Powered by Deep Web Technologies
Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

NNSA Launches Next Generation Safeguards Initiative | National Nuclear  

NLE Websites -- All DOE Office Websites (Extended Search)

Next Generation Safeguards Initiative | National Nuclear Next Generation Safeguards Initiative | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > About Us > Our History > NNSA Timeline > NNSA Launches Next Generation Safeguards Initiative NNSA Launches Next Generation Safeguards Initiative September 09, 2008 Washington, DC NNSA Launches Next Generation Safeguards Initiative

2

Next Generation Safeguards Initiative Inaugural Conference | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next Generation Safeguards Initiative Inaugural Conference Next Generation Safeguards Initiative Inaugural Conference Next Generation Safeguards Initiative Inaugural Conference September 12, 2008 - 3:20pm Addthis Remarks as Prepared for Energy Secretary Samuel Bodman Thank you, Ken, and all of you for that generous welcome. It is good to see so many of you here today for this discussion of a topic I consider to be among the most important in the Energy Department's portfolio. The U.S. Department of Energy has the responsibility for maintaining the safety and security of the U.S. nuclear stockpile. It is a responsibility I want you to know I take very personally. Thanks to the good work of Sen. Richard Lugar and others, we have the responsibility, through our National Nuclear Security Administration, to help other nations - especially the independent states that were once part

3

Oak Ridge National Laboratory Next Generation Safeguards Initiative  

Science Conference Proceedings (OSTI)

In 2007, the Department of Energy's National Nuclear Security Administration (DOE/NNSA) Office of Nonproliferation and International Security (NA-24) completed a comprehensive review of the current and potential future challenges facing the international safeguards system. The review examined trends and events impacting the mission of international safeguards and the implications of expanding and evolving mission requirements on the legal authorities and institutions that serve as the foundation of the international safeguards system, as well as the technological, financial, and human resources required for effective safeguards implementation. The review's findings and recommendations were summarized in the report, 'International Safeguards: Challenges and Opportunities for the 21st Century (October 2007)'. One of the report's key recommendations was for DOE/NNSA to launch a major new program to revitalize the international safeguards technology and human resource base. In 2007, at the International Atomic Energy Agency's General Conference, then Secretary of Energy Samuel W. Bodman announced the newly created Next Generation Safeguards Initiative (NGSI). NGSI consists of five program elements: (1) Policy development and outreach; (2) Concepts and approaches; (3) Technology and analytical methodologies; (4) Human resource development; and (5) Infrastructure development. The ensuing report addresses the 'Human Resource Development (HRD)' component of NGSI. The goal of the HRD as defined in the NNSA Program Plan (November 2008) is 'to revitalize and expand the international safeguards human capital base by attracting and training a new generation of talent.' One of the major objectives listed in the HRD goal includes education and training, outreach to universities, professional societies, postdoctoral appointments, and summer internships at national laboratories. ORNL is a participant in the NGSI program, together with several DOE laboratories such as Pacific Northwest National Laboratory (PNNL), Lawrence Livermore National Laboratory (LLNL), Brookhaven National Laboratory (BNL), and Los Alamos National Laboratory (LANL). In particular, ORNL's participation encompasses student internships, postdoctoral appointments, collaboration with universities in safeguards curriculum development, workshops, and outreach to professional societies through career fairs.

Kirk, Bernadette Lugue [ORNL; Eipeldauer, Mary D [ORNL; Whitaker, J Michael [ORNL

2011-12-01T23:59:59.000Z

4

Next Generations Safeguards Initiative: The Life of a Cylinder  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy/National Nuclear Security Administration Office of Nonproliferation and International Security's Next Generation Safeguards Initiative (NGSI) has begun a program based on a five-year plan to investigate the concept of a global monitoring scheme that uniquely identifies uranium hexafluoride (UF6) cylinders and their locations throughout the life cycle. A key initial activity in the NGSI program is to understand and document the 'life of a UF6 cylinder' from cradle to grave. This document describes the life of a UF6 cylinder and includes cylinder manufacture and procurement processes as well as cylinder-handling and operational practices at conversion, enrichment, fuel fabrication, and depleted UF6 conversion facilities. The NGSI multiple-laboratory team is using this document as a building block for subsequent tasks in the five-year plan, including development of the functional requirements for cylinder-tagging and tracking devices.

Morgan, James B [ORNL; White-Horton, Jessica L [ORNL

2012-01-01T23:59:59.000Z

5

FY 2008 Next Generation Safeguards Initiative International Safeguards Education and Training Pilot Progerams Summary Report  

SciTech Connect

Key component of the Next Generation Safeguards Initiative (NGSI) launched by the National Nuclear Security Administration is the development of human capital to meet present and future challenges to the safeguards regime. An effective university-level education in safeguards and related disciplines is an essential element in a layered strategy to rebuild the safeguards human resource capacity. Two pilot programs at university level, involving 44 students, were initiated and implemented in spring-summer 2008 and linked to hands-on internships at LANL or LLNL. During the internships, students worked on specific safeguards-related projects with a designated Laboratory Mentor to provide broader exposure to nuclear materials management and information analytical techniques. The Safeguards and Nuclear Material Management pilot program was a collaboration between the Texas A&M University (TAMU), Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). It included a 16-lecture course held during a summer internship program. The instructors for the course were from LANL together with TAMU faculty and LLNL experts. The LANL-based course was shared with the students spending their internship at LLNL via video conference. A week-long table-top (or hands-on) exercise on was also conducted at LANL. The student population was a mix of 28 students from a 12 universities participating in a variety of summer internship programs held at LANL and LLNL. A large portion of the students were TAMU students participating in the NGSI pilot. The International Nuclear Safeguards Policy and Information Analysis pilot program was implemented at the Monterey Institute for International Studies (MIIS) in cooperation with LLNL. It included a two-week intensive course consisting of 20 lectures and two exercises. MIIS, LLNL, and speakers from other U.S. national laboratories (LANL, BNL) delivered lectures for the audience of 16 students. The majority of students were senior classmen or new master's degree graduates from MIIS specializing in nonproliferation policy studies. Other university/organizations represented: University of California in LA, Stanford University, and the IAEA. Four of the students that completed this intensive course participated in a 2-month internship at LLNL. The conclusions of the two pilot courses and internships was a NGSI Summer Student Symposium, held at LLNL, where 20 students participated in LLNL facility tours and poster sessions. The Poster sessions were designed to provide a forum for sharing the results of their summer projects and providing experience in presenting their work to a varied audience of students, faculty and laboratory staff. The success of bringing together the students from the technical and policy pilots was notable and will factor into the planning for the continued refinement of their two pilot efforts in the coming years.

Dreicer, M; Anzelon, G; Essner, J; Dougan, A; Doyle, J; Boyer, B; Hypes, P; Sokova, E; Wehling, F

2008-10-17T23:59:59.000Z

6

Next generation safeguards initiative (NGSI) program plan for safeguards by design  

Science Conference Proceedings (OSTI)

Safeguards by Design (SBD) is defined as the incorporation of safeguards features early in the design phase of a new nuclear facility in order to avoid the need to redesign the facility at a later date, or retrofit the completed facility. Not only can SBD avoid the need for redesign or retrofit, but consideration of safeguards features early in the facility design effort can provide for a more efficient and effective safeguards design. A program has been initiated by the United States Department of Energy during the past several years to develop, demonstrate and institutionalization SBD. This plan has been developed in parallel with a similar effort at the IAEA while taking into account their achievements and future plans. The United States SBD program is focused on (1) identification of best practices that satisfy existing safeguards requirements, (2) identification of advanced concepts where best practices can be improved, and (3) institutionalizing SBD by gaining its acceptance as a global norm for the design of new nuclear facilities. SBD guidance documents are being prepared as an aid to industry for their design activities, to describe the relationship between requirements, best practices, and advanced concepts. SBD 'lessons learned' studies have been conducted to help identify the existing best practices and potential areas for improvement. Finally, acceptance as a global norm is being pursued by way of international workshops, engagement with industry and the IAEA, and setting an example by way of its use in new nuclear facilities in the United States.

Demuth, Scott F [Los Alamos National Laboratory; Budlong - Sylvester, Kory [Los Alamos National Laboratory; Lockwood, Dunbar [DOE/NA-243

2010-01-01T23:59:59.000Z

7

Technical Cross-Cutting Issues for the Next Generation Safeguards Initiative's Spent Fuel Nondestructive Assay Project  

Science Conference Proceedings (OSTI)

Ever since there has been spent fuel (SF), researchers have made nondestructive assay (NDA) measurements of that fuel to learn about its content. In general these measurements have focused on the simplest signatures (passive photon and total neutron emission) and the analysis has often focused on diversion detection and on determining properties such as burnup (BU) and cooling time (CT). Because of shortcomings in current analysis methods, inspectorates and policy makers are interested in improving the state-of-the-art in SF NDA. For this reason the U.S. Department of Energy, through the Next Generation Safeguards Initiative (NGSI), targeted the determination of elemental Pu mass in SF as a technical goal. As part of this research effort, 14 nondestructive assay techniques were studied . This wide range of techniques was selected to allow flexibility for the various needs of the safeguards inspectorates and to prepare for the likely integration of one or more techniques having complementary features. In the course of researching this broad range of NDA techniques, several cross-cutting issues were. This paper will describe some common issues and insights. In particular we will describe the following: (1) the role of neutron absorbers with emphasis on how these absorbers vary in SF as a function of initial enrichment, BU and CT; (2) the need to partition the measured signal among different isotopic sources; and (3) the importance of the “first generation” concept which indicates the spatial location from which the signal originates as well as the isotopic origins.

Tobin, S. J.; Menlove, H. O.; Swinhoe, Martyn T.; Blanc, P.; Burr, T.; Evans, L. G.; Favalli, A.; Fensin, M. L.; Freeman, C. R.; Galloway, J.; Gerhart, J.; Rajasingam, A.; Rauch, E.; Sandoval, N. P.; Trellue, H.; Ulrich, T. J.; Conlin, J. L.; Croft, S.; Hendricks, John; Henzl, V.; Henzlova, D.; Eigenbrodt, J. M.; Koehler, W. E.; Lee, D. W.; Lee, T. H.; Lafleur, A. M.; Schear, M. A.; Humphrey, M. A.; Smith, Leon E.; Anderson, Kevin K.; Campbell, Luke W.; Casella, Andrew M.; Gesh, Christopher J.; Shaver, Mark W.; Misner, Alex C.; Amber, S. D.; Ludewigt, Bernhard A.; Quiter, B.; Solodov, Alexander; Charlton, W.; Stafford, A.; Romano, C.; Cheatham, J.; Ehinger, Michael; Thompson, S. J.; Chichester, David; Sterbentz, James; Hu, Jianwei; Hunt, A.; Mozin, Vladimir V.; Richard, J. G.

2012-03-01T23:59:59.000Z

8

NNSA's next generation safeguards initiative to define an effective state system of accounting and control  

SciTech Connect

The International Nuclear Safeguards and Engagement Program (INSEP), the international outreach component of the Next Generation Safeguards Initiative (NGSI), is a collaborative program that endeavors to strengthen international safeguards at all stages of nuclear development. One of the critical ways the program achieves this objective is through working with partners to increase the effectiveness of the State System of Accountancy for and Control of Nuclear Materials (SSAC) - the essential elements of national, regulatory and facility safeguards competencies that work as a system to provide the International Atomic Energy Agency (IAEA) and the world the full assurance of the state's adherence to its safeguards agreements. INSEP provides assistance in developing a state's SSAC in a number of areas, from developing national legislation governing the possession and use of nuclear material to working with nuclear facility operators to developing good practices in waste management. INSEP has collaborated with foreign partners in peaceful nuclear applications for over two decades, but recently, it has focused its efforts on strengthening SSACs due to the growth of nuclear power worldwide, particularly in countries with limited nuclear infrastructures. This new area of focus has prompted INSEP to develop a model of SSAC competencies that will serve not only as a structure for its engagement with partner states, but also as a means to facilitate coordination with other states that provide training and assistance, and as a mechanism for evaluating the effectiveness of its work in reaching its intended objectives. While this model uses as its starting point the requirements on a State that are presented in the Comprehensive Safeguards Agreement and the Additional Protocol, it is not, in itself, a requirements document or guidance for implementing requirements. It is rather an analysis of what capabilities will be needed in a State to be able to meet requirements and to build confidence in the State System. Viewed from this perspective, the model can be thought of as a quality assurance tool that assists states in ensuring that the outputs of their State System (the tangible 'goods' that are provided to the International Atomic Energy Agency under the State's agreements) are of high quality. As such, this tool is for the internal use of a State System that wishes to assess and improve its capacity. It is not intended for comparison or outside evaluation. In addition to providing a self-assessment tool, INSEP expects this model to be useful in several other ways: it will inform the approach that INSEP uses in bilateral consultations to identify areas where INSEP outreach and training may be of value, and it will provide a structure for its training curriculum. It will help INSEP to evaluate the effectiveness of its outreach - where there are gaps in the training provided, and whether the training that is provided meets its stated objectives. Finally, it will provide a framework for coordinating with the IAEA and other member states in the 'harmonization' efforts currently underway to align the outreach efforts of states that provide safeguards training. This paper describes the process of evaluation that INSEP is developing. It looks at the expected usefulness of the metrics for conducting self-assessments and joint assessments and enabling partners to identify training needs. The paper begins with a description of various performance requirements that define what must be done at the state and facility level to implement effective and efficient international safeguards. Next, technical performance measures are discussed, that define how well a state and its facilities are fulfilling these requirements. Then a functional analysis is conducted to align the technical requirements with competencies and determine who should carry out the various activities necessary to fulfill the performance requirements. Finally, the paper concludes with a discussion about SEP's approach in applying the metrics to its outreach activities intended to

Stevens, Rebecca S [Los Alamos National Laboratory; Sunshine, Alexander [NNSA; Matthews, Caroline [PNNL; Frazer, Sarah [PNNL; Matthews, Carrie [NON LANL

2010-01-01T23:59:59.000Z

9

NNSA's next generation safeguards initiative to define an effective state system of accounting and control  

Science Conference Proceedings (OSTI)

The International Nuclear Safeguards and Engagement Program (INSEP), the international outreach component of the Next Generation Safeguards Initiative (NGSI), is a collaborative program that endeavors to strengthen international safeguards at all stages of nuclear development. One of the critical ways the program achieves this objective is through working with partners to increase the effectiveness of the State System of Accountancy for and Control of Nuclear Materials (SSAC) - the essential elements of national, regulatory and facility safeguards competencies that work as a system to provide the International Atomic Energy Agency (IAEA) and the world the full assurance of the state's adherence to its safeguards agreements. INSEP provides assistance in developing a state's SSAC in a number of areas, from developing national legislation governing the possession and use of nuclear material to working with nuclear facility operators to developing good practices in waste management. INSEP has collaborated with foreign partners in peaceful nuclear applications for over two decades, but recently, it has focused its efforts on strengthening SSACs due to the growth of nuclear power worldwide, particularly in countries with limited nuclear infrastructures. This new area of focus has prompted INSEP to develop a model of SSAC competencies that will serve not only as a structure for its engagement with partner states, but also as a means to facilitate coordination with other states that provide training and assistance, and as a mechanism for evaluating the effectiveness of its work in reaching its intended objectives. While this model uses as its starting point the requirements on a State that are presented in the Comprehensive Safeguards Agreement and the Additional Protocol, it is not, in itself, a requirements document or guidance for implementing requirements. It is rather an analysis of what capabilities will be needed in a State to be able to meet requirements and to build confidence in the State System. Viewed from this perspective, the model can be thought of as a quality assurance tool that assists states in ensuring that the outputs of their State System (the tangible 'goods' that are provided to the International Atomic Energy Agency under the State's agreements) are of high quality. As such, this tool is for the internal use of a State System that wishes to assess and improve its capacity. It is not intended for comparison or outside evaluation. In addition to providing a self-assessment tool, INSEP expects this model to be useful in several other ways: it will inform the approach that INSEP uses in bilateral consultations to identify areas where INSEP outreach and training may be of value, and it will provide a structure for its training curriculum. It will help INSEP to evaluate the effectiveness of its outreach - where there are gaps in the training provided, and whether the training that is provided meets its stated objectives. Finally, it will provide a framework for coordinating with the IAEA and other member states in the 'harmonization' efforts currently underway to align the outreach efforts of states that provide safeguards training. This paper describes the process of evaluation that INSEP is developing. It looks at the expected usefulness of the metrics for conducting self-assessments and joint assessments and enabling partners to identify training needs. The paper begins with a description of various performance requirements that define what must be done at the state and facility level to implement effective and efficient international safeguards. Next, technical performance measures are discussed, that define how well a state and its facilities are fulfilling these requirements. Then a functional analysis is conducted to align the technical requirements with competencies and determine who should carry out the various activities necessary to fulfill the performance requirements. Finally, the paper concludes with a discussion about SEP's approach in applying the metrics to its outreach activities intended to

Stevens, Rebecca S [Los Alamos National Laboratory; Sunshine, Alexander [NNSA; Matthews, Caroline [PNNL; Frazer, Sarah [PNNL; Matthews, Carrie [NON LANL

2010-01-01T23:59:59.000Z

10

Neutron Resonance Transmission Analysis (NRTA): A Nondestructive Assay Technique for the Next Generation Safeguards Initiative’s Plutonium Assay Challenge  

SciTech Connect

This is an end-of-year report for a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The first-year goals for this project were modest and included: 1) developing a zero-order MCNP model for the NRTA technique, simulating data results presented in the literature, 2) completing a preliminary set of studies investigating important design and performance characteristics for the NRTA measurement technique, and 3) documentation of this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes a nine month period of work.

J. W. Sterbentz; D. L. Chichester

2010-12-01T23:59:59.000Z

11

The Next Generation Safeguards Initiative s High-Purity Uranium-233 Preservation Effort  

Science Conference Proceedings (OSTI)

High-purity 233U serves as a crucial reference material for accurately quantifying and characterizing uranium. The most accurate analytical results which can be obtained only with high-purity 233U certified reference material (CRM) are required when used to confirm compliance with international safeguards obligations and international nonproliferation agreements. The U.S. supply of 233U CRM is almost depleted, and existing domestic stocks of this synthetic isotope are scheduled to be down-blended for disposition with depleted uranium beginning in 2015. Down blending batches of high-purity 233U will permanently eliminate the value of this material as a CRM. Furthermore, no replacement 233U stocks are expected to be produced in the future due to a lack of operating production capability and the high cost of replacing such capability. Therefore, preserving select batches of high-purity 233U is of great value and will assist in retaining current analytical capabilities for uranium-bearing samples. Any organization placing a priority on accurate results of uranium analyses, or on the confirmation of trace uranium in environmental samples, has a vested interest in preserving this material. This paper describes the need for high-purity 233U, the consequences organizations and agencies face if this material is not preserved, and the progress and future plans for preserving select batches of the purest 233U materials from disposition. This work is supported by the Next Generation Safeguards Initiative, Office of Nonproliferation and International Security, National Nuclear Security Administration.

Krichinsky, Alan M [ORNL; Bostick, Debra A [ORNL; Giaquinto, Joseph [ORNL; Bayne, Charles [Hazelwood Services and Manufacturing; Goldberg, Dr. Steven A. [DOE SC - Chicago Office; Humphrey, Dr. Marc [U.S. Department of Energy, NNSA; Hutcheon, Dr. Ian D. [Lawrence Livermore National Laboratory (LLNL); Sobolev, Taissa [U.S. Department of Energy, NNSA

2012-01-01T23:59:59.000Z

12

Next Generation Safeguards Initiative: Overview and Policy Context of UF6 Cylinder Tracking Program  

Science Conference Proceedings (OSTI)

Thousands of cylinders containing uranium hexafluoride (UF{sub 6}) move around the world from conversion plants to enrichment plants to fuel fabrication plants, and their contents could be very useful to a country intent on diverting uranium for clandestine use. Each of these large cylinders can contain close to a significant quantity of natural uranium (48Y cylinder) or low-enriched uranium (LEU) (30B cylinder) defined as 75 kg {sup 235}U which can be further clandestinely enriched to produce 1.5 to 2 significant quantities of high enriched uranium (HEU) within weeks or months depending on the scale of the clandestine facility. The National Nuclear Security Administration (NNSA) Next Generation Safeguards Initiative (NGSI) kicked off a 5-year plan in April 2011 to investigate the concept of a unique identification system for UF{sub 6} cylinders and potentially to develop a cylinder tracking system that could be used by facility operators and the International Atomic Energy Agency (IAEA). The goal is to design an integrated solution beneficial to both industry and inspectorates that would improve cylinder operations at the facilities and provide enhanced capabilities to deter and detect both diversion of low-enriched uranium and undeclared enriched uranium production. The 5-year plan consists of six separate incremental tasks: (1) define the problem and establish the requirements for a unique identification (UID) and monitoring system; (2) develop a concept of operations for the identification and monitoring system; (3) determine cylinder monitoring devices and technology; (4) develop a registry database to support proof-of-concept demonstration; (5) integrate that system for the demonstration; and (6) demonstrate proof-of-concept. Throughout NNSA's performance of the tasks outlined in this program, the multi-laboratory team emphasizes that extensive engagement with industry stakeholders, regulatory authorities and inspectorates is essential to its success.

Boyer, Brian D [Los Alamos National Laboratory; Whitaker, J. Michael [ORNL; White-Horton, Jessica L. [ORNL; Durbin, Karyn R. [NNSA

2012-07-12T23:59:59.000Z

13

Next Generation Safeguards Initiative: Analysis of Probability of Detection of Plausible Diversion Scenarios at Gas Centrifuge Enrichment Plants Using Advanced Safeguards  

Science Conference Proceedings (OSTI)

Over the last decade, efforts by the safeguards community, including inspectorates, governments, operators and owners of centrifuge facilities, have given rise to new possibilities for safeguards approaches in enrichment plants. Many of these efforts have involved development of new instrumentation to measure uranium mass and uranium-235 enrichment and inspection schemes using unannounced and random site inspections. We have chosen select diversion scenarios and put together a reasonable system of safeguards equipment and safeguards approaches and analyzed the effectiveness and efficiency of the proposed safeguards approach by predicting the probability of detection of diversion in the chosen safeguards approaches. We analyzed the effect of redundancy in instrumentation, cross verification of operator instrumentation by inspector instrumentation, and the effects of failures or anomalous readings on verification data. Armed with these esults we were able to quantify the technical cost benefit of the addition of certain instrument suites and show the promise of these new systems.

Hase, Kevin R. [Los Alamos National Laboratory; Hawkins Erpenbeck, Heather [Los Alamos National Laboratory; Boyer, Brian D. [Los Alamos National Laboratory

2012-07-10T23:59:59.000Z

14

THE NEXT GENERATION SAFEGUARDS PROFESSIONAL NETWORK: PROGRESS AND NEXT STEPS  

SciTech Connect

President Obama has repeatedly stated that the United States must ensure that the international safeguards regime, as embodied by the International Atomic Energy Agency (IAEA), has 'the authority, information, people, and technology it needs to do its job.' The U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA) works to implement the President's vision through the Next Generation Safeguards Initiative (NGSI), a program to revitalize the U.S. DOE national laboratories safeguards technology and human capital base so that the United States can more effectively support the IAEA and ensure that it meets current and emerging challenges to the international safeguards system. In 2009, in response to the human capital development goals of NGSI, young safeguards professionals within the Global Nuclear Security Technology Division at Oak Ridge National Laboratory launched the Next Generation Safeguards Professional Network (NGSPN). The purpose of this initiative is to establish working relationships and to foster collaboration and communication among the next generation of safeguards leaders. The NGSPN is an organization for, and of, young professionals pursuing careers in nuclear safeguards and nonproliferation - as well as mid-career professionals new to the field - whether working within the U.S. DOE national laboratory complex, U.S. government agencies, academia, or industry or at the IAEA. The NGSPN is actively supported by the NNSA, boasts more than 70 members, maintains a website and newsletter, and has held two national meetings as well as an NGSPN session and panel at the July 2010 Institute of Nuclear Material Management Annual Meeting. This paper discusses the network; its significance, goals and objectives; developments and progress to date; and future plans.

Zhernosek, Alena V [ORNL; Lynch, Patrick D [ORNL; Scholz, Melissa A [ORNL

2011-01-01T23:59:59.000Z

15

Third International Meeting on Next Generation Safeguards:Safeguards-by-Design at Enrichment Facilities  

SciTech Connect

The Third International Meeting on Next Generation Safeguards (NGS3) was hosted by the U.S. Department of Energy (DOE)/National Nuclear Security Administration's (NNSA) Office of Nonproliferation and International Security (NIS) in Washington, D.C. on 14-15 December 2010; this meeting focused on the Safeguards-by-Design (SBD) concept. There were approximately 100 participants from 13 countries, comprised of safeguards policy and technical experts from government and industry. Representatives also were present from the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), the European Atomic Energy Agency (Euratom), and the International Atomic Energy Agency (IAEA). The primary objective of this meeting was to exchange views and provide recommendations on implementation of the SBD concept for four specific nuclear fuel cycle facility types: gas centrifuge enrichment plants (GCEPs), GEN III and GEN IV reactors, aqueous reprocessing plants, and mixed oxide fuel fabrication facilities. The general and facility-specific SBD documents generated from the four working groups, which were circulated for comment among working group participants, are intended to provide a substantive contribution to the IAEA's efforts to publish SBD guidance for these specific types of nuclear facilities in the near future. The IAEA has described the SBD concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' As part of the Next Generation Safeguards Initiative (NGSI), the DOE is working to establish SBD as a global norm through DOE laboratory studies, international workshops, engagement with industry and the IAEA, and setting an example through its use in new nuclear facilities in the United States. This paper describes the discussion topics and final recommendations of the Enrichment Facilities Working Group. The working group participants were tasked with providing recommendations for facility operators and designers, while promoting the IAEA's objectives of: (1) avoiding costly and time-consuming redesign work or retrofits of new nuclear facilities and (2) providing for more effective and efficient implementation of international safeguards.

Long, Jon D. [Y-12 National Security Complex; McGinnis, Brent R [ORNL; Morgan, James B [ORNL; Whitaker, Michael [ORNL; Lockwood, Mr. Dunbar [U.S. Department of Energy, NNSA; Shipwash, Jacqueline L [ORNL

2011-01-01T23:59:59.000Z

16

Nuclear Safeguards and Security Challenge:  

National Nuclear Security Administration (NNSA)

Nuclear Safeguards and Security Nuclear Safeguards and Security Challenge: The international safeguards and security system is being challenged by evolving proliferation and terrorism threats, expanding International Atomic Energy Agency (IAEA) responsibilities, a retiring safeguards workforce, and the need for better technologies to detect and deter proliferation, theft, and sabotage. Response: Revitalize, strengthen, and sustain U.S. and international safeguards and security capabilities through the Next Generation Safeguards Initiative (NGSI) and International Nuclear Security programs that: * Support the development of safeguards and security policies, concepts and approaches * Develop human capital through training and education * Develop and implement new safeguards systems,

17

NNSA Launches Next Generation Safeguards Initiative | National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home >...

18

NNSA Launches Next Generation Safeguards Initiative | National...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

19

NNSA Next Generation Safeguards Initiative | National Nuclear...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

20

Next Generation Safeguards Initiative Inaugural Conference |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the International Atomic Energy Agency and the signing of the Nuclear Non-Proliferation Treaty produced a resilient global framework for nuclear cooperation and...

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Initial Evaluation of a New Electromechanical Cooler for Safeguards Applications  

SciTech Connect

The use of liquid nitrogen (LN{sub 2}) constitutes the current state of the art in cryogenic cooling for high-purity germanium (HPGe) detectors, which are widely used for {gamma}-ray and characteristic X-ray spectroscopy because of their excellent energy discrimination. Use of LN{sub 2} requires a liquid nitrogen supply, cumbersome storage tanks and plumbing, and the frequent attention of personnel to be sure that nitrogen levels are sufficient to maintain the detectors at a sufficiently low operating temperature. Safety hazards also are associated with the use of LN{sub 2}, both because of the potential for severe frostbite on exposure to skin and because it displaces ambient oxygen when it evaporates in closed spaces. Existing electromechanical coolers have, until now, been more expensive to procure and maintain than LN{sub 2} systems. Performance and reliability have also been serious issues because of microphonic degradation of photon energy peak resolution and cooler failures due to compressor oil becoming entrained in the refrigerant. This report describes the results of tests of a new HPGe detector cooling technology, the PerkinElmer ORTEC{reg_sign} Products X-Cooler{trademark} that, according to the manufacturer, significantly reduces the lifetime cost of the cooling system without degradation of the output signal. The manufacturer claims to have overcome cost, performance and reliability problems of older-generation electromechanical coolers, but the product has no significant history of use, and this project is the first independent evaluation of its performance for Total cost savings for the DOE and other agencies that use HPGe systems extensively for safeguards monitoring is expected to be quite significant if the new electromechanical cooler technology is shown to be reliable and if performance characteristics indicate its usefulness for this application. The technology also promises to make HPGe monitoring, characterization and detection available for unattended or covert operation and in remote or inaccessible locations where the unavailability of LN{sub 2} and signal degradation from existing mechanical coolers prevent its use at the present time.

Coleman, RL

2002-10-21T23:59:59.000Z

22

PROCESS MONITORING FOR SAFEGUARDS VIA EVENT GENERATION, INTEGRATION, AND INTERPRETATION  

Science Conference Proceedings (OSTI)

There is a recognized safeguards benefit from using process monitoring (PM) on nuclear facilities to complement nuclear materials accountancy. We introduce a model-based approach for PM in which the assessment regarding the state of the monitored system is conducted at a system-centric level. The proposed architecture integrates both time-driven and event-driven data integration and analysis for decision-making. While the time-driven layers of the proposed architecture encompass more traditional PM methods based on time series data and analysis, the event-driven layers encompass operation monitoring methods based on discrete event data integration and analysis. By integrating process- and operation-related information and methodologies within an unified modeling and monitoring framework that includes not only current but also past plant behaviors, the task of anomaly detection is greatly improved because this decision-making approach can benefit from not only known time-series relationships among measured signals but also from known event sequence relationships among generated events. Building from the proposed system-centric PM architecture, we briefly introduce methods that can be used to implement its different components. The application of the proposed approach is then demonstrated via simulation experiments.

Humberto E. Garcia; Wen-Chiao Lin; Tae-Sic Yoo

2010-07-01T23:59:59.000Z

23

Processing large sensor data sets for safeguards : the knowledge generation system.  

SciTech Connect

Modern nuclear facilities, such as reprocessing plants, present inspectors with significant challenges due in part to the sheer amount of equipment that must be safeguarded. The Sandia-developed and patented Knowledge Generation system was designed to automatically analyze large amounts of safeguards data to identify anomalous events of interest by comparing sensor readings with those expected from a process of interest and operator declarations. This paper describes a demonstration of the Knowledge Generation system using simulated accountability tank sensor data to represent part of a reprocessing plant. The demonstration indicated that Knowledge Generation has the potential to address several problems critical to the future of safeguards. It could be extended to facilitate remote inspections and trigger random inspections. Knowledge Generation could analyze data to establish trust hierarchies, to facilitate safeguards use of operator-owned sensors.

Thomas, Maikel A.; Smartt, Heidi Anne; Matthews, Robert F.

2012-04-01T23:59:59.000Z

24

Developing the Next Generation of International Safeguards and Nonproliferation Experts: Highlights of Select Activities at the National Laboratories  

Science Conference Proceedings (OSTI)

With many safeguards experts in the United States at or near retirement age, and with the growing and evolving mission of international safeguards, attracting and educating a new generation of safeguards experts is an important element of maintaining a credible and capable international safeguards system. The United States National Laboratories, with their rich experience in addressing the technical and policy challenges of international safeguards, are an important resource for attracting, educating, and training future safeguards experts. This presentation highlights some of the safeguards education and professional development activities underway at the National Laboratories. These include university outreach, summer courses, internships, mid-career transition, knowledge retention, and other projects. The presentation concludes with thoughts on the challenge of interdisciplinary education and the recruitment of individuals with the right balance of skills and backgrounds are recruited to meet tomorrow's needs.

Reed, J; Mathews, C; Kirk, B; Lynch, P; Doyle, J; Meek, E; Pepper, S; Metcalf, R

2010-03-31T23:59:59.000Z

25

Nuclear Safeguards Infrastructure Required for the Next Generation Nuclear Plant (NGNP)  

SciTech Connect

The Next Generation Nuclear Plant (NGNP) is a Very High Temperature Gas-Cooled Reactor (VHTR) to be constructed near Idaho Falls, Idaho The NGNP is intrinsically safer than current reactors and is planned for startup ca. 2021 Safety is more prominent in the minds of the Public and Governing Officials following the nuclear reactor meltdown accidents in Fukushima, Japan The authors propose that the NGNP should be designed with International (IAEA) Safeguards in mind to support export to Non-Nuclear-Weapons States There are two variants of the NGNP design; one using integral Prismatic-shaped fuel assemblies in a fixed core; and one using recirculating fuel balls (or Pebbles) The following presents the infrastructure required to safeguard the NGNP This infrastructure is required to safeguard the Prismatic and Pebble-fueled NGNP (and other HTGR/VHTR) The infrastructure is based on current Safeguards Requirements and Practices implemented by the International Atomic Energy Agency (IAEA) for similar reactors The authors of this presentation have worked for decades in the area of International Nuclear Safeguards and are recognized experts in this field Presentation for INMM conference in July 2012.

Dr. Mark Schanfein; Philip Casey Durst

2012-07-01T23:59:59.000Z

26

Integrated safeguards testing laboratories in support of the advanced fuel cycle initiative  

SciTech Connect

A key enabler for advanced fuel cycle safeguards research and technology development for programs such as the Advanced Fuel Cycle Initiative (AFCI) is access to facilities and nuclear materials. This access is necessary in many cases in order to ensure that advanced safeguards techniques and technologies meet the measurement needs for which they were designed. One such crucial facility is a hot cell based laboratory which would allow developers from universities, national laboratories, and commercial companies to perform iterative research and development of advanced safeguards instrumentation under realistic operating conditions but not be subject to production schedule limitations. The need for such a facility arises from the requirement to accurately measure minor actinide and/or fission product bearing nuclear materials that cannot be adequately shielded in glove boxes. With the contraction of the DOE nuclear complex following the end of the cold war, many suitable facilities at DOE sites are increasingly costly to operate and are being evaluated for closure. A hot cell based laboratory that allowed developers to install and remove instrumentation from the hot cell would allow for both risk mitigation and performance optimization of the instrumentation prior to fielding equipment in facilities where maintenance and repair of the instrumentation is difficult or impossible. These benefits are accomplished by providing developers the opportunity to iterate between testing the performance of the instrumentation by measuring realistic types and amounts of nuclear material, and adjusting and refining the instrumentation based on the results of these measurements. In this paper, we review the requirements for such a facility using the Wing 9 hot cells in the Los Alamos National Laboratory's Chemistry and Metallurgy Research facility as a model for such a facility and describe recent use of these hot cells in support of AFCI.

Santi, Peter A [Los Alamos National Laboratory; Demuth, Scott F [Los Alamos National Laboratory; Klasky, Kristen L [Los Alamos National Laboratory; Lee, Haeok [Los Alamos National Laboratory; Miller, Michael C [Los Alamos National Laboratory; Sprinkle, James K [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Williams, Bradley [DOE, NE

2009-01-01T23:59:59.000Z

27

NNSA Kicks Off Next Generation Safeguards Initiative | National...  

National Nuclear Security Administration (NNSA)

Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure...

28

BN-350 unattended safeguards system current status and initial fuel movement data  

Science Conference Proceedings (OSTI)

The Unattended and Remote Monitoring (UNARM) system at the BN-350 fast breeder reactor facility in Aktau, Kazakhstan continues to provide safeguards monitoring data as the spent fuel disposition project transitions from wet fuel storage to dry storage casks. Qualitative data from the initial cask loading procedures has been released by the International Atomic Energy Agency (IAEA) and is presented here for the first time. The BN-350 fast breeder reactor in Aktau, Kazakhstan, operated as a plutonium-producing facility from 1973 W1til 1999. Kazakhstan signed the Nonproliferation Treaty (NPT) in February 1994, and shortly afterwards the IAEA began safeguarding the reactor facility and its nuclear material. Slnce the cessation of reactor operations ten years ago, the chief proliferation concern has been the spent fuel assemblies stored in the pond on-site. By 2002, all fuel assemblies in wet storage had been repackaged into proliferation-resistant canisters. From the beginning, the IAEA's safeguards campaign at the BN-350 included a constant unattended sensor presence in the form of UNARM which monitors nuclear material activities at the facility in the absence of inspector presence. The UNARM equipment at the BN-350 was designed to be modular and extensible, allowing the system to adapt as the safeguards requirements change. This has been particularly important at the BN-350 due to the prolonged wet storage phase of the project. The primary function of the BN-350 UNARM system is to provide the IAEA with an independent, radiation-centric Containment and Surveillance (C&S) layer in addition to the standard seals and video systems. The UNARM system has provided continuous Continuity of Knowledge (COK) data for the BN-350's nuclear material storage areas in order to ensure the validity of the attended measurements during the lifetime of the project. The first of these attended measurements was characterization of the spent fuel assemblies. This characterization utilized the Spent Fuel Coincidence Counter (SFCC) instrument [ref] to measure neutron multiplicity and calculate Pu mass. These calculated masses were then compared to modeling simulation of the assemblies as well as declarations from the facility in order to baseline the amount of material under IAEA safeguards [ref]. Once the baseline was established, bundles of four or six assemblies were repackaged into proliferati n-resistant canisters. This provided an additional physical barrier to material diversion and provided further protection by choosing assemblies for each canister so that the overall dose rate met self-protection requirements. Each of the canisters were then characterized using a similar technique to the SFCC, but with the Spent Fuel Attribute Monitor (SPAM) instnunent (ref). The data from these measurements were then used to calculate an attribute proportional to the total Pu mass in each canister. This attribute was then compared to the know Pu mass of each assembly in order to verify the accuracy of SPAM. In the event that COK is lost, the SPAM detector remains positioned to reverify Pu content of individual canisters without requiring the canister to be opened.

Williams, Richard Brady [Los Alamos National Laboratory; Browne, Michael C [Los Alamos National Laboratory; Parker, Robert F [Los Alamos National Laboratory; Ingegneri, Maurizio [IAEA

2009-01-01T23:59:59.000Z

29

Active Interrogation Using Electronic Neutron Generators for Nuclear Safeguards Applications  

SciTech Connect

Active interrogation, a measurement technique which uses a radiation source to probe materials and generate unique signatures useful for characterizing those materials, is a powerful tool for assaying special nuclear material. The most commonly used technique for performing active interrogation is to use an electronic neutron generator as the probe radiation source. Exploiting the unique operating characteristics of these devices, including their monoenergetic neutron emissions and their ability to operate in pulsed modes, presents a number of options for performing prompt and delayed signature analyses using both photon and neutron sensors. A review of literature in this area shows multiple applications of the active neutron interrogation technique for performing nuclear nonproliferation measurements. Some examples include measuring the plutonium content of spent fuel, assaying plutonium residue in spent fuel hull claddings, assaying plutonium in aqueous fuel reprocessing process streams, and assaying nuclear fuel reprocessing facility waste streams to detect and quantify fissile material. This paper discusses the historical use of this technique and examines its context within the scope and challenges of next-generation nuclear fuel cycles and advanced concept nuclear fuel cycle facilities.

David L. Chichester; Edward H. Seabury

2008-08-01T23:59:59.000Z

30

Passive and Active Fast-Neutron Imaging in Support of Advanced Fuel Cycle Initiative Safeguards Campaign  

Science Conference Proceedings (OSTI)

Results from safeguards-related passive and active coded-aperture fast-neutron imaging measurements of plutonium and highly enriched uranium (HEU) material configurations performed at Idaho National Laboratory s Zero Power Physics Reactor facility are presented. The imaging measurements indicate that it is feasible to use fast neutron imaging in a variety of safeguards-related tasks, such as monitoring storage, evaluating holdup deposits in situ, or identifying individual leached hulls still containing fuel. The present work also presents the first demonstration of imaging of differential die away fast neutrons.

Blackston, Matthew A [ORNL; Hausladen, Paul [ORNL

2010-04-01T23:59:59.000Z

31

Safeguards Culture  

SciTech Connect

The concepts of nuclear safety and security culture are well established; however, a common understanding of safeguards culture is not internationally recognized. Supported by the National Nuclear Security Administration, the authors prepared this report, an analysis of the concept of safeguards culture, and gauged its value to the safeguards community. The authors explored distinctions between safeguards culture, safeguards compliance, and safeguards performance, and evaluated synergies and differences between safeguards culture and safety/security culture. The report concludes with suggested next steps.

Frazar, Sarah L.; Mladineo, Stephen V.

2012-07-01T23:59:59.000Z

32

The Coming Nuclear Renaissance for Next Generation Safeguards Specialists--Maximizing Potential and Minimizing the Risks  

SciTech Connect

This document is intended to provide an overview of the workshop entitled 'The Coming Nuclear Renaissance for the Next Generation Safeguards Experts-Maximizing Benefits While Minimizing Proliferation Risks', conducted at Oak Ridge National Laboratory (ORNL) in partnership with the Y-12 National Security Complex (Y-12) and the Savannah River National Laboratory (SRNL). This document presents workshop objectives; lists the numerous participant universities and individuals, the nuclear nonproliferation lecture topics covered, and the facilities tours taken as part of the workshop; and discusses the university partnership sessions and proposed areas for collaboration between the universities and ORNL for 2009. Appendix A contains the agenda for the workshop; Appendix B lists the workshop attendees and presenters with contact information; Appendix C contains graphics of the evaluation form results and survey areas; and Appendix D summarizes the responses to the workshop evaluation form. The workshop was an opportunity for ORNL, Y-12, and SRNL staff with more than 30 years combined experience in nuclear nonproliferation to provide a comprehensive overview of their expertise for the university professors and their students. The overall goal of the workshop was to emphasize nonproliferation aspects of the nuclear fuel cycle and to identify specific areas where the universities and experts from operations and national laboratories could collaborate.

Eipeldauer, Mary D [ORNL

2009-01-01T23:59:59.000Z

33

Achieving the Benefits of Safeguards by Design  

SciTech Connect

The overarching driver for developing a formalized process to achieve safeguards by design is to support the global growth of nuclear power while reducing ‘nuclear security’ risks. This paper discusses an institutional approach to the design process for a nuclear facility, for designing proliferation resistance, international safeguards and U.S. national safeguards and security into new nuclear facilities. In the United States, the need exists to develop a simple, concise, formalized, and integrated approach for incorporating international safeguards and other non-proliferation considerations into the facility design process. An effective and efficient design process is one which clearly defines the functional requirements at the beginning of the project and provides for the execution of the project to achieve a reasonable balance among competing objectives in a cost effective manner. Safeguards by Design is defined as “the integration of international and national safeguards, physical security and non-proliferation features as full and equal partners in the design process of a nuclear energy system or facility,” with the objective to achieve facilities that are intrinsically more robust while being less expensive to safeguard and protect. This Safeguards by Design process has been developed such that it: • Provides improved safeguards, security, and stronger proliferation barriers, while reducing the life cycle costs to the operator and regulatory agencies, • Can be translated to any international context as a model for nuclear facility design, • Fosters a culture change to ensure the treatment of ‘nuclear security’ considerations as “full and equal” partners in the design process, • Provides a useful tool for the project manager responsible for the design, construction, and start-up of nuclear facilities, and • Addresses the key integration activities necessary to efficiently incorporate International Atomic Energy Agency safeguards into the design of nuclear facilities. This paper describes the work that has been completed in the development of a Safeguards by Design process for a project, illustrated by flow diagrams based upon the project phases described in U.S. Department of Energy Order 413.3A, Program and Project Management for the Acquisition of Capital Assets. The institutionalization of the Safeguards by Design process directly supports the goals of the Next Generation Safeguards Initiative and also aligns with goals and objectives of the International Atomic Energy Agency. Other benefits from institutionalizing this Safeguards by Design process are discussed within this paper.

Trond Bjornard; Robert Bean; David Hebditch; Jim Morgan; Bruce Meppen; Scott DeMuth; Michael Ehinger; John Hockert

2008-07-01T23:59:59.000Z

34

Safeguards-By-Design: Guidance and Tools for Stakeholders  

SciTech Connect

Effective implementation of the Safeguards-by-Design (SBD) approach can help meet the challenges of global nuclear energy growth, by designing facilities that have improved safeguardability and reduced safeguards-related life cycle costs. The ultimate goal of SBD is to implement effective and efficient safeguards that reduce the burden to both the facility operator and the International Atomic Energy Agency. Since 2008, the National Nuclear Security Administration's Next Generation Safeguards Initiative's Safeguards By Design Project has initiated multiple studies and workshops with industry and regulatory stakeholders, including the IAEA, to develop relevant documents to support the implementation of SBD. These 'Good Practices Guides' describe facility and process design features that will facilitate implementation of effective nuclear material safeguards starting in the earliest phases of design through to final design. These guides, which are in their final editorial stages, start at a high level and then narrow down to specific nuclear fuel cycle facilities such as Light Water Reactors, Generation III/IV Reactors, High Temperature Gas Cooled Reactors, and Gas Centrifuge Enrichment Plants. Most recently, NGSI has begun development of a facility safeguardability assessment toolkit to assist the designer. This paper will review the current status of these efforts, provide some examples of these documents, and show some standard IAEA Unattended Instrumentation that is permanently installed in nuclear facilities for monitoring.

Mark Schanfein; Shirley Johnson

2012-02-01T23:59:59.000Z

35

The safeguards options study  

Science Conference Proceedings (OSTI)

The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq`s obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state.

Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D. [Los Alamos National Lab., NM (United States); Olsen, A.P.; Roche, C.T.; Rudolph, R.R. [Argonne National Lab., IL (United States); Bieber, A.M.; Lemley, J. [Brookhaven National Lab., Upton, NY (United States); Filby, E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

1995-04-01T23:59:59.000Z

36

Nuclear Safeguards Infrastructure Development and Integration with Safety and Security  

SciTech Connect

Faced with increasing global energy demands, many developing countries are considering building their first nuclear power plant. As a country embarks upon or expands its nuclear power program, it should consider how it will address the 19 issues laid out in the International Atomic Energy Agency (IAEA) document Milestones in Development of a National Infrastructure for Nuclear Power. One of those issues specifically addresses the international nonproliferation treaties and commitments and the implementation of safeguards to prevent diversion of nuclear material from peaceful purposes to nuclear weapons. Given the many legislative, economic, financial, environmental, operational, and other considerations preoccupying their planners, it is often difficult for countries to focus on developing the core strengths needed for effective safeguards implementation. Typically, these countries either have no nuclear experience or it is limited to the operation of research reactors used for radioisotope development and scientific research. As a result, their capacity to apply safeguards and manage fuel operations for a nuclear power program is limited. This paper argues that to address the safeguards issue effectively, a holistic approach must be taken to integrate safeguards with the other IAEA issues including safety and security - sometimes referred to as the '3S' concept. Taking a holistic approach means that a country must consider safeguards within the context of its entire nuclear power program, including operations best practices, safety, and security as well as integration with its larger nonproliferation commitments. The Department of Energy/National Nuclear Security Administration's International Nuclear Safeguards and Engagement Program (INSEP) has been involved in bilateral technical cooperation programs for over 20 years to promote nonproliferation and the peaceful uses of nuclear energy. INSEP is currently spearheading efforts to promote the development of nuclear safeguards infrastructure in countries with credible plans for nuclear energy as part of the Next Generation Safeguards Initiative. Developing an adequate safeguards infrastructure is critical to becoming a responsible 'owner' of nuclear power. The 3S concept is the optimal path forward to achieving this goal.

Kovacic, Donald N [ORNL; Raffo-Caiado, Ana Claudia [ORNL; McClelland-Kerr, John [U.S. Department of Energy; Van sickle, Matthew [U.S. National Nuclear Security Administration; Bissani, Mo [Lawrence Livermore National Laboratory (LLNL)

2009-01-01T23:59:59.000Z

37

SunShot Initiative: Baseload Concentrating Solar Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Concentrating Solar Power Generation to someone by E-mail Share SunShot Initiative: Baseload Concentrating Solar Power Generation on Facebook Tweet about SunShot Initiative: Baseload Concentrating Solar Power Generation on Twitter Bookmark SunShot Initiative: Baseload Concentrating Solar Power Generation on Google Bookmark SunShot Initiative: Baseload Concentrating Solar Power Generation on Delicious Rank SunShot Initiative: Baseload Concentrating Solar Power Generation on Digg Find More places to share SunShot Initiative: Baseload Concentrating Solar Power Generation on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative

38

Safeguards-by-Design: Early Integration of Physical Protection and Safeguardability into Design of Nuclear Facilities  

Science Conference Proceedings (OSTI)

The application of a Safeguards-by-Design (SBD) process for new nuclear facilities has the potential to minimize proliferation and security risks as the use of nuclear energy expands worldwide. This paper defines a generic SBD process and its incorporation from early design phases into existing design / construction processes and develops a framework that can guide its institutionalization. SBD could be a basis for a new international norm and standard process for nuclear facility design. This work is part of the U.S. DOE’s Next Generation Safeguards Initiative (NGSI), and is jointly sponsored by the Offices of Non-proliferation and Nuclear Energy.

T. Bjornard; R. Bean; S. DeMuth; P. Durst; M. Ehinger; M. Golay; D. Hebditch; J. Hockert; J. Morgan

2009-09-01T23:59:59.000Z

39

Improving the Safeguardability of Nuclear Facilities  

SciTech Connect

The application of a Safeguards-by-Design (SBD) process for new nuclear facilities has the potential to reduce security risks and proliferation hazards while improving the synergy of major design features and raising operational efficiency, in a world where significant expansion of nuclear energy use may occur. Correspondingly, the U.S. DOE’s Next Generation Safeguards Initiative (NGSI) includes objectives to contribute to international efforts to develop SBD, and to apply SBD in the development of new U.S. nuclear infrastructure. Here, SBD is defined as a structured approach to ensure the timely, efficient and cost effective integration of international safeguards and other nonproliferation barriers with national material control and accountability, physical protection, and safety objectives into the overall design process for a nuclear facility, from initial planning through design, construction and operation. The SBD process, in its simplest form, may be applied usefully today within most national regulatory environments. Development of a mature approach to implementing SBD requires work in the areas of requirements definition, design processes, technology and methodology, and institutionalization. The U.S. efforts described in this paper are supportive of SBD work for international safeguards that has recently been initiated by the IAEA with the participation of many stakeholders including member States, the IAEA, nuclear technology suppliers, nuclear utilities, and the broader international nonproliferation community.

T. Bjornard; R. Bari; D. Hebditch; P. Peterson; M. Schanfein

2009-07-01T23:59:59.000Z

40

Measuring Safeguards Culture  

Science Conference Proceedings (OSTI)

As the International Atomic Energy Agency (IAEA) implements a State Level Approach to its safeguards verification responsibilities, a number of countries are beginning new nuclear power programs and building new nuclear fuel cycle faculties. The State Level approach is holistic and investigatory in nature, creating a need for transparent, non-discriminatory judgments about a state's nonproliferation posture. In support of this need, the authors previously explored the value of defining and measuring a state's safeguards culture. We argued that a clear definition of safeguards culture and an accompanying set of metrics could be applied to provide an objective evaluation and demonstration of a country's nonproliferation posture. As part of this research, we outlined four high-level metrics that could be used to evaluate a state's nuclear posture. We identified general data points. This paper elaborates on those metrics, further refining the data points to generate a measurable scale of safeguards cultures. We believe that this work could advance the IAEA's goals of implementing a safeguards system that is fully information driven, while strengthening confidence in its safeguards conclusions.

Frazar, Sarah L.; Mladineo, Stephen V.

2011-07-19T23:59:59.000Z

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Safeguards and security by design (SSBD) for the domestic threat - theft and sabotage  

SciTech Connect

Safeguards by Design (SBD) is receiving significant interest with respect to international safeguards objectives. However, less attention has been focused on the equally important topic of domestic Safeguards and Security by Design (SSBD), which addresses requirements such as those of the Nuclear Regulatory Commission (NRC) in the United States. While international safeguards are concerned with detecting State diversion of nuclear material from peaceful to nuclear explosives purposes, domestic Material Protection, Control and Accounting measures (MPC&A) are focused on non-State theft and sabotage. The International Atomic Energy Agency (IAEA) has described the Safeguards by Design (SBD) concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' This same concept is equally applicable to SSBD for domestic requirements. The United States Department of Energy (DOE) has initiated a project through its Office of Nuclear Energy (NE) and more specifically its Fuel Cycle Research and Development (FCRD) program, to develop a domestic SSBD discipline and methodology in parallel with similar efforts sponsored by the DOE Next Generation Safeguards Initiative (NGSI) and the IAEA for international safeguards. This activity includes the participation of industry (through DOE-sponsored contracts) and DOE National Laboratories. This paper will identify the key domestic safeguards and security requirements (i.e. MC&A and physical protection) and explain how and why Safeguards and Security by Design (SSBD) is important and beneficial for the design of future US nuclear energy systems.

Demuth, Scott F [Los Alamos National Laboratory; Mullen, Mark [Los Alamos National Laboratory

2011-10-05T23:59:59.000Z

42

Safeguards and security by design (SSBD) for the domestic threat - theft and sabotage  

SciTech Connect

Safeguards by Design (SBD) is receiving significant interest with respect to international safeguards objectives. However, less attention has been focused on the equally important topic of domestic Safeguards and Security by Design (SSBD), which addresses requirements such as those of the Nuclear Regulatory Commission (NRC) in the United States. While international safeguards are concerned with detecting State diversion of nuclear material from peaceful to nuclear explosives purposes, domestic Material Protection, Control and Accounting measures (MPC&A) are focused on non-State theft and sabotage. The International Atomic Energy Agency (IAEA) has described the Safeguards by Design (SBD) concept as an approach in which 'international safeguards are fully integrated into the design process of a new nuclear facility from the initial planning through design, construction, operation, and decommissioning.' This same concept is equally applicable to SSBD for domestic requirements. The United States Department of Energy (DOE) has initiated a project through its Office of Nuclear Energy (NE) and more specifically its Fuel Cycle Research and Development (FCRD) program, to develop a domestic SSBD discipline and methodology in parallel with similar efforts sponsored by the DOE Next Generation Safeguards Initiative (NGSI) and the IAEA for international safeguards. This activity includes the participation of industry (through DOE-sponsored contracts) and DOE National Laboratories. This paper will identify the key domestic safeguards and security requirements (i.e. MC&A and physical protection) and explain how and why Safeguards and Security by Design (SSBD) is important and beneficial for the design of future US nuclear energy systems.

Demuth, Scott F [Los Alamos National Laboratory; Mullen, Mark [Los Alamos National Laboratory

2011-10-05T23:59:59.000Z

43

Safeguards-by-Design: An Element of 3S Integration  

SciTech Connect

In 2008, the “20/20 Vision for the Future” background report by the IAEA Director General identified the possibility of integrating certain activities related to safeguards, safety, and security. Later in the year, the independent Commission report prepared at the request of the IAEA Director General noted that the Agency’s roles in nuclear safeguards, safety, and security (3S) complement and can mutually reinforce each other. Safeguards-by-design (SBD) is a practical measure that strengthens 3S integration, especially for the stage of nuclear facility design and construction, but also with ramifications for other stages of the facility life-cycle. This paper describes the SBD concept, with examples for diverse regulatory environments, being developed in the U.S under the U.S. Department of Energy (DOE) Next Generation Safeguards Initiative and the Advanced Fuel Cycle Initiative. This is compared with related international SBD work performed in the recent IAEA workshop on “Facility Design and Plant Operation Features that Facilitate the Implementation of IAEA Safeguards”. Potential future directions for further development of SBD and its integration within 3S are identified.

R. S. Bean; T. A. Bjornard; D. J. Hebdich

2009-04-01T23:59:59.000Z

44

Integrating Safeguards and Security with Safety into Design  

Science Conference Proceedings (OSTI)

There is a need to minimize security risks, proliferation hazards, and safety risks in the design of new nuclear facilities in a global environment of nuclear power expansion, while improving the synergy of major design features and raising operational efficiency. In 2008, the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA) launched the Next Generation Safeguards Initiative (NGSI) covering many safeguards areas. One of these, launched by NNSA with support of the DOE Office of Nuclear Energy, was a multi-laboratory project, led by the Idaho National Laboratory (INL), to develop safeguards by design. The proposed Safeguards-by-Design (SBD) process has been developed as a structured approach to ensure the timely, efficient, and cost effective integration of international safeguards and other nonproliferation barriers with national material control and accountability, physical security, and safety objectives into the overall design process for the nuclear facility lifecycle. A graded, iterative process was developed to integrate these areas throughout the project phases. It identified activities, deliverables, interfaces, and hold points covering both domestic regulatory requirements and international safeguards using the DOE regulatory environment as exemplar to provide a framework and guidance for project management and integration of safety with security during design. Further work, reported in this paper, created a generalized SBD process which could also be employed within the licensed nuclear industry and internationally for design of new facilities. Several tools for integrating safeguards, safety, and security into design are discussed here. SBD appears complementary to the EFCOG TROSSI process for security and safety integration created in 2006, which focuses on standardized upgrades to enable existing DOE facilities to meet a more severe design basis threat. A collaborative approach is suggested.

Robert S. Bean; John W. Hockert; David J. Hebditch

2009-05-01T23:59:59.000Z

45

Future challenges and DOE/NNSA-JAEA cooperation for the development of advanced safeguards  

Science Conference Proceedings (OSTI)

The United States Department of Energy/National Nuclear Security Administration (DOE/NNSA) has been cooperating with Japan on nuclear safeguards for over thirty years. DOE/NNSA has collaborated with the Japan Atomic Energy Agency (JAEA) and its predecessors in addressing the need for innovative solutions to nuclear transparency and verification issues in one of the world's most advanced nuclear fuel cycle states. This collaboration includes over ninety activities that have involved nearly every facility in the JAEA complex and many national laboratories in the U.S. complex. The partnership has yielded new technologies and approaches that have benefited international safeguards not only in Japan, but around the world. The International Atomic Energy Agency uses a number of safeguards solutions developed under this collaboration to improve its inspection efforts in Japan and elsewhere. Japanese facilities serve as test beds for emerging safeguards technologies and are setting the trend for new nuclear energy and fuel cycle development worldwide. The collaboration continues to be an essential component of U.S. safeguards outreach and is integral to the DOE/NNSA's Next Generation Safeguards Initiative. In addition to fostering international safeguards development, the cooperation is an opportunity for U.S. scientists to work in facilities that have no analog in the United States, thus providing crucial real-life experience for and aiding development of the next generation of U.S. safeguards specialists. It is also an important element of promoting regional transparency thereby building confidence in the peaceful nature of nuclear programs in the region. The successes engendered by this partnership provide a strong basis for addressing future safeguards challenges, in Japan and elsewhere. This paper summarizes these challenges and the associated cooperative efforts that are either underway or anticipated.

Stevens, Rebecca S [Los Alamos National Laboratory; Mc Clelland - Kerr, John [NNSA-NA-242; Senzaki, Masao [JAEA; Hori, Masato [JAEA

2009-01-01T23:59:59.000Z

46

Evaluation of a Business Case for Safeguards by Design in Nuclear Power Reactors  

Science Conference Proceedings (OSTI)

Safeguards by Design (SbD) is a well-known paradigm for consideration and incorporation of safeguards approaches and associated design features early in the nuclear facility development process. This paradigm has been developed as part of the Next Generation Safeguards Initiative (NGSI), and has been accepted as beneficial in many discussions and papers on NGSI or specific technologies under development within NGSI. The Office of Nuclear Safeguards and Security funded the Pacific Northwest National Laboratory to examine the business case justification of SbD for nuclear power reactors. Ultimately, the implementation of SbD will rely on the designers of nuclear facilities. Therefore, it is important to assess the incentives which will lead designers to adopt SbD as a standard practice for nuclear facility design. This report details the extent to which designers will have compelling economic incentives to adopt SbD.

Wood, Thomas W.; Seward, Amy M.; Lewis, Valerie A.; Gitau, Ernest TN; Zentner, Michael D.

2012-12-01T23:59:59.000Z

47

International Safeguards Technology and Policy Education and Training Pilot Programs  

SciTech Connect

A major focus of the National Nuclear Security Administration-led Next Generation Safeguards Initiative (NGSI) is the development of human capital to meet present and future challenges to the safeguards regime. An effective university-level education in safeguards and related disciplines is an essential element in a layered strategy to rebuild the safeguards human resource capacity. NNSA launched two pilot programs in 2008 to develop university level courses and internships in association with James, Martin Center for Nonproliferation Studies (CNS) at the Monterey Institute of International Studies (MIIS) and Texas A&M University (TAMU). These pilot efforts involved 44 students in total and were closely linked to hands-on internships at Los Alamos National Laboratory (LANL) and Lawrence Livermore National Laboratory (LLNL). The Safeguards and Nuclear Material Management pilot program was a collaboration between TAMU, LANL, and LLNL. The LANL-based coursework was shared with the students undertaking internships at LLNL via video teleconferencing. A weeklong hands-on exercise was also conducted at LANL. A second pilot effort, the International Nuclear Safeguards Policy and Information Analysis pilot program was implemented at MIIS in cooperation with LLNL. Speakers from MIIS, LLNL, and other U.S. national laboratories (LANL, BNL) delivered lectures for the audience of 16 students. The majority of students were senior classmen or new master's degree graduates from MIIS specializing in nonproliferation policy studies. The two pilots programs concluded with an NGSI Summer Student Symposium, held at LLNL, where 20 students participated in LLNL facility tours and poster sessions. The value of bringing together the students from the technical and policy pilots was notable and will factor into the planning for the continued refinement of the two programs in the coming years.

Dreicer, M; Anzelon, G A; Essner, J T; Dougan, A D; Doyle, J; Boyer, B; Hypes, P; Sokava, E; Wehling, F; Martin, J; Charlton, W

2009-06-16T23:59:59.000Z

48

REPORT OF THE WORKSHOP ON NUCLEAR FACILITY DESIGN INFORMATION EXAMINATION AND VERIFICATION FOR SAFEGUARDS  

Science Conference Proceedings (OSTI)

Executive Summary The International Atomic Energy Agency (IAEA) implements nuclear safeguards and verifies countries are compliant with their international nuclear safeguards agreements. One of the key provisions in the safeguards agreement is the requirement that the country provide nuclear facility design and operating information to the IAEA relevant to safeguarding the facility, and at a very early stage. , This provides the opportunity for the IAEA to verify the safeguards-relevant features of the facility and to periodically ensure that those features have not changed. The national authorities (State System of Accounting for and Control of Nuclear Material - SSAC) provide the design information for all facilities within a country to the IAEA. The design information is conveyed using the IAEA’s Design Information Questionnaire (DIQ) and specifies: (1) Identification of the facility’s general character, purpose, capacity, and location; (2) Description of the facility’s layout and nuclear material form, location, and flow; (3) Description of the features relating to nuclear material accounting, containment, and surveillance; and (4) Description of existing and proposed procedures for nuclear material accounting and control, with identification of nuclear material balance areas. The DIQ is updated as required by written addendum. IAEA safeguards inspectors examine and verify this information in design information examination (DIE) and design information verification (DIV) activities to confirm that the facility has been constructed or is being operated as declared by the facility operator and national authorities, and to develop a suitable safeguards approach. Under the Next Generation Safeguards Initiative (NGSI), the National Nuclear Security Administrations (NNSA) Office of Non-Proliferation and International Security identified the need for more effective and efficient verification of design information by the IAEA for improving international safeguards in the future. Consequently, the NNSA Office of International Regimes and Agreements (NA-243) sponsored a team of U.S. Department of Energy National Laboratory nuclear safeguards experts and technologists to conduct a workshop on methods and technologies for improving this activity, under the ASA-100 Advanced Safeguards Approaches Project. The workshop focused on reviewing and discussing the fundamental safeguards needs, and presented technology and/or methods that could potentially address those needs more effectively and efficiently. Conclusions and Recommendations for technology to enhance the performance of DIV inspections are presented by the workshop team.

Richard Metcalf; Robert Bean

2009-10-01T23:59:59.000Z

49

Safeguards Laboratory (SL) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Safeguards Laboratory Safeguards Laboratory May 30, 2013 The Safeguards Laboratory is a Department of Energy user facility equipped with a comprehensive set of field-deployable instrumentation for safeguards system development and personnel training. Mock-ups using industrial equipment and reference nuclear materials simulate real-world conditions for training, testing, and evaluations. The lab's openness and availability to the private sector enable development of new technologies that combat the proliferation of weapons of mass destruction. Applications Training and International Outreach Nondestructive Analysis Measurements Instrument Evaluations Integrated Safeguards Methodologies Measurement Technique Development Specifications Gamma and X-ray detection systems Handheld survey instruments

50

Implementing Safeguards-by-Design  

Science Conference Proceedings (OSTI)

Executive Summary Excerpt Safeguards-by-Design (SBD) is an approach to the design and construction of nuclear facilities whereby safeguards are designed-in from the very beginning. It is a systematic and structured approach for fully integrating international and national safeguards (MC&A), physical security, and other proliferation barriers into the design and construction process for nuclear facilities. SBD is primarily a project management or project coordination challenge, and this report focuses on that aspect of SBD. The present report continues the work begun in 2008 and focuses specifically on the design process, or project management and coordination - the planning, definition, organization, coordination, scheduling and interaction of activities of the safeguards experts and stakeholders as they participate in the design and construction of a nuclear facility. It delineates the steps in a nuclear facility design and construction project, in order to provide the project context within which the safeguards design activities take place, describes the involvement of safeguards experts in the design process, the nature of their analyses, interactions and decisions, as well as describing the documents created and how they are used. Designing and constructing a nuclear facility is an extremely complex undertaking. The stakeholders in an actual project are many – owner, operator, State regulators, nuclear facility primary contractor, subcontractors (e.g. instrument suppliers), architect engineers, project management team, safeguards, safety and security experts, in addition to the IAEA and its team. The purpose of the present report is to provide a common basis for discussions amongst stakeholders to collaboratively develop a SBD approach that will be both practically useful and mutually beneficial. The principal conclusions from the present study are: • In the short term, the successful implementation of SBD is principally a project management problem. • Life-cycle cost analysis can be a useful tool in safeguards design. • An important obstacle to straight forward application of life-cycle cost analysis is that there is no single organization responsible for the entire life-cycle cost of the facility. • The Safeguards Effectiveness Report (SGER) is proposed as a focus for the safeguards design activities, and is intended to be a living document that contains increasing safeguards relevant scope and content as the facility design emerges. Further work is required in a number of areas. The authors note that other studies supported by NGSI are addressing the development of requirements and performance criteria, as well as contributing to the design toolkit through the development of technology, methodology, and safeguards guidelines for designers. With respect to further development of the SBD design process, the authors recommend: • In the short term, conduct a workshop with interested industry representatives, to ensure that their perspectives and needs are factored into further development. • In the short term, provide NGSI SBD project documents to IAEA, and support them in the conduct of an ‘SBD Workshop II.” • In the medium term, continue to support the SBD demonstration work started with the Next Generation Nuclear Plant project. • In the longer term, conduct further studies to examine the integration of SBD into projects with concurrent consideration of physical security and safety.

Trond Bjornard; Robert Bean; Phillip Casey Durst; John Hockert; James Morgan

2010-02-01T23:59:59.000Z

51

Safeguards-by-Design: Guidance for High Temperature Gas Reactors (HTGRs) With Pebble Fuel  

SciTech Connect

The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA) time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on pebble fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEA’s statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an IAEA Design Information Questionnaire (DIQ), prepared by the facility operator, typically with the support of the facility designer. The IAEA will verify design information over the life of the project. This design information is an important IAEA safeguards tool. Since the main interlocutor with the IAEA in each country is the State Regulatory Authority/SSAC (or Regional Regulatory Authority, e.g. EURATOM), the responsibility for conveying this design information to the IAEA falls to the State Regulatory Authority/SSAC.

Philip Casey Durst; Mark Schanfein

2012-08-01T23:59:59.000Z

52

Safeguards Implementation: Establishment of Indonesian Safeguards Laboratory  

Science Conference Proceedings (OSTI)

Under the International Nuclear Safeguards and Engagement Program (INSEP), U.S. National Laboratories support the Department of Energy (DOE) National Nuclear Security Administration (NNSA) to ''collaborate with international partners to strengthen international safeguards at all stages of nuclear development.'' This engagement in safeguards implementation cooperation is the basis for the security and safeguards arrangement with the Nuclear Energy Regulatory Agency of the Republic of Indonesia (BAPETEN) and includes strengthening of the State System of Accounting for and Control of Nuclear Material (SSAC). There are many components in a robust SSAC. While INSEP carries on its program in a holistic approach, it is more effective and efficient to address individual components, rather than the entire system at one time, with the objective of strengthening the system as a whole. Nuclear material accountancy is one of these components. Nuclear material accountancy necessitates that a State periodically take an inventory of its material and record changes. To better perform these activities, BAPETEN requested assistance with establishing a safeguards laboratory where its staff could perform independent material characterization, maintain nondestructive assay equipment, and facilitate hands-on training of BAPETEN safeguards inspectors. In compliance with International Atomic Energy Agency (IAEA) guidelines and safety series documents, INSEP and BAPETEN opened the BAPETEN Safeguards Laboratory in February 2010 to provide these competencies. BAPETEN showcased these new capabilities in July 2010 at the IAEA-sponsored Regional Workshop on Nuclear Material Accounting and Control at Facilities where hands-on activities were held at BAPETEN's Headquarters in Jakarta using the equipment supplied by INSEP. Discussions have begun on the establishment of a security and safeguards laboratory at the BAPETEN Training Center located in Cisarua. This paper describes the many steps involved with the Safeguards Laboratory Implementation Plan from its drafting in August 2007 to the completion of the laboratory in February 2010.

Shipwash, Jacqueline L [ORNL; Geist, William H. [Los Alamos National Laboratory (LANL); Smith, Steven E [ORNL; Solodov, Alexander A [ORNL; Suharyanta, Suharyanta [ORNL; Sunaryadi, Dedi [ORNL

2011-01-01T23:59:59.000Z

53

Safeguards Envelope Methodology  

E-Print Network (OSTI)

Nuclear safeguards are intrinsic and extrinsic features of a facility which reduce probability of the successful acquisition of special nuclear material (SNM) by hostile actors. Future bulk handling facilities in the United States will include both domestic and international safeguards as part of a voluntary agreement with the International Atomic Energy Agency. A new framework for safeguards, the Safeguards Envelope Methodology, is presented. A safeguards envelope is a set of operational and safeguards parameters that define a range, or “envelope,” of operating conditions that increases confidence as to the location and assay of nuclear material without increasing costs from security or safety. Facilities operating within safeguards envelopes developed by this methodology will operate with a higher confidence, a lower false alarm rate, and reduced safeguards impact on the operator. Creating a safeguards envelope requires bringing together security, safety, and safeguards best practices. This methodology is applied to an example facility, the Idaho Chemical Processing Plant. An example diversion scenario in the front-end of this nuclear reprocessing facility, using actual operating data, shows that the diversion could have been detected more easily by changing operational parameters, and these changed operational parameters would not sacrifice the operational efficiency of the facility, introduce security vulnerabilities, or create a safety hazard.

Metcalf, Richard

2011-12-01T23:59:59.000Z

54

SunShot Initiative: Next-Generation Low-Cost Reflector  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Low-Cost Next-Generation Low-Cost Reflector to someone by E-mail Share SunShot Initiative: Next-Generation Low-Cost Reflector on Facebook Tweet about SunShot Initiative: Next-Generation Low-Cost Reflector on Twitter Bookmark SunShot Initiative: Next-Generation Low-Cost Reflector on Google Bookmark SunShot Initiative: Next-Generation Low-Cost Reflector on Delicious Rank SunShot Initiative: Next-Generation Low-Cost Reflector on Digg Find More places to share SunShot Initiative: Next-Generation Low-Cost Reflector on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

55

SunShot Initiative: Next-Generation Solar Collectors for CSP  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Solar Collectors Next-Generation Solar Collectors for CSP to someone by E-mail Share SunShot Initiative: Next-Generation Solar Collectors for CSP on Facebook Tweet about SunShot Initiative: Next-Generation Solar Collectors for CSP on Twitter Bookmark SunShot Initiative: Next-Generation Solar Collectors for CSP on Google Bookmark SunShot Initiative: Next-Generation Solar Collectors for CSP on Delicious Rank SunShot Initiative: Next-Generation Solar Collectors for CSP on Digg Find More places to share SunShot Initiative: Next-Generation Solar Collectors for CSP on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload CSP SunShot Multidisciplinary University Research Initiative CSP Heat Integration for Baseload Renewable Energy Deployment

56

Nuclear Resonance Fluorescence for Safeguards Applications  

SciTech Connect

In nuclear resonance fluorescence (NRF) measurements, resonances are excited by an external photon beam leading to the emission of {gamma} rays with specific energies that are characteristic of the emitting isotope. The promise of NRF as a non-destructive analysis technique (NDA) in safeguards applications lies in its potential to directly quantify a specific isotope in an assay target without the need for unfolding the combined responses of several fissile isotopes as often required by other NDA methods. The use of NRF for detection of sensitive nuclear materials and other contraband has been researched in the past. In the safeguards applications considered here one has to go beyond mere detection and precisely quantify the isotopic content, a challenge that is discussed throughout this report. Basic NRF measurement methods, instrumentation, and the analytical calculation of NRF signal strengths are described in Section 2. Well understood modeling and simulation tools are needed for assessing the potential of NRF for safeguards and for designing measurement systems. All our simulations were performed with the radiation transport code MCNPX, a code that is widely used in the safeguards community. Our initial studies showed that MCNPX grossly underestimated the elastically scattered background at backwards angles due to an incorrect treatment of Rayleigh scattering. While new, corrected calculations based on ENDF form factors showed much better agreement with experimental data for the elastic scattering of photons on an uranium target, the elastic backscatter is still not rigorously treated. Photonuclear scattering processes (nuclear Thomson, Delbruck and Giant Dipole Resonance scattering), which are expected to play an important role at higher energies, are not yet included. These missing elastic scattering contributions were studied and their importance evaluated evaluated against data found in the literature as discussed in Section 3. A transmission experiment was performed in September 2009 to test and demonstrate the applicability of the method to the quantitative measurement of an isotope of interest embedded in a thick target. The experiment, data analysis, and results are described in Section 4. The broad goal of our NRF studies is to assess the potential of the technique in safeguards applications. Three examples are analyzed in Section 5: the isotopic assay of spent nuclear fuel (SNF), the measurement of {sup 235}U enrichment in UF{sub 6} cylinders, and the determination of {sup 239}Pu in mixed oxide (MOX) fuel. The study of NRF for the assay of SNF assemblies was supported by the Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy as part of a large multi-lab/university effort to quantify the plutonium (Pu) mass in spent nuclear fuel assemblies and to detect the diversion of pins with non-destructive assay (NDA) methods. NRF is one of 14 NDA techniques being researched. The methodology for performing and analyzing quantitative NRF measurements was developed for determining Pu mass in SNF and is extensively discussed in this report. The same methodology was applied to the assessment of NRF for the measurement of {sup 235}U enrichment and the determination of {sup 239}Pu in MOX fuel. The analysis centers on determining suitable NRF measurement methods, measurement capabilities that could be realized with currently available instrumentation, and photon source and detector requirements for achieving useful NDA capabilities.

Ludewigt, Bernhard A; Quiter, Brian J; Ambers, Scott D

2011-02-04T23:59:59.000Z

57

Eastern Renewable Generation Integration Study: Initial Results (Poster)  

DOE Green Energy (OSTI)

This poster presents an overview of the Eastern Renewable Generation Integration Study, which aims to answer critical questions about the future of the Eastern Interconnection under high levels of solar and wind generation penetration.

Bloom, A.; Townsend, A.; Hummon, M.; Weekley, A.; Clark, K.; King, J.

2013-10-01T23:59:59.000Z

58

Safeguards over sensitive technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safeguards Over Sensitive Technology Safeguards Over Sensitive Technology DOE/IG-0635 January 2004 Program Results and Cost Details of Finding ....................................................................... 1 Recommendations and Comments ........................................... 6 Appendices Prior Reports .............................................................................. 9 Objective, Scope, and Methodology ........................................ 11 Management Comments .......................................................... 12 SAFEGUARDS OVER SENSITIVE TECHNOLOGY TABLE OF CONTENTS Page 1 Background Aspects of sensitive technology protection, along with related impacts on national security, have been addressed in various formats by the Department of Energy and several other Federal agencies. For example:

59

Advanced safeguards for the nuclear renaissance  

SciTech Connect

The global expansion of nuclear energy provides not only the benefit of carbon-neutral electricity, but also the potential for proliferation concern as well. Nuclear safeguards implemented at the state level (domestic) and at the international level by the International Atomic Energy Agency (IAEA) are essential for ensuring that nuclear materials are not misused and are thereby a critical component of the increased usage of nuclear energy. In the same way that the 1950's Atoms for Peace initiative provided the foundation for a robust research and development program in nuclear safeguards, the expansion of nuclear energy that is underway today provides the impetus to enter a new era of technical development in the safeguards community. In this paper, we will review the history of nuclear safeguards research and development as well future directions.

Miller, Michael C [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

60

SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based  

NLE Websites -- All DOE Office Websites (Extended Search)

CSP Generation CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage to someone by E-mail Share SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage on Facebook Tweet about SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage on Twitter Bookmark SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage on Google Bookmark SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage on Delicious Rank SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage on Digg Find More places to share SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage on

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Thermionic Solar Next-Generation Thermionic Solar Energy Conversion to someone by E-mail Share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Facebook Tweet about SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Twitter Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Google Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Delicious Rank SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Digg Find More places to share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload

62

Facility Safeguardability Assessment Report  

National Nuclear Security Administration (NNSA)

of the Facility Safeguardability Analysis (FSA) Process RA Bari SJ Johnson J Hockert R Wigeland EF Wonder MD Zentner August 2012 PNNL- 21698 Overview of the Facility...

63

Facility Safeguardability Assessment Report  

National Nuclear Security Administration (NNSA)

facilities or research facilities that involve previously unused processes or technologies, comparison with previously required safeguard design features may not be...

64

SunShot Initiative: Next Generation Photovoltaics II  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Systems Integration Balance of Systems Next Generation Photovoltaics II Twenty-three solar projects are investigating transformational photovoltaic (PV) technologies with the...

65

SunShot Initiative: Baseload Concentrating Solar Power Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Concentrating Solar Power Generation Concentrating Solar Power Generation In 2010, DOE issued the Baseload Concentrating Solar Power (CSP) Generation funding opportunity announcement (FOA). The following projects were selected under this competitive solicitation: Abengoa: Advanced Nitrate Salt Central Receiver Power Plant eSolar: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility General Atomics: Baseload CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage HiTek: Low-Cost Heliostat Development Infinia: Innovative Phase Change Thermal Energy Storage Solution for Baseload Power PPG: Next-Generation Low-Cost Reflector Rocketdyne: Solar Power Tower Improvements with the Potential to Reduce Costs SENER: High-Efficiency Thermal Storage System for Solar Plants

66

International inspection activity impacts upon DOE safeguards requirements  

SciTech Connect

The US has placed certain special nuclear materials declared excess to their strategic needs under international safeguards through the International Atomic Energy Agency (IAEA). This Presidential initiative has obligated materials at several Department of Energy (DOE) facilities for these safeguards activities to demonstrate the willingness of the US to ban production or use of nuclear materials outside of international safeguards. However, IAEA inspection activities generally tend to be intrusive in nature and are not consistent with several domestic safeguards procedures implemented to reduce worker radiation exposures and increase the cost-effectiveness and efficiency of accounting for and storing of special nuclear materials. To help identify and provide workable solutions to these concerns, the Office of Safeguards and Security has conducted a program to determine possible changes to the DOE safeguards and security requirements designed to help facilities under international safeguards inspections more easily comply with domestic safeguards goals during international inspection activities. This paper will discuss the impact of international inspection activities on facility safeguards operations and departmental safeguards procedures and policies.

Zack, N.R. [Los Alamos National Lab., NM (United States). Safeguards Systems Group; Crawford, D.W. [USDOE Office of Safeguards and Security, Washington, DC (United States)

1995-09-01T23:59:59.000Z

67

Development of laser induced breakdown spectroscopy instrumentatin for safeguards applications  

DOE Green Energy (OSTI)

In September 2006, a Technical Meeting on Application of Laser Spectrometry Techniques in IAEA Safeguards was held at IAEA headquarters (HQ). One of the principal recommendations from this meeting was the need to 'pursue the development of novel complementary access instrumentation based on laser induced breakdown spectroscopy (LIBS) for the detection of gaseous and solid signatures and indicators of nuclear fuel cycle processes and associated materials.' Pursuant to this recommendation the Department of Safeguards (SG) under the Division of Technical Support (SGTS) convened the Experts and Users Advisory Meeting on Laser Induced Breakdown Spectroscopy (LIBS) for Safeguards Applications. This meeting was held at IAEA HQ from July 7-11,2008 and hosted by the Novel Technologies Unit (NTU). The meeting was attended by 12 LIBS experts from the Czech Republic, the European Commission, France, the Republic of Korea, the United States of America, Germany, the United Kingdom of Great Britain, Canada, and Northern Ireland. After a presentation of the needs of the IAEA inspectors, the LIBS experts were in agreement that needs as presented could be partially or fully fulfilled using LIBS instrumentation. The needs of the IAEA inspectors were grouped in the following broad categories: (1) Improvements to in-field measurements/environmental sampling; (2) Monitoring status of activity in a Hot Cell; (3) Verifying status of activity at a declared facility via process monitoring; and (4) Need for pre-screening of environmental samples before analysis. Under the Department of Energy/National Nuclear Security Administration (DOE/NNSA) Next Generation Safeguards Initiative (NGSI) Los Alamos National Laboratory is exploring three potential applications of LIBS for international safeguards. As part of this work, we are developing: (1) a user-friendly man-portable LIBS system to characterize samples across a wide range of elements in the periodic table from hydrogen up to heavy elements like plutonium and uranium; (2) a LIBS system that can be deployed in harsh environments such as gloveboxes and hot cells providing relative compositional analysis of process streams for example ratios like Cm/Pu and Cm/U; and (3) an inspector field deployable system that can be used to analyze the elemental composition of microscopic quantities of samples containing plutonium and uranium. In this paper we will describe our current development and performance testing results both in a fixed lab and measurements in field deployable configurations using LIBS instrumentation developed for applications to international safeguards.

Barefield Il, James E [Los Alamos National Laboratory; Clegg, Samuel M [Los Alamos National Laboratory; Le, Loan A [Los Alamos National Laboratory; Lopez, Leon N [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

68

Generation and Initial Characterization of FDD Knock In Mice  

E-Print Network (OSTI)

Background: Mutations in the integral membrane protein 2B [1], also known as BRI2 [2], a type II trans-membrane domain protein cause two autosomal dominant neurodegenerative diseases, Familial British and Danish Dementia [3]. In these conditions, accumulation of a C-terminal peptide (ABri and ADan) cleaved off from the mutated precursor protein by the pro-protein convertase furin [4], leads to amyloid deposition in the walls of blood vessels and parenchyma of the brain. Recent advances in the understanding of the generation of amyloid in Alzheimer’s disease has lead to the finding that BRI2 interacts with the Amyloid Precursor Protein (APP), decreasing the efficiency of APP processing to generate Ab [5,6,7]. The interaction between the two precursors, APP and BRI2, and possibly between Ab and ABri or ADan, could be important in influencing the rate of amyloid production or the tendency of these peptides to aggregate. Methodology/Principal Findings: We have generated the first BRI2 Danish Knock-In (FDDKI) murine model of FDD, expressing the pathogenic decamer duplication in exon 6 of the BRI 2 gene. FDD KI mice do not show any evident abnormal phenotype, with normal brain histology and no detectable amyloid deposition in blood vessel walls or parenchyma. Conclusions/Significance: This new murine mouse model will be important to further understand the interaction between

Luca Giliberto; Shuji Matsuda; Ruben Vidal

2009-01-01T23:59:59.000Z

69

Safeguards Guidance for Designers of Commercial Nuclear Facilities – International Safeguards Requirements for Uranium Enrichment Plants  

SciTech Connect

For the past two years, the United States National Nuclear Security Administration, Office of International Regimes and Agreements (NA-243), has sponsored the Safeguards-by-Design Project, through which it is hoped new nuclear facilities will be designed and constructed worldwide more amenable to nuclear safeguards. In the course of this project it was recognized that commercial designer/builders of nuclear facilities are not always aware of, or understand, the relevant domestic and international safeguards requirements, especially the latter as implemented by the International Atomic Energy Agency (IAEA). To help commercial designer/builders better understand these requirements, a report was prepared by the Safeguards-by-Design Project Team that articulated and interpreted the international nuclear safeguards requirements for the initial case of uranium enrichment plants. The following paper summarizes the subject report, the specific requirements, where they originate, and the implications for design and construction. It also briefly summarizes the established best design and operating practices that designer/builder/operators have implemented for currently meeting these requirements. In preparing the subject report, it is recognized that the best practices are continually evolving as the designer/builder/operators and IAEA consider even more effective and efficient means for meeting the safeguards requirements and objectives.

Philip Casey Durst; Scott DeMuth; Brent McGinnis; Michael Whitaker; James Morgan

2010-04-01T23:59:59.000Z

70

The future of IAEA safeguards: challenges and responses  

SciTech Connect

For nearly two decades, the International Atomic Energy Agency (lAEA) has been transforming its safeguards system to address the challenges posed by undeclared nuclear programs, the associated revelation of an extensive non-State nuclear procurement network and other issues, including past limits to its verification mandate and the burden of noncompliance issues. Implementing the new measures, including those in the Additional Protocol, and integrating new and old safeguards measures, remains a work in progress. Implementation is complicated by factors including the limited teclmological tools that are available to address such issues as safeguarding bulk handling facilities, detection of undeclared facilities/activities, especially related to enrichment, etc. As this process continues, new challenges are arising, including the demands of expanding nuclear power production worldwide, so-called safeguards by design for a new generation of facilities, the possible IAEA role in a fissile material cutoff treaty and other elements of the arms control and disarmament agenda, the possible role in 'rollback' cases, etc. There is no doubt safeguards will need to evolve in the future, as they have over the last decades. In order for the evolutionary path to proceed, there will inter alia be a need to identify technological gaps, especially with respect to undeclared facilities, and ensure they are filled by adapting old safeguards technologies, by developing and introducing new and novel safeguards teclmologies and/or by developing new procedures and protocols. Safeguards will also need to respond to anticipated emerging threats and to future, unanticipated threats. This will require strategic planning and cooperation among Member States and with the Agency. This paper will address challenges to IAEA safeguards and the technological possibilities and R&D strategies needed to meet those challenges in the context of the forty-year evolution of safeguards, including the ongoing transformation of safeguards by the Agency.

Pilat, Joseph F [Los Alamos National Laboratory; Budlong - Sylvester, Kory W [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

71

Feasibility of x ray fluorescence for spent fuel safeguards  

Science Conference Proceedings (OSTI)

Quantifying the Pu content in spent nuclear fuel is necessary for many reasons, in particular to verify that diversion or other illicit activities have not occurred. Therefore, safeguarding the world's nuclear fuel is paramount to responsible nuclear regulation and public acceptance, but achieving this goal presents many difficulties from both a technical and economic perspective. The Next Generation Safeguards Initiative (NGSI) of NA-24 is funding a large collaborative effort between multiple laboratories and universities to improve spent nuclear fuel safeguards methods and equipment. This effort involves the current work of modeling several different nondestructive assay (NDA) techniques. Several are being researched, because no single NDA technique, in isolation, has the potential to properly characterize fuel assemblies and offer a robust safeguards measure. The insights gained from this research, will be used to down-select from the original set a few of the most promising techniques that complement each other. The goal is to integrate the selected instruments to create an accurate measurement system for fuel verification that is also robust enough to detect diversions. These instruments will be fabricated and tested under realistic conditions. This work examines one of the NDA techniques; the feasibility of using x ray emission peaks from Pu and U to gather information about their relative quantities in the spent fuel. X Ray Fluorescence (XRF), is unique compared to the investigated techniques in that it is the only one able to give the elemental ratio of Pu to U, allowing the possibility of a Pu gram quantity for the assembly to be calculated. XRF also presents many challenges, mainly its low penetration, since the low energy x rays of interest are effectively shielded by the first few millimeters of a fuel pin. This paper will explore the results of Monte Carlo N-Particle eXtended (MCNPX) transport code calculations of spent fuel x ray peaks. The MCNPX simulations will be benchmarked against measurements taken at Oak Ridge. Analysis of the feasibility of XRFs role in spent nuclear fuel safeguards efforts, particularly in the context of the overall NGSI effort will be discussed.

Freeman, Corey Ross [Los Alamos National Laboratory; Mozin, Vladimir [Los Alamos National Laboratory; Tobin, Stephen J [Los Alamos National Laboratory; Fensin, Michael L [Los Alamos National Laboratory; White, Julia M [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Stafford, Alissa [TAMU; Charlton, William [TAMU

2010-01-01T23:59:59.000Z

72

Safeguards-by-Design:Guidance for High Temperature Gas Reactors (HTGRs) With Prismatic Fuel  

Science Conference Proceedings (OSTI)

Introduction and Purpose The following is a guidance document from a series prepared for the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), under the Next Generation Safeguards Initiative (NGSI), to assist facility designers and operators in implementing international Safeguards-by-Design (SBD). SBD has two main objectives: (1) to avoid costly and time consuming redesign work or retrofits of new nuclear fuel cycle facilities and (2) to make the implementation of international safeguards more effective and efficient at such facilities. In the long term, the attainment of these goals would save industry and the International Atomic Energy Agency (IAEA) time, money, and resources and be mutually beneficial. This particular safeguards guidance document focuses on prismatic fuel high temperature gas reactors (HTGR). The purpose of the IAEA safeguards system is to provide credible assurance to the international community that nuclear material and other specified items are not diverted from peaceful nuclear uses. The safeguards system consists of the IAEA’s statutory authority to establish safeguards; safeguards rights and obligations in safeguards agreements and additional protocols; and technical measures implemented pursuant to those agreements. Of foremost importance is the international safeguards agreement between the country and the IAEA, concluded pursuant to the Treaty on the Non-Proliferation of Nuclear Weapons (NPT). According to a 1992 IAEA Board of Governors decision, countries must: notify the IAEA of a decision to construct a new nuclear facility as soon as such decision is taken; provide design information on such facilities as the designs develop; and provide detailed design information based on construction plans at least 180 days prior to the start of construction, and on "as-built" designs at least 180 days before the first receipt of nuclear material. Ultimately, the design information will be captured in an IAEA Design Information Questionnaire (DIQ), prepared by the facility operator, typically with the support of the facility designer. The IAEA will verify design information over the life of the project. This design information is an important IAEA safeguards tool. Since the main interlocutor with the IAEA in each country is the State Regulatory Authority/SSAC (or Regional Regulatory Authority, e.g. EURATOM), the responsibility for conveying this design information to the IAEA falls to the State Regulatory Authority/SSAC. For the nuclear industry to reap the benefits of SBD (i.e. avoid cost overruns and construction schedule slippages), nuclear facility designers and operators should work closely with the State Regulatory Authority and IAEA as soon as a decision is taken to build a new nuclear facility. Ideally, this interaction should begin during the conceptual design phase and continue throughout construction and start-up of a nuclear facility. Such early coordination and planning could influence decisions on the design of the nuclear material processing flow-sheet, material storage and handling arrangements, and facility layout (including safeguards equipment), etc.

Mark Schanfein; Casey Durst

2012-11-01T23:59:59.000Z

73

Facility Safeguardability Analysis In Support of Safeguards-by-Design  

SciTech Connect

The following report proposes the use of Facility Safeguardability Analysis (FSA) to: i) compare and evaluate nuclear safeguards measures, ii) optimize the prospective facility safeguards approach, iii) objectively and analytically evaluate nuclear facility safeguardability, and iv) evaluate and optimize barriers within the facility and process design to minimize the risk of diversion and theft of nuclear material. As proposed by the authors, Facility Safeguardability Analysis would be used by the Facility Designer and/or Project Design Team during the design and construction of the nuclear facility to evaluate and optimize the facility safeguards approach and design of the safeguards system. Through a process of “Safeguards-by-Design” (SBD), this would be done at the earliest stages of project conceptual design and would involve domestic and international nuclear regulators and authorities, including the International Atomic Energy Agency (IAEA). The benefits of the Safeguards-by-Design approach is that it would clarify at a very early stage the international and domestic safeguards requirements for the Construction Project Team, and the best design and operating practices for meeting these requirements. It would also minimize the risk to the construction project, in terms of cost overruns or delays, which might otherwise occur if the nuclear safeguards measures are not incorporated into the facility design at an early stage. Incorporating nuclear safeguards measures is straight forward for nuclear facilities of existing design, but becomes more challenging with new designs and more complex nuclear facilities. For this reason, the facility designer and Project Design Team require an analytical tool for comparing safeguards measures, options, and approaches, and for evaluating the “safeguardability” of the facility. The report explains how preliminary diversion path analysis and the Proliferation Resistance and Physical Protection (PRPP) evaluation methodology can be adapted for evaluating and assessing the safeguardability of nuclear facilities – both existing, as well as those still on the drawing board. The advantages of the Facility Safeguardability Analysis is that it would not only give the facility designer an analytical method for evaluating and assessing the safeguards measures and approaches for the prospective facility, but also the ability to optimize the design of the facility process for enhancing facility safeguardability. The following report explains the need for Facility Safeguardability Analysis and explains how it could be used in the Safeguards-by-Design, in support of the design and construction of nuclear facilities.

Philip Casey Durst; Roald Wigeland; Robert Bari; Trond Bjornard; John Hockert; Michael Zentner

2010-07-01T23:59:59.000Z

74

NEAMS safeguards and separations  

Science Conference Proceedings (OSTI)

This presentation provides a program management update on the Safeguards and Separations Integrated Performance and Safety Code (IPSC) program in the DOE Nuclear Energy Advanced Modeling and Simulation (NEAMS). It provides an overview of FY11 work packages at multiple DOE Labs and includes material on challenge problem definitions for the IPSC effort.

Sadasivan, Pratap [Los Alamos National Laboratory; De Paoli, David W [ORNL

2011-01-25T23:59:59.000Z

75

Separations and safeguards model integration.  

Science Conference Proceedings (OSTI)

Research and development of advanced reprocessing plant designs can greatly benefit from the development of a reprocessing plant model capable of transient solvent extraction chemistry. This type of model can be used to optimize the operations of a plant as well as the designs for safeguards, security, and safety. Previous work has integrated a transient solvent extraction simulation module, based on the Solvent Extraction Process Having Interaction Solutes (SEPHIS) code developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM) developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The goal of this work was to strengthen the integration by linking more variables between the two codes. The results from this integrated model show expected operational performance through plant transients. Additionally, ORIGEN source term files were integrated into the SSPM to provide concentrations, radioactivity, neutron emission rate, and thermal power data for various spent fuels. This data was used to generate measurement blocks that can determine the radioactivity, neutron emission rate, or thermal power of any stream or vessel in the plant model. This work examined how the code could be expanded to integrate other separation steps and benchmark the results to other data. Recommendations for future work will be presented.

Cipiti, Benjamin B.; Zinaman, Owen

2010-09-01T23:59:59.000Z

76

Nuclear Safeguards Considerations For The Pebble Bed Modular Reactor (PBMR)  

Science Conference Proceedings (OSTI)

High temperature reactors (HTRs) have been considered since the 1940s, and have been constructed and demonstrated in the United Kingdom (Dragon), United States (Peach Bottom and Fort Saint Vrain), Japan (HTTR), Germany (AVR and THTR-300), and have been the subject of conceptual studies in Russia (VGM). The attraction to these reactors is that they can use a variety of reactor fuels, including abundant thorium, which upon reprocessing of the spent fuel can produce fissile U-233. Hence, they could extend the stocks of available uranium, provided the fuel is reprocessed. Another attractive attribute is that HTRs typically operate at a much higher temperature than conventional light water reactors (LWRs), because of the use of pyrolytic carbon and silicon carbide coated (TRISO) fuel particles embedded in ceramic graphite. Rather than simply discharge most of the unused heat from the working fluid in the power plant to the environment, engineers have been designing reactors for 40 years to recover this heat and make it available for district heating or chemical conversion plants. Demonstrating high-temperature nuclear energy conversion was the purpose behind Fort Saint Vrain in the United States, THTR-300 in Germany, HTTR in Japan, and HTR-10 and HTR-PM, being built in China. This resulted in nuclear reactors at least 30% or more thermodynamically efficient than conventional LWRs, especially if the waste heat can be effectively utilized in chemical processing plants. A modern variant of high temperature reactors is the Pebble Bed Modular Reactor (PBMR). Originally developed in the United States and Germany, it is now being redesigned and marketed by the Republic of South Africa and China. The team examined historical high temperature and high temperature gas reactors (HTR and HTGR) and reviewed safeguards considerations for this reactor. The following is a preliminary report on this topic prepared under the ASA-100 Advanced Safeguards Project in support of the NNSA Next Generation Safeguards Initiative (NGSI).

Phillip Casey Durst; David Beddingfield; Brian Boyer; Robert Bean; Michael Collins; Michael Ehinger; David Hanks; David L. Moses; Lee Refalo

2009-10-01T23:59:59.000Z

77

107th Congress 1st session S.1166, Next generation Lighting Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

II II 107TH CONGRESS 1ST SESSION S. 1166 To establish the Next Generation Lighting Initiative at the Department of Energy, and for other purposes. IN THE SENATE OF THE UNITED STATES JULY 11, 2001 Mr. BINGAMAN (for himself and Mr. DEWINE) introduced the following bill; which was read twice and referred to the Committee on Energy and Nat- ural Resources A BILL To establish the Next Generation Lighting Initiative at the Department of Energy, and for other purposes. Be it enacted by the Senate and House of Representa- 1 tives of the United States of America in Congress assembled, 2 SECTION 1. SHORT TITLE. 3 This Act may be cited as ''Next Generation Lighting 4 Initiative Act''. 5 SEC. 2. FINDING. 6 Congress finds that it is in the economic and energy 7 security interests of the United States to encourage the

78

Reassessment of safeguards parameters  

Science Conference Proceedings (OSTI)

The International Atomic Energy Agency is reassessing the timeliness and goal quantity parameters that are used in defining safeguards approaches. This study reviews technology developments since the parameters were established in the 1970s and concludes that there is no reason to relax goal quantity or conversion time for reactor-grade plutonium relative to weapons-grade plutonium. For low-enriched uranium, especially in countries with advanced enrichment capability there may be an incentive to shorten the detection time.

Hakkila, E.A.; Richter, J.L.; Mullen, M.F.

1994-07-01T23:59:59.000Z

79

Spiral Development for Safeguards Instrumentation  

SciTech Connect

Safeguards instrumentation is highly specialized, so a common approach in the US has been to develop initial prototypes for performance, operability and security within the US National Laboratories for the IAEA and then seek one or more commercial partners. Transfer of technology from US National Laboratories is a legal requirement for products that have the potential for mass production. Other important objectives include minimizing time to deployment and lifecycle cost, and optimizing product maintainability, sustainability and manufacturability. Unfortunately, the deployment of systems developed via this model has sometimes been seriously delayed or never adopted because of the difficulty of optimizing the significant parameters of the process between the public and private sectors. The authors suggest that forming an R&D partnership between a research laboratory and a commercial company much earlier in the process would provide significant advantages. The present US practice leads to unnecessary expenditures during the early R&D phase since many decisions are made based on research needs that are counterproductive for commercialization and manufacturability. If the ultimate goal of the project is to produce a reliable and cost effective commercial product, the commercial input is needed early and often. The new “model” of developing systems in a closer collaboration with the private sector, in a spiral “Commercialization by Design” approach, should also limit the long term financial mortgages that Member States frequently experience with respect to safeguards instrumentation development using the present process. As a concrete example, the potential for incorporating Wire Integrity Verification Technology into the iCobra Reader System is discussed.

Koskelo, M.; Undem, Halvor A.; Good, Morris S.; Frazar, Sarah L.; Schanfein, Mark; Kadner, S.

2012-10-12T23:59:59.000Z

80

Consequence Management, Safeguards & Non-Proliferation Tools...  

NLE Websites -- All DOE Office Websites (Extended Search)

Consequence Management, Safeguards, and Non-Proliferation Tools SHARE Consequence Management, Safeguards and Non-Proliferation Tools UF 6 Enrichment Facility Visualization of the...

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Nuclear Materials Management & Safeguards System | National Nuclear...  

National Nuclear Security Administration (NNSA)

Management & Safeguards System Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials...

82

Transportation Safeguards & Security Test Bed (TSSTB) | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Transportation Safeguards and Security Test Bed May 30, 2013 The Transportation Safeguards and Security Test Bed consists of a test-bed vehicle and a monitoringlaboratorytraining...

83

Nuclear Materials Management & Safeguards System | National Nuclear...  

National Nuclear Security Administration (NNSA)

System Nuclear Materials Management & Safeguards System NMMSS U.S. Department of Energy U.S. Nuclear Regulatory Commission Nuclear Materials Management & Safeguards System...

84

Full spectrum optical safeguard  

SciTech Connect

An optical safeguard device with two linear variable Fabry-Perot filters aligned relative to a light source with at least one of the filters having a nonlinear dielectric constant material such that, when a light source produces a sufficiently high intensity light, the light alters the characteristics of the nonlinear dielectric constant material to reduce the intensity of light impacting a connected optical sensor. The device can be incorporated into an imaging system on a moving platform, such as an aircraft or satellite.

Ackerman, Mark R. (Albuquerque, NM)

2008-12-02T23:59:59.000Z

85

Safeguarding Health Information: Building Assurance through ...  

Science Conference Proceedings (OSTI)

This event page is for the 2013 Safeguarding Health Information: Building Assurance through HIPAA Security conference. ...

2013-05-28T23:59:59.000Z

86

Us-Japan cooperation on safeguards  

Science Conference Proceedings (OSTI)

There is a long history of collaborative safeguards development between the United States and Japan. Japan has built, and continues to expand, the largest civil nuclear fuel cycle under full-scope IAEA safeguards in world. This development has posed unique challenges to the international safeguards system. Safeguards developments made through the US-Japan cooperation to address these unique challenges have significantly impacted the technologies deployed for international safeguards applications around the world.

Beddingfield, David H [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Hori, Masato [JAEA; Kawakubo, Yoko [JAEA; Mcclelland - Kerr, J [NNSA

2009-01-01T23:59:59.000Z

87

Reactor safeguards against insider sabotage  

SciTech Connect

A conceptual safeguards system is structured to show how both reactor operations and physical protection resources could be integrated to prevent release of radioactive material caused by insider sabotage. Operational recovery capabilities are addressed from the viewpoint of both detection of and response to disabled components. Physical protection capabilities for preventing insider sabotage through the application of work rules are analyzed. Recommendations for further development of safeguards system structures, operational recovery, and sabotage prevention are suggested.

Bennett, H.A.

1982-03-01T23:59:59.000Z

88

Final safeguards analysis, High Temperature Lattice Test Reactor  

SciTech Connect

Information on the HTLTR Reactor is presented concerning: reactor site; reactor buildings; reactor kinetics and design characteristics; experimental and test facilitles; instrumentation and control; maintenance and modification; initial tests and operations; administration and procedural safeguards; accident analysis; seifterminated excursions; main heat exchanger leak; training program outline; and reliability analysis of safety systems. (7 references) (DCC)

Hanthorn, H.E.; Brown, W.W.; Clark, R.G.; Heineman, R.E.; Humes, R.M.

1966-01-01T23:59:59.000Z

89

USSP-IAEA WORKSHOP ON ADVANCED SENSORS FOR SAFEGUARDS.  

Science Conference Proceedings (OSTI)

The IAEA Medium Term Strategy (2006-2011) defines a number of specific goals in respect to the IAEA's ability to provide assurances to the international community regarding the peaceful use of nuclear energy through States adherences to their respective non-proliferation treaty commitments. The IAEA has long used and still needs the best possible sensors to detect and measure nuclear material. The Department of Safeguards, recognizing the importance of safeguards-oriented R&D, especially targeting improved detection capabilities for undeclared facilities, materials and activities, initiated a number of activities in early 2005. The initiatives included letters to Member State Support Programs (MSSPs), personal contacts with known technology holders, topical meetings, consultant reviews of safeguards technology, and special workshops to identify new and novel technologies and methodologies. In support of this objective, the United States Support Program to IAEA Safeguards hosted a workshop on ''Advanced Sensors for Safeguards'' in Santa Fe, New Mexico, from April 23-27, 2007. The Organizational Analysis Corporation, a U.S.-based management consulting firm, organized and facilitated the workshop. The workshop's goal was to help the IAEA identify and plan for new sensors for safeguards implementation. The workshop, which was attended by representatives of seven member states and international organizations, included presentations by technology holders and developers on new technologies thought to have relevance to international safeguards, but not yet in use by the IAEA. The presentations were followed by facilitated breakout sessions where the participants considered two scenarios typical of what IAEA inspectors might face in the field. One scenario focused on an enrichment plant; the other scenario focused on a research reactor. The participants brainstormed using the technologies presented by the participants and other technologies known to them to propose techniques and methods that could be used by the IAEA to strengthen safeguards. Creative thinking was encouraged during discussion of the proposals. On the final day of the workshop, the OAC facilitators summarized the participant's ideas in a combined briefing. This paper will report on the results of the April 2007 USSP-IAEA Workshop on Advanced Sensors for Safeguards and give an overview of the proposed technologies of greatest promise.

PEPPER,S.; QUEIROLO, A.; ZENDEL, M.; WHICHELLO, J.; ANNESE, C.; GRIEBE, J.; GRIEBE, R.

2007-11-13T23:59:59.000Z

90

SAFEGUARDS EXPERIENCE ON THE DUPIC FUEL CYCLE PROCESS  

SciTech Connect

Safeguards have been applied to the R and D process for directly fabricating CANDU fuel with PWR spent fuel material. Safeguards issues to be resolved were identified in the areas such as international cooperation on handling foreign origin nuclear material, technology development of operator's measurement system of the bulk handling process of spent fuel material, and a built-in C/S system for independent verification of material flow. The fuel cycle concept (Direct Use of PWR spent fuel in CANDU, DUPIC) was developed in consideration of reutilization of over-flowing spent fuel resources at PWR sites and a reduction of generated high level wastes. All those safeguards issues have been finally resolved, and the first batch of PWR spent fuel material was successfully introduced in the DUPIC lab facility and has been in use for routine process development.

J. HONG; H. KIM; ET AL

2001-02-01T23:59:59.000Z

91

Effects of Initial Soil Moisture on Rainfall Generation and Subsequent Hydrologic Response during the North American Monsoon  

Science Conference Proceedings (OSTI)

Through the use of a mesoscale meteorological model and distributed hydrologic model, the effects of initial soil moisture on rainfall generation, streamflow, and evapotranspiration during the North American monsoon are examined. A collection of ...

Enrique R. Vivoni; Kinwai Tai; David J. Gochis

2009-06-01T23:59:59.000Z

92

A framework for nuclear facility safeguard evaluation using probabilistic methods and expert elicitation  

E-Print Network (OSTI)

With the advancement of the next generation of nuclear fuel cycle facilities, concerns of the effectiveness of nuclear facility safeguards have been increasing due to the inclusion of highly enriched material and reprocessing ...

Iamsumang, Chonlagarn

2010-01-01T23:59:59.000Z

93

Long-term proliferation and safeguards issues in future technologies  

SciTech Connect

The purpose of the task was to assess the effect of potential new technologies, nuclear and non-nuclear, on safeguards needs and non-proliferation policies, and to explore possible solutions to some of the problems envisaged. Eight subdivisions were considered: New Enrichment Technologies; Non-Aqueous Reprocessing Technologies; Fusion; Accelerator-Driven Reactor Systems; New Reactor Types; Heavy Water and Deuterium; Long-Term Storage of Spent Fuel; and Other Future Technologies (Non-Nuclear). For each of these subdivisions, a careful review of the current world-wide effort in the field provided a means of subjectively estimating the viability and qualitative probability of fruition of promising technologies. Technologies for which safeguards and non-proliferation requirements have been thoroughly considered by others were not restudied here (e.g., the Fast Breeder Reactor). The time scale considered was 5 to 40 years for possible initial demonstration although, in some cases, a somewhat optimistic viewpoint was embraced. Conventional nuclear-material safeguards are only part of the overall non-proliferation regime. Other aspects are international agreements, export controls on sensitive technologies, classification of information, intelligence gathering, and diplomatic initiatives. The focus here is on safeguards, export controls, and classification.

Keisch, B.; Auerbach, C.; Fainberg, A.; Fiarman, S.; Fishbone, L.G.; Higinbotham, W.A.; Lemley, J.R.; O'Brien, J.

1986-02-01T23:59:59.000Z

94

Safeguards instrumentation: a computer-based catalog  

Science Conference Proceedings (OSTI)

The information contained in this catalog is needed to provide a data base for safeguards studies and to help establish criteria and procedures for international safeguards for nuclear materials and facilities. The catalog primarily presents information on new safeguards equipment. It also describes entire safeguards systems for certain facilities, but it does not describe the inspection procedures. Because IAEA safeguards do not include physical security, devices for physical protection (as opposed to containment and surveillance) are not included. An attempt has been made to list capital costs, annual maintenance costs, replacement costs, and useful lifetime for the equipment. For equipment which is commercially available, representative sources have been listed whenever available.

Fishbone, L.G.; Keisch, B.

1981-08-01T23:59:59.000Z

95

DESIGN INFORMATION VERIFICATION FOR NUCLEAR SAFEGUARDS  

Science Conference Proceedings (OSTI)

A critical aspect of international safeguards activities performed by the International Atomic Energy Agency (IAEA) is the verification that facility design and construction (including upgrades and modifications) do not create opportunities for nuclear proliferation. These Design Information Verification activities require that IAEA inspectors compare current and past information about the facility to verify the operator’s declaration of proper use. The actual practice of DIV presents challenges to the inspectors due to the large amount of data generated, concerns about sensitive or proprietary data, the overall complexity of the facility, and the effort required to extract just the safeguards relevant information. Planned and anticipated facilities will (especially in the case of reprocessing plants) be ever larger and increasingly complex, thus exacerbating the challenges. This paper reports the results of a workshop held at the Idaho National Laboratory in March 2009, which considered technologies and methods to address these challenges. The use of 3D Laser Range Finding, Outdoor Visualization System, Gamma-LIDAR, and virtual facility modeling, as well as methods to handle the facility data issues (quantity, sensitivity, and accessibility and portability for the inspector) were presented. The workshop attendees drew conclusions about the use of these techniques with respect to successfully employing them in an operating environment, using a Fuel Conditioning Facility walk-through as a baseline for discussion.

Robert S. Bean; Richard R. M. Metcalf; Phillip C. Durst

2009-07-01T23:59:59.000Z

96

Normal Mode Initialization and the Generation of Gravity Waves by Quasi-Geostrophic Forcing  

Science Conference Proceedings (OSTI)

Several numerical weather prediction models now use nonlinear normal-mode initialization schemes. These schemes describe balanced states which act to limit the initial presence of high-frequency gravity waves and their subsequent growth by ...

Ronald M. Errico

1982-03-01T23:59:59.000Z

97

Safeguards Envelope Progress FY10  

SciTech Connect

The Safeguards Envelope is a strategy to determine a set of specific operating parameters within which nuclear facilities may operate to maximize safeguards effectiveness without sacrificing safety or plant efficiency. This paper details the additions to the advanced operating techniques that will be applied to real plant process monitoring (PM) data from the Idaho Chemical Processing Plant (ICPP). Research this year focused on combining disparate pieces of data together to maximize operating time with minimal downtime due to safeguards. A Chi-Square and Croiser's cumulative sum were both included as part of the new analysis. Because of a major issue with the original data, the implementation of the two new tests did not add to the existing set of tests, though limited one-variable optimization made a small increase in detection probability. Additional analysis was performed to determine if prior analysis would have caused a major security or safety operating envelope issue. It was determined that a safety issue would have resulted from the prior research, but that the security may have been increased under certain conditions.

Richard Metcalf

2010-10-01T23:59:59.000Z

98

Modeling and Simulation for Safeguards  

SciTech Connect

The purpose of this talk is to give an overview of the role of modeling and simulation in Safeguards R&D and introduce you to (some of) the tools used. Some definitions are: (1) Modeling - the representation, often mathematical, of a process, concept, or operation of a system, often implemented by a computer program; (2) Simulation - the representation of the behavior or characteristics of one system through the use of another system, especially a computer program designed for the purpose; and (3) Safeguards - the timely detection of diversion of significant quantities of nuclear material. The role of modeling and simulation are: (1) Calculate amounts of material (plant modeling); (2) Calculate signatures of nuclear material etc. (source terms); and (3) Detector performance (radiation transport and detection). Plant modeling software (e.g. FACSIM) gives the flows and amount of material stored at all parts of the process. In safeguards this allow us to calculate the expected uncertainty of the mass and evaluate the expected MUF. We can determine the measurement accuracy required to achieve a certain performance.

Swinhoe, Martyn T. [Los Alamos National Laboratory

2012-07-26T23:59:59.000Z

99

Effective Video Monitoring for Nuclear Safeguards  

NLE Websites -- All DOE Office Websites (Extended Search)

%*(,7;)4%(,.%3)% 0-32);-((-)&(A Nuclear Engineering Division Effective Video Monitoring for Nuclear Safeguards "%&'()*+,-.+,012',0+213"+4"1."(156+...

100

Nuclear Materials Management & Safeguards System CONTACT INFORMATION...  

National Nuclear Security Administration (NNSA)

Nuclear Materials Management & Safeguards System CONTACT INFORMATION UPDATE REPORTING IDENTIFICATION SYMBOL (RIS) RIS: Address: Facility Name: CONTACTS Business Name PhoneFax...

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Global Security Directorate - Nonproliferation, Safeguards, and...  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Centers & Programs Nonproliferation, Safeguards, and Security Programs click for full size image of Megatons to megawatts The Global Security and Nonproliferation Programs...

102

Nuclear Materials Management & Safeguards System | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Our Jobs Our Jobs Working at NNSA Blog Nuclear Materials Management & Safeguards System Home > About Us > Our Programs > Nuclear Security > Nuclear Materials Management &...

103

FAQS Reference Guide – Safeguards and Security  

Energy.gov (U.S. Department of Energy (DOE))

This reference guide addresses the competency statements in the May 2009 edition of DOE-STD-1171-2009, Safeguards and Security Functional Area Qualification Standard.

104

SunShot Initiative: Baseload CSP Generation Integrated with Sulfur-Based  

NLE Websites -- All DOE Office Websites (Extended Search)

CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage CSP Generation Integrated with Sulfur-Based Thermochemical Heat Storage General Atomics logo Graphic of a diagram of squares and circles connected by arrows. Sulfur-based TES can compensate for diurnal and seasonal insolation fluctuations. General Atomics, under the Baseload CSP FOA, is demonstrating the engineering feasibility of using a sulfur-based thermochemical cycle to store heat from a CSP plant and support baseload power generation. Approach There are three main project objectives under this award: Study the sulfur generating disproportionation reaction and develop it into a practical engineering process step. Carry out preliminary process components design and experimental validation. The engineering data will be used for process integration between the CSP plant, the sulfur processing and storage plant, and the electricity generation unit.

105

Discontinuous Forcing Generating Rough Initial Conditions in 4DVAR Data Assimilation  

Science Conference Proceedings (OSTI)

The impact of discontinuous model forcing on the initial conditions obtained from 4DVAR data assimilation is studied with mathematic analyses, idealized numerical examples, and more realistic meteorological cases. The results show that a ...

Chungu Lu; Gerald L. Browning

2000-05-01T23:59:59.000Z

106

Performance Considerations for Alternatives to 3He-Based Neutron Counters for Safeguards Applications  

Science Conference Proceedings (OSTI)

Worldwide, significant effort has been expended to develop replacement technologies for 3He-filled proportional counters used as neutron detectors and employed extensively in applications as diverse as Homeland Security portal monitoring to fundamental scientific research. Far less attention has been paid to the specific needs of safeguards measurement systems to meet mission objectives such as international obligations under the Nuclear Non-Proliferation Treaty. The measurement configuration, operational environments, and performance requirements for the typical safeguards assay system are sufficiently different from those of other applications that the new generation of neutron detectors is not generally suitable for use in demanding safeguards applications. To illustrate the performance needs for any viable replacement neutron detector technology, the operational constraints for several typical safeguards measurement systems are considered. Key attributes include achieving adequate efficiency per unit volume and minimal parasitic losses, along with gamma-ray immunity in a unit with high reliability and low maintenance.

McElroy, Robert Dennis [ORNL; Croft, Dr. Stephen [Los Alamos National Laboratory (LANL); Young, Brian M [Canberra Industries, Inc., Meriden, CT

2011-01-01T23:59:59.000Z

107

Administrator D'Agostino on NNSA Nuclear Safeguards and Security...  

National Nuclear Security Administration (NNSA)

global challenges of nuclear nonproliferation, safeguards and security. Understanding, developing and implementing proper nuclear safeguards is an important part of any...

108

ORO Office Safeguards and Security Clearance Tracking System...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Safeguards and Security Clearance Tracking System and Visitor Control System PIA, Oak Ridge Operations Office ORO Office Safeguards and Security Clearance Tracking System...

109

Audit of the Department of Energy's Site Safeguards and Security...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy's Site Safeguards and Security Plans TO: The Secretary BACKGROUND: The Department's Safeguards and Security program is designed to provide appropriate, efficient, and...

110

Application of laser induced breakdown spectroscopy (LIBS) instrumentation for international safeguards  

DOE Green Energy (OSTI)

Advanced methodologies and improvements to current measurements techniques are needed to strengthen the effectiveness and efficiency of international safeguards. This need was recognized and discussed at a Technical Meeting on 'The Application of Laser Spectrometry Techniques in IAEA Safeguards' held at IAEA headquarters (September 2006). One of the principal recommendations from that meeting was the need to pursue the development of novel complementary access instrumentation based on Laser Induced Breakdown Spectroscopy (UBS) for the detection of gaseous and solid signatures and indicators of nuclear fuel cycle processes and associated materials'. Pursuant to this recommendation the Department of Safeguards (SG) under the Division of Technical Support (SGTS) convened the 'Experts and Users Advisory Meeting on Laser Induced Breakdown Spectroscopy (LIBS) for Safeguards Applications' also held at IAEA headquarters (July 2008). This meeting was attended by 12 LlBS experts from the Czech Republic, the European Commission, France, the Republic of South Korea, the United States of America, Germany, the United Kingdom of Great Britain, Canada, and Northern Ireland. Following a presentation of the needs of the IAEA inspectors, the LIBS experts agreed that needs as presented could be partially or fully fulfilled using LIBS instrumentation. Inspectors needs were grouped into the following broad categories: (1) Improvements to in-field measurements/environmental sampling; (2) Monitoring status of activities in Hot Cells; (3) Verify status of activity at a declared facility via process monitoring; and (4) Need for pre-screening of environmental samples before analysis. The primary tool employed by the IAEA to detect undeclared processes and activities at special nuclear material facilities and sites is environmental sampling. One of the objectives of the Next Generation Safeguards Initiative (NGSI) Program Plan calls for the development of advanced tools and methodologies to detect and analyze undeclared processing or production of special nuclear material. Los Alamos National Laboratory is currently investigating potential uses of LIBS for safeguards applications, including (1) a user-friendly man-portable LIBS system to characterize samples in real to near-real time (typical analysis time are on the order of minutes) across a wide range of elements in the periodic table from hydrogen up to heavy elements like plutonium and uranium, (2) a LIBS system that can be deployed in harsh environments such as hot cells and glove boxes providing relative compositional analysis of process streams for example ratios like Cm/Up and Cm/U, (3) an inspector field deployable system that can be used to analyze the elemental composition of microscopic quantities of samples containing plutonium and uranium, and (4) a high resolution LIBS system that can be used to determine the isotopic composition of samples containing for example uranium, plutonium... etc. In this paper, we will describe our current development and performance testing results for LIBS instrumentation both in a fixed lab and measurements in field deployable configurations.

Barefield Ii, James E [Los Alamos National Laboratory; Clegg, Samuel M [Los Alamos National Laboratory; Lopez, Leon N [Los Alamos National Laboratory; Le, Loan A [Los Alamos National Laboratory; Veirs, D Kirk [Los Alamos National Laboratory; Browne, Mike [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

111

Innovative cement helps DOE safeguard nuclear facilities | Argonne National  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative cement helps DOE safeguard nuclear facilities Innovative cement helps DOE safeguard nuclear facilities By Jared Sagoff * April 25, 2008 Tweet EmailPrint ARGONNE, Ill. - When Argonne materials scientists Arun Wagh and Dileep Singh initially developed Ceramicrete®, a novel phosphate cement that stabilizes radioactive waste streams, they did not immediately recognize that with one or two extra ingredients, the cement could solve another problem in the nuclear complex. In the course of the development of the Ceramicrete technology, Wagh and Singh formed a multilayered collaboration among Argonne, the Russian Federal Nuclear Center (VNIIEF) in Sarov, Russia, and Ceradyne Boron Products LLC. This international scientific partnership created an unusually efficient nuclear shield that blocks the neutrons and gamma rays

112

IMPLEMENTING THE SAFEGUARDS-BY-DESIGN PROCESS  

Science Conference Proceedings (OSTI)

The Safeguards-by-Design (SBD) approach incorporates safeguards into the design and construction of nuclear facilities at the very beginning of the design process. It is a systematic and structured approach for fully integrating international and national safeguards for material control and accountability (MC&A), physical protection, and other proliferation barriers into the design and construction process for nuclear facilities. Implementing SBD is primarily a project management or project coordination challenge. This paper focuses specifically on the design process; the planning, definition, organization, coordination, scheduling and interaction of the safeguards experts and stakeholders as they participate in the design and construction of a nuclear facility. It delineates the steps in a nuclear facility design and construction project in order to provide the project context within which the safeguards design activities take place, describes the involvement of the safeguards experts in the design process, the nature of their analyses, interactions and decisions, and describes the documents created and how they are used. This report highlights the project context of safeguards activities, and identifies the safeguards community (nuclear facility operator, designer/builder, state regulator, SSAC and IAEA) must accomplish in order to implement SBD within the project.

Whitaker, J Michael [ORNL; McGinnis, Brent [Oak Ridge National Laboratory (ORNL); Laughter, Mark D [ORNL; Morgan, Jim [Innovative Solutions; Bjornard, Trond [Idaho National Laboratory (INL); Bean, Robert [Idaho National Laboratory (INL); Durst, Phillip [Idaho National Laboratory (INL); Hockert, John [Pacific Northwest National Laboratory (PNNL); DeMuth, Scott [Los Alamos National Laboratory (LANL); Lockwood, Dunbar [U.S. Department of Energy, NNSA

2010-01-01T23:59:59.000Z

113

Improving the Transparency of IAEA Safeguards Reporting  

Science Conference Proceedings (OSTI)

In 2008, the Standing Advisory Group on Safeguards Implementation (SAGSI) indicated that the International Atomic Energy Agency's (IAEA) Safeguards Implementation Report (SIR) has not kept pace with the evolution of safeguards and provided the IAEA with a set of recommendations for improvement. The SIR is the primary mechanism for providing an overview of safeguards implementation in a given year and reporting on the annual safeguards findings and conclusions drawn by the Secretariat. As the IAEA transitions to State-level safeguards approaches, SIR reporting must adapt to reflect these evolutionary changes. This evolved report will better reflect the IAEA's transition to a more qualitative and information-driven approach, based upon State-as-a-whole considerations. This paper applies SAGSI's recommendations to the development of multiple models for an evolved SIR and finds that an SIR repurposed as a 'safeguards portal' could significantly enhance information delivery, clarity, and transparency. In addition, this paper finds that the 'portal concept' also appears to have value as a standardized information presentation and analysis platform for use by Country Officers, for continuity of knowledge purposes, and the IAEA Secretariat in the safeguards conclusion process. Accompanying this paper is a fully functional prototype of the 'portal' concept, built using commercial software and IAEA Annual Report data.

Toomey, Christopher; Hayman, Aaron M.; Wyse, Evan T.; Odlaug, Christopher S.

2011-07-17T23:59:59.000Z

114

Gas Centrifuge Enrichment Plant Safeguards System Modeling  

SciTech Connect

The U.S. Department of Energy (DOE) is interested in developing tools and methods for potential U.S. use in designing and evaluating safeguards systems used in enrichment facilities. This research focuses on analyzing the effectiveness of the safeguards in protecting against the range of safeguards concerns for enrichment plants, including diversion of attractive material and unauthorized modes of use. We developed an Extend simulation model for a generic medium-sized centrifuge enrichment plant. We modeled the material flow in normal operation, plant operational upset modes, and selected diversion scenarios, for selected safeguards systems. Simulation modeling is used to analyze both authorized and unauthorized use of a plant and the flow of safeguards information. Simulation tracks the movement of materials and isotopes, identifies the signatures of unauthorized use, tracks the flow and compilation of safeguards data, and evaluates the effectiveness of the safeguards system in detecting misuse signatures. The simulation model developed could be of use to the International Atomic Energy Agency IAEA, enabling the IAEA to observe and draw conclusions that uranium enrichment facilities are being used only within authorized limits for peaceful uses of nuclear energy. It will evaluate improved approaches to nonproliferation concerns, facilitating deployment of enhanced and cost-effective safeguards systems for an important part of the nuclear power fuel cycle.

Elayat, H A; O'Connell, W J; Boyer, B D

2006-06-05T23:59:59.000Z

115

Consequence Management, Safeguards & Non-Proliferation Tools | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Consequence Consequence Management, Safeguards, and Non-Proliferation Tools SHARE Consequence Management, Safeguards and Non-Proliferation Tools UF 6 Enrichment Facility Visualization of the gamma radiation field in a mock-up of a UF-6 enrichment facility. The solution was generated on a desktop computer using ORNL's Denovo SN transport code and ADVANTG interface, using geometry and material descriptions from an NRL SWORD input file. ORNL is a leader in developing state-of-the-art radiation transport modeling and simulation tools and in applying these tools to solve challenging problems in national and global nuclear security. Recent developments in high-performance, high-fidelity, deterministic Monte Carlo, and hybrid Monte Carlo/deterministic radiation transport codes within

116

World Bank Safeguard Policies | Open Energy Information  

Open Energy Info (EERE)

World Bank Safeguard Policies World Bank Safeguard Policies Jump to: navigation, search Tool Summary LAUNCH TOOL Name: World Bank Safeguard Policies Agency/Company /Organization: World Bank Topics: Policies/deployment programs Resource Type: Guide/manual, Training materials, Lessons learned/best practices Website: web.worldbank.org/WBSITE/EXTERNAL/PROJECTS/EXTPOLICIES/EXTSAFEPOL/0,,m References: World Bank Safeguard Policies [1] Overview "The World Bank's environmental and social safeguard policies are a cornerstone of its support to sustainable poverty reduction. The objective of these policies is to prevent and mitigate undue harm to people and their environment in the development process. These policies provide guidelines for bank and borrower staffs in the identification, preparation, and

117

Safeguarding and Protecting the Nuclear Fuel Cycle  

Science Conference Proceedings (OSTI)

International safeguards as applied by the International Atomic Energy Agency (IAEA) are a vital cornerstone of the global nuclear nonproliferation regime - they protect against the peaceful nuclear fuel cycle becoming the undetected vehicle for nuclear weapons proliferation by States. Likewise, domestic safeguards and nuclear security are essential to combating theft, sabotage, and nuclear terrorism by non-State actors. While current approaches to safeguarding and protecting the nuclear fuel cycle have been very successful, there is significant, active interest to further improve the efficiency and effectiveness of safeguards and security, particularly in light of the anticipated growth of nuclear energy and the increase in the global threat environment. This article will address two recent developments called Safeguards-by-Design and Security-by-Design, which are receiving increasing broad international attention and support. Expected benefits include facilities that are inherently more economical to effectively safeguard and protect. However, the technical measures of safeguards and security alone are not enough - they must continue to be broadly supported by dynamic and adaptive nonproliferation and security regimes. To this end, at the level of the global fuel cycle architecture, 'nonproliferation and security by design' remains a worthy objective that is also the subject of very active, international focus.

Trond Bjornard; Humberto Garcia; William Desmond; Scott Demuth

2010-11-01T23:59:59.000Z

118

FAQS Job Task Analyses - Safeguards and Security General Technical Base |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safeguards and Security General Technical Safeguards and Security General Technical Base FAQS Job Task Analyses - Safeguards and Security General Technical Base FAQS Job Task Analyses are performed on the Function Area Qualification Standards. The FAQS Job Task Analyses consists of: Developing a comprehensive list of tasks that define the job such as the duties and responsibilities which include determining their levels of importance and frequency. Identifying and evaluating competencies. Last step is evaluating linkage between job tasks and competencies. FAQS JTA - Safeguards and Security General Technical Base More Documents & Publications FAQS Qualification Card - Safeguards and Security General Technical Base FAQS Qualification Card - Safeguards and Security FAQS Job Task Analyses - Safeguards and Security

119

Overview of the Facility Safeguardability Analysis (FSA) Process  

SciTech Connect

Executive Summary The safeguards system of the International Atomic Energy Agency (IAEA) is intended to provide the international community with credible assurance that a State is fulfilling its safeguards obligations. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of IAEA safeguards as those safeguards evolve towards a “State-Level approach.” The Safeguards by Design (SBD) concept can facilitate the implementation of these effective and cost-efficient facility-level safeguards (Bjornard, et al. 2009a, 2009b; IAEA, 1998; Wonder & Hockert, 2011). This report, sponsored by the National Nuclear Security Administration’s Office of Nuclear Safeguards and Security, introduces a methodology intended to ensure that the diverse approaches to Safeguards by Design can be effectively integrated and consistently used to cost effectively enhance the application of international safeguards.

Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Scott J.; Wigeland, Roald; Zentner, Michael D.

2012-08-01T23:59:59.000Z

120

IAEA Safeguards: Past, Present, and Future  

Science Conference Proceedings (OSTI)

This talk will present an overview of the International Atomic Energy Agency with a specific focus on its international safeguards mission and activities. The talk will first present a brief history of the IAEA and discuss its current governing structure. It will then focus on the Safeguards Department and its role in providing assurance that nuclear materials are being used for peaceful purposes. It will then look at how the IAEA is currently evolving the way in which it executes its safeguards mission with a focus on the idea of a state-level approach.

Santi, Peter A. [Los Alamos National Laboratory; Hypes, Philip A. [Los Alamos National Laboratory

2012-06-14T23:59:59.000Z

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NBL Nuclear Safeguards and Nonproliferation Support  

NLE Websites -- All DOE Office Websites (Extended Search)

NBL Nuclear Safeguards and Nonproliferation Support New Brunswick Laboratory (NBL) is owned and operated by the U.S. Department of Energy (DOE). NBL is the U.S. Government's...

122

Safeguards and Security Program, acronyms and abbereviations...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

abbereviations - DOE M 470.4-7 More Documents & Publications Safeguards and Security Glossary - DOE M 470.4-7 References, Canceled -7 Section B - April 16 2010 Briefing,...

123

The Concept of Goals-Driven Safeguards  

Science Conference Proceedings (OSTI)

The IAEA, NRC, and DOE regulations and requirements for safeguarding nuclear material and facilities have been reviewed and each organization’s purpose, objectives, and scope are discussed in this report. Current safeguards approaches are re-examined considering technological advancements and how these developments are changing safeguards approaches used by these organizations. Additionally, the physical protection approaches required by the IAEA, NRC, and DOE were reviewed and the respective goals, objectives, and requirements are identified and summarized in this report. From these, a brief comparison is presented showing the high-level similarities among these regulatory organizations’ approaches to physical protection. The regulatory documents used in this paper have been assembled into a convenient reference library called the Nuclear Safeguards and Security Reference Library. The index of that library is included in this report, and DVDs containing the full library are available.

R. Wigeland; T Bjornard; B. Castle

2009-02-01T23:59:59.000Z

124

UNCLASSIFIED Nuclear Materials Management & Safeguards System  

National Nuclear Security Administration (NNSA)

Nuclear Materials Management & Safeguards System Nuclear Materials Management & Safeguards System CHANGE OF PROJECT NUMBER UPDATE PROJECT Project Number: Title: Date Valid: Date Deactivated: Classification Codes: Project Number: Project Title: Associated Materials: Programmatic RIS Previous Project Number(s) Status Code Allotment Code (S=Supplier, U=User) I authorize that the information listed above is for the NMMSS Program to use as part of the project number conversion process for this facility.

125

Advanced Safeguards Approaches for New Reprocessing Facilities  

Science Conference Proceedings (OSTI)

U.S. efforts to promote the international expansion of nuclear energy through the Global Nuclear Energy Partnership (GNEP) will result in a dramatic expansion of nuclear fuel cycle facilities in the United States. New demonstration facilities, such as the Advanced Fuel Cycle Facility (AFCF), the Advanced Burner Reactor (ABR), and the Consolidated Fuel Treatment Center (CFTC) will use advanced nuclear and chemical process technologies that must incorporate increased proliferation resistance to enhance nuclear safeguards. The ASA-100 Project, “Advanced Safeguards Approaches for New Nuclear Fuel Cycle Facilities,” commissioned by the NA-243 Office of NNSA, has been tasked with reviewing and developing advanced safeguards approaches for these demonstration facilities. Because one goal of GNEP is developing and sharing proliferation-resistant nuclear technology and services with partner nations, the safeguards approaches considered are consistent with international safeguards as currently implemented by the International Atomic Energy Agency (IAEA). This first report reviews possible safeguards approaches for the new fuel reprocessing processes to be deployed at the AFCF and CFTC facilities. Similar analyses addressing the ABR and transuranic (TRU) fuel fabrication lines at AFCF and CFTC will be presented in subsequent reports.

Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Richard; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

2007-06-24T23:59:59.000Z

126

Coupling a Transient Solvent Extraction Module with the Separations and Safeguards Performance Model  

Science Conference Proceedings (OSTI)

A past difficulty in safeguards design for reprocessing plants is that no code existed for analysis and evaluation of the design. A number of codes have been developed in the past, but many are dated, and no single code is able to cover all aspects of materials accountancy, process monitoring, and diversion scenario analysis. The purpose of this work was to integrate a transient solvent extraction simulation module developed at Oak Ridge National Laboratory, with the SSPM Separations and Safeguards Performance Model, developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The SSPM was designed for materials accountancy and process monitoring analyses, but previous versions of the code have included limited detail on the chemical processes, including chemical separations. The transient solvent extraction model is based on the ORNL SEPHIS code approach to consider solute build up in a bank of contactors in the PUREX process. Combined, these capabilities yield a much more robust transient separations and safeguards model for evaluating safeguards system design. This coupling and the initial results are presented. In addition, some observations toward further enhancement of separations and safeguards modeling based on this effort are provided, including: items to be addressed in integrating legacy codes, additional improvements needed for a fully functional solvent extraction module, and recommendations for future integration of other chemical process modules.

de Almeida, Valmor F [ORNL; Birdwell Jr, Joseph F [ORNL; DePaoli, David W [ORNL; Gauld, Ian C [ORNL

2009-10-01T23:59:59.000Z

127

Coupling a transient solvent extraction module with the separations and safeguards performance model.  

Science Conference Proceedings (OSTI)

A number of codes have been developed in the past for safeguards analysis, but many are dated, and no single code is able to cover all aspects of materials accountancy, process monitoring, and diversion scenario analysis. The purpose of this work was to integrate a transient solvent extraction simulation module developed at Oak Ridge National Laboratory, with the Separations and Safeguards Performance Model (SSPM), developed at Sandia National Laboratory, as a first step toward creating a more versatile design and evaluation tool. The SSPM was designed for materials accountancy and process monitoring analyses, but previous versions of the code have included limited detail on the chemical processes, including chemical separations. The transient solvent extraction model is based on the ORNL SEPHIS code approach to consider solute build up in a bank of contactors in the PUREX process. Combined, these capabilities yield a more robust transient separations and safeguards model for evaluating safeguards system design. This coupling and initial results are presented. In addition, some observations toward further enhancement of separations and safeguards modeling based on this effort are provided, including: items to be addressed in integrating legacy codes, additional improvements needed for a fully functional solvent extraction module, and recommendations for future integration of other chemical process modules.

DePaoli, David W. (Oak Ridge National Laboratory, Oak Ridge, TN); Birdwell, Joseph F. (Oak Ridge National Laboratory, Oak Ridge, TN); Gauld, Ian C. (Oak Ridge National Laboratory, Oak Ridge, TN); Cipiti, Benjamin B.; de Almeida, Valmor F. (Oak Ridge National Laboratory, Oak Ridge, TN)

2009-10-01T23:59:59.000Z

128

Safeguards by design - industry engagement for new uranium enrichment facilities in the United States  

Science Conference Proceedings (OSTI)

The United States Department of Energy's (DOE's) Office of Nonproliferation and International Security (NA-24) has initiated a Safeguards by Design (SBD) effort to encourage the incorporation of international (IAEA) safeguards features early in the design phase of a new nuclear facility in order to avoid the need to redesign or retrofit the facility at a later date. The main goals of Safeguards by Design are to (1) make the implementation of international safeguards at new civil nuclear facilities more effective and efficient, (2) avoid costly and time-consuming re-design work or retrofits at such facilities and (3) design such facilities in a way that makes proliferation as technically difficult, as time-consuming, and as detectable as possible. The U.S. Nuclear Regulatory Commission (NRC) has recently hosted efforts to facilitate the use of Safeguards by Design for new uranium enrichment facilities currently being planned for construction in the U.S. While SBD is not a NRC requirement, the NRC is aiding the implementation of SBD by coordinating discussions between DOE's NA-24 and industry's facility design teams. More specifically, during their normal course of licensing discussions the NRC has offered industry the opportunity to engage with NA-24 regarding SBD.

Demuth, Scott F [Los Alamos National Laboratory; Grice, Thomas [NRC; Lockwood, Dunbar [DOE/NA-243

2010-01-01T23:59:59.000Z

129

Office of Safeguards, Security & Emergency Preparedness | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Safeguards, Security & Office of Safeguards, Security & Emergency Preparedness Office of Safeguards, Security & Emergency Preparedness Office of Safeguards, Security & Emergency Preparedness Mission Develop and oversee the implementation of policy and guidance with respect to security and emergency management. Foster continuous improvement across the Environmental Management (EM) complex through application of Integrated Safeguards and Security Management principles. Serve as a liaison with sites and other agencies on security and emergency management issues. Major Responsibilities Ensure the mandatory level of safeguards and security protection, with managed risk, for EM's nuclear materials, facilities, classified material, documents and other government assets. Apply the Graded Security Protection (GSP) Policy and other

130

Safeguards Envelope: The First Steps  

Science Conference Proceedings (OSTI)

The possibility exists for real time accountancy and assay of nuclear materials as they move through a reprocessing facility. This project aims to establish working parameters and local figures of merit to identify possible diversion in real time with minimal operational impact. Factors such as pH, NOX gas concentration, flow speeds and radiation fields are rarely taken into account in safeguards methodologies and will be included to increase the confidence of location and assay of nuclear materials. An adaptable, real data model is being created of the contactors of the Advanced Fuel Cycle Facility and will be analyzed using the appropriate modeling codes. This model will then be subjected to three, diversion scenarios and a figure of merit methodology will be utilized to create the operational parameters under which these diversion scenarios would be detected. This analysis for figure of merit methodology will include statistical fluctuations, operator error, and a rudimentary analysis of transient conditions. The long term goal of the project includes expansion universally over the plant, methods of detection without requiring access to proprietary information, and an evaluation of the requirements for future figure of merit methodologies.

Richard Metcalf; Jean Ragusa; Robert Bean

2008-03-01T23:59:59.000Z

131

Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power  

DOE Green Energy (OSTI)

OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study.

Brown, L.C.; Funk, J.F.; Showalter, S.K.

1999-12-15T23:59:59.000Z

132

Development of a Safeguards Approach for a Small Graphite Moderated Reactor and Associated Fuel Cycle Facilities  

E-Print Network (OSTI)

Small graphite-moderated and gas-cooled reactors have been around since the beginning of the atomic age. Though their existence in the past has been associated with nuclear weapons programs, they are capable of being used in civilian power programs. The simpler design constraints associated with this type of reactor would make them ideal for developing nations to bolster their electricity generation and help promote a greater standard of living in those nations. However, the same benefits that make this type of reactor desirable also make it suspicious to the international community as a possible means to shorten that state?s nuclear latency. If a safeguards approach could be developed for a fuel cycle featuring one of these reactors, it would ease the tension surrounding their existence and possibly lead to an increased latency through engineered barriers. The development of this safeguards approach follows a six step procedure. First, the fuel cycle was analyzed for the types of facilities found in it and how nuclear material flows between facilities. The goals of the safeguards system were established next, using the normal IAEA standards for the non-detection and false alarm probabilities. The 5 MWe Reactor was modeled for both plutonium production and maximum power capacity. Each facility was analyzed for material throughput and the processes that occur in each facility were researched. Through those processes, diversion pathways were developed to test the proposed safeguards system. Finally, each facility was divided into material balance areas and a traditional nuclear material accountancy system was set up to meet the established safeguards goals for the facility. The DPRK weapons program is a great example of the type of fuel cycle that is the problem. The three major facilities in the fuel cycle, the Fuel Fabrication Facility, the 5 MWe Reactor, and the Radiochemical Laboratory, can achieve the two goals of safeguards using traditional methods. Each facility can be adequately safeguarded using methods and practices that are relatively inexpensive and can obtain material balance periods close to the timeliness limits set forth by the IAEA. The Fuel Fabrication Facility can be safeguarded at both its current needed capacity and its full design capacity using inexpensive measurements. The material balance period needed for both capacities are reasonable. For the 5 MWe reactor, plutonium production is simulated to be 6.7 kg per year and is on the high side of estimates. The Radiochemical Laboratory can also be safeguarded at its current capacity. In fact, the timeliness goal for the facility dictates what the material balance period must be for the chosen set of detectors which make it very reasonable.

Rauch, Eric B.

2009-05-01T23:59:59.000Z

133

Safeguards Policy and Implementation | Global and Regional Solutions  

NLE Websites -- All DOE Office Websites (Extended Search)

Safeguards Policy and Implementation Group Safeguards Policy and Implementation Group This group seeks to support the international safeguards capability of the US government and its objective to strengthen the International Atomic Energy Agency's safeguards through project management of key US programs, training in international safeguards, and the analysis, formulation and development of safeguards policy and technical analyses. This group brings the NNSD capabilities in international safeguards into one cohesive group. A major aspect of the work in this group is to support the safeguards activities of the International Atomic Energy Agency (IAEA). This is critical because the IAEA faces many challenges such as essentially flat budgets, increasing work load as more nuclear facilities come on-line,

134

The evolution of information-driven safeguards  

Science Conference Proceedings (OSTI)

From the adoption of the Model Additional Protocol and integrated safeguards in the 1990s, to current International Atomic Energy Agency (IAEA) efforts to deal with cases of noncompliance, the question of how the Agency can best utilize all the information available to it remains of great interest and increasing importance. How might the concept of 'information-driven' safeguards (IDS) evolve in the future? The ability of the Agency to identify and resolve anomalies has always been important and has emerged as a core Agency function in recent years as the IAEA has had to deal with noncompliance in Iran and the Democratic People's Republic of Korea (DPRK). Future IAEA safeguards implementation should be designed with the goal of facilitating and enhancing this vital capability. In addition, the Agency should utilize all the information it possesses, including its in-house assessments and expertise, to direct its safeguards activities. At the State level, knowledge of proliferation possibilities is currently being used to guide the analytical activities of the Agency and to develop inspection plans. How far can this approach be extended? Does it apply across State boundaries? Should it dictate a larger fraction of safeguards activities? Future developments in IDS should utilize the knowledge resident within the Agency to ensure that safeguards resources flow to where they are most needed in order to address anomalies first and foremost, but also to provide greater confidence in conclusions regarding the absence of undeclared nuclear activities. The elements of such a system and related implementation issues are assessed in this paper.

Budlong-sylvester, Kory W [Los Alamos National Laboratory; Pilat, Joseph F [Los Alamos National Laboratory

2010-10-14T23:59:59.000Z

135

Reactor monitoring and safeguards using antineutrino detectors  

E-Print Network (OSTI)

Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactors, as part of International Atomic Energy Agency (IAEA) and other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway across the globe.

N. S. Bowden

2008-09-12T23:59:59.000Z

136

Reactor monitoring and safeguards using antineutrino detectors  

E-Print Network (OSTI)

Nuclear reactors have served as the antineutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Measurements made with antineutrino detectors could therefore offer an alternative means for verifying the power history and fissile inventory of a reactors, as part of International Atomic Energy Agency (IAEA) and other reactor safeguards regimes. Several efforts to develop this monitoring technique are underway across the globe.

Bowden, N S

2008-01-01T23:59:59.000Z

137

The Office of Nuclear Safeguards and Security | National Nuclear Security  

National Nuclear Security Administration (NNSA)

Safeguards and Security | National Nuclear Security Safeguards and Security | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog The Office of Nuclear Safeguards and Security Home > About Us > Our Programs > Nonproliferation > Nonproliferation & International Security > The Office of Nuclear Safeguards and Security The Office of Nuclear Safeguards and Security

138

FAQS Qualification Card - Safeguards and Security | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safeguards and Security Safeguards and Security FAQS Qualification Card - Safeguards and Security A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-SafeguardsandSecurity.docx Description Safeguards and Security Qualification Card More Documents & Publications FAQS Job Task Analyses - Safeguards and Security

139

Applications of Virtual Reality to Nuclear Safeguards  

SciTech Connect

This paper explores two potential applications of Virtual Reality (VR) to international nuclear safeguards: training and information organization and navigation. The applications are represented by two existing prototype systems, one for training nuclear weapons dismantlement and one utilizing a VR model to facilitate intuitive access to related sets of information.

Stansfield, S.

1998-11-03T23:59:59.000Z

140

The integration of process monitoring for safeguards.  

Science Conference Proceedings (OSTI)

The Separations and Safeguards Performance Model is a reprocessing plant model that has been developed for safeguards analyses of future plant designs. The model has been modified to integrate bulk process monitoring data with traditional plutonium inventory balances to evaluate potential advanced safeguards systems. Taking advantage of the wealth of operator data such as flow rates and mass balances of bulk material, the timeliness of detection of material loss was shown to improve considerably. Four diversion cases were tested including both abrupt and protracted diversions at early and late times in the run. The first three cases indicated alarms before half of a significant quantity of material was removed. The buildup of error over time prevented detection in the case of a protracted diversion late in the run. Some issues related to the alarm conditions and bias correction will need to be addressed in future work. This work both demonstrates the use of the model for performing diversion scenario analyses and for testing advanced safeguards system designs.

Cipiti, Benjamin B.; Zinaman, Owen R.

2010-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

International safeguards: Accounting for nuclear materials  

SciTech Connect

Nuclear safeguards applied by the International Atomic Energy Agency (IAEA) are one element of the non-proliferation regime'', the collection of measures whose aim is to forestall the spread of nuclear weapons to countries that do not already possess them. Safeguards verifications provide evidence that nuclear materials in peaceful use for nuclear-power production are properly accounted for. Though carried out in cooperation with nuclear facility operators, the verifications can provide assurance because they are designed with the capability to detect diversion, should it occur. Traditional safeguards verification measures conducted by inspectors of the IAEA include book auditing; counting and identifying containers of nuclear material; measuring nuclear material; photographic and video surveillance; and sealing. Novel approaches to achieve greater efficiency and effectiveness in safeguards verifications are under investigation as the number and complexity of nuclear facilities grow. These include the zone approach, which entails carrying out verifications for groups of facilities collectively, and randomization approach, which entails carrying out entire inspection visits some fraction of the time on a random basis. Both approaches show promise in particular situations, but, like traditional measures, must be tested to ensure their practical utility. These approaches are covered on this report. 15 refs., 16 figs., 3 tabs.

Fishbone, L.G.

1988-09-28T23:59:59.000Z

142

Advanced Safeguards Approaches for New Fast Reactors  

SciTech Connect

This third report in the series reviews possible safeguards approaches for new fast reactors in general, and the ABR in particular. Fast-neutron spectrum reactors have been used since the early 1960s on an experimental and developmental level, generally with fertile blanket fuels to “breed” nuclear fuel such as plutonium. Whether the reactor is designed to breed plutonium, or transmute and “burn” actinides depends mainly on the design of the reactor neutron reflector and the whether the blanket fuel is “fertile” or suitable for transmutation. However, the safeguards issues are very similar, since they pertain mainly to the receipt, shipment and storage of fresh and spent plutonium and actinide-bearing “TRU”-fuel. For these reasons, the design of existing fast reactors and details concerning how they have been safeguarded were studied in developing advanced safeguards approaches for the new fast reactors. In this regard, the design of the Experimental Breeder Reactor-II “EBR-II” at the Idaho National Laboratory (INL) was of interest, because it was designed as a collocated fast reactor with a pyrometallurgical reprocessing and fuel fabrication line – a design option being considered for the ABR. Similarly, the design of the Fast Flux Facility (FFTF) on the Hanford Site was studied, because it was a successful prototype fast reactor that ran for two decades to evaluate fuels and the design for commercial-scale fast reactors.

Durst, Philip C.; Therios, Ike; Bean, Robert; Dougan, A.; Boyer, Brian; Wallace, Rick L.; Ehinger, Michael H.; Kovacic, Don N.; Tolk, K.

2007-12-15T23:59:59.000Z

143

New Measures to Safeguard Gas Centrifuge Enrichment Plants  

SciTech Connect

As Gas Centrifuge Enrichment Plants (GCEPs) increase in separative work unit (SWU) capacity, the current International Atomic Energy Agency (IAEA) model safeguards approach needs to be strengthened. New measures to increase the effectiveness of the safeguards approach are being investigated that will be mutually beneficial to the facility operators and the IAEA. One of the key concepts being studied for application at future GCEPs is embracing joint use equipment for process monitoring of load cells at feed and withdrawal (F/W) stations. A mock F/W system was built at Oak Ridge National Laboratory (ORNL) to generate and collect F/W data from an analogous system. The ORNL system has been used to collect data representing several realistic normal process and off-normal (including diversion) scenarios. Emphasis is placed on the novelty of the analysis of data from the sensors as well as the ability to build information out of raw data, which facilitates a more effective and efficient verification process. This paper will provide a progress report on recent accomplishments and next steps.

Whitaker, Jr., James [ORNL; Garner, James R [ORNL; Whitaker, Michael [ORNL; Lockwood, Dunbar [U.S. Department of Energy, NNSA; Gilligan, Kimberly V [ORNL; Younkin, James R [ORNL; Hooper, David A [ORNL; Henkel, James J [ORNL; Krichinsky, Alan M [ORNL

2011-01-01T23:59:59.000Z

144

Implications for advanced safeguards derived from PR&PP case study results  

SciTech Connect

The proliferation resistance and physical protection (PR and PP) working group produced a case study on the Example Sodium Fast Reactor (ESFR). The ESFR is a hypothetical nuclear energy system consisting of four sodium-cooled fast reactors of medium size collocated with an on-site dry fuel storage facility and a spent fuel reprocessing facility using pyroprocessing technology. This study revealed how safeguards would be applied at such site consisting of integrated multiple fuel cycle facilities and the implications of what safeguards technology and safeguards concepts would need to be adapted and developed to safeguard successfully this Generation IV nuclear energy system concept. The major safeguards concepts driving our safeguards analysis are timeliness goals and material quantity goals. Because the fresh transuranic (TRU) fuel to be produced in the ESFR fuel fabrication facility contains plutonium, the ESFR will be reprocessing, using in the reactor, and storing material on site that will have IAEA defined 'direct-use material' in it with stringent timeliness goals and material quantity goals that drive the safeguards implementation. Specifically, the TRU fresh fuel, pyroprocessing in process material, LWR spent fuel sent to the ESFR, and TRU spent fuel will contain plutonium. This material will need to be verified at interim intervals four times per year because the irradiated direct-use material, as defined previously, has three-month timeliness goals and 8 kg material quantity goals for plutonium. The TRU in-process material is, of course, irradiated direct-use material as defined by the IAEA. Keeping the plutonium and uranium together with TRu products should provide a radiation barrier. this radiation barrier slows down the ability to reprocess the fuel. Furthermore, the reprocessing technique, if it has some intrinsic proliferation resistance, will need major modifications to be able to separate plutonium from the uranium and TRU mixture. The ESFR design should have such features in it if it is seen to have intrinsic proliferation resistance. The technical difficulty in diverting material from the ESFR is at least as strongly impacted by the adversaries overall technical capabilities as it is by the effort required to overcome those barriers intrinsic to the nuclear fuel cycle. The intrinsic proliferation resistance of the ESFR will affect how extrinsic measures in the safeguards approach for the ESFR will provide overall proliferation resistance.

Boyer, Brian D [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

145

Overview of the Facility Safeguardability Analysis (FSA) Process  

Science Conference Proceedings (OSTI)

The safeguards system of the International Atomic Energy Agency (IAEA) provides the international community with credible assurance that a State is fulfilling its nonproliferation obligations. The IAEA draws such conclusions from the evaluation of all available information. Effective and cost-efficient IAEA safeguards at the facility level are, and will remain, an important element of this “State-level” approach. Efficiently used, the Safeguards by Design (SBD) methodologies , , , now being developed can contribute to effective and cost-efficient facility-level safeguards. The Facility Safeguardability Assessment (FSA) introduced here supports SBD in three areas. 1. It describes necessary interactions between the IAEA, the State regulator, and the owner / designer of a new or modified facility to determine where SBD efforts can be productively applied, 2. It presents a screening approach intended to identify potential safeguard issues for; a) design changes to existing facilities; b) new facilities similar to existing facilities with approved safeguards approaches, and c) new designs, 3. It identifies resources (the FSA toolkit), such as good practice guides, design guidance, and safeguardability evaluation methods that can be used by the owner/designer to develop solutions for potential safeguards issues during the interactions with the State regulator and IAEA. FSA presents a structured framework for the application of the SBD tools developed in other efforts. The more a design evolves, the greater the probability that new safeguards issues could be introduced. Likewise, for first-of-a-kind facilities or research facilities that involve previously unused processes or technologies, it is reasonable to expect that a number of possible safeguards issues might exist. Accordingly, FSA is intended to help the designer and its safeguards experts identify early in the design process: • Areas where elements of previous accepted safeguards approach(es) may be applied to facility modifications or new designs • Modifications of the design that could mitigate a potential safeguards issue or facilitate a more efficient application of the safeguards approach • Possible innovative ideas for more efficient application of safeguards • The potential for changes in elements of the safeguard approach that may be required by IAEA as a result of facility design features and characteristics • Other potential concerns These issues will then be presented to the IAEA and the state regulator to be resolved in a timely manner, ensuring that the planned safeguards approach is acceptable and compatible with the facility design. The proposed approach should be validated by application to suitable facilities to assess its utility, comprehensiveness, and cost-effectiveness. The approach and example application should also be reviewed by industry to confirm the conclusions reached in the DOE review.

Bari, Robert A.; Hockert, John; Wonder, Edward F.; Johnson, Shirley J.; Wigeland, Roald; Zentner, Michael D.

2011-10-10T23:59:59.000Z

146

Safeguards and Security progress report, January--December 1989  

SciTech Connect

From January to December 1989, the Los Alamos Safeguards and Security Research and Development (R D) program carried out the activities described in the first four parts of this report: Science and Technology Base Development, Basic Systems Design, Onsite Test and Evaluation and Facility Support, and International Safeguards. For the most part, these activities were sponsored by the Department of Energy's Office of Safeguards and Security. Part 1 covers development of the basic technology essential to continuing improvements in the practice of safeguards and security. It includes our computer security R D and the activities of the DOE Center for Computer Security, which provides the basis for encouraging and disseminating this important technology. Part 2 treats activities aimed at developing methods for designing and evaluating safeguards systems, with special emphasis on the integration of the several subsystems into a real safeguards system. Part 3 describes efforts of direct assistance to the DOE and its contractors and includes consultation on materials control and accounting problems, development and demonstration of specialized techniques and instruments, and comprehensive participation in the design and demonstration of advanced safeguards systems. Part 3 also reports a series of training courses in various aspects of safeguards that makes the technology more accessible to those who must apply it. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Part 5 reports several safeguards-related activities that have sponsors other than the DOE/OSS. 87 refs., 52 figs.

Smith, D.B.; Jaramillo, G.R. (comps.)

1990-11-01T23:59:59.000Z

147

Education in Safeguards and Security Technology Meeting Challenges with Technology and Experience  

Science Conference Proceedings (OSTI)

Education and hands-on experience are crucial to ensuring a workforce of safeguards and security professionals who can meet the challenges currently faced in global nuclear safeguards and security. Global demand for nuclear energy and technology, the new Strategic Arms Reduction Treaty (START), and the cleanup of Cold War facilities have resulted in an increased need for trained safeguards and security personnel. At the same time, the global community is facing a growing shortage of experienced workers with hands-on knowledge of nuclear material processing. Limited access to operating facilities has dramatically reduced the opportunities for next-generation practitioners to obtain hands-on training experience. To address these needs, the Safeguards Technology Integration Center (STIC) at Oak Ridge National Laboratory was created as a Department of Energy User Facility to provide access both to the latest technology and to field-experienced professionals. The STIC provides real-world conditions, process equipment mock-ups, and controlled access to encapsulated radioactive materials (including highly enriched uranium and plutonium) for training and technology evaluation encompassing various techniques and skills, such as Radiation Inspection Systems, Containment and Surveillance Systems, Nondestructive Assay, Security System Performance Testing, and System Design and Analysis. The STIC facilities, laboratories, test beds, and training facilities are described along with the more notable aspects of the training program, which has included more than 1000 participants in the last four years.

Paschal, Linda J [ORNL; Chapman, Jeffrey Allen [ORNL; Rowe, Nathan C [ORNL; Stinson, Brad J [ORNL

2011-01-01T23:59:59.000Z

148

SHOCK-GENERATED VORTICITY IN THE INTERSTELLAR MEDIUM AND THE ORIGIN OF THE STELLAR INITIAL MASS FUNCTION  

SciTech Connect

Observations of the interstellar medium (ISM) and molecular clouds suggest these astrophysical flows are strongly turbulent. The main observational evidence for turbulence is the power-law energy spectrum for velocity fluctuations, E(k) {proportional_to} k {sup {alpha}}, with {alpha} in [ - 1.5, - 2.6]. The Kolmogorov scaling exponent, {alpha} = -5/3, is typical. At the same time, the observed probability distribution function (PDF) of gas densities in both the ISM as well as in molecular clouds is a log-normal distribution, which is similar to the initial mass function (IMF) that describes the distribution of stellar masses. In this paper we examine the density and velocity structure of interstellar gas traversed by curved shock waves in the kinematic limit. We demonstrate mathematically that just a few passages of curved shock waves generically produces a log-normal density PDF. This explains the ubiquity of the log-normal PDF in many different numerical simulations. We also show that subsequent interaction with a spherical blast wave generates a power-law density distribution at high densities, qualitatively similar to the Salpeter power law for the IMF. Finally, we show that a focused shock produces a downstream flow with energy spectrum exponent {alpha} = -2. Subsequent shock passages reduce this slope, achieving {alpha} {approx} -5/3 after a few passages. We argue that subsequent dissipation of energy piled up at the small scales will act to maintain the spectrum very near to the Kolomogorov value despite the action of further shocks that would tend to reduce it. These results suggest that fully developed turbulence may not be required to explain the observed energy spectrum and density PDF. On the basis of these mathematical results, we argue that the self-similar spherical blast wave arising from expanding H II regions or stellar winds from massive stars may ultimately be responsible for creating the high-mass, power-law, Salpeter-like tail on an otherwise a log-normal density PDF for gas in star-forming regions. The IMF arises from the gravitational collapse of sufficiently overdense regions within this PDF. Thus, the composite nature of the IMF-a log-normal plus power-law distribution-is shown to be a natural consequence of shock interaction and feedback from the most massive stars that form in most regions of star formation in the galaxy.

Kevlahan, N. [Department of Mathematics and Statistics, McMaster University, Hamilton, ON L8S 4K1 (Canada); Pudritz, Ralph E. [Origins Institute, McMaster University, Hamilton, ON L8S 4M1 (Canada)], E-mail: kevlahan@mcmaster.ca

2009-09-01T23:59:59.000Z

149

Safeguards and Security and Cyber Security RM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safeguards and Security and Safeguards and Security and Cyber Security Review Module March 2010 CD- -0 OFFICE O S CD-1 OF ENVIRO Standard Safeguar and Cy Rev Critical D CD-2 M ONMENTA Review Pla rds and S yber Secu view Modul Decision (CD CD March 2010 AL MANAG an (SRP) Security urity le D) Applicabili D-3 GEMENT ity CD-4 Post Ope eration Standard Review Plan, 2 nd Edition, March 2010 i FOREWORD The Standard Review Plan (SRP) 1 provides a consistent, predictable corporate review framework to ensure that issues and risks that could challenge the success of Office of Environmental Management (EM) projects are identified early and addressed proactively. The internal EM project review process encompasses key milestones established by DOE O 413.3A, Change 1, Program and Project Management for the Acquisition of Capital Assets, DOE-STD-

150

Implementation of Safeguards and Security Policy Panels  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5,2008 5,2008 MEMORANDUM FOR DISTRIBUTION FROM URITY OFFICER AND SECURITY SUBJECT: Implementation of Safeguards and Security Policy Panels The Office of Health, Safety and Security (HSS) recognizes the importance of well- conceived strategies and policies to support and communicate the security posture of the Department. In order for our security policies to properly reflect and enable Department of Energy corporate strategies, early and frequent communication between policy makers and end users is essential. As outlined in the attached HSS memo, dated December 3,2007, subject: Safeguards and Security Policy Panels, the HSS Office of Security Policy is establishing several new policy panels that will create new opportunities for communication and will include those

151

TECHNOLOGY DEVELOPMENT ON THE DUPIC SAFEGUARDS SYSTEM  

Science Conference Proceedings (OSTI)

A safeguards system has been developed since 1993 in the course of supporting a fuel cycle process to fabricate CANDU fuel with spent PWR fuel (known as Direct Use of PWR spent fuel In CANDU, DUPIC). The major safeguards technology involved here was to design and fabricate a neutron coincidence counting system for process accountability, and also an unattended continuous monitoring system in association with independent verification by the IAEA. This combined technology was to produce information of nuclear material content and to maintain knowledge of the continuity of nuclear material flow. In addition to hardware development, diagnosis software is being developed to assist data acquisition, data review, and data evaluation based on a neural network system on the IAEA C/S system.

H. KIM; H. CHA; ET AL

2001-02-01T23:59:59.000Z

152

Paper: Safeguards design for a plutonium concentrator  

Science Conference Proceedings (OSTI)

In this paper we consider the design of a nonlinear estimator to be used in conjunction with on-line detectors for a plutonium nitrate concentrator. Using a complex state-of-the-art process model to simulate 'realistic' data, we show that the estimator ... Keywords: (diversion detection), (nuclear safeguards), Kalman filter, decision theory, nonlinear filtering, nuclear plants, on-line operation, optimal filtering, state estimation

J. V. Candy; R. B. Rozsa

1980-11-01T23:59:59.000Z

153

Safeguard Requirements for Fusion Power Plants  

Science Conference Proceedings (OSTI)

Nuclear proliferation risks from magnetic fusion energy associated with access to fissile materials can be divided into three main categories: 1) clandestine production of fissile material in an undeclared facility, 2) covert production and diversion of such material in a declared and safeguarded facility, and 3) use of a declared facility in a breakout scenario, in which a state openly produces fissile material in violation of international agreements. The degree of risk in each of these categories is assessed, taking into account both state and non-state actors, and it is found that safeguards are required for fusion energy to be highly attractive from a non-proliferation standpoint. Specific safeguard requirements and R&D needs are outlined for each category of risk, and the technical capability of the ITER experiment, under construction, to contribute to this R&D is noted. A preliminary analysis indicates a potential legal pathway for fusion power systems to be brought under the Treaty for the Non-Proliferation of Nuclear Weapons. "Vertical" proliferation risks associated with tritium and with the knowledge that can be gained from inertial fusion energy R&D are outlined.

Robert J. Goldston and Alexander Glaser

2012-08-10T23:59:59.000Z

154

A Technique for Generating Idealized Initial and Boundary Conditions for the PSU–NCAR Model MM5  

Science Conference Proceedings (OSTI)

A new idealized initialization technique has been developed for the Mesoscale Model version 5 modeling system. The technique allows the specification of baroclinic disturbances that feature vertical variations of the height, temperature, and wind ...

Hui-Ya Chuang; Peter J. Sousounis

2000-08-01T23:59:59.000Z

155

Safeguards and Security Glossary - DOE M 470.4-7 | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Glossary - DOE M 470.4-7 Safeguards and Security Glossary - DOE M 470.4-7 August 26, 2005 Cancelled Safeguards and Security Glossary The Safeguards and Security Glossary contains...

156

FAQS Qualification Card - Safeguards and Security General Technical Base  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Safeguards and Security General Safeguards and Security General Technical Base FAQS Qualification Card - Safeguards and Security General Technical Base A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-SafeguardsandSecurityGTB.docx Description Safeguards and Security General Technical Base Qualification Card

157

Summary of safeguards interactions between Los Alamos and Chinese scientists  

Science Conference Proceedings (OSTI)

Los Alamos has been collaborating since 1984 with scientists from the Chinese Institute of Atomic Energy (CIAE) to develop nuclear measurement instrumentation and safeguards systems technologies that will help China support implementation of the nonproliferation treaty (NPT). To date, four Chinese scientists have visited Los Alamos, for periods of six months to two years, where they have studied nondestructive assay instrumentation and learned about safeguards systems and inspection techniques that are used by International Atomic Energy Agency (IAEA) inspectors. Part of this collaboration involves invitations from the CIAE to US personnel to visit China and interact with a larger number of Institute staff and to provide a series of presentations on safeguards to a wider audience. Typically, CIAE scientists, Beijing Institute of Nuclear Engineering (BINE) staff, and officials from the Government Safeguards Office attend the lectures. The BINE has an important role in developing the civilian nuclear power fuel cycle. BINE is designing a reprocessing plant for spent nuclear fuel from Chinese nuclear Power reactors. China signed the nonproliferation treaty in 1992 and is significantly expanding its safeguards expertise and activities. This paper describes the following: DOE support for US and Chinese interactions on safeguards; Chinese safeguards; impacts of US-China safeguards interactions; and possible future safeguards interactions.

Eccleston, G.W.

1994-04-20T23:59:59.000Z

158

Administrator D'Agostino on NNSA Nuclear Safeguards and Security...  

NLE Websites -- All DOE Office Websites (Extended Search)

NNSA Nuclear Safeguards and Security Cooperation with Kuwait | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the...

159

NGSI Safeguards by Design | National Nuclear Security Administration  

National Nuclear Security Administration (NNSA)

a project promoting international Safeguards by Design (SBD). The International Atomic Energy Agency (IAEA ) has described the SBD concept as an approach in which "international...

160

Nuclear Materials Management & Safeguards System CHANGE OF PROJECT...  

National Nuclear Security Administration (NNSA)

Nuclear Materials Management & Safeguards System CHANGE OF PROJECT NUMBER UPDATE PROJECT Project Number: Title: Date Valid: Date Deactivated: Classification Codes: Project Number:...

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Office of Nuclear Safeguards and Security | National Nuclear...  

NLE Websites -- All DOE Office Websites (Extended Search)

Apply for Our Jobs Our Jobs Working at NNSA Blog The Office of Nuclear Safeguards and Security Home > About Us > Our Programs > Nonproliferation > Nonproliferation &...

162

FAQS Reference Guide – Safeguards and Security General Technical Base  

Energy.gov (U.S. Department of Energy (DOE))

This reference guide addresses the competency statements in the July 2009 edition of DOE-STD-1123-2009, Safeguards and Security General Technical Base Qualification Standard.

163

Microsoft Word - Final Nuclear Materials Management and Safeguards...  

National Nuclear Security Administration (NNSA)

and Safeguards System (NMMSS) Users Guide-Rev. 2.0 Prepared by: Department of Energy National Nuclear Security Administration Nuclear Materials Integration - NA-73 April...

164

DOE P 470.1A, Safeguards and Security Program  

Directives, Delegations, and Requirements

The Safeguards and Security Program ensures that the Department of Energy efficiently and effectively meets all its obligations to protect Special Nuclear ...

2010-12-29T23:59:59.000Z

165

Deterring Nuclear Proliferation: The Importance of IAEA Safeguards...  

NLE Websites -- All DOE Office Websites (Extended Search)

Administration, topics covered in this new book include: The history of the non-proliferation regime A comprehensive review of the IAEA safeguards system and the Nuclear...

166

Advances toward a transportable antineutrino detector system for reactor monitoring and safeguards  

SciTech Connect

Nuclear reactors have served as the neutrino source for many fundamental physics experiments. The techniques developed by these experiments make it possible to use these very weakly interacting particles for a practical purpose. The large flux of antineutrinos that leaves a reactor carries information about two quantities of interest for safeguards: the reactor power and fissile inventory. Our SNL/LLNL collaboration has demonstrated that such antineutrino based monitoring is feasible using a relatively small cubic meter scale liquid scintillator detector at tens of meters standoff from a commercial Pressurized Water Reactor (PWR). With little or no burden on the plant operator we have been able to remotely and automatically monitor the reactor operational status (on/off), power level, and fuel burnup. The initial detector was deployed in an underground gallery that lies directly under the containment dome of an operating PWR. The gallery is 25 meters from the reactor core center, is rarely accessed by plant personnel, and provides a muon-screening effect of some 20-30 meters of water equivalent earth and concrete overburden. Unfortunately, many reactor facilities do not contain an equivalent underground location. We have therefore attempted to construct a complete detector system which would be capable of operating in an aboveground location and could be transported to a reactor facility with relative ease. A standard 6-meter shipping container was used as our transportable laboratory - containing active and passive shielding components, the antineutrino detector and all electronics, as well as climate control systems. This aboveground system was deployed and tested at the San Onofre Nuclear Generating Station (SONGS) in southern California in 2010 and early 2011. We will first present an overview of the initial demonstrations of our below ground detector. Then we will describe the aboveground system and the technological developments of the two antineutrino detectors that were deployed. Finally, some preliminary results of our aboveground test will be shown. (authors)

Reyna, D. [Sandia National Laboratories, Livermore, CA 94550 (United States); Bernstein, A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Lund, J.; Kiff, S.; Cabrera-Palmer, B. [Sandia National Laboratories, Livermore, CA 94550 (United States); Bowden, N. S.; Dazeley, S.; Keefer, G. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States)

2011-07-01T23:59:59.000Z

167

Systematic Testing of Model-Based Code Generators  

Science Conference Proceedings (OSTI)

Unlike for conventional compilers for imperative programming languages such as C or ADA, no establishedmethods for safeguarding artifacts generated by model-based code generators exist despite progress in the field of formalverification. Several test ... Keywords: Testing and Debugging

Ingo Stuermer; Mirko Conrad; Heiko Doerr; Peter Pepper

2007-09-01T23:59:59.000Z

168

DOE to Provide Nearly $8 Million to Safeguard the Nation's Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Provide Nearly 8 Million to Safeguard the Nation's Energy Infrastructure from Cyber Attacks DOE to Provide Nearly 8 Million to Safeguard the Nation's Energy Infrastructure...

169

DOE to Provide Nearly $8 Million to Safeguard the Nation's Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Million to Safeguard the Nation's Energy Infrastructure from Cyber Attacks DOE to Provide Nearly 8 Million to Safeguard the Nation's Energy Infrastructure from Cyber Attacks...

170

Development of Superconducting High-Resolution Gamma-Ray Spectrometers for Nuclear Safeguards  

E-Print Network (OSTI)

Nuclear Safeguards and Non-Proliferation. ESARDA Bulletin,Cycles: Safeguards and Non-Proliferation. KIT Scientificnuclear attribution and non-proliferation applications. In

Dreyer, Jonathan

2012-01-01T23:59:59.000Z

171

Safeguard By Design Lessons Learned from DOE Experience Integrating Safety into Design  

SciTech Connect

This paper identifies the lessons to be learned for the institutionalization of Safeguards by Design (SBD) from the Department of Energy (DOE) experience developing and implementing DOE-STD-1189-2008, Integration of Safety into the Design Process. The experience is valuable because of the similarity of the challenges of integrating safety and safeguards into the design process. The paper reviews the content and development of DOE-STD-1189-2008 from its initial concept in January 2006 to its issuance in March 2008. Lessons learned are identified in the areas of the development and structure of requirements for the SBD process; the target audience for SBD requirements and guidance, the need for a graded approach to SBD, and a possible strategy for development and implementation of SBD within DOE.

Hockert, John; Burbank, Roberta L.

2010-04-13T23:59:59.000Z

172

A Simple Candle Filter Safeguard Device  

SciTech Connect

In order to reach the highest possible efficiencies in a coal-fired turbine-based power system, the turbine should be directly fired with the products of coal utilization. Two main designs employ these turbines: those based on pressurized fluidized-bed combustors (PFBCs) and those based on integrated gasification combined cycles (IGCCs). In both designs, the suspended particulates, or dust, must be cleaned from the gas before it enters the turbine to prevent fouling and erosion of the blades. To produce the cleanest gas, barrier filters are being developed and are in commercial use. Barrier filters are composed of porous, high-temperature materials that allow the hot gas to pass but collect the dust on the surface. The three main configurations are candle, cross-flow, and tube. Both candle and tube filters have been tested extensively. They are primarily composed of coarsely porous ceramic that serves as a structural support, overlain with a thin, microporous ceramic layer o n the dirty gas side that serves as the primary filter surface. They are highly efficient at removing particulate matter from the gas stream and, because of their ceramic construction, are resistant to gas and ash corrosion. However, ceramics are brittle, and individual elements can fail, allowing the particulates to pass through the hole left by the filter element and erode the turbine. Because of the possibility of occasional filter breakage, safeguard devices (SGDs) must be employed to prevent the dust streaming through broken filters from reaching the turbine. The Energy & Environmental Research Center (EERC) safeguard device is composed of three main parts: the ceramic substrate, the adhesive coating, and the safeguard device housing. This report describes the development and laboratory testing of each of those parts as well as the bench-scale performance of both types of complete SGDs.

Hurley, J.P.; Henderson, A.K.; Swanson, M.L.

2002-09-18T23:59:59.000Z

173

Safeguards Guidance Document for Designers of Commercial Nuclear Facilities: International Nuclear Safeguards Requirements and Practices For Uranium Enrichment Plants  

Science Conference Proceedings (OSTI)

This report is the second in a series of guidelines on international safeguards requirements and practices, prepared expressly for the designers of nuclear facilities. The first document in this series is the description of generic international nuclear safeguards requirements pertaining to all types of facilities. These requirements should be understood and considered at the earliest stages of facility design as part of a new process called “Safeguards-by-Design.” This will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards verification activities. The following summarizes the requirements for international nuclear safeguards implementation at enrichment plants, prepared under the Safeguards by Design project, and funded by the U.S. Department of Energy (DOE) National Nuclear Security Administration (NNSA), Office of NA-243. The purpose of this is to provide designers of nuclear facilities around the world with a simplified set of design requirements and the most common practices for meeting them. The foundation for these requirements is the international safeguards agreement between the country and the International Atomic Energy Agency (IAEA), pursuant to the Treaty on the Non-proliferation of Nuclear Weapons (NPT). Relevant safeguards requirements are also cited from the Safeguards Criteria for inspecting enrichment plants, found in the IAEA Safeguards Manual, Part SMC-8. IAEA definitions and terms are based on the IAEA Safeguards Glossary, published in 2002. The most current specification for safeguards measurement accuracy is found in the IAEA document STR-327, “International Target Values 2000 for Measurement Uncertainties in Safeguarding Nuclear Materials,” published in 2001. For this guide to be easier for the designer to use, the requirements have been restated in plainer language per expert interpretation using the source documents noted. The safeguards agreement is fundamentally a legal document. As such, it is written in a legalese that is understood by specialists in international law and treaties, but not by most outside of this field, including designers of nuclear facilities. For this reason, many of the requirements have been simplified and restated. However, in all cases, the relevant source document and passage is noted so that readers may trace the requirement to the source. This is a helpful living guide, since some of these requirements are subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and nuclear facility operators to improve not only the effectiveness of international nuclear safeguards, but also the efficiency. As these improvements are made, the following guidelines should be updated and revised accordingly.

Robert Bean; Casey Durst

2009-10-01T23:59:59.000Z

174

State-wide performance criteria for international safeguards  

Science Conference Proceedings (OSTI)

Traditionally, the International Atomic Energy Agency (IAEA) has relied upon prescriptive criteria to guide safeguards implementation. The prospect of replacing prescriptive safeguards criteria with more flexible performance criteria would constitute a structural change in safeguards and raises several important questions. Performance criteria imply that while safeguards goals will be fixed, the means of attaining those goals will not be explicitly prescribed. What would the performance objectives be under such a system? How would they be formulated? How would performance be linked to higher level safeguards objectives? How would safeguards performance be measured State-wide? The implementation of safeguards under performance criteria would also signal a dramatic change in the manner the Agency does business. A higher degree of flexibility could, in principle, produce greater effectiveness and efficiency, but would come with a need for increased Agency responsibility in practice. To the extent that reliance on prescriptive criteria decreases, the burden of justifying actions and ensuring their transparency will rise. Would there need to be limits to safeguards implementation? What would be the basis for setting such limits? This paper addresses these and other issues and questions relating to both the formulation and the implementation of performance-based criteria.

Budlong-Sylvester, K. W. (Kory W.); Pilat, Joseph F.; Stanbro, W. D. (William D.)

2001-06-01T23:59:59.000Z

175

Nexus of technologies : international safeguards, physical protection and arms control.  

Science Conference Proceedings (OSTI)

New technologies have been, and are continuing to be, developed for Safeguards, Arms Control, and Physical Protection. Application spaces and technical requirements are evolving - Overlaps are developing. Lessons learned from IAEA's extensive experience could benefit other communities. Technologies developed for other applications may benefit Safeguards - Inherent cost benefits and improvements in procurement security processes.

Jordan, Sabina Erteza; Blair, Dianna Sue; Smartt, Heidi Anne

2010-09-01T23:59:59.000Z

176

Global Safeguards and Security Educational Center Course Offerings  

E-Print Network (OSTI)

(Nuclear) ­ Course (1 week) POC: Bill Toth, 865.675.3738, tothwj@ornl.gov Security Safeguards#12;Global Safeguards and Security Educational Center Course Offerings Basic NonDestructive Assay) POC: Bert Rollen, 865.241.4343, rollenhyjr@ornl.gov Principles of Nuclear Material Process Holdup

177

Safeguards and security status report, August 1981-January 1982  

SciTech Connect

From August 1981 through January 1982, the Los Alamos Safeguards and Security Program was involved in many activities that are described in the four parts of this report: Nuclear Facility Safeguards Support, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers those efforts of direct assistance to the Department of Energy and the Nuclear Regulatory Commission licensee facilities. This assistance varies from consultation on materials accounting problems, through development of specialized techniques and devices, to comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards helps make the technology more accessible to those who must apply it. Part 2 concerns a relatively new set of activities at Los Alamos aimed at the security of information and computer systems. The focus this period has been on furthering the development of the Computer Security Center, which provides the basis for encouraging and disseminating the emerging technology. Part 3 describes the development efforts that are essential to continued improvements in the practice of safeguards. Although these projects are properly classified as developmental, in every case they are directed ultimately at recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. In addition, enrichment plant safeguards, especially those concerning the Gaseous Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer.

Shipley, J.P. (comp.)

1982-09-01T23:59:59.000Z

178

A cumulative belief-degree approach for nuclear safeguards evaluation  

Science Conference Proceedings (OSTI)

Nuclear safeguards are a set of activities to verify that a State is living up to its international undertakings not to use nuclear programs for nuclear weapons purposes. International Atomic Energy Agency (IAEA) uses a hierarchical assessment system ... Keywords: cumulative belif degree, decision making, fuzzy linguistic terms, nuclear safeguards

Özgür Kabak; Da Ruan

2009-10-01T23:59:59.000Z

179

ORO Office Safeguards and Security Clearance Tracking System and Visitor  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Safeguards and Security Clearance Tracking System and Office Safeguards and Security Clearance Tracking System and Visitor Control System PIA, Oak Ridge Operations Office ORO Office Safeguards and Security Clearance Tracking System and Visitor Control System PIA, Oak Ridge Operations Office ORO Office Safeguards and Security Clearance Tracking System and Visitor Control System PIA, Oak Ridge Operations Office ORO Office Safeguards and Security Clearance Tracking System and Visitor Control System PIA, Oak Ridge Operations Office More Documents & Publications Occupational Medicine - Assistant PIA, Idaho National Laboratory ORO Verification of Employment Tracking System(VETS) PIA, Oak ridge Operations Office iManage Strategic Integrated Procurement Enterprise System (STRIPES) PIA, Office of Procurement and Assistance Management

180

Safeguards and nonproliferation aspects of a dry fuel recycling technology  

Science Conference Proceedings (OSTI)

Los Alamos National Laboratory undertook an independent assessment of the proliferation potentials and safeguardability of a dry fuel recycling technology, whereby spent pressurized-water reactor (PWR) fuels are used to fuel canadian deuterium uranium (CANDU) reactors. Objectives of this study included (1) the evaluation of presently available technologies that may be useful to safeguard technology options for dry fuel recycling (2) and identification of near-term and long-term research needs to develop process-specific safeguards requirements. The primary conclusion of this assessment is that like all other fuel cycle alternatives proposed in the past, the dry fuel recycle entails prolfferation risks and that there are no absolute technical fixes to eliminate such risks. This study further concludes that the proliferation risks of dry fuel recycling options are relatively minimal and presently known safeguards systems and technologies can be modified and/or adapted to meet the requirements of safeguarding such fuel recycle facilities.

Pillay, K.K.S.

1993-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Safeguards and security progress report, January-December 1985  

SciTech Connect

From January to December 1985, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Safeguards Operations, Security Development and Support, Safeguards Technology Development, and International Support. Part 1 covers efforts of direct assistance to the Department of Energy and Nuclear Regulatory Commission licensee facilities. This assistance includes consultation on materials accounting problems, development and demonstration of specialized techniques and instruments, and comprehensive participation in the design and evaluation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this period was on continuing the activities of the Center for Computer Security, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards and international safeguards for reprocessing plants required a significant portion of our resources. All of these efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments.

1987-03-01T23:59:59.000Z

182

Radiation imaging technology for nuclear materials safeguards  

SciTech Connect

Gamma-ray and neutron imaging technology is emerging as a useful tool for nuclear materials safeguards. Principal applications include improvement in accuracy for nondestructive assay of heterogeneous material (e.g., residues) and wide-area imaging of nuclear material in facilities (e.g., holdup). Portable gamma cameras with gamma-ray spectroscopy are available commercially and are being applied to holdup measurements. The technology has the potential to significantly reduce effort and exposure in holdup campaigns; and, with imaging, some of the limiting assumptions required for conventional holdup analysis can be relaxed, resulting in a more general analysis. Methods to analyze spectroscopic-imaging data to assay plutonium and uranium in processing equipment are being development. Results of holdup measurements using a commercial, portable gamma-cameras are presented. The authors are also developing fast neutron imaging techniques for NDA, search, and holdup. Fast neutron imaging provides a direct measurement of the source of neutrons and is relatively insensitive to surroundings when compared to thermal or epithermal neutron imaging. The technology is well-suited for in-process inventory measurements and verification of materials in interim storage, for which gamma-ray measurements may be inadequate due to self-shielding. Results of numerical simulations to predict the performance of fast-neutron telescopes for safeguards applications are presented.

Prettyman, T.H.; Russo, P.A.; Cheung, C.C.; Christianson, A.D.; Feldman, W.C.; Gavron, A.

1997-12-01T23:59:59.000Z

183

Applications of boron-loaded scintillating fibers as NDA tools for nuclear safeguards  

Science Conference Proceedings (OSTI)

Nuclear safeguards and nonproliferation rely on nondestructive analytical tools for prompt and noninvasive detection

Douglas R. Mayo; Norbert Ensslin; Ronald F. Grazioso; A. Sharif Heger; David J. Mercer; Michael C. Miller; Phyllis A. Russo; Martin R. Sweet

1998-01-01T23:59:59.000Z

184

Risk analysis of nuclear safeguards regulations. [Aggregated Systems Model (ASM)  

Science Conference Proceedings (OSTI)

The Aggregated Systems Model (ASM), a probabilisitic risk analysis tool for nuclear safeguards, was applied to determine benefits and costs of proposed amendments to NRC regulations governing nuclear material control and accounting systems. The objective of the amendments was to improve the ability to detect insiders attempting to steal large quantities of special nuclear material (SNM). Insider threats range from likely events with minor consequences to unlikely events with catastrophic consequences. Moreover, establishing safeguards regulations is complicated by uncertainties in threats, safeguards performance, and consequences, and by the subjective judgments and difficult trade-offs between risks and safeguards costs. The ASM systematically incorporates these factors in a comprehensive, analytical framework. The ASM was used to evaluate the effectiveness of current safeguards and to quantify the risk of SNM theft. Various modifications designed to meet the objectives of the proposed amendments to reduce that risk were analyzed. Safeguards effectiveness was judged in terms of the probability of detecting and preventing theft, the expected time to detection, and the expected quantity of SNM diverted in a year. Data were gathered in tours and interviews at NRC-licensed facilities. The assessment at each facility was begun by carefully selecting scenarios representing the range of potential insider threats. A team of analysts and facility managers assigned probabilities for detection and prevention events in each scenario. Using the ASM we computed the measures of system effectiveness and identified cost-effective safeguards modifications that met the objectives of the proposed amendments.

Al-Ayat, R.A.; Altman, W.D.; Judd, B.R.

1982-06-01T23:59:59.000Z

185

Safeguards and security progress report, January-December 1984  

SciTech Connect

From January to December 1984, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. Part 2 treats activities aimed at the security of information and computer systems. was Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in benefiting from field experiences in operating environments.

Smith, D.B. (comp.)

1986-01-01T23:59:59.000Z

186

The European Safeguards Research and Development Association Addresses Safeguards and Nonproliferation  

SciTech Connect

The renaissance of efforts to expand the use of nuclear energy requires the parallel development of a renewed and more sophisticated work force. Growth in the nuclear sector with high standard of safety, safeguards and security requires skilled staff for design, operations, inspections etc. High-quality nuclear technology educational programs are diminished from past years, and the ability of universities to attract students and to meet future staffing requirements of the nuclear industry is becoming seriously compromised. Thus, education and training in nuclear engineering and sciences is one of the cornerstones for the nuclear sector. Teaching in the nuclear field still seems strongly influenced by national history but it is time to strengthen resources and collaborate. Moreover with the current nuclear security threats it becomes critical that nuclear technology experts master the basic principles not only of safety, but also of nuclear safeguards, nonproliferation and nuclear security. In Europe the European Nuclear Education Network (ENEN) Association has established the certificate 'European Master of Science in Nuclear Engineering (EMSNE)' as the classic nuclear engineering program covering reactor operation and nuclear safety. However, it does not include courses on nonproliferation, safeguards, or dual-use technologies. The lack of education in nuclear safeguards was tackled by the European Safeguards Research and Development Association (ESARDA), through development and implementation of safeguards course modules. Since 2005 the ESARDA Working Group, called the Training and Knowledge Management Working Group, (TKMWG) has worked with the Joint Research Centre (JRC) in Ispra, Italy to organize a Nuclear Safeguards and Nonproliferation course. This five-day course is held each spring at the JRC, and continues to show increasing interest as evidenced by the positive responses of international lecturers and students. The standard set of lectures covers a broad range of subjects, including nuclear material accountancy principles, legal definitions and the regulatory base and inspection tools and techniques. This 60% core part is given by representatives from regulatory bodies (The International Atomic Energy Agency (IAEA), Institute for Radiological Protection and Nuclear Safety, Directorate General for Nuclear Energy and Transport), industry (AREVA, British Nuclear Group), and research (Stockholm University, Hamburg University, Joint Research Centre-Institute of Transuranic Elements, and Joint Research Centre-Institute for the Protection of the Citizen). The remaining part is completed with topical lectures addressed by invited lecturers, such as from Pacific Northwest National Laboratory and the IAEA addressing topics of physical protection, illicit trafficking, the Iraq case study, exercises, including satellite imagery interpretation etc. With this structure of a stable core plus a variable set of invited lectures, the course will remain sustainable and up-to-date. A syllabus provides the students a homogeneous set of information material in nuclear safeguards and nonproliferation matters at the European and international level. In this way, the ESARDA TKMWG aims to contribute to a two-fold scientific-technical and political-juridical education and training.

Janssens-Maenhout, Greet; Kusumi, R.; Daures, Pascal A.; Janssens, Willem; Dickman, Deborah A.

2010-06-16T23:59:59.000Z

187

Safeguards and security progress report, January-December 1983  

SciTech Connect

From January to December 1983, the Los Alamos Safeguards and Security Program was involved in the activities described in the first four parts of this report: Nuclear Facility Support, Security Development and Support, Safeguards Technology Development, and International Safeguards. Part 1 covers efforts of direct assistance to the Department of Energy (DOE) and Nuclear Regulatory Commission (NRC) licensee facilities. This assistance includes consultation on materials accounting problems, development of specialized techniques and instruments, and comprehensive participation in the design and implementation of advanced safeguards systems. In addition, a series of training courses in various aspects of safeguards makes the technology more accessible to those who must apply it. Part 2 treats activities aimed at the security of information and computer systems. Our focus this peiod was on continuing the activities of the Computer Security Center, which provides the basis for encouraging and disseminating this emerging technology, and on the development and demonstration of secure computer systems. Part 3 describes the broad development efforts essential to continuing improvements in the practice of safeguards. Although these projects are properly classified as developmental, they address recognized problems that commonly occur in operating facilities. Finally, Part 4 covers international safeguards activities, including both support to the International Atomic Energy Agency and bilateral exchanges. Enrichment plant safeguards, especially those concerning the Gas Centrifuge Enrichment Plant, required a significant portion of our resources. These efforts are beginning to provide substantial returns on our investment in technology transfer, not only in raising the level of safeguards effectiveness but also in our benefiting from field experiences in operating environments.

Smith, D.B. (comp.)

1984-09-01T23:59:59.000Z

188

Health physics applications of nuclear safeguards radiation monitors  

SciTech Connect

Nuclear safeguards needs fostered the development of radiation monitors whose sensitivity and microprocessor-controlled logic permit detection of small, transient increases in environmental levels of gamma radiation. While this capability was originally developed to detect the diversion of the special nuclear materials /sup 235/U and plutonium, adaptation to health physics monitoring is straigthforward. Applications of the safeguards instruments range from small, handheld instruments used to monitor laundry of salvage-bound materials to more complex systems devoted to monitoring moving vehicles at entry/exit points. In addition to these health physics applications, other new applications for safeguards instruments are being considered.

Fehlau, P.E.; Dvorak, R.F.

1984-01-01T23:59:59.000Z

189

Safeguards Approaches for Black Box Processes or Facilities  

Science Conference Proceedings (OSTI)

The objective of this study is to determine whether a safeguards approach can be developed for “black box” processes or facilities. These are facilities where a State or operator may limit IAEA access to specific processes or portions of a facility; in other cases, the IAEA may be prohibited access to the entire facility. The determination of whether a black box process or facility is safeguardable is dependent upon the details of the process type, design, and layout; the specific limitations on inspector access; and the restrictions placed upon the design information that can be provided to the IAEA. This analysis identified the necessary conditions for safeguardability of black box processes and facilities.

Diaz-Marcano, Helly; Gitau, Ernest TN; Hockert, John; Miller, Erin; Wylie, Joann

2013-09-25T23:59:59.000Z

190

Safeguards and Security Functional Area Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1-2009 1-2009 May 2009 DOE STANDARD SAFEGUARDS AND SECURITY FUNCTIONAL AREA QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1171-2009 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1171-2009 iii APPROVAL The Federal Technical Capability Panel consists of senior U.S. Department of Energy (DOE) managers responsible for overseeing the Federal Technical Capability Program. This Panel is responsible for reviewing and approving the qualification standard for Department-wide

191

FAQS Job Task Analyses - Safeguards and Security  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1171 DOE-STD-1171 Safeguards and Security FAQ Step 1 Identify and evaluate tasks - Develop a comprehensive list of tasks that define the job. o A great starting point is the list of Duties and Responsibilities from the FAQS. o Give careful thought to additional tasks that could be considered. o Don't worry about deleting tasks at this point - that is a part of the process further down. - List the tasks (and their sources, e.g., Duties and Responsibilities #1) in the chart below. - Discuss each task as a group and come to a consensus pertaining to Importance and Frequency of the task (i.e., each team member can consent to the assigned value, even if they don't exactly agree with it). - When all values have been assigned, consider as a group deleting tasks that receive

192

FAQS Qualification Card - Safeguards and Security General Technical Base  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FAQS Qualification Card - Safeguards and Security General FAQS Qualification Card - Safeguards and Security General Technical Base FAQS Qualification Card - Safeguards and Security General Technical Base A key element for the Department's Technical Qualification Programs is a set of common Functional Area Qualification Standards (FAQS) and associated Job Task Analyses (JTA). These standards are developed for various functional areas of responsibility in the Department, including oversight of safety management programs identified as hazard controls in Documented Safety Analyses (DSA). For each functional area, the FAQS identify the minimum technical competencies and supporting knowledge and skills for a typical qualified individual working in the area. FAQC-SafeguardsandSecurityGTB.docx Description Safeguards and Security General Technical Base Qualification Card

193

Memorandum, Safeguards & Security Policy Panels - February 15, 2008 |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memorandum, Safeguards & Security Policy Panels - February 15, 2008 Memorandum, Safeguards & Security Policy Panels - February 15, 2008 Memorandum, Safeguards & Security Policy Panels - February 15, 2008 February 15, 2008 As outlined in the attached HSS memo, dated December 3,2007, subject: Safeguards and Security Policy Panels, the HSS Office of Security Policy is establishing several new policy panels that will create new opportunities for communication and will include those current active groups that are now effectively promoting cominunications in theirsafeguards and security topical areas. The Office of Health, Safety and Security (HSS) recognizes the importance of well conceived strategies and policies to support and communicate the security posture of the Department. In order for our security policies to

194

Advanced integrated safeguards using front-end-triggering devices  

SciTech Connect

This report addresses potential uses of front-end-triggering devices for enhanced safeguards. Such systems incorporate video surveillance as well as radiation and other sensors. Also covered in the report are integration issues and analysis techniques.

Howell, J.A.; Whitty, W.J.

1995-12-01T23:59:59.000Z

195

Enhanced AFCI Sampling, Analysis, and Safeguards Technology Review  

SciTech Connect

The focus of this study includes the investigation of sampling technologies used in industry and their potential application to nuclear fuel processing. The goal is to identify innovative sampling methods using state of the art techniques that could evolve into the next generation sampling and analysis system for metallic elements. Sampling and analysis of nuclear fuel recycling plant processes is required both to monitor the operations and ensure Safeguards and Security goals are met. In addition, environmental regulations lead to additional samples and analysis to meet licensing requirements. The volume of samples taken by conventional means, can restrain productivity while results samples are analyzed, require process holding tanks that are sized to meet analytical issues rather than process issues (and that create a larger facility footprint), or, in some cases, simply overwhelm analytical laboratory capabilities. These issues only grow when process flowsheets propose new separations systems and new byproduct material for transmutation purposes. Novel means of streamlining both sampling and analysis are being evaluated to increase the efficiency while meeting all requirements for information. This report addresses just a part of the effort to develop and study novel methods by focusing on the sampling and analysis of aqueous samples for metallic elements. It presents an overview of the sampling requirements, including frequency, sensitivity, accuracy, and programmatic drivers, to demonstrate the magnitude of the task. The sampling and analysis system needed for metallic element measurements is then discussed, and novel options being applied to other industrial analytical needs are presented. Inductively coupled mass spectrometry instruments are the most versatile for metallic element analyses and are thus chosen as the focus for the study. Candidate novel means of process sampling, as well as modifications that are necessary to couple such instruments to introduce these samples, are discussed. A suggested path forward based on an automated microchip capillary based sampling system interfaced to the analysis spectrometer is presented. The ability to obtain micro liter volume samples coupled with remote automated means of sample tracking and transport to the instrument would greatly improve analytical efficiency while reducing both personnel exposure and radioactive waste. Application of this sampling technique to new types of mass spectrometers for selective elemental isotopic analysis could also provide significant improvements in safeguards and security analyses.

John Svoboda

2009-09-01T23:59:59.000Z

196

Influence of safeguards and fire protection on criticality safety  

SciTech Connect

There are several positive influences of safeguards and fire protection on criticality safety. Experts in each discipline must be aware of regulations and requirements of the others and work together to ensure a fault-tree design. EG and G Idaho, Inc., routinely uses an Occupancy-Use Readiness Manual to consider all aspects of criticality safety, fire protection, and safeguards. The use of the analytical tree is described.

Six, D.E.

1980-01-01T23:59:59.000Z

197

Conference Reporting Activities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Meeting on Next Generation Safeguards Through the Next Generation Safeguards Initiative, DOE and NNSA work with the International Atomic Energy Agency and its member states...

198

Safeguards and Nuclear Materials Management: A view from the DOE Chicago Operations Office  

SciTech Connect

Nuclear Materials Safeguards (also known as Material Control and Accountability or MC&A) and Nuclear Materials Management as practiced within the US Department of Energy (DOE) are separate, but related disciplines with differing goals and objectives. Safeguards and Nuclear Materials Management are closely related through the common use of transaction and inventory reporting data from the Nuclear Materials Management and Safeguards System (NMMSS). Adherence to Nuclear Materials management principals may enhance Nuclear Materials Safeguards, and has the potential to result in savings for both program and safeguards costs. Both the Safeguards and Nuclear Materials Management Programs for the Chicago Operations Office are administered by the Safeguards and Security Division, Safeguards Branch. This paper discusses Safeguards and Materials Management issues within the Chicago Operations Office, some of which relate to problems faced by the DOE complex as a whole.

Healy, F.E.; Ahlberg, C.G.

1994-07-01T23:59:59.000Z

199

Termination of Safeguards on ULWBR Material  

SciTech Connect

The Department of Energy (DOE), Office of Environmental Management, has approved the disposition of 31 metric tons of Unirradiated Light Water Breeder Reactor (ULWBR) material in canisters stored within dry wells of the Underground Fuel Storage Facility at the Idaho Nuclear Technology and Engineering Center (INTEC). This unirradiated material consists primarily of ceramic pellets of thorium oxide in stainless steel cladding, but it also contains 300 kilograms of uranium that is 98 wt% U-233. The ULWBR material was not processed at the INTEC because it was incompatible with prior chemical separation schemes. Other economical recovery options have not been identified, and expressions of interest for consolidating the material with existing projects at other DOE sites have not been received. The U-233 could be used for producing the medical isotope Actinium-225, but the proof-of-principle demonstration and follow-on pilot program have not been developed to the point of requiring production quantities of U-233. Consequently, the selected disposition of the ULWBR material was burial as Low Level Waste at the Nevada Test Site (NTS), which required terminating safeguards controls for the contained Category II quantity of Attractiveness Level D special nuclear material (SNM). The requested termination followed the twelve point evaluation criteria of the Historical Defense Program Discard Guidance and included a security analysis for evaluating the risks of theft, diversion, and radiological sabotage associated with the material. Continuity of knowledge in the book inventory was assured by documenting that the original shipper’s measurements accurately reflected the quantities of materials received and that the ULWBR materials had remained under adequate physical protection and had been subject to periodic physical inventories. The method selected for substantiating the book values as the basis for terminating safeguards was the nondestructive assay used during physical inventories. Shipping arrangements included refurbishing a licensed cask to be reused over the duration of the termination process. An accompanying batching plan and shipping schedule were developed to accommodate multiple commercial shipments of Category III quantities of SNM in the selected cask, such that all canisters would be received at NTS prior to the expiration of the nonrenewable cask license.

Ivan R. Thomas; Ernest L. Laible

2008-07-01T23:59:59.000Z

200

Corporate strategic plan for safeguards and security  

SciTech Connect

Department of Energy (DOE) safeguards and security (S and S) is a team effort, consisting of Field, National Laboratories, Program Office, and Headquarters units cooperating to support the Department`s diverse security needs. As an integral part of the nation`s security structure, the DOE S and S Program regularly supports and works in cooperation with other US Government agencies and private industry to improve the national security posture. Thus, inter- and intra-agency partnerships play an invaluable role in the continuing efforts to integrate and implement improved ways of doing business. Their Corporate Strategic Plan provides a road map to guide, track, and provide feedback for the incorporation and implementation of S and S activities within DOE. Part 1 Planning Framework, describes those overarching factors which influence the planning endeavors. Part 2, Strategic Perspective, outlines where the S and S Program has been and how they will move to the future through core competencies, changing cultural thinking, and implementing their strategies. Part 3, Strategic and Operational Integration, details critical focus areas, strategies, and success indicators designed to enhance inter-agency S and S integration and promote cooperation with external agencies. This Plan will be reviewed annually to ensure it remains supportive and fully-engaged with the nation`s and international security environments.

1997-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Lessons Learned in International Safeguards - Implementation of Safeguards at the Rokkasho Reprocessing Plant  

SciTech Connect

The focus of this report is lessons learned at the Rokkasho Reprocessing Plant (RRP). However, the subject of lessons learned for application of international safeguards at reprocessing plants includes a cumulative history of inspections starting at the West Valley (New York, U.S.A.) reprocessing plant in 1969 and proceeding through all of the efforts over the years. The RRP is the latest and most challenging application the International Atomic Energy Agency has faced. In many ways the challenges have remained the same, timely inspection and evaluation with limited inspector resources, with the continuing realization that planning and preparations can never start early enough in the life cycle of a facility. Lessons learned over the years have involved the challenges of using ongoing advances in technology and dealing with facilities with increased throughput and continuous operation. This report will begin with a review of historical developments and lessons learned. This will provide a basis for a discussion of the experiences and lessons learned from the implementation of international safeguards at RRP.

Ehinger, Michael H [ORNL; Johnson, Shirley [Tucker Creek Consulting

2010-02-01T23:59:59.000Z

202

Advanced Safeguards Approaches for New TRU Fuel Fabrication Facilities  

Science Conference Proceedings (OSTI)

This second report in a series of three reviews possible safeguards approaches for the new transuranic (TRU) fuel fabrication processes to be deployed at AFCF – specifically, the ceramic TRU (MOX) fuel fabrication line and the metallic (pyroprocessing) line. The most common TRU fuel has been fuel composed of mixed plutonium and uranium dioxide, referred to as “MOX”. However, under the Advanced Fuel Cycle projects custom-made fuels with higher contents of neptunium, americium, and curium may also be produced to evaluate if these “minor actinides” can be effectively burned and transmuted through irradiation in the ABR. A third and final report in this series will evaluate and review the advanced safeguards approach options for the ABR. In reviewing and developing the advanced safeguards approach for the new TRU fuel fabrication processes envisioned for AFCF, the existing international (IAEA) safeguards approach at the Plutonium Fuel Production Facility (PFPF) and the conceptual approach planned for the new J-MOX facility in Japan have been considered as a starting point of reference. The pyro-metallurgical reprocessing and fuel fabrication process at EBR-II near Idaho Falls also provided insight for safeguarding the additional metallic pyroprocessing fuel fabrication line planned for AFCF.

Durst, Philip C.; Ehinger, Michael H.; Boyer, Brian; Therios, Ike; Bean, Robert; Dougan, A.; Tolk, K.

2007-12-15T23:59:59.000Z

203

Microsoft Word - Final Nuclear Materials Management and Safeguards System Users Guide 2 4-3-13.docx  

National Nuclear Security Administration (NNSA)

Nuclear Materials Management and Nuclear Materials Management and Safeguards Users Guide National Nuclear Security Administration Office of Nuclear Materials Integration Office of Nuclear Materials Integration Nuclear Materials Management and Safeguards System (NMMSS) Users Guide-Rev. 2.0 Prepared by: Department of Energy National Nuclear Security Administration Nuclear Materials Integration - NA-73 April 2013 Xavier Ascanio Office of Nuclear Materials Integration Nuclear Materials Management and 73 NMMSS User Guide 2.0 April 1, 2013 Revision History Date Revision Description October 2008 1.0 Initial release April 2013 2.0 New release NMMSS User Guide 2.0 i April 1, 2013 Table of Contents Section 1 Introduction ...................................................................................................................... 1-1

204

Designing and Operating for Safeguards: Lessons Learned From the Rokkasho Reprocessing Plant (RRP)  

Science Conference Proceedings (OSTI)

This paper will address the lessons learned during the implementation of International Atomic Energy Agency (IAEA) safeguards at the Rokkasho Reprocessing Plant (RRP) which are relevant to the issue of ‘safeguards by design’. However, those lessons are a result of a cumulative history of international safeguards experiences starting with the West Valley reprocessing plant in 1969, continuing with the Barnwell plant, and then with the implementation of international safeguards at WAK in Germany and TRP in Japan. The design and implementation of safeguards at RRP in Japan is the latest and most challenging that the IAEA has faced. This paper will discuss the work leading up to the development of a safeguards approach, the design and operating features that were introduced to improve or aid in implementing the safeguards approach, and the resulting recommendations for future facilities. It will provide an overview of how ‘safeguardability’ was introduced into RRP.

Johnson, Shirley J.; Ehinger, Michael

2010-08-07T23:59:59.000Z

205

Safeguards and security research and development progress report, October 1993--September 1994  

Science Conference Proceedings (OSTI)

This report describes the activities carried out by the Los Alamos Safeguards and Security Research and Development (R&D) program from October 1993 through September 1994. The activities presented in the first part of the report were directed primarily to domestic US safeguards applications and were, for the most part, sponsored by the Department of Energy`s Office of Safeguards and Security (DOE/OSS, NN-50). The activities described in Part 2, International Safeguards, were supported by the International Safeguards Division of the Office of Arms Control and Nonproliferation (DOE/OACN, NN-40). Part 3 describes several safeguards or safeguards-related activities that have other sponsors. The final part of the report lists titles and abstracts of Los Alamos safeguards R&D reports, technical journal articles, and conference papers that were published or presented in 1994.

Smith, D.B.; Jaramillo, G.R. [comp.

1995-08-01T23:59:59.000Z

206

ELECTROCHEMICALLY-MODULATED SEPARATIONS FOR SAFEGUARDS MEASUREMENTS  

Science Conference Proceedings (OSTI)

A critical objective of materials accountability in safeguards is the accurate and timely analysis of fuel reprocessing streams to detect both abrupt and prolonged diversions of nuclear materials. For this reason both on-line nondestructive (NDA) and destructive analysis (DA) approaches are sought-after. Current methods for DA involve grab sampling and laboratory based column extractions that are costly, hazardous, and time consuming. While direct on-line gamma measurements of Pu are desirable, they are not possible due to contributions from other actinides and fission products. Researchers at Pacific Northwest National Laboratory are currently investigating electrochemically-modulated separation (EMS) as a straightforward, cost-effective technology for selective separation of Pu or U from aqueous reprocessing streams. The EMS selectivity is electrochemically controlled and results from the sorption of Pu4+ and U4+ redox states onto the anodized target electrode, allowing for selective accumulation of U or Pu from nitric acid streams to be turned “on” or “off.” It is envisioned that this technology can be utilized to isolate Pu for both NDA and DA analysis. For the NDA approach, rapid Pu analysis by gamma-ray spectroscopy could be performed after chemical clean-up of activation and fission products by EMS. Likewise, in the DA approach, EMS could be used to retain and concentrate the Pu in nanogram quantities on the electrode surface to be transported to the lab for analysis using high precision mass spectrometry. Due to the challenges associated with complex matrices, a systematic investigation of the redox-dependent accumulation of Pu using EMS was necessary, and results will be presented. Approaches to mitigate interelement effects using large surface area cells will also be discussed. The EMS chemistry and spectroscopy for Pu isolation and measurement will be presented, proof-of-principle measurements will be described, and the application of this approach for materials accountability will be discussed.

Green, Michael A.; Arrigo, Leah M.; Liezers, Martin; Orton, Christopher R.; Douglas, Matthew; Peper, Shane M.; Schwantes, Jon M.; Hazelton, Sandra G.; Duckworth, Douglas C.

2010-08-11T23:59:59.000Z

207

Nuclear safeguards research and development. Program status report, October 1980-January 1981  

Science Conference Proceedings (OSTI)

This report presents the status of the Nuclear Safeguards Research and Development Program pursued by the Energy, Chemistry-Materials Science, and Operational Security/Safeguards Divisions of the Los Alamos National Laboratory. Topics include nondestructive assay technology development and applications, international safeguards systems. Also discussed are training courses, technology transfer, analytical chemistry methods for fissionable materials safeguards, the Department of Energy Computer Security Technical Center, and operational security.

Henry, C.N. (comp.)

1981-11-01T23:59:59.000Z

208

An Inspector's Assessment of the New Model Safeguards Approach for Enrichment Plants  

SciTech Connect

This conference paper assesses the changes that are being made to the Model Safeguards Approach for Gas Centrifuge Enrichment Plants.

Curtis, Michael M.

2007-07-31T23:59:59.000Z

209

Office of Security Policy - Safeguards and Security Frequently Asked  

NLE Websites -- All DOE Office Websites (Extended Search)

Safeguards and Security Safeguards and Security New Frequently Asked Questions The following frequently asked questions (FAQs) are organized by the topical areas and offer answers to recurring questions or policy clarification requests. These entries represent the newest additions to the collection of S&S FAQs. 1. General 2. Program Planning and Management 3. Protection Program Operations 4. Information Security 5. Nuclear Material Control and Accountability General Q: Where can I find the national policies that may affect security programs I am responsible for? A: The national policies affecting DOE's safeguards and security programs are located on the Policy Information Resource tool at http://pir.pnl.gov. This collection is comprised of the most current version of each policy

210

Integrated safeguards & security for material protection, accounting, and control.  

SciTech Connect

Traditional safeguards and security design for fuel cycle facilities is done separately and after the facility design is near completion. This can result in higher costs due to retrofits and redundant use of data. Future facilities will incorporate safeguards and security early in the design process and integrate the systems to make better use of plant data and strengthen both systems. The purpose of this project was to evaluate the integration of materials control and accounting (MC&A) measurements with physical security design for a nuclear reprocessing plant. Locations throughout the plant where data overlap occurs or where MC&A data could be a benefit were identified. This mapping is presented along with the methodology for including the additional data in existing probabilistic assessments to evaluate safeguards and security systems designs.

Duran, Felicia Angelica; Cipiti, Benjamin B.

2009-10-01T23:59:59.000Z

211

End user needs for enhanced IAEA Safeguards Information Management Capabilities  

Science Conference Proceedings (OSTI)

The International Atomic Energy Agency is undertaking a program for strengthening its safeguards on the recognition that safeguards must give assurance not only of the non-diversion of declared material or that declared facilities are not being misused, but also of the absence of any undeclared nuclear activities in States which have signed comprehensive safeguards agreements with the Agency. The IAEA has determined that the detection of undeclared nuclear activities and the creation of confidence in the continuing peaceful use of declared material and facilities is largely dependent on more information being made available to the Agency and on the capability of the Agency to make more effective use of this additional information, as well as existing information.

Badalamente, R. [Pacific Northwest Lab., Richland, WA (United States); Anzelon, G. [Lawrence Livermore National Lab., CA (United States); Deland, S. [Sandia National Labs., Albuquerque, NM (United States); Whiteson, R. [Los Alamos National Lab., NM (United States)

1994-07-01T23:59:59.000Z

212

Safeguards for Uranium Extraction (UREX) +1a Process  

E-Print Network (OSTI)

As nuclear energy grows in the United States and around the world, the expansion of the nuclear fuel cycle is inevitable. All currently deployed commercial reprocessing plants are based on the Plutonium - Uranium Extraction (PUREX) process. However, this process is not implemented in the U.S. for a variety of reasons, one being that it is considered by some as a proliferation risk. The 2001 Nuclear Energy Policy report recommended that the U.S. "develop reprocessing and treatment technologies that are cleaner, more efficient, less waste-intensive, and more proliferation-resistant." The Uranium Extraction (UREX+) reprocessing technique has been developed to reach these goals. However, in order for UREX+ to be considered for commercial implementation, a safeguards approach is needed to show that a commercially sized UREX+ facility can be safeguarded to current international standards. A detailed safeguards approach for a UREX+1a reprocessing facility has been developed. The approach includes the use of nuclear material accountancy (MA), containment and surveillance (C/S) and solution monitoring (SM). Facility information was developed for a hypothesized UREX+1a plant with a throughput of 1000 Metric Tons Heavy Metal (MTHM) per year. Safeguard goals and safeguard measures to be implemented were established. Diversion and acquisition pathways were considered; however, the analysis focuses mainly on diversion paths. The detection systems used in the design have the ability to provide near real-time measurement of special fissionable material in feed, process and product streams. Advanced front-end techniques for the quantification of fissile material in spent nuclear fuel were also considered. The economic and operator costs of these systems were not considered. The analysis shows that the implementation of these techniques result in significant improvements in the ability of the safeguards system to achieve the objective of timely detection of the diversion of a significant quantity of nuclear material from the UREX+1a reprocessing facility and to provide deterrence against such diversion by early detection.

Feener, Jessica S.

2010-05-01T23:59:59.000Z

213

Working Toward Robust Process Monitoring for Safeguards Applications  

SciTech Connect

New safeguards technologies allow continuous monitoring of plant processes. Efforts to deploy these technologies, as described in a preponderance of literature, typically have consisted of case studies attempting to prove their efficacy in proof-of-principle installations. While the enhanced safeguards capabilities of continuous monitoring have been established, studies thus far have not addressed such challenges as manipulation of a system by a host nation. To prevent this and other such vulnerabilities, one technology, continuous load cell monitoring, was reviewed. This paper will present vulnerabilities as well as mitigation strategies that were identified.

Krichinsky, Alan M [ORNL; Bell, Lisa S [ORNL; Gilligan, Kimberly V [ORNL; Laughter, Mark D [ORNL; Miller, Paul [ORNL; Pickett, Chris A [ORNL; Richardson, Dave [ORNL; Rowe, Nathan C [ORNL; Younkin, James R [ORNL

2010-01-01T23:59:59.000Z

214

Considerations for Possible Light Impact of Spent Nuclear Fuel for Safeguards Measurements  

SciTech Connect

This effort is designed to be a preliminary study to determine the appropriateness of lightly contacting SNF with zirconium-based cladding, in wet storage, for the purpose of taking safeguards measurements. Contact will likely consist of an initial impact followed by a light tensile load on the exterior surface of the SNF cladding. In the past, concerns have been raised that contacting SNF cladding could result in a loss of long-term mechanical integrity due to crack initiation, uncontrolled crack propagation, and a mechanical exfoliation of the protective oxide layer. The mechanical integrity concerns are addressed with an analytic model that evaluates the threshold impact limits for degraded, but undamaged SNF cladding. Aqueous corrosion concerns, associated with exfoliation of the protective oxide layer, are addressed with a qualitative argument, focusing on the possible corrosion mechanisms of zirconium-based cladding.

Brian K. Castle; Kelly D. Ellis

2012-09-01T23:59:59.000Z

215

Report on the September 2011 Meeting of the Next Generation Safegaurds Professional Network  

SciTech Connect

The Next Generation Safeguards Professional Network (NGSPN) was established in 2009 by Oak Ridge National Laboratory targeted towards the engagement of young professionals employed in safeguards across the many national laboratories. NGSPN focuses on providing a mechanism for young safeguards professionals to connect and foster professional relationships, facilitating knowledge transfer between current safeguards experts and the next generation of experts, and acting as an entity to represent the interests of the international community of young and mid-career safeguards professionals. This is accomplished in part with a yearly meeting held at a national laboratory site. In 2011, this meeting was held at Pacific Northwest National Laboratory. This report documents the events and results of that meeting.

Gitau, Ernest TN; Benz, Jacob M.

2011-12-19T23:59:59.000Z

216

The International Safeguards Technology Base: How is the Patient Doing? An Exploration of Effective Metrics  

Science Conference Proceedings (OSTI)

The term “Technology Base” is commonly used but what does it mean? Is there a common understanding of the components that comprise a technology base? Does a formal process exist to assess the health of a given technology base? These are important questions the relevance of which is even more pressing given the USDOE/NNSA initiatives to strengthen the safeguards technology base through investments in research & development and human capital development. Accordingly, the authors will establish a high-level framework to define and understand what comprises a technology base. Potential goal-driven metrics to assess the health of a technology base will also be explored, such as linear demographics and resource availability, in the hope that they can be used to better understand and improve the health of the U.S. safeguards technology base. Finally, through the identification of such metrics, the authors will offer suggestions and highlight choices for addressing potential shortfalls. Introduction The U.S. safeguards technology base got its start almost half a century ago in the nuclear weapons program of the U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) and their predecessors: AEC & ERDA. Due to nuclear materials’ strategic importance and value, and the risk associated with the public’s and worker’s health and the potential for theft, significant investments were made to develop techniques to measure nuclear materials using both destructive assay (DA) and non-destructive assay (NDA). Major investment within the U.S. DOE Domestic Safeguards Program continued over the next three decades, resulting in continuous improvements in the state-of-the-art of these techniques. This was particularly true in the area of NDA with its ability to use gamma rays, neutrons, and heat to identify and quantify nuclear materials without the need to take direct samples of the material. Most of these techniques were commercialized and transferred to industry, opening their applications to the nuclear industry worldwide and to the International Atomic Energy Agency (IAEA).

Schanfein, Mark; Gouveia, Fernando; Crawford, Cary E.; Pickett, Chris J.; Jay, Jeffrey

2010-07-15T23:59:59.000Z

217

AUTHENTICATED SENSOR INTERFACE DEVICE FOR JOINT USE SAFEGUARDS APPLICATIONS - CONCEPTS AND CHALLENGES  

SciTech Connect

This paper will discuss the key features of the Authenticated Sensor Interface Device that collectively provide the ability to share data among a number of parties while ensuring the authentication of data and protecting both the operator’s and the IAEA’s interests. The paper will also discuss the development of the prototype, the initial testing with an accountancy scale, and future plans and challenges to implementation into the joint use and remote monitoring applications. As nuclear fuel cycle technology becomes more prevalent throughout the world and the capacity of plants increases, limited resources of the IAEA are being stretched near a breaking point. A strategy is to increase efficiency in safeguards monitoring using “joint use” equipment that will provide the facility operator process data while also providing the IAEA key safeguards data. The data, however, must be authenticated and validated to ensure the data have not been tampered with. The Authenticated Sensor Interface Device provides the capability to share data and can be a valuable component in the IAEA’s ability to collect accountancy data from scales in Uranium conversion and enrichment plants, as well as nuclear fuel fabrication plants. Likewise, the Authenticated Sensor Interface Device can be configured to accept a diverse array of input signals, ranging from analog voltage, to current, to digital interfaces and more. These modular capabilities provide the ability to collect authenticated, joint-use, data streams from various process monitoring sensors.

Poland, R.; Drayer, R.; Wilson, J.

2013-08-12T23:59:59.000Z

218

Project Report on Development of a Safeguards Approach for Pyroprocessing  

SciTech Connect

The Idaho National Laboratory has undertaken an effort to develop a standard safeguards approach for international commercial pyroprocessing facilities. This report details progress for the fiscal year 2010 effort. A component by component diversion pathway analysis has been performed, and has led to insight on the mitigation needs and equipment development needed for a valid safeguards approach. The effort to develop an in-hot cell detection capability led to the digital cloud chamber, and more importantly, the significant potential scientific breakthrough of the inverse spectroscopy algorithm, including the ability to identify energy and spatial location of gamma ray emitting sources with a single, non-complex, stationary radiation detector system. Curium measurements were performed on historical and current samples at the FCF to attempt to determine the utility of using gross neutron counting for accountancy measurements. A solid cost estimate of equipment installation at FCF has been developed to guide proposals and cost allocations to use FCF as a test bed for safeguards measurement demonstrations. A combined MATLAB and MCNPX model has been developed to perform detector placement calculations around the electrorefiner. Early harvesting has occurred wherein the project team has been requested to provide pyroprocessing technology and safeguards short courses.

Robert Bean

2010-09-01T23:59:59.000Z

219

The Los Alamos nuclear safeguards and nonproliferation technology development program  

SciTech Connect

For nearly three decades, Los Alamos National Laboratory has developed and implemented nuclear measurement technology and training in support of national and international nuclear safeguards. This paper outlines the major elements of those technologies and highlights some of the latest developments.

Smith, H.A. Jr.; Menlove, H.O.; Reilly, T.D.; Bosler, G.E.; Hakkila, E.A.; Eccleston, G.W.

1994-04-01T23:59:59.000Z

220

A Cost Effective, Integrated and Smart Radioactive Safeguard System  

E-Print Network (OSTI)

Nuclear energy is a growing field worldwide due to its wide range of applications in various walks of life. It, however, deals with radioactive materials, specifically special nuclear material, which, if misused, could result in catastrophic consequences. In order to protect this precious resource and ensure its use for the good of mankind, safeguard systems are more important than ever. Current Market solutions are wide ranged but have a large number of disadvantages, some of which include high cost, constant updates, and incomplete efforts. The rising need of a cost effective, efficient, and integrated radioactive safeguard system serves as motivation for the solution outlined in this thesis. The thesis outlines a solution structured around the three pillars of the international safeguards program, namely, visual surveillance and motion detection, containment analysis, and non-destructive analysis. The hardware around each of these pillars work together with a clean and user-friendly application to provide a secure safeguards system that is both flexible and extensible.

Singh, Harneet

2010-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Safeguards Issues at Nuclear Reactors and Enrichment Plants  

SciTech Connect

The Agency's safeguards technical objective is the timely detection of diversion of significant quantities of nuclear material from peaceful nuclear activities to the manufacture of nuclear weapons or of other nuclear explosive devices or for purposes unknown, and deterrence of such diversion by the risk of early detection.

Boyer, Brian D [Los Alamos National Laboratory

2012-08-15T23:59:59.000Z

222

The US Support Program to IAEA Safeguards Priority of Containment and Surveillance  

SciTech Connect

The United States Support Program (USSP) priority for containment and surveillance (US) focuses on maintaining or improving the reliability and cost-effectiveness of C/S systems for IAEA safeguards, expanding the number of systems that are unattended and remotely monitored, and developing verification methods that help streamline the on-site inspection process. Existing IAEA C/S systems have evolved to become complex, integrated systems, which may include active seals, nondestructive assay (NDA) instruments, video cameras, and other sensors. These systems operate autonomously. They send analytical data to IAEA headquarters where it can be reviewed. These systems present challenges to the goals of improved system performance, standardization, reliability, maintainability, documentation, and cost effectiveness. One critical lesson from past experiences is the need for cooperation and common objectives among the IAEA, the developer, and the facility operator, to create a successful, cost effective system. Recent USSP C/S activities include Rokkasho Reprocessing Plant safeguard systems, production of a new shift register, numerous vulnerability assessments of C/S systems, a conduit monitoring system which identifies tampering of IAEA conduit deployed in the field, fiber optic seal upgrades, unattended monitoring system software upgrades, next generation surveillance system which will upgrade existing camera systems, and support of the IAEA's development of the universal nondestructive assay data acquisition platform.

Diaz,R.A.

2008-06-13T23:59:59.000Z

223

The US Support Program to IAEA Safeguards Priority of Containment and Surveillance  

SciTech Connect

The United States Support Program (USSP) priority for containment and surveillance (US) focuses on maintaining or improving the reliability and cost-effectiveness of C/S systems for IAEA safeguards, expanding the number of systems that are unattended and remotely monitored, and developing verification methods that help streamline the on-site inspection process. Existing IAEA C/S systems have evolved to become complex, integrated systems, which may include active seals, nondestructive assay (NDA) instruments, video cameras, and other sensors. These systems operate autonomously. They send analytical data to IAEA headquarters where it can be reviewed. These systems present challenges to the goals of improved system performance, standardization, reliability, maintainability, documentation, and cost effectiveness. One critical lesson from past experiences is the need for cooperation and common objectives among the IAEA, the developer, and the facility operator, to create a successful, cost effective system. Recent USSP C/S activities include Rokkasho Reprocessing Plant safeguard systems, production of a new shift register, numerous vulnerability assessments of C/S systems, a conduit monitoring system which identifies tampering of IAEA conduit deployed in the field, fiber optic seal upgrades, unattended monitoring system software upgrades, next generation surveillance system which will upgrade existing camera systems, and support of the IAEA's development of the universal nondestructive assay data acquisition platform.

Diaz,R.A.

2008-06-13T23:59:59.000Z

224

POSSIBLE ROLES FOR THE INTEGRATED SAFEGUARDS EVALUATION METHODOLOGY (ISEM)  

Science Conference Proceedings (OSTI)

The Integrated Safeguards Evaluation Methodology (ISEM) is designed to be a flexible tool capable of meeting as yet undefined requirements for the evaluation of a range of integrated safeguards proposals (ISPs), irrespective of the precise scope, the author of the proposal or the level of analysis desired. Its objective as a tool is to allow the International Atomic Energy Agency (IAEA) to make informed decisions on integrated safeguards that strengthen the international safeguards system and maximize its efficiency. The ISEM can be used to evaluate generic facility or State-wide ISPs in support of integrated safeguards criteria development and to evaluate ISPs for implementation in specific states. Reflecting the interests and needs of the Agency, ISEM has been used to evaluate generic, single-facility ISPs. This role, with a hypothetical State assumed, was the basis for the March-April and September 2000 exercises undertaken to evaluate an Agency proposal for LWRs without MOX and Agency ISPs for research reactors and critical assemblies, respectively. It was also the basis for Agency evaluation of its ISP for spent-fuel storage. In a similar fashion, the methodology could be used to evaluate multiple-facility ISPs. However, the primary use of ISEM envisioned during its creation was for the evaluation of State-wide ISPs, both generic and State-specific. A simple State-level ISP was evaluated as the first illustrative application of the ISEM. A generic State-wide approach can reflect any number of real-world fuel cycles, or it might usefully be limited to considerations of a small number of representative groupings of facilities. It allows an evaluation of tradeoffs as well as optimization of cost and effectiveness in general terms. For any of these uses, and perhaps others, ISEM can help the Agency to filter and to optimize proposals, and to focus information analysis and complementary access.

J. F. PILAT

2001-06-01T23:59:59.000Z

225

Safeguards Challenges for Pebble-Bed Reactors (PBRs):Peoples Republic of China (PRC)  

SciTech Connect

The Peoples Republic of China (PRC) is operating the HTR-10 pebble-bed reactor (PBR) and is in the process of building a prototype PBR plant with two modular reactors (250-MW(t) per reactor) feeding steam to a single turbine-generator. It is likely to be the first modular hightemperature reactor to be ready for commercial deployment in the world because it is a highpriority project for the PRC. The plant design features multiple modular reactors feeding steam to a single turbine generator where the number of modules determines the plant output. The design and commercialization strategy are based on PRC strengths: (1) a rapidly growing electric market that will support low-cost mass production of modular reactor units and (2) a balance of plant system based on economics of scale that uses the same mass-produced turbine-generator systems used in PRC coal plants. If successful, in addition to supplying the PRC market, this strategy could enable China to be the leading exporter of nuclear reactors to developing countries. The modular characteristics of the reactor match much of the need elsewhere in the world. PBRs have major safety advantages and a radically different fuel. The fuel, not the plant systems, is the primary safety system to prevent and mitigate the release of radionuclides under accident conditions. The fuel consists of small (6-cm) pebbles (spheres) containing coatedparticle fuel in a graphitized carbon matrix. The fuel loading per pebble is small (~9 grams of low-enriched uranium) and hundreds of thousands of pebbles are required to fuel a nuclear plant. The uranium concentration in the fuel is an order of magnitude less than in traditional nuclear fuels. These characteristics make the fuel significantly less attractive for illicit use (weapons production or dirty bomb); but, its unusual physical form may require changes in the tools used for safeguards. This report describes PBRs, what is different, and the safeguards challenges. A series of safeguards recommendations are made based on the assumption that the reactor is successfully commercialized and is widely deployed.

Forsberg, Charles W. [Massachusetts Institute of Technology (MIT); Moses, David Lewis [ORNL

2009-11-01T23:59:59.000Z

226

Integrated Safeguards and Security Management Self-Assessment 2004  

Science Conference Proceedings (OSTI)

In 2002 Ernest Orlando Lawrence Berkeley National Laboratory deployed the first Integrated Safeguards and Security Management (ISSM) Self-Assessment process, designed to measure the effect of the Laboratory's ISSM efforts. This process was recognized by DOE as a best practice and model program for self-assessment and training. In 2004, the second Self-Assessment was launched. The cornerstone of this process was an employee survey that was designed to meet several objectives: (1) Ensure that Laboratory assets are protected. (2) Provide a measurement of the Laboratory's current security status that can be compared against the 2002 Self-Assessment baseline. (3) Educate all Laboratory staff about security responsibilities, tools, and practices. (4) Provide security staff with feedback on the effectiveness of security programs. (5) Provide line management with the information they need to make informed decisions about security. This 2004 Self Assessment process began in July 2004 with every employee receiving an information packet and instructions for completing the ISSM survey. The Laboratory-wide survey contained questions designed to measure awareness and conformance to policy and best practices. The survey response was excellent--90% of Berkeley Lab employees completed the questionnaire. ISSM liaisons from each division followed up on the initial survey results with individual employees to improve awareness and resolve ambiguities uncovered by the questionnaire. As with the 2002 survey, the Self-Assessment produced immediate positive results for the ISSM program and revealed opportunities for longer-term corrective actions. Results of the questionnaire provided information for organizational profiles and an institutional summary. The overall level of security protection and awareness was very high--often above 90%. Post-survey work by the ISSM liaisons and line management consistently led to improved awareness and metrics, as shown by a comparison of profiles at the end of phase one (August 6, 2004) and phase two (November 1, 2004). The Self-Assessment confirmed that classified information is not held or processed at Berkeley Lab. The survey results also identified areas where increased employee knowledge and awareness of Laboratory policy would be beneficial, the two most prominent being password usage and wireless network service. Line management will be able to determine additional corrective actions based on the results of the Self-Assessment. Future assessments will raise the ratings bar for some existing program elements and add new elements to stimulate further improvements in Laboratory security.

Lunford, Dan; Ramsey, Dwayne

2005-04-01T23:59:59.000Z

227

Recommended observational skills training for IAEA safeguards inspections. Final report: Recommended observational skills training for IAEA safeguards inspections  

SciTech Connect

This is the second of two reports prepared to assist the International Atomic Energy Agency (IAEA or Agency) in enhancing the effectiveness of its international safeguards inspections through inspector training in {open_quotes}Observational Skills{close_quotes}. The first (Phase 1) report was essentially exploratory. It defined Observational Skills broadly to include all appropriate cognitive, communications, and interpersonal techniques that have the potential to help IAEA safeguards inspectors function more effectively. It identified 10 specific Observational Skills components, analyzed their relevance to IAEA safeguards inspections, and reviewed a variety of inspection programs in the public and private sectors that provide training in one or more of these components. The report concluded that while it should be possible to draw upon these other programs in developing Observational Skills training for IAEA inspectors, the approaches utilized in these programs will likely require significant adaption to support the specific job requirements, policies, and practices that define the IAEA inspector`s job. The overall objective of this second (Phase 2) report is to provide a basis for the actual design and delivery of Observational Skills training to IAEA inspectors. The more specific purposes of this report are to convey a fuller understanding of the potential application of Observational Skills to the inspector`s job, describe inspector perspectives on the relevance and importance of particular Observational Skills, identify the specific Observational Skill components that are most important and relevant to enhancing safeguards inspections, and make recommendations as to Observational Skills training for the IAEA`s consideration in further developing its Safeguards training program.

Toquam, J.L.; Morris, F.A.

1994-09-01T23:59:59.000Z

228

FAQS Job Task Analyses - Safeguards and Security General Technical Base  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

for Safeguards ad Security General Technical Base FAQS for Safeguards ad Security General Technical Base FAQS August 2012 STEP 1: Job Task Analysis Worksheet for Tasks Task Source Importance Frequency #1 Understand the relationship of law (Federal and State), regulations and Departmental Directives S&S GTB FAQ 4 4 #2 Understand basic nuclear fundamentals S&S GTB FAQ 2 2 #3 Understand basic Environmental hazards, environmental laws, regulations and Departmental Directives S&S GTB FAQ 2 2 #4 Understand Safety/Health/Quality Requirements, Laws, Management Systems and Worker Safety Departmental Directives S&S GTB FAQ 2 2 #5 Understand CONOPS and Emergency Management System laws, regulations and Departmental Directives S&S GTB FAQ 3 1 #6 Understand facility safety and safety, design

229

Research helps safeguard nuclear workers worldwide - Argonne's Historical  

NLE Websites -- All DOE Office Websites (Extended Search)

Research helps safeguard nuclear workers Research helps safeguard nuclear workers worldwide About Director's Welcome Organization Achievements Highlights Fact Sheets, Brochures & Other Documents Multimedia Library Visit Argonne Work with Argonne Contact us Nuclear Energy Why Nuclear Energy? Why are some people afraid of Nuclear Energy? How do nuclear reactors work? Cheaper & Safer Nuclear Energy Helping to Solve the Nuclear Waste Problem Nuclear Reactors Nuclear Reactors Early Exploration Training Reactors Basic and Applied Science Research LWR Technology Development BORAX-III lighting Arco, Idaho (Press Release) Heavy Water and Graphite Reactors Fast Reactor Technology Integral Fast Reactor Argonne Reactor Tree CP-1 70th Anniversary CP-1 70th Anniversary Argonne's Nuclear Science and Technology Legacy Argonne's Nuclear Science and Technology Legacy

230

Criticality and safeguards at the Idaho Chemical Processing Plant  

SciTech Connect

Reprocessing of high enriched irradiated reactor fuel at the Idaho Chemical Processing Plant (ICPP) presents significant potential problems to the Criticality Safety (CS) and Safeguards and Security (S and S) Sections. Two major interactions between these sections occurs when irradiated fuel is stored and fuel is dissolved. S and S is assigned the responsibility of maintaining a centralized records and reporting system which provides detailed, timely knowledge of the location, quantity and measurement uncertainties associated with accountable nuclear material, including uranium and plutonium. The Criticality Safety Section uses this information in providing criticality safety evaluations with support analyses, inspection, field surveillance and audits to ensure criticality safety implementation. The interactions of these sections has minimized operational constraints and maximized criticality safeguards controls.

Kodman, G.P.; Wilson, R.E.

1980-01-01T23:59:59.000Z

231

Safeguards instrumentation: a computer-based catalog. Second edition  

SciTech Connect

This catalog contains entries on new developments and on items listed in BNL 51450, which have either been carried over unchanged or been updated. More than 70 entries were deleted because of either obsolescence, insufficient interest in terms of safeguards, or lack of documentable development activities in recent years. Some old listings as well as new material was consolidated into more generic entries. As in the earlier document, the emphasis is on devices and instruments that are either in field use at this time or under active development. A few items such as NDA reference materials, instrument vans and certain shipping containers are included because they are important adjuncts to optimum utilization of safeguards instrumentation. This catalog does not include devices for physical protection. As was the case with its predecessor, most of the material in this catalog originated in the US and Canada; a few contributions came from member states of the European Community.

Auerbach, C.

1985-04-01T23:59:59.000Z

232

Noble Gas Excimer Detectors for Security and Safeguards Applications  

SciTech Connect

Noble gas excimer detectors are a technology that is common in particle physics research and less common in applications for security and international safeguards. These detectors offer the capability to detect gammas with an energy resolution similar to NaI and to detect neutrons with good energy resolution as well. Depending on the noble gas selected and whether or not it is in a gaseous or liquid state, the sensitivity to gammas and neutrons can be tuned according to the needs of the application. All of this flexibility can be available at a significant cost saving over alternative technologies. This paper will review this detector technology and its applicability to security and safeguards.

Hynes, Michael V.; Lanza, Richard [Nuclear Science and Engineering Department Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Chandra, Rico; Davatz, Giovanna [Arktis Radiation Detectors, Zurich, CH (Switzerland)

2011-12-13T23:59:59.000Z

233

Review of the nuclear safeguards problem. [Proliferation; terrorism  

SciTech Connect

The issues surrounding nuclear safeguards are proliferation and terrorism. Protecting the nuclear fuel cycle against nuclear materials diversion has been the function of the NPT and the IAEA. However, because all nations have not signed the NPT and IAEA safeguarding inspections are not foolproof, the fuel cycle itself has been looked to as a possible way to alleviate concerns over proliferation. A civilian nuclear industry is not needed to produce weapon material, since research reactors can provide the necessary weapon-grade uranium or plutonium much cheaper and easier than commercial power reactors. Thus, altering the nuclear fuel cycle does not necessarily reduce the possibility of proliferation of nuclear weapons. Only strict enforcement of the NPT and of the safeguard guidelines of the IAEA can achieve nonproliferation. Changing the fuel cycle does not present terrorists from stealing highly radioactive material to be used for weapons or from sabotaging nuclear facilities. Policing a nuclear facility by using guards, alarms, barriers, and searching and screening of employees is the only way to protect against terrorism, but these actions raise questions regarding civil liberties.

Poch, L.A.; Wolsko, T.D.

1979-10-01T23:59:59.000Z

234

SAFEGUARD AND SECURE CONTROL VERIFY POLICY  

National Nuclear Security Administration (NNSA)

Summer 2013 Summer 2013 National Nuclear Security Administration ENERGY U.S. DEPARTMENT OF Mendelsohn at the NIS Helm BY ELAINE SPECHT In November 2012, Kasia Mendelsohn was formally named assistant deputy administrator (ADA) of NNSA's Office of Nonproliferation and International Security (NIS). Highlights interviewed her on May 9, 2013, to discuss some of her recent activities and near-term initiatives for NIS. K asia Mendelsohn has come up through the ranks at NNSA, starting out as a contractor in NIS, where she spent five years as an

235

Development of Superconducting High-Resolution Gamma-Ray Spectrometers for Nuclear Safeguards  

E-Print Network (OSTI)

of smuggling. Today, nuclear security is significantly morecritical importance of nuclear security, stating that thereJ. Doyle. Nuclear Safeguards, Security and Nonproliferation:

Dreyer, Jonathan

2012-01-01T23:59:59.000Z

236

Development of Superconducting High-Resolution Gamma-Ray Spectrometers for Nuclear Safeguards  

E-Print Network (OSTI)

Against the Spread of Nuclear Weapons: IAEA Safeguards indetonation of the first nuclear weapon in the desert of Newby the pursuit of nuclear weapons by violent extremists and

Dreyer, Jonathan

2012-01-01T23:59:59.000Z

237

NETL: Three Chosen to Develop "Filter Safeguards" for 21st Century...  

NLE Websites -- All DOE Office Websites (Extended Search)

Issued on August 25, 1999 Three Projects to Develop Filter Safeguard Devices For Future Power Plants The Department of Energy (DOE) has selected three organizations to develop...

238

DOE O 470.4B Admin Chg 1, Safeguards and Security Program  

Directives, Delegations, and Requirements

The order establishes responsibilities and program planning and management requirements for the Safeguards and Security Program. Admin Chg 1, dated 2-15-13.

2011-07-21T23:59:59.000Z

239

DOE G 413.3-3A, Safeguards and Security for Program and Project Management  

Directives, Delegations, and Requirements

The Guide provides a methodology for implementing the safeguards and security requirements of DOE O 413.3B. Cancels DOE G 413.3-3.

2013-08-15T23:59:59.000Z

240

Neutron Generators for Spent Fuel Assay  

SciTech Connect

The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel (SNF) assemblies with non-destructive assay (NDA). The 14 NDA techniques being studied include several that require an external neutron source: Delayed Neutrons (DN), Differential Die-Away (DDA), Delayed Gammas (DG), and Lead Slowing-Down Spectroscopy (LSDS). This report provides a survey of currently available neutron sources and their underlying technology that may be suitable for NDA of SNF assemblies. The neutron sources considered here fall into two broad categories. The term 'neutron generator' is commonly used for sealed devices that operate at relatively low acceleration voltages of less than 150 kV. Systems that employ an acceleration structure to produce ion beam energies from hundreds of keV to several MeV, and that are pumped down to vacuum during operation, rather than being sealed units, are usually referred to as 'accelerator-driven neutron sources.' Currently available neutron sources and future options are evaluated within the parameter space of the neutron generator/source requirements as currently understood and summarized in section 2. Applicable neutron source technologies are described in section 3. Commercially available neutron generators and other source options that could be made available in the near future with some further development and customization are discussed in sections 4 and 5, respectively. The pros and cons of the various options and possible ways forward are discussed in section 6. Selection of the best approach must take a number of parameters into account including cost, size, lifetime, and power consumption, as well as neutron flux, neutron energy spectrum, and pulse structure that satisfy the requirements of the NDA instrument to be built.

Ludewigt, Bernhard A

2010-12-30T23:59:59.000Z

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Defining the needs for gas centrifuge enrichment plants advanced safeguards  

Science Conference Proceedings (OSTI)

Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using nondestructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared UF{sub 6} containers used in the process of enrichment at GCEPs. In verifying declared LEU production, the inspectors also take samples for off-site destructive assay (DA) which provide accurate data, with 0.1% to 0.5% measurement uncertainty, on the enrichment of the UF{sub 6} feed, tails, and product. However, taking samples of UF{sub 6} for off-site analysis is a much more labor and resource intensive exercise for the operator and inspector. Furthermore, the operator must ship the samples off-site to the IAEA laboratory which delays the timeliness of results and interruptions to the continuity of knowledge (CofK) of the samples during their storage and transit. This paper contains an analysis of possible improvements in unattended and attended NDA systems such as process monitoring and possible on-site analysis of DA samples that could reduce the uncertainty of the inspector's measurements and provide more effective and efficient IAEA GCEPs safeguards. We also introduce examples advanced safeguards systems that could be assembled for unattended operation.

Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Ianakiev, Kiril [Los Alamos National Laboratory; Marlowe, Johnna B [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

242

Nuclear Materials Management and Safeguards System Working Group Charter  

National Nuclear Security Administration (NNSA)

DRAFT 2011 DRAFT 2011 DRAFT 2011 Nuclear Materials Management and Safeguards System Working Group Charter VERSION: 0 REVISION DATE: May 2011 Approver Name Title Signature Date DRAFT 2011 DRAFT 2011 NMMSS Working Group Charter PURPOSE The NMMSS Working Group (NWG) serves as an open forum for discussion of issues and concerns from the NMMSS User community. The Committee will provide an interface between NMMSS users, NMMSS sponsors and the NMMSS project staff. Activities may include: Identifying user needs Identifying deficiencies in reporting capabilities Recommending upgrades to software capabilities Recommending priorities for modifications Recommending enhancements to data Minimizing the reporting burden on the reporting community

243

Radiation detectors as surveillance monitors for IAEA safeguards  

Science Conference Proceedings (OSTI)

Radiation detectors used for personnel dosimetry are examined for use under IAEA Safeguards as monitors to confirm the passage or nonpassage (YES/NO) of plutonium-bearing nuclear material at barrier penetrations declared closed. In this application where backgrounds are ill defined, no advantage is found for a particular detector type because of intrinsic efficiency. Secondary considerations such as complexity, ease of tamper-proofing, and ease of readout are used to recommend specific detector types for routine monitoring and for data-base measurements. Recommendations are made for applications, data acquisition, and instrument development.

Fehlau, P.E.; Dowdy, E.J.

1980-10-01T23:59:59.000Z

244

Materials management in an internationally safeguarded fuels reprocessing plant  

Science Conference Proceedings (OSTI)

The following appendices are included: aqueous reprocessing and conversion technology, reference facilities, process design and operating features relevant to materials accounting, operator's safeguards system structure, design principles of dynamic materials accounting systems, modeling and simulation approach, optimization of measurement control, aspects of international verification problem, security and reliability of materials measurement and accounting system, estimation of in-process inventory in solvent-extraction contactors, conventional measurement techniques, near-real-time measurement techniques, isotopic correlation techniques, instrumentation available to IAEA inspectors, and integration of materials accounting and containment and surveillance. (DLC)

Hakkila, E.A.; Baker, A.L.; Cobb, D.D.

1980-04-01T23:59:59.000Z

245

Improving Transparency in the Reporting of Safeguards Implementation: FY11 Update  

SciTech Connect

In 2008, the Standing Advisory Group on Safeguards Implementation (SAGSI) indicated that the International Atomic Energy Agency's (IAEA) Safeguards Implementation Report (SIR) has not kept pace with the evolution of safeguards and provided the IAEA with a set of recommendations for improvement. The SIR is the primary mechanism for providing an overview of safeguards implementation in a given year and reporting on the annual safeguards findings and conclusions drawn by the Secretariat. As the IAEA transitions to State-level safeguards approaches, SIR reporting must adapt to reflect these evolutionary changes. This evolved report will better reflect the IAEA's transition to a more qualitative and information-driven approach, based upon State-as-a-whole considerations. This paper applies SAGSI's recommendations to the development of multiple models for an evolved SIR and finds that an SIR repurposed as a 'safeguards portal' could significantly enhance information delivery, clarity, and transparency. In addition, this paper finds that the 'portal concept' also appears to have value as a standardized information presentation and analysis platform for use by Country Officers, for continuity of knowledge purposes, and the IAEA Secretariat in the safeguards conclusion process. Accompanying this paper is a fully functional prototype of the 'portal' concept, built using commercial software and IAEA Annual Report data and available for viewing at http://safeguardsportal.pnnl.gov.

Toomey, Christopher; Odlaug, Christopher S.; Wyse, Evan T.

2011-09-30T23:59:59.000Z

246

Safeguards and security research and development: Progress report, October 1994--September 1995  

Science Conference Proceedings (OSTI)

The primary goal of the Los Alamos Safeguards and Security Technology Development Program, International Safeguards, and other Safeguards and Security Programs is to continue to be the center of excellence in the field of Safeguards and Security. This annual report for 1995 describes those scientific and engineering projects that contribute to all of the aforementioned programs. The authors have presented the information in a different format from previous annual reports. Part I is devoted to Nuclear Material Measurement Systems. Part II contains projects that are specific to Integrated Safeguards Systems. Part III highlights Safeguards Systems Effectiveness Evaluations and Part IV is a compilation of highlights from Information Assurance projects. Finally Part V highlights work on the projects at Los Alamos for International Safeguards. The final part of this annual report lists titles and abstracts of Los Alamos Safeguards and Security Technology Development reports, technical journal articles, and conference papers that were presented and published in 1995. This is the last annual report in this format. The authors wish to thank all of the individuals who have contributed to this annual report and made it so successful over the years.

Rutherford, D.R.; Henriksen, P.W. [comp.

1997-03-01T23:59:59.000Z

247

Solving nuclear safeguards evaluation problem with fuzzy multiple attribute decision making methods  

Science Conference Proceedings (OSTI)

International Atomic Energy Agency (IAEA) conducts nuclear safeguards evaluation (NSE) to verify that a State is living up to its international undertakings not to use nuclear programs for nuclear weapons purposes. In NSE, IAEA experts linguistically ... Keywords: fuzzy multiple attribute decision making, linguistic evaluation, nuclear safeguards

Özgür Kabak; Da Ruan

2009-12-01T23:59:59.000Z

248

Nuclear Energy Research Initiative (NERI): On-Line Intelligent Self-Diagnostic Monitoring for Next Generation Nuclear Plants - Phase I Annual Report  

Science Conference Proceedings (OSTI)

OAK-B135 This OSTI ID belongs to an IWO and is being released out of the system. The Program Manager Rebecca Richardson has confirmed that all reports have been received. The objective of this project is to design and demonstrate the operation of the real-time intelligent self-diagnostic and prognostic system for next generation nuclear power plant systems. This new self-diagnostic technology is titled, ''On-Line Intelligent Self-Diagnostic Monitoring System'' (SDMS). This project provides a proof-of-principle technology demonstration for SDMS on a pilot plant scale service water system, where a distributed array of sensors is integrated with active components and passive structures typical of next generation nuclear power reactor and plant systems. This project employs state-of-the-art sensors, instrumentation, and computer processing to improve the monitoring and assessment of the power reactor system and to provide diagnostic and automated prognostics capabilities.

L. J. Bond; S. R. Doctor; R. W. Gilbert; D. B. Jarrell; F. L. Greitzer; R. J. Meador

2000-09-01T23:59:59.000Z

249

Evolution of Safeguards over Time: Past, Present, and Projected Facilities, Material, and Budget  

Science Conference Proceedings (OSTI)

This study examines the past trends and evolution of safeguards over time and projects growth through 2030. The report documents the amount of nuclear material and facilities under safeguards from 1970 until present, along with the corresponding budget. Estimates for the future amount of facilities and material under safeguards are made according to non-nuclear-weapons states’ (NNWS) plans to build more nuclear capacity and sustain current nuclear infrastructure. Since nuclear energy is seen as a clean and economic option for base load electric power, many countries are seeking to either expand their current nuclear infrastructure, or introduce nuclear power. In order to feed new nuclear power plants and sustain existing ones, more nuclear facilities will need to be built, and thus more nuclear material will be introduced into the safeguards system. The projections in this study conclude that a zero real growth scenario for the IAEA safeguards budget will result in large resource gaps in the near future.

Kollar, Lenka; Mathews, Caroline E.

2009-07-01T23:59:59.000Z

250

LANL Safeguards and Security Assurance Program. Revision 6  

Science Conference Proceedings (OSTI)

The Safeguards and Security (S and S) Assurance Program provides a continuous quality improvement approach to ensure effective, compliant S and S program implementation throughout the Los Alamos National Laboratory. Any issues identified through the various internal and external assessments are documented, tracked and closed using the Safeguards and Security Issue Management Program. The Laboratory utilizes an integrated S and S systems approach to protect US Department of Energy (DOE) interests from theft or diversion of special nuclear material (SNM), sabotage, espionage, loss or theft of classified/controlled matter or government property, and other hostile acts that may cause unacceptable impacts on national security, health and safety of employees and the public, and the environment. This document explains the basis, scope, and conduct of the S and S process to include: self-assessments, issue management, risk assessment, and root cause analysis. It also provides a discussion of S and S topical areas, roles and responsibilities, process flow charts, minimum requirements, methodology, terms, and forms.

NONE

1995-04-03T23:59:59.000Z

251

Safeguards and Security Technology Development Directory. FY 1993  

SciTech Connect

The Safeguards and Security Technology Development Directory is published annually by the Office of Safeguards and Security (OSS) of the US Department of Energy (DOE), and is Intended to inform recipients of the full scope of the OSS R&D program. It is distributed for use by DOE headquarters personnel, DOE program offices, DOE field offices, DOE operating contractors, national laboratories, other federal agencies, and foreign governments. Chapters 1 through 7 of the Directory provide general information regarding the Technology Development Program, including the mission, program description, organizational roles and responsibilities, technology development lifecycle, requirements analysis, program formulation, the task selection process, technology development infrastructure, technology transfer activities, and current research and development tasks. These chapters are followed by a series of appendices which contain more specific information on aspects of the Program. Appendix A is a summary of major technology development accomplishments made during FY 1992. Appendix B lists S&S technology development reports issued during FY 1992 which reflect work accomplished through the OSS Technology Development Program and other relevant activities outside the Program. Finally, Appendix C summarizes the individual task statements which comprise the FY 1993 Technology Development Program.

1993-06-01T23:59:59.000Z

252

Fully integrated safeguards and security for reprocessing plant monitoring.  

SciTech Connect

Nuclear fuel reprocessing plants contain a wealth of plant monitoring data including material measurements, process monitoring, administrative procedures, and physical protection elements. Future facilities are moving in the direction of highly-integrated plant monitoring systems that make efficient use of the plant data to improve monitoring and reduce costs. The Separations and Safeguards Performance Model (SSPM) is an analysis tool that is used for modeling advanced monitoring systems and to determine system response under diversion scenarios. This report both describes the architecture for such a future monitoring system and present results under various diversion scenarios. Improvements made in the past year include the development of statistical tests for detecting material loss, the integration of material balance alarms to improve physical protection, and the integration of administrative procedures. The SSPM has been used to demonstrate how advanced instrumentation (as developed in the Material Protection, Accounting, and Control Technologies campaign) can benefit the overall safeguards system as well as how all instrumentation is tied into the physical protection system. This concept has the potential to greatly improve the probability of detection for both abrupt and protracted diversion of nuclear material.

Duran, Felicia Angelica; Ward, Rebecca; Cipiti, Benjamin B.; Middleton, Bobby D.

2011-10-01T23:59:59.000Z

253

Solar America Initiative | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Solar America Initiative. Solar America Initiative More Documents & Publications Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. Low Cost High...

254

Development and Evaluation of a Safeguards System Concept for a Pebble-Fueled High Temperature Gas-cooled Reactor  

E-Print Network (OSTI)

Pebble-fueled high temperature gas-cooled reactor (HTGR) technology was first developed by the Federal Republic of Germany in the 1950s. More recently, the design has been embraced by the People's Republic of China and the Republic of South Africa. Unlike light water reactors that generate heat from fuel assemblies comprised of fuel rods, pebble-fueled HTGRs utilize thousands of 60-mm diameter fuel spheres (pebbles) comprised of thousands of TRISO particles. As this reactor type is deployed across the world, adequate methods for safeguarding the reactor must be developed. Current safeguards methods for the pebble-fueled HTGR focus on extensive, redundant containment and surveillance (C/S) measures or a combination of item-type and bulk-type material safeguards measures to deter and detect the diversion of fuel pebbles. The disadvantages to these approaches are the loss of continuity of knowledge (CoK) when C/S systems fail, or are compromised, and the introduction of material unaccounted for (MUF). Either vulnerability can be exploited by an adversary to divert fuel pebbles from the reactor system. It was determined that a solution to maintaining CoK is to develop a system to identify each fuel pebble that is inserted and removed from the reactor. Work was performed to develop and evaluate the use of inert microspheres placed in each fuel pebble, whose random placement could be used as a fingerprint to identify the fuel pebble. Ultrasound imaging of 1 mm zirconium oxide microspheres was identified as a possible imaging system and microsphere material for the new safeguards system concept. The system concept was evaluated, and it was found that a minimum of three microspheres are necessary to create enough random fingerprints for 10,000,000 pebbles. It was also found that, over the lifetime of the reactor, less than 0.01% of fuel pebbles can be expected to have randomly the same microsphere fingerprint. From an MCNP 5.1 model, it was determined that less than fifty microspheres in each pebble will have no impact on the reactivity or temperature coefficient of reactivity of the reactor system. Finally, using an ultrasound system it was found that ultrasound waves can penetrate thin layers of graphite to image the microsphere fingerprint.

Gitau, Ernest Travis Ngure

2011-08-01T23:59:59.000Z

255

DOE/DHS INDUSTRIAL CONTROL SYSTEM CYBER SECURITY PROGRAMS: A MODEL FOR USE IN NUCLEAR FACILITY SAFEGUARDS AND SECURITY  

SciTech Connect

Many critical infrastructure sectors have been investigating cyber security issues for several years especially with the help of two primary government programs. The U.S. Department of Energy (DOE) National SCADA Test Bed and the U.S. Department of Homeland Security (DHS) Control Systems Security Program have both implemented activities aimed at securing the industrial control systems that operate the North American electric grid along with several other critical infrastructure sectors (ICS). These programs have spent the last seven years working with industry including asset owners, educational institutions, standards and regulating bodies, and control system vendors. The programs common mission is to provide outreach, identification of cyber vulnerabilities to ICS and mitigation strategies to enhance security postures. The success of these programs indicates that a similar approach can be successfully translated into other sectors including nuclear operations, safeguards, and security. The industry regulating bodies have included cyber security requirements and in some cases, have incorporated sets of standards with penalties for non-compliance such as the North American Electric Reliability Corporation Critical Infrastructure Protection standards. These DOE and DHS programs that address security improvements by both suppliers and end users provide an excellent model for nuclear facility personnel concerned with safeguards and security cyber vulnerabilities and countermeasures. It is not a stretch to imagine complete surreptitious collapse of protection against the removal of nuclear material or even initiation of a criticality event as witnessed at Three Mile Island or Chernobyl in a nuclear ICS inadequately protected against the cyber threat.

Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

2011-07-01T23:59:59.000Z

256

U.S. Department of Energy Office of Inspector General report on audit of the Department of Energy`s Site Safeguards and Security Plans  

Science Conference Proceedings (OSTI)

The Department of Energy (Department) is required to protect its nuclear facilities from unauthorized access and theft, diversion, or destruction of special nuclear materials such as plutonium and uranium-235. The steps taken by the field sites to meet these requirements are outlined in a document entitled the ``Site Safeguards and Security Plan`` (SSSP). The authors initiated the audit at the request of the Office of Nonproliferation and National Security to evaluate the progress made in the SSSP process. The audit was performed to determine whether SSSP guidance was used as policy to evaluate and approve the site plans and whether new security requirements established by the guidance were justified. Of the five locations visited, three had identified facilities that would be pushed above the Office of Safeguards and Security`s acceptable level of low risk when new security (consequence) values were incorporated. Each of the sites will need to devise and install additional compensatory measures because of the increase in consequence values. The authors recommended that the Office of Nonproliferation and National Security discontinue using guidance as policy for evaluation, approval, and concurrence of Site Safeguards and Security Plans until they had been formally coordinated and concurred on by program and field elements. They also recommended that all proposed policy changes and guidance, when used as policy, be coordinated with affected program and field offices through the Department`s Directives System.

NONE

1995-12-01T23:59:59.000Z

257

Termination of Safeguards for Accountable Nuclear Materials at the Idaho National Laboratory  

SciTech Connect

Termination of safeguards ends requirements of Nuclear Material Control and Accountability (MC&A) and thereby removes the safeguards basis for applying physical protection requirements for theft and diversion of nuclear material, providing termination requirements are met as described. Department of Energy (DOE) M 470.4 6 (Nuclear Material Control and Accountability [8/26/05]) stipulates: 1. Section A, Chapter I (1)( q) (1): Safeguards can be terminated on nuclear materials provided the following conditions are met: (a) 'If the material is special nuclear material (SNM) or protected as SNM, it must be attractiveness level E and have a measured value.' (b) 'The material has been determined by DOE line management to be of no programmatic value to DOE.' (c) 'The material is transferred to the control of a waste management organization where the material is accounted for and protected in accordance with waste management regulations. The material must not be collocated with other accountable nuclear materials.' Requirements for safeguards termination depend on the safeguards attractiveness levels of the material. For attractiveness level E, approval has been granted from the DOE Idaho Operations Office (DOE ID) to Battelle Energy Alliance, LLC (BEA) Safeguards and Security (S&S). In some cases, it may be necessary to dispose of nuclear materials of attractiveness level D or higher. Termination of safeguards for such materials must be approved by the Departmental Element (this is the DOE Headquarters Office of Nuclear Energy) after consultation with the Office of Security.

Michael Holzemer; Alan Carvo

2012-04-01T23:59:59.000Z

258

The US Support Program to IAEA Safeguards Priority of Training and Human Resources  

SciTech Connect

The U.S. Support Program to IAEA Safeguards (USSP) priority of training and human resources is aimed at providing the Department of Safeguards with an appropriate mixture of regular staff and extrabudgetary experts who are qualified to meet the IAEA's technical needs and to provide personnel with appropriate instruction to improve the technical basis and specific skills needed to perform their job functions. The equipment and methods used in inspection activities are unique, complex, and evolving. New and experienced safeguards inspectors need timely and effective training to perform required tasks and to learn new skills prescribed by new safeguards policies or agreements. The role of the inspector has changed from that of strictly an accountant to include that of a detective. New safeguards procedures are being instituted, and therefore, experienced inspectors must be educated on these new procedures. The USSP also recognizes the need for training safeguards support staff, particularly those who maintain and service safeguards equipment (SGTS), and those who perform information collection and analysis (SGIM). The USSP is committed to supporting the IAEA with training to ensure the effectiveness of all staff members and will continue to offer its assistance in the development and delivery of basic, refresher, and advanced training courses. This paper will discuss the USSP ongoing support in the area of training and IAEA staffing.

Queirolo,A.

2008-06-13T23:59:59.000Z

259

The US Support Program to IAEA Safeguards Priority of Training and Human Resources  

SciTech Connect

The U.S. Support Program to IAEA Safeguards (USSP) priority of training and human resources is aimed at providing the Department of Safeguards with an appropriate mixture of regular staff and extrabudgetary experts who are qualified to meet the IAEA's technical needs and to provide personnel with appropriate instruction to improve the technical basis and specific skills needed to perform their job functions. The equipment and methods used in inspection activities are unique, complex, and evolving. New and experienced safeguards inspectors need timely and effective training to perform required tasks and to learn new skills prescribed by new safeguards policies or agreements. The role of the inspector has changed from that of strictly an accountant to include that of a detective. New safeguards procedures are being instituted, and therefore, experienced inspectors must be educated on these new procedures. The USSP also recognizes the need for training safeguards support staff, particularly those who maintain and service safeguards equipment (SGTS), and those who perform information collection and analysis (SGIM). The USSP is committed to supporting the IAEA with training to ensure the effectiveness of all staff members and will continue to offer its assistance in the development and delivery of basic, refresher, and advanced training courses. This paper will discuss the USSP ongoing support in the area of training and IAEA staffing.

Queirolo,A.

2008-06-13T23:59:59.000Z

260

Safety/safeguards interactions during safety-related emergencies at Nuclear Power Reactor Facilities  

Science Conference Proceedings (OSTI)

This report contains an analysis of the safety/safeguards interactions that could occur during safety-related emergencies at licensed nuclear power reactors, and the extent to which these interactions are addressed in existing or proposed NRC guidance. The safety/safeguards interaction during a series of postulated emergencies was systematically examined to identify any potential performance deficiencies or conflicts between the Operations (safety) and Security (safeguards) organizations. This examination included the impacts of coordination with off-site emergency response personnel. Duties, responsibilities, optimal methods, and procedural actions inherent in these interactions were explored.

Moul, D.A.; Pilgrim, M.K.; Schweizer, R.L.; McEwen, J.E. Jr.

1985-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Safeguards-by-Design: Guidance for Independent Spent Fuel Dry Storage Installations (ISFSI)  

SciTech Connect

This document summarizes the requirements and best practices for implementing international nuclear safeguards at independent spent fuel storage installations (ISFSIs), also known as Away-from- Reactor (AFR) storage facilities. These installations may provide wet or dry storage of spent fuel, although the safeguards guidance herein focuses on dry storage facilities. In principle, the safeguards guidance applies to both wet and dry storage. The reason for focusing on dry independent spent fuel storage installations is that this is one of the fastest growing nuclear installations worldwide. Independent spent fuel storage installations are typically outside of the safeguards nuclear material balance area (MBA) of the reactor. They may be located on the reactor site, but are generally considered by the International Atomic Energy Agency (IAEA) and the State Regulator/SSAC to be a separate facility. The need for this guidance is becoming increasingly urgent as more and more nuclear power plants move their spent fuel from resident spent fuel ponds to independent spent fuel storage installations. The safeguards requirements and best practices described herein are also relevant to the design and construction of regional independent spent fuel storage installations that nuclear power plant operators are starting to consider in the absence of a national long-term geological spent fuel repository. The following document has been prepared in support of two of the three foundational pillars for implementing Safeguards-by-Design (SBD). These are: i) defining the relevant safeguards requirements, and ii) defining the best practices for meeting the requirements. This document was prepared with the design of the latest independent dry spent fuel storage installations in mind and was prepared specifically as an aid for designers of commercial nuclear facilities to help them understand the relevant international requirements that follow from a country’s safeguards agreement with the IAEA. If these requirements are understood at the earliest stages of facility design, it will help eliminate the costly retrofit of facilities that has occurred in the past to accommodate nuclear safeguards, and will help the IAEA implement nuclear safeguards worldwide, especially in countries building their first nuclear facilities. It is also hoped that this guidance document will promote discussion between the IAEA, State Regulator/SSAC, Project Design Team, and Facility Owner/Operator at an early stage to ensure that new ISFSIs will be effectively and efficiently safeguarded. This is intended to be a living document, since the international nuclear safeguards requirements may be subject to revision over time. More importantly, the practices by which the requirements are met are continuously modernized by the IAEA and facility operators for greater efficiency and cost effectiveness. As these improvements are made, it is recommended that the subject guidance document be updated and revised accordingly.

Trond Bjornard; Philip C. Durst

2012-05-01T23:59:59.000Z

262

Initiative Title  

Science Conference Proceedings (OSTI)

... One-way flow of electricity •Centralized, bulk generation, mainly coal and natural gas in US ... Coal, nuclear, hydro, bulk renewables ...

2013-04-23T23:59:59.000Z

263

Safeguards Guidance for Prismatic Fueled High Temperature Gas Reactors (HTGR)  

National Nuclear Security Administration (NNSA)

5) 5) August 2012 Guidance for High Temperature Gas Reactors (HTGRs) with Prismatic Fuel INL/CON-12-26130 Revision 0 Safeguards-by-Design: Guidance for High Temperature Gas Reactors (HTGRs) With Prismatic Fuel Philip Casey Durst (INL Consultant) August 2012 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product,

264

Safeguards and Security General Technical Base Qualification Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

23-2009 23-2009 July 2009 DOE STANDARD SAFEGUARDS AND SECURITY GENERAL TECHNICAL BASE QUALIFICATION STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1123-2009 ii This document is available on the Department of Energy Technical Standards Program Web Site at http://www.hss.energy.gov/nuclearsafety/techstds/ DOE-STD-1123-2009 iii APPROVAL The Federal Technical Capability Panel consists of senior U.S. Department of Energy (DOE) managers responsible for overseeing the Federal Technical Capability Program. This Panel is responsible for reviewing and approving the qualification standard for Department-wide

265

The uranium cylinder assay system for enrichment plant safeguards  

Science Conference Proceedings (OSTI)

Safeguarding sensitive fuel cycle technology such as uranium enrichment is a critical component in preventing the spread of nuclear weapons. A useful tool for the nuclear materials accountancy of such a plant would be an instrument that measured the uranium content of UF{sub 6} cylinders. The Uranium Cylinder Assay System (UCAS) was designed for Japan Nuclear Fuel Limited (JNFL) for use in the Rokkasho Enrichment Plant in Japan for this purpose. It uses total neutron counting to determine uranium mass in UF{sub 6} cylinders given a known enrichment. This paper describes the design of UCAS, which includes features to allow for unattended operation. It can be used on 30B and 48Y cylinders to measure depleted, natural, and enriched uranium. It can also be used to assess the amount of uranium in decommissioned equipment and waste containers. Experimental measurements have been carried out in the laboratory and these are in good agreement with the Monte Carlo modeling results.

Miller, Karen A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Rael, Carlos D [Los Alamos National Laboratory; Iwamoto, Tomonori [JNFL; Tamura, Takayuki [JNFL; Aiuchi, Syun [JNFL

2010-01-01T23:59:59.000Z

266

Safeguards Education and Training: Short Term Supply vs. Demand  

SciTech Connect

Much has been written and discussed in the past several years about the effect of the aging nuclear workforce on the sustainability of the U.S. safeguards and security infrastructure. This paper discusses the 10-15 year supply and demand forecast for nuclear material control and accounting specialists. The demand side of the review includes control and accounting of the materials at U.S. DOE and NRC facilities, and the federal oversight of those MC&A programs. The cadre of experts referred to as 'MC&A Specialists' available to meet the demand goes beyond domestic MC&A to include international programs, regulatory and inspection support, and so on.

Mathews, Carrie E.; Crawford, Cary E.

2004-07-16T23:59:59.000Z

267

Integrating Safeguards into the Pit Disassembly and Conversion Facility  

SciTech Connect

In September 2000, the United States and the Russian Federation entered into an agreement which stipulates each country will irreversibly transform 34 metric tons of weapons-grade plutonium into material which could not be used for weapon purposes. Supporting the Department of Energy's (DOE) program to dispose of excess nuclear materials, the Pit Disassembly and Conversion Facility (PDCF) is being designed and constructed to disassemble the weapon ''pits'' and convert the nuclear material to an oxide form for fabrication into reactor fuel at the separate Mixed Oxide Fuel Fabrication Facility. The PDCF design incorporates automation to the maximum extent possible to facilitate material safeguards, reduce worker dose, and improve processing efficiency. This includes provisions for automated guided vehicle movements for shipping containers, material transport via automated conveyor between processes, remote process control monitoring, and automated Nondestructive Assay product systems.

Clark, T.G.

2002-05-28T23:59:59.000Z

268

Nuclear Reactor Safeguards and Monitoring with Antineutrino Detectors  

E-Print Network (OSTI)

Cubic-meter-sized antineutrino detectors can be used to non-intrusively, robustly and automatically monitor and safeguard a wide variety of nuclear reactor types, including power reactors, research reactors, and plutonium production reactors. Since the antineutrino spectra and relative yields of fissioning isotopes depend on the isotopic composition of the core, changes in composition can be observed without ever directly accessing the core itself. Information from a modest-sized antineutrino detector, coupled with the well-understood principles that govern the core's evolution in time, can be used to determine whether the reactor is being operated in an illegitimate way. A group at Sandia is currently constructing a one cubic meter antineutrino detector at the San Onofre reactor site in California to demonstrate these principles.

Adam Bernstein; Yifang Wang; Giorgio Gratta; Todd West

2001-08-01T23:59:59.000Z

269

Secure Video Surveillance System (SVSS) for unannounced safeguards inspections.  

Science Conference Proceedings (OSTI)

The Secure Video Surveillance System (SVSS) is a collaborative effort between the U.S. Department of Energy (DOE), Sandia National Laboratories (SNL), and the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC). The joint project addresses specific requirements of redundant surveillance systems installed in two South American nuclear facilities as a tool to support unannounced inspections conducted by ABACC and the International Atomic Energy Agency (IAEA). The surveillance covers the critical time (as much as a few hours) between the notification of an inspection and the access of inspectors to the location in facility where surveillance equipment is installed. ABACC and the IAEA currently use the EURATOM Multiple Optical Surveillance System (EMOSS). This outdated system is no longer available or supported by the manufacturer. The current EMOSS system has met the project objective; however, the lack of available replacement parts and system support has made this system unsustainable and has increased the risk of an inoperable system. A new system that utilizes current technology and is maintainable is required to replace the aging EMOSS system. ABACC intends to replace one of the existing ABACC EMOSS systems by the Secure Video Surveillance System. SVSS utilizes commercial off-the shelf (COTS) technologies for all individual components. Sandia National Laboratories supported the system design for SVSS to meet Safeguards requirements, i.e. tamper indication, data authentication, etc. The SVSS consists of two video surveillance cameras linked securely to a data collection unit. The collection unit is capable of retaining historical surveillance data for at least three hours with picture intervals as short as 1sec. Images in .jpg format are available to inspectors using various software review tools. SNL has delivered two SVSS systems for test and evaluation at the ABACC Safeguards Laboratory. An additional 'proto-type' system remains at SNL for software and hardware testing. This paper will describe the capabilities of the new surveillance system, application and requirements, and the design approach.

Galdoz, Erwin G. (Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC), Rio de Janeiro, Brazil); Pinkalla, Mark

2010-09-01T23:59:59.000Z

270

The new geospatial tools: global transparency enhancing safeguards verification  

Science Conference Proceedings (OSTI)

This paper focuses on the importance and potential role of the new, freely available, geospatial tools for enhancing IAEA safeguards and how, together with commercial satellite imagery, they can be used to promote 'all-source synergy'. As additional 'open sources', these new geospatial tools have heralded a new era of 'global transparency' and they can be used to substantially augment existing information-driven safeguards gathering techniques, procedures, and analyses in the remote detection of undeclared facilities, as well as support ongoing monitoring and verification of various treaty (e.g., NPT, FMCT) relevant activities and programs. As an illustration of how these new geospatial tools may be applied, an original exemplar case study provides how it is possible to derive value-added follow-up information on some recent public media reporting of a former clandestine underground plutonium production complex (now being converted to a 'Tourist Attraction' given the site's abandonment by China in the early 1980s). That open source media reporting, when combined with subsequent commentary found in various Internet-based Blogs and Wikis, led to independent verification of the reporting with additional ground truth via 'crowdsourcing' (tourist photos as found on 'social networking' venues like Google Earth's Panoramio layer and Twitter). Confirmation of the precise geospatial location of the site (along with a more complete facility characterization incorporating 3-D Modeling and visualization) was only made possible following the acquisition of higher resolution commercial satellite imagery that could be correlated with the reporting, ground photos, and an interior diagram, through original imagery analysis of the overhead imagery.

Pabian, Frank Vincent [Los Alamos National Laboratory

2010-09-16T23:59:59.000Z

271

DOE to Provide Nearly $8 Million to Safeguard the Nation's Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Provide Nearly $8 Million to Safeguard the Nation's Energy to Provide Nearly $8 Million to Safeguard the Nation's Energy Infrastructure from Cyber Attacks DOE to Provide Nearly $8 Million to Safeguard the Nation's Energy Infrastructure from Cyber Attacks U.S. Department of Energy (DOE) Assistant Secretary for Electricity Delivery and Energy Reliability Kevin M. Kolevar today announced five projects that have been selected for negotiation of awards of up to $7.9 million in DOE funding to develop and integrate technologically- advanced controls and cyber-security devices into our electric grid and energy infrastructure. DOE to Provide Nearly $8 Million to Safeguard the Nation's Energy Infrastructure from Cyber Attacks More Documents & Publications "Cybersecurity for State Regulators" - NARUC Primer (June 2012)

272

Nuclear Safeguards and Nonproliferation Support | U.S. DOE Office of  

Office of Science (SC) Website

Nuclear Safeguards and Nonproliferation Support Nuclear Safeguards and Nonproliferation Support New Brunswick Laboratory (NBL) NBL Home About Programs Certified Reference Materials Program Measurement Evaluation Nuclear Safeguards and Nonproliferation Support Measurement Services Measurement Development Training Certified Reference Materials (CRMs) Training Categorical Exclusion Determinations News Contact Information New Brunswick Laboratory U.S. Department of Energy Building 350 9800 South Cass Avenue Argonne, IL 60439-4899 P: (630) 252-2442 (NBL) P: (630) 252-2767 (CRM sales) F: (630) 252-6256 E: usdoe.nbl@ch.doe.gov Programs Nuclear Safeguards and Nonproliferation Support Print Text Size: A A A RSS Feeds FeedbackShare Page New Brunswick Laboratory (NBL) is owned and operated by the U.S. Department of Energy (DOE). NBL is the U.S. Government's Certifying Authority for

273

Defense Nuclear Security Safeguards and Security Evaluation and Performance Assurance Program  

E-Print Network (OSTI)

for Defense Nuclear Security (DNS) is issuing this document to promulgate the DNS Evaluation and Performance Assurance Program of the NNSA safeguards and security functional area. Suggestions for improving this document are welcome and should be sent in writing to:

Bradley A. Peterson

2009-01-01T23:59:59.000Z

274

US statutes of general interest to safeguards and security officers. Revision 12/95  

Science Conference Proceedings (OSTI)

This document is one of a three volume set. This document, BNL 52202, it titled, ``US Statutes of General Interest to Safeguards and Security Officers``, and is intended for use by officers.

Cadwell, J.J.; Ruger, C.J.

1995-12-01T23:59:59.000Z

275

Initiators of coal hydrogenation  

Science Conference Proceedings (OSTI)

The initiators examined include cyclic and linear silico-organic compounds, the effects of which on the hydrogenation process are studied. The substances not only localize the active radicals before these are stabilised by hydrogen, but actually activate the destruction reaction of the coal substance and in this way generate atomic hydrogen: radical polymerization inhibitors thus convert to activators and hydrogen transfer. (8 refs.)

Krichko, A.A.; Dembovskaya, E.A.; Gorlov, E.G.

1983-01-01T23:59:59.000Z

276

On the application of IAEA safeguards to plutonium and highly enriched uranium from military inventories  

SciTech Connect

Progress toward the reduction of nuclear arsenals may render surplus hundreds of tonnes of plutonium and highly enriched uranium by the end of the century. None of the acknowledged nuclear weapon states (NWS) is under a specific obligation to submit surplus military inventories to international control. However, inviting the International Atomic Energy Agency (IAEA) to apply safeguards to the plutonium and highly enriched uranium (HEU) released from military use could contribute to building confidence as part of the reductions currently envisaged and could encourage further steps within the states currently planning reductions or by other NWS. If invited, specific arrangements for the application of IAEA safeguards to plutonium and highly enriched uranium from military inventories would be determined by: the institutional provisions adopted; the specified verification requirements; the amounts and forms of plutonium and HEU and the types of facilities to be safeguarded; facility-specific features for the control and accounting of the plutonium and HEU; and the number of facilities where safeguards will be applied. These considerations would be used to establish the most appropriate verificiation arrangements, including the technology to be employed and inspection scheduling arrangements, to provide effective and efficient safeguards. If an invitation is made, the IAEA Board of Governors must approve of the obligations and commitments of the states involved and of the financial arrangements that will ensure the safeguards can be implemented as agreed. 2 tabs.

Shea, T.E. (International Atomic Energy Agency, Wagramerstrasse, Vienna (Austria))

1993-01-01T23:59:59.000Z

277

Beyond integrated safeguards: performance-based assessments for future nuclear controls.  

Science Conference Proceedings (OSTI)

In the future, iE the nuclear nonproliferation and arms control agendas are to advance, they will likely become increasingly seen as parallel undertakings with the objective of comprehensive cradle-to-grave controls over nuclear materials and possibly even warheads removed from defense programs along with materials in civilian use. This 'back to the future' prospect was envisioned in the Acheson-Lillienthal Report and the Baruch Plan, and more modestly in the Atoms-for-Peace Proposal. Unlike the grand plans of the early nuclear years, today's and tomorrow's undertakings will more likely consist of a series of incremental steps with the goal of expanding nuclear controls. These steps will be undertaken at a time of fundamental change in the IAEA safeguards system, and they will be influenced by those changes in profound ways. This prospective influence needs to be taken into account as the IAEA develops and implements integrated safeguards, including its efforts to establish new safeguards criteria, undertake technological and administrative improvements in safeguards, implement credible capabilities for the detection of undeclared nuclear facilities and activities and, perhaps, provide for a more intensive involvement in applying safeguards in new roles such as the verification of a fissile materials cutoff treaty. Performance-based criteria offer one promising way to address the effectiveness of integrated safeguards and to provide a common means of assessing the other key areas of a comprehensive approach to nuclear controls as these develop independently and to the extent that they are coordinated in the future.

Pilat, Joseph F.; Budlong-Sylvester, K. W. (Kory W.)

2001-01-01T23:59:59.000Z

278

Gas centrifuge enrichment plants inspection frequency and remote monitoring issues for advanced safeguards implementation  

SciTech Connect

Current safeguards approaches used by the IAEA at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low enriched uranium (LEU) production, detect undeclared LEU production and detect high enriched uranium (BEU) production with adequate probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and {sup 235}U enrichment of declared cylinders of uranium hexafluoride that are used in the process of enrichment at GCEPs. This paper contains an analysis of how possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive analysis (DA) of samples could reduce the uncertainty of the inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We have also studied a few advanced safeguards systems that could be assembled for unattended operation and the level of performance needed from these systems to provide more effective safeguards. The analysis also considers how short notice random inspections, unannounced inspections (UIs), and the concept of information-driven inspections can affect probability of detection of the diversion of nuclear material when coupled to new GCEPs safeguards regimes augmented with unattended systems. We also explore the effects of system failures and operator tampering on meeting safeguards goals for quantity and timeliness and the measures needed to recover from such failures and anomalies.

Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Ianakiev, Kiril D [Los Alamos National Laboratory; Reimold, Benjamin A [Los Alamos National Laboratory; Ward, Steven L [Los Alamos National Laboratory; Howell, John [GLASGOW UNIV.

2010-09-13T23:59:59.000Z

279

RADIO FREQUENCY IDENTIFICATION DEVICES: EFFECTIVENESS IN IMPROVING SAFEGUARDS AT GAS-CENTRIFUGE URANIUM-ENRICHMENT PLANTS.  

SciTech Connect

Recent advances in radio frequency identification devices (RFIDs) have engendered a growing interest among international safeguards experts. Potentially, RFIDs could reduce inspection work, viz. the number of inspections, number of samples, and duration of the visits, and thus improve the efficiency and effectiveness of international safeguards. This study systematically examined the applications of RFIDs for IAEA safeguards at large gas-centrifuge enrichment plants (GCEPs). These analyses are expected to help identify the requirements and desirable properties for RFIDs, to provide insights into which vulnerabilities matter most, and help formulate the required assurance tests. This work, specifically assesses the application of RFIDs for the ''Option 4'' safeguards approach, proposed by Bruce Moran, U. S. Nuclear Regulatory Commission (NRC), for large gas-centrifuge uranium-enrichment plants. The features of ''Option 4'' safeguards include placing RFIDs on all feed, product and tails (F/P/T) cylinders, along with WID readers in all FP/T stations and accountability scales. Other features of Moran's ''Option 4'' are Mailbox declarations, monitoring of load-cell-based weighing systems at the F/P/T stations and accountability scales, and continuous enrichment monitors. Relevant diversion paths were explored to evaluate how RFIDs improve the efficiency and effectiveness of safeguards. Additionally, the analysis addresses the use of RFIDs in conjunction with video monitoring and neutron detectors in a perimeter-monitoring approach to show that RFIDs can help to detect unidentified cylinders.

JOE,J.

2007-07-08T23:59:59.000Z

280

REVIEW OF THE NEGOTIATION OF THE MODEL PROTOCOL ADDITIONAL TO THE AGREEMENT(S) BETWEEN STATE(S) AND THE INTERNATIONAL ATOMIC ENERGY AGENCY FOR THE APPLICATION OF SAFEGUARDS,INFCIRC/540 (Corrected) VOLUME I/III SETTING THE STAGE: 1991-1996.  

Science Conference Proceedings (OSTI)

Events in Iraq at the beginning of the 1990s demonstrated that the safeguards system of the International Atomic Energy Agency (IAEA) needed to be improved. It had failed, after all, to detect Iraq's clandestine nuclear weapon program even though some of Iraq's's activities had been pursued at inspected facilities in buildings adjacent to ones being inspected by the IAEA. Although there were aspects of the implementation of safeguards where the IAEA needed to improve, the primary limitations were considered to be part of the safeguards system itself. That system was based on the Nuclear Nonproliferation Treaty of 1970, to which Iraq was a party, and implemented on the basis of a model NPT safeguards agreement, published by the IAEA 1972 as INFCIRC/153 (corrected). The agreement calls for states to accept and for the IAEA to apply safeguards to all nuclear material in the state. Iraq was a party to such an agreement, but it violated the agreement by concealing nuclear material and other nuclear activities from the IAEA. Although the IAEA was inspecting in Iraq, it was hindered by aspects of the agreement that essentially limited its access to points in declared facilities and provided the IAEA with little information about nuclear activities anywhere else in Iraq. As a result, a major review of the NPT safeguards system was initiated by its Director General and Member States with the objective of finding the best means to enable the IAEA to detect both diversions from declared stocks and any undeclared nuclear material or activities in the state. Significant improvements that could be made within existing legal authority were taken quickly, most importantly a change in 1992 in how and when and what design information would be reported to the IAEA. During 1991-1996, the IAEA pursued intensive study, legal and technical analysis, and field trials and held numerous consultations with Member States. The Board of Governors discussed the issue of strengthening safeguards at almost all of its meeting.

Rosenthal, M.D.; Saum-Manning, L.; Houck, F.; Anzelon, G.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

FUTURE POWER GRID INITIATIVE Next Generation Network  

E-Print Network (OSTI)

designed by PNNL and currently being deployed in the AEP gridSMART Demonstration Project, and » developed that will position PNNL as the leader in modeling and planning power grid data communication networks. External users scenarios and testing of communication requirements with smart grid investments. November 2012 PNNL-SA-90012

282

DEVELOPMENT OF A CANDLE FILTER FAILURE SAFEGUARD DEVICE  

SciTech Connect

The full-flow mechanical safeguard device (FFMSGD) has been developed under contract to the National Energy Technology Laboratory (NETL) to address problems with the reliability of ceramic candle filter elements installed on high-temperature, high-pressure (HTHP) Hot Gas Cleanup (HGCU) filters. Although systems candle filters are expected to perform satisfactorily when in good operating condition, the failure of even a single filter element can increase the filter system outlet dust loading enough to potentially damage gas turbine blades, contaminate other downstream processes, and limit the availability of the power system. Filter failure safeguard devices that are installed on each individual candle filter element are envisioned as a guarantee of a candle filter system's ability to withstand some number of element failures and continue operation without these negative consequences. The intention of the FFMSGD is to provide this guarantee without incurring any significant pressure drop penalty or constraining the filter system's reverse-pulse cleaning procedures. The FFMSGD provides a clear flow path for filtered and reverse-flow cleaning gases when its filter element is intact, and activates to provide a positive mechanical seal against gas flow in either direction when its filter element breaks or fails. This activation is induced by the increase in the flow rate of gas through the device in event of filter failure. The FFMSGD is designed to be easily removed and reconditioned when the filter system is taken off line for routine maintenance. This report is intended to be issued with a companion appendix. As instructed in Section J.12 of Contract No. DE-AC26-99FT40678, all the restricted, proprietary, and patentable information (not yet disclosed through the patent application process) related to the FFMSGD and its evaluation under this contract has been included only in the appendix. This Final Report, which is available to the public, contains background information and general descriptions of the operating principles of the FFMSGD. This report also describes the results of various evaluations of the device at room temperature and in HTHP environments. This Final Report also includes discussions of commercialization issues. For clarity and completeness, all of the information contained in this Final Report has also been included in the appendix.

Todd R. Snyder

2002-03-29T23:59:59.000Z

283

United States Program for Technical assistance to IAEA Standards. Concept Paper: Knowledge Acquisition, Skills training for enhanced IAEA safeguards inspections  

SciTech Connect

This concept paper explores the potential contribution of ``Knowledge Acquisition Skills`` in enhancing the effectiveness of international safeguards inspections by the International Atomic energy Agency (IAEA, or Agency) and identifies types of training that could be provided to develop or improve such skills. For purposes of this concept paper, Knowledge Acquisition Skills are defined broadly to include all appropriate techniques that IAEA safeguards inspectors can use to acquire and analyze information relevant to the performance of successful safeguards inspections. These techniques include a range of cognitive, analytic, judgmental, interpersonal, and communications skills that have the potential to help IAEA safeguards inspectors function more effectively.

Morris, F.A.; Toquam, J.L.

1993-11-01T23:59:59.000Z

284

Generation IV Program  

NLE Websites -- All DOE Office Websites (Extended Search)

an international initiative. A group of ten nations, including France, Japan, Russia, Korea, China, and Canada, are participating in the planning and development of Generation IV...

285

Results of the joint ESARDA/INMM workshop on science and modern technology for safeguards  

SciTech Connect

The Joint ESARDA/INMM Workshop on Science and Modem Technology for Safeguards was held in Arona, Italy, October 28-31, 1996. It was attended by some 120 participants, consisting principally of scientists from various disciplines and safeguards experts from the inspectorates. The Workshop provided a full discussion on the near and far term scientific technologies that may be applied to safeguards. In addition, there were extended discussions on the social and political aspects surrounding the areas of Nonproliferation, International Safeguards, and Regional Safeguards. The general opinion was that the Workshop met and exceeded its goals, setting the stage for future workshops of this type. One of the outstanding characteristics of this Workshop was the ample amount of time allowed for full discussion of each presentation, both for technical issues and social/political issues. This procedure was substantially different from the usual ESARDA and INMM meetings. This paper will discuss the organization and conduct of the Workshop, as well as the results as reported by the four Working Group Chairs and the Workshop Co-chairs.

Stein, G. [KFA, Juelich (Germany); Dupree, S. [Sandia National Labs., Albuquerque, NM (United States); Sonnier, C. [Department of Energy, Albuquerque, NM (United States)

1997-06-01T23:59:59.000Z

286

Behavior of 241Am in fast reactor systems - a safeguards perspective  

SciTech Connect

Advanced fuel-cycle developments around the world currently under development are exploring the possibility of disposing of {sup 241}Am from spent fuel recycle processes by burning this material in fast reactors. For safeguards practitioners, this approach could potentially complicate both fresh- and spent-fuel safeguards measurements. The increased ({alpha},n) production in oxide fuels from the {sup 241}Am increases the uncertainty in coincidence assay of Pu in MOX assemblies and will require additional information to make use of totals-based neutron assay of these assemblies. We have studied the behavior of {sup 241}Am-bearing MOX fuel in the fast reactor system and the effect on neutron and gamma-ray source-terms for safeguards measurements. In this paper, we will present the results of simulations of the behavior of {sup 241}Am in a fast breeder reactor system. Because of the increased use of MOX fuel in thermal reactors and advances in fuel-cycle designs aimed at americium disposal in fast reactors, we have undertaken a brief study of the behavior of americium in these systems to better understand the safeguards impacts of these new approaches. In this paper we will examine the behavior of {sup 241}Am in a variety of nuclear systems to provide insight into the safeguards implications of proposed Am disposition schemes.

Beddingfield, David H [Los Alamos National Laboratory; Lafleur, Adrienne M [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

287

Uranium-233 waste definition: Disposal options, safeguards, criticality control, and arms control  

SciTech Connect

The US investigated the use of {sup 233}U for weapons, reactors, and other purposes from the 1950s into the 1970s. Based on the results of these investigations, it was decided not to use {sup 233}U on a large scale. Most of the {sup 233}U-containing materials were placed in long-term storage. At the end of the cold war, the US initiated, as part of its arms control policies, a disposition program for excess fissile materials. Other programs were accelerated for disposal of radioactive wastes placed in storage during the cold war. Last, potential safety issues were identified related to the storage of some {sup 233}U-containing materials. Because of these changes, significant activities associated with {sup 233}U-containing materials are expected. This report is one of a series of reports to provide the technical bases for future decisions on how to manage this material. A basis for defining when {sup 233}U-containing materials can be managed as waste and when they must be managed as concentrated fissile materials has been developed. The requirements for storage, transport, and disposal of radioactive wastes are significantly different than those for fissile materials. Because of these differences, it is important to classify material in its appropriate category. The establishment of a definition of what is waste and what is fissile material will provide the guidance for appropriate management of these materials. Wastes are defined in this report as materials containing sufficiently small masses or low concentrations of fissile materials such that they can be managed as typical radioactive waste. Concentrated fissile materials are defined herein as materials containing sufficient fissile content such as to warrant special handling to address nuclear criticality, safeguards, and arms control concerns.

Forsberg, C.W.; Storch, S.N. [Oak Ridge National Lab., TN (United States); Lewis, L.C. [Lockheed Martin Idaho Technology Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.

1998-07-07T23:59:59.000Z

288

Environmental sampling and analysis as a safeguards tool  

SciTech Connect

Environmental sampling and radionuclide analysis of the resulting material can be utilized as a supplemental approach in safeguarding practices and particularly for detection of undeclared nuclear activities. The production of nuclear weapons could be pursued by uranium enrichment processes to produce highly enriched U-235 or by nuclear reactor operations followed by chemical separations to produce Pu-239. The application of either of these processes results in the production of signature materials, some of which will be released to the environs. Results from the operations of the Hanford production facilities are discussed and indicate the type of signatures that may be expected from plutonium production facilities. These include noble gas emissions from the reactors and chemical separations processes, the production of radionuclides in reactor cooling water followed by their subsequent release to the Columbia River, and the release of mildly contaminated process water from the chemical processing facilities. These signature materials are carried by both gaseous and liqid effluents and enter various compartments of the environment. The types of signature materials which are most likely to be accumulated are discussed, together with examples of the quantities which have been released during past separations. There are numerous processes by which natural uranium may be enriched to produce highly enriched U-235. The most definitive signature of such processes is always a modification in uranium isotope ratios, and materials showing either enriched or depleted uranium in gaseous and liquid effluents provide the best indication that uramium enrichment processes are taking place. Therefore, techniques for sampling and analysis of airborne, waterborne, or deposited uranium in environmental matrices provide a means of detecting uranium enrichment which may lead to proliferation products.

Perkins, R.W.; Wogman, N.A.; Holdren, G.R.

1994-03-01T23:59:59.000Z

289

DOE/CX-00007 CATEGORICAL EXCLUSION SAFEGUARDS AND SECURITY ENHANCED ASSESSMENT SYSTEM  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

07 07 CATEGORICAL EXCLUSION SAFEGUARDS AND SECURITY ENHANCED ASSESSMENT SYSTEM (PROJECT S-221) HANFORD SITE, RICHLAND, WASHINGTON PROPOSED ACTION The U.S. Department of Energy (DOE) proposes to install six wooden utility poles to support the safeguards and security enhanced assessment system. LOCATION OF ACTION The locations of the proposed action are generally within and around 200 East Area of the Hanford Site. The specific locations cannot be disclosed due to their safeguards and security related nature, and the locations have been designated Official Use Only. It is the policy of the DOE to make records available to the public to the greatest extent possible, in keeping with the spirit of the Freedom of Information Act (FOIA), while at the same time

290

DOE to Provide Nearly $8 Million to Safeguard the Nation's Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE to Provide Nearly $8 Million to Safeguard the Nation's Energy DOE to Provide Nearly $8 Million to Safeguard the Nation's Energy Infrastructure from Cyber Attacks DOE to Provide Nearly $8 Million to Safeguard the Nation's Energy Infrastructure from Cyber Attacks October 18, 2007 - 3:21pm Addthis WASHINGTON, DC - U.S. Department of Energy (DOE) Assistant Secretary for Electricity Delivery and Energy Reliability Kevin M. Kolevar today announced five projects that have been selected for negotiation of awards of up to $7.9 million in DOE funding to develop and integrate technologically- advanced controls and cyber-security devices into our electric grid and energy infrastructure. These projects aim to protect our Nation's energy infrastructure from cyber attacks and seek to modernize our electricity grid, advancing the President's efforts to increase energy and economic security. These

291

Safeguards Summary Event List (SSEL), January 1, 1990--December 31, 1996, Vol. 2, Rev. 5  

Science Conference Proceedings (OSTI)

The Safeguards Summary Event List (SSEL), Vol. 2, Rev. 5, provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the US Nuclear Regulatory Commission (NRC) which occurred and were reported from January 1, 1990, through December 31, 1996. Because of public interest, the Miscellaneous category includes a few events which involve either source material, byproduct material, or natural uranium which are exempt from safeguards requirements. Events are described under the categories of Bomb-related, Intrusion, Missing and/or Allegedly Stolen, Transportation-related, Tampering/Vandalism, Arson, Firearms, Radiological Sabotage, Nonradiological Sabotage, and Miscellaneous. The information contained in the event descriptions is derived primarily from official NRC reporting channels.

NONE

1997-07-01T23:59:59.000Z

292

Safeguards summary event list (SSEL), January 1, 1990--December 31, 1995  

Science Conference Proceedings (OSTI)

The Safeguards Summary Event List (SSEL), Vol. 2, Rev. 4, provides brief summaries of several hundred safeguards-related events involving nuclear material or facilities regulated by the U.S. Nuclear Regulatory Commission (NRC) which occurred and were reported from January 1, 1990, rough December 31, 1995. Because of public interest, the Miscellaneous category includes a few events which involve either source material, byproduct material, or natural uranium which are exempt from safeguards requirements. Events are described under the categories of Bomb-related, Intrusion, Missing and/or Allegedly Stolen, Transportation-related, Tampering/Vandalism, Arson, Firearms, Radiological Sabotage, Nonradiological Sabotage, and Miscellaneous. The information contained in the event descriptions is derived primarily from official NRC reporting channels.

NONE

1996-07-01T23:59:59.000Z

293

DOE to Provide Nearly $8 Million to Safeguard the Nation's Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8 Million to Safeguard the Nation's Energy 8 Million to Safeguard the Nation's Energy Infrastructure from Cyber Attacks DOE to Provide Nearly $8 Million to Safeguard the Nation's Energy Infrastructure from Cyber Attacks October 18, 2007 - 3:21pm Addthis WASHINGTON, DC - U.S. Department of Energy (DOE) Assistant Secretary for Electricity Delivery and Energy Reliability Kevin M. Kolevar today announced five projects that have been selected for negotiation of awards of up to $7.9 million in DOE funding to develop and integrate technologically- advanced controls and cyber-security devices into our electric grid and energy infrastructure. These projects aim to protect our Nation's energy infrastructure from cyber attacks and seek to modernize our electricity grid, advancing the President's efforts to increase energy and economic security. These

294

Safeguarding Nuclear Fuel Processing | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

Safeguarding Nuclear Safeguarding Nuclear Fuel Processing Laboratory Policy and Evaluation (LPE) LPE Home Staff M&O Contracts SC Laboratory Appraisal Process Laboratory Planning Process Work for Others in the Office of Science Laboratory Directed Research and Development (LDRD) DOE's Philosophy on LDRD Frequently Asked Questions Success Stories Brochures Additional Information LDRD Program Contacts Technology Transfer DOE National Laboratories Contact Information Laboratory Policy and Evaluation U.S. Department of Energy SC-32/Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 P: (202) 586-5447 F: (202) 586-3119 Success Stories Safeguarding Nuclear Fuel Processing Print Text Size: A A A RSS Feeds FeedbackShare Page Idaho National Laboratory Develops International Nonproliferation

295

Safeguards & Security | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Safeguards & Security Safeguards & Security Integrated Support Center (ISC) ISC Home About Services Freedom of Information Act (FOIA) Privacy Act Categorical Exclusion Determinations Contact Information Integrated Support Center Roxanne Purucker U.S. Department of Energy 9800 S. Cass Avenue Argonne, IL 60439 P: (630) 252-2110 Larry Kelly U.S. Department of Energy 200 Administration Road Oak Ridge, TN 37830 P: (865) 576-0885 Services Safeguards & Security Print Text Size: A A A RSS Feeds FeedbackShare Page Security and Emergency Management staff ensures the people, materials, and information at DOE sites remain safe and secure. The Office of Science complex contains some of the U.S. Department of Energy's most important assets, and these organizations ensure the security of these crucial and

296

Coordinated safeguards for materials management in a nitrate-to-oxide conversion facility  

SciTech Connect

The conceptual design of a materials management system for safeguarding special nuclear materials in a plutonium nitrate-to-oxide conversion facility is developed and evaluated. Dynamic material balances are drawn from information provided by nondestructive-analysis techniques, process-control instrumentation, and conventional chemical analyses augmented by process-monitoring devices. Powerful statistical methods, cast in the framework of decision analysis and applied to unit-process accounting areas, ensure adequate spatial and temporal quantification of possible diversion with minimal process disruption. Modeling and simulation techniques assist in evaluating the sensitivity of the system to various diversion schemes and in comparing safeguards strategies. Features that would improve the safeguardability of the conversion process are discussed.

Dayem, H.A.; Cobb, D.D.; Dietz, R.J.; Hakkila, E.A.; Kern, E.A.; Shipley, J.P.; Smith, D.B.; Bowersox, D.F.

1977-09-01T23:59:59.000Z

297

DOE/NNSA perspective safeguard by design: GEN III/III+ light water reactors and beyond  

SciTech Connect

An overview of key issues relevant to safeguards by design (SBD) for GEN III/IV nuclear reactors is provided. Lessons learned from construction of typical GEN III+ water reactors with respect to SBD are highlighted. Details of SBD for safeguards guidance development for GEN III/III+ light water reactors are developed and reported. This paper also identifies technical challenges to extend SBD including proliferation resistance methodologies to other GEN III/III+ reactors (except HWRs) and GEN IV reactors because of their immaturity in designs.

Pan, Paul Y [Los Alamos National Laboratory

2010-12-10T23:59:59.000Z

298

Implementation of IAEA safeguards at the Rocky Flats Environmental Technology Site  

Science Conference Proceedings (OSTI)

When President Clinton spoke to the United Nations General Assembly in September 1993, he offered to place US excess defense nuclear material under International Atomic Energy Agency (IAEA) safeguards, before the next Nuclear Nonproliferation Treaty (NPT) Extension Conference. This set in motion a flurry of activities at three DOE facilities, including Rocky Flats Environmental Technology Site (Site). With general guidance from DOE Headquarters, the facility selected a suitable storage area, identified appropriate materials, and acquired the necessary instrumentation to implement full-scale IAEA safeguards on excess plutonium oxide.

Giacomini, J.J.; Finleon, C.A.; Larsen, R.K. [EG and G Rocky Flats, Inc., Golden, CO (United States). Rocky Flats Plant; Lucas, M.; Langner, D. [Los Alamos National Lab., NM (United States)

1995-07-01T23:59:59.000Z

299

Report on the NGS3 Working Group on Safeguards by Design For Aqueous Reprocessing Plants  

SciTech Connect

The objective of the Working Group on SBD for Aqueous Reprocessing Facilities was to provide recommendations, for facility operators and designers, which would aid in the coordination and integration of nuclear material accountancy and the safeguards requirements of all concerned parties - operators, state/regional authorities, and the IAEA. The recommendations, which are to be provided to the IAEA, are intended to assist in optimizing facility design and operating parameters to ensure the safeguardability of the facility while minimizing impact on the operations. The one day Working Group session addressed a wide range of design and operating topics.

Johnson, Shirley J.; Ehinger, Michael; Schanfein, Mark

2011-02-01T23:59:59.000Z

300

DEVELOPMENT OF AN ADHESIVE CANDLE FILTER SAFEGUARD DEVICE  

SciTech Connect

In order to reach the highest possible efficiencies in a coal-fired turbine-based power system, the turbine should be directly fired with the products of coal conversion. Two main types of systems employ these turbines: those based on pressurized fluidized-bed combustors and those based on integrated gasification combined cycles. In both systems, suspended particulates must be cleaned from the gas stream before it enters the turbine so as to prevent fouling and erosion of the turbine blades. To produce the cleanest gas, barrier filters are being developed and are in use in several facilities. Barrier filters are composed of porous, high-temperature materials that allow the hot gas to pass but collect the particulates on the surface. The three main configurations of the barrier filters are candle, cross-flow, and tube filters. Both candle and tube filters have been tested extensively. They are composed of coarsely porous ceramic that serves as a structural support, overlain with a thin, microporous ceramic layer on the dirty gas side that serves as the primary filter surface. They are highly efficient at removing particulate matter from the gas stream and, because of their ceramic construction, are resistant to gas and ash corrosion. However, ceramics are brittle and individual elements can fail, allowing particulates to pass through the hole left by the filter element and erode the turbine. Preventing all failure of individual ceramic filter elements is not possible at the present state of development of the technology. Therefore, safeguard devices (SGDs) must be employed to prevent the particulates streaming through occasional broken filters from reaching the turbine. However, the SGD must allow for the free passage of gas when it is not activated. Upon breaking of a filter, the SGD must either mechanically close or quickly plug with filter dust to prevent additional dust from reaching the turbine. Production of a dependable rapidly closing autonomous mechanical device at high temperatures in a dusty gas stream is difficult because of problems with materials corrosion, dust leakage, and detection of filter failure. Therefore, the Energy & Environmental Research Center is using its knowledge of the factors that make filter dust sticky at gas filtration temperatures to make a simple and inexpensive SGD that employs an adhesive yet thermodynamically stable coating on a highly porous ceramic substrate. The SGDs are placed on top of individual candle filters at the filtered gas exit. Upon failure of the filter, the dirty gas flows through the SGD where the adhesive surface rapidly and permanently traps dust particles, causing the device to plug and prevent the dust from reaching the turbine.

John P. Hurley; Ann K. Henderson; Jan W. Nowok; Michael L. Swanson

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Microdrill Initiative - Initial Market Evaluation  

SciTech Connect

The U.S. Department of Energy (DOE) is launching a major research and development initiative to create a small, fast, inexpensive and environmentally friendly rig for drilling 5000 feet boreholes to investigate potential oil and gas reservoirs. DOE wishes to get input from petroleum industry operators, service companies and equipment suppliers on the operation and application of this coiled-tubing-based drilling unit. To that end, DOE has asked Spears & Associates, Inc. (SAI) to prepare a special state-of-the-market report and assist during a DOE-sponsored project-scoping workshop in Albuquerque near the end of April 2003. The scope of the project is four-fold: (1) Evaluate the history, status and future of demand for very small bore-hole drilling; (2) Measure the market for coiled tubing drilling and describe the state-of-the-art; (3) Identify companies and individuals who should have an interest in micro drilling and invite them to the DOE workshop; and (4) Participate in 3 concurrent workshop sessions, record and evaluate participant comments and report workshop conclusions.

Spears & Associates, Inc

2003-07-01T23:59:59.000Z

302

7-GeV advanced photon source beamline initiative: Conceptual design report  

Science Conference Proceedings (OSTI)

The DOE is building a new generation 6-7 GeV Synchrotron Radiation Source known as the Advanced Photon Source (APS) at Argonne National Laboratory. This facility, to be completed in FY 1996, can provide 70 x-ray sources of unprecedented brightness to meet the research needs of virtually all scientific disciplines and numerous technologies. The technological research capability of the APS in the areas of energy, communications and health will enable a new partnership between the DOE and US industry. Current funding for the APS will complete the current phase of construction so that scientists can begin their applications in FY 1996. Comprehensive utilization of the unique properties of APS beams will enable cutting-edge research not currently possible. It is now appropriate to plan to construct additional radiation sources and beamline standard components to meet the excess demands of the APS users. In this APS Beamline Initiative, 2.5-m-long insertion-device x-ray sources will be built on four straight sections of the APS storage ring, and an additional four bending-magnet sources will also be put in use. The front ends for these eight x-ray sources will be built to contain and safeguard access to these bright x-ray beams. In addition, funds will be provided to build standard beamline components to meet scientific and technological research demands of the Collaborative Access Teams. The Conceptual Design Report (CDR) for the APS Beamline Initiative describes the scope of all the above technical and conventional construction and provides a detailed cost and schedule for these activities. The document also describes the preconstruction R&D plans for the Beamline Initiative activities and provides the cost estimates for the required R&D.

Not Available

1993-05-01T23:59:59.000Z

303

PRELIMINARY SAFEGUARDS REPORT BASED ON URANIUM-MOLYBDENUM FUEL FOR THE HALLAM NUCLEAR POWER FACILITY  

SciTech Connect

The Hallam Power Reactor is described relative to site, buildings, reactor and associated heat-transfer system, instrumentation and control, auxiliary systems, and fuel and component handling facilities. The potential hazards of radioactivity and safeguards for confinement are discussed. Radiation levels and accidental effluent release are considered. Transients with and without protective system action are discussed. (B.O.G.)

Gershun, T.L. ed.

1961-10-31T23:59:59.000Z

304

In-Born Radio Frequency Identification Devices for Safeguards Use at Gas-Centrifuge Enrichment Plants  

Science Conference Proceedings (OSTI)

Global expansion of nuclear power has made the need for improved safeguards measures at Gas Centrifuge Enrichment Plants (GCEPs) imperative. One technology under consideration for safeguards applications is Radio Frequency Identification Devices (RFIDs). RFIDs have the potential to increase IAEA inspector"s efficiency and effectiveness either by reducing the number of inspection visits necessary or by reducing inspection effort at those visits. This study assesses the use of RFIDs as an integral component of the "Option 4" safeguards approach developed by Bruce Moran, U.S. Nuclear Regulatory Commission (NRC), for a model GCEP [1]. A previous analysis of RFIDs was conducted by Jae Jo, Brookhaven National Laboratory (BNL), which evaluated the effectiveness of an RFID tag applied by the facility operator [2]. This paper presents a similar evaluation carried out in the framework of Jo’s paper, but it is predicated on the assumption that the RFID tag is applied by the manufacturer at the birth of the cylinder, rather than by the operator. Relevant diversion scenarios are examined to determine if RFIDs increase the effectiveness and/ or efficiency of safeguards in these scenarios. Conclusions on the benefits offered to inspectors by using in-born RFID tagging are presented.

Ward,R.; Rosenthal,M.

2009-07-12T23:59:59.000Z

305

Analysis of the effectiveness of gas centrifuge enrichment plants advanced safeguards  

SciTech Connect

Current safeguards approaches used by the International Atomic Energy Agency (IAEA) at gas centrifuge enrichment plants (GCEPs) need enhancement in order to verify declared low-enriched uranium (LEU) production, detect undeclared LEU production and detect highly enriched uranium (HEU) production with adequate detection probability using non destructive assay (NDA) techniques. At present inspectors use attended systems, systems needing the presence of an inspector for operation, during inspections to verify the mass and 235U enrichment of declared UF6 containers used in the process of enrichment at GCEPs. This paper contains an analysis of possible improvements in unattended and attended NDA systems including process monitoring and possible on-site destructive assay (DA) of samples that could reduce the uncertainty of the inspector's measurements. These improvements could reduce the difference between the operator's and inspector's measurements providing more effective and efficient IAEA GCEPs safeguards. We also explore how a few advanced safeguards systems could be assembled for unattended operation. The analysis will focus on how unannounced inspections (UIs), and the concept of information-driven inspections (IDS) can affect probability of detection of the diversion of nuclear materials when coupled to new GCEPs safeguards regimes augmented with unattended systems.

Boyer, Brian David [Los Alamos National Laboratory; Erpenbeck, Heather H [Los Alamos National Laboratory; Miller, Karen A [Los Alamos National Laboratory; Swinjoe, Martyn T [Los Alamos National Laboratory; Ianakiev, Kiril D [Los Alamos National Laboratory; Marlow, Johnna B [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

306

Nondestructive assay of fissile material samples in support of nuclear safeguards  

SciTech Connect

From nuclear science symposium; San Francisco, California, USA (14 Nov 1973). Samples of fissile material can be assayed by bombarding with 300- to 600- keV neutrons and counting delayed neutrons from fission. Interrogating neutron energy selection is based upon considerations of sample penetrability and insensitivity of response to nonfissile isotopes. Significant cost savings in nuclear safeguards and quality control are possible. (auth)

Evans, A.E. Jr.

1973-01-01T23:59:59.000Z

307

Clean Coal Technology and the Clean Coal Power Initiative | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Coal Technology and the Clean Coal Power Initiative Clean Coal Technology and the Clean Coal Power Initiative "Clean coal technology" describes a new generation of energy...

308

Using Process Load Cell Information for IAEA Safeguards at Enrichment Plants  

SciTech Connect

Uranium enrichment service providers are expanding existing enrichment plants and constructing new facilities to meet demands resulting from the shutdown of gaseous diffusion plants, the completion of the U.S.-Russia highly enriched uranium downblending program, and the projected global renaissance in nuclear power. The International Atomic Energy Agency (IAEA) conducts verification inspections at safeguarded facilities to provide assurance that signatory States comply with their treaty obligations to use nuclear materials only for peaceful purposes. Continuous, unattended monitoring of load cells in UF{sub 6} feed/withdrawal stations can provide safeguards-relevant process information to make existing safeguards approaches more efficient and effective and enable novel safeguards concepts such as information-driven inspections. The IAEA has indicated that process load cell monitoring will play a central role in future safeguards approaches for large-scale gas centrifuge enrichment plants. This presentation will discuss previous work and future plans related to continuous load cell monitoring, including: (1) algorithms for automated analysis of load cell data, including filtering methods to determine significant weights and eliminate irrelevant impulses; (2) development of metrics for declaration verification and off-normal operation detection ('cylinder counting,' near-real-time mass balancing, F/P/T ratios, etc.); (3) requirements to specify what potentially sensitive data is safeguards relevant, at what point the IAEA gains on-site custody of the data, and what portion of that data can be transmitted off-site; (4) authentication, secure on-site storage, and secure transmission of load cell data; (5) data processing and remote monitoring schemes to control access to sensitive and proprietary information; (6) integration of process load cell data in a layered safeguards approach with cross-check verification; (7) process mock-ups constructed to provide simulated load cell data; (8) hardware and software implementation for process load cell data collection; (9) costs associated with unattended monitoring of load cells (for both operator and inspector) weighed against the potential benefits of having access to such data; (10) results from field tests of load cell data collection systems in operating facilities; and (11) use of unattended load cell data to increase efficiency of on-site inspection schedules and activities.

Laughter, Mark D [ORNL; Whitaker, J Michael [ORNL; Howell, John [University of Glasgow

2010-01-01T23:59:59.000Z

309

Prioritizing and scheduling Portsmouth Gaseous Diffusion Plant safeguards upgrades. Final report  

Science Conference Proceedings (OSTI)

As part of the Site Safeguards and Security Plan (SSSP), facilities are required to develop a Resource Plan (RP). The Resource Plan provides documentation and justification for the facility`s planned upgrades, including the schedule, priority, and cost estimates for the safeguards and security upgrades. Portsmouth Gaseous Diffusion Plant (PORTS) management has identified and obtained funding approval for a number of safeguards and security upgrades, including line-item construction projects. These upgrade projects were selected to address a variety of concerns identified in the PORTS vulnerability assessments and other reviews performed in support of the SSSP process. However, budgeting and scheduling constraints do not make it possible to simultaneously begin implementation of all of the upgrade projects. A formal methodology and analysis are needed to explicitly address the trade-offs between competing safeguards objectives, and to prioritize and schedule the upgrade projects to ensure that the maximum benefit can be realized in the shortest possible time frame. The purpose of this report is to describe the methodology developed to support these upgrade project scheduling decisions. The report also presents the results obtained from applying the methodology to a set of the upgrade projects selected by PORTS S&S management. Data for the analysis are based on discussions with personnel familiar with the PORTS safeguards and security needs, the requirements for implementing these upgrades, and upgrade funding limitations. The analysis results presented here assume continued highly enriched uranium (HEU) operations at PORTS. However, the methodology developed is readily adaptable for the evaluation of other operational scenarios and other resource allocation issues relevant to PORTS.

Edmunds, T.; Saleh, R.; Zevanove, S.

1992-02-01T23:59:59.000Z

310

Strengthened IAEA Safeguards-Imagery Analysis: Geospatial Tools for Nonproliferation Analysis  

SciTech Connect

This slide presentation focuses on the growing role and importance of imagery analysis for IAEA safeguards applications and how commercial satellite imagery, together with the newly available geospatial tools, can be used to promote 'all-source synergy.' As additional sources of openly available information, satellite imagery in conjunction with the geospatial tools can be used to significantly augment and enhance existing information gathering techniques, procedures, and analyses in the remote detection and assessment of nonproliferation relevant activities, facilities, and programs. Foremost of the geospatial tools are the 'Digital Virtual Globes' (i.e., GoogleEarth, Virtual Earth, etc.) that are far better than previously used simple 2-D plan-view line drawings for visualization of known and suspected facilities of interest which can be critical to: (1) Site familiarization and true geospatial context awareness; (2) Pre-inspection planning; (3) Onsite orientation and navigation; (4) Post-inspection reporting; (5) Site monitoring over time for changes; (6) Verification of states site declarations and for input to State Evaluation reports; and (7) A common basis for discussions among all interested parties (Member States). Additionally, as an 'open-source', such virtual globes can also provide a new, essentially free, means to conduct broad area search for undeclared nuclear sites and activities - either alleged through open source leads; identified on internet BLOGS and WIKI Layers, with input from a 'free' cadre of global browsers and/or by knowledgeable local citizens (a.k.a.: 'crowdsourcing'), that can include ground photos and maps; or by other initiatives based on existing information and in-house country knowledge. They also provide a means to acquire ground photography taken by locals, hobbyists, and tourists of the surrounding locales that can be useful in identifying and discriminating between relevant and non-relevant facilities and their associated infrastructure. The digital globes also provide highly accurate terrain mapping for better geospatial context and allow detailed 3-D perspectives of all sites or areas of interest. 3-D modeling software (i.e., Google's SketchUp6 newly available in 2007) when used in conjunction with these digital globes can significantly enhance individual building characterization and visualization (including interiors), allowing for better assessments including walk-arounds or fly-arounds and perhaps better decision making on multiple levels (e.g., the best placement for International Atomic Energy Agency (IAEA) video monitoring cameras).

Pabian, Frank V [Los Alamos National Laboratory

2012-08-14T23:59:59.000Z

311

"Order Module--DOE O 470.4B, SAFEGUARDS AND SECURITY PROGRAM, DOE O 471.6,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Order Module--DOE O 470.4B, SAFEGUARDS AND SECURITY PROGRAM, DOE O "Order Module--DOE O 470.4B, SAFEGUARDS AND SECURITY PROGRAM, DOE O 471.6, INFORMATION SECURITY, DOE O 473.3 "Order Module--DOE O 470.4B, SAFEGUARDS AND SECURITY PROGRAM, DOE O 471.6, INFORMATION SECURITY, DOE O 473.3 The familiar level of this module is divided into four sections. In the first section, we will discuss the DOE security programs and design basis threat included in DOE O 470.4B, Safeguards and Security Program. In the second section, we will discuss information security programs, including control of classified materials and the responsibilities of field elements and contractor employees in identifying classified information as covered in DOE O 471.6, Information Security. In section three, we will discuss the security programs to include security areas, intrusion detection, and

312

"Order Module--DOE O 470.4B, SAFEGUARDS AND SECURITY PROGRAM, DOE O 471.6,  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Order Module--DOE O 470.4B, SAFEGUARDS AND SECURITY PROGRAM, DOE O "Order Module--DOE O 470.4B, SAFEGUARDS AND SECURITY PROGRAM, DOE O 471.6, INFORMATION SECURITY, DOE O 473.3 "Order Module--DOE O 470.4B, SAFEGUARDS AND SECURITY PROGRAM, DOE O 471.6, INFORMATION SECURITY, DOE O 473.3 The familiar level of this module is divided into four sections. In the first section, we will discuss the DOE security programs and design basis threat included in DOE O 470.4B, Safeguards and Security Program. In the second section, we will discuss information security programs, including control of classified materials and the responsibilities of field elements and contractor employees in identifying classified information as covered in DOE O 471.6, Information Security. In section three, we will discuss the security programs to include security areas, intrusion detection, and

313

WEB RESOURCE: Generation IV Systems and Materials - TMS  

Science Conference Proceedings (OSTI)

Feb 12, 2007... Sandbox, Open Discussion Regarding Materials for Nuclear Power ... The presentation covers: the Generation IV initiative, Generation IV ...

314

International safeguards at the feed and withdrawal area of a gas centrifuge uranium enrichment plant  

SciTech Connect

This paper discusses the application of International Atomic Energy Agency (IAEA) safeguards at a model gas centrifuge uranium enrichment plant designed for the production of low-enriched uranium; particular emphasis is placed upon the verification by the IAEA of the facility material balance accounting. After reviewing the IAEA safeguards objectives and concerns at such a plant, the paper describes the material accountancy performed by the facility operator, and discusses strategies by which the operator might attempt to divert a portion of the declared nuclear materials. Finally, the paper discusses the verification of the declared material balance, including sampling strategies, attributes and variables measurements, and nondestructive measurements to improve the efficiency of the inspection measures.

Gordon, D.M.; Sanborn, J.B.

1979-01-01T23:59:59.000Z

315

All Other Editions Are Obsolete U.S. DEPARTMENT OF ENERGY SAFEGUARDS AND SECURITY SURVEY REPORT  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4.1 4.1 (05-94) All Other Editions Are Obsolete U.S. DEPARTMENT OF ENERGY SAFEGUARDS AND SECURITY SURVEY REPORT OMB Control No. 1910-1800 1. Survey Type: 3. Facility Name: 4. A. Facility Code: B. RIS Code: 5. Survey Date(s): 8. Previous Survey Date(s): 6. Findings: 9. Unresolved Findings: 7. Composite Rating: 10. Previous Rating: 11. Ratings: Rate Each Item: S = SATISFACTORY M = MARGINAL U = UNSATISFACTORY DNA = DOES NOT APPLY A) PROGRAM MANAGEMENT Program Management and Administration Program Planning Personnel Development and Training Facility Approval and Registration of Activities Foreign Ownership, Control, or Influence Safeguards and Security Plans Surveys and Self Assessment Resolution of Findings Incident Reporting and Management

316

Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design  

Science Conference Proceedings (OSTI)

FSA is a screening process intended to focus a facility designer’s attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

Coles, Garill A.; Hockert, John; Gitau, Ernest TN; Zentner, Michael D.

2013-01-26T23:59:59.000Z

317

Trial Application of the Facility Safeguardability Assessment Process to the NuScale SMR Design  

Science Conference Proceedings (OSTI)

FSA is a screening process intended to focus a facility designer’s attention on the aspects of their facility or process design that would most benefit from application of SBD principles and practices. The process is meant to identify the most relevant guidance within the SBD tools for enhancing the safeguardability of the design. In fiscal year (FY) 2012, NNSA sponsored PNNL to evaluate the practical application of FSA by applying it to the NuScale small modular nuclear power plant. This report documents the application of the FSA process, presenting conclusions regarding its efficiency and robustness. It describes the NuScale safeguards design concept and presents functional "infrastructure" guidelines that were developed using the FSA process.

Coles, Garill A.; Gitau, Ernest TN; Hockert, John; Zentner, Michael D.

2012-11-09T23:59:59.000Z

318

New Prototype Safeguards Technology Offers Improved Confidence and Automation for Uranium Enrichment Facilities  

Science Conference Proceedings (OSTI)

An important requirement for the international safeguards community is the ability to determine the enrichment level of uranium in gas centrifuge enrichment plants and nuclear fuel fabrication facilities. This is essential to ensure that countries with nuclear nonproliferation commitments, such as States Party to the Nuclear Nonproliferation Treaty, are adhering to their obligations. However, current technologies to verify the uranium enrichment level in gas centrifuge enrichment plants or nuclear fuel fabrication facilities are technically challenging and resource-intensive. NNSA’s Office of Nonproliferation and International Security (NIS) supports the development, testing, and evaluation of future systems that will strengthen and sustain U.S. safeguards and security capabilities—in this case, by automating the monitoring of uranium enrichment in the entire inventory of a fuel fabrication facility. One such system is HEVA—hybrid enrichment verification array. This prototype was developed to provide an automated, nondestructive assay verification technology for uranium hexafluoride (UF6) cylinders at enrichment plants.

Brim, Cornelia P.

2013-03-04T23:59:59.000Z

319

Safeguard Application Options for the Laser-Based Item Monitoring System (LBIMS)  

SciTech Connect

Researchers at Oak Ridge National Laboratory (ORNL) are developing a Laser-Based Item Monitoring System (LBIMS) for advanced safeguards at nuclear facilities. LBIMS uses a low-power laser transceiver to monitor the presence and position of items with retroreflective tags. The primary advantages of LBIMS are its scalability to continuously monitor a wide range of items, its ability to operate unattended, its low cost of implementation, and its inherent information security due to its line-of-sight and non-broadcasting operation. The primary proposed safeguard application of LBIMS is described in its name: item monitoring. LBIMS could be implemented in a storage area to continuously monitor containers of nuclear material and the area in which they are stored. The system could be configured to provide off-site notification if any of the containers are moved or removed or if the area is accessed. Individual tags would be used to monitor storage containers, and additional tags could be used to record information regarding secondary storage units and room access. The capability to register small changes in tag position opens up the possibility of several other uses. These include continuously monitoring piping arrangements for design information verification or recording equipment positions for other safeguards systems, such as tracking the opening and closing of autoclaves as part of a cylinder tracking system or opening and closing valves on a sample or product take-off line. Combined with attribute tags, which transmit information from any kind of sensor by modulating the laser signal, LBIMS provides the capability to wirelessly and securely collect safeguards data, even in areas where radio-frequency or other wireless communication methods are not practicable. Four application types are described in this report: static item monitoring, in-process item monitoring with trigger tags, multi-layered integration with trigger tags, and line-of-sight data transfer with attribute tags. Field trials for each of these applications are described.

Laughter, Mark D [ORNL

2008-10-01T23:59:59.000Z

320

INDUSTRIAL CONTROL SYSTEM CYBER SECURITY: QUESTIONS AND ANSWERS RELEVANT TO NUCLEAR FACILITIES, SAFEGUARDS AND SECURITY  

SciTech Connect

Typical questions surrounding industrial control system (ICS) cyber security always lead back to: What could a cyber attack do to my system(s) and; how much should I worry about it? These two leading questions represent only a fraction of questions asked when discussing cyber security as it applies to any program, company, business, or organization. The intent of this paper is to open a dialog of important pertinent questions and answers that managers of nuclear facilities engaged in nuclear facility security and safeguards should examine, i.e., what questions should be asked; and how do the answers affect an organization's ability to effectively safeguard and secure nuclear material. When a cyber intrusion is reported, what does that mean? Can an intrusion be detected or go un-noticed? Are nuclear security or safeguards systems potentially vulnerable? What about the digital systems employed in process monitoring, and international safeguards? Organizations expend considerable efforts to ensure that their facilities can maintain continuity of operations against physical threats. However, cyber threats particularly on ICSs may not be well known or understood, and often do not receive adequate attention. With the disclosure of the Stuxnet virus that has recently attacked nuclear infrastructure, many organizations have recognized the need for an urgent interest in cyber attacks and defenses against them. Several questions arise including discussions about the insider threat, adequate cyber protections, program readiness, encryption, and many more. These questions, among others, are discussed so as to raise the awareness and shed light on ways to protect nuclear facilities and materials against such attacks.

Robert S. Anderson; Mark Schanfein; Trond Bjornard; Paul Moskowitz

2011-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Radio-Frequency (RF) Devices for Safeguards: Where We Are and Where We Need to Go  

Science Conference Proceedings (OSTI)

Radio-Frequency (RF) devices have revolutionized many aspects of modern industrial processes. RF technology can enable wireless communication for tag identification, sensor communication, and asset tracking. Radio-frequency identification (RFID) is a technology that utilizes wireless communication to interrogate and identify an electronic tag attached to an item in order to identify the item. The technology can come in many forms: passive or active tags, low to ultra-wideband frequencies, small paper-thin tags to brick-sized units, and simple tags or highly integrated sensor packages. RF technology, and specifically RFID, has been applied widely in commercial markets for inventory, supply chain management, and asset tracking. Several recent studies have demonstrated the safeguards benefits of utilizing RFID versus conventional inventory tagging methods for tracking nuclear material. These studies have indicated that the RF requirements for safeguards functions are more stringent than the RF requirements for other inventory tracking and accounting applications. Additionally, other requirements must be addressed, including environmental and operating conditions, authentication, and tag location and attachment. Facility restrictions on radio spectrum, method of tag attachment, and sensitivity of the data collected impact the tag selection and system design. More important, the intended use of the system must be considered. The requirements for using RF to simply replace or supplement container identifiers such as bar codes that facilitate the inventory function will differ greatly from the requirements for deploying RF for unattended monitoring applications. Several studies have investigated these considerations to advance commercial RF devices for safeguards use, and a number of system concepts have been developed. This paper will provide an overview of past studies and current technologies, and will investigate the requirements, existing gaps, and several potential next steps for advancing RF techniques for safeguards use.

Rowe, Nathan C [ORNL; Younkin, James R [ORNL; Pickett, Chris A [ORNL; Whitaker, J Michael [ORNL

2011-01-01T23:59:59.000Z

322

Boron-10 ABUNCL Prototype Initial Testing  

SciTech Connect

The Department of Energy Office of Nuclear Safeguards and Security (NA-241) is supporting the project Coincidence Counting With Boron-Based Alternative Neutron Detection Technology at Pacific Northwest National Laboratory (PNNL) for the development of a 3He proportional counter alternative neutron coincidence counter. The goal of this project is to design, build and demonstrate a system based upon 10B-lined proportional tubes in a configuration typical for 3He-based coincidence counter applications. This report provides results of initial testing of an Alternative Boron-Based Uranium Neutron Coincidence Collar (ABUNCL) design built by General Electric Reuter-Stokes. Several configurations of the ABUNCL models, which use 10B-lined proportional counters in place of 3He proportional counters for the neutron detection elements, were previously reported. The ABUNCL tested is of a different design than previously modeled. Initial experimental testing of the as-delivered passive ABUNCL was performed, and modeling will be conducted. Testing of the system reconfigured for active testing will be performed in the near future, followed by testing with nuclear fuel.

Kouzes, Richard T.; Ely, James H.; Lintereur, Azaree T.; Siciliano, Edward R.

2012-12-01T23:59:59.000Z

323

Fast critical assembly safeguards: NDA methods for highly enriched uranium. Summary report, October 1978-September 1979  

SciTech Connect

Nondestructive assay (NDA) methods, principally passive gamma measurements and active neutron interrogation, have been studied for their safeguards effectiveness and programmatic impact as tools for making inventories of highly enriched uranium fast critical assembly fuel plates. It was concluded that no NDA method is the sole answer to the safeguards problem, that each of those emphasized here has its place in an integrated safeguards system, and that each has minimum facility impact. It was found that the 185-keV area, as determined with a NaI detector, was independent of highly-enriched uranium (HEU) plate irradiation history, though the random neutron driver methods used here did not permit accurate assay of irradiated plates. Containment procedures most effective for accurate assaying were considered, and a particular geometry is recommended for active interrogation by a random driver. A model, pertinent to that geometry, which relates the effects of multiplication and self-absorption, is described. Probabilities of failing to detect that plates are missing are examined.

Bellinger, F.O.; Winslow, G.H.

1980-12-01T23:59:59.000Z

324

Model of a Generic Natural Uranium Conversion Plant ? Suggested Measures to Strengthen International Safeguards  

SciTech Connect

This is the final report that closed a joint collaboration effort between DOE and the National Nuclear Energy Commission of Brazil (CNEN). In 2005, DOE and CNEN started a collaborative effort to evaluate measures that can strengthen the effectiveness of international safeguards at a natural uranium conversion plant (NUCP). The work was performed by DOE s Oak Ridge National Laboratory and CNEN. A generic model of a NUCP was developed and typical processing steps were defined. Advanced instrumentation and techniques for verification purposes were identified and investigated. The scope of the work was triggered by the International Atomic Energy Agency s 2003 revised policy concerning the starting point of safeguards at uranium conversion facilities. Prior to this policy only the final products of the uranium conversion plant were considered to be of composition and purity suitable for use in the nuclear fuel cycle and therefore, subject to the IAEA safeguards control. DOE and CNEN have explored options for implementing the IAEA policy, although Brazil understands that the new policy established by the IAEA is beyond the framework of the Quadripartite Agreement of which it is one of the parties, together with Argentina, the Brazilian-Argentine Agency for Accounting and Control of Nuclear Materials (ABACC) and the IAEA. Two technical papers on this subject were published at the 2005 and 2008 INMM Annual Meetings.

Raffo-Caiado, Ana Claudia [ORNL; Begovich, John M [ORNL; Ferrada, Juan J [ORNL

2009-11-01T23:59:59.000Z

325

Status of Safeguards and Separations Model Development at Plant and Molecular Levels  

SciTech Connect

A primary goal of the Safeguards and Separations IPSC effort is the development of process modeling tools that allow dynamic simulations of separations plant operations under various configurations and conditions, and integration of relevant safeguards analyses. A requirement of the effort is to develop codes on modern, expandable architectures, with flexibility to explore and evaluate a wide range of process options. During FY09, efforts at ORNL have been focused on two priority tasks toward achieving the IPSC goal: (1) a top-down exploration of architecture - Subtask 1: Explore framework for code development and integration for plant-level simulation; and (2) a bottom-up fundamental modeling effort - Subtask 2: Development of molecular-level agent design code. Subtask 1 is important because definition and development of architecture is a key issue for the overall effort, as selection of an overall approach and code/data requirements is a necessary first step in the organization, design and development of separations and safeguards codes that will be incorporated. The agent design effort of Subtask 2 is a molecular-level modeling effort that has a direct impact on a near-term issue of the Separations and Waste Forms Campaign. A current focus of experimental efforts is the development of robust agents and processes for separation of Am/Cm. Development of enhanced agent-design codes will greatly accelerate discovery and experimental testing.

de Almeida, Valmor F [ORNL; Hay, Benjamin [ORNL; DePaoli, David W [ORNL

2009-10-01T23:59:59.000Z

326

Design of a Safeguards Instrument for Plutonium Quantification in an Electrochemical Refining System  

E-Print Network (OSTI)

There has been a strong international interest in using pyroprocessing to close the fast nuclear reactor fuel cycle and reprocess spent fuel efficiently. To commercialize pyroprocessing, safeguards technologies are required to be developed. In this research, the use of Self-Interrogation Neutron Resonance Densitometry (SINRD) has been investigated as a method to safeguard the process and more precisely quantify the 239Pu content of pyroprocessing materials. This method uses a detector array with different filters to isolate the low-energy resonance in 239Pu neutron fission cross section. The relative response of the different detectors allows for the quantification of the amount of 239Pu in the pyroprocessing materials. The Monte-Carlo N-Particle (MCNP) code was used to design a prototype SINRD instrument. This instrument is composed of a neutron source pod and a SINRD detector pod. Experimental measurements were also performed to validate the MCNP model of the instrument. Based on the results from simulations and experiments, it has been concluded that the MCNP model accurately represents the physics of the experiment. In addition, different SINRD signatures were compared to identify which of them are usable to determine the fissile isotope content. Comparison of different signatures allowed for reduction in the uncertainty of the 239Pu mass estimate. Using these signatures, the SINRD instrument was shown to be able to quantify the 239Pu content of unknown pyroprocessing materials suitable for safeguards usage.

Le Coq, Annabelle G

2013-08-01T23:59:59.000Z

327

Climate VISION: Private Sector Initiatives: Electric Power: Resources and  

Office of Scientific and Technical Information (OSTI)

Federal/State Programs Federal/State Programs Biomass Research & Development Initiative The Biomass Research & Development Initiative is a multi-agency effort to coordinate and accelerate all Federal biobased products and bioenergy research and development. Environmental Protection Agency (EPA) EPA's mission is to protect human health and to safeguard the natural environment—air, water, and land—upon which life depends. EPA Climate Leaders Climate Leaders is a voluntary industry-government partnership that encourages companies to develop long-term, comprehensive climate change strategies and set greenhouse gas (GHG) emissions reduction goals. EPA Climate Protection Partnerships Division The division works with businesses, organizations, governments, and consumers to reduce emissions of the greenhouse gases that contribute to

328

Salt Waste Processing Initiatives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Patricia Suggs Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 Overview * Current SRS Liquid Waste System status * Opportunity to accelerate salt processing - transformational technologies - Rotary Microfiltration (RMF) and Small Column Ion Exchange (SCIX) - Actinide Removal Process/Modular Caustic Side Solvent Extraction (ARP/MCU) extension with next generation extractant - Salt Waste Processing Facility (SWPF) performance enhancement - Saltstone enhancements * Life-cycle impacts and benefits 3 SRS Liquid Waste Total Volume >37 Million Gallons (Mgal) Total Curies 183 MCi (51% ) 175 MCi (49% ) >358 Million Curies (MCi) Sludge 34.3 Mgal (92% ) 3.0 Mgal (8%)

329

Direct Measurement of Initial Enrichment and Burn-up of Spent Fuel Assembly with a Differential Die-Away Technique Based Instrument  

SciTech Connect

A key objective of the Next Generation Safeguards Initiative (NGSI) is to utilize non-destructive assay (NDA) techniques to determine the elemental plutonium (Pu) content in a commercial-grade nuclear spent fuel assembly (SFA). In the third year of the NGSI Spent Fuel NDA project, the research focus is on the integration of a few NDA techniques. One of the reoccurring challenges to the accurate determination of Pu content has been the explicit dependence of the measured signal on the presence of neutron absorbers which build up in the assembly in accordance with its operating and irradiation history. The history of any SFA is often summarized by the parameters of burn-up (BU), initial enrichment (IE) and cooling time (CT). While such parameters can typically be provided by the operator, the ability to directly measure and verify them would significantly enhance the autonomy of the IAEA inspectorate. Within this paper, we demonstrate that an instrument based on a Differential Die-Away technique is in principle capable of direct measurement of IE and, should the CT be known, also the BU.

Henzl, Vladimir [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Tobin, Stephen J. [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

330

Generative model transformer  

Science Conference Proceedings (OSTI)

The Generative Model Transformer (GMT) project is an Open Source initiative to build a Model Driven Architecure™ tool that allows fully customisable Platform Independent Models, Platform Description Models, Texture Mappings, and Refinement Transformations. ... Keywords: QVT, domain-specific languages, generative model transformer (GMT), model driven architecture (MDA), model transformation, open source

Jorn Bettin; Ghica van Emde Boas

2003-10-01T23:59:59.000Z

331

Preliminary study: isotopic safeguards techniques (IST). LMFBR fuel cycles  

Science Conference Proceedings (OSTI)

This memorandum presents the preliminary results of the effort to investigate the applicability of isotope correlation techniques (ICT), formulated for the LWR system, to the LMFBR fuel cycle. The detailed isotopic compositional changes with burnup developed for the CRBR was utilized as the reference case. This differs from the usual LMFBR design studies in that the core uranium is natural uranium rather than depleted. Nevertheless, the general isotopic behavior should not differ significantly and does allow an initial insight into the expected behavior of isotopic correlations for the LMFBR power systems such as: the U.K. PFR and reprocessing plant; the French Phenix and Superphenix; and the US reference conceptual design studies (CDS) of homogeneous and heterogeneous LMFBR systems as they are developed.

Persiani, P.J.; Kroc, T.K.

1980-06-01T23:59:59.000Z

332

Feasibility Study of Economics and Performance of Biomass Power Generation at the Former Farmland Industries Site in Lawrence, Kansas. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

DOE Green Energy (OSTI)

Under the RE-Powering America's Land initiative, the U.S. Environmental Protection Agency (EPA) provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of biomass renewable energy generation at the former Farmland Industries site in Lawrence, Kansas. Feasibility assessment team members conducted a site assessment to gather information integral to this feasibility study. Information such as biomass resources, transmission availability, on-site uses for heat and power, community acceptance, and ground conditions were considered.

Tomberlin, G.; Mosey, G.

2013-03-01T23:59:59.000Z

333

NUCLEAR ENERGY RESEARCH INITIATIVE (NERI) PROGRAM GRANT NUMBER DE-FG03-00SF22168 TECHNICAL PROGRESS REPORT (Nov. 15, 2001 - Feb. 15,2002) ''Design and Layout Concepts for Compact, Factory-Produced, Transportable, Generation IV Reactor Systems''  

SciTech Connect

The objectives of this project are to develop and evaluate nuclear power plant designs and layout concepts to maximize the benefits of compact modular Generation IV reactor concepts including factory fabrication and packaging for optimal transportation and siting. Three nuclear power plant concepts are being studied representing water, helium and lead-bismuth coolants. This is the sixth quarterly progress report.

Fred R. Mynatt; Andy Kadak; Marc Berte; Larry Miller; Mohammed Khan; Joe McConn; Lawrence Townsend; Wesley Williams; Martin Williamson

2002-03-15T23:59:59.000Z

334

Report on the US Program of Technical Assistance to Safeguards of the International Atomic Energy Agency (POTAS)  

Science Conference Proceedings (OSTI)

This document summarizes the work done under the US Program of Technical Assistance to IAEA Safeguards (POTAS), providing the US Government, IAEA, and others with a short review of the progress made in the program since its inception. Becaue of the size and complexity of the program, only major accomplishments are presented. These are grouped under the following categories: (1) equipment and standard which cover assay of irradiated and unirradiated nuclear materials, automatic data processing, and physical standards; (2) experts who are involved in technology transfer, training, system design, and safeguard information processing and analysis; (3) system studies which cover diversion hazard analysis, safeguards approaches and application, and inspection effort planning and forecasting; (4) techniques, procedures, and equipment evaluation; (5) training of IAEA inspectors and safeguards specialists from member states. The major achievement has been the provisions of safeguards equipment designed to be reliable, and tamper resistant, some of which have already been in use in the field by inspector or by IAEA staff members in Vienna. These are listed in a table. (AT)

Not Available

1981-05-01T23:59:59.000Z

335

NETL: Educational Initiatives - Teachers  

NLE Websites -- All DOE Office Websites (Extended Search)

Teachers Educational Initiatives Teachers NETL is a proactive developer and supporter of educational initiatives at all levels. NETL's commitment to education is demonstrated...

336

N-1: Safeguards Science and Technology Group, Tour Areas  

SciTech Connect

Group N-1 develops and provides training on nondestructive assay (NDA) technologies intended for nuclear material accounting and control to fulfill both international and domestic obligations. The N-1 group is located at Technical Area (TA)-35 in Buildings 2 and 27. Visitors to the area can observe developed and fielded NDA technologies, as well as the latest research efforts to develop the next generation of NDA technologies. Several areas are used for NDA training. The N-1 School House area typically is used for basic training on neutron- and gamma-ray-based NDA techniques. This area contains an assortment of gamma-ray detector systems, including sodium iodide and high-purity germanium and the associated measurement components. Many types of neutron assay systems are located here, including both standard coincidence and multiplicity counters. The N-1 School House area is also used for holdup training; located here are the mock holdup assemblies and associated holdup measurement tools. Other laboratory areas in the N-1 space are used for specialized training, such as waste NDA, calorimetry, and advanced gamma-ray NDA. Also, many research laboratories in the N-1 space are used to develop new NDA technologies. The calorimetry laboratory is used to develop and evaluate new technologies and techniques that measure the heat signature from nuclear material to determine mass. The micro calorimetry laboratory is being used to develop advanced technologies that can measure gamma rays with extremely high resolution. This technique has been proven in the laboratory setting, and the team is now working to cultivate a field-capable system. The N-1 group also develops remote and unattended systems for the tracking and control of nuclear material. A demonstration of this technology is located within one of the laboratory spaces. The source tracker software was developed by N-1 to monitor the locations and quantities of nuclear materials. This software is currently used to track N-1's nuclear material and is available for demonstration.

Geist, William H. [Los Alamos National Laboratory

2012-05-09T23:59:59.000Z

337

The Initial Composition of Jet Condensation Trails  

Science Conference Proceedings (OSTI)

Physicochemical processes that generate and transform aerosols in jet aircraft plumes are discussed on the basis of theoretical models and recent observations of young contrails in the upper troposphere. The initial evolution of optical depth and ...

B. Kärcher; Th Peter; U. M. Biermann; U. Schumann

1996-11-01T23:59:59.000Z

338

North American Synchrophasor Initiative (NASPI) Program Information |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

North American Synchrophasor Initiative (NASPI) Program Information North American Synchrophasor Initiative (NASPI) Program Information North American Synchrophasor Initiative (NASPI) Program Information Summary of the Transmission Reliability program's North American Synchrophasor Initiative (NASPI) activity area. NASPI supports industry adoption of next-generation monitoring equipment to increase reliability and reduce costs for consumers through the development of secure, highspeed, time-synchronized data about bulk power system conditions. North American Synchrophasor Initiative (NASPI) Program Factsheet.pdf More Documents & Publications Synchrophasor Technologies and their Deployment in the Recovery Act Smart Grid Programs (August 2013) 2012 Advanced Applications Research & Development Peer Review - Day 1 Presentations

339

Development of a Safeguards Verification Method and Instrument to Detect Pin Diversion from Pressurized Water Reactor (PWR) Spent Fuel Assemblies Phase I Study  

SciTech Connect

A novel methodology to detect diversion of spent fuel from Pressurized Water Reactors (PWR) has been developed in order to address a long unsolved safeguards verification problem for international safeguards community such as International Atomic Energy Agency (IAEA) or European Atomic Energy Community (EURATOM). The concept involves inserting tiny neutron and gamma detectors into the guide tubes of a spent fuel assembly and measuring the signals. The guide tubes form a quadrant symmetric pattern in the various PWR fuel product lines and the neutron and gamma signals from these various locations are processed to obtain a unique signature for an undisturbed fuel assembly. Signatures based on the neutron and gamma signals individually or in a combination can be developed. Removal of fuel pins from the assembly will cause the signatures to be visibly perturbed thus enabling the detection of diversion. All of the required signal processing to obtain signatures can be performed on standard laptop computers. Monte Carlo simulation studies and a set of controlled experiments with actual commercial PWR spent fuel assemblies were performed and validated this novel methodology. Based on the simulation studies and benchmarking measurements, the methodology developed promises to be a powerful and practical way to detect partial defects that constitute 10% or more of the total active fuel pins. This far exceeds the detection threshold of 50% missing pins from a spent fuel assembly, a threshold defined by the IAEA Safeguards Criteria. The methodology does not rely on any operator provided data like burnup or cooling time and does not require movement of the fuel assembly from the storage rack in the spent fuel pool. A concept was developed to build a practical field device, Partial Defect Detector (PDET), which will be completely portable and will use standard radiation measuring devices already in use at the IAEA. The use of the device will not require any information provided by the operator or any prior knowledge of the spent fuel assembly. The device can also be operated without any movement of the spent fuel from its storage position. Based on parametric studies conducted via computer simulation, the device should be able to detect diversion of as low as ten percent of the missing or replaced fuel from an assembly regardless of the location of the missing fuel within the assembly, of the cooling time, initial fuel enrichment or burnup levels. Conditions in the spent fuel pool such as clarity of the water or boron content are also not issues for this device. The shape of the base signature is principally dependent on the layout of the guide tubes in the various types of PWR fuel assemblies and perturbations in the form of replaced fuel pins will distort this signature. These features of PDET are all unique and overcome limitation and disadvantages presented by currently used devices such as the Fork detector or the Cerenkov Viewing Device. Thus, this device when developed and tested could fill an important need in the safeguards area for partial defect detection, a technology that the IAEA has been seeking for the past few decades.

Ham, Y S; Sitaraman, S

2008-12-24T23:59:59.000Z

340

The U. S. -Russian HEU Agreement: Internal safeguards to prevent diversion of HEU  

SciTech Connect

Under the U.S.-Russian HEU agreement, approximately 500 tons of highly enriched uranium (HEU) from large-scale dismantlement of former Soviet nuclear warheads will be transformed into products not usable in nuclear weapons. According to the agreement, Russian facilities will convert and blend down HEU to low-enriched uranium (LEU) fuel for nuclear reactors. However, HEU is vulnerable to insider diversion during processing operations. The paper describes the principal HEU diversion vulnerabilities at the plant, and recommends a strong internal preventive safeguards system. 27 refs., 2 figs., 1 tab.

Bukharin, O.; Hunt, H.M. (Princeton Univ., NJ (United States))

1994-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Passive Measurement of Organic-Scintillator Neutron Signatures for Nuclear Safeguards Applications  

Science Conference Proceedings (OSTI)

At nuclear facilities, domestically and internationally, most measurement systems used for nuclear materials’ control and accountability rely on He-3 detectors. Due to resource shortages, alternatives to He-3 systems are needed. This paper presents preliminary simulation and experimental efforts to develop a fast-neutron-multiplicity counter based on liquid organic scintillators. This mission also provides the opportunity to broaden the capabilities of such safeguards measurement systems to improve current neutron-multiplicity techniques and expand the scope to encompass advanced nuclear fuels.

Jennfier L. Dolan; Eric C. Miller; Alexis C. Kaplan; Andreas Enqvist; Marek Flaska; Alice Tomanin; Paolo Peerani; David L. Chichester; Sara A. Pozzi

2012-10-01T23:59:59.000Z

342

Safeguarding a NWS International Enrichment Center as an Enriched Uranium Store  

SciTech Connect

The operational and regulatory singularities of a multilateral facility designed to provide enriched uranium to a consortium of members may engender a new sub-category of safeguard criteria for the International Atomic Energy Agency (IAEA). This paper introduces the contingency of monitoring such a facility as a uranium storage center with cylinders containing low-enriched uranium (LEU) as the principal, and perhaps only, material open to verification. Accountancy and verification techniques will be proffered together with disparate means for maintaining continuity of knowledge (CoK) on verified stock.

Curtis, Michael M.

2008-03-31T23:59:59.000Z

343

Supplemental Report on Nuclear Safeguards Considerations for the Pebble Bed Modular Reactor (PBMR)  

SciTech Connect

Recent reports by Department of Energy National Laboratories have discussed safeguards considerations for the low enriched uranium (LEU) fueled Pebble Bed Modular Reactor (PBMR) and the need for bulk accountancy of the plutonium in used fuel. These reports fail to account effectively for the degree of plutonium dilution in the graphitized-carbon pebbles that is sufficient to meet the International Atomic Energy Agency's (IAEA's) 'provisional' guidelines for termination of safeguards on 'measured discards.' The thrust of this finding is not to terminate safeguards but to limit the need for specific accountancy of plutonium in stored used fuel. While the residual uranium in the used fuel may not be judged sufficiently diluted to meet the IAEA provisional guidelines for termination of safeguards, the estimated quantities of {sup 232}U and {sup 236}U in the used fuel at the target burn-up of {approx}91 GWD/MT exceed specification limits for reprocessed uranium (ASTM C787) and will require extensive blending with either natural uranium or uranium enrichment tails to dilute the {sup 236}U content to fall within specification thus making the PBMR used fuel less desirable for commercial reprocessing and reuse than that from light water reactors. Also the PBMR specific activity of reprocessed uranium isotopic mixture and its A{sub 2} values for effective dose limit if released in a dispersible form during a transportation accident are more limiting than the equivalent values for light water reactor spent fuel at 55 GWD/MT without accounting for the presence of the principal carry-over fission product ({sup 99}Tc) and any possible plutonium contamination that may be present from attempted covert reprocessing. Thus, the potentially recoverable uranium from PBMR used fuel carries reactivity penalties and radiological penalties likely greater than those for reprocessed uranium from light water reactors. These factors impact the economics of reprocessing, but a more significant consideration is that reprocessing technologies for coated particle fuels encased in graphitized-carbon have not progressed beyond laboratory-scale demonstrations although key equipment that has been tested in the past (such as graphite burners and electrolytic disintegration/dissolution devices) are not listed on either the 'Trigger List' or the 'Dual Use List' for mandatory export controls. Finally, if gross burn-up determined from fission product gamma ray inspection of a discharged pebble cannot be correlated acceptably with predicted plutonium content of the pebble, development and testing may be required on detector concepts for more directly measuring the plutonium content in a discharged pebble to ensure that its placement in the spent fuel storage tanks is for an acceptable 'measured discard' of diluted plutonium.

Moses, David Lewis [ORNL; Ehinger, Michael H [ORNL

2010-05-01T23:59:59.000Z

344

Summary report on four Oak Ridge sensors for enhancing nuclear safeguards neutron detectors  

SciTech Connect

The need for monitoring weapons grade Pu in nuclear facilities worldwide was addressed with four radiation detector technologies being developed at Y-12 and ORNL. This paper describes experimental results of 4 Oak Ridge Sensors for Enhancing Nuclear Safeguards (ORSENS) neutron detector technologies and includes the potential application, cost, and advantages for each. These are a {sup 6}LiF- ZnS(Ag) thermal neutron scintillator coupled to a wavelength-shifting optical fiber, a CdWO{sub 4} based scintillating thermal neutron detector, a rhodium silicon thermal neutron detector, and a proton- recoil fast neutron detector.

Williams, J.A.; Clark, R.L.; Hutchinson, D.P.; Miller, V.C.; Ramsey, J.A. [Oak Ridge National Lab., TN (United States); Bell, Z.W.; Hiller, J.M.; Wallace, S.A. [Oak Ridge Y-12 Plant, TN (United States)

1997-08-01T23:59:59.000Z

345

Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup  

Science Conference Proceedings (OSTI)

INMM Abstract 51st Annual Meeting Decommissioning the Fuel Process Building, a Shift in Paradigm for Terminating Safeguards on Process Holdup The Fuel Process Building at the Idaho Nuclear Technology and Engineering Center (INTEC) is being decommissioned after nearly four decades of recovering high enriched uranium from various government owned spent nuclear fuels. The separations process began with fuel dissolution in one of multiple head-ends, followed by three cycles of uranium solvent extraction, and ending with denitration of uranyl nitrate product. The entire process was very complex, and the associated equipment formed an extensive maze of vessels, pumps, piping, and instrumentation within several layers of operating corridors and process cells. Despite formal flushing and cleanout procedures, an accurate accounting for the residual uranium held up in process equipment over extended years of operation, presented a daunting safeguards challenge. Upon cessation of domestic reprocessing, the holdup remained inaccessible and was exempt from measurement during ensuing physical inventories. In decommissioning the Fuel Process Building, the Idaho Cleanup Project, which operates the INTEC, deviated from the established requirements that all nuclear material holdup be measured and credited to the accountability books and that all nuclear materials, except attractiveness level E residual holdup, be transferred to another facility. Instead, the decommissioning involved grouting the process equipment in place, rather than measuring and removing the contained holdup for subsequent transfer. The grouting made the potentially attractiveness level C and D holdup even more inaccessible, thereby effectually converting the holdup to attractiveness level E and allowing for termination of safeguards controls. Prior to grouting the facility, the residual holdup was estimated by limited sampling and destructive analysis of solutions in process lines and by acceptable knowledge based upon the separations process, plant layout, and operating history. The use of engineering estimates, in lieu of approved measurement methods, was justified by the estimated small quantity of holdup remaining, the infeasibility of measuring the holdup in a highly radioactive background, and the perceived hazards to personnel. The alternate approach to quantifying and terminating safeguards on process holdup was approved by deviation.

Ivan R. Thomas

2010-07-01T23:59:59.000Z

346

SunShot Initiative: Key Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Key Activities Key Activities Printable Version Share this resource Send a link to SunShot Initiative: Key Activities to someone by E-mail Share SunShot Initiative: Key Activities on Facebook Tweet about SunShot Initiative: Key Activities on Twitter Bookmark SunShot Initiative: Key Activities on Google Bookmark SunShot Initiative: Key Activities on Delicious Rank SunShot Initiative: Key Activities on Digg Find More places to share SunShot Initiative: Key Activities on AddThis.com... Concentrating Solar Power Photovoltaics Systems Integration Balance of Systems Key Activities Under the SunShot Initiative, the DOE Solar Office issues competitive solicitations that fund selective research projects aimed at transforming the ways the United States generates, stores, and utilizes solar energy.

347

Who’s Watching the Nuclear Watchdog? A Critique of the Australian Safeguards and Non-Proliferation Office  

E-Print Network (OSTI)

This EnergyScience Briefing Paper raises serious concerns regarding the competence and professionalism of the Australian Safeguards and Non-Proliferation Office (ASNO). ASNO’s mission, to prevent nuclear proliferation dangers associated with Australia’s uranium exports, is a task vital to the long-term security of Australians and all people. This paper details a large number of statements made by ASNO which are false or misleading. The evidence compiled raises critical questions of good governance, and leads inescapably to the conclusion that the safeguards on Australian uranium which ASNO is responsible for implementing are deeply flawed both in their design and in their execution.

Richard Broinowski; Tilman Ruff; Alan Roberts; Jim Green

2007-01-01T23:59:59.000Z

348

Safeguards and security considerations associated with the use of mixed-oxide fuel in U.S. commercial reactors  

Science Conference Proceedings (OSTI)

The US Department of Energy`s overall plutonium disposition strategy includes irradiation of mixed-oxide (MOX) fuel derived from surplus weapons-usable plutonium via domestic, commercial reactors. The storage, handling, and irradiation of weapons-usable plutonium-derived MOX fuel will increase the requirements for safeguards and security at commercial light-water reactor sites, which presently only use low-enriched uranium fuel. Applicable safeguards and security regulations and requirements for the reactor irradiation services portion of the project are discussed in this topical report. Requirements for the MOX fuel fabrication portion of the project are discussed in a separate report.

Ehinger, M.E. [Oak Ridge Y-12 Plant, TN (United States). National Security Program Office

1997-04-01T23:59:59.000Z

349

Explosive laser light initiation of propellants  

DOE Patents (OSTI)

This invention is comprised of an improved initiator for artillery shell using an explosively generated laser light to uniformly initiate the propellent. A small quantity of a high explosive, when detonated, creates a high pressure and temperature, causing the surrounding noble gas to fluoresce. This fluorescence is directed into a lasing material, which lases, and directs laser light into a cavity in the propellant, uniformly initiating the propellant.

Piltch, M.S.

1992-12-31T23:59:59.000Z

350

Treaty on Open Skies sensor technologies with potential international safeguards applications  

SciTech Connect

The Treaty on Open Skies is a precedent-setting agreement that allows signatory states to fly aircraft over each other`s territory with sensor systems. The purpose of the Treaty is to improve confidence and security with respect to military activities of the signatories. This paper reviews the sensor technology that is currently allowed by the Treaty on Open Skies and potential future sensor technology. The Treaty on Open Skies does have provisions to allow for the improvement of the technology of the current sensor systems and for the proposal of new sensors after a period of time. This can occur only after the Treaty has been ratified and has entered into force. If this regime was to be used for other than Treaty on Open Skies applications some modifications to the allowed sensor technology should be examined. This paper presents some ideas on potential improvements to existing allowed sensor technology as well as some suggested new advanced sensor systems that would be useful for future potential monitoring of safeguard`s related activities. This paper addresses advanced imaging sensors and non-imaging sensors for potential use in aerial remote sensing roles that involve international data sharing.

Sandoval, M.B.

1996-12-01T23:59:59.000Z

351

Scram signal generator  

DOE Patents (OSTI)

A scram signal generating circuit for nuclear reactor installations monitors a flow signal representing the flow rate of the liquid sodium coolant which is circulated through the reactor, and initiates reactor shutdown for a rapid variation in the flow signal, indicative of fuel motion. The scram signal generating circuit includes a long-term drift compensation circuit which processes the flow signal and generates an output signal representing the flow rate of the coolant. The output signal remains substantially unchanged for small variations in the flow signal, attributable to long term drift in the flow rate, but a rapid change in the flow signal, indicative of a fast flow variation, causes a corresponding change in the output signal. A comparator circuit compares the output signal with a reference signal, representing a given percentage of the steady state flow rate of the coolant, and generates a scram signal to initiate reactor shutdown when the output signal equals the reference signal.

Johanson, Edward W. (New Lenox, IL); Simms, Richard (Westmont, IL)

1981-01-01T23:59:59.000Z

352

National Security Initiatives | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Bioinformatics Facilities Events and Conferences Supporting Organizations National Security Home | Science & Discovery | National Security | Initiatives SHARE National...

353

Feasibility Study of Economics and Performance of Geothermal Power Generation at the Lakeview Uranium Mill Site in Lakeview, Oregon. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites  

DOE Green Energy (OSTI)

The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Lakeview Uranium Mill site in Lakeview, Oregon, for a feasibility study of renewable energy production. The EPA contracted with the National Renewable Energy Laboratory (NREL) to provide technical assistance for the project. The purpose of this report is to describe an assessment of the site for possible development of a geothermal power generation facility and to estimate the cost, performance, and site impacts for the facility. In addition, the report recommends development pathways that could assist in the implementation of a geothermal power system at the site.

Hillesheim, M.; Mosey, G.

2013-11-01T23:59:59.000Z

354

Next-generation online MC and A technologies for reprocessing plants  

SciTech Connect

As power-production nuclear fuel cycles propagate across the globe, a new generation of measurement technologies is needed to support safeguards monitoring of fuel reprocessing facilities. This paper describes the simulation and analysis of two potential technologies for meeting the challenges of 1) direct measurement of fissile isotopic content in irradiated fuel to detect partial defects, and 2) near-real-time monitoring of process chemistry to detect protracted diversion scenarios. Lead slowing-down spectroscopy is the core of the spent fuel assay technology and multi-isotope indicators via high-resolution gamma ray spectroscopy are the foundation of the process chemistry verification approach. The safeguards context and methods for each technology are described and the results of preliminary performance studies are presented. The quantitative results for both studies are promising but more comprehensive analysis and empirical validation is needed to adequately assess their potential value as next generation online materials control and accountability measures. (authors)

Smith, L.E.; Schwantes, J.M.; Ressler, J.J.; Douglas, M.; Anderson, K.A.; Fraga, C.G.; Durst, C. [Pacific Northwest National Laboratory, PO Box 999, Richland, WA, 99352 (United States); Orton, C.; Christensen, R. [Nuclear Engineering Program, Mechanical Engineering Department, Ohio State University, Columbus, OH, 43210 (United States)

2007-07-01T23:59:59.000Z

355

Next-Generation Online MC&A Technologies for Reprocessing Plants  

Science Conference Proceedings (OSTI)

As power-production nuclear fuel cycles propagate across the globe, a new generation of measurement technologies is needed to support safeguards monitoring of fuel reprocessing facilities. This paper describes the simulation and analysis of two potential technologies for meeting the challenges of 1) direct measurement of fissile isotopic content in irradiated fuel to detect partial defects, and 2) near-real-time monitoring of process chemistry to detect protracted diversion scenarios. Lead slowing-down spectroscopy is the core of the spent fuel assay technology and multi-isotope indicators via high-resolution gamma-ray spectroscopy is the foundation of the process chemistry verification approach. The safeguards context and methods for each technology are described and the results of preliminary performance studies are presented. The quantitative results for both studies are promising but more comprehensive analysis and empirical validation is needed to adequately assess their potential value as next-generation online materials control and accountability measures.

Smith, Leon E.; Schwantes, Jon M.; Ressler, Jennifer J.; Douglas, Matt; Anderson, Kevin K.; Fraga, Carlos G.; Durst, Casey; Orton, Chris; Christensen, Robert P.

2007-08-03T23:59:59.000Z

356

APEC Smart Grid Initiative  

Science Conference Proceedings (OSTI)

This brief paper describes the activities of the Asia Pacific Economic Cooperation (APEC) Smart Grid Initiative (ASGI) which is being led by the U.S. and developed by the APEC Energy Working Group. In the paper, I describe the origin of the initiative and briefly mention the four major elements of the initiative along with existing APEC projects which support it.

Bloyd, Cary N.

2012-03-01T23:59:59.000Z

357

SunShot Initiative: Innovative Thermal Energy Storage for Baseload...  

NLE Websites -- All DOE Office Websites (Extended Search)

Innovative Thermal Energy Storage for Baseload Solar Power Generation to someone by E-mail Share SunShot Initiative: Innovative Thermal Energy Storage for Baseload Solar Power...

358

Nuclear Hydrogen Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Nuclear Research Advanced Nuclear Research Office of Nuclear Energy, Science and Technology FY 2003 Programmatic Overview Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Office of Nuclear Energy, Science and Technology Henderson/2003 Hydrogen Initiative.ppt 2 Nuclear Hydrogen Initiative Nuclear Hydrogen Initiative Program Goal * Demonstrate the economic commercial-scale production of hydrogen using nuclear energy by 2015 Need for Nuclear Hydrogen * Hydrogen offers significant promise for reduced environmental impact of energy use, specifically in the transportation sector * The use of domestic energy sources to produce hydrogen reduces U.S. dependence on foreign oil and enhances national security * Existing hydrogen production methods are either inefficient or produce

359

SunShot Initiative: Photovoltaics  

NLE Websites -- All DOE Office Websites (Extended Search)

Initiative: Photovoltaics on Twitter Bookmark SunShot Initiative: Photovoltaics on Google Bookmark SunShot Initiative: Photovoltaics on Delicious Rank SunShot Initiative:...

360

RECRUITMENT OF U.S. CITIZENS FOR VACANCIES IN IAEA SAFEGUARDS.  

SciTech Connect

The International Atomic Energy Agency (IAEA) relies on its member states to assist with recruiting qualified individuals for positions within the IAEA's secretariat. It is likewise important to the U.S. government for U.S. citizens to take positions with the IAEA to contribute to its success. It is important for persons within and outside the U.S. nuclear and safeguards industries to become aware of the job opportunities available at the IAEA and to be informed of important vacancies as they arise. The International Safeguards Project Office (ISPO) at Brookhaven National Laboratory (BNL) is tasked by the U.S. government with recruiting candidates for positions within the Department of Safeguards at the IAEA and since 1998, has been actively seeking methods for improving outreach. In addition, ISPO has been working more closely with the IAEA Division of Personnel. ISPO staff members attend trade shows to distribute information about IAEA opportunities. The shows target the nuclear industry as well as shows that are unrelated to the nuclear industry. ISPO developed a web site that provides information for prospective candidates. They have worked with the IAEA to understand its recruitment processes, to make suggestions for improvements, and to understand employment benefits so they can be communicated to potential U.S. applicants. ISPO is also collaborating with a State Department working group that is focused on increasing U.S. representation within the United Nations as a whole. Most recently Secretary of State Condoleezza Rice issued a letter to all Federal Agency heads encouraging details and transfers of their employees to international organizations to the maximum extent feasible and with due regard to their manpower requirements. She urged all federal agencies to review their detail and transfer policies and practices to ensure that employment in international organizations is promoted in a positive and active manner. In addition, she wrote that it is important that agencies examine their policies and practices for returning employees from details and transfer to ensure that reintegration procedures result in both the agency and such employees receiving optimal benefit from the international organization experience. This paper follows a 1999 paper on the same topic.

OCCHIOGROSSO, D.; PEPPER, S.

2006-07-16T23:59:59.000Z

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Distributed Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Untapped Value of Backup Generation Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized solutions. These backup generators exist today in large numbers and provide utilities with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie Mellon's Electricity

362

DOE-STD-1171-2003; Safeguards and Security Functional Area Standard  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE-STD-1171-2003 December 2003 DOE STANDARD SAFEGUARDS AND SECURITY FUNCTIONAL AREA STANDARD DOE Defense Nuclear Facilities Technical Personnel U.S. Department of Energy AREA TRNG Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DOE-STD-1171-2003 This document has been reproduced directly from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000.

363

Safeguards and Security FY 1996 Program Plan: WBS 6.6  

Science Conference Proceedings (OSTI)

The Safeguards and Security (SAS) Program is based upon integrity, competence and innovation in the protection of the public and Hanford resources through: (1) outstanding assistance, oversight, education, and counsel to their customers to ensure the protection of the public, site personnel, assets, and information; (2) value-added and cost-effective solutions to Hanford issues; and (3) risk management techniques to ensure effective asset protection, site accessibility, and the flexibility to adapt to changing customer needs. This plan is divided into two parts: overview and SAS WBS (work breakdown structure) dictionary sheets. The overview is divided into vision and mission, goals and objectives, assumptions and priorities, milestones, and a summary. The SAS WBS dictionary sheets are divided into department overhead, general and administrative, sitewide support, Hanford patrol, traffic safety, and locksmith services.

Lee, F.D.

1995-08-01T23:59:59.000Z

364

Potential improvements in materials accounting for an internationally safeguarded fuels reprocessing plant  

Science Conference Proceedings (OSTI)

The effectiveness of improved materials accounting was evaluated using computer modeling, simulation, and analysis techniques for two model reprocessing plants. One plant, sized to 210 MTHM/yr, represents the small plants currently under international safeguards and the other, sized to 1500 MTHM/yr, represents the large plants expected in the future. The study indicates that conventional accounting may meet IAEA goal quantities and detection times for low-enriched uranium in these facilities. Dynamic materials accounting can meet the IAEA goal for detecting abrupt (1 to 3 wk) diversion of 8 kg of plutonium. Current materials accounting techniques probably cannot meet the protracted diversion goal of detecting 8 kg for plutonium in 1 yr. Facility design features that can improve the effectiveness of materials accounting in future plants are discussed.

Hakkila, E.A.; Dayem, H.A.; Cobb, D.D.; Dietz, R.J.; Shipley, J.P.

1980-01-01T23:59:59.000Z

365

Safeguards design strategies: designing and constructing new uranium and plutonium processing facilities in the United States  

SciTech Connect

In the United States, the Department of Energy (DOE) is transforming its outdated and oversized complex of aging nuclear material facilities into a smaller, safer, and more secure National Security Enterprise (NSE). Environmental concerns, worker health and safety risks, material security, reducing the role of nuclear weapons in our national security strategy while maintaining the capability for an effective nuclear deterrence by the United States, are influencing this transformation. As part of the nation's Uranium Center of Excellence (UCE), the Uranium Processing Facility (UPF) at the Y-12 National Security Complex in Oak Ridge, Tennessee, will advance the U.S.'s capability to meet all concerns when processing uranium and is located adjacent to the Highly Enriched Uranium Materials Facility (HEUMF), designed for consolidated storage of enriched uranium. The HEUMF became operational in March 2010, and the UPF is currently entering its final design phase. The designs of both facilities are for meeting anticipated security challenges for the 21st century. For plutonium research, development, and manufacturing, the Chemistry and Metallurgy Research Replacement (CMRR) building at the Los Alamos National Laboratory (LANL) in Los Alamos, New Mexico is now under construction. The first phase of the CMRR Project is the design and construction of a Radiological Laboratory/Utility/Office Building. The second phase consists of the design and construction of the Nuclear Facility (NF). The National Nuclear Security Administration (NNSA) selected these two sites as part of the national plan to consolidate nuclear materials, provide for nuclear deterrence, and nonproliferation mission requirements. This work examines these two projects independent approaches to design requirements, and objectives for safeguards, security, and safety (3S) systems as well as the subsequent construction of these modern processing facilities. Emphasis is on the use of Safeguards-by-Design (SBD), incorporating Systems Engineering (SE) principles for these two projects.

Scherer, Carolynn P [Los Alamos National Laboratory; Long, Jon D [Los Alamos National Laboratory

2010-09-28T23:59:59.000Z

366

PetaScale Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

focus on applications that benefit energy research, those supported by other Recovery Act funding and Energy Frontier Research Centers (EFRCs). The initiative pairs post-doctoral...

367

ELECTRIC BLASTING INITIATOR  

SciTech Connect

An electric blasting initiator comprises a shell, a high explosive material within the shell, and an exploding bridge wire in contact with said explosive material. (AEC)

Johnston, L.H.

1962-06-26T23:59:59.000Z

368

About the Initiative  

SciTech Connect

This factsheet gives an overview of the Solar America Initiative (SAI), including goals, research and development strategy, market transformation strategy, and benefits to nation.

2007-06-01T23:59:59.000Z

369

Asset Revitalization Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Implementing the U.S. Department of Energy Asset Revitalization Initiative Sustainability * Efficiency * Community ( ARI ) ARI is a DOE-wide effort to advance the...

370

Initiatives - EERE Commercialization Office  

Initiatives. Early stage energy technologies face a number of challenges in transitioning for basic research to market solutions. The U.S. Department of Energy (DOE ...

371

Proliferation resistance: issues, initiatives and evaluation  

Science Conference Proceedings (OSTI)

The vision of a nuclear renaissance has highlighted the issue of proliferation resistance. The prospects for a dramatic growth in nuclear power may depend on the effectiveness of, and the resources devoted to, plans to develop and implement technologies and approaches that strengthen proliferation resistance. The GenIV International Forum (GIF) and others have devoted attention and resources to proliferation resistance. However, the hope of finding a way to make the peaceful uses of nuclear energy resistant to proliferation has reappeared again and again in the history of nuclear power with little practical consequence. The concept of proliferation resistance has usually focused on intrinsic (technological) as opposed to extrinsic (institutional) factors. However, if there are benefits that may yet be realized from reactors and other facilities designed to minimize proliferation risks, it is their coupling with effective safeguards and other nonproliferation measures that likely will be critical. Proliferation resistance has also traditionally been applied only to state threats. Although there are no technologies that can wholly eliminate the risk of proliferation by a determined state, technology can play a limited role in reducing state threats and perhaps in eliminating many non-state threats. These and other issues are not academic. They affect efforts to evaluate proliferation resistance, including the methodology developed by GIF's Proliferation Resistance and Physical Protection (PR&PP) Working Group as well as the proliferation resistance initiatives that are being pursued or may be developed in the future. This paper will offer a new framework for thinking about proliferation resistance issues, including the ways the output of the methodology could be developed to inform the decisions that states, the International Atomic Energy (IAEA) and others will have to make in order to fully realize the promise of a nuclear renaissance.

Pilat, Joseph F [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

372

Neutron Resonance Transmission Analysis (NRTA): Initial Studies of a Method for Assaying Plutonium in Spent Fuel  

SciTech Connect

Neutron Resonance Transmission Analysis (NRTA) is an analytical technique that uses neutrons to assay the isotopic content of bulk materials. The technique uses a pulsed accelerator to produce an intense, short pulse of neutrons in a time-of-flight configuration. These neutrons, traveling at different speeds according to their energy, can be used to interrogate a spent fuel (SF) assembly to determine its plutonium content. Neutron transmission through the assembly is monitored as a function of neutron energy (time after the pulse), similar to the way neutron cross-section data is often collected. The transmitted neutron intensity is recorded as a function of time, with faster (higher-energy) neutrons arriving first and slower (lower-energy) neutrons arriving later. The low-energy elastic scattering and absorption resonances of plutonium and other isotopes modulate the transmitted neutron spectrum. Plutonium content in SF can be determined by analyzing this attenuation. Work is currently underway at Idaho National Laboratory, as a part of United States Department of Energy's Next Generation Safeguards Initiative (NGSI), to investigate the NRTA technique and to assess its feasibility for quantifying the plutonium content in SF and for determining the diversion of SF pins from assemblies. Preliminary results indicate that NRTA has great potential for being able to assay intact SF assemblies. Operating in the 1-40 eV range, it can identify four plutonium isotopes (239, 240, 241, & 242Pu), three uranium isotopes (235, 236, & 238U), and six resonant fission products (99Tc, 103Rh, 131Xe, 133Cs, 145Nd, and 152Sm). It can determine the areal density or mass of these isotopes in single- or multiple-pin integral transmission scans. Further, multiple observables exist to allow the detection of material diversion (pin defects) including fast-neutron and x-ray radiography, gross-transmission neutron counting, plutonium resonance absorption analysis, and fission-product resonance absorption analysis. Initial benchmark modeling has shown excellent agreement with previously published experimental data for measurements of individual SF pins where plutonium assays were experimentally demonstrated to have a precision of better than 3%.

David L. Chichester; James W. Sterbentz

2011-05-01T23:59:59.000Z

373

Energy Security Initiatives Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Make Energy A Consideration in All We DoTM Make Energy A Consideration in All We DoTM ENERGY SECURITY INITIATIVES UPDATE Ms Karen White AFFEC On behalf of Mr Mike Aimone 1 Make Energy A Consideration in All We DoTM 2 Energy Security Initiatives AFCESA ETL 09-10 -- Aurora Electrical System Vulnerability Assessment and Mitigation Actions FUPWG-EEI CA Net Zero Energy Initiative (Vandenberg AFB, CA) Energy Security Tiger Team Visit (Ft Bliss, TX) National Renewable Energy Lab (NREL) Net Zero Pilot at Marine Corps Air Station Miramar and Naval Base Ventura County (San Nicolas Island) Smart Grid Initiatives: Maxwell AFB AL, Army BAAs (3 each); Naval Base Ventura County (San Nicholas Island) National Defense University sponsored Electric Grid War Game (Jul) Task Force on Grid Vulnerability (Gaps/Seams in S&T ) initiative (Joint

374

Network support for system initiated checkpoints  

SciTech Connect

A system, method and computer program product for supporting system initiated checkpoints in parallel computing systems. The system and method generates selective control signals to perform checkpointing of system related data in presence of messaging activity associated with a user application running at the node. The checkpointing is initiated by the system such that checkpoint data of a plurality of network nodes may be obtained even in the presence of user applications running on highly parallel computers that include ongoing user messaging activity.

Chen, Dong; Heidelberger, Philip

2013-01-29T23:59:59.000Z

375

SunShot Initiative: Multidisciplinary University Research Initiative: High  

NLE Websites -- All DOE Office Websites (Extended Search)

Multidisciplinary University Multidisciplinary University Research Initiative: High Operating Temperature Fluids to someone by E-mail Share SunShot Initiative: Multidisciplinary University Research Initiative: High Operating Temperature Fluids on Facebook Tweet about SunShot Initiative: Multidisciplinary University Research Initiative: High Operating Temperature Fluids on Twitter Bookmark SunShot Initiative: Multidisciplinary University Research Initiative: High Operating Temperature Fluids on Google Bookmark SunShot Initiative: Multidisciplinary University Research Initiative: High Operating Temperature Fluids on Delicious Rank SunShot Initiative: Multidisciplinary University Research Initiative: High Operating Temperature Fluids on Digg Find More places to share SunShot Initiative: Multidisciplinary

376

National Nanotechnology Initiative  

Office of Science (SC) Website

National National Nanotechnology Initiative (NNI) Basic Energy Sciences (BES) BES Home About Research Materials Sciences & Engineering (MSE) Chemical Sciences, Geosciences, and Biosciences (CSGB) Accelerator and Detector Research Research Conduct Policies DOE Energy Innovation Hubs Energy Frontier Research Centers National Nanotechnology Initiative (NNI) Nanomaterials ES&H Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy Sciences Advisory Committee (BESAC) News & Resources Contact Information Basic Energy Sciences U.S. Department of Energy SC-22/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3081 F: (301) 903-6594 E: sc.bes@science.doe.gov More Information » Research National Nanotechnology Initiative (NNI)

377

Financing Distributed Generation  

DOE Green Energy (OSTI)

This paper introduces the engineer who is undertaking distributed generation projects to a wide range of financing options. Distributed generation systems (such as internal combustion engines, small gas turbines, fuel cells and photovoltaics) all require an initial investment, which is recovered over time through revenues or savings. An understanding of the cost of capital and financing structures helps the engineer develop realistic expectations and not be offended by the common requirements of financing organizations. This paper discusses several mechanisms for financing distributed generation projects: appropriations; debt (commercial bank loan); mortgage; home equity loan; limited partnership; vendor financing; general obligation bond; revenue bond; lease; Energy Savings Performance Contract; utility programs; chauffage (end-use purchase); and grants. The paper also discusses financial strategies for businesses focusing on distributed generation: venture capital; informal investors (''business angels''); bank and debt financing; and the stock market.

Walker, A.

2001-06-29T23:59:59.000Z

378

Financing Distributed Generation  

SciTech Connect

This paper introduces the engineer who is undertaking distributed generation projects to a wide range of financing options. Distributed generation systems (such as internal combustion engines, small gas turbines, fuel cells and photovoltaics) all require an initial investment, which is recovered over time through revenues or savings. An understanding of the cost of capital and financing structures helps the engineer develop realistic expectations and not be offended by the common requirements of financing organizations. This paper discusses several mechanisms for financing distributed generation projects: appropriations; debt (commercial bank loan); mortgage; home equity loan; limited partnership; vendor financing; general obligation bond; revenue bond; lease; Energy Savings Performance Contract; utility programs; chauffage (end-use purchase); and grants. The paper also discusses financial strategies for businesses focusing on distributed generation: venture capital; informal investors (''business angels''); bank and debt financing; and the stock market.

Walker, A.

2001-06-29T23:59:59.000Z

379

Distributed Generation  

NLE Websites -- All DOE Office Websites (Extended Search)

with another option to reduce peak load, relieve transmission congestion, and improve power reliability. Backup generation is widely deployed across the United States. Carnegie...

380

President's Hydrogen Fuel Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

commercialization decision in 2015 leads to beginning of mass-produced hydrogen fuel cell cars by 2020. FY2006 Hydrogen Fuel Initiative Budget Request 13% 28% 12% 15% 22% 3% 6% 1%...

Note: This page contains sample records for the topic "generation safeguards initiative" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Strategic defense initiative  

DOE Green Energy (OSTI)

This collection of vugraphs states that space power reactors, neutral beams, and flywheel energy storage technologies are important areas to be investigated for application to the strategic defense initiative. (JDH)

Nichols, J.P.

1986-01-01T23:59:59.000Z

382

Design and development of a 3He replacement safeguards neutron counter based on 10B-lined proportional detector technology  

SciTech Connect

This presentation represents an overview of the experimental evaluation of a boron-lined proportional technology performed within an NA-241 sponsored project on testing of boron-lined proportional counters for the purpose of replacement of {sup 3}He technologies. The presented boron-lined technology will be utilized in a design of a full scale safeguards neutron coincidence counter. The design considerations and the Monte Carlo performance predictions for the counter are also presented.

Henzlova, Daniela [Los Alamos National Laboratory; Evans, Louise [Los Alamos National Laboratory; Menlove, Howard O. [Los Alamos National Laboratory; Swinhoe, Martyn T. [Los Alamos National Laboratory; Rael, Carlos D. [Los Alamos National Laboratory; Martinez, Isaac P. [Los Alamos National Laboratory; Marlow, Johnna B. [Los Alamos National Laboratory

2012-07-16T23:59:59.000Z

383

Support System Initiating Events  

Science Conference Proceedings (OSTI)

This report documents current methods to identify and quantify support system initiating events SSIEs used in probabilistic risk assessment PRA. This report updates the guidance provided in an EPRI report published in 2006, Support System Initiating Events: Identification and Quantification Guideline 1013490, and has been developed with input from a broad spectrum of the PRA community. Cooperation with the U.S. Nuclear Regulatory Commission NRC and Idaho National Laboratory INL, under the provisions of t...

2008-12-19T23:59:59.000Z

384

Long-term need for new generating capacity  

SciTech Connect

Electricity demand should continue to grow at about the same rate as GNP, creating a need for large amounts of new generating capacity by the year 2000. Only coal and nuclear at this time have the abundant domestic resources and assured technology to meet this need. However, large increase in both coal and nuclear usage will not be acceptable to society without solutions to many of the problems that now deter their increased usage. For coal, the problems center around the safety and environmental impacts of increased coal mining and coal combustion. For nuclear the problems center around reactor safety, radioactive waste disposal, financial risk, and nuclear materials safeguards. The fuel requirements and waste generation for coal plants are orders of magnitude greater than for nuclear. Technology improvements and waste management practices must be pursued to mitigate environmental and safety impacts from electricity generation. 26 refs., 14 figs., 23 tabs.

Bloomster, C.H.; Merrill, E.T.

1987-03-01T23:59:59.000Z

385

Opening Remarks At The Third International Meeting On Next Generation  

National Nuclear Security Administration (NNSA)

Remarks At The Third International Meeting On Next Generation Remarks At The Third International Meeting On Next Generation Safeguards | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response Recapitalizing Our Infrastructure Continuing Management Reform Countering Nuclear Terrorism About Us Our Programs Our History Who We Are Our Leadership Our Locations Budget Our Operations Media Room Congressional Testimony Fact Sheets Newsletters Press Releases Speeches Events Social Media Video Gallery Photo Gallery NNSA Archive Federal Employment Apply for Our Jobs Our Jobs Working at NNSA Blog Home > Media Room > Speeches > Opening Remarks At The Third International Meeting ... Speech Opening Remarks At The Third International Meeting On Next Generation

386

FEMO, A FLOW AND ENRICHMENT MONITOR FOR VERIFYING COMPLIANCE WITH INTERNATIONAL SAFEGUARDS REQUIREMENTS AT A GAS CENTRIFUGE ENRICHMENT FACILITY  

SciTech Connect

A number of countries have received construction licenses or are contemplating the construction of large-capacity gas centrifuge enrichment plants (GCEPs). The capability to independently verify nuclear material flows is a key component of international safeguards approaches, and the IAEA does not currently have an approved method to continuously monitor the mass flow of 235U in uranium hexafluoride (UF6) gas streams. Oak Ridge National Laboratory is investigating the development of a flow and enrichment monitor, or FEMO, based on an existing blend-down monitoring system (BDMS). The BDMS was designed to continuously monitor both 235U mass flow and enrichment of UF6 streams at the low pressures similar to those which exists at GCEPs. BDMSs have been installed at three sites-the first unit has operated successfully in an unattended environment for approximately 10 years. To be acceptable to GCEP operators, it is essential that the instrument be installed and maintained without interrupting operations. A means to continuously verify flow as is proposed by FEMO will likely be needed to monitor safeguards at large-capacity plants. This will enable the safeguards effectiveness that currently exists at smaller plants to be maintained at the larger facilities and also has the potential to reduce labor costs associated with inspections at current and future plants. This paper describes the FEMO design requirements, operating capabilities, and development work required before field demonstration.

Gunning, John E [ORNL; Laughter, Mark D [ORNL; March-Leuba, Jose A [ORNL

2008-01-01T23:59:59.000Z

387

SunShot Initiative: SunShot Initiative Fellowships  

NLE Websites -- All DOE Office Websites (Extended Search)

About About Printable Version Share this resource Send a link to SunShot Initiative: SunShot Initiative Fellowships to someone by E-mail Share SunShot Initiative: SunShot Initiative Fellowships on Facebook Tweet about SunShot Initiative: SunShot Initiative Fellowships on Twitter Bookmark SunShot Initiative: SunShot Initiative Fellowships on Google Bookmark SunShot Initiative: SunShot Initiative Fellowships on Delicious Rank SunShot Initiative: SunShot Initiative Fellowships on Digg Find More places to share SunShot Initiative: SunShot Initiative Fellowships on AddThis.com... Accomplishments Visiting the SunShot Office Fellowships Postdoctoral Research Contacts SunShot Initiative Fellowships SunShot fellowships provide an opportunity for scientists, engineers, and researchers to lead and improve projects to meet the goals of the SunShot

388

PIER Fiscal Year 2011 2012 Initiatives  

E-Print Network (OSTI)

heating systems. #12;6 · Lighting: Develop advanced lighting and controls, integration with daylighting (enhance the capabilities of the transmission and distribution system), AB 32 (advanced generation fuels. III. Proposed Initiatives for FY 2011-2012 A. Advanced Community Energy Systems (ACES) ­ Game

389

ATTRIBUTES AND THRESHOLDS IN MEASUREMENTS FOR TRANSPARENCY INITIATIVES  

SciTech Connect

The collection of programs broadly termed Transparency Initiatives frequently involves physics measurements that are applied to items with sensitive or classified properties. The inability or reluctance to perform quantitative measurements, in the safeguards tradition, to such items, and then to expose the results to international examination, has impelled development of an attributes approach to measurements, following the philosophy if it looks like a duck, walks like a duck and quacks like a duck, call it a duck, This approach avoids certain of the classification issues that would otherwise be associated with such measurements. Use of the attributes approach, however, continues to pose problems of interpretation, in light of the need to establish numerical thresholds whereby data obtained from the measurements can be evaluated to determine whether the attribute is present. In this paper we examine the foundations of the attributes approach and the steps used to determine appropriate attributes and thresholds, using examples from contemporary threat-reduction initiatives where possible. Implications for the detector technologies used in the measurements will be discussed, as will the characteristics of so-called information barriers intended to prevent inadvertent release of sensitive information during attributes measurements.

M. W. JOHNSON

2000-09-01T23:59:59.000Z

390

NUCLEAR MATERIALS ACCOUNTING SYSTEMSMODERNIZATION INITIATIVE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NUCLEAR MATERIALS ACCOUNTING SYSTEMSMODERNIZATION INITIATIVE, IG-0556 NUCLEAR MATERIALS ACCOUNTING SYSTEMSMODERNIZATION INITIATIVE, IG-0556 The Department of Energy (Department),...

391

Inspector General audit report on Transportation Safeguards Division courier work schedules and escort vehicle replacements  

Science Conference Proceedings (OSTI)

The Office of Inspector General`s (OIG) April 1995 report found that couriers received too much overtime and incurred too much unproductive time. This finding occurred because the Transportation Safeguards Division (TSD) employed a traditional work schedule that did not meet the demands of the job. The report recommended implementing an alternative work schedule that corresponded more closely to the couriers` actual work requirements. Management agreed to conduct a comparative analysis of work schedules to evaluate potential savings. The objectives of this audit were to (1) follow up on actions taken as a result of the OIG`s previous report, (2) determine if courier work schedules are cost effective, and (3) determine the cost effectiveness of escort vehicle replacements. The authors recommend: (1) implementing an alternative work schedule for courier which would achieve savings in overtime and unproductive time, while efficiently and cost effectively fulfilling TSD`s mission; (2) reexamining and adjusting the staffing level of each courier section in relation to the workload requirements in the area; and (3) discontinuing payment for travel time between courier lodging and temporary duty stations. The Albuquerque Operations Office agreed with the auditor`s findings and recommendations.

NONE

1998-12-01T23:59:59.000Z

392

AUTOMATED PROCESS MONITORING: APPLYING PROVEN AUTOMATION TECHNIQUES TO INTERNATIONAL SAFEGUARDS NEEDS  

SciTech Connect

Identification and quantification of specific alpha- and beta-emitting radionuclides in complex liquid matrices is highly challenging, and is typically accomplished through laborious wet chemical sample preparation and separations followed by analysis using a variety of detection methodologies (e.g., liquid scintillation, gas proportional counting, alpha energy analysis, mass spectrometry). Analytical results may take days or weeks to report. Chains of custody and sample security measures may also complicate or slow the analytical process. When an industrial process-scale plant requires the monitoring of specific radionuclides as an indication of the composition of its feed stream or of plant performance, radiochemical measurements must be fast, accurate, and reliable. Scientists at Pacific Northwest National Laboratory have assembled a fully automated prototype Process Monitor instrument capable of a variety of tasks: automated sampling directly from a feed stream, sample digestion / analyte redox adjustment, chemical separations, radiochemical detection and data analysis / reporting. The system is compact, its components are fluidically inter-linked, and analytical results could be immediately transmitted to on- or off-site locations. The development of a rapid radiochemical Process Monitor for 99Tc in Hanford tank waste processing streams, capable of performing several measurements per hour, will be discussed in detail. More recently, the automated platform was modified to perform measurements of 90Sr in Hanford tank waste stimulant. The system exemplifies how automation could be integrated into reprocessing facilities to support international nuclear safeguards needs.

O'Hara, Matthew J.; Durst, Philip C.; Grate, Jay W.; Devol, Timothy A.; Egorov, Oleg; Clements, John P.

2008-07-13T23:59:59.000Z

393

Data Collection Guidelines for Consistent Evaluation of Data from Verification and Monitoring Safeguard Systems  

SciTech Connect

One of the several activities the International Atomic Energy Agency (IAEA) inspectors perform in the verification process of Safeguard operations is the review and correlation of data from different sources. This process is often complex due to the different forms in which the data is presented. This paper describes some of the elements that are necessary to create a ''standardized'' structure for the verification of data. When properly collected and formatted, data can be analyzed with off-the shelf software applications using customized macros to automate the commands for the desired analysis. The standardized-data collection methodology is based on instrumentation guidelines as well as data structure elements, such as verifiable timing of data entry, automated data logging, identification codes, and others. The identification codes are used to associate data items with their sources and to correlate them with items from other data logging activities. The addition of predefined parameter ranges allows automated evaluation with the capability to provide a data summary, a cross-index of all data related to a specific event. Instances of actual databases are used as examples. The data collection guidelines described in this paper facilitate the use of data from a variety of instrumentation platforms and also allow the instrumentation itself to be more easily applied in subsequent monitoring applications.

Castleberry, K.; Lenarduzzi, R.; Whitaker, M.

1999-09-20T23:59:59.000Z

394

Innovation Ecosystem Development Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Innovation Ecosystem Development Initiative Innovation Ecosystem Development Initiative Funding Opportunity Number DE-FOA-0000356 Applicant (Legal Name) University of Utah Technology Commercialization Office Location: Salt Lake City, UT Project Title Energy Innovation Commercialization Center Proposed Action or Project Description The project proposes to create an Energy Innovation Commercialization Center at the University of Utah. The scope of work for this project is in two phases: tasks necessary to create the Center and actual commercialization and outreach to other institutions. Specific activities for Phase I for the Center startup include 1) negotiating contract, prepare correspondence, establishing website, meetings, scheduling activities, developing metrics, and designing and creating a database. Phase 2 activities for Center

395

The President's Manufacturing Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

The President's The President's Manufacturing Initiative Manufacturing Initiative Roadmap Workshop on Roadmap Workshop on Manufacturing R&D for Manufacturing R&D for the Hydrogen Economy the Hydrogen Economy Washington, D.C. Washington, D.C. July 13, 2005 July 13, 2005 Dale Hall Dale Hall Acting Chair, Interagency Working Group on Acting Chair, Interagency Working Group on Manufacturing Research and Development Manufacturing Research and Development National Science and Technology Council National Science and Technology Council and and Director, Manufacturing Engineering Laboratory Director, Manufacturing Engineering Laboratory National Institute of Standards and Technology National Institute of Standards and Technology U.S. Department of Commerce U.S. Department of Commerce

396

Clean Coal Power Initiative  

Science Conference Proceedings (OSTI)

This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

2006-03-31T23:59:59.000Z

397

SunShot Initiative: SunShot Photovoltaic Manufacturing Initiative  

NLE Websites -- All DOE Office Websites (Extended Search)

SunShot Photovoltaic SunShot Photovoltaic Manufacturing Initiative to someone by E-mail Share SunShot Initiative: SunShot Photovoltaic Manufacturing Initiative on Facebook Tweet about SunShot Initiative: SunShot Photovoltaic Manufacturing Initiative on Twitter Bookmark SunShot Initiative: SunShot Photovoltaic Manufacturing Initiative on Google Bookmark SunShot Initiative: SunShot Photovoltaic Manufacturing Initiative on Delicious Rank SunShot Initiative: SunShot Photovoltaic Manufacturing Initiative on Digg Find More places to share SunShot Initiative: SunShot Photovoltaic Manufacturing Initiative on AddThis.com... Concentrating Solar Power Photovoltaics Research & Development Competitive Awards Diversity in Science and Technology Advances National Clean Energy in Solar Grid Engineering for Accelerated Renewable Energy Deployment

398

Innovation Ecosystem Development Initiative  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Office of Energy Efficiency and Renewable Energy: Innovation Ecosystem Development Initiative Funding Opportunity Number DE-FOA-0000356 Applicant (Legal Name) Fraunhofer Center for Sustainable Energy Systems Location: Cambridge, MA Project Title TechBridge Energy Innovation Acceleration Program

399

INITIAL ENVIRONMENTAL EXAMINATION (DRAFT)  

E-Print Network (OSTI)

The initial environmental examination is a document of the borrower. The views expressed herein do not necessarily represent those of ADB’s Board of Directors, Management, or staff, and may be preliminary in nature. Royal Government of Bhutan Asian Development Bank

I. Executive Summary

2010-01-01T23:59:59.000Z

400

BRAZIL RESEARCH INITIATIVES  

E-Print Network (OSTI)

BRAZIL RESEARCH INITIATIVES Michigan State University (MSU) identifies Brazil as a global priority and challenges become increasingly part of the U.S.-Brazil agenda, MSU desires partnerships aimed at producing in the U.S. and one in Brazil, to share research strategies and explore joint projects in several research

Liu, Taosheng