten-year plan, minimum and maximum treatment, storage, and disposal of US Department of Energy wastes.

  19. EM Safely and Efficiently Manages Spent Nuclear Fuel | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLCConfidentiality Agreement3, 2015storage casks at Idaho

  20. Fifth National Report for the Joint Convention on the Safety of Spent Fuel

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report to CongressApril 6, 2012CertificationManagement and the

  1. U.S. Spent Nuclear Fuel Data as of December 31,2002 -Table 2

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009 2010 2011 20126 Table 1 | Table 3 Table

  2. U.S. Spent Nuclear Fuel Data as of December 31,2002 Table 3

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)Decade Year-0Proved ReservesData20092009 2010 2011 20126 Table 1 | Table 3 Table7

  3. Brittle Failure Design Criteria for Ductile Cast Iron Spent-Fuel

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield MunicipalTechnical Report:Speeding accessby a contractor ofvarDOEBattery LifetimeBiomass

  4. Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY12 Status Report

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy of aerosols(TechnicalConnectpulseImagingConnect(Technical

  5. MELCOR Model of the Spent Fuel Pool of Fukushima Dai-ichi Unit 4

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfate Reducing(Journalspectroscopy ofArticle) |management (Patent)SciTechSciTech Connect

  6. Oxidative alteration of spent fuel in a silica-rich environment: SEM/AEM

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding access to(Conference) |of lithium-ion cellsinvestigation and

  7. Oxidative alteration of spent fuel in a silica-rich environment: SEM/AEM

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTech ConnectSpeeding access to(Conference) |of lithium-ion cellsinvestigation

  8. Study of Fukushima Dai-ichi Nuclear Power Station Unit 4 Spent Fuel Pool

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail. (Conference)Feedback System inStatus ofSmall GTPases with TheirExpeRiment

  9. U.S. Spent Nuclear Fuel Data as of December 31, 1998

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSales Type: Sales to End

  10. U.S. Spent Nuclear Fuel Data as of December 31, 2002

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming963 1.969 1.979Coal Consumers inYear JanSales Type: Sales to End Latest

  11. LWR spent fuel reduction by the removal of U and the compact storage of Pu with FP for long-term nuclear sustainability

    SciTech Connect (OSTI)

    Fukasawa, T.; Hoshino, K. [Hitachi-GE Nuclear Energy, Ltd, 3-1-1 Saiwai, Hitachi, Ibaraki, 317-0073 (Japan); Takano, M. [Japan Atomic Energy Agency, 3-1-1 Saiwai, Hitachi, Ibaraki, 317-0073 (Japan); Sato, S. [Hokkaido University, 3-1-1 Saiwai, Hitachi, Ibaraki, 317-0073 (Japan); Shimazu, Y. [Fukui University, 3-1-1 Saiwai, Hitachi, Ibaraki, 317-0073 (Japan)

    2013-07-01

    Fast breeder reactors (FBR) nuclear fuel cycle is needed for long-term nuclear sustainability while preventing global warming and maximum utilizing the limited uranium (U) resources. The 'Framework for Nuclear Energy Policy' by the Japanese government on October 2005 stated that commercial FBR deployment will start around 2050 under its suitable conditions by the successive replacement of light water reactors (LWR) to FBR. Even after Fukushima Daiichi Nuclear Power Plant accident which made Japanese tendency slow down the nuclear power generation activities, Japan should have various options for energy resources including nuclear, and also consider the delay of FBR deployment and increase of LWR spent fuel (LWR-SF) storage amounts. As plutonium (Pu) for FBR deployment will be supplied from LWR-SF reprocessing and Japan will not possess surplus Pu, the authors have developed the flexible fuel cycle initiative (FFCI) for the transition from LWR to FBR. The FFCI system is based on the possibility to stored recycled materials (U, Pu)temporarily for a suitable period according to the FBR deployment rate to control the Pu demand/supply balance. This FFCI system is also effective after the Fukushima accident for the reduction of LWR-SF and future LWR-to-FBR transition. (authors)

  12. Standard review plan for reviewing safety analysis reports for dry metallic spent fuel storage casks

    SciTech Connect (OSTI)

    Not Available

    1988-01-01

    The Cask Standard Review Plan (CSRP) has been prepared as guidance to be used in the review of Cask Safety Analysis Reports (CSARs) for storage packages. The principal purpose of the CSRP is to assure the quality and uniformity of storage cask reviews and to present a well-defined base from which to evaluate proposed changes in the scope and requirements of reviews. The CSRP also sets forth solutions and approaches determined to be acceptable in the past by the NRC staff in dealing with a specific safety issue or safety-related design area. These solutions and approaches are presented in this form so that reviewers can take consistent and well-understood positions as the same safety issues arise in future cases. An applicant submitting a CSAR does not have to follow the solutions or approaches presented in the CSRP. However, applicants should recognize that the NRC staff has spent substantial time and effort in reviewing and developing their positions for the issues. A corresponding amount of time and effort will probably be required to review and accept new or different solutions and approaches.

  13. Public acceptability of the use of gamma rays from spent nuclear fuel as a hazardous waste treatment process

    SciTech Connect (OSTI)

    Mincher, B.J.; Wells, R.P.; Reilly, H.J.

    1992-01-01

    Three methods were used to estimate public reaction to the use of gamma irradiation of hazardous wastes as a hazardous waste treatment process. The gamma source of interest is spent nuclear fuel. The first method is Benefit-Risk Decision Making, where the benefits of the proposed technology are compared to its risks. The second analysis compares the proposed technology to the other, currently used nuclear technologies and estimates public reaction based on that comparison. The third analysis is called Analysis of Public Consent, and is based on the professional methods of the Institute for Participatory Management and Planning. The conclusion of all three methods is that the proposed technology should not result in negative public reaction sufficient to prevent implementation.

  14. Room at the Mountain: Estimated Maximum Amounts of Commercial Spent Nuclear Fuel Capable of Disposal in a Yucca Mountain Repository

    SciTech Connect (OSTI)

    Kessler, John H. [Electric Power Research Institute - EPRI, 3420 Hillview Avenue, Palo Alto, California 94304 (United States); Kemeny, John [University of Arizona, Tucson AZ 85721 (United States); King, Fraser [Integrity Corrosion Consulting, Ltd., 6732 Silverview Drive NW, Calgary, Alberta (Canada); Ross, Alan M. [Alan M. Ross and Associates, 1061 Gray Fox Circle Pleasanton, CA 94566 (Canada); Ross, Benjamen [Disposal Safety, Inc., Bethesda, MD 20814 (United States)

    2006-07-01

    The purpose of this paper is to present an initial analysis of the maximum amount of commercial spent nuclear fuel (CSNF) that could be emplaced into a geological repository at Yucca Mountain. This analysis identifies and uses programmatic, material, and geological constraints and factors that affect this estimation of maximum amount of CSNF for disposal. The conclusion of this initial analysis is that the current legislative limit on Yucca Mountain disposal capacity, 63,000 MTHM of CSNF, is a small fraction of the available physical capacity of the Yucca Mountain system assuming the current high-temperature operating mode (HTOM) design. EPRI is confident that at least four times the legislative limit for CSNF ({approx}260,000 MTHM) can be emplaced in the Yucca Mountain system. It is possible that with additional site characterization, upwards of nine times the legislative limit ({approx}570,000 MTHM) could be emplaced. (authors)

  15. Spent nuclear fuel project multi-year work plan WBS {number_sign}1.4.1

    SciTech Connect (OSTI)

    Wells, J.L.

    1997-03-01

    The Spent Nuclear Fuel (SNF) Project Multi-Year Work Plan (MYWP) is a controlled living document that contains the current SNF Project Technical, Schedule and Cost Baselines. These baselines reflect the current Project execution strategies and are controlled via the change control process. Other changes to the MYWP document will be controlled using the document control process. These changes will be processed as they are approved to keep the MYWP a living document. The MYWP will be maintained continuously as the project baseline through the life of the project and not revised annually. The MYWP is the one document which summarizes and links these three baselines in one place. Supporting documentation for each baseline referred to herein may be impacted by changes to the MYWP, and must also be revised through change control to maintain consistency.

  16. Segregated exhaust SOFC generator with high fuel utilization capability

    DOE Patents [OSTI]

    Draper, Robert; Veyo, Stephen E.; Kothmann, Richard E.

    2003-08-26

    A fuel cell generator contains a plurality of fuel cells (6) in a generator chamber (1) and also contains a depleted fuel reactor or a fuel depletion chamber (2) where oxidant (24,25) and fuel (81) is fed to the generator chamber (1) and the depleted fuel reactor chamber (2), where both fuel and oxidant react, and where all oxidant and fuel passages are separate and do not communicate with each other, so that fuel and oxidant in whatever form do not mix and where a depleted fuel exit (23) is provided for exiting a product gas (19) which consists essentially of carbon dioxide and water for further treatment so that carbon dioxide can be separated and is not vented to the atmosphere.

  17. Examination of Zircaloy-clad spent fuel after extended pool storage

    SciTech Connect (OSTI)

    Bradley, E.R.; Bailey, W.J.; Johnson, A.B. Jr.; Lowry, L.M.

    1981-09-01

    This report presents the results from metallurgical examinations of Zircaloy-clad fuel rods from two bundles (0551 and 0074) of Shippingport PWR Core 1 blanket fuel after extended water storage. Both bundles were exposed to water in the reactor from late 1957 until discharge. The estimated average burnups were 346 GJ/kgU (4000 MWd/MTU) for bundle 0551 and 1550 GJ/kgU (18,000 MWd/MTU) for bundle 0074. Fuel rods from bundle 0551 were stored in deionized water for nearly 21 yr prior to examination in 1980, representing the world's oldest pool-stored Zircaloy-clad fuel. Bundle 0074 has been stored in deionized water since reactor discharge in 1964. Data from the current metallurgical examinations enable a direct assessment of extended pool storage effects because the metallurgical condition of similar fuel rods was investigated and documented soon after reactor discharge. Data from current and past examinations were compared, and no significant degradation of the Zircaloy cladding was indicated after almost 21 yr in water storage. The cladding dimensions and mechanical properties, fission gas release, hydrogen contents of the cladding, and external oxide film thicknesses that were measured during the current examinations were all within the range of measurements made on fuel bundles soon after reactor discharge. The appearance of the external surfaces and the microstructures of the fuel and cladding were also similar to those reported previously. In addition, no evidence of accelerated corrosion or hydride redistribution in the cladding was observed.

  18. Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with

    E-Print Network [OSTI]

    Rollins, Andrew M.

    2014 Improving the lifetime performance of ceramic fuel cells Fuel cells generate electricity from fuels more efficiently and with fewer emissions per watt than burning fossil fuels. But as fuel cells received an $800,000 Department of Energy grant to study how to make one type of fuel cell--solid oxide

  19. Book Chapter Microbial Fuel Cells: Electricity Generation from Organic

    E-Print Network [OSTI]

    Gu, Tingyue

    oxygen demand (BOD) sensors, bioremediation, hydrogen production and electricity generation (Logan Book Chapter Microbial Fuel Cells: Electricity Generation from Organic Wastes by Microbes Kun) are bioreactors that convert chemical energy stored in the bonds of organic matters into electricity through

  20. On selection and operation of an international interim storage facility for spent nuclear fuel

    E-Print Network [OSTI]

    Burns, Joe, 1966-

    2004-01-01

    Disposal of post-irradiation fuel from nuclear reactors has been an issue for the nuclear industry for many years. Most countries currently have no long-term disposal strategy in place. Therefore, the concept of an ...

  1. Applications of nuclear data covariances to criticality safety and spent fuel characterization

    SciTech Connect (OSTI)

    Williams, Mark L [ORNL] [ORNL; Ilas, Germina [ORNL] [ORNL; Marshall, William BJ J [ORNL] [ORNL; Rearden, Bradley T [ORNL] [ORNL

    2014-01-01

    Covariance data computational methods and data used for sensitivity and uncertainty analysis within the SCALE nuclear analysis code system are presented. Applications in criticality safety calculations and used nuclear fuel analysis are discussed.

  2. Fossil Fuel-Generated Energy Consumption Reduction for New Federal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Buildings OIRA Comparison Document Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings OIRA Comparison Document...

  3. Single module pressurized fuel cell turbine generator system

    DOE Patents [OSTI]

    George, Raymond A. (Pittsburgh, PA); Veyo, Stephen E. (Murrysville, PA); Dederer, Jeffrey T. (Valencia, PA)

    2001-01-01

    A pressurized fuel cell system (10), operates within a common pressure vessel (12) where the system contains fuel cells (22), a turbine (26) and a generator (98) where preferably, associated oxidant inlet valve (52), fuel inlet valve (56) and fuel cell exhaust valve (42) are outside the pressure vessel.

  4. Assessment of the integrity of spent fuel assemblies used in dry storage demonstrations at the Nevada Test Site

    SciTech Connect (OSTI)

    Johnson, A.B. Jr.; Dobbins, J.C.; Zaloudek, F.R.

    1987-07-01

    This report summarizes the histories of 17 Zircaloy-clad spent fuel assemblies used in dry storage tests and demonstrations at the Engine Maintenance and Disassembly (EMAD) and Climax facilities at the Nevada Test Site (NTS). The 18th assembly was shipped to the Battelle Columbus Laboratory (BCL) and remained there for extensive characterization and as a source of specimens for whole-rod and rod-segment dry storage tests. The report traces the history of the assemblies after discharge from the Turkey Point Unit 3 pressurized-water reactor (1975 and 1977) through shipment (first arrival at EMAD in December 1978), dry storage tests and demonstrations, and shipment by truck cask from EMAD to the Idaho National Engineering Laboratory (INEL) in May/June 1986. The principal objectives of this report are to assess and document the integrity of the fuel during the extensive dry storage activities at NTS and BCL, and to briefly summarize the dry storage technologies and procedures demonstrated in this program. The dry storage tests and demonstrations involved the following concepts and facilities: (1) surface drywells (EMAD); (2) deep drywells (425 m underground in the Climax granite formation); (3) concrete silo (EMAD); (4) air-cooled vault (EMAD); (5) electrically-heated module for fuel assembly thermal calibration and testing (EMAD/FAITM). 20 refs., 43 figs., 9 tabs.

  5. Operational Challenges of Extended Dry Storage of Spent Nuclear Fuel - 12550

    SciTech Connect (OSTI)

    Nichol, M. [Nuclear Energy Institute, Washington DC (United States)

    2012-07-01

    As a result of the termination of the Yucca Mountain used fuel repository program and a continuing climate of uncertainty in the national policy for nuclear fuel disposition, the likelihood has increased that extended storage, defined as more than 60 years, and subsequent transportation of used nuclear fuel after periods of extended storage may become necessary. Whether at the nation's 104 nuclear energy facilities, or at one or more consolidated interim storage facilities, the operational challenges of extended storage and transportation will depend upon the future US policy for Used Fuel Management and the future Regulatory Framework for EST, both of which should be developed with consideration of their operational impacts. Risk insights into the regulatory framework may conclude that dry storage and transportation operations should focus primarily on ensuring canister integrity. Assurance of cladding integrity may not be beneficial from an overall risk perspective. If assurance of canister integrity becomes more important, then mitigation techniques for potential canister degradation mechanisms will be the primary source of operational focus. If cladding integrity remains as an important focus, then operational challenges to assure it would require much more effort. Fundamental shifts in the approach to design a repository and optimize the back-end of the fuel cycle will need to occur in order to address the realities of the changes that have taken place over the last 30 years. Direct disposal of existing dual purpose storage and transportation casks will be essential to optimizing the back end of the fuel cycle. The federal used fuel management should focus on siting and designing a repository that meets this objective along with the development of CIS, and possibly recycling. An integrated approach to developing US policy and the regulatory framework must consider the potential operational challenges that they would create. Therefore, it should be integral to these efforts to redefine retrievability to apply to the dual purpose cask, and not to apply to individual assemblies. (authors)

  6. Economic Study of Spent Nuclear Fuel Storage and Reprocessing Practices in Russia

    SciTech Connect (OSTI)

    C. E. Singer; G. H. Miley

    1997-10-01

    This report describes a study of nuclear power economics in Russia. It addresses political and institutional background factors which constrain Russia's energy choices in the short and intermediate run. In the approach developed here, political and institutional factors might dominate short-term decisions, but the comparative costs of Russia's fuel-cycle options are likely to constrain her long-term energy strategy. To this end, the authors have also formulated a set of policy questions which should be addressed using a quantitative decision modeling which analyzes economic costs for all major components of different fuel cycle options, including the evolution of uranium prices.

  7. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    SciTech Connect (OSTI)

    Michael F. Simpson

    2012-03-01

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  8. Study of charged particle motion in fields of different configurations for developing the concept of plasma separation of spent nuclear fuel

    SciTech Connect (OSTI)

    Smirnov, V. P.; Samokhin, A. A.; Vorona, N. A.; Gavrikov, A. V., E-mail: gavrikov@ihed.ras.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)

    2013-06-15

    The concept of plasma separation of spent nuclear fuel in a plane perpendicular to the magnetic field in an electric potential of special configuration is developed. A specific feature of the proposed approach consists in using an accelerating potential for reducing energy and angular spread of plasma ions at the entrance to the separator chamber and a potential well for the spatial separation of ions with different masses. The trajectories of ions of the substance imitating spent nuclear fuel are calculated. The calculations are performed for azimuthal and axial magnetic fields and model electric field configurations corresponding to different geometries of the separator chamber. It is shown that, using magnetic fields with a characteristic strength of 1 kG and electric potentials of up to 1 kV inside a region with a linear size less than 100 cm, it is possible to separate ions of spent nuclear fuel with energies from 0.2 to 3 eV. The calculations were performed for a collisionless mode in the single-particle approximation. Possible variants of the experimental facility for plasma separation of spent nuclear fuel are proposed.

  9. Spent Nuclear Fuel (SNF) Project Cask and MCO Helium Purge System Design Review Completion Report Project A.5 and A.6

    SciTech Connect (OSTI)

    ARD, K.E.

    2000-04-19

    This report documents the results of the design verification performed on the Cask and Multiple Canister Over-pack (MCO) Helium Purge System. The helium purge system is part of the Spent Nuclear Fuel (SNF) Project Cask Loadout System (CLS) at 100K area. The design verification employed the ''Independent Review Method'' in accordance with Administrative Procedure (AP) EN-6-027-01.

  10. Measurement of Spent Fuel Assemblies - Overview of the Status of the Technology for Initiating Discussion at NATIONAL RESEARCH CENTRE KURCHATOV INSTITUTE June 2013

    SciTech Connect (OSTI)

    SISKIND B.; N /A

    2013-06-03

    This presentation provides an overview of the status of the technology for the measurement of the fissile material content of spent nuclear reactor fuel. The emphasis is on how the needs of the U.S. Nuclear Regulatory Commission and the International Atomic Energy Agency are met by the available technology and what more needs to be done in this area.

  11. A Transportation Risk Assessment Tool for Analyzing the Transport of Spent Nuclear Fuel and High-Level Radioactive Waste to the Proposed Yucca Mountain Repository

    SciTech Connect (OSTI)

    Ralph Best; T. Winnard; S. Ross; R. Best

    2001-08-17

    The Yucca Mountain Transportation Database was developed as a data management tool for assembling and integrating data from multiple sources to compile the potential transportation impacts presented in the Draft Environmental Impact Statement for a Geologic Repository for the Disposal of Spent Nuclear Fuel and High-Level Radioactive Waste at Yucca Mountain, Nye County, Nevada (DEIS). The database uses the results from existing models and codes such as RADTRAN, RISKIND, INTERLINE, and HIGHWAY to estimate transportation-related impacts of transporting spent nuclear fuel and high-level radioactive waste from commercial reactors and U. S. Department of Energy (DOE) facilities to Yucca Mountain. The source tables in the database are compendiums of information from many diverse sources including: radionuclide quantities for each waste type; route and route characteristics for rail, legal-weight truck, heavy haul. truck, and barge transport options; state-specific accident and fatality rates for routes selected for analysis; packaging and shipment data by waste type; unit risk factors; the complex behavior of the packaged waste forms in severe transport accidents; and the effects of exposure to radiation or the isotopic specific effects of radionclides should they be released in severe transportation accidents. The database works together with the codes RADTRAN (Neuhauser, et al, 1994) and RISKlND (Yuan, et al, 1995) to calculate incident-free dose and accident risk. For the incident-free transportation scenario, the database uses RADTRAN and RISKIND-generated data to calculate doses to offlink populations, onlink populations, people at stops, crews, inspectors, workers at intermodal transfer stations, guards at overnight stops, and escorts, as well as non-radioactive pollution health effects. For accident scenarios, the database uses RADTRAN-generated data to calculate dose risks based on ingestion, inhalation, resuspension, immersion (cloudshine), and groundshine as well as non-radioactive traffic fatalities. The Yucca Mountain EIS Transportation Database was developed using Microsoft Access 97{trademark} software and the Microsoft Windows NT{trademark} operating system. The database consists of tables for storing data, forms for selecting data for querying, and queries for retrieving the data in a predefined format. Database queries retrieve records based on input parameters and are used to calculate incident-free and accident doses using unit risk factors obtained from RADTRAN results. The next section briefly provides some background that led to the development of the database approach used in preparing the Yucca Mountain DEIS. Subsequent sections provide additional details on the database structure and types of impacts calculated using the database.

  12. Examination of spent PWR fuel rods after 15 years in dry storage.

    SciTech Connect (OSTI)

    Einziger, R.E.; Tsai, H.C.; Billone, M.C.; Hilton, B.A.

    2002-02-11

    Virginia Power Surry Nuclear Station Pressurized Water Reactor (PWR) fuel was stored in a dry inert atmosphere Castor V/21 cask at the Idaho National Environmental and Engineering Laboratory (INEEL) for 15 years at peak cladding temperatures decreasing from about 350 to 150 C. Prior to the storage, the loaded cask was subjected to extensive thermal benchmark tests. The cask was opened to examine the fuel for degradation and to determine if it was suitable for extended storage. No rod breaches had occurred and no visible degradation or crud/oxide spallation were observed. Twelve rods were removed from the center of the T11 assembly and shipped from INEEL to the Argonne-West HFEF for profilometric scans. Four of these rods were punctured to determine the fission gas release from the fuel matrix and internal pressure in the rods. Three of the four rods were cut into five segments each, then shipped to the Argonne-East AGHCF for detailed examination. The test plan calls for metallographic examination of six samples from two of the rods, microhardness and hydrogen content measurements at or near the six metallographic sample locations, tensile testing of six samples from the two rods, and thermal creep testing of eight samples from the two rods to determine the extent of residual creep life. The results from the profilometry (12 rods), gas release measurements (4 rods), metallographic examinations (2 samples from 1 rod), and microhardness and hydrogen content characterization (2 samples from 1 rod) are reported here. The tensile and creep studies are just starting and will be reported at a later date, along with the additional characterization work to be performed. Although only limited prestorage characterization is available, a number of preliminary conclusions can be drawn based on comparison with characterization of Florida Power Turkey Point rods of a similar vintage. Based on this comparison, it appears that little or no cladding thermal creep and fission gas release from the fuel pellets occurred during the thermal benchmark tests or storage. Measurements of the cladding outer-diameter, oxide thickness and wall thickness are in the expected range for cladding of the Surry exposure. The measured hydrogen content is consistent with the oxide thickness. The volume of hydrides varies azimuthally around the cladding, but there is little variation across the thickness, of the cladding. It is most significant that all of the hydrides appear to have retained the circumferential orientation typical of prestorage PWR fuel rods.

  13. Examination of Spent PWR Fuel Rods After 15 Years in Dry Storage

    SciTech Connect (OSTI)

    Einziger, R.E.; Tsai, H.C.; Billone, M.C.; Hilton, B.A.

    2002-07-01

    Virginia Power Surry Nuclear Station Pressurized Water Reactor (PWR) fuel was stored in a dry inert atmosphere Castor V/21 cask at the Idaho National Environmental and Engineering Laboratory (INEEL) for 15 years at peak cladding temperatures decreasing from about 350 to 150 deg. C. Prior to the storage, the loaded cask was subjected to extensive thermal benchmark tests. The cask was opened to examine the fuel for degradation and to determine if it was suitable for extended storage. No rod breaches had occurred and no visible degradation or crud/oxide spallation were observed. Twelve rods were removed from the center of the T11 assembly and shipped from INEEL to the Argonne-West HFEF for profilometric scans. Four of these rods were punctured to determine the fission gas release from the fuel matrix and internal pressure in the rods. Three of the four rods were cut into five segments each, then shipped to the Argonne-East AGHCF for detailed examination. The test plan calls for metallographic examination of six samples from two of the rods, microhardness and hydrogen content measurements at or near the six metallographic sample locations, tensile testing of six samples from the two rods, and thermal creep testing of eight samples from the two rods to determine the extent of residual creep life. The results from the profilometry (12 rods), gas release measurements (4 rods), metallographic examinations (2 samples from 1 rod), and microhardness and hydrogen content characterization (2 samples from 1 rod) are reported here. The tensile and creep studies are just starting and will be reported at a later date, along with the additional characterization work to be performed. Although only limited pre-storage characterization is available, a number of preliminary conclusions can be drawn based on comparison with characterization of Florida Power Turkey Point rods of a similar vintage. Based on this comparison, it appears that little or no cladding thermal creep and fission gas release from the fuel pellets occurred during the thermal benchmark tests or storage. Measurements of the cladding outer-diameter, oxide thickness and wall thickness are in the expected range for cladding of the Surry exposure. The measured hydrogen content is consistent with the oxide thickness. The volume of hydrides varies azimuthally around the cladding, but there is little variation across the thickness, of the cladding. It is most significant that all of the hydrides appear to have retained the circumferential orientation typical of pre-storage PWR fuel rods. (authors)

  14. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  15. Fossil fuel combined cycle power generation method

    DOE Patents [OSTI]

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  16. CASMO5/TSUNAMI-3D spent nuclear fuel reactivity uncertainty analysis

    SciTech Connect (OSTI)

    Ferrer, R.; Rhodes, J. [Studsvik Scandpower, Inc., 504 Shoup Ave., Idaho Falls, ID 83402 (United States); Smith, K. [Dept. of Nuclear Science and Engineering, Massachusetts Inst. of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (United States)

    2012-07-01

    The CASMO5 lattice physics code is used in conjunction with the TSUNAMI-3D sequence in ORNL's SCALE 6 code system to estimate the uncertainties in hot-to-cold reactivity changes due to cross-section uncertainty for PWR assemblies at various burnup points. The goal of the analysis is to establish the multiplication factor uncertainty similarity between various fuel assemblies at different conditions in a quantifiable manner and to obtain a bound on the hot-to-cold reactivity uncertainty over the various assembly types and burnup attributed to fundamental cross-section data uncertainty. (authors)

  17. Discussing spent nuclear fuel in high school classrooms: addressing public fears through early education

    SciTech Connect (OSTI)

    Winkel, S.; Sullivan, J.; Jones, S.; Sullivan, K.; Hyland, B.; Pencer, J.; Colton, A.

    2013-07-01

    The Inreach program combines the Deep River Science Academy (DRSA) 'learning through research' approach with state of the art communication technology to bring scientific research to high school classrooms. The Inreach program follows the DRSA teaching model where a university student tutor works on a research project with scientific staff at AECL's Chalk River Laboratories. Participating high school classes are located across Canada. The high school students learn about the ongoing research activities via weekly web conferences. In order to engage the students and encourage participation in the conferences, themed exercises linked to the research project are provided to the students. The DRSA's Inreach program uses a cost-effective internet technology to reach a wide audience, in an interactive setting, without anyone leaving their desks or offices. An example Inreach research project is presented here: an investigation of the potential of the Canadian supercritical water cooled reactor (SCWR) concept to burn transuranic elements (Np, Pu, Am, Cm) to reduce the impact of used nuclear fuel. During this project a university student worked with AECL (Atomic Energy of Canada Limited) researchers on technical aspects of the project, and high school students followed their progress and learned about the composition, hazards, and disposition options for used nuclear fuel. Previous projects included the effects of tritium on cellular viability and neutron diffraction measurement of residual stresses in automobile engines.

  18. Generating Potable Water from Fuel Cell Technology Juan E. Tibaquir

    E-Print Network [OSTI]

    Keller, Arturo A.

    Generating Potable Water from Fuel Cell Technology Juan E. Tibaquirá Associate Professor for research 2. Fuel-cell fundamentals 3. Implications of using water from fuel cells in a society water use2 . ·Pumping ·Distribution ·Treatment 4% of the nation's electricity use goes towards moving

  19. Accelerated high-temperature tests with spent PWR and BWR fuel rods under dry storage conditions

    SciTech Connect (OSTI)

    Porsch, G.; Fleisch, J.; Heits, B.

    1986-09-01

    Accelerated high-temperature tests on 25 intact pressurized water and boiling water reactor rods were conducted for more than 16 months at 400, 430, and 450/sup 0/C in a helium gas atmosphere. The pretest characterized rods were examined by nondestructive methods after each of the three test cycles. No cladding breaches occurred and the creep deformation remained below 1%, which was in good agreement with model calculations. The test atmospheres were analyzed for /sup 85/Kr and tritium. The /sup 85/Kr concentrations were negligible and the tritium release agreed with the theoretical predictions. It can be concluded that for Zircaloy-clad fuel, cladding temperatures up to 450/sup 0/C are acceptable for dry storage in inert cover gases.

  20. Facility effluent monitoring plan for K Area Spent Fuel. Revision 1

    SciTech Connect (OSTI)

    Hunacek, G.S.

    1995-09-01

    The scope of this document includes program plans for monitoring and characterizing radioactive and nonradioactive hazardous materials discharged in the K Area effluents. This FEMP includes complete documentation for both airborne and liquid effluent monitoring systems that monitor radioactive and nonradioactive hazardous pollutants that could be discharged to the environment under routine and/or upset conditions. This documentation is provided for each K Area facility that uses, generates, releases, or manages significant quantities of radioactive and nonradioactive hazardous materials that could impact public and employee safety and the environment. This FEW describes the airborne and liquid effluent paths and the associated sampling and monitoring systems of the K Area facilities. Sufficient information is provided on the effluent characteristics and the effluent monitoring systems so that a compliance assessment against requirements may be performed. Adequate details are supplied such that radioactive and hazardous material source terms may be related to specific effluent streams which are, in turn, related to discharge points and finally compared to the effluent monitoring system capability.

  1. NDE to Manage Atmospheric SCC in Canisters for Dry Storage of Spent Fuel: An Assessment

    SciTech Connect (OSTI)

    Meyer, Ryan M.; Pardini, Allan F.; Cuta, Judith M.; Adkins, Harold E.; Casella, Andrew M.; Qiao, Hong; Larche, Michael R.; Diaz, Aaron A.; Doctor, Steven R.

    2013-09-01

    This report documents efforts to assess representative horizontal (Transuclear NUHOMS®) and vertical (Holtec HI-STORM) storage systems for the implementation of non-destructive examination (NDE) methods or techniques to manage atmospheric stress corrosion cracking (SCC) in canisters for dry storage of used nuclear fuel. The assessment is conducted by assessing accessibility and deployment, environmental compatibility, and applicability of NDE methods. A recommendation of this assessment is to focus on bulk ultrasonic and eddy current techniques for direct canister monitoring of atmospheric SCC. This assessment also highlights canister regions that may be most vulnerable to atmospheric SCC to guide the use of bulk ultrasonic and eddy current examinations. An assessment of accessibility also identifies canister regions that are easiest and more difficult to access through the ventilation paths of the concrete shielding modules. A conceivable sampling strategy for canister inspections is to sample only the easiest to access portions of vulnerable regions. There are aspects to performing an NDE inspection of dry canister storage system (DCSS) canisters for atmospheric SCC that have not been addressed in previous performance studies. These aspects provide the basis for recommendations of future efforts to determine the capability and performance of eddy current and bulk ultrasonic examinations for atmospheric SCC in DCSS canisters. Finally, other important areas of investigation are identified including the development of instrumented surveillance specimens to identify when conditions are conducive for atmospheric SCC, characterization of atmospheric SCC morphology, and an assessment of air flow patterns over canister surfaces and their influence on chloride deposition.

  2. Simultaneous recovery of all actinides from spent nuclear fuel by carbamoyl-methylphosphine oxide in fluorinated diluents

    SciTech Connect (OSTI)

    Ozawa, M.; Iwai, T.; Babain, V.; Shadrin, A.

    2008-07-01

    Bifunctional organophosphorus extractants dissolved in polar fluorinated diluents were studied, aiming at directly recovering all f-elements from the dissolver solution of spent nuclear fuel. Octyl(phenyl)-N,N-diisobutyl-carbamoyl-methylphosphine oxide (0{phi}D[iB] CMPO, 0.2-0.8 M) with 30% TBP dissolved in meta-nitrobenzotrifluoride (Fluoropole-732) dramatically expanded its extraction region without splitting out a heterogeneous third phase. Distribution ratios of U, Np, and Pu were sufficiently high for 0.4-0.8 M CMPO in this solvent system. Combination of salt-free, methylamine carbonate (MAC), citric acid, and hydrazine reagents were evaluated to obtain fractional stripping of f-elements such as TRU group and U. Static multistage extraction using artificial FBR dissolver solution supported the process feasibility. When all f-elements are extracted simultaneously, and TRU and U recovered separately with a single extraction cycle, the new extraction process, named ORGA-process, can be expected to be highly proliferation-resistant and systematically and economically advantageous. (authors)

  3. A National Tracking Center for Monitoring Shipments of HEU, MOX, and Spent Nuclear Fuel: How do we implement?

    SciTech Connect (OSTI)

    Mark Schanfein

    2009-07-01

    Nuclear material safeguards specialists and instrument developers at US Department of Energy (USDOE) National Laboratories in the United States, sponsored by the National Nuclear Security Administration (NNSA) Office of NA-24, have been developing devices to monitor shipments of UF6 cylinders and other radioactive materials , . Tracking devices are being developed that are capable of monitoring shipments of valuable radioactive materials in real time, using the Global Positioning System (GPS). We envision that such devices will be extremely useful, if not essential, for monitoring the shipment of these important cargoes of nuclear material, including highly-enriched uranium (HEU), mixed plutonium/uranium oxide (MOX), spent nuclear fuel, and, potentially, other large radioactive sources. To ensure nuclear material security and safeguards, it is extremely important to track these materials because they contain so-called “direct-use material” which is material that if diverted and processed could potentially be used to develop clandestine nuclear weapons . Large sources could be used for a dirty bomb also known as a radioactive dispersal device (RDD). For that matter, any interdiction by an adversary regardless of intent demands a rapid response. To make the fullest use of such tracking devices, we propose a National Tracking Center. This paper describes what the attributes of such a center would be and how it could ultimately be the prototype for an International Tracking Center, possibly to be based in Vienna, at the International Atomic Energy Agency (IAEA).

  4. Standard specification for boron-Based neutron absorbing material systems for use in nuclear spent fuel storage racks

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2011-01-01

    1.1 This specification defines criteria for boron-based neutron absorbing material systems used in racks in a pool environment for storage of nuclear light water reactor (LWR) spent-fuel assemblies or disassembled components to maintain sub-criticality in the storage rack system. 1.2 Boron-based neutron absorbing material systems normally consist of metallic boron or a chemical compound containing boron (for example, boron carbide, B4C) supported by a matrix of aluminum, steel, or other materials. 1.3 In a boron-based absorber, neutron absorption occurs primarily by the boron-10 isotope that is present in natural boron to the extent of 18.3 ± 0.2 % by weight (depending upon the geological origin of the boron). Boron, enriched in boron-10 could also be used. 1.4 The materials systems described herein shall be functional – that is always be capable to maintain a B10 areal density such that subcriticality Keff design specification for the service...

  5. Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation

    SciTech Connect (OSTI)

    Michael Tyacke; Dr. Igor Bolshinsky; Jeff Chamberlin

    2008-07-01

    On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their high-enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.

  6. Spent Fuel Working Group report on inventory and storage of the Department`s spent nuclear fuel and other reactor irradiated nuclear materials and their environmental, safety and health vulnerabilities. Volume 2, Working Group Assessment Team reports; Vulnerability development forms; Working group documents

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    The Secretary of Energy`s memorandum of August 19, 1993, established an initiative for a Department-wide assessment of the vulnerabilities of stored spent nuclear fuel and other reactor irradiated nuclear materials. A Project Plan to accomplish this study was issued on September 20, 1993 by US Department of Energy, Office of Environment, Health and Safety (EH) which established responsibilities for personnel essential to the study. The DOE Spent Fuel Working Group, which was formed for this purpose and produced the Project Plan, will manage the assessment and produce a report for the Secretary by November 20, 1993. This report was prepared by the Working Group Assessment Team assigned to the Hanford Site facilities. Results contained in this report will be reviewed, along with similar reports from all other selected DOE storage sites, by a working group review panel which will assemble the final summary report to the Secretary on spent nuclear fuel storage inventory and vulnerability.

  7. Assessment of degradation concerns for spent fuel, high-level wastes, and transuranic wastes in monitored retrievalbe storage

    SciTech Connect (OSTI)

    Guenther, R.J.; Gilbert, E.R.; Slate, S.C.; Partain, W.L.; Divine, J.R.; Kreid, D.K.

    1984-01-01

    It has been concluded that there are no significant degradation mechanisms that could prevent the design, construction, and safe operation of monitored retrievable storage (MRS) facilities. However, there are some long-term degradation mechanisms that could affect the ability to maintain or readily retrieve spent fuel (SF), high-level wastes (HLW), and transuranic wastes (TRUW) several decades after emplacement. Although catastrophic failures are not anticipated, long-term degradation mechanisms have been identified that could, under certain conditions, cause failure of the SF cladding and/or failure of TRUW storage containers. Stress rupture limits for Zircaloy-clad SF in MRS range from 300 to 440/sup 0/C, based on limited data. Additional tests on irradiated Zircaloy (3- to 5-year duration) are needed to narrow this uncertainty. Cladding defect sizes could increase in air as a result of fuel density decreases due to oxidation. Oxidation tests (3- to 5-year duration) on SF are also needed to verify oxidation rates in air and to determine temperatures below which monitoring of an inert cover gas would not be required. Few, if any, changes in the physical state of HLW glass or canisters or their performance would occur under projected MRS conditions. The major uncertainty for HLW is in the heat transfer through cracked glass and glass devitrification above 500/sup 0/C. Additional study of TRUW is required. Some fraction of present TRUW containers would probably fail within the first 100 years of MRS, and some TRUW would be highly degraded upon retrieval, even in unfailed containers. One possible solution is the design of a 100-year container. 93 references, 28 figures, 17 tables.

  8. Combined fuel and air staged power generation system

    SciTech Connect (OSTI)

    Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

    2014-05-27

    A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

  9. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement; Volume 1, Appendix F, Nevada Test Site and Oak Ridge Reservation Spent Nuclear Fuel Management Programs

    SciTech Connect (OSTI)

    1994-06-01

    This volume addresses the interim storage of spent nuclear fuel (SNF) at two US Department of Energy sites, the Nevada Test Site (NTS) and the Oak Ridge Reservation (ORR). These sites are being considered to provide a reasonable range of alternative settings at which future SNF management activities could be conducted. These locations are not currently involved in management of large quantities of SNF; NTS has none, and ORR has only small quantities. But NTS and ORR do offer experience and infrastructure for the handling, processing and storage of radioactive materials, and they do exemplify a broad spectrum of environmental parameters. This broad spectrum of environmental parameters will provide, a perspective on whether and how such location attributes may relate to potential environmental impacts. Consideration of these two sites will permit a programmatic decision to be based upon an assessment of the feasible options without bias, to the current storage sites. This volume is divided into four parts. Part One is the volume introduction. Part Two contains chapters one through five for the NTS, as well as references contained in chapter six. Part Three contains chapters one through five for the ORR, as well as references contained in chapter six. Part Four is summary information including the list of preparers, organizations contacted, acronyms, and abbreviations for both the NTS and the ORR. A Table of Contents, List of Figures, and List of Tables are included in parts Two, Three, and Four. This approach permitted the inclusion of both sites in one volume while maintaining consistent chapter numbering.

  10. Sustainable Power Generation in Microbial Fuel Cells Using

    E-Print Network [OSTI]

    Tullos, Desiree

    Sustainable Power Generation in Microbial Fuel Cells Using Bicarbonate Buffer and Proton Transfer applications, especially for wastewater treatment. Introduction Microbial fuel cell (MFC) technology has drawn of electrodes (6­9), (iii) selection and treatment of membranes (10­12), and (iv) optimization of the MFC design

  11. Measuring the Noble Metal and Iodine Composition of Extracted Noble Metal Phase from Spent Nuclear Fuel Using Instrumental Neutron Activation Analysis

    SciTech Connect (OSTI)

    Palomares, R. I.; Dayman, Kenneth J.; Landsberger, Sheldon; Biegalski, Steven R.; Soderquist, Chuck Z.; Casella, Amanda J.; Brady Raap, Michaele C.; Schwantes, Jon M.

    2015-04-01

    Mass quantities of noble metal and iodine nuclides in the metallic noble metal phase extracted from spent fuel are measured using instrumental neutron activation analysis (NAA). Nuclide presence is predicted using fission yield analysis, and mass quantification is derived from standard gamma spectroscopy and radionuclide decay analysis. The nuclide compositions of noble metal phase derived from two dissolution methods, UO2 fuel dissolved in nitric acid and UO2 fuel dissolved in ammonium-carbonate and hydrogen-peroxide solution, are compared. Lastly, the implications of the rapid analytic speed of instrumental NAA are discussed in relation to potential nuclear forensics applications.

  12. Initial performance assessment of the disposal of spent nuclear fuel and high-level waste stored at Idaho National Engineering Laboratory. Volume 1, Methodology and results

    SciTech Connect (OSTI)

    Rechard, R.P. [ed.

    1993-12-01

    This performance assessment characterized plausible treatment options conceived by the Idaho National Engineering Laboratory (INEL) for its spent fuel and high-level radioactive waste and then modeled the performance of the resulting waste forms in two hypothetical, deep, geologic repositories: one in bedded salt and the other in granite. The results of the performance assessment are intended to help guide INEL in its study of how to prepare wastes and spent fuel for eventual permanent disposal. This assessment was part of the Waste Management Technology Development Program designed to help the US Department of Energy develop and demonstrate the capability to dispose of its nuclear waste. Although numerous caveats must be placed on the results, the general findings were as follows: Though the waste form behavior depended upon the repository type, all current and proposed waste forms provided acceptable behavior in the salt and granite repositories.

  13. Assessment of effectiveness of geologic isolation systems. Test case release consequence analysis for a spent fuel repository in bedded salt

    SciTech Connect (OSTI)

    Raymond, J.R.; Bond, F.W.; Cole, C.R.; Nelson, R.W.; Reisenauer, A.E.; Washburn, J.F.; Norman, N.A.; Mote, P.A.; Segol, G.

    1980-01-01

    Geologic and geohydrologic data for the Paradox Basin have been used to simulate movement of ground water and radioacrtive contaminants from a hypothetical nuclear reactor spent fuel repository after an assumed accidental release. The pathlines, travel times and velocity of the ground water from the repository to the discharge locale (river) were determined after the disruptive event by use of a two-dimensional finite difference hydrologic model. The concentration of radioactive contaminants in the ground water was calculated along a series of flow tubes by use of a one-dimensional mass transport model which takes into account convection, dispersion, contaminant/media interactions and radioactive decay. For the hypothetical site location and specific parameters used in this demonstration, it is found that Iodine-129 (I-129) is tthe only isotope reaching the Colorado River in significant concentration. This concentration occurs about 8.0 x 10/sup 5/ years after the repository has been breached. This I-129 ground-water concentration is about 0.3 of the drinking water standard for uncontrolled use. The groundwater concentration would then be diluted by the Colorado River. None of the actinide elements reach more than half the distance from the repository to the Colorado River in the two-million year model run time. This exercise demonstrates that the WISAP model system is applicable for analysis of contaminant transport. The results presented in this report, however, are valid only for one particular set of parameters. A complete sensitivity analysis must be performed to evaluate the range of effects from the release of contaminants from a breached repository.

  14. Inspection and Gamma-Ray Dose Rate Measurements of the Annulus of the VSC-17 Concrete Spent Nuclear Fuel Storage Cask

    SciTech Connect (OSTI)

    P. L. Winston

    2007-09-01

    The air cooling annulus of the Ventilated Storage Cask (VSC)-17 spent fuel storage cask was inspected using a Toshiba 7 mm (1/4”) CCD video camera. The dose rates observed in the annular space were measured to provide a reference for the activity to which the camera(s) being tested were being exposed. No gross degradation, pitting, or general corrosion was observed.

  15. Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation

    SciTech Connect (OSTI)

    David Deangelis; Rich Depuy; Debashis Dey; Georgia Karvountzi; Nguyen Minh; Max Peter; Faress Rahman; Pavel Sokolov; Deliang Yang

    2004-09-30

    This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the April to October 2004 reporting period in Task 2.3 (SOFC Scaleup for Hybrid and Fuel Cell Systems) under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL), entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. This study analyzes the performance and economics of power generation systems for central power generation application based on Solid Oxide Fuel Cell (SOFC) technology and fueled by natural gas. The main objective of this task is to develop credible scale up strategies for large solid oxide fuel cell-gas turbine systems. System concepts that integrate a SOFC with a gas turbine were developed and analyzed for plant sizes in excess of 20 MW. A 25 MW plant configuration was selected with projected system efficiency of over 65% and a factory cost of under $400/kW. The plant design is modular and can be scaled to both higher and lower plant power ratings. Technology gaps and required engineering development efforts were identified and evaluated.

  16. Development of a novel solvent for the simultaneous separation of strontium and cesium from dissolved Spent Nuclear Fuel solutions

    SciTech Connect (OSTI)

    Catherine L. Riddle; John D. Baker; Jack D. Law; Christopher A. McGrath; David H. Meikrantz; Bruce J. Mincher; Dean R. Peterman; Terry A. Todd

    2004-10-01

    The recovery of Cs and Sr from acidic solutions by solvent extraction has been investigated. The goal of this project was to develop an extraction process to remove Cs and Sr from high-level waste in an effort to reduce the heat loading in storage. Solvents for the extraction of Cs and Sr separately have been used on both caustic and acidic spent nuclear fuel waste in the past. The objective of this research was to find a suitable solvent for the extraction of both Cs and Sr simultaneously from acidic nitrate media. The solvents selected for this research possess good stability and extraction behavior when mixed together. The extraction experiments were performed with 4 ,4,(5 )-Di-(tbutyldicyclohexano)- 18-crown-6 {DtBuCH18C6}, Calix[4]arene-bis-(tert-octylbenzocrown-6) {BOBCalixC6} and 1-(2,2,3,3-tetrafluoropropoxy)-3-(4-sec-butylphenoxy)-2-propanol {Cs-7SB modifier} in a branched aliphatic kerosene {Isopar® L}. The BOBCalixC6 and Cs-7SB modifier were developed at Oak Ridge National Laboratory (ORNL) by Bonnesen et al. [1]. The values obtained from the SREX solvent for DSr in 1 M nitric acid ranged from 0.7 to 2.2 at 25oC and 10oC respectively. The values for DCs in 1 M nitric acid with the CSSX solvent ranged from 8.0 to 46.0 at 25oC and 10oC respectively. A new mixed solvent, developed at the Idaho National Engineering and Environmental Laboratory (INEEL) by Riddle et al. [2], showed distributions for Sr ranging from 8.8 to 17.4 in 1 M nitric acid at 25oC and 10oC respectively. The DCs for the mixed solvent ranged from 7.7 to 20.2 in 1 M nitric acid at 25oC to 10oC respectively. The unexpectedly high distributions for Sr at both 25oC and 10oC show a synergy in the mixed solvent. The DCs, although lower than with CSSX solvent, still showed good extraction behavior.

  17. Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer

    DOE Patents [OSTI]

    Dederer, J.T.; Hager, C.A.

    1998-03-31

    An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier. 10 figs.

  18. Electrochemical fuel cell generator having an internal and leak tight hydrocarbon fuel reformer

    DOE Patents [OSTI]

    Dederer, Jeffrey T. (Valencia, PA); Hager, Charles A. (Mars, PA)

    1998-01-01

    An electrochemical fuel cell generator configuration is made having a generator section which contains a plurality of axially elongated fuel cells, each cell containing a fuel electrode, air electrode, and solid oxide electrolyte between the electrodes, in which axially elongated dividers separate portions of the fuel cells from each other, and where at least one divider also reforms a reformable fuel gas mixture prior to electricity generation reactions, the at least one reformer-divider is hollow having a closed end and an open end entrance for a reformable fuel mixture to pass to the closed end of the divider and then reverse flow and pass back along the hollowed walls to be reformed, and then finally to pass as reformed fuel out of the open end of the divider to contact the fuel cells, and further where the reformer-divider is a composite structure having a gas diffusion barrier of metallic foil surrounding the external walls of the reformer-divider except at the entrance to prevent diffusion of the reformable gas mixture through the divider, and further housed in an outer insulating jacket except at the entrance to prevent short-circuiting of the fuel cells by the gas diffusion barrier.

  19. Preliminary design report: Babcock and Wilcox BR-100 100-ton rail/barge spent fuel shipping cask

    SciTech Connect (OSTI)

    None

    1990-02-01

    The purpose of this document is to provide information on burnup credit as applied to the preliminary design of the BR-100 shipping cask. There is a brief description of the preliminary basket design and the features used to maintain a critically safe system. Following the basket description is a discussion of various criticality analyses used to evaluate burnup credit. The results from these analyses are then reviewed in the perspective of fuel burnups expected to be shipped to either the final repository or a Monitored Retrievable Storage (MRS) facility. The hurdles to employing burnup credit in the certification of any cask are then outlines and reviewed. the last section gives conclusions reached as to burnup credit for the BR-100 cask, based on our analyses and experience. All information in this study refers to the cask configured to transport PWR fuel. Boiling Water Reactor (BWR) fuel satisfies the criticality requirements so that burnup credit is not needed. All calculations generated in the preparation of this report were based upon the preliminary design which will be optimized during the final design. 8 refs., 19 figs., 16 tabs.

  20. SULFUR REMOVAL FROM PIPE LINE NATURAL GAS FUEL: APPLICATION TO FUEL CELL POWER GENERATION SYSTEMS

    SciTech Connect (OSTI)

    King, David L.; Birnbaum, Jerome C.; Singh, Prabhakar

    2003-11-21

    Pipeline natural gas is being considered as the fuel of choice for utilization in fuel cell-based distributed generation systems because of its abundant supply and the existing supply infrastructure (1). For effective utilization in fuel cells, pipeline gas requires efficient removal of sulfur impurities (naturally occurring sulfur compounds or sulfur bearing odorants) to prevent the electrical performance degradation of the fuel cell system. Sulfur odorants such as thiols and sulfides are added to pipeline natural gas and to LPG to ensure safe handling during transportation and utilization. The odorants allow the detection of minute gas line leaks, thereby minimizing the potential for explosions or fires.

  1. RADIOLOGICAL HEALTH AND RELATED STANDARDS FOR NUCLEAR POWER PLANTS. VOLUME 2 OF HEALTH AND SAFETY IMPACTS OF NUCLEAR, GEOTHERMAL, AND FOSSIL-FUEL ELECTRIC GENERATION IN CALIFORNIA

    E-Print Network [OSTI]

    Nero, A.V.

    2010-01-01

    requirement for reprocessing spent fuel. MaX = mixed oxidesspent fuel when it is reprocessed, unless controls are introduced to prevent their escape at the reprocessing

  2. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect (OSTI)

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil fuels has trace contaminants (primarily carbon monoxide) that are detrimental to precious metal catalyzed fuel cells, as is now recognized by many of the world's largest automobile companies. Thermochemical hydrogen will not contain carbon monoxide as an impurity at any level. Electrolysis, the alternative process for producing hydrogen using nuclear energy, suffers from thermodynamic inefficiencies in both the production of electricity and in electrolytic parts of the process. The efficiency of electrolysis (electricity to hydrogen) is currently about 80%. Electric power generation efficiency would have to exceed 65% (thermal to electrical) for the combined efficiency to exceed the 52% (thermal to hydrogen) calculated for one thermochemical cycle. Thermochemical water-splitting cycles have been studied, at various levels of effort, for the past 35 years. They were extensively studied in the late 70s and early 80s but have received little attention in the past 10 years, particularly in the U.S. While there is no question about the technical feasibility and the potential for high efficiency, cycles with proven low cost and high efficiency have yet to be developed commercially. Over 100 cycles have been proposed, but substantial research has been executed on only a few. This report describes work accomplished during a three-year project whose objective is to ''define an economically feasible concept for production of hydrogen, by nuclear means, using an advanced high temperature nuclear reactor as the energy source.'' The emphasis of the first phase was to evaluate thermochemical processes which offer the potential for efficient, cost-effective, large-scale production of hydrogen from water in which the primary energy input is high temperature heat from an advanced nuclear reactor and to select one (or, at most three) for further detailed consideration. During Phase 1, an exhaustive literature search was performed to locate all cycles previously proposed. The cycles located were screened using objective criteria to determine which could benefit, in terms of efficien

  3. The next generation of oxy-fuel boiler systems

    SciTech Connect (OSTI)

    Ochs, Thomas L.; Gross, Alex; Patrick, Brian; Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

    2005-01-01

    Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

  4. Microbial Fuel Cell Coupling: Clean, renewable energy generated from wastewater amongst other potential uses

    E-Print Network [OSTI]

    Reynolds, Mark

    2014-01-01

    energy generated from wastewater amongst other potential uses Mark Reynolds May 20, 2014 Abstract Microbial fuel

  5. Department of Energy Programmatic Spent Nuclear Fuel Management and Idaho National Engineering Laboratory Environmental Restoration and Waste Management Programs Draft Environmental Impact Statement. Volume 2, Part B

    SciTech Connect (OSTI)

    Not Available

    1994-06-01

    Two types of projects in the spent nuclear fuel and environmental restoration and waste management activities at the Idaho National Engineering Laboratory (INEL) are described. These are: foreseeable proposed projects where some funding for preliminary planning and/or conceptual design may already be authorized, but detailed design or planning will not begin until the Department of Energy (DOE) has determined that the requirements of the National Environmental Policy Act process for the project have been completed; planned or ongoing projects not yet completed but whose National Environmental Policy Act documentation is already completed or is expected to be completed before the Record of Decision for this Envirorunental Impact Statement (EIS) is issued. The section on project summaries describe the projects (both foreseeable proposed and ongoing).They provide specific information necessary to analyze the environmental impacts of these projects. Chapter 3 describes which alternative(s) each project supports. Summaries are included for (a) spent nuclear fuel projects, (b) environmental remediation projects, (c) the decontamination and decommissioning of surplus INEL facilities, (d) the construction, upgrade, or replacement of existing waste management facilities, (e) infrastructure projects supporting waste management activities, and (f) research and development projects supporting waste management activities.

  6. Testing to evaluate the suitability of waste forms developed for electrometallurgically treated spent sodium-bonded nuclear fuel for disposal in the Yucca Mountain reporsitory.

    SciTech Connect (OSTI)

    Ebert, W. E.

    2006-01-31

    The results of laboratory testing and modeling activities conducted to support the development of waste forms to immobilize wastes generated during the electrometallurgical treatment of spent sodium-bonded nuclear fuel and their qualification for disposal in the federal high-level radioactive waste repository are summarized in this report. Tests and analyses were conducted to address issues related to the chemical, physical, and radiological properties of the waste forms relevant to qualification. These include the effects of composition and thermal treatments on the phase stability, radiation effects, and methods for monitoring product consistency. Other tests were conducted to characterize the degradation and radionuclide release behaviors of the ceramic waste form (CWF) used to immobilize waste salt and the metallic waste form (MWF) used to immobilize metallic wastes and to develop models for calculating the release of radionuclides over long times under repository-relevant conditions. Most radionuclides are contained in the binder glass phase of the CWF and in the intermetallic phase of the MWF. The release of radionuclides from the CWF is controlled by the dissolution rate of the binder glass, which can be tracked using the same degradation model that is used for high-level radioactive waste (HLW) glass. Model parameters measured for the aqueous dissolution of the binder glass are used to model the release of radionuclides from a CWF under all water-contact conditions. The release of radionuclides from the MWF is element-specific, but the release of U occurs the fastest under most test conditions. The fastest released constituent was used to represent all radionuclides in model development. An empirical aqueous degradation model was developed to describe the dependence of the radionuclide release rate from a MWF on time, pH, temperature, and the Cl{sup -} concentration. The models for radionuclide release from the CWF and MWF are both bounded by the HLW glass degradation model developed for use in repository licensing, and HLW glass can be used as a surrogate for both CWF and MWF in performance assessment calculations. Test results indicate that the radionuclide release from CWF and MWF is adequately described by other relevant performance assessment models, such as the models for the solution chemistries in breached waste packages, dissolved concentration limits, and the formation of radionuclide-bearing colloids.

  7. CORROSION OF ALUMINUM CLAD SPENT NUCLEAR FUEL IN THE 70 TON CASK DURING TRANSFER FROM L AREA TO H-CANYON

    SciTech Connect (OSTI)

    Mickalonis, J.

    2014-06-01

    Aluminum-clad spent nuclear fuel will be transported for processing in the 70-ton nuclear fuel element cask from L Basin to H-canyon. During transport these fuels would be expected to experience high temperature aqueous corrosion from the residual L Basin water that will be present in the cask. Cladding corrosion losses during transport were calculated for material test reactor (MTR) and high flux isotope reactors (HFIR) fuels using literature and site information on aqueous corrosion at a range of time/temperature conditions. Calculations of the cladding corrosion loss were based on Arrhenius relationships developed for aluminum alloys typical of cladding material with the primary assumption that an adherent passive film does not form to retard the initial corrosion rate. For MTR fuels a cladding thickness loss of 33 % was found after 1 year in the cask with a maximum temperature of 260 {degrees}C. HFIR fuels showed a thickness loss of only 6% after 1 year at a maximum temperature of 180 {degrees}C. These losses are not expected to impact the overall confinement function of the aluminum cladding.

  8. Downhole steam generator using low pressure fuel and air supply

    DOE Patents [OSTI]

    Fox, Ronald L. (Albuquerque, NM)

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

  9. Waste generation process modeling and analysis for fuel reprocessing technologies

    SciTech Connect (OSTI)

    Kornreich, D. E. (Drew E.); Koehler, A. C. (Andrew C.); Farman, Richard F.

    2002-01-01

    Estimates of electric power generation requirements for the next century, even when taking the most conservative tack, indicate that the United States will have to increase its production capacity significantly. If the country determines that nuclear power will not be a significant component of this production capacity, the nuclear industry will have to die, as maintaining a small nuclear component will not be justifiable. However, if nuclear power is to be a significant component, it will probably require some form of reprocessing technology. The once-through fuel cycle is only feasible for a relatively small number of nuclear power plants. If we are maintaining several hundred reactors, the once-through fuel cycle is more expensive and ethically questionable.

  10. SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION

    SciTech Connect (OSTI)

    Kurt Montgomery; Nguyen Minh

    2003-08-01

    This report summarizes the work performed by Honeywell during the October 2001 to December 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. The conceptual and demonstration system designs were proposed and analyzed, and these systems have been modeled in Aspen Plus. Work has also started on the assembly of dynamic component models and the development of the top-level controls requirements for the system. SOFC stacks have been fabricated and performance mapping initiated.

  11. Messiah College Biodiesel Fuel Generation Project Final Technical Report

    SciTech Connect (OSTI)

    Zummo, Michael M; Munson, J; Derr, A; Zemple, T; Bray, S; Studer, B; Miller, J; Beckler, J; Hahn, A; Martinez, P; Herndon, B; Lee, T; Newswanger, T; Wassall, M

    2012-03-30

    Many obvious and significant concerns arise when considering the concept of small-scale biodiesel production. Does the fuel produced meet the stringent requirements set by the commercial biodiesel industry? Is the process safe? How are small-scale producers collecting and transporting waste vegetable oil? How is waste from the biodiesel production process handled by small-scale producers? These concerns and many others were the focus of the research preformed in the Messiah College Biodiesel Fuel Generation project over the last three years. This project was a unique research program in which undergraduate engineering students at Messiah College set out to research the feasibility of small-biodiesel production for application on a campus of approximately 3000 students. This Department of Energy (DOE) funded research program developed out of almost a decade of small-scale biodiesel research and development work performed by students at Messiah College. Over the course of the last three years the research team focused on four key areas related to small-scale biodiesel production: Quality Testing and Assurance, Process and Processor Research, Process and Processor Development, and Community Education. The objectives for the Messiah College Biodiesel Fuel Generation Project included the following: 1. Preparing a laboratory facility for the development and optimization of processors and processes, ASTM quality assurance, and performance testing of biodiesel fuels. 2. Developing scalable processor and process designs suitable for ASTM certifiable small-scale biodiesel production, with the goals of cost reduction and increased quality. 3. Conduct research into biodiesel process improvement and cost optimization using various biodiesel feedstocks and production ingredients.

  12. Walk the Line: The Development of Route Selection Standards for Spent Nuclear Fuel and High-level Radioactive Waste in the United States - 13519

    SciTech Connect (OSTI)

    Dilger, Fred; Halstead, Robert J.; Ballard, James D.

    2013-07-01

    Although storage facilities for spent nuclear fuel (SNF) and high-level radioactive waste (HLRW) are widely dispersed throughout the United States, these materials are also relatively concentrated in terms of geographic area. That is, the impacts of storage occur in a very small geographic space. Once shipments begin to a national repository or centralized interim storage facility, the impacts of SNF and HLRW will become more geographically distributed, more publicly visible, and almost certainly more contentious. The selection of shipping routes will likely be a major source of controversy. This paper describes the development of procedures, regulations, and standards for the selection of routes used to ship spent nuclear fuel and high-level radioactive waste in the United States. The paper begins by reviewing the circumstances around the development of HM-164 routing guidelines. The paper discusses the significance of New York City versus the Department of Transportation and application of HM-164. The paper describes the methods used to implement those regulations. The paper will also describe the current HM-164 designated routes and will provide a summary data analysis of their characteristics. This analysis will reveal the relatively small spatial scale of the effects of HM 164. The paper will then describe subsequent developments that have affected route selection for these materials. These developments include the use of 'representative routes' found in the Department of Energy (DOE) 2008 Supplemental Environmental Impact Statement for the formerly proposed Yucca Mountain geologic repository. The paper will describe recommendations related to route selection found in the National Academy of Sciences 2006 report Going the Distance, as well as recommendations found in the 2012 Final Report of the Blue Ribbon Commission on America's Nuclear Future. The paper will examine recently promulgated federal regulations (HM-232) for selection of rail routes for hazardous materials transport. The paper concludes that while the HM 164 regime is sufficient for certain applications, it does not provide an adequate basis for a national plan to ship spent nuclear fuel and high-level radioactive waste to centralized storage and disposal facilities over a period of 30 to 50 years. (authors)

  13. Hazards and scenarios examined for the Yucca Mountain disposal system for spent nuclear fuel and high-level radioactive waste

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for Accidental Releases of Last saved on:

  14. Management of Legacy Spent Nuclear Fuel Wastes at the Chalk River Laboratories: The Challenges and Innovative Solutions Implemented - 13301

    SciTech Connect (OSTI)

    Schruder, Kristan; Goodwin, Derek

    2013-07-01

    AECL's Fuel Packaging and Storage (FPS) Project was initiated in 2004 to retrieve, transfer, and stabilize an identified inventory of degraded research reactor fuel that had been emplaced within in-ground 'Tile Hole' structures in Chalk River Laboratories' Waste Management Area in the 1950's and 60's. Ongoing monitoring of the legacy fuel storage conditions had identified that moisture present in the storage structures had contributed to corrosion of both the fuel and the storage containers. This prompted the initiation of the FPS Project which has as its objective to design, construct, and commission equipment and systems that would allow for the ongoing safe storage of this fuel until a final long-term management, or disposition, pathway was available. The FPS Project provides systems and technologies to retrieve and transfer the fuel from the Waste Management Area to a new facility that will repackage, dry, safely store and monitor the fuel for a period of 50 years. All equipment and the new storage facility are designed and constructed to meet the requirements for Class 1 Nuclear Facilities in Canada. (authors)

  15. Re-evaluation of Spent Nuclear Fuel Assay Data for the Three Mile Island Unit 1 Reactor and Application to Code Validation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gauld, Ian C.; Giaquinto, J. M.; Delashmitt, J. S.; Hu, Jianwei; Ilas, Germina; Haverlock, T. J.; Romano, Catherine E.

    2016-01-01

    Destructive radiochemical assay measurements of spent nuclear fuel rod segments from an assembly irradiated in the Three Mile Island unit 1 (TMI-1) pressurized water reactor have been performed at Oak Ridge National Laboratory (ORNL). Assay data are reported for five samples from two fuel rods of the same assembly. The TMI-1 assembly was a 15 X 15 design with an initial enrichment of 4.013 wt% 235U, and the measured samples achieved burnups between 45.5 and 54.5 gigawatt days per metric ton of initial uranium (GWd/t). Measurements were performed mainly using inductively coupled plasma mass spectrometry after elemental separation via highmore »performance liquid chromatography. High precision measurements were achieved using isotope dilution techniques for many of the lanthanides, uranium, and plutonium isotopes. Measurements are reported for more than 50 different isotopes and 16 elements. One of the two TMI-1 fuel rods measured in this work had been measured previously by Argonne National Laboratory (ANL), and these data have been widely used to support code and nuclear data validation. Recently, ORNL provided an important opportunity to independently cross check results against previous measurements performed at ANL. The measured nuclide concentrations are used to validate burnup calculations using the SCALE nuclear systems modeling and simulation code suite. These results show that the new measurements provide reliable benchmark data for computer code validation.« less

  16. Rod consolidation of RG and E's (Rochester Gas and Electric Corporation) spent PWR (pressurized water reactor) fuel

    SciTech Connect (OSTI)

    Bailey, W.J.

    1987-05-01

    The rod consolidation demonstration involved pulling the fuel rods from five fuel assemblies from Unit 1 of RG and E's R.E. Ginna Nuclear Power Plant. Slow and careful rod pulling efforts were used for the first and second fuel assemblies. Rod pulling then proceeded smoothly and rapidly after some minor modifications were made to the UST and D consolidation equipment. The compaction ratios attained ranged from 1.85 to 2.00 (rods with collapsed cladding were replaced by dummy rods in one fuel assembly to demonstrate the 2:1 compaction ratio capability). This demonstration involved 895 PWR fuel rods, among which there were some known defective rods (over 50 had collapsed cladding); no rods were broken or dropped during the demonstration. However, one of the rods with collapsed cladding unexplainably broke during handling operations (i.e., reconfiguration in the failed fuel canister), subsequent to the rod consolidation demonstration. The broken rod created no facility problems; the pieces were encapsulated for subsequent storage. Another broken rod was found during postdemonstration cutting operations on the nonfuel-bearing structural components from the five assemblies; evidence indicates it was broken prior to any rod consolidation operations. During the demonstration, burnish-type lines or scratches were visible on the rods that were pulled; however, experience indicates that such lines are generally produced when rods are pulled (or pushed) through the spacer grids. Rods with collapsed cladding would not enter the funnel (the transition device between the fuel assembly and the canister that aids in obtaining high compaction ratios). Reforming of the flattened areas of the cladding on those rods was attempted to make the rod cross sections more nearly circular; some of the reformed rods passed through the funnel and into the canister.

  17. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells

    E-Print Network [OSTI]

    Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells Shaoan to increase power generation by microbial fuel cells (MFCs). It is shown here that using a phosphate buffer

  18. Generation-IV Roadmap Report of the Fuel Cycle Crosscut Group

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Charter of the Generation IV Roadmap Fuel Cycle Crosscut Group (FCCG) is to (1) examine the fuel cycle implications for alternative nuclear power scenarios in terms of Generation IV goals and ...

  19. Reduction of Heavy-Duty Fuel Consumption and CO2 Generation ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Heavy-Duty Fuel Consumption and CO2 Generation -- What the Industry Does and What the Government Can Do Reduction of Heavy-Duty Fuel Consumption and CO2 Generation -- What the...

  20. Nuclear Regulatory Commission's Integrated Strategy for Spent...

    Office of Environmental Management (EM)

    * DOE motion to withdraw in March 2010 2 * DOE motion to withdraw in March 2010 * Blue Ribbon Commission on America's Nuclear Future 2 Growing Spent Fuel Inventory Cumulative...