National Library of Energy BETA

Sample records for generation pv applications

  1. Generation PV Inc | Open Energy Information

    Open Energy Info (EERE)

    PV Inc Jump to: navigation, search Name: Generation PV Inc. Place: Markham, Ontario, Canada Zip: L6E 1A9 Sector: Wind energy Product: Ontario-based Generation PV distributes and...

  2. PSCAD Modules Representing PV Generator

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Gevorgian, V.

    2013-08-01

    Photovoltaic power plants (PVPs) have been growing in size, and the installation time is very short. With the cost of photovoltaic (PV) panels dropping in recent years, it can be predicted that in the next 10 years the contribution of PVPs to the total number of renewable energy power plants will grow significantly. In this project, the National Renewable Energy Laboratory (NREL) developed a dynamic modeling of the modules to be used as building blocks to develop simulation models of single PV arrays, expanded to include Maximum Power Point Tracker (MPPT), expanded to include PV inverter, or expanded to cover an entire PVP. The focus of the investigation and complexity of the simulation determines the components that must be included in the simulation. The development of the PV inverter was covered in detail, including the control diagrams. Both the current-regulated voltage source inverter and the current-regulated current source inverter were developed in PSCAD. Various operations of the PV inverters were simulated under normal and abnormal conditions. Symmetrical and unsymmetrical faults were simulated, presented, and discussed. Both the three-phase analysis and the symmetrical component analysis were included to clarify the understanding of unsymmetrical faults. The dynamic model validation was based on the testing data provided by SCE. Testing was conducted at SCE with the focus on the grid interface behavior of the PV inverter under different faults and disturbances. The dynamic model validation covers both the symmetrical and unsymmetrical faults.

  3. Optimal Solar PV Arrays Integration for Distributed Generation

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping

    2012-01-01

    Solar photovoltaic (PV) systems hold great potential for distributed energy generation by installing PV panels on rooftops of residential and commercial buildings. Yet challenges arise along with the variability and non-dispatchability of the PV systems that affect the stability of the grid and the economics of the PV system. This paper investigates the integration of PV arrays for distributed generation applications by identifying a combination of buildings that will maximize solar energy output and minimize system variability. Particularly, we propose mean-variance optimization models to choose suitable rooftops for PV integration based on Markowitz mean-variance portfolio selection model. We further introduce quantity and cardinality constraints to result in a mixed integer quadratic programming problem. Case studies based on real data are presented. An efficient frontier is obtained for sample data that allows decision makers to choose a desired solar energy generation level with a comfortable variability tolerance level. Sensitivity analysis is conducted to show the tradeoffs between solar PV energy generation potential and variability.

  4. Low Cost High Concentration PV Systems for Utility Power Generation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Low Cost High Concentration PV Systems for Utility Power Generation An overview of the Low Cost High Concentration PV Systems for Utility Power Generation project to transition Amonix's concentrating photovoltaic (PV) systems from low-volume to high-volume production. Low Cost High Concentration PV Systems for Utility Power Generation (972.55 KB) More Documents & Publications Solar America Initiative Low Cost High Concentration PV Systems for Utility Power

  5. Solar Photovoltaic (PV) System Permit Application Checklist

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Permit Application Checklist is intended to be used as a best management practice when establishing local government requirements for residential and commercial solar photovoltaic (PV) system permits. Local governments may modify this checklist to accommodate their local ordinances, code requirements, and permit procedures.

  6. Performance evaluation of stand alone hybrid PV-wind generator

    SciTech Connect (OSTI)

    Nasir, M. N. M.; Saharuddin, N. Z.; Sulaima, M. F.; Jali, Mohd Hafiz; Bukhari, W. M.; Bohari, Z. H.; Yahaya, M. S.

    2015-05-15

    This paper presents the performance evaluation of standalone hybrid system on Photovoltaic (PV)-Wind generator at Faculty of Electrical Engineering (FKE), UTeM. The hybrid PV-Wind in UTeM system is combining wind turbine system with the solar system and the energy capacity of this hybrid system can generate up to charge the battery and supply the LED street lighting load. The purpose of this project is to evaluate the performance of PV-Wind hybrid generator. Solar radiation meter has been used to measure the solar radiation and anemometer has been used to measure the wind speed. The effectiveness of the PV-Wind system is based on the various data that has been collected and compared between them. The result shows that hybrid system has greater reliability. Based on the solar result, the correlation coefficient shows strong relationship between the two variables of radiation and current. The reading output current followed by fluctuate of solar radiation. However, the correlation coefficient is shows moderate relationship between the two variables of wind speed and voltage. Hence, the wind turbine system in FKE show does not operate consistently to produce energy source for this hybrid system compare to PV system. When the wind system does not fully operate due to inconsistent energy source, the other system which is PV will operate and supply the load for equilibrate the extra load demand.

  7. Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Newark, Delaware) - JCAP Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop (Newark, Delaware) Systems for Solar Fuels Generation Utilizing PV and Electrolysis Workshop (Newark, Delaware) Mon, Mar 7, 2016 11:30am 11:30 Tue, Mar 8, 2016 12:30pm 12:30 University of Delaware Newark, Delaware Frances Houle, "Solar Fuels Systems Research in the Joint Center for Artificial Photosynthesis" March 6 80th Annual Conference of the DPG & DPG Spring Meeting

  8. Modular Power Converters for PV Applications

    SciTech Connect (OSTI)

    Ozpineci, Burak; Tolbert, Leon M

    2012-05-01

    This report describes technical opportunities to serve as parts of a technological roadmap for Shoals Technologies Group in power electronics for PV applications. There are many different power converter circuits that can be used for solar inverter applications. The present applications do not take advantage of the potential for using common modules. We envision that the development of a power electronics module could enable higher reliability by being durable and flexible. Modules would have fault current limiting features and detection circuits such that they can limit the current through the module from external faults and can identify and isolate internal faults such that the remaining modules can continue to operate with only minimal disturbance to the utility or customer. Development of a reliable, efficient, low-cost, power electronics module will be a key enabling technology for harnessing more power from solar panels and enable plug and play operation. Power electronics for computer power supplies, communication equipment, and transportation have all targeted reliability and modularity as key requirements and have begun concerted efforts to replace monolithic components with collections of common smart modules. This is happening on several levels including (1) device level with intelligent control, (2) functional module level, and (3) system module. This same effort is needed in power electronics for solar applications. Development of modular units will result in standard power electronic converters that will have a lower installed and operating cost for the overall system. These units will lead to increased adaptability and flexibility of solar inverters. Incorporating autonomous fault current limiting and reconfiguration capabilities into the modules and having redundant modules will lead to a durable converter that can withstand the rigors of solar power generation for more than 30 years. Our vision for the technology roadmap is that there is no need

  9. Experimental comparison of PV-smoothing controllers using distributed generators

    SciTech Connect (OSTI)

    Johnson, Jay Dean; Ellis, Abraham; Denda, Atsushi; Morino, Kimio; Hawkins, John N.; Arellano, Brian; Shinji, Takao; Ogata, Takao; Tadokoro, Masayuki

    2014-02-01

    The power output variability of photovoltaic systems can affect local electrical grids in locations with high renewable energy penetrations or weak distribution or transmission systems. In those rare cases, quick controllable generators (e.g., energy storage systems) or loads can counteract the destabilizing effects by compensating for the power fluctuations. Previously, control algorithms for coordinated and uncoordinated operation of a small natural gas engine-generator (genset) and a battery for smoothing PV plant output were optimized using MATLAB/Simulink simulations. The simulations demonstrated that a traditional generation resource such as a natural gas genset in combination with a battery would smooth the photovoltaic output while using a smaller battery state of charge (SOC) range and extending the life of the battery. This paper reports on the experimental implementation of the coordinated and uncoordinated controllers to verify the simulations and determine the differences in the controllers. The experiments were performed with the PNM PV and energy storage Prosperity site and a gas engine-generator located at the Aperture Center at Mesa Del Sol in Albuquerque, New Mexico. Two field demonstrations were performed to compare the different PV smoothing control algorithms: (1) implementing the coordinated and uncoordinated controls while switching off a subsection of the PV array at precise times on successive clear days, and (2) comparing the results of the battery and genset outputs for the coordinated control on a high variability day with simulations of the coordinated and uncoordinated controls. It was found that for certain PV power profiles the SOC range of the battery may be larger with the coordinated control, but the total amp-hours through the battery-which approximates battery wear-will always be smaller with the coordinated control.

  10. Time series power flow analysis for distribution connected PV generation.

    SciTech Connect (OSTI)

    Broderick, Robert Joseph; Quiroz, Jimmy Edward; Ellis, Abraham; Reno, Matthew J.; Smith, Jeff; Dugan, Roger

    2013-01-01

    Distributed photovoltaic (PV) projects must go through an interconnection study process before connecting to the distribution grid. These studies are intended to identify the likely impacts and mitigation alternatives. In the majority of the cases, system impacts can be ruled out or mitigation can be identified without an involved study, through a screening process or a simple supplemental review study. For some proposed projects, expensive and time-consuming interconnection studies are required. The challenges to performing the studies are twofold. First, every study scenario is potentially unique, as the studies are often highly specific to the amount of PV generation capacity that varies greatly from feeder to feeder and is often unevenly distributed along the same feeder. This can cause location-specific impacts and mitigations. The second challenge is the inherent variability in PV power output which can interact with feeder operation in complex ways, by affecting the operation of voltage regulation and protection devices. The typical simulation tools and methods in use today for distribution system planning are often not adequate to accurately assess these potential impacts. This report demonstrates how quasi-static time series (QSTS) simulation and high time-resolution data can be used to assess the potential impacts in a more comprehensive manner. The QSTS simulations are applied to a set of sample feeders with high PV deployment to illustrate the usefulness of the approach. The report describes methods that can help determine how PV affects distribution system operations. The simulation results are focused on enhancing the understanding of the underlying technical issues. The examples also highlight the steps needed to perform QSTS simulation and describe the data needed to drive the simulations. The goal of this report is to make the methodology of time series power flow analysis readily accessible to utilities and others responsible for evaluating

  11. Impact of Soiling and Pollution on PV Generation Performance

    Office of Energy Efficiency and Renewable Energy (EERE)

    This 5-page technical letter addresses air pollution effects on PV performance by quantifying, based on a literature search, the average annual loss due to soiling, the impact of cleaning, and a recommended cleaning schedule.

  12. Low Cost High Concentration PV Systems for Utility Power Generation Amonix,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inc. | Department of Energy Amonix, Inc. Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. A series of brief fact sheet on various topics including:Low Cost High Concentration PV Systems for Utility Power Generation,High Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity Using BP Solar Crystalline Silicon Technology, Fully Integrated Building Science Solutions for Residential and Commercial Photovoltaic Energy Generation,A Value Chain

  13. Indium Phosphide Polycrystalline Films on Metal Foil for PV Applications -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Indium Phosphide Polycrystalline Films on Metal Foil for PV Applications Lawrence Berkeley National Laboratory Contact LBL About This Technology Publications: PDF Document Publication Zheng, M., Yu, Z., Seok, T.J., Chen, Y-Z., Kapadia, R., Takei, K., Aloni, S., Ager, J.W., Wu, M., Chueh, Y-L., Javey, A. "High optical quality polycrystalline indium phosphide grown on metal substrates by metalorganic chemical vapor deposition," Journal of Applied Physics 111,

  14. PV Ramping in a Distributed Generation Environment: A Study Using Solar Measurements; Preprint

    SciTech Connect (OSTI)

    Sengupta, M.; Keller, J.

    2012-06-01

    Variability in Photovoltaic (PV) generation resulting from variability in the solar radiation over the PV arrays is a topic of continuing concern for those involved with integrating renewables onto existing electrical grids. The island of Lanai, Hawaii is an extreme example of the challenges that integrators will face due to the fact that it is a small standalone grid. One way to study this problem is to take high-resolution solar measurements in multiple locations and model simultaneous PV production for various sizes at those locations. The National Renewable Energy Laboratory (NREL) collected high-resolution solar data at four locations on the island where proposed PV plants will be deployed in the near future. This data set provides unique insight into how the solar radiation may vary between points that are proximal in distance, but diverse in weather, due to the formation of orographic clouds in the center of the island. Using information about each proposed PV plant size, power output was created at high resolution. The team analyzed this output to understand power production ramps at individual locations and the effects of aggregating the production from all four locations. Hawaii is a unique environment, with extremely variable events occurring on a daily basis. This study provided an excellent opportunity for understanding potential worst-case scenarios for PV ramping. This paper provides an introduction to the datasets that NREL collected over a year and a comprehensive analysis of PV variability in a distributed generation scenario.

  15. Capacity Value of PV and Wind Generation in the NV Energy System

    SciTech Connect (OSTI)

    Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

    2014-03-21

    Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

  16. Advanced Inverter Technology for High Penetration Levels of PV Generation in Distribution Systems

    SciTech Connect (OSTI)

    Schauder, C.

    2014-03-01

    This subcontract report was completed under the auspices of the NREL/SCE High-Penetration Photovoltaic (PV) Integration Project, which is co-funded by the U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy (EERE) and the California Solar Initiative (CSI) Research, Development, Demonstration, and Deployment (RD&D) program funded by the California Public Utility Commission (CPUC) and managed by Itron. This project is focused on modeling, quantifying, and mitigating the impacts of large utility-scale PV systems (generally 1-5 MW in size) that are interconnected to the distribution system. This report discusses the concerns utilities have when interconnecting large PV systems that interconnect using PV inverters (a specific application of frequency converters). Additionally, a number of capabilities of PV inverters are described that could be implemented to mitigate the distribution system-level impacts of high-penetration PV integration. Finally, the main issues that need to be addressed to ease the interconnection of large PV systems to the distribution system are presented.

  17. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection

    SciTech Connect (OSTI)

    Liu, Yong; Gracia, Jose R; Hadley, Stanton W; Liu, Yilu

    2013-12-01

    This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.

  18. Low Cost High Concentration PV Systems for Utility Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Concentrating Photovoltaic Power System,Reaching Grid Parity ... for Residential and Commercial Photovoltaic Energy Generation,A Value Chain ...

  19. Accuracy of Outdoor PV Module Temperature Monitoring Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13ps1univljubjanovec.pdf More Documents & Publications QA TG5 UV, ...

  20. Supply Curves for Solar PV-Generated Electricity for the United States

    SciTech Connect (OSTI)

    Denholm, P.; Margolis, R.

    2008-11-01

    Energy supply curves attempt to estimate the relationship between the cost of an energy resource and the amount of energy available at or below that cost. In general, an energy supply curve is a series of step functions with each step representing a particular group or category of energy resource. The length of the step indicates how much of that resource is deployable or accessible at a given cost. Energy supply curves have been generated for a number of renewable energy sources including biomass fuels and geothermal, as well as conservation technologies. Generating a supply curve for solar photovoltaics (PV) has particular challenges due to the nature of the resource. The United States has a massive solar resource base -- many orders of magnitude greater than the total consumption of energy. In this report, we examine several possible methods for generating PV supply curves based exclusively on rooftop deployment.

  1. Overview of Scientific Issues Involved in Selection of Polymers for PV Applications: Preprint

    SciTech Connect (OSTI)

    Kempe, M.

    2011-07-01

    Encapsulant materials used in photovoltaic (PV) modules serve multiple purposes. They physically hold components in place, provide electrical insulation, reduce moisture ingress, optically couple superstrate materials (e.g., glass) to PV cells, protect components from mechanical stress by mechanically de-coupling components via strain relief, and protect materials from corrosion. To do this, encapsulants must adhere well to all surfaces, remain compliant, and transmit light after exposure to temperature, humidity, and UV radiation histories. Here, a brief review of some of the polymeric materials under consideration for PV applications is provided, with an explanation of some of their advantages and disadvantages.

  2. PV output smoothing using a battery and natural gas engine-generator.

    SciTech Connect (OSTI)

    Johnson, Jay; Ellis, Abraham; Denda, Atsushi; Morino, Kimio; Shinji, Takao; Ogata, Takao; Tadokoro, Masayuki

    2013-02-01

    In some situations involving weak grids or high penetration scenarios, the variability of photovoltaic systems can affect the local electrical grid. In order to mitigate destabilizing effects of power fluctuations, an energy storage device or other controllable generation or load can be used. This paper describes the development of a controller for coordinated operation of a small gas engine-generator set (genset) and a battery for smoothing PV plant output. There are a number of benefits derived from using a traditional generation resource in combination with the battery; the variability of the photovoltaic system can be reduced to a specific level with a smaller battery and Power Conditioning System (PCS) and the lifetime of the battery can be extended. The controller was designed specifically for a PV/energy storage project (Prosperity) and a gas engine-generator (Mesa Del Sol) currently operating on the same feeder in Albuquerque, New Mexico. A number of smoothing simulations of the Prosperity PV were conducted using power data collected from the site. By adjusting the control parameters, tradeoffs between battery use and ramp rates could be tuned. A cost function was created to optimize the control in order to balance, in this example, the need to have low ramp rates with reducing battery size and operation. Simulations were performed for cases with only a genset or battery, and with and without coordinated control between the genset and battery, e.g., without the communication link between sites or during a communication failure. The degree of smoothing without coordinated control did not change significantly because the battery dominated the smoothing response. It is anticipated that this work will be followed by a field demonstration in the near future.

  3. Energy 101: Solar PV

    SciTech Connect (OSTI)

    2011-01-01

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  4. Energy 101: Solar PV

    Broader source: Energy.gov [DOE]

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power...

  5. Energy 101: Solar PV

    ScienceCinema (OSTI)

    None

    2013-05-29

    Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses.

  6. Modular Cascaded H-Bridge Multilevel PV Inverter with Distributed MPPT for Grid-Connected Applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xiao, Bailu; Hang, Lijun; Mei, Jun; Riley, Cameron; Tolbert, Leon M.; Ozpineci, Burak

    2014-09-04

    This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking (MPPT) control scheme is applied to both single-phase and three-phase multilevel inverters, which allows the independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is alsomore » proposed. An experimental three-phase 7-level cascaded H-bridge inverter has been built utilizing 9 H-bridge modules (3 modules per phase). Each H-bridge module is connected to a 185 W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.« less

  7. Modular Cascaded H-Bridge Multilevel PV Inverter with Distributed MPPT for Grid-Connected Applications

    SciTech Connect (OSTI)

    Xiao, Bailu; Hang, Lijun; Mei, Jun; Riley, Cameron; Tolbert, Leon M.; Ozpineci, Burak

    2014-09-04

    This paper presents a modular cascaded H-bridge multilevel photovoltaic (PV) inverter for single- or three-phase grid-connected applications. The modular cascaded multilevel topology helps to improve the efficiency and flexibility of PV systems. To realize better utilization of PV modules and maximize the solar energy extraction, a distributed maximum power point tracking (MPPT) control scheme is applied to both single-phase and three-phase multilevel inverters, which allows the independent control of each dc-link voltage. For three-phase grid-connected applications, PV mismatches may introduce unbalanced supplied power, leading to unbalanced grid current. To solve this issue, a control scheme with modulation compensation is also proposed. An experimental three-phase 7-level cascaded H-bridge inverter has been built utilizing 9 H-bridge modules (3 modules per phase). Each H-bridge module is connected to a 185 W solar panel. Simulation and experimental results are presented to verify the feasibility of the proposed approach.

  8. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume II. PV-T state-of-the-art survey and site/application pair selection and analysis

    SciTech Connect (OSTI)

    Schwinkendorf, W.E.

    1984-09-01

    As part of a project to develop feasibility assessments, design procedures, and reference designs for total energy systems that could use actively cooled concentrating photovoltaic collectors, a survey was conducted to provide an overview of available photovoltaic-thermal (PV-T) technology. General issues associated with the design and installation of a PV-T system are identified. Electrical and thermal efficiencies for the line-focus Fresnel, the linear parabolic trough, and the point-focus Fresnel collectors are specified as a function of operating temperature, ambient temperature, and insolation. For current PV-T technologies, the line-focus Fresnel collector proved to have the highest thermal and electrical efficiencies, lowest array cost, and lowest land area requirement. But a separate feasibility analysis involving 11 site/application pairs showed that for most applications, the cost of the photovoltaic portion of a PV-T system is not recovered through the displacement of an electrical load, and use of a thermal-only system to displace the thermal load would be a more economical alternative. PV-T systems are not feasible for applications that have a small thermal load, a large steam requirement, or a high load return temperature. SAND82-7157/3 identifies the technical issues involved in designing a photovoltaic-thermal system and provides guidance for resolving such issues. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  9. Integration, Validation, and Application of a PV Snow Coverage Model in SAM

    SciTech Connect (OSTI)

    Ryberg, David; Freeman, Janine

    2015-09-01

    Due to the increasing deployment of PV systems in snowy climates, there is significant interest in a method capable of estimating PV losses resulting from snow coverage that has been verified for a wide variety of system designs and locations. A scattering of independent snow coverage models have been developed over the last 15 years; however, there has been very little effort spent on verifying these models beyond the system design and location on which they were based. Moreover, none of the major PV modeling software products have incorporated any of these models into their workflow. In response to this deficiency, we have integrated the methodology of the snow model developed in the paper by Marion et al. [1] into the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). In this work we describe how the snow model is implemented in SAM and discuss our demonstration of the model's effectiveness at reducing error in annual estimations for two PV arrays. Following this, we use this new functionality in conjunction with a long term historical dataset to estimate average snow losses across the United States for a typical PV system design. The open availability of the snow loss estimation capability in SAM to the PV modeling community, coupled with our results of the nation-wide study, will better equip the industry to accurately estimate PV energy production in areas affected by snowfall.

  10. Updating Technical Screens for PV Interconnection: Preprint

    SciTech Connect (OSTI)

    Coddington, M.; Ellis, A.; Lynn, K.; Razon, A.; Key, T.; Kroposki, B.; Mather, B.; Hill, R.; Nicole, K.; Smith, J.

    2012-08-01

    Solar photovoltaics (PV) is the dominant type of distributed generation (DG) technology interconnected to electric distribution systems in the United States, and deployment of PV systems continues to increase rapidly. Considering the rapid growth and widespread deployment of PV systems in United States electric distribution grids, it is important that interconnection procedures be as streamlined as possible to avoid unnecessary interconnection studies, costs, and delays. Because many PV interconnection applications involve high penetration scenarios, the process needs to allow for a sufficiently rigorous technical evaluation to identify and address possible system impacts. Existing interconnection procedures are designed to balance the need for efficiency and technical rigor for all DG. However, there is an implicit expectation that those procedures will be updated over time in order to remain relevant with respect to evolving standards, technology, and practical experience. Modifications to interconnection screens and procedures must focus on maintaining or improving safety and reliability, as well as accurately allocating costs and improving expediency of the interconnection process. This paper evaluates the origins and usefulness of the capacity penetration screen, offers potential short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen.

  11. Connecticut Rooftop Solar PV Permitting Guide

    Broader source: Energy.gov [DOE]

    The Connecticut Rooftop Solar PV Permitting Guide is a compilation of best practices and resources for solar PV permitting. The guide includes a summary of current codes and regulations affecting solar PV, best practices for streamlining the municipal permitting process, and tools to assist municipalities in creating a streamlined permit process for residential solar PV. Resources include a solar PV permit application, a structural review worksheet, an inspection checklist, and a model solar zoning ordinance.

  12. Comparison of Pyranometers vs. PV Reference Cells for Evaluation of PV Array Performance

    SciTech Connect (OSTI)

    Dunn, L.; Gostein, M.; Emery, K.

    2012-09-01

    As the photovoltaics (PV) industry has grown, the need for accurately monitoring the solar resource of PV power plants has increased. Historically, the PV industry has relied on thermopile pyranometers for irradiance measurements, and a large body of historical irradiance data taken with pyranometers exists. However, interest in PV reference devices is increasing. In this paper, we discuss why PV reference devices are better suited for PV applications, and estimate the typical uncertainties in irradiance measurements made with both pyranometers and PV reference devices. We assert that the quantity of interest in monitoring a PV power plant is the equivalent irradiance under the IEC 60904-3 reference solar spectrum that would produce the same electrical response in the PV array as the incident solar radiation. For PV-plant monitoring applications, we find the uncertainties in irradiance measurements of this type to be on the order of +/-5% for thermopile pyranometers and +/-2.4% for PV reference devices.

  13. Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kauai, Hawaii: Solar Resource Analysis and High-Penetration PV Potential Kauai, Hawaii: ... This study looks at the technical feasibility of generating power with PV arrays. PDF icon ...

  14. REC Generator Certification Application - Texas | Open Energy...

    Open Energy Info (EERE)

    REC Generator Certification Application - Texas Jump to: navigation, search OpenEI Reference LibraryAdd to library Reference: REC Generator Certification Application - Texas...

  15. Design and evaluation of hybrid wind/PV/diesel power systems for Brazilian applications

    SciTech Connect (OSTI)

    McGowan, J.G.; Manwell, J.F.; Avelar, C.; Warner, C.

    1996-12-31

    This paper presents a summary of a study centered on the design and evaluation of hybrid wind/PV/diesel systems for remote locations in Brazil. The objective of this work was to evaluate high reliability hybrid power systems that have been designed for the lowest life cycle costs. The technical and economic analysis of the hybrid wind/PV/diesel systems was carried out using HYBRID2, a computational code developed at the University of Massachusetts in conjunction with the National Renewable Energy Laboratory (NREL). After a summary of a generalized design procedure for such systems based on the use of this code, a systematic parametric evaluation of a representative design case for a village power system in Brazil is presented. As summarized in the paper, the performance and economic effects of key design parameters are illustrated. 8 refs., 10 figs.

  16. DOE High Performance Concentrator PV Project

    SciTech Connect (OSTI)

    McConnell, R.; Symko-Davies, M.

    2005-08-01

    Much in demand are next-generation photovoltaic (PV) technologies that can be used economically to make a large-scale impact on world electricity production. The U.S. Department of Energy (DOE) initiated the High-Performance Photovoltaic (HiPerf PV) Project to substantially increase the viability of PV for cost-competitive applications so that PV can contribute significantly to both our energy supply and environment. To accomplish such results, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices with the goal of enabling progress of high-efficiency technologies toward commercial-prototype products. We will describe the details of the subcontractor and in-house progress in exploring and accelerating pathways of III-V multijunction concentrator solar cells and systems toward their long-term goals. By 2020, we anticipate that this project will have demonstrated 33% system efficiency and a system price of $1.00/Wp for concentrator PV systems using III-V multijunction solar cells with efficiencies over 41%.

  17. Energy 101: Solar PV | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar PV Energy 101: Solar PV Addthis Description Solar photovoltaic (PV) systems can generate clean, cost-effective power anywhere the sun shines. This video shows how a PV panel converts the energy of the sun into renewable electricity to power homes and businesses. Text Version Below is the text version for the Energy 101: Solar PV video. The video opens with "Energy 101: Solar PV." This is followed by a timelapse shot of a city skyline as day turns to night. All right, we all know

  18. Defect Band Luminescence Intensity Reversal as Related to Application of Anti-Reflection Coating on mc-Si PV Cells: Preprint

    SciTech Connect (OSTI)

    Guthrey, H.; Johnston, S.; Yan, F.; Gorman, B.; Al-Jassim, M.

    2012-06-01

    Photoluminescence (PL) imaging is widely used to identify defective regions within mc-Si PV cells. Recent PL imaging investigations of defect band luminescence (DBL) in mc-Si have revealed a perplexing phenomenon. Namely, the reversal of the DBL intensity in various regions of mc-Si PV material upon the application of a SiNx:H anti-reflective coating (ARC). Regions with low DBL intensity before ARC application often exhibit high DBL intensity afterwards, and the converse is also true. PL imaging alone cannot explain this effect. We have used high resolution cathodoluminescence (CL) spectroscopy and electron beam induced current (EBIC) techniques to elucidate the origin of the DBL intensity reversal. Multiple sub-bandgap energy levels were identified that change in peak position and intensity upon the application of the ARC. Using this data, in addition to EBIC contrast information, we provide an explanation for the DBL intensity reversal based on the interaction of the detected energy levels with the SiNx:H ARC application. Multiple investigations have suggested that this is a global problem for mc-Si PV cells. Our results have the potential to provide mc-Si PV producers a pathway to increased efficiencies through defect mitigation strategies.

  19. Development of a fully-integrated PV system for residential applications: Phase I annual technical report: February 27, 1998 -- August 31, 1999

    SciTech Connect (OSTI)

    West, R.; Mackamul, K.; Duran, G.

    2000-03-06

    This report describes Utility Power Group's (UPG's) technical progress for Phase 1 of a two-phase effort to focus on the design, assembly, and testing of a fully-integrated residential PV power system, including storage. In the PV Array Task, UPG significantly improved the conventional means and methods required to structurally interface PV modules to the roofs of single-family residential houses and to electrically interconnect these PV modules to a power conversion unit. UPG focused on the design and test of a PV array based on the highly efficient use of materials and labor. Design criteria included cost, structural integrity, electrical safety, reliability, conformance with applicable standards and building and seismic codes, and adaptability to a wide range of roof materials for both existing and retrofit roof applications. In the Power Unit Task, UPG designed and tested a high-efficiency, low-cost, high-reliability prototype power conversion unit that included all materials, components, equipment, and software required to perform all DC-AC/AC-DC power collection, conversion, and control functions between the output of the PV array and the interconnection to the electrical grid service of single-family residences. In the Energy Storage Unit Task, UPG designed and tested a low-cost, modular, self-contained, low-maintenance, all-weather, battery-based Energy Storage Unit designed to interface with the Power Unit to provide back-up electricity to supply critical household loads in the event of utility-grid failure. The Energy Storage Unit includes batteries and all structural, mechanical, and electrical equipment required to provide a source of stored DC energy for input of the Power Unit. UPG designed the storage unit as a ''plug and play'' option, where multiple units can be easily paralleled for additional energy storage capacity.

  20. TRNSYS HYBRID wind diesel PV simulator

    SciTech Connect (OSTI)

    Quinlan, P.J.A.; Mitchell, J.W.; Klein, S.A.; Beckman, W.A.; Blair, N.J.

    1996-12-31

    The Solar Energy Laboratory (SEL) has developed a wind diesel PV hybrid systems simulator, UW-HYBRID 1.0, an application of the TRNSYS 14.2 time-series simulation environment. An AC/DC bus links up to five diesels and wind turbine models, along with PV modules, a battery bank, and an AC/DC converter. Multiple units can be selected. PV system simulations include solar angle and peak power tracking options. Weather data are Typical Meteorological Year data, parametrically generated synthesized data, or external data files. PV performance simulations rely on long-standing SEL-developed algorithms. Loads data are read as scalable time series. Diesel simulations include estimated fuel-use and waste heat output, and are dispatched using a least-cost of fuel strategy. Wind system simulations include varying air density, wind shear and wake effects. Time step duration is user-selectable. UW-HYBRID 1.0 runs in Windows{reg_sign}, with TRNSED providing a customizable user interface. 12 refs., 6 figs.

  1. Sandia Energy - PV Value

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Value Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation PV Value PV ValueTara Camacho-Lopez2015-06-12T20:36:38+00:0...

  2. PV Value®

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... For appraisers, the inputs specific to PV in the Residential Green and Energy Efficient Addendum can be used as inputs to PV Value. Valuing a PV system is done using an income ...

  3. Supported PV module assembly

    DOE Patents [OSTI]

    Mascolo, Gianluigi; Taggart, David F.; Botkin, Jonathan D.; Edgett, Christopher S.

    2013-10-15

    A supported PV assembly may include a PV module comprising a PV panel and PV module supports including module supports having a support surface supporting the module, a module registration member engaging the PV module to properly position the PV module on the module support, and a mounting element. In some embodiments the PV module registration members engage only the external surfaces of the PV modules at the corners. In some embodiments the assembly includes a wind deflector with ballast secured to a least one of the PV module supports and the wind deflector. An array of the assemblies can be secured to one another at their corners to prevent horizontal separation of the adjacent corners while permitting the PV modules to flex relative to one another so to permit the array of PV modules to follow a contour of the support surface.

  4. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting behind-the-meter distributed PV generation power production within a region ... This project is expected to reduce the costs of integrating higher penetrations of PV into ...

  5. SunShot Solar PV | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar PV SunShot Solar PV

  6. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    K. Anderson; M. Coddington; K. Burman; S. Hayter; B. Kroposki; and A. Watson

    2009-11-30

    this process to facilitate faster, simpler, and less expensive distributed PV system interconnections. To assess ways to improve the interconnection process, NREL conducted a four-part study with support from DOE. The NREL team then compiled the final reports from each study into this report. In Section 1???¢????????PV Deployment Analysis for New York City???¢????????we analyze the technical potential for rooftop PV systems in the city. This analysis evaluates potential PV power production in ten Con Edison networks of various locations and building densities (ranging from high density apartments to lower density single family homes). Next, we compare the potential power production to network loads to determine where and when PV generation is most likely to exceed network load and disrupt network protection schemes. The results of this analysis may assist Con Edison in evaluating future PV interconnection applications and in planning future network protection system upgrades. This analysis may also assist other utilities interconnecting PV systems to networks by defining a method for assessing the technical potential of PV in the network and its impact on network loads. Section 2???¢????????A Briefing for Policy Makers on Connecting PV to a Network Grid???¢????????presents an overview intended for nontechnical stakeholders. This section describes the issues associated with interconnecting PV systems to networks, along with possible solutions. Section 3???¢????????Technical Review of Concerns and Solutions to PV Interconnection in New Y

  7. Application of the NREL Test-to-Failure Protocol for PV Modules

    SciTech Connect (OSTI)

    Hacke, P.; Osterwald, C.; Trudell, D.; Terwilliger, K.; Bosco, N.; Oelak, E.; Kurtz, S.

    2011-02-01

    Initial results of application of the NREL Test-to-Failure Protocol are presented and discussed. Six commercially available multicrystalline Si-cell flat-plate modules were subjected to the protocol with controls. The samples were divided among three test sequences, (1) 1000 hours of 85C/85% relative humidity with positive or negative 600 V bias to the active layers with respect to the grounded frame, (2) -40/85C thermal cycling with electrical load at the rated module power, and (3) an alternating sequence between tests (1) and (2). Application of the protocol manifested in the acceleration of degradation mechanisms seen in the field including backsheet delamination, corrosion, bubble formation within the laminate, discoloration of the antireflective coating, and localized heating with degradation of the backsheet as a result of moisture ingress, corrosion, and concentrated current flow. Significant differences in performance after one round of the protocol are seen in damp heat depending on the polarity of the bias applied to the active layer (the short-circuited power leads of the module). The protocol is found to successfully accelerate module degradation mechanisms that have been observed in the field and will help to differentiate the performance and reliability of various module technologies.

  8. Value Proposition for High Lifetime (p-type) and Thin Silicon Materials in Solar PV Applications: Preprint

    SciTech Connect (OSTI)

    Goodrich, A.; Woodhouse, M.; Hacke, P.

    2012-06-01

    Most silicon PV road maps forecast a continued reduction in wafer thickness, despite rapid declines in the primary incentive for doing so -- polysilicon feedstock price. Another common feature of most silicon-technology forecasts is the quest for ever-higher device performance at the lowest possible costs. The authors present data from device-performance and manufacturing- and system-installation cost models to quantitatively establish the incentives for manufacturers to pursue advanced (thin) wafer and (high efficiency) cell technologies, in an age of reduced feedstock prices. This analysis exhaustively considers the value proposition for high lifetime (p-type) silicon materials across the entire c-Si PV supply chain.

  9. Economic analysis of PV hybrid power system: Pinnacles National Monument

    SciTech Connect (OSTI)

    Rosenthal, A.; Durand, S.; Thomas, M.; Post, H.

    1997-11-01

    PV hybrid electric power systems can offer an economically competitive alternative to engine generator (genset) systems in many off-grid applications. Besides the obvious `green` advantages of producing less noise and emissions, the PV hybrid can, in some cases, offer a lower life-cycle cost (LCC) then the genset. This paper evaluates the LCC of the 9.6 kWp PV hybrid power system installed by the National Park Services (NPS) at Pinnacles National Monument, CA. NPS motivation for installation of this hybrid was not based on economics, but rather the need to replace two aging diesel gensets with an alternative that would be quieter, fuel efficient, and more in keeping with new NPS emphasis on sustainable design and operations. In fact, economic analysis shows a lower 20-year LCC for the installed PV hybrid than for simple replacement of the two gensets. The analysis projects are net savings by the PV hybrid system of $83,561 and over 162,000 gallons of propane when compared with the genset-only system. This net savings is independent of the costs associated with environmental emissions. The effects of including emissions costs, according to NPS guidelines, is also discussed. 5 refs., 2 figs., 3 tabs.

  10. Sunergie PV | Open Energy Information

    Open Energy Info (EERE)

    Sunergie PV Jump to: navigation, search Name: Sunergie PV Place: Perpignan, France Zip: 66000 Product: Perpignan-based project developer. References: Sunergie PV1 This article is...

  11. Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells

    SciTech Connect (OSTI)

    Nozik, Arthur J.; Beard, Matthew C.; Luther, Joseph M.; Law, Matt; Ellingson, Randy J.; Johnson, Justin C.

    2010-10-14

    Here, we will first briefly summarize the general principles of QD synthesis using our previous work on InP as an example. Then we will focus on QDs of the IV-VI Pb chalcogenides (PbSe, PbS, and PbTe) and Si QDs because these were among the first QDs that were reported to produce multiple excitons upon absorbing single photons of appropriate energy (a process we call multiple exciton generation (MEG)). We note that in addition to Si and the Pb-VI QDs, two other semiconductor systems (III-V InP QDs(56) and II-VI core-shell CdTe/CdSe QDs(57)) were very recently reported to also produce MEG. Then we will discuss photogenerated carrier dynamics in QDs, including the issues and controversies related to the cooling of hot carriers and the magnitude and significance of MEG in QDs. Finally, we will discuss applications of QDs and QD arrays in novel quantum dot PV cells, where multiple exciton generation from single photons could yield significantly higher PV conversion efficiencies.

  12. Sandia Energy - PV Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Publications Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Publications PV PublicationsTara Camacho-Lopez2016-01-05T23:50:37+00:00 Recent...

  13. Conergy PV | Open Energy Information

    Open Energy Info (EERE)

    Conergy PV Jump to: navigation, search Name: Conergy PV Place: Germany Product: A holding company that was formed to group all Conergy AG's PV activities. References: Conergy PV1...

  14. PV Value | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Value PV Value PV Value is a web-based tool that calculates the energy production value for a residential or commercial photovoltaic (PV) system. The tool is Uniform Standards ...

  15. Stabilized PV system

    DOE Patents [OSTI]

    Dinwoodie, Thomas L.

    2002-12-17

    A stabilized PV system comprises an array of photovoltaic (PV) assemblies mounted to a support surface. Each PV assembly comprises a PV module and a support assembly securing the PV module to a position overlying the support surface. The array of modules is circumscribed by a continuous, belt-like perimeter assembly. Cross strapping, extending above, below or through the array, or some combination of above, below and through the array, secures a first position along the perimeter assembly to at least a second position along the perimeter assembly thereby stabilizing the array against wind uplift forces. The first and second positions may be on opposite sides on the array.

  16. Distributed PV Adoption in Maine Through 2021

    SciTech Connect (OSTI)

    Gagnon, Pieter; Sigrin, Ben

    2015-11-06

    NREL has used its dSolar (distributed solar) model to generate low-medium-high estimates of distributed PV adoption in Maine through 2021. This presentation gives a high-level overview of the model and modeling results.

  17. pv land use | OpenEI Community

    Open Energy Info (EERE)

    pv land use Home Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 Request for Information Renewable Energy GenerationProduction Shreveport Airport...

  18. Heritage Park Facilities PV Project

    SciTech Connect (OSTI)

    Hobaica, Mark

    2013-09-26

    Project Objective: To procure a photovoltaic array (PV) system which will generate approximately 256kW of power to be used for the operations of the Aquatic Complex and the adjacent Senior Facility at the Heritage Park. This project complies with the EERE’s work and objectives by promoting the development and deployment of an energy system that will provide current and future generations with clean, efficient, affordable, and reliable energy.

  19. Using Mobile Applications to Generate Customer Demand | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Using Mobile Applications to Generate Customer Demand Using Mobile Applications to Generate Customer Demand Better Buildings Residential Network Peer Exchange Call Series: Using...

  20. Fire resistant PV shingle assembly

    DOE Patents [OSTI]

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  1. Solar Energy International Solar PV 101 Training

    Broader source: Energy.gov [DOE]

    Solar Energy International is offering a five-day training that provides an overview of the three basic PV system applications, primarily focusing on grid-direct systems. The goal of the course is...

  2. Energy and economic assessment of desiccant cooling systems coupled with single glazed air and hybrid PV/thermal solar collectors for applications in hot and humid climate

    SciTech Connect (OSTI)

    Beccali, Marco; Finocchiaro, Pietro; Nocke, Bettina

    2009-10-15

    This paper presents a detailed analysis of the energy and economic performance of desiccant cooling systems (DEC) equipped with both single glazed standard air and hybrid photovoltaic/thermal (PV/t) collectors for applications in hot and humid climates. The use of 'solar cogeneration' by means of PV/t hybrid collectors enables the simultaneous production of electricity and heat, which can be directly used by desiccant air handling units, thereby making it possible to achieve very energy savings. The present work shows the results of detailed simulations conducted for a set of desiccant cooling systems operating without any heat storage. System performance was investigated through hourly simulations for different systems and load combinations. Three configurations of DEC systems were considered: standard DEC, DEC with an integrated heat pump and DEC with an enthalpy wheel. Two kinds of building occupations were considered: office and lecture room. Moreover, three configurations of solar-assisted air handling units (AHU) equipped with desiccant wheels were considered and compared with standard AHUs, focusing on achievable primary energy savings. The relationship between the solar collector's area and the specific primary energy consumption for different system configurations and building occupation patterns is described. For both occupation patterns, sensitivity analysis on system performance was performed for different solar collector areas. Also, this work presents an economic assessment of the systems. The cost of conserved energy and the payback time were calculated, with and without public incentives for solar cooling systems. It is worth noting that the use of photovoltaics, and thus the exploitation of related available incentives in many European countries, could positively influence the spread of solar air cooling technologies (SAC). An outcome of this work is that SAC systems equipped with PV/t collectors are shown to have better performance in terms of

  3. Sandia Energy - Tutorial on PV System Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tutorial on PV System Modeling Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Modeling & Analysis Tutorial on PV System Modeling Tutorial on PV...

  4. Solar PV Incentive Programs

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Program (greater than 50 kW) * LIPA Solar Pioneer (homeowner) & Solar Entrepreneur (business - up to 50 kW) Research & Development collaborations on BOS cost ...

  5. PV Research & Development Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... for investors, which translates into a high cost of capital for PV project investments. ...

  6. PV Value®

    Broader source: Energy.gov [DOE]

    PV Value® is a free solar PV Valuation tool that answers the question of "How much is solar PV worth" and is compliant with the Uniform Standards of Professional Appraisal Practice. It is available for and being used by real estate appraisers, realtors, homeowners, commercial building owners, home builders, solar installers, green raters, insurance companies, and mortgage lenders in all 50 states along with D.C. and Puerto Rico. PV Value® allows for the calculation of both the cost and income approach to value and was endorsed by the largest appraiser trade organization, the "Appraisal Institute," as an innovative approach to valuing solar assets.

  7. PV Reliability & Performance Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability & Performance Model - Sandia Energy Energy Search Icon Sandia Home Locations ... Twitter Google + Vimeo GovDelivery SlideShare PV Reliability & Performance Model Home...

  8. Sandian Presents on PV Failure Analysis at European PV Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Presents on PV Failure Analysis at European PV Solar Energy Conference and Exhibition (EU PVSC) - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator ...

  9. Sandia Energy - PV Modeling & Analysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Modeling & Analysis Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Modeling & Analysis PV Modeling & AnalysisTara Camacho-Lopez2015-05-11T20:03...

  10. PV Systems | Open Energy Information

    Open Energy Info (EERE)

    PV Systems Place: Wales, United Kingdom Zip: CF15 7JD Product: Welsh building integrated PV (BIPV) company References: PV Systems1 This article is a stub. You can help OpenEI by...

  11. Sunshine PV | Open Energy Information

    Open Energy Info (EERE)

    PV Place: Taiwan Sector: Solar Product: Taiwan-based subsidiary of Solartech Energy and thin-film PV module supplier. References: Sunshine PV1 This article is a stub. You can...

  12. Isotope powered Stirling generator for terrestrial applications

    SciTech Connect (OSTI)

    Tingey, G.L.; Sorensen, G.C.; Ross, B.A.

    1995-01-01

    An electric power supply, small enough to be man-portable, is being developed for remote, terrestrial applications. This system is designed for an operating lifetime of five years without maintenance or refueling. A small Radioisotope Stirling Generator (RSG) has been developed. The energy source of the generator is a 60 watt plutonium-238 fuel clad used in the General Purpose Heat Sources (GPHS) developed for space applications. A free piston Stirling Engine drives a linear alternator to convert the heat to power. The system weighs about 7.5 kg and produces 11 watts AC power with a conversion efficiency of 18.5%. Two engine models have been designed, fabricated, and tested to date: (a) a developmental model instrumented to confirm and test parameters, and (b) an electrically heated model with an electrical heater equipped power input leads. Critical components have been tested for 10,000 to 20,000 hours. One complete generator has been operating for over 11,000 hours. Radioisotope heated prototypes are expected to be fabricated and tested in late 1995.

  13. PV_LIB Toolbox

    Energy Science and Technology Software Center (OSTI)

    2012-09-11

    While an organized source of reference information on PV performance modeling is certainly valuable, there is nothing to match the availability of actual examples of modeling algorithms being used in practice. To meet this need, Sandia has developed a PV performance modeling toolbox (PV_LIB) for Matlab. It contains a set of well-documented, open source functions and example scripts showing the functions being used in practical examples. This toolbox is meant to help make the multi-stepmore » process of modeling a PV system more transparent and provide the means for model users to validate and understand the models they use and or develop. It is fully integrated into Matlab’s help and documentation utilities. The PV_LIB Toolbox provides more than 30 functions that are sorted into four categories« less

  14. Ambiental PV | Open Energy Information

    Open Energy Info (EERE)

    Ambiental PV Jump to: navigation, search Name: Ambiental PV Place: Bahia, Brazil Zip: 40140-380 Sector: Carbon Product: Bahia-based carbon consultancy firm. References: Ambiental...

  15. GridPV Toolbox

    Energy Science and Technology Software Center (OSTI)

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feedermore » on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.« less

  16. GridPV Toolbox

    SciTech Connect (OSTI)

    Broderick, Robert; Quiroz, Jimmy; Grijalva, Santiago; Reno, Matthew; Coogan, Kyle

    2014-07-15

    Matlab Toolbox for simulating the impact of solar energy on the distribution grid. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving GridPV Toolbox information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions.

  17. Building the Next Generation of Parallel Applications: Co-Design...

    Office of Scientific and Technical Information (OSTI)

    Applications: Co-Design Opportunities and Challenges. Citation Details In-Document Search Title: Building the Next Generation of Parallel Applications: Co-Design Opportunities and ...

  18. Nevada Application For Renewable Energy System Generators | Open...

    Open Energy Info (EERE)

    renewable energy system. Form Type ApplicationNotice Form Topic Application Pursuant to NAC 704.8901 - 704.8937 for Renewable Energy System Generators Published Publisher Not...

  19. Grid integrated distributed PV (GridPV).

    SciTech Connect (OSTI)

    Reno, Matthew J.; Coogan, Kyle

    2013-08-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functions are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in the OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function in the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  20. Jiangxi Solar PV Corp JSPV aka Solar PV Corporation | Open Energy...

    Open Energy Info (EERE)

    Solar PV Corp JSPV aka Solar PV Corporation Jump to: navigation, search Name: Jiangxi Solar PV Corp (JSPV, aka Solar PV Corporation ) Place: Xinyu, Jiangxi Province, China Zip:...

  1. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6733 Unlimited Release Printed August 2013 Grid Integrated Distributed PV (GridPV) Matthew J. Reno, Kyle Coogan Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE -AC04-94AL85000. Approved for

  2. GridPV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    141 Unlimited Release Printed November 2014 Grid Integrated Distributed PV (GridPV) Version 2 Matthew J. Reno, Kyle Coogan Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  3. PV Value | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Value PV Value PV Value Sandia National Laboratories has developed a prospective model of determining the value of PV. Sandia uses an income capitalization approach, which considers the present value of future energy production to determine the remaining value of a PV system. An online tool developed by Energy Sense Finance, has been released to the public. https://www.pvvalue.com/ PV Value (332.15 KB) More Documents & Publications PV Value® Reduce Risk, Increase Clean Energy: How States

  4. Demonstrating Reliability of 3M Ultra-Barrier Film for Flexible PV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Demonstrating Reliability of 3M Ultra-Barrier Film for Flexible PV Applications Demonstrating Reliability of 3M Ultra-Barrier Film for Flexible PV Applications Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps5_3m_nachtigal.pdf (936.72 KB) More Documents & Publications OLED Stakeholder Report Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Comparing Accelerated

  5. Large-Scale PV Integration Study

    SciTech Connect (OSTI)

    Lu, Shuai; Etingov, Pavel V.; Diao, Ruisheng; Ma, Jian; Samaan, Nader A.; Makarov, Yuri V.; Guo, Xinxin; Hafen, Ryan P.; Jin, Chunlian; Kirkham, Harold; Shlatz, Eugene; Frantzis, Lisa; McClive, Timothy; Karlson, Gregory; Acharya, Dhruv; Ellis, Abraham; Stein, Joshua; Hansen, Clifford; Chadliev, Vladimir; Smart, Michael; Salgo, Richard; Sorensen, Rahn; Allen, Barbara; Idelchik, Boris

    2011-07-29

    This research effort evaluates the impact of large-scale photovoltaic (PV) and distributed generation (DG) output on NV Energy’s electric grid system in southern Nevada. It analyzes the ability of NV Energy’s generation to accommodate increasing amounts of utility-scale PV and DG, and the resulting cost of integrating variable renewable resources. The study was jointly funded by the United States Department of Energy and NV Energy, and conducted by a project team comprised of industry experts and research scientists from Navigant Consulting Inc., Sandia National Laboratories, Pacific Northwest National Laboratory and NV Energy.

  6. Quantify Degradation Rates and Mechanisms of PV Modules and Systems Installed in Florida Through Comprehensive Experimental and Theoretical Analysis (Poster)

    SciTech Connect (OSTI)

    Sorloaica-Hickman, N.; Davis, K.; Kurtz, S.; Jordan, D.

    2011-02-01

    The economic viability of photovoltaic (PV) technologies is inextricably tied to both the electrical performance and degradation rate of the PV systems, which are the generators of electrical power in PV systems. Over the past 15 years, performance data have been collected on numerous PV systems installed throughout the state of Florida and will be presented.

  7. Dynamic Model Validation of PV Inverters Under Short-Circuit Conditions: Preprint

    SciTech Connect (OSTI)

    Muljadi, E.; Singh, M.; Bravo, R.; Gevorgian, V.

    2013-03-01

    Photovoltaic (PV) modules have dramatically decreased in price in the past few years, spurring the expansion of photovoltaic deployment. Residential and commercial rooftop installations are connected to the distribution network; large-scale installation PV power plants (PVPs) have benefited from tax incentives and the low cost of PV modules. As the level penetration of PV generation increases, the impact on power system reliability will also be greater. Utility power system planners must consider the role of PV generation in power systems more realistically by representing PV generation in dynamic stability analyses. Dynamic models of PV inverters have been developed in the positive sequence representation. NREL has developed a PV inverter dynamic model in PSCAD/EMTDC. This paper validates the dynamic model with an actual hardware bench test conducted by Southern California Edison's Distributed Energy Resources laboratory. All the fault combinations -- symmetrical and unsymmetrical -- were performed in the laboratory. We compare the simulation results with the bench test results.

  8. Teksun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    Teksun PV Manufacturing Inc Jump to: navigation, search Logo: Teksun PV Manufacturing Inc Name: Teksun PV Manufacturing Inc Address: 401 Congress Ave Place: Austin, Texas Zip:...

  9. Jinzhou Boyang PV Technology | Open Energy Information

    Open Energy Info (EERE)

    Boyang PV Technology Place: Jinzhou, Liaoning Province, China Product: China-based PV product manufacturer. It is also engaged in the design and installation of PV power...

  10. The Open PV Project | Open Energy Information

    Open Energy Info (EERE)

    The Open PV Project (Redirected from Open PV) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Open PV Project AgencyCompany Organization: National Renewable Energy...

  11. Hunan Huayuan PV | Open Energy Information

    Open Energy Info (EERE)

    Huayuan PV Jump to: navigation, search Name: Hunan Huayuan PV Place: Hunan Province, China Product: State-owned PV wafer maker based in China's Hunan Province. References: Hunan...

  12. Open PV Project: Unlocking PV Installation Data (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This brochure summarizes the Open PV Project, a collaborative effort of government, industry, and the public to compile a comprehensive database of PV installations in the United States. The brochure outlines the purpose and history of the project as well as the main capabilities and benefits of the online Open PV tool. The brochure also introduces how features of the tool are used, and it describes the sources and characteristics of Open PV's data and data collection processes.

  13. Using Mobile Applications to Generate Customer Demand | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Mobile Applications to Generate Customer Demand Using Mobile Applications to Generate Customer Demand Better Buildings Residential Network Peer Exchange Call Series: Using Mobile Applications to Generate Customer Demand, Call Slides and Discussion Summary, March 12, 2015. Call Slides and Discussion Summary (1.99 MB) More Documents & Publications Better Buildings Network View | October 2014 Swipe Left, Power Down: Using Interactive Media to Instill Behavior Change (301)

  14. Ukiah Utilities- PV Buydown Program

    Broader source: Energy.gov [DOE]

    Through Ukiah Utilities’ PV Buydown Program, residential and commercial customers are eligible for a $1.40-per-watt AC rebate on qualifying grid-connected PV systems up to a maximum system size of...

  15. Sandia Energy - PV Systems Reliability

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems Reliability Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics PV Systems Reliability PV Systems ReliabilityCoryne Tasca2015-05-08T03:40:54+00:00...

  16. PV Trackers | Open Energy Information

    Open Energy Info (EERE)

    Trackers Jump to: navigation, search Name: PV Trackers Product: Designer of dual axis trackers References: PV Trackers1 This article is a stub. You can help OpenEI by expanding...

  17. Kenmos PV | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Kenmos PV Place: Tainan, Taiwan Sector: Solar Product: Solar business unit of Kenmos Technology which was set up in Sep 2007, to produce thin film PV...

  18. Sandia Energy - PV Program Disclaimer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Program Disclaimersspope2015-03-23T21:15:29+00:00 PV Program Disclaimer The Photovoltaic Projects at Sandia National Laboratories support the development and deployment of...

  19. Property:Distributed Generation System Heating-Cooling Application...

    Open Energy Info (EERE)

    This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed...

  20. Delta PV Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    PV Pvt Ltd Jump to: navigation, search Name: Delta PV Pvt Ltd Place: India Product: Focused on PV cells and modules. References: Delta PV Pvt Ltd1 This article is a stub. You can...

  1. Solar PV and Glare Factsheet

    Broader source: Energy.gov [DOE]

    A common misconception about solar photovoltaic (PV) panels is that they inherently cause or create "too much" glare, posing a nuisance to neighbors and a safety risk for pilots. While solar PV systems can produce glare, light absorption - rather than reflection - is central to the function of solar PV panels. This fact sheet describes the basic issues surrounding glare from solar PV panels, the new Federal Aviation Administration guidance, and the implications for local governments.

  2. Oxygen generator for medical applications (USIC)

    SciTech Connect (OSTI)

    Staiger, C. L.

    2012-03-01

    The overall Project objective is to develop a portable, non-cryogenic oxygen generator capable of supplying medical grade oxygen at sufficient flow rates to allow the field application of the Topical Hyperbaric Oxygen Therapy (THOT{reg_sign}) developed by Numotech, Inc. This project was sponsored by the U.S. Department of Energy Global Initiatives for Proliferation Prevention (GIPP) and is managed by collaboration between Sandia National Laboratories (SNL), Numotech, Inc, and LLC SPE 'Spektr-Conversion.' The project had two phases, with the objective of Phase I being to develop, build and test a laboratory prototype of the membrane-pressure swing adsorber (PSA) system producing at 15 L/min of oxygen with a minimum of 98% oxygen purity. Phase II objectives were to further refine and identify the pre-requisites needed for a commercial product and to determine the feasibility of producing 15 L/min of oxygen with a minimum oxygen purity of 99%. In Phase I, Spektr built up the necessary infrastructure to perform experimental work and proceeded to build and demonstrate a membrane-PSA laboratory prototype capable of producing 98% purity oxygen at a flow rate of 5 L/min. Spektr offered a plausible path to scale up the process for 15 L/min. Based on the success and experimental results obtained in Phase I, Spektr performed work in three areas for Phase II: construction of a 15 L/min PSA; investigation of compressor requirements for the front end of the membrane/PSA system; and performing modeling and simulation of assess the feasibility of producing oxygen with a purity greater than 99%. Spektr successfully completed all of the tasks under Phase II. A prototype 15 L/min PSA was constructed and operated. Spektr determined that no 'off the shelf' air compressors met all of the specifications required for the membrane-PSA, so a custom compressor will likely need to be built. Modeling and simulation concluded that production of oxygen with purities greater than 99% was possible

  3. 2015 PV Module Reliability Workshop

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory hosts an annual Photovoltaic (PV) Module Reliability Workshop so that solar technology experts can share information leading to the improvement of PV module reliability. Improvements to module reliability reduce the cost of solar electricity and promotes investor confidence in the technology—both critical goals for moving PV technologies deeper into the electricity marketplace.

  4. Testing for PV Reliability (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Bansal, S.

    2014-09-01

    The DOE SUNSHOT workshop is seeking input from the community about PV reliability and how the DOE might address gaps in understanding. This presentation describes the types of testing that are needed for PV reliability and introduces a discussion to identify gaps in our understanding of PV reliability testing.

  5. Power Generation Market Watch Cell Processing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    w w w.pv - te ch.org Power Generation Market Watch Cell Processing Fab & Facilities Thin Film Materials PV Modules Why perform long-term outdoor tests on PV modules? Among the ...

  6. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Operations | Department of Energy Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean Power Research logo.jpg This project will address the need for a more accurate approach to forecasting net utility load by taking into consideration the contribution of customer-sited PV energy generation. Tasks within the project are designed to integrate novel PV power

  7. Summary of the 3rd International PV Module Quality Assurance Forum |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Summary of the 3rd International PV Module Quality Assurance Forum Summary of the 3rd International PV Module Quality Assurance Forum Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps3_pvtec_saito.pdf (586.08 KB) More Documents & Publications Overview of Progress in Thermoelectric Power Generation Technologies in Japan Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Overview of

  8. Updating Interconnection Screens for PV System Integration

    SciTech Connect (OSTI)

    Coddington, M.; Mather, B.; Kroposki, B.; Lynn, K.; Razon, A.; Ellis, A.; Hill, R.; Key, T.; Nicole, K.; Smith, J.

    2012-02-01

    This white paper evaluates the origins and usefulness of the capacity penetration screen, offer short-term solutions which could effectively allow fast-track interconnection to many PV system applications, and considers longer-term solutions for increasing PV deployment levels in a safe and reliable manner while reducing or eliminating the emphasis on the penetration screen. Short-term and longer-term alternatives approaches are offered as examples; however, specific modifications to screening procedures should be discussed with stakeholders and must ultimately be adopted by state and federal regulatory bodies.

  9. PV performance modeling workshop summary report.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Tasca, Coryne Adelle; Cameron, Christopher P.

    2011-05-01

    During the development of a solar photovoltaic (PV) energy project, predicting expected energy production from a system is a key part of understanding system value. System energy production is a function of the system design and location, the mounting configuration, the power conversion system, and the module technology, as well as the solar resource. Even if all other variables are held constant, annual energy yield (kWh/kWp) will vary among module technologies because of differences in response to low-light levels and temperature. A number of PV system performance models have been developed and are in use, but little has been published on validation of these models or the accuracy and uncertainty of their output. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a PV Performance Modeling Workshop in Albuquerque, New Mexico, September 22-23, 2010. The workshop was intended to address the current state of PV system models, develop a path forward for establishing best practices on PV system performance modeling, and set the stage for standardization of testing and validation procedures for models and input parameters. This report summarizes discussions and presentations from the workshop, as well as examines opportunities for collaborative efforts to develop objective comparisons between models and across sites and applications.

  10. A Transformer-less Partial Power Boost Converter for PV Applications Using a Three-Level Switching Cell

    SciTech Connect (OSTI)

    Mohammed Agamy; Maja Harfman-Todorovic; Ahmed Elasser; Somasundaram Essakiappan

    2013-03-01

    Photovoltaic architectures with distributed power electronics provide many advantages in terms of energy yield as well as system level optimization. As the power level of the solar farm increases it becomes more beneficial to increase the dc collection network voltage, which requires the use of power devices with higher voltage ratings, and thus making the design of efficient, low cost, distributed power converters more challenging. In this paper a simple partial power converter topology is proposed. The topology is implemented using a three-level switching cell, which allows the use of semiconductor devices with lower voltage rating; thus improving design and performance and reducing converter cost. This makes the converters suitable for use for medium to high power applications where dc-link voltages of 600V~1kV may be needed without the need for high voltage devices. Converter operation and experimental results are presented for two partial power circuit variants using three-level switching cells.

  11. Development of a low cost integrated 15 kW A.C. solar tracking sub-array for grid connected PV power system applications

    SciTech Connect (OSTI)

    Stern, M.; West, R.; Fourer, G.; Whalen, W.; Van Loo, M.; Duran, G.

    1997-02-01

    Utility Power Group has achieved a significant reduction in the installed cost of grid-connected PV systems. The two part technical approach focused on (1) The utilization of a large area factory assembled PV panel, and (2) The integration and packaging of all sub-array power conversion and control functions within a single factory produced enclosure. Eight engineering prototype 15kW ac single axis solar tracking sub-arrays were designed, fabricated, and installed at the Sacramento Municipal Utility District{close_quote}s Hedge Substation site in 1996 and are being evaluated for performance and reliability. A number of design enhancements will be implemented in 1997 and demonstrated by the field deployment and operation of over twenty advanced sub-array PV power systems. {copyright} {ital 1997 American Institute of Physics.}

  12. PV Hourly Simulation Tool

    Energy Science and Technology Software Center (OSTI)

    2010-12-31

    This software requires inputs of simple general building characteristics and usage information to calculate the energy and cost benefits of solar PV. This tool conducts and complex hourly simulation of solar PV based primarily on the area available on the rooftop. It uses a simplified efficiency calculation method and real panel characteristics. It includes a detailed rate structure to account for time-of-use rates, on-peak and off-peak pricing, and multiple rate seasons. This tool includes themore » option for advanced system design inputs if they are known. This tool calculates energy savings, demand reduction, cost savings, incentives and building life cycle costs including: simple payback, discounted payback, net-present value, and savings to investment ratio. In addition this tool also displays the environmental benefits of a project.« less

  13. 2015 PV Systems Symposium

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Systems Symposium - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  14. Kauai Island Utility Co-op (KIUC) PV integration study.

    SciTech Connect (OSTI)

    Ellis, Abraham; Mousseau, Tom

    2011-08-01

    This report investigates the effects that increased distributed photovoltaic (PV) generation would have on the Kauai Island Utility Co-op (KIUC) system operating requirements. The study focused on determining reserve requirements needed to mitigate the impact of PV variability on system frequency, and the impact on operating costs. Scenarios of 5-MW, 10-MW, and 15-MW nameplate capacity of PV generation plants distributed across the Kauai Island were considered in this study. The analysis required synthesis of the PV solar resource data and modeling of the KIUC system inertia. Based on the results, some findings and conclusions could be drawn, including that the selection of units identified as marginal resources that are used for load following will change; PV penetration will displace energy generated by existing conventional units, thus reducing overall fuel consumption; PV penetration at any deployment level is not likely to reduce system peak load; and increasing PV penetration has little effect on load-following reserves. The study was performed by EnerNex under contract from Sandia National Laboratories with cooperation from KIUC.

  15. Habdank PV Montagesysteme GmbH Co KG Habdank PV Mounting Systems...

    Open Energy Info (EERE)

    Germany Zip: 73037 Product: Germany-based manufacturer of mounting systems for PV installations. References: Habdank PV-Montagesysteme GmbH & Co KG Habdank PV Mounting...

  16. ENERGY-10 PV: Photovoltaics, A New Capability (Preprint)

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hayter, S.J.; Weaver, N.L.

    2001-02-16

    This is one of two companion papers that describe the ENERGY-10 PV design-tool computer simulation program. The other paper is titled ''Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads.'' While this paper focuses on the implementation method, the companion paper focuses on the PV aspects of the program. The case study in this paper is a residential building application, whereas the case study in the companion paper is a commercial application with an entirely different building load characteristic. Together, they provide a balanced view.

  17. Status of High Performance PV: Polycrystalline Thin-Film Tandems

    SciTech Connect (OSTI)

    Symko-Davies, M.

    2005-02-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

  18. Development of a low-cost integrated 20-kW-AC solar tracking subarray for grid-connected PV power system applications. Final technical report

    SciTech Connect (OSTI)

    Stern, M.; Duran, G.; Fourer, G.; Mackamul, K.; Whalen, W.; Loo, M. van; West, R.

    1998-06-01

    This report chronicles Utility Power Group's (UPG) successful two-year Photovoltaic Manufacturing Technology (PVMaT) Phase 4A1 work effort which began in July, 1995. During this period, UPG completed design, fabrication, testing and demonstration of a modular and fully integrated 15-kW-ac, solar tracking PV power system sub-array. The two key and innovative components which were developed are a Modular Panel which optimizes factory assembly of PV modules into a large area, field-deployable, structurally-integrated PV panel, and an Integrated Power Processing Unit which combines all dc and ac power collection, conversion and control functions within a single, field-deployable structurally-integrated electrical enclosure. These two key sub-array elements, when combined with a number of other electrical, mechanical, and structural components, create a low-cost and high-performance PV power system. This system, or sub-array, can be deployed in individual units, or paralleled with any number of other sub-arrays, to construct multi-megawatt P fields. 21 figs.

  19. Extending Performance and Evaluating Risks of PV Systems Failure Using a Fault Tree and Event Tree Approach: Analysis of the Possible Application

    SciTech Connect (OSTI)

    Colli A.

    2012-06-03

    Performance and reliability of photovoltaic (PV) systems are important issues in the overall evaluation of a PV plant and its components. While performance is connected to the amount of energy produced by the PV installation in the working environmental conditions, reliability impacts the availability of the system to produce the expected amount of energy. In both cases, the evaluation should be done considering information and data coming from indoor as well as outdoor tests. In this paper a way of re-thinking performance, giving it a probabilistic connotation, and connecting the two concepts of performance and reliability is proposed. The paper follows a theoretical approach and discusses the way to obtaining such information, facing benefits and problems. The proposed probabilistic performance accounts for the probability of the system to function correctly, thus passing through the complementary evaluation of the probability of system malfunctions and consequences. Scenarios have to be identified where the system is not functioning properly or at all. They are expected to be combined in a probabilistic safety analysis (PSA) based approach, providing not only the required probability, but also being capable of giving a prioritization of the risks and the most dominant scenario associated to a specific situation. This approach can offer the possibility to highlight the most critical parts of a PV system, as well as providing support in design activities identifying weak connections.

  20. Characterizing Shading Losses on Partially Shaded PV Systems (Presentation)

    SciTech Connect (OSTI)

    Deline, C.

    2010-09-23

    Presentation on shaded PV power loss, practical issues with modeling shaded PV, and methods of implementing partially shaded PV modeling.

  1. Synchrophasor Applications for Wind Power Generation

    SciTech Connect (OSTI)

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  2. Potential nuclear safeguards applications for neutron generators

    SciTech Connect (OSTI)

    Lindquist, L.O.

    1980-01-01

    Many nuclear safeguards inspection instruments use neutron sources to interrogate the fissile material (commonly /sup 235/U and /sup 239/Pu) to be measured. The neutron sources currently used in these instruments are isotopics such as Californium-252, Americium-Lithium, etc. It is becoming increasingly more difficult to transport isotopic sources from one measurement location to another. This represents a significant problem for the International Atomic Energy Agency (IAEA) safeguards inspectors because they must take their safeguards instruments with them to each nuclear installation to make an independent measurement. Purpose of this paper is to review the possibility of replacing isotopic neutron sources now used in IAEA safeguards instruments with electric neutron sources such as deuterium-tritium (D-T, 14-MeV neutrons) or deuterium-deuterium (D-D, 2-MeV neutrons). The potential for neutron generators to interrogate spent-light water reactor fuel assemblies in storage pools is also reviewed.

  3. Feature recognition applications in mesh generation

    SciTech Connect (OSTI)

    Tautges, T.J.; Liu, S.S.; Lu, Y.; Kraftcheck, J.; Gadh, R.

    1997-06-01

    The use of feature recognition as part of an overall decomposition-based hexahedral meshing approach is described in this paper. The meshing approach consists of feature recognition, using a c-loop or hybrid c-loop method, and the use of cutting surfaces to decompose the solid model. These steps are part of an iterative process, which proceeds either until no more features can be recognized or until the model has been completely decomposed into meshable sub-volumes. This method can greatly reduce the time required to generate an all-hexahedral mesh, either through the use of more efficient meshing algorithms on more of the geometry or by reducing the amount of manual decomposition required to mesh a volume.

  4. Jinzhou Prime Solar PV Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    PV Technology Co Ltd Jump to: navigation, search Name: Jinzhou Prime Solar PV Technology Co Ltd Place: China Product: The company produces pv cell and develops pv project....

  5. PV Validation and Bankability Workshop

    Broader source: Energy.gov [DOE]

    This document summarizes the information given on Aug. 29, 2011, on the survey results of the PV Validation and Bankability Workshop on Aug. 31, 2011.

  6. Evaluating Rooftop Strength for PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... ActivitiesBalance of Systems and Soft CostsEvaluating Rooftop Strength for PV ...

  7. PV Crystalox Solar AG formerly PV Silicon AG | Open Energy Information

    Open Energy Info (EERE)

    PV Crystalox Solar AG formerly PV Silicon AG Jump to: navigation, search Name: PV Crystalox Solar AG (formerly PV Silicon AG) Place: Abingdon, England, United Kingdom Zip: OX14 4SE...

  8. BeyondPV Co Ltd Bayang Solar PV | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd (Bayang Solar PV) Place: Tainan, Taiwan Zip: 70955 Product: BeyondPV is an a-Si thin-film silicon PV maker based in southern Taiwan. References: BeyondPV Co Ltd (Bayang...

  9. High voltage pulse generator. [Patent application

    DOE Patents [OSTI]

    Fasching, G.E.

    1975-06-12

    An improved high-voltage pulse generator is described which is especially useful in ultrasonic testing of rock core samples. An N number of capacitors are charged in parallel to V volts and at the proper instance are coupled in series to produce a high-voltage pulse of N times V volts. Rapid switching of the capacitors from the paralleled charging configuration to the series discharging configuration is accomplished by using silicon-controlled rectifiers which are chain self-triggered following the initial triggering of the first rectifier connected between the first and second capacitors. A timing and triggering circuit is provided to properly synchronize triggering pulses to the first SCR at a time when the charging voltage is not being applied to the parallel-connected charging capacitors. The output voltage can be readily increased by adding additional charging networks. The circuit allows the peak level of the output to be easily varied over a wide range by using a variable autotransformer in the charging circuit.

  10. Interband cascade (IC) photovoltaic (PV) architecture for PV devices

    SciTech Connect (OSTI)

    Yang, Rui Q.; Tian, Zhaobing; Mishima, Tetsuya D.; Santos, Michael B.; Johnson, Matthew B.; Klem, John F.

    2015-10-20

    A photovoltaic (PV) device, comprising a PV interband cascade (IC) stage, wherein the IC PV stage comprises an absorption region with a band gap, the absorption region configured to absorb photons, an intraband transport region configured to act as a hole barrier, and an interband tunneling region configured to act as an electron barrier. An IC PV architecture for a photovoltaic device, the IC PV architecture comprising an absorption region, an intraband transport region coupled to the absorption region, and an interband tunneling region coupled to the intraband transport region and to the adjacent absorption region, wherein the absorption region, the intraband transport region, and the interband tunneling region are positioned such that electrons will flow from the absorption region to the intraband transport region to the interband tunneling region.

  11. Identifying Critical Pathways to High-Performance PV: Preprint

    SciTech Connect (OSTI)

    Symko-Davies, M.; Noufi, R.; Kurtz, S.

    2002-05-01

    This conference paper describes the High-Performance Photovoltaic (HiPerf PV)Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment in the 21st century. To accomplish this, the NCPV directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. Details of the subcontractor and in-house progress will be described toward identifying critical pathways of 25% polycrystalline thin-film tandem cells and developing multijunction concentrator modules to 33%.

  12. Microgrid-Ready Solar PV; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    2015-07-01

    Designing new solar projects to be 'microgrid-ready' enables the U.S. DoD, other federal agencies, and the private sector to plan future microgrid initiatives to utilize solar PV as a generating resource. This fact sheet provides background information with suggested language for several up-front considerations that can be added to a solar project procurement or request for proposal (RFP) that will help ensure that PV systems are built for future microgrid connection.

  13. Lightweight PV Inverters: Dual Bi-Directional IGBTs Modules Enables Breakthrough PV Inverter Using Current Modulation Topology

    SciTech Connect (OSTI)

    2012-01-30

    Solar ADEPT Project: PV inverters convert DC power generated by modules into usable AC power. IPCs initial 30kW 94lb. PV inverter reduces the weight of comparable 30kW PV inverters by 90%reducing the cost of materials, manufacturing, shipping, and installation. With ARPA-E support, new bi-directional silicon power switches will be developed, commercialized, and utilized in IPCs next-generation PV inverter. With these components, IPC will produce 100kW inverters that weight less than 100lb., reducing the weight of conventional 3,000lb. 100kW inverters by more than 95%. The new power switches will cut IPCs $/W manufacturing cost in half, as well as further reduce indirect shipping and installation costs.

  14. PV Nano Cell | Open Energy Information

    Open Energy Info (EERE)

    Cell Jump to: navigation, search Name: PV Nano Cell Place: Israel Product: Israel-based firm focused on PV nano cell technology. References: PV Nano Cell1 This article is a stub....

  15. Gansu PV Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Gansu PV Co Ltd Jump to: navigation, search Name: Gansu PV Co Ltd Place: Lanzhou, Gansu Province, China Zip: 730000 Sector: Solar Product: Gansu PV Co Ltd is active in...

  16. All Solar PV | Open Energy Information

    Open Energy Info (EERE)

    Solar PV Jump to: navigation, search Logo: All Solar PV Name: All Solar PV Address: 1407-4-105 Century East,Daliushu Road Place: Beijing, China Sector: Solar Product: Solar Energy...

  17. PV World Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    World Co Ltd Jump to: navigation, search Name: PV World Co Ltd Place: Singapore Product: Singapore-based PV module manufacturer. References: PV World Co Ltd1 This article is a...

  18. Recovery Act: Novel Kerf-Free PV Wafering that provides a low-cost approach to generate wafers from 150um to 50um in thickness

    SciTech Connect (OSTI)

    Fong, Theodore E.

    2013-05-06

    The technical paper summarizes the project work conducted in the development of Kerf-Free silicon wafering equipment for silicon solar wafering. This new PolyMax technology uses a two step process of implantation and cleaving to exfoliate 50um to 120um wafers with thicknesses ranging from 50um to 120um from a 125mm or 156mm pseudo-squared silicon ingot. No kerf is generated using this method of wafering. This method of wafering contrasts with the current method of making silicon solar wafers using the industry standard wire saw equipment. The report summarizes the activity conducted by Silicon Genesis Corporation in working to develop this technology further and to define the roadmap specifications for the first commercial proto-type equipment for high volume solar wafer manufacturing using the PolyMax technology.

  19. Integrating High Penetrations of PV into Southern California: Year 2 Project Update; Preprint

    SciTech Connect (OSTI)

    Mather, B.; Neal, R.

    2012-08-01

    Southern California Edison (SCE) is well into a five-year project to install a total of 500 MW of distributed photovoltaic (PV) energy within its utility service territory. Typical installations to date are 1-3 MW peak rooftop PV systems that interconnect to medium-voltage urban distribution circuits or larger (5 MW peak) ground-mounted systems that connect to medium-voltage rural distribution circuits. Some of the PV system interconnections have resulted in distribution circuits that have a significant amount of PV generation compared to customer load, resulting in high-penetration PV integration scenarios. The National Renewable Energy Laboratory (NREL) and SCE have assembled a team of distribution modeling, resource assessment, and PV inverter technology experts in order to investigate a few of the high-penetration PV distribution circuits. Currently, the distribution circuits being studied include an urban circuit with a PV penetration of approximately 46% and a rural circuit with a PV penetration of approximately 60%. In both cases, power flow on the circuit reverses direction, compared to traditional circuit operation, during periods of high PV power production and low circuit loading. Research efforts during year two of the five-year project were focused on modeling the distribution system level impacts of high-penetration PV integrations, the development and installation of distribution circuit data acquisition equipment appropriate for quantifying the impacts of high-penetration PV integrations, and investigating high-penetration PV impact mitigation strategies. This paper outlines these research efforts and discusses the following activities in more detail: the development of a quasi-static time-series test feeder for evaluating high-penetration PV integration modeling tools; the advanced inverter functions being investigated for deployment in the project's field demonstration and a power hardware-in-loop test of a 500-kW PV inverter implementing a

  20. Modeling Distribution Connected PV and Interconnection Study...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ramping Events on Distribution Voltage Regulation Equipment Matthew J. Reno 1,2 , Kyle ... PV variability and the system voltage regulation equipment. The impact of PV ...

  1. Tokyo Electron PV | Open Energy Information

    Open Energy Info (EERE)

    PV Jump to: navigation, search Name: Tokyo Electron PV Place: Nirasaki City, Yamanashi, Japan Product: Japanese electronics giants Tokyo Electron and Sharp have announced their...

  2. Zhonghuite PV Technology Co | Open Energy Information

    Open Energy Info (EERE)

    Zhonghuite PV Technology Co Jump to: navigation, search Name: Zhonghuite PV Technology Co Place: Jiangxi Province, China Sector: Solar Product: Jiangxi-based solar project...

  3. PV Solar Planet | Open Energy Information

    Open Energy Info (EERE)

    Solar Planet Jump to: navigation, search Logo: PV Solar Planet Name: PV Solar Planet Address: 5856 S. Garland Way Place: Littleton, Colorado Zip: 80123 Region: Rockies Area Sector:...

  4. Sandia Energy - Evaluating Rooftop Strength for PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating Rooftop Strength for PV Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Evaluating Rooftop Strength for PV Evaluating Rooftop Strength for...

  5. Transforming PV Installations toward Dispatchable, Schedulable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of a PV plant under transient cloud conditions, without requiring irradiance forecasting. ... reduces high penetration PV integration costs, and will reduce certification costs for ...

  6. 3-Port Single-Stage PV & Battery Converter Improves Efficiency and Cost in Combined PV/Battery Systems

    SciTech Connect (OSTI)

    Bundschuh, Paul

    2013-03-23

    Due to impressive cost reductions in recent years, photovoltaic (PV) generation is now able to produce electricity at highly competitive prices, but PV’s inherent intermittency reduces the potential value of this energy. The integration of battery storage with PV will be transformational by increasing the value of solar. Utility scale systems will benefit by firming intermittency including PV ramp smoothing, grid support and load shifting, allowing PV to compete directly with conventional generation. For distributed grid-tied PV adding storage will reduce peak demand utility charges, as well as providing backup power during power grid failures. The largest long term impact of combined PV and battery systems may be for delivering reliable off-grid power to the billions of individuals globally without access to conventional power grids, or for billions more that suffer from daily power outages. PV module costs no longer dominate installed PV system costs. Balance-of-System (BOS) costs including the PV inverter and installation now contribute the majority of installed system costs. Battery costs are also dropping faster than installation and battery power converter systems. In each of these separate systems power converters have become a bottleneck for efficiency, cost and reliability. These bottlenecks are compounded in hybrid power conversion systems that combine separate PV and battery converters. Hybrid power conversion systems have required multiple power converters hardware units and multiple power conversion steps adding to efficiency losses, product and installation costs, and reliability issues. Ideal Power Converters has developed and patented a completely new theory of operation for electronic power converters using its indirect EnergyPacket Switching™ topology. It has established successful power converter products for both PV and battery systems, and its 3-Port Hybrid Converter is the first product to exploit the topology’s capability for the

  7. Cascaded Microinverter PV System for Reduced Cost

    SciTech Connect (OSTI)

    Bellus, Daniel R.; Ely, Jeffrey A.

    2013-04-29

    In this project, a team led by Delphi will develop and demonstrate a novel cascaded photovoltaic (PV) inverter architecture using advanced components. This approach will reduce the cost and improve the performance of medium and large-sized PV systems. The overall project objective is to develop, build, and test a modular 11-level cascaded three-phase inverter building block for photovoltaic applications and to develop and analyze the associated commercialization plan. The system will be designed to utilize photovoltaic panels and will supply power to the electric grid at 208 VAC, 60 Hz 3-phase. With the proposed topology, three inverters, each with an embedded controller, will monitor and control each of the cascade sections, reducing costs associated with extra control boards. This report details the final disposition on this project.

  8. Generation of a frequency comb and applications thereof

    DOE Patents [OSTI]

    Hagmann, Mark J; Yarotski, Dmitry A

    2013-12-03

    Apparatus for generating a microwave frequency comb (MFC) in the DC tunneling current of a scanning tunneling microscope (STM) by fast optical rectification, cause by nonlinearity of the DC current vs. voltage curve for the tunneling junction, of regularly-spaced, short pulses of optical radiation from a focused mode-locked, ultrafast laser, directed onto the tunneling junction, is described. Application of the MFC to high resolution dopant profiling in semiconductors is simulated. Application of the MFC to other measurements is described.

  9. The Impact of PV Module Reliability on Plant Lifetimes Exceeding 25 Years |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Impact of PV Module Reliability on Plant Lifetimes Exceeding 25 Years The Impact of PV Module Reliability on Plant Lifetimes Exceeding 25 Years Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps1_saic_mcclung.pdf (822.54 KB) More Documents & Publications Investigation of Direct Injection Vehicle Particulate Matter Emissions Model-Based Transient Calibration Optimization for Next Generation Diesel Engines USABC

  10. Turlock Irrigation District- PV Rebate

    Broader source: Energy.gov [DOE]

    Turlock Irrigation District (TID) offers an incentive program to their customers who install solar photovoltaic (PV) systems. In keeping with the terms of the California Solar Initiative, the inc...

  11. PV | OpenEI Community

    Open Energy Info (EERE)

    this new 550 MW PV Solar Plant in Southern California is the latest feather in DOE's cap. Read more about it on Breaking Energy or checkout the info page from the California...

  12. Rooftop Solar PV & Firefighter Safety

    Broader source: Energy.gov [DOE]

    Solar photovoltaic (PV) installations have experienced significant growth in recent years. Due to technological innovations and cost reductions, solar energy is a viable option for an increasing number of residences and businesses across the United States. Rooftop solar is considered safe – to date there has been no documented case of death from the electric shock, chemical burn or conventional fire caused by a solar panel; however, as more buildings install rooftop solar systems, the likelihood increases that fires will occur on buildings with solar, making it critical for firefighters to receive comprehensive solar education and training. This SolarOPs fact sheet gives a brief overview of typical solar PV installations, addresses the major hazards and risks to firefighters, discusses fire safety in Germany (the country with the most installed solar PV per capita), and suggests recommendations and resources to ensure that first responders are prepared to fight fires on homes and buildings with rooftop solar PV.

  13. The importance of hybrid PV-building integration

    SciTech Connect (OSTI)

    Posnansky, M.; Gnos, S.; Coonen, S.

    1994-12-31

    An extensive utilization of photovoltaics for future electricity generation and for hybrid generation of electricity and thermal energy is possible, when PV-panels are designed to become a part of the building envelope itself. Large areas are available, since roofs and facades are perfectly suited for solar energy conversion. Atlantis Energy Ltd. has developed special PV-generators which fulfill at the same time the functions and requirements of conventional building elements. In the context of different R and D projects funded by the Swiss government to implement a series of typical building integrated photovoltaic systems, Atlantis Energy Ltd was entrusted to design and build various hybrid building integrated PV-power plants, four of which are described in this paper.

  14. NREL: Photovoltaics Research - PV News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV News The National Renewable Energy Laboratory Photovoltaic (PV) Research Program highlights latest research and news accomplishments from the laboratory on this page. Subscribe to the RSS feed RSS . Learn about RSS. July 22, 2016 NREL's Kurtz, Tegen Honored for Clean Energy Leadership The U.S. Clean Energy Education & Empowerment (C3E) program has honored Sarah Kurtz and Suzanne Tegen of the Energy Department's National Renewable Energy Laboratory (NREL) for their leadership and

  15. PV module mounting method and mounting assembly

    DOE Patents [OSTI]

    Lenox, Carl J.S.; Johnson, Kurt M.

    2013-04-23

    A method for mounting PV modules to a deck includes selecting PV module layout pattern so that adjacent PV module edges are spaced apart. PV mounting and support assemblies are secured to the deck according to the layout pattern using fasteners extending into the deck. The PV modules are placed on the PV mounting and support assemblies. Retaining elements are located over and secured against the upper peripheral edge surfaces of the PV modules so to secure them to the deck with the peripheral edges of the PV modules spaced apart from the deck. In some examples a PV module mounting assembly, for use on a shingled deck, comprises flashing, a base mountable on the flashing, a deck-penetrating fastener engageable with the base and securable to the deck so to secure the flashing and the base to the shingled deck, and PV module mounting hardware securable to the base.

  16. Pressure-equalizing PV assembly and method

    DOE Patents [OSTI]

    Dinwoodie, Thomas L.

    2004-10-26

    Each PV assembly of an array of PV assemblies comprises a base, a PV module and a support assembly securing the PV module to a position overlying the upper surface of the base. Vents are formed through the base. A pressure equalization path extends from the outer surface of the PV module, past the PV module, to and through at least one of the vents, and to the lower surface of the base to help reduce wind uplift forces on the PV assembly. The PV assemblies may be interengaged, such as by interengaging the bases of adjacent PV assemblies. The base may include a main portion and a cover and the bases of adjacent PV assemblies may be interengaged by securing the covers of adjacent bases together.

  17. Solaire Generation | Open Energy Information

    Open Energy Info (EERE)

    Generation Place: New York, New York Zip: 10001 Sector: Solar Product: New York-based rooftop PV mounting systems and solar canopy maker. References: Solaire Generation1 This...

  18. Integrating Solar PV in Utility System Operations

    SciTech Connect (OSTI)

    Mills, A.; Botterud, A.; Wu, J.; Zhou, Z.; Hodge, B-M.; Heany, M.

    2013-10-31

    This study develops a systematic framework for estimating the increase in operating costs due to uncertainty and variability in renewable resources, uses the framework to quantify the integration costs associated with sub-hourly solar power variability and uncertainty, and shows how changes in system operations may affect these costs. Toward this end, we present a statistical method for estimating the required balancing reserves to maintain system reliability along with a model for commitment and dispatch of the portfolio of thermal and renewable resources at different stages of system operations. We estimate the costs of sub-hourly solar variability, short-term forecast errors, and day-ahead (DA) forecast errors as the difference in production costs between a case with “realistic” PV (i.e., subhourly solar variability and uncertainty are fully included in the modeling) and a case with “well behaved” PV (i.e., PV is assumed to have no sub-hourly variability and can be perfectly forecasted). In addition, we highlight current practices that allow utilities to compensate for the issues encountered at the sub-hourly time frame with increased levels of PV penetration. In this analysis we use the analytical framework to simulate utility operations with increasing deployment of PV in a case study of Arizona Public Service Company (APS), a utility in the southwestern United States. In our analysis, we focus on three processes that are important in understanding the management of PV variability and uncertainty in power system operations. First, we represent the decisions made the day before the operating day through a DA commitment model that relies on imperfect DA forecasts of load and wind as well as PV generation. Second, we represent the decisions made by schedulers in the operating day through hour-ahead (HA) scheduling. Peaking units can be committed or decommitted in the HA schedules and online units can be redispatched using forecasts that are improved

  19. Multi-physics modeling of thermoelectric generators for waste heat recovery applications

    Office of Energy Efficiency and Renewable Energy (EERE)

    Model developed provides effective guidelines to designing thermoelectric generation systems for automotive waste heat recovery applications

  20. Photovoltaics (PV) as an Eligible Measure in Residential PACE Programs: Benefits and Challenges (Fact Sheet)

    SciTech Connect (OSTI)

    Coughlin, J.

    2010-06-01

    Property Assessed Clean Energy (PACE) financing is one of several new financial models broadening access to clean energy by addressing the barrier of initial capital cost. The majority of the PACE programs in the market today include PV as an eligible measure. PV appeals to homeowners as a way to reduce utility bills, self-generate sustainable power, increase energy independence and demonstrate a commitment to the environment. If substantial state incentives for PV exist, PV projects can be economic under PACE, especially when partnered with good net metering policies. At the same time, PV is expensive relative to other eligible measures with a return on investment horizon that might exceed program targets. This fact sheet reviews the benefits and potential challenges of including PV in PACE programs.

  1. PEM fuel cells for transportation and stationary power generation applications

    SciTech Connect (OSTI)

    Cleghorn, S.J.; Ren, X.; Springer, T.E.; Wilson, M.S.; Zawodzinski, C.; Zawodzinski, T.A. Jr.; Gottesfeld, S.

    1996-05-01

    We describe recent activities at LANL devoted to polymer electrolyte fuel cells in the contexts of stationary power generation and transportation applications. A low cost/high performance hydrogen or reformate/air stack technology is being developed based on ultralow Pt loadings and on non-machined, inexpensive elements for flow-fields and bipolar plates. On board methanol reforming is compared to the option of direct methanol fuel cells because of recent significant power density increases demonstrated in the latter.

  2. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    SciTech Connect (OSTI)

    Paul Tubel

    2003-03-24

    The first quarter of the Downhole Power Generation and Wireless Communications for Intelligent Completions Applications was characterized by the evaluation and determination of the specifications required for the development of the system for permanent applications in wellbores to the optimization of hydrocarbon production. The system will monitor and transmit in real time pressure and temperature information from downhole using the production tubing as the medium for the transmission of the acoustic waves carrying digital information. The most common casing and tubing sizes were determined by interfacing with the major oil companies to obtain information related to their wells. The conceptual design was created for both the wireless gauge section of the tool as well as the power generation module. All hardware for the wireless gauge will be placed in an atmospheric pressure chamber located on the outside of a production tubing with 11.4 centimeter (4-1/2 inch) diameter. This mounting technique will reduce cost as well as the diameter and length of the tool and increase the reliability of the system. The power generator will use piezoelectric wafers to generate electricity based on the flow of hydrocarbons through an area in the wellbore where the tool will be deployed. The goal of the project is to create 1 Watt of power continuously.

  3. Geographic smoothing of solar PV: Results from Gujarat

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klima, Kelly; Apt, Jay

    2015-09-24

    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f,more » ranging from f-1.23 to f-1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f-1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an f-1.76 spectrum. Furthermore, this suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.« less

  4. Partial Shading in Monolithic Thin Film PV Modules: Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design Presented at the PV Module ...

  5. Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants Presented at the PV Module ...

  6. Beijing Sunpu Solar PV Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    China Zip: 100083 Sector: Solar Product: Manufacturers of PV-powered street lights, inverters and other solar PV systems. References: Beijing Sunpu Solar PV Technology Co Ltd1...

  7. China and India PV Reliability-NREL Cooperation | Open Energy...

    Open Energy Info (EERE)

    PV Reliability-NREL Cooperation Jump to: navigation, search Logo: China and India PV Reliability under the Asia Pacific Partnership Name China and India PV Reliability under the...

  8. A Best Practice for Developing Availability Guarantee Language in Photovoltaic (PV) O&M Agreements.

    SciTech Connect (OSTI)

    Klise, Geoffrey Taylor; Balfour, John

    2015-11-01

    This document outlines the foundation for developing language that can be utilized in an Equipment Availability Guarantee, typically included in an O&M services agreement between a PV system or plant owner and an O&M services provider, or operator. Many of the current PV O&M service agreement Availability Guarantees are based on contracts used for traditional power generation, which create challenges for owners and operators due to the variable nature of grid-tied photovoltaic generating technologies. This report documents language used in early PV availability guarantees and presents best practices and equations that can be used to more openly communicate how the reliability of the PV system and plant equipment can be expressed in an availability guarantee. This work will improve the bankability of PV systems by providing greater transparency into the equipment reliability state to all parties involved in an O&M services contract.

  9. PV Powered Inc | Open Energy Information

    Open Energy Info (EERE)

    PV Powered Inc Place: Bend, Oregon Zip: 97702 Product: Oregon-based manufacturer of inverters for PV systems. Coordinates: 44.05766, -121.315549 Show Map Loading map......

  10. Webinar: Evaluating Roof Structures for Solar PV

    Broader source: Energy.gov [DOE]

    This webinar provides an overview of Connecticut's Structural Review Worksheet for Residential Rooftop Solar PV Systems. The webinar explains how the worksheet should be used and common concerns with wind and dead loads for rooftop solar PV.

  11. City of Healdsburg- PV Incentive Program

    Broader source: Energy.gov [DOE]

    Through the City of Healdsburg's PV Buy-down Program, residential and commercial customers are eligible for rebate on qualifying grid-connected PV systems. In keeping with SB1, (the California...

  12. Application of membrane technology to power generation waters

    SciTech Connect (OSTI)

    Tang, T.L.D.; Chu, T.J.; Boroughs, R.D.

    1980-03-01

    Three membrane technlogies (reverse osmosis, ultrafiltration, and electrodialysis) for wastewater treatment and reuse at electric generating power plants were examined. Recirculating condenser water, ash sluice water, coal pile drainage, boiler blowdown and makeup treatment wastes, chemical cleaning wastes, wet SO/sub 2/ scrubber wastes, and miscellaneous wastes were studied. In addition, membrane separation of toxic substances in wastewater was also addressed. Waste characteristics, applicable regulations, feasible membrane processes, and cost information were analyzed for each waste stream. A users' guide to reverse osmosis was developed and is provided in an appendix.

  13. Green Zia Application Sandia National Laboratories' Neutron Generator Production Facility

    SciTech Connect (OSTI)

    SAAD, MAX P.; RICHARDSON, ANASTASIA DAWN

    2003-03-01

    The Green Zia Environmental Excellence Program is a voluntary program designed to support and assist all New Mexico businesses to achieve environmental excellence through continuous improvement and effective energy management. The program encourages integration of environmental excellence into business operations and management practices through the establishment of a prevention-based environmental management system. The Neutron Generator Production Facility has participated in the Green Zia Environmental Excellence Program for two years. This document is the submittal application for inclusion in the 2003 Green Zia program year.

  14. PV Controls Utility-Scale Demonstration Project

    SciTech Connect (OSTI)

    O'Neill, Barbara; Gevorgian, Vahan

    2015-10-14

    This presentation provides a high-level overview of the utility-scale PV controls demonstration project.

  15. The Open PV Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Open PV Project The Open PV Project The Open PV Project is a collaborative effort between government, industry, and the public that is compiling a comprehensive database of photovoltaic (PV) installation data for the United States. Data for the project is voluntarily contributed from a variety of sources including utilities, installers, and the general public. The data collected is actively maintained by the contributors and are always changing to provide an evolving, up-to-date snapshot of

  16. Opportunities and Challenges for Power Electronics in PV Modules (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Deline, C.; Wohlgemuth, J.; Marion, B.; Granata, J.

    2011-02-01

    The presentation describes the value of adding DC converters and other power electronics to modules to improve their output even when shading or bad cells would otherwise decrease the module output. The presentation was part of a workshop sponsored by ARPA-E exploring the opportunities for power electronics to support PV applications.

  17. Recent developments in high-efficiency PV cells

    SciTech Connect (OSTI)

    Deb, S.

    2000-05-22

    Enormous progress has been made in recent years on a number of photovoltaic (PV) materials and devices in terms of conversion efficiencies. Ultrahigh-efficiency (>30{percent}) PV cells have been fabricated from gallium arsenide (GaAs) and its ternary alloys such as gallium indium phosphide (GaInP{sub 2}). The high-efficiency GaAs-based solar cells are being produced on a commercial scale, particularly for space applications. Efficiencies in the range of 18{percent} to 24{percent} have been achieved in traditional silicon-based devices fabricated from both multicrystalline and single-crystal materials. Major advances in efficiency have also been made on various thin-film solar cells based on amorphous silicon (aSi:H), copper gallium indium diselenide (CIGS), and cadmium telluride materials. This paper gives a brief overview of the recent progress in PV cell efficiencies based on these materials and devices.

  18. Grid Integrated Distributed PV (GridPV) Version 2.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Coogan, Kyle

    2014-12-01

    This manual provides the documentation of the MATLAB toolbox of functions for using OpenDSS to simulate the impact of solar energy on the distribution system. The majority of the functio ns are useful for interfacing OpenDSS and MATLAB, and they are of generic use for commanding OpenDSS from MATLAB and retrieving information from simulations. A set of functions is also included for modeling PV plant output and setting up the PV plant in th e OpenDSS simulation. The toolbox contains functions for modeling the OpenDSS distribution feeder on satellite images with GPS coordinates. Finally, example simulations functions are included to show potential uses of the toolbox functions. Each function i n the toolbox is documented with the function use syntax, full description, function input list, function output list, example use, and example output.

  19. The Economic Value of PV and Net Metering to Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-05-17

    In this paper, we analyze the bill savings from PV for residential customers of the California's two largest electric utilities, under existing net metering tariffs as well as under several alternative compensation mechanisms. We find that economic value of PV to the customer is dependent on the structure of the underlying retail electricity rate and can vary quite significantly from one customer to another. In addition, we find that the value of the bill savings from PV generally declines with PV penetration level, as increased PV generation tends to offset lower-priced usage. Customers in our sample from both utilities are significantly better off with net metering than with a feed-in tariff where all PV generation is compensated at long-run avoided generation supply costs. Other compensation schemeswhich allow customers to displace their consumption with PV generation within each hour or each month, and are also based on the avoided costs, yield similar value to the customer as net metering.

  20. Simplified Method for Modeling the Impact of Arbitrary Partial Shading Conditions on PV Array Performance: Preprint

    SciTech Connect (OSTI)

    MacAlpine, Sara; Deline, Chris

    2015-09-15

    It is often difficult to model the effects of partial shading conditions on PV array performance, as shade losses are nonlinear and depend heavily on a system's particular configuration. This work describes and implements a simple method for modeling shade loss: a database of shade impact results (loss percentages), generated using a validated, detailed simulation tool and encompassing a wide variety of shading scenarios. The database is intended to predict shading losses in crystalline silicon PV arrays and is accessed using basic inputs generally available in any PV simulation tool. Performance predictions using the database are within 1-2% of measured data for several partially shaded PV systems, and within 1% of those predicted by the full, detailed simulation tool on an annual basis. The shade loss database shows potential to considerably improve performance prediction for partially shaded PV systems.

  1. Evaluating Rooftop Strength for PV

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evaluating Rooftop Strength for PV - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  2. PV Validation and Bankability Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Validation and Bankability Workshop What if?? * This is a reality: A subsidy-free solar electricity infrastructure with an LCOE of 5-6 c/kWh without subsidies * Jobs and Competitiveness: Innovation that ensures the U.S. leads the way on clean energy, supporting new jobs and opportunities for Americans * National Energy Security: Independence from fossil fuel and increased national security * Healthy Environment: Huge carbon reduction and cleaner air ... Imagine a World... * Introducing

  3. Phase II -- Photovoltaics for Utility Scale Applications (PVUSA). Progress report

    SciTech Connect (OSTI)

    1995-06-01

    Photovoltaics for Utility Scale Applications (PVUSA) is a national public-private partnership that is assessing and demonstrating the viability of utility-scale (US) photovoltaic (PV) electric generation systems and recent developments in PV module technology. This report updates the project`s progress, reviews the status and performance of the various PV installations during 1994, summarizes key accomplishments and conclusions for the year, and outlines future work. The PVUSA project has five objectives. These are designed to narrow the gap between a large utility industry that is unfamiliar with PV and a small PV industry that is aware of a potentially large utility market but unfamiliar with how to meet its requirements. The objectives are: Evaluate the performance, reliability, and cost of promising PV modules and balance-of-system (BOS) components side by side at a single location; Assess PV system operation and maintenance in a utility setting; Compare US utilities hands-on experience in designing, procuring, and operating PV systems; and, Document and disseminate knowledge gained from the project.

  4. U.S. Aims for Zero-Energy: Support for PV on New Homes

    SciTech Connect (OSTI)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-05-11

    As a market segment for solar photovoltaic (PV) adoption, new homes have a number of attractive attributes. Homebuyers can easily roll the cost of the PV system into their mortgage and, with rebates or other financial incentives, potentially realize an immediate net positive cash flow from the investment. PV system performance can be optimized by taking roof orientation, shading, and other structural factors into account in the design of new homes. Building-integrated photovoltaics (BIPV), which are subject to fewer aesthetic concerns than traditional, rack-mounted systems, are well-suited to new construction applications. In large new residential developments, costs can be reduced through bulk purchases and scale economies in system design and installation. Finally, the ability to install PV as a standard feature in new developments - like common household appliances - creates an opportunity to circumvent the high transaction costs and other barriers typically confronted when each individual homeowner must make a distinct PV purchase decision.

  5. Property:Distributed Generation System Power Application | Open...

    Open Energy Info (EERE)

    + Based Load + Distributed Generation StudyPatterson Farms CHP System Using Renewable Biogas + Based Load + Distributed Generation StudySUNY Buffalo + Based Load + Distributed...

  6. Geographic smoothing of solar PV: Results from Gujarat

    SciTech Connect (OSTI)

    Klima, Kelly; Apt, Jay

    2015-09-24

    We examine the potential for geographic smoothing of solar photovoltaic (PV) electricity generation using 13 months of observed power production from utility-scale plants in Gujarat, India. To our knowledge, this is the first published analysis of geographic smoothing of solar PV using actual generation data at high time resolution from utility-scale solar PV plants. We use geographic correlation and Fourier transform estimates of the power spectral density (PSD) to characterize the observed variability of operating solar PV plants as a function of time scale. Most plants show a spectrum that is linear in the log–log domain at high frequencies f, ranging from f-1.23 to f-1.56 (slopes of -1.23 and -1.56), thus exhibiting more relative variability at high frequencies than exhibited by wind plants. PSDs for large PV plants have a steeper slope than those for small plants, hence more smoothing at short time scales. Interconnecting 20 Gujarat plants yields a f-1.66 spectrum, reducing fluctuations at frequencies corresponding to 6 h and 1 h by 23% and 45%, respectively. Half of this smoothing can be obtained through connecting 4-5 plants; reaching marginal improvement of 1% per added plant occurs at 12-14 plants. The largest plant (322 MW) showed an f-1.76 spectrum. Furthermore, this suggests that in Gujarat the potential for smoothing is limited to that obtained by one large plant.

  7. PV output smoothing with energy storage.

    SciTech Connect (OSTI)

    Ellis, Abraham; Schoenwald, David Alan

    2012-03-01

    This report describes an algorithm, implemented in Matlab/Simulink, designed to reduce the variability of photovoltaic (PV) power output by using a battery. The purpose of the battery is to add power to the PV output (or subtract) to smooth out the high frequency components of the PV power that that occur during periods with transient cloud shadows on the PV array. The control system is challenged with the task of reducing short-term PV output variability while avoiding overworking the battery both in terms of capacity and ramp capability. The algorithm proposed by Sandia is purposely very simple to facilitate implementation in a real-time controller. The control structure has two additional inputs to which the battery can respond. For example, the battery could respond to PV variability, load variability or area control error (ACE) or a combination of the three.

  8. Design, fabrication, and certification of advanced modular PV power systems. Annual technical progress report, 8 September 1995--7 September 1996

    SciTech Connect (OSTI)

    Lambarski, T.; Minyard, G.

    1997-03-01

    This report summarizes the activities performed during the first year of a nominal 2-year effort by Solar Electric Specialties Company (SES) under the Photovoltaic Manufacturing Technology (PVMaT) project of the National Photovoltaic Program. The goal of the SES contract is to reduce the installed system life-cycle costs by developing certified and standardized prototype products for two SES product lines--MAPPS{trademark} and Photogenset{trademark}. The MAPPS (modular autonomous PV power supply) systems are used for DC applications up to about a thousand watt-hours. The Photogensets are hybrid PV/generator systems for AC applications. SES expects these products to provide the basis for future commercial product lines of standardized certified, packaged systems.

  9. Future of Grid-Tied PV Business Models: What Will Happen When PV Penetration on the Distribution Grid is Significant? Preprint

    SciTech Connect (OSTI)

    Graham, S.; Katofsky, R.; Frantzis, L.; Sawyer, H.; Margolis, R.

    2008-05-01

    Eventually, distributed PV will become a more significant part of the generation mix. When this happens, it is expected that utilities will have to take on a more active role in the placement, operation and control of these systems. There are operational complexities and concerns of revenue erosion that will drive utilities into greater involvement of distributed PV and will create new business models. This report summarizes work done by Navigant Consulting Inc. for the National Renewable Energy Laboratory as part of the Department of Energy's work on Renewable System Integration. The objective of the work was to better understand the structure of these future business models and the research, development and demonstration (RD&D) required to support their deployment. This report describes potential future PV business models in terms of combinations of utility ownership and control of the PV assets, and the various relationships between end-users and third-party owners.

  10. Economic viability of photovoltaic power for development assistance applications

    SciTech Connect (OSTI)

    Bifano, W.J.

    1982-09-01

    This paper briefly discusses the development assistance market and examines a number of specific PV development assistance field tests including water pumping/grain grinding (Tangaye, Upper Volta), vaccine refrigerators slated for deployment in 24 countries, rural medical centers to be installed in Ecuador, Guyana, Kenya and Zimbabwe, and remote earth stations to be deployed in the near future. A comparison of levelized energy cost for diesel generators and PV systems covering a range of annual energy consumptions is also included. The analysis does not consider potential societal, environmental or political benefits associated with PV power. PV systems are shown to be competitive with diesel generators based on life cycle cost considerations, assuming a system price of $20/W(peak), for applications having an annual energy demand of up to 6000 kilowatt-hours per year.

  11. Transforming PV Installations toward Dispatchable, Schedulable Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solutions | Department of Energy Transforming PV Installations toward Dispatchable, Schedulable Energy Solutions Transforming PV Installations toward Dispatchable, Schedulable Energy Solutions Advanced Energy logo.png -- This project is inactive -- Advanced Energy (AE) will address three important needs in the further deployment of photovoltaic (PV) systems: 1) demonstrating and commercializing a new anti-islanding method utilizing Phasor Measurement Units (PMUs), 2) demonstrating a set of

  12. Fuel cell power plants in a distributed generator application

    SciTech Connect (OSTI)

    Smith, M.J.

    1996-12-31

    ONSI`s (a subsidiary of International Fuel Cells Corporation) world wide fleet of 200-kW PC25{trademark} phosphoric acid fuel cell power plants which began operation early in 1992 has shown excellent performance and reliability in over 1 million hours of operation. This experience has verified the clean, quiet, reliable operation of the PC25 and confirmed its application as a distributed generator. Continuing product development efforts have resulted in a one third reduction of weight and volume as well as improved installation and operating characteristics for the PC25 C model. Delivery of this unit began in 1995. International Fuel Cells (IFC) continues its efforts to improve product design and manufacturing processes. This progress has been sustained at a compounded rate of 10 percent per year since the late 1980`s. These improvements will permit further reductions in the initial cost of the power plant and place increased emphasis on market development as the pacing item in achieving business benefits from the PC25 fuel cell. Derivative product opportunities are evolving with maturation of the technologies in a commercial environment. The recent announcement of Praxair, Inc., and IFC introducing a non-cryogenic hydrogen supply system utilizing IFC`s steam reformer is an example. 11 figs.

  13. Analysis of concentrating PV-T systems for the commercial/industrial sector. Volume III. Technical issues and design guidance

    SciTech Connect (OSTI)

    Schwinkendorf, W.E.

    1984-09-01

    This report provide appropriate guidance for addressing the major technical issues associated with the design and installation of a photovoltaic-thermal (PV-T) system. Nomographs are presented for developing preliminary sizing and costing, and issues associated with specific components and the overall design of the electrical and mechanical system are discussed. SAND82-7157/2 presents a review of current PV-T technology and operating systems and a study of potential PV-T applications. Detailed PV-T system designs for three selected applications and the results of a trade-off study for these applications are presented in SAND82-7157/4. A summary of the major results of this entire study and conclusions concerning PV-T systems and applications is presented in SAND82-7157/1.

  14. CPS Energy- Solar PV Rebate Program

    Broader source: Energy.gov [DOE]

    CPS Energy, San Antonio's municipal utility, offers rebates to customers who install solar photovoltaic (PV) systems on their homes, schools, or businesses. There are four rebate "tiers" available...

  15. National solar technology roadmap: Concentrator PV

    SciTech Connect (OSTI)

    Friedman, Dan

    2007-06-01

    This roadmap addresses high-concentration (>10x) photovoltaic (PV) systems, incorporating high-efficiency III-V or silicon cells, trackers, and reflective or refractive optics.

  16. Riverside Public Utilities - Residential PV Incentive Program...

    Broader source: Energy.gov (indexed) [DOE]

    Riverside Public Utilities Website http:www.riversideca.govutilitiesresi-pv-incentive.asp State California Program Type Rebate Program Rebate Amount 0.50 per watt...

  17. Selecting Solar: Insights into Residential Photovoltaic (PV)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation Carolyn Davidson and Robert Margolis National Renewable Energy Laboratory Technical Report NREL...

  18. The Open PV Project | Open Energy Information

    Open Energy Info (EERE)

    Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online...

  19. The Open PV Project | Open Energy Information

    Open Energy Info (EERE)

    National Renewable Energy Laboratory Sector: Energy Focus Area: Solar, - Solar PV Topics: Background analysis, Market analysis Resource Type: Dataset, Online calculator,...

  20. ASTM PV INSTALLATON COMMISSIONING, OPERATIONS & MAINTENNCE (ICOMP...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ASTM PV INSTALLATON COMMISSIONING, OPERATIONS & MAINTENNCE (ICOMP) STANDARD PRACTICE ... which maps out the intent of the standard including incorporations of existing ...

  1. Photovoltaic Regional Testing Center (PV RTC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Sandia Will Host PV Bankability Workshop at Solar Power International (SPI) 2013 Computational Modeling & Simulation, Distribution Grid Integration, Energy, Facilities, Grid ...

  2. Ensuring Quality of PV Modules: Preprint

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Hacke, P.; Kempe, M.; Sample, T.; Yamamichi, M.; Kondo, M.; Doi, T.; Otani, K.; Amano, J.

    2011-07-01

    Photovoltaic (PV) customers need to have confidence in the PV modules they purchase. Currently, no test can quantify a module's lifetime with confidence, but stress tests are routinely used to differentiate PV product designs. We suggest that the industry would be strengthened by using the wisdom of the community to develop a single set of tests that will help customers quantify confidence in PV products. This paper evaluates the need for quality assurance (QA) standards and suggests a path for creating these. Two types of standards are needed: 1) QA of the module design and 2) QA of the manufacturing process.

  3. PV Validation and Bankability Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Validation and Bankability Workshop August 31, 2011 Survey Results As of August 29, 2011 List of Questions * What is your market sector? * From product development through product launch, data must be collected at each step. If the Department of Energy can identify funds to provide some type of 3rd party validation/verification effort/study, what would be your priority for that effort? * What scale of module/system data is of interest and of use in making decisions in your market sector? *

  4. pv_mapper_091713.mp3 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pv_mapper_091713.mp3 pv_mapper_091713.mp3 pv_mapper_091713.mp3 pv_mapper_091713.mp3 (42.07 MB) More Documents & Publications PVMapper: A Tool for Energy Siting Final Report - Development of an Open Source Utility-Scale Solar Project Siting Tool transcript_pv_mapper.doc

  5. Utility Participation in the Rooftop Solar PV Market Transcript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market Page 1 of 21 Kristen Ardani, Jurstin Orkney, Marc Romito Page 1 of 21 [Speaker: Kristen Ardani] Slide 1: Good afternoon, everyone. Thank you for joining the Distributed Generation Interconnection Collaborative Monthly Informational Webinar. My name is Kristen Ardani, and I'm an analyst here at NREL and the moderator for the DGIC. So today, we are kicking off 2016 with a joint presentation from two Arizona utilities that have implemented

  6. Berkeley Program Offers New Option for Financing Residential PV Systems

    SciTech Connect (OSTI)

    Bolinger, Mark A

    2008-07-06

    Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy-efficiency improvements and often featuring low interest rates, longer terms and no-hassle application requirements. Historically, these loan programs have had mixed success (particularly for PV), for a variety of reasons, including a historical lack of homeowner interest in PV, a lack of program awareness, a reduced appeal in a low-interest-rate environment, and a tendency for early PV adopters to be wealthy and not in need of financing. Some of these barriers have begun to fade. Most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates. The passage of the Energy Policy Act of 2005 (EPAct 2005), however, introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from a number of U.S cities concerning a new type of PV financing program. Led by the city of Berkeley, Calif., these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather than a more

  7. Esthetically Designed Municipal PV System Maximizes Energy Production and Revenue Return

    Broader source: Energy.gov [DOE]

    In late 2008, the City of Sebastopol, CA installed a unique 42 kW grid-interactive photovoltaic (PV) system to provide electricity for pumps of the Sebastopol municipal water system. The resulting innovative Sun Dragon PV system, located in a public park, includes design elements that provide optimized electrical performance and revenue generation for the energy produced while also presenting an artistic and unique appearance to park visitors.

  8. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy

    SciTech Connect (OSTI)

    Mellit, Adel; Pavan, Alessandro Massi

    2010-05-15

    Forecasting of solar irradiance is in general significant for planning the operations of power plants which convert renewable energies into electricity. In particular, the possibility to predict the solar irradiance (up to 24 h or even more) can became - with reference to the Grid Connected Photovoltaic Plants (GCPV) - fundamental in making power dispatching plans and - with reference to stand alone and hybrid systems - also a useful reference for improving the control algorithms of charge controllers. In this paper, a practical method for solar irradiance forecast using artificial neural network (ANN) is presented. The proposed Multilayer Perceptron MLP-model makes it possible to forecast the solar irradiance on a base of 24 h using the present values of the mean daily solar irradiance and air temperature. An experimental database of solar irradiance and air temperature data (from July 1st 2008 to May 23rd 2009 and from November 23rd 2009 to January 24th 2010) has been used. The database has been collected in Trieste (latitude 45 40'N, longitude 13 46'E), Italy. In order to check the generalization capability of the MLP-forecaster, a K-fold cross-validation was carried out. The results indicate that the proposed model performs well, while the correlation coefficient is in the range 98-99% for sunny days and 94-96% for cloudy days. As an application, the comparison between the forecasted one and the energy produced by the GCPV plant installed on the rooftop of the municipality of Trieste shows the goodness of the proposed model. (author)

  9. Raising the Bar for Quality PV Modules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Raising the Bar for Quality PV Modules Raising the Bar for Quality PV Modules October 30, 2014 - 4:58pm Addthis As photovoltaics (PV) markets expand across the United States the...

  10. TekSun PV Manufacturing Inc | Open Energy Information

    Open Energy Info (EERE)

    TekSun PV Manufacturing Inc Jump to: navigation, search Name: TekSun PV Manufacturing Inc Place: Austin, Texas Zip: 78701 Product: US-based installer of PV systems; rportedly...

  11. Nvision.Energy - Pernik Solar PV plant | Open Energy Information

    Open Energy Info (EERE)

    Energy - Pernik Solar PV plant Jump to: navigation, search Name Nvision.Energy - Pernik Solar PV plant Facility Nvision.Solar - Pernik Solar PV Plant Sector Solar Facility Type...

  12. Inner Mongolia Zhonghuan PV Materials Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    PV Materials Co Ltd Jump to: navigation, search Name: Inner Mongolia Zhonghuan PV Materials Co Ltd Place: Inner Mongolia Autonomous Region, China Product: China-based PV ingot and...

  13. Jiangsu Zongyi PV Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Name: Jiangsu Zongyi PV Co Ltd Place: Jiangsu Province, China Product: Nantong-based thin-film PV cell producer. References: Jiangsu Zongyi PV Co Ltd1 This article is a...

  14. Draft Transcript on Municipal PV Systems

    Broader source: Energy.gov [DOE]

    Webinar on navigating the legal, tax, and finance issues associated with the installation of Municipal PV Systems. The following agenda was developed based on Pat Boylston's experience assisting municipalities with their PV projects and the requests for information that the Solar America City technical team leads have received from many of the 25 Solar America Cities since the April 2008 meeting in Tucson.

  15. Solar PV Permitting and Safety Training Webinar

    Broader source: Energy.gov [DOE]

    This webinar provides training on two permitting resources for municipal inspectors; a prescriptive process for building inspectors and a guidance document for permitting for PV for electrical inspectors. The webinar also runs through a number of key code articles in Massachusetts 2014 electrical code and examines a variety of safety hazards commonly found during or after solar PV installations.

  16. Improved test method to verify the power rating of a photovoltaic (PV) project.

    SciTech Connect (OSTI)

    Panchula, A.; Pligavko, A.; King, D.; Marion, B.; Townsend, T.; Mitchell, L.; Dierauf, T.; Kimber, A.; Osterwald, C. R.; Newmiller, Jeff; Emery, K.; Talmud, F.; Whitaker, Chuck; Myers, D.; Forbess, J.; Granata, Jennifer E.; Levitsky, T.

    2010-03-01

    This paper reviews the PVUSA power rating method and presents two additional methods that seek to improve this method in terms of model precision and increased seasonal applicability. It presents the results of an evaluation of each method based upon regression analysis of over 12 MW of operating photovoltaic (PV) systems located in a wide variety of climates. These systems include a variety of PV technologies, mounting configurations, and array sizes to ensure the conclusions are applicable to a wide range of PV designs and technologies. The work presented in this paper will be submitted to ASTM for use in the development of a standard test method for certifying the power rating of PV projects.

  17. Efficient and Dynamic ? The BMW Group Roadmap for the Application of Thermoelectric Generators

    Broader source: Energy.gov [DOE]

    The diesel engine EGR system is a logical application of TE generators because the necessary system components are already available; transfer of module concepts is possible to other applications in the exhaust system with higher waste heat recovery potential

  18. Efficient and Dynamic … The BMW Group Roadmap for the Application of Thermoelectric Generators

    Broader source: Energy.gov [DOE]

    The diesel engine EGR system is a logical application of TE generators because the necessary system components are already available; transfer of module concepts is possible to other applications in the exhaust system with higher waste heat recovery potential

  19. Potential Induced Degradation (PID) Tests for Commercially Available PV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Modules | Department of Energy Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps4_aist_doi.pdf (971.23 KB) More Documents & Publications EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 PID-free C-Si PV Module Using Novel Chemically-Tempered Glass Agenda for the PV Module

  20. Problems and Solutions: Training Disaster Organizations of the Use of PV |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Information Resources » Problems and Solutions: Training Disaster Organizations of the Use of PV Problems and Solutions: Training Disaster Organizations of the Use of PV This program guide outlines the application and review procedures for obtaining the necessary permit(s) to install a solar energy system for a new or existing residential building. The guide also describes what system siting or design elements may trigger the need for additional plan review. Location

  1. Sandia Co-Organizing 6th PV Performance & Monitoring Workshop...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas ... Hydrogen Production Market Transformation Fuel Cells ... for PV Grid Integration PV Modeling ...

  2. Baseline and Target Values for PV Forecasts: Toward Improved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting ... Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting Jie ...

  3. Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd...

    Open Energy Info (EERE)

    Yinxing Energy PV Power Equipment Manufacturing Co Ltd Jump to: navigation, search Name: Ningxia Yinxing Energy PV Power Equipment Manufacturing Co Ltd Place: Yinchuan, Ningxia...

  4. PV Validation and Bankability Workshop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Validation and Bankability Workshop PV Validation and Bankability Workshop This presentation summarizes the information given by DOE during the Photovoltaic Validation and...

  5. Suzhou Shenglong PV Tech Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Shenglong PV Tech Co Ltd Jump to: navigation, search Name: Suzhou Shenglong PV-Tech Co Ltd Place: Zhangjiagang City, Jiangsu Province, China Zip: 215612 Product: Chinese ingot,...

  6. Smart-Grid Ready PV Inverter with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advancement of PV system capabilities, communication systems and open standards, ... Smart-Grid Ready PV Inverter With Utility Communication BRIAN SEAL ELECTRIC POWER ...

  7. Nvision.Solar - Ravnishte Solar PV Plant | Open Energy Information

    Open Energy Info (EERE)

    Solar - Ravnishte Solar PV Plant Jump to: navigation, search Name Nvision.Solar - Ravnishte Solar PV Plant Facility Ravishte roof and facade mounted solar power plant Sector Solar...

  8. Inner Mongolia Dunan PV power | Open Energy Information

    Open Energy Info (EERE)

    Dunan PV power Jump to: navigation, search Name: Inner Mongolia Dunan PV power Place: Inner Mongolia Autonomous Region, China Sector: Solar Product: Inner Mongolia-based solar...

  9. Linkage to Previous International PV Module QA Task Force Workshops...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Linkage to Previous International PV Module QA Task Force Workshops: Proposal for Rating System Linkage to Previous International PV Module QA Task Force Workshops: Proposal for ...

  10. Department of Veterans Affairs, FONSI - Rooftop solar PV power...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rooftop solar PV power at Calverton National Cemetery Department of Veterans Affairs, FONSI - Rooftop solar PV power at Calverton National Cemetery An Environmental Assessment (EA) ...

  11. Training on PV Systems: Design, Construction, Operation and Maintenanc...

    Open Energy Info (EERE)

    on PV Systems: Design, Construction, Operation and Maintenance Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Training on PV Systems: Design, Construction, Operation...

  12. Zhejiang Cineng PV Science Technology Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Cineng PV Science Technology Co Ltd Jump to: navigation, search Name: Zhejiang Cineng PV Science & Technology Co Ltd Place: Cixi, Zhejiang Province, China Sector: Solar Product: A...

  13. Statistical and Domain Analytics Applied to PV Module Lifetime...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science ...

  14. Pioneer Valley Photovoltaics Cooperative aka PV Squared | Open...

    Open Energy Info (EERE)

    Photovoltaics Cooperative aka PV Squared Jump to: navigation, search Name: Pioneer Valley Photovoltaics Cooperative (aka PV Squared) Place: New Britain, Connecticut Zip: 6051...

  15. Arima Photovoltaic And Optical Corp Arima PV | Open Energy Information

    Open Energy Info (EERE)

    Photovoltaic And Optical Corp Arima PV Jump to: navigation, search Name: Arima Photovoltaic And Optical Corp (Arima PV) Place: Taipei, Taiwan Product: Once a maker of computers,...

  16. BIOHAUS PV Handels GmbH | Open Energy Information

    Open Energy Info (EERE)

    GmbH Jump to: navigation, search Name: BIOHAUS PV Handels GmbH Place: Paderborn, Germany Zip: 33100 Product: Distributor of Isofoton PV products in Germany. Coordinates:...

  17. Improving Data Transparency for the Distributed PV Interconnection...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transparency for the Distributed PV Page 1 of 21 Interconnection Process Emergent ... The topic for today is: Improving Data Transparency for the Distributed PV Interconnection ...

  18. File:REC Generator Certification Application - Texas.pdf | Open...

    Open Energy Info (EERE)

    metadata was last modified 10:59, 12 April 2010 Software used Acrobat PDFMaker 9.0 for Word Short title Procedure for Generators to Qualify for Renewable Energy Credits Conversion...

  19. Nationwide Analysis of U.S. Commercial Building Solar Photovoltaic (PV) Breakeven Conditions

    SciTech Connect (OSTI)

    Davidson, Carolyn; Gagnon, Pieter; Denholm, Paul; Margolis, Robert

    2015-10-01

    The commercial sector offers strong potential for solar photovoltaics (PV) owing to abundant available roof space suitable for PV and the opportunity to offset the sector's substantial retail electricity purchases. This report evaluated the breakeven price of PV for 15 different building types and various financing options by calculating electricity savings based on detailed rate structures for most U.S. utility territories (representing approximately two thirds of U.S. commercial customers). We find that at current capital costs, an estimated 1/3 of U.S. commercial customers break even in the cash scenario and approximately 2/3 break even in the loan scenario. Variation in retail rates is a stronger driver of breakeven prices than is variation in building load or solar generation profiles. At the building level, variation in the average breakeven price is largely driven by the ability for a PV system to reduce demand charges.

  20. Kauai, Hawaii: Solar Resource Analysis and High Penetration PV Potential

    SciTech Connect (OSTI)

    Helm, C.; Burman, K.

    2010-04-01

    Overview of the solar resource assessment conducted by the National Renewable Energy Laboratory (NREL) in cooperation with Kauai Island Utility Cooperative (KIUC) in Hawaii to determine the technical feasibility of increasing the contribution of solar renewable energy generation on the island of Kauaii through the use of photovoltaic (PV) arrays. The analysis, which was performed using a custom version of NREL's In My Back Yard (IMBY) software tool, showed that there is potential to generate enough energy to cover the peak load as reported for Kauai in 2007.

  1. DOWNHOLE POWER GENERATION AND WIRELESS COMMUNICATIONS FOR INTELLIGENT COMPLETIONS APPLICATIONS

    SciTech Connect (OSTI)

    Paul Tubel

    2003-07-05

    The third quarter of the project was dedicated to creating the detailed design for the manufacturing of the mechanical system for wireless communications and the power generation module. Another emphasis for the quarter was the development of the surface system and acoustic detector for the downhole tool for 2 way communications. The tasks accomplished during this report period were: (1) All detailed drawings for manufacturing of the wireless communications gauge and power generator were completed and the drawings were forward to a machine shop for manufacturing. (2) The power generator was incorporated to the mandrel of the wireless gauge reducing the length of the tool by 25% and manufacturing cost by about 35%. (3) The new piezoelectric acoustic generator was manufactured successfully and it was delivered during this quarter. The assembly provides a new technique to manufacture large diameter piezoelectric based acoustic generators. (4) The acoustic two-way communications development progressed significantly. The real time firmware for the surface system was developed and the processor was able to detect and process the data frame transmitted from downhole. The analog section of the tool was also developed and it is being tested for filtering capabilities and signal detection and amplification. (5) The new transformer to drive the piezoelectric wafer assembly was designed and manufactured. The transformer has been received and it will go through testing and evaluation during the next quarter.

  2. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Darghouth, Naim; Barbose, Galen; Wiser, Ryan

    2010-03-30

    Net metering has become a widespread policy in the U.S. for supporting distributed photovoltaics (PV) adoption. Though specific design details vary, net metering allows customers with PV to reduce their electric bills by offsetting their consumption with PV generation, independent of the timing of the generation relative to consumption - in effect, compensating the PV generation at retail electricity rates (Rose et al. 2009). While net metering has played an important role in jump-starting the residential PV market in the U.S., challenges to net metering policies have emerged in a number of states and contexts, and alternative compensation methods are under consideration. Moreover, one inherent feature of net metering is that the value of the utility bill savings it provides to customers with PV depends heavily on the structure of the underlying retail electricity rate, as well as on the characteristics of the customer and PV system. Consequently, the value of net metering - and the impact of moving to alternative compensation mechanisms - can vary substantially from one customer to the next. For these reasons, it is important for policymakers and others that seek to support the development of distributed PV to understand both how the bill savings varies under net metering, and how the bill savings under net metering compares to other possible compensation mechanisms. To advance this understanding, we analyze the bill savings from PV for residential customers of California's two largest electric utilities, Pacific Gas and Electric (PG&E) and Southern California Edison (SCE). The analysis is based on hourly load data from a sample of 215 residential customers located in the service territories of the two utilities, matched with simulated hourly PV production for the same time period based on data from the nearest of 73 weather stations in the state.

  3. Terawatt Challenge for Thin-Film PV

    SciTech Connect (OSTI)

    Zweibel, K.

    2005-08-01

    The evolution of PV into one of the world's largest industries is not going to happen without major unforeseen problems. However, this study attempts to address the obvious ones, so that we can put aside the mythology of PV (for example, that it is only ''boutique power'' or that one must pave the world with it to be useful) and get on with changing the world's energy infrastructure. With the years of rapid market growth now under way in PV, the author is sure this will not be the last effort to understand the real potential and pitfalls of meeting the Challenge.

  4. Building the next generation of scalable manycore applications...

    Office of Scientific and Technical Information (OSTI)

    manycore applications and libraries. Abstract not provided. Authors: Heroux, Michael Allen Publication Date: 2011-02-01 OSTI Identifier: 1109324 Report Number(s): SAND2011-1154C...

  5. Market Transformation Pathways for Grid-Connected Rooftop Solar PV in Minnesota

    SciTech Connect (OSTI)

    Abbey, Ross; Ross, Brian

    2013-06-03

    This report presents the market and policy findings of the Minnesota Solar Challenge program. The report draws on information collected from state agencies, local government units, solar industry participants, rooftop photovoltaic (PV) adopters (sometimes called customer-generators), state and national experts, the Commerce distributed generation stakeholder process, and the numerous reports and data sets referenced herein.

  6. transcript_pv_mapper.doc | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    transcript_pv_mapper.doc transcript_pv_mapper.doc transcript_pv_mapper.doc transcript_pv_mapper.doc (74.5 KB) More Documents & Publications PVMapper: A Tool for Energy Siting transcript_jedi_model.doc 2009 National Electric Transmission Congestion Study - San Francisco Workshop

  7. Solar Works! In Seattle: Introduction to Solar Electric (PV)

    Broader source: Energy.gov [DOE]

    Presentation slides from residential PV workshop. Also covers general solar resource assessment, siting and financial incentives.

  8. Merced Irrigation District- PV Buydown Program

    Broader source: Energy.gov [DOE]

    Merced Irrigation District (MID) offers its residential, commercial and non-profit customers a rebate for installing solar electric photovoltaic (PV) systems on their homes and offices. For 2015,...

  9. City of Lompoc Utilities- PV Rebate Program

    Broader source: Energy.gov [DOE]

    City of Lompoc Utilities provides rebates to its electric customers who purchase and install photovoltaic (PV) systems. The rebate is $1.00 per watt-AC. The incentive amount may not exceed 50% the...

  10. NanoPV Corporation | Open Energy Information

    Open Energy Info (EERE)

    Corporation Place: Ewing, New Jersey Zip: 8618 Product: A New Jersey-based thin film PV cell producer and technology provider. Coordinates: 36.638474, -83.428453 Show Map...

  11. Kansas City Power & Light- Solar PV Rebates

    Broader source: Energy.gov [DOE]

    Note: On March 9, 2016, KCP&L received approval to cease PV rebate payments under this program when a total of $36.5 million in payments have been made, which is expected to occur within the...

  12. Austin Energy- Commercial Solar PV Incentive Program

    Broader source: Energy.gov [DOE]

    In order to qualify for this program, PV modules must be new and be listed on the California Energy Commission's Go Solar web site. In addition, all solar panels must have a 20-year manufacturer ...

  13. Plumas-Sierra REC- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Plumas-Sierra REC offers an incentive for its customers to install photovoltaic (PV) systems on homes and businesses. Rebates are available for qualifying systems between one kilowatt (kW) and 25...

  14. Sandia Energy - PV Reliability & Performance Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    15-06-01T20:13:00+00:00 This Web Demo model is a simplified "player" version of the Photovoltaic Reliability Performance Model (PV-RPM) currently in development at Sandia National...

  15. Distributed PV Permitting and Inspection Processes

    SciTech Connect (OSTI)

    Solar Energy Technologies Office

    2010-08-03

    This presentation summarizes case studies of the time and cost involved in the distributed PV permitting and inspection process in three Solar America Cities, Austin, Portland, and Salt Lake City.

  16. Distributed PV Permitting and Inspection Processes

    Broader source: Energy.gov [DOE]

    This presentation summarizes case studies of the time and cost involved in the distributed PV permitting and inspection process in three Solar America Cities, Austin, Portland, and Salt Lake City.

  17. SMUD- PV Residential Retrofit Buy-Down

    Broader source: Energy.gov [DOE]

    The incentive can be paid directly to the customer or the installer. PV equipment listed on the CEC Approved Equipment list is eligible for incentives: http://www.gosolarcalifornia.org/equipment...

  18. PV Module Reliability Research (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its PV module reliability research. The scope and core competencies and capabilities are discussed and recent publications are listed.

  19. PV System Energy Evaluation Method (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2014-01-01

    This presentation describes a comparison of the "predicted" energy (based on historical weather data) with the "expected" energy (based on the measured weather data) to determine whether a PV system is performing as modeled in order to verify the accuracy of a model. A key factor in defining this energy test is determining the test boundary so that weather variations are not inadvertently included in what is considered to be PV system performance.

  20. Lessons Learned with Early PV Plant Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lessons Learned with Early PV Plant Integration" Elsa Gonzalez, Rachel Sall, Frankie Greco and David Narang with Arizona Public Service Company June 12, 2014 2 Speakers Frankie Greco Distribution Interconnection Team Arizona Public Service Company Elsa Gonzales Distribution Operations Engineer Arizona Public Service Company David Narang Senior Engineer Arizona Public Service Company Rachel Sall Arizona Public Service Company Lessons Learned with Early PV Plant Integration Elsa Gonzalez

  1. Solar PV Incentive Programs | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PV Incentive Programs Solar PV Incentive Programs This presentation summarizes the information discussed by NYSERDA during the Best Practices in the Design of Utility Solar Programs Webinar on September 27, 2012. utility_design_nyserda_mace.pdf (378.85 KB) More Documents & Publications Best Practices in the Design of Utility Solar Programs NYSERDA's CHP Program Guide, 2010 NYSERDA's RPS Customer Sited Tier Fuel Cell Program

  2. PROJECT PROFILE: Reducing PV Performance Uncertainty by Accurately

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quantifying the "PV Resource" | Department of Energy Reducing PV Performance Uncertainty by Accurately Quantifying the "PV Resource" PROJECT PROFILE: Reducing PV Performance Uncertainty by Accurately Quantifying the "PV Resource" Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: National Renewable Energy Laboratory, Golden, CO Amount Awarded: $2,500,000 The procedures used today for prediction of the solar resource available to

  3. Generation IV PR and PP Methods and Applications

    SciTech Connect (OSTI)

    Bari,R.A.

    2008-10-13

    This paper presents an evaluation methodology for proliferation resistance and physical protection (PR&PP) of Generation IV nuclear energy systems (NESs). For a proposed NES design, the methodology defines a set of challenges, analyzes system response to these challenges, and assesses outcomes. The challenges to the NES are the threats posed by potential actors (proliferant States or sub-national adversaries). The characteristics of Generation IV systems, both technical and institutional, are used to evaluate the response of the system and determine its resistance against proliferation threats and robustness against sabotage and terrorism threats. The outcomes of the system response are expressed in terms of six measures for PR and three measures for PP, which are the high-level PR&PP characteristics of the NES. The methodology is organized to allow evaluations to be performed at the earliest stages of system design and to become more detailed and more representative as design progresses. Uncertainty of results are recognized and incorporated into the evaluation at all stages. The results are intended for three types of users: system designers, program policy makers, and external stakeholders. Particular current relevant activities will be discussed in this regard. The methodology has been illustrated in a series of demonstration and case studies and these will be summarized in the paper.

  4. Using CAD software to simulate PV energy yield - The case of product integrated photovoltaic operated under indoor solar irradiation

    SciTech Connect (OSTI)

    Reich, N.H.; van Sark, W.G.J.H.M.; Turkenburg, W.C.; Sinke, W.C.

    2010-08-15

    In this paper, we show that photovoltaic (PV) energy yields can be simulated using standard rendering and ray-tracing features of Computer Aided Design (CAD) software. To this end, three-dimensional (3-D) sceneries are ray-traced in CAD. The PV power output is then modeled by translating irradiance intensity data of rendered images back into numerical data. To ensure accurate results, the solar irradiation data used as input is compared to numerical data obtained from rendered images, showing excellent agreement. As expected, also ray-tracing precision in the CAD software proves to be very high. To demonstrate PV energy yield simulations using this innovative concept, solar radiation time course data of a few days was modeled in 3-D to simulate distributions of irradiance incident on flat, single- and double-bend shapes and a PV powered computer mouse located on a window sill. Comparisons of measured to simulated PV output of the mouse show that also in practice, simulation accuracies can be very high. Theoretically, this concept has great potential, as it can be adapted to suit a wide range of solar energy applications, such as sun-tracking and concentrator systems, Building Integrated PV (BIPV) or Product Integrated PV (PIPV). However, graphical user interfaces of 'CAD-PV' software tools are not yet available. (author)

  5. Progress in High-Performance PV: Polycrystalline Thin-Film Tandem Cells

    SciTech Connect (OSTI)

    Symko-Davies, M.

    2004-08-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of PV for cost-competitive applications. The goal is that PV will contribute significantly to the U.S. and world energy supply and environmental enhancement in the 21st century. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course, to accelerate and enhance their impact in the marketplace. To accomplish this, the National Center for Photovoltaics (NCPV) directs in-house and subcontracted research in high-performance polycrystalline thin-film and multijunction concentrator devices. This paper will describe progress of the subcontractor and in-house R&D on critical pathways for a PV technology having a high potential to reach cost-competitiveness goals: 25%-efficient, low-cost polycrystalline thin-film tandems for large-area, flat-plate modules.

  6. ADVANCED CERAMIC MATERIALS FOR NEXT-GENERATION NUCLEAR APPLICATIONS

    SciTech Connect (OSTI)

    Marra, J.

    2010-09-29

    Rising global energy demands coupled with increased environmental concerns point to one solution; they must reduce their dependence on fossil fuels that emit greenhouse gases. As the global community faces the challenge of maintaining sovereign nation security, reducing greenhouse gases, and addressing climate change nuclear power will play a significant and likely growing role. In the US, nuclear energy already provides approximately one-fifth of the electricity used to power factories, offices, homes, and schools with 104 operating nuclear power plants, located at 65 sites in 31 states. Additionally, 19 utilities have applied to the US Nuclear Regulatory Commission (NRC) for construction and operating licenses for 26 new reactors at 17 sites. This planned growth of nuclear power is occurring worldwide and has been termed the 'nuclear renaissance.' As major industrial nations craft their energy future, there are several important factors that must be considered about nuclear energy: (1) it has been proven over the last 40 years to be safe, reliable and affordable (good for Economic Security); (2) its technology and fuel can be domestically produced or obtained from allied nations (good for Energy Security); and (3) it is nearly free of greenhouse gas emissions (good for Environmental Security). Already an important part of worldwide energy security via electricity generation, nuclear energy can also potentially play an important role in industrial processes and supporting the nation's transportation sector. Coal-to-liquid processes, the generation of hydrogen and supporting the growing potential for a greatly increased electric transportation system (i.e. cars and trains) mean that nuclear energy could see dramatic growth in the near future as we seek to meet our growing demand for energy in cleaner, more secure ways. In order to address some of the prominent issues associated with nuclear power generation (i.e., high capital costs, waste management, and

  7. Hydraulic impulse generator and frequency sweep mechanism for borehole applications

    DOE Patents [OSTI]

    Kolle, Jack J.; Marvin, Mark H.; Theimer, Kenneth J.

    2006-11-21

    This invention discloses a valve that generates a hydraulic negative pressure pulse and a frequency modulator for the creation of a powerful, broadband swept impulse seismic signal at the drill bit during drilling operations. The signal can be received at monitoring points on the surface or underground locations using geophones. The time required for the seismic signal to travel from the source to the receiver directly and via reflections is used to calculate seismic velocity and other formation properties near the source and between the source and receiver. This information can be used for vertical seismic profiling of formations drilled, to check the location of the bit, or to detect the presence of abnormal pore pressure ahead of the bit. The hydraulic negative pressure pulse can also be used to enhance drilling and production of wells.

  8. Utility Participation in the Rooftop Solar PV Market

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility Participation in the Rooftop Solar PV Market DG Interconnection Collaborative (DGIC) January 21, 2016 Justin Orkney Program Manager of Distributed Generation Tucson Electric Power (TEP) Marc Romito Manager Arizona Public Service 2 Logistics * Participants are joined in listen-only mode. * Use the Q&A panel to ask questions during the webinar. We will have a few minutes of Q&A between each presentation and group discussion at the very end.  To ask a question: o Click Q&A

  9. Hybrid photovoltaic/thermal (PV/T) solar systems simulation with Simulink/Matlab

    SciTech Connect (OSTI)

    da Silva, R.M.; Fernandes, J.L.M.

    2010-12-15

    and perform reasonably well. The Simulink modeling platform has been mainly used worldwide on simulation of control systems, digital signal processing and electric circuits, but there are very few examples of application to solar energy systems modeling. This work uses the modular environment of Simulink/Matlab to model individual PV/T system components, and to assemble the entire installation layout. The results show that the modular approach strategy provided by Matlab/Simulink environment is applicable to solar systems modeling, providing good code scalability, faster developing time, and simpler integration with external computational tools, when compared with traditional imperative-oriented programming languages. (author)

  10. Hourly Simulation of Grid-Connected PV Systems Using Realistic Building Loads (Preprint)

    SciTech Connect (OSTI)

    Balcomb, J.D.; Hayter, S.J.; Weaver, N.L.

    2001-02-27

    This is one of two companion papers that describe the ENERGY-10 PV design tool computer simulation program. The other paper is titled ''ENERGY-10 Photovoltaics: A New Capability.'' Whereas this paper focuses on the PV aspects of the program, the companion paper focuses on the implementation method. The case study in this paper is a commercial building application, whereas the case study in the companion paper is a residential application with an entirely different building load characteristic. Together they provide a balanced view.

  11. PV Optics: A Software Package for Solar Cells and Module Design

    SciTech Connect (OSTI)

    Sopori, B.

    2007-01-01

    PV Optics is a user-friendly software package developed to design and analyze solar cells and modules. It is applicable to a variety of optical structures, including thin and thick cells with light-trapping structures and metal optics. Using a combination of wave and ray optics to include effects of coherence and interference, it can be used to design single-junction and multijunction solar cells and modules. This paper describes some basic applications of PV Optics for crystalline and amorphous Si solar cell design. We present examples to examine the effects on solar cell performance of wafer thickness, antireflection coating thickness, texture height, and metal loss.

  12. Multi-Objective Advanced Inverter Controls to Dispatch the Real and Reactive Power of Many Distributed PV Systems.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Lave, Matthew Samuel; Broderick, Robert Joseph; Seuss, John; Grijalva, Santiago

    2016-01-01

    The research presented in this report compares several real - time control strategies for the power output of a large number of PV distributed throughout a large distribution feeder circuit. Both real and reactive power controls are considered with the goal of minimizing network over - voltage violations caused by large amounts of PV generation. Several control strategies are considered under various assumptions regarding the existence and latency of a communication network. The control parameters are adjusted to maximize the effectiveness of each control. The controls are then compared based on their ability to achieve multiple objectiv es. These objectives include minimizing the total number of voltage violations , minimizing the total amount of PV energy curtailed or reactive power generated, and maximizing the fairness of any control action among all PV systems . The controls are simulat ed on the OpenDSS platform using time series load and spatially - distributed irradiance data.

  13. New Barrier Coating Materials for PV Module Backsheets: Preprint

    SciTech Connect (OSTI)

    Barber, G. D.; Jorgensen, G. J.; Terwilliger, K.; Glick, S. H.; Pern, J.; McMahon, T. J.

    2002-05-01

    This conference paper describes the high moisture barrier high resistivity coatings on polyethylene terepthalate (PET) have been fabricated and characterized for use in PV module back sheet applications. These thin film barriers exhibit water vapor transmission rates (WVTR) as low as 0.1 g/m2-day at 37.8 C and have shown excellent adhesion (> 10 N/mm) to both ethylene vinyl acetate (EVA) and PET even after filtered xenon arc lamp UV exposure. The WVTR and adhesion values for this construction are compared to and shown to be superior to candidate polymeric backsheet materials.

  14. Designing PV Incentive Programs to Promote System Performance: AReview of Current Practice

    SciTech Connect (OSTI)

    Barbose, Galen; Wiser, Ryan; Bolinger, Mark

    2006-11-12

    Some stakeholders continue to voice concerns about the performance of customer-sited photovoltaic (PV) systems, particularly because these systems typically receive financial support through ratepayer- or publicly-funded programs. Although much remains to be understood about the extent and specific causes of poor PV system performance, several studies of the larger programs and markets have shed some light on the issue. An evaluation of the California Energy Commission (CEC)'s Emerging Renewables Program, for example, found that 7% of systems, in a sample of 95, had lower-than-expected power output due to shading or soiling (KEMA 2005). About 3% of a larger sample of 140 systems were not operating at all or were operating well below expected output, due to failed equipment, faulty installation workmanship, and/or a lack of basic maintenance. In a recent evaluation of the other statewide PV incentive program in California, the Self-Generation Incentive Program, 9 of 52 projects sampled were found to have annual capacity factors less than 14.5%, although reasons for these low capacity factors generally were not identified (Itron 2005). Studies of PV systems in Germany and Japan, the two largest PV markets worldwide, have also revealed some performance problems associated with issues such as shading, equipment and installation defects, inverter failure, and deviations from module manufacturers' specifications (Otani et al. 2004, Jahn & Nasse 2004). Although owners of PV systems have an inherent incentive to ensure that their systems perform well, many homeowners and building operators may lack the necessary information and expertise to carry out this task effectively. Given this barrier, and the responsibility of PV incentive programs to ensure that public funds are prudently spent, these programs should (and often do) play a critical role in promoting PV system performance. Performance-based incentives (PBIs), which are based on actual energy production rather than

  15. Investigation of Synergy Between Electrochemical Capacitors, Flywheels, and Batteries in Hybrid Energy Storage for PV Systems

    SciTech Connect (OSTI)

    Miller, John; Sibley, Lewis, B.; Wohlgemuth, John

    1999-06-01

    This report describes the results of a study that investigated the synergy between electrochemical capacitors (ECs) and flywheels, in combination with each other and with batteries, as energy storage subsystems in photovoltaic (PV) systems. EC and flywheel technologies are described and the potential advantages and disadvantages of each in PV energy storage subsystems are discussed. Seven applications for PV energy storage subsystems are described along with the potential market for each of these applications. A spreadsheet model, which used the net present value method, was used to analyze and compare the costs over time of various system configurations based on flywheel models. It appears that a synergistic relationship exists between ECS and flywheels. Further investigation is recommended to quantify the performance and economic tradeoffs of this synergy and its effect on overall system costs.

  16. Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

  17. Real time PV manufacturing diagnostic system

    SciTech Connect (OSTI)

    Kochergin, Vladimir; Crawford, Michael A.

    2015-09-01

    The main obstacle Photovoltaic (PV) industry is facing at present is the higher cost of PV energy compared to that of fossil energy. While solar cell efficiencies continue to make incremental gains these improvements are so far insufficient to drive PV costs down to match that of fossil energy. Improved in-line diagnostics however, has the potential to significantly increase the productivity and reduce cost by improving the yield of the process. On this Phase I/Phase II SBIR project MicroXact developed and demonstrated at CIGS pilot manufacturing line a high-throughput in-line PV manufacturing diagnostic system, which was verified to provide fast and accurate data on the spatial uniformity of thickness, an composition of the thin films comprising the solar cell as the solar cell is processed reel-to-reel. In Phase II project MicroXact developed a stand-alone system prototype and demonstrated the following technical characteristics: 1) ability of real time defect/composition inconsistency detection over 60cm wide web at web speeds up to 3m/minute; 2) Better than 1mm spatial resolution on 60cm wide web; 3) an average better than 20nm spectral resolution resulting in more than sufficient sensitivity to composition imperfections (copper-rich and copper-poor regions were detected). The system was verified to be high vacuum compatible. Phase II results completely validated both technical and economic feasibility of the proposed concept. MicroXact’s solution is an enabling technique for in-line PV manufacturing diagnostics to increase the productivity of PV manufacturing lines and reduce the cost of solar energy, thus reducing the US dependency on foreign oil while simultaneously reducing emission of greenhouse gasses.

  18. Investigating Temperature Effects on PV Arrays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schmidt Unit Title: Circuits and Electricity Subject: Physics Lesson Title: Investigating Temperature Effects on PV Arrays Grade Level(s): 11/12 Date(s): July 18, 2014 Lesson Length: 1 Class Period (65 minutes) * Learning Goal(s) [What should students know, understand, or be able to do as a result of this lab or activity.] Students will be able to measure current and voltage using a Multimeter. Students will be able to calculate the power of a PV array using voltage and current. Students will

  19. Green Button Applications | OpenEI Community

    Open Energy Info (EERE)

    Green Button Applications Home > Green Button Applications > Posts by term > Green Button Applications Content Group Activity By term Q & A Feeds Term: PV Type Term Title Author...

  20. International PV QA Task Force's Proposed Comparative Rating System for PV Modules: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J.; Kurtz, S.

    2014-10-01

    The International PV Quality Assurance Task Force is developing a rating system that provides comparative information about the relative durability of PV modules. Development of accelerated stress tests that can provide such comparative information is seen as a major step toward being able to predict PV module service life. This paper will provide details of the ongoing effort to determine the format of such an overall module rating system. The latest proposal is based on using three distinct climate zones as defined in IEC 60721-2-1 for two different mounting systems. Specific stresses beyond those used in the qualification tests are being developed for each of the selected climate zones.

  1. Final Report- High Penetration Solar PV Deployment Sunshine State Solar Grid Initiative

    Broader source: Energy.gov [DOE]

    Florida State University’s Center for Advanced Power Systems and partners in the Sunshine State Solar Grid Initiative (SUNGRIN) have completed a five-year effort aimed at enabling effective integration of high penetration levels of grid-connected solar PV generation.

  2. California Solar Initiative- PV Incentives

    Broader source: Energy.gov [DOE]

    '''Pacific Gas and Electric (PG&E) and San Diego Gas and Electric (SDG&E) have reached their budget limits for residential rebates. Both utilities will continue accepting applications for...

  3. The Impact of Retail Rate Structures on the Economics ofCustomer-Sited PV: A Study of Commercial Installations inCalifornia

    SciTech Connect (OSTI)

    Wiser, Ryan; Mills, Andrew; Barbose, Galen; Golove, William

    2007-06-01

    We analyze the impact of retail rate design on the economics of grid-connected commercial photovoltaic (PV) systems in California. The analysis is based on 15-minute interval building load and PV production data for 24 commercial PV installations in California, spanning a diverse set of building load shapes and geographic locations. We derive the annual bill savings per kWh generated for each PV system, under each of 21 distinct retail rates currently offered by the five largest utilities in California. We identify and explain variation in the value of bill savings attributable to differences in the structure of demand and energy charges across rates, as well as variation attributable to other factors, such as the size of the PV system relative to building load, the specific shape of the PV production profile, and the customer load profile. We also identify the optimal rate for each customer, among those rates offered as alternatives to one another, and show how the decision is driven in large measure by the size of the PV system relative to building load. The findings reported here may be of value to regulators and utilities responsible for designing retail rates, as well as to customers and PV retailers who have a need to estimate the prospective bill savings of PV systems.

  4. Jiangsu Tianbao PV Energy Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianbao PV Energy Co Ltd Jump to: navigation, search Name: Jiangsu Tianbao PV Energy Co Ltd Place: Yizheng, Jiangsu Province, China Product: Reportedly planning to have 25MW of...

  5. Breakout Session: Getting in the Loop: PV Hardware Recycling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Getting in the Loop: PV Hardware Recycling and Sustainability Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability May 21, 2014 6:30PM to 7:30PM PDT ...

  6. Breakout Session: A Look Ahead: PV Manufacturing in 10 Years

    Broader source: Energy.gov [DOE]

    The global PV manufacturing landscape has undergone significant changes in the past decade, from geographic and economic changes in the supply chain to a significant increase in PV module...

  7. Masdar PV GmbH | Open Energy Information

    Open Energy Info (EERE)

    Masdar PV GmbH Place: Germany Product: Germany-based manufacturer of thin film photovoltaic products and solutions References: Masdar PV GmbH1 This article is a stub. You...

  8. High-Penetration PV Deployment in the Arizona Public Service System, Phase 1 Update: Preprint

    SciTech Connect (OSTI)

    Hambrick, J.; Narang, D.

    2012-06-01

    In an effort to better understand the impacts of high penetrations of photovoltaic generators on distribution systems, Arizona Public Service and its partners have begun work on a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale photovoltaics (PV). Building upon the APS Community Power Project -- Flagstaff Pilot, this project will analyze the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes as well as large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters are being designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models will be used to analyze the impacts of the PV on distribution circuit protection systems (including anti-islanding), predict voltage regulation and phase balance issues, and develop volt/var control schemes. This paper continues from a paper presented at the 2011 IEEE PVSC conference that introduces the project and describes some of the preliminary consideration, as well as project plans and early results. This paper gives a status update of the project and presents selected results from Phase 2 of the project. It discusses baseline feeder modeling, load allocation, data acquisition, utility-scale PV integration, preliminary model validation, and plans for future phases.

  9. Utility-scale grid-tied PV inverter reliability workshop summary report.

    SciTech Connect (OSTI)

    Granata, Jennifer E.; Quintana, Michael A.; Tasca, Coryne Adelle; Atcitty, Stanley

    2011-07-01

    A key to the long-term success of the photovoltaic (PV) industry is confidence in the reliability of PV systems. Inverters are the most commonly noted cause of PV system incidents triggered in the field. While not all of these incidents are reliability-related or even necessarily failures, they still result in a loss of generated power. With support from the U.S. Department of Energy's Solar Energy Technologies Program, Sandia National Laboratories organized a Utility-Scale Grid-Tied Inverter Reliability Workshop in Albuquerque, New Mexico, January 27-28, 2011. The workshop addressed the reliability of large (100-kilowatt+) grid-tied inverters and the implications when such inverters fail, evaluated inverter codes and standards, and provided discussion about opportunities to enhance inverter reliability. This report summarizes discussions and presentations from the workshop and identifies opportunities for future efforts.

  10. Analysis of the Impacts of Distribution-Connected PV Using High-Speed Data Sets: Preprint

    SciTech Connect (OSTI)

    Bank, J.; Mather, B.

    2013-03-01

    This paper, presented at the IEEE Green Technologies Conference 2013, utilizes information from high resolution data acquisition systems developed at the National Renewable Energy Laboratory and deployed on a high-penetration PV distribution system to analyze the variability of different electrical parameters. High-resolution solar irradiance data is also available in the same area which is used to characterize the available resource and how it affects the electrical characteristics of the study circuit. This paper takes a data-driven look at the variability caused by load and compares those results against times when significant PV production is present. Comparisons between the variability in system load and the variability of distributed PV generation are made.

  11. NREL Releases Report Describing Guidelines for PV Manufacturer Quality

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assurance - News Releases | NREL Releases Report Describing Guidelines for PV Manufacturer Quality Assurance International task force aims to toughen standards, ensure reliability of PV technologies April 14, 2015 The Energy Department's National Renewable Energy Laboratory (NREL) has released an updated proposal that will establish an international quality standard for photovoltaic (PV) module manufacturing. The document is intended for immediate use by PV manufacturers when producing

  12. Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants Compressive Shear Test to Accurately Measure Adhesion of PV Encapsulants Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps2_epfl_galliano.pdf (448.66 KB) More Documents & Publications Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Hail Impact Testing on Crystalline Si Modules with Flexible Packaging

  13. PV Performance and Reliability Validation Capabilities at Sandia National Laboratories

    Broader source: Energy.gov [DOE]

    This presenation summarizes the information discussed by Sandia National Laboratories at the PV Manufacturing Workshop, March 25, 2011.

  14. PV Performance and Reliability Validation Capabilities at Sandia...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Performance and Reliability Validation Capabilities at Sandia National Laboratories PV Performance and Reliability Validation Capabilities at Sandia National Laboratories This ...

  15. National solar technology roadmap: Film-silicon PV

    SciTech Connect (OSTI)

    Keyes, Brian

    2007-06-01

    Silicon photovoltaic (PV) technologies are addressed in two different technology roadmaps: Film-Silicon PV and Wafer-Silicon PV. This Film-Silicon PV roadmap applies to all silicon-film technologies that rely on a supporting substrate such as glass, polymer, aluminum, stainless steel, or metallurgical-grade silicon. Such devices typically use amorphous, nanocrystalline, fine-grained polycrystalline, or epitaxial silicon layers that are 1–20 μm thick.

  16. Statistical and Domain Analytics Applied to PV Module Lifetime and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Degradation Science | Department of Energy Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Statistical and Domain Analytics Applied to PV Module Lifetime and Degradation Science Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps2_casewestern_bruckman.pdf (6.77 MB) More Documents & Publications Literature Review of the Effects of UV Exposure on PV Modules Failure Rates from Certification Testing to UL

  17. PV Solar Site Assessment (Milwaukee High School)

    Broader source: Energy.gov [DOE]

    The purpose of this assessment is to provide site-specific information on how a solar electric (also referred to as a photovoltaic, or PV) system would perform at your location, including information on estimated physical size, rated output, energy production, costs, financial incentives and mounting options. Site assessors are required to present unbiased information and may not recommend contractors or products.

  18. Final Technical Report: PV Fault Detection Tool.

    SciTech Connect (OSTI)

    King, Bruce Hardison; Jones, Christian Birk

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  19. Role of Polycrystalline Thin-Film PV Technologies in Competitive PV Module Markets: Preprint

    SciTech Connect (OSTI)

    von Roedern, B.; Ullal, H. S.

    2008-05-01

    This paper discusses the developments in thin-film PV technologies and provides an outlook on future commercial module efficiencies achievable based on today's knowledge about champion cell performance.

  20. Commercialization of PV-powered pumping systems for use in utility PV service programs. Final report

    SciTech Connect (OSTI)

    1997-03-01

    The project described in this report was a commercialization effort focused on cost-effective remote water pumping systems for use in utility-based photovoltaic (PV) service programs. The project combined a commercialization strategy tailored specifically for electric utilities with the development of a PV-powered pumping system that operates conventional ac pumps rather than relying on the more expensive and less reliable PV pumps on the market. By combining these two attributes, a project goal was established of creating sustained utility purchases of 250 PV-powered water pumping systems per year. The results of each of these tasks are presented in two parts contained in this Final Summary Report. The first part summarizes the results of the Photovoltaic Services Network (PSN) as a new business venture, while the second part summarizes the results of the Golden Photon system installations. Specifically, results and photographs from each of the system installations are presented in this latter part.

  1. High Resolution PV Power Modeling for Distribution Circuit Analysis

    SciTech Connect (OSTI)

    Norris, B. L.; Dise, J. H.

    2013-09-01

    NREL has contracted with Clean Power Research to provide 1-minute simulation datasets of PV systems located at three high penetration distribution feeders in the service territory of Southern California Edison (SCE): Porterville, Palmdale, and Fontana, California. The resulting PV simulations will be used to separately model the electrical circuits to determine the impacts of PV on circuit operations.

  2. Development of flame retardant PV module encapsulants: Volume 1. Final report

    SciTech Connect (OSTI)

    Galica, J.P.

    1998-06-01

    This Phase 1 final report covers the work performed by Springborn Testing and Research, Inc., for the period October 1, 1997 to June 30, 1998 under the Department of Energy Cooperative Agreement Number DE-FC36-97GO10255, entitled Development of Flame Retardant PV Module Encapsulants. While use of roof-mounted arrays has always been an attractive means of deploying PV, only within recent years have such building integrated concepts (BIPV) found renewed interest among module makers and end-users. Prior to building integrated and rooftop applications, flammability requirements for modules have not been a great industry concern. However, with growing interest in BIPV and the requirement for building code requirements for commercial and industrial structures, flammability issues have become a barrier to entry for many module constructions into this potentially huge domestic market for PV. The overall goal of the 3 phase PV BONUS two project is to develop and commercialize a line of fire retardant encapsulation materials to serve the emerging building integrated and building mounted PV market. The objectives of the Phase 1 effort are limited to concept development and business planning activities.

  3. Feasibility Study of Economics and Performance of Solar PV at the Atlas Industrial Park in Duluth, Minnesota

    SciTech Connect (OSTI)

    Steen, M.; Lisell, L.; Mosey, G.

    2013-01-01

    The U.S. Environmental Protection Agency (EPA) Region 5, in accordance with the RE-Powering America's Land initiative, selected the Atlas Industrial Park in Duluth, Minnesota, for a feasibility study of renewable energy production. The EPA provided funding to the National Renewable Energy Laboratory (NREL) to support a feasibility study of solar renewable energy generation at the Atlas Industrial Park. NREL provided technical assistance for this project but did not assess environmental conditions at the site beyond those related to the performance of a photovoltaic (PV) system. The purpose of this study is to assess the site for a possible PV installation and estimate the cost, performance, and site impacts of different PV configurations. In addition, the study evaluates financing options that could assist in the implementation of a PV system at the site.

  4. Methods of high current magnetic field generator for transcranial magnetic stimulation application

    SciTech Connect (OSTI)

    Bouda, N. R. Pritchard, J.; Weber, R. J.; Mina, M.

    2015-05-07

    This paper describes the design procedures and underlying concepts of a novel High Current Magnetic Field Generator (HCMFG) with adjustable pulse width for transcranial magnetic stimulation applications. This is achieved by utilizing two different switching devices, the MOSFET and insulated gate bipolar transistor (IGBT). Results indicate that currents as high as 1200 A can be generated with inputs of +/?20?V. Special attention to tradeoffs between field generators utilizing IGBT circuits (HCMFG{sub 1}) and MOSFET circuits (HCMFG{sub 2}) was considered. The theory of operation, design, experimental results, and electronic setup are presented and analyzed.

  5. Electricity generator cost data from survey form EIA-860

    Gasoline and Diesel Fuel Update (EIA)

    Nuclear & Uranium Uranium fuel, nuclear reactors, generation, spent fuel. Total Energy Comprehensive data ... capacity estimates that use direct current (DC) ratings of PV panels. ...

  6. New San Antonio Airport Terminal Generating Clean Power | Department...

    Office of Environmental Management (EM)

    Moreover, the project team integrated electric vehicle charging stations with the PV system and the garage's electrical system to increase the uses for the electricity generated ...

  7. Problems and solutions for protective relay applications in petroleum facilities -- Some protection applications for generators and transformers

    SciTech Connect (OSTI)

    Dudor, J.S.; Padden, L.K.

    1995-12-31

    Two areas of medium and high voltage protective relaying for industry applications are addressed: (1) generator backup protection and (2) protection of transformers with relatively high values of available fault currents. The presentation is a series of cases that were studied on electrical power systems at different industry facilities. The first part of this paper discusses the use of voltage controlled or voltage restraint time-overcurrent (51V) relays and distance (21) relays applied as generator backup protection. Actual applications on bus-connected and unit-connected generators are presented with a discussion of the protective relay settings and problems encountered. The second part of this paper discusses the application of proper protective devices, including protective relays and instrument transformers to protect transformers installed on buses with relatively high available primary fault currents. Problems encountered with the instrument transformer and protective relay selection are addressed, including saturation, burden, and protection from failure. Emphasis is placed on routine and special applications, lessons learned on real projects, and trouble spots to avoid.

  8. PV_LIB Toolbox v. 1.3

    SciTech Connect (OSTI)

    2015-12-09

    PV_LIB comprises a library of Matlab? code for modeling photovoltaic (PV) systems. Included are functions to compute solar position and to estimate irradiance in the PV system’s plane of array, cell temperature, PV module electrical output, and conversion from DC to AC power. Also included are functions that aid in determining parameters for module performance models from module characterization testing. PV_LIB is open source code primarily intended for research and academic purposes. All algorithms are documented in openly available literature with the appropriate references included in comments within the code.

  9. PV_LIB Toolbox v. 1.3

    Energy Science and Technology Software Center (OSTI)

    2015-12-09

    PV_LIB comprises a library of Matlab? code for modeling photovoltaic (PV) systems. Included are functions to compute solar position and to estimate irradiance in the PV system’s plane of array, cell temperature, PV module electrical output, and conversion from DC to AC power. Also included are functions that aid in determining parameters for module performance models from module characterization testing. PV_LIB is open source code primarily intended for research and academic purposes. All algorithms aremore » documented in openly available literature with the appropriate references included in comments within the code.« less

  10. Sandia PV Array Performance Model

    Broader source: Energy.gov [DOE]

    The photovoltaic array performance model was developed at Sandia National Laboratories over the last twelve years. Electrical, thermal, and optical characteristics for photovoltaic modules are included in the model, and the model is designed to use hourly solar resource and meteorological data. The versatility and accuracy of the model has been validated for flat-plate modules (all technologies) and for concentrator modules, as well as for large arrays of modules. Applications include system design and sizing, ‘translation’ of field performance measurements to standard reporting conditions, system performance optimization, and real-time comparison of measured versus expected system performance.

  11. Synthetic graph generation for data-intensive HPC benchmarking: Scalability, analysis and real-world application

    SciTech Connect (OSTI)

    Powers, Sarah S.; Lothian, Joshua

    2014-12-01

    The benchmarking effort within the Extreme Scale Systems Center at Oak Ridge National Laboratory seeks to provide High Performance Computing benchmarks and test suites of interest to the DoD sponsor. The work described in this report is a part of the effort focusing on graph generation. A previously developed benchmark, SystemBurn, allows the emulation of a broad spectrum of application behavior profiles within a single framework. To complement this effort, similar capabilities are desired for graph-centric problems. This report described the in-depth analysis of the generated synthetic graphs' properties at a variety of scales using different generator implementations and examines their applicability to replicating real world datasets.

  12. Solar PV Project Financing: Regulatory and Legislative Challenges for Third-Party PPA System Owners

    SciTech Connect (OSTI)

    Kollins, K.; Speer, B.; Cory, K.

    2009-11-01

    Residential and commercial end users of electricity who want to generate electricity using on-site solar photovoltaic (PV) systems face challenging initial and O&M costs. The third-party ownership power purchase agreement (PPA) finance model addresses these and other challenges. It allows developers to build and own PV systems on customers? properties and sell power back to customers. However, third-party electricity sales commonly face five regulatory challenges. The first three challenges involve legislative or regulatory definitions of electric utilities, power generation equipment, and providers of electric services. These definitions may compel third-party owners of solar PV systems to comply with regulations that may be cost prohibitive. Third-party owners face an additional challenge if they may not net meter, a practice that provides significant financial incentive to owning solar PV systems. Finally, municipalities and cooperatives worry about the regulatory implications of allowing an entity to sell electricity within their service territories. This paper summarizes these challenges, when they occur, and how they have been addressed in five states. This paper also presents alternative to the third-party ownership PPA finance model, including solar leases, contractual intermediaries, standardized contract language, federal investment tax credits, clean renewable energy bonds, and waived monopoly powers.

  13. Sandia Rooftop PV Structural Report Webinar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rooftop PV Structural Report Webinar - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  14. Lessons Learned with Early PV Plant Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lessons Learned with Early PV Plant Integration Page 1 of 23 Kristen Ardani (NREL), Elsa Gonzales (Arizona Public Service Company), Rachel Sall (Arizona Public Service Company), Frankie Greco (Arizona Public Service Company), David Narang (Arizona Public Service Company) Page 1 of 23 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us today for the DG Interconnection Collaborative informational webinar. Today we have speakers from Arizona Public Service Company, who will

  15. 5th PV Performance Modeling Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    th PV Performance Modeling Workshop - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs

  16. Performance Modeling of an Air-Based Photovoltaic/Thermal (PV/T) Collector

    SciTech Connect (OSTI)

    Casey, R. D.; Brandemuehl, M. J.; Merrigan, T.; Burch, J.

    2010-01-01

    This paper studies a collector design that utilizes unglazed photovoltaic/thermal (PV/T) collectors preheating air for glazed air heating modules. The performance modeling of these collectors is examined both individually and in series. For each collector type, a dynamic, finite difference, first-law model has been created using literature correlations for friction. The models were compared to performance data, calibrating the models by scaling of friction terms for best fit. The calibrated models generally agree well with the experimental data; even during sudden changes to ambient conditions. The root mean square error between the unglazed PV/T model and experiment results for the useful thermal energy gain and the outlet air temperature are 7.12 W/m{sup 2} and 1.07 C, respectively. The annual source energy performance of the building-integrated PV/T (BIPV/T) array is then simulated for residential applications in seven climate zones of the United States of America. The performance of the BIPV/T array is characterized by the amount of net electrical energy and useful thermal energy produced. The useful thermal energy is defined as the amount of energy offset by the BIPV/T system for water heating and space conditioning. A BIPV/T system composed 87.5% of PV modules, and 12.5% of glazed air heating modules, offsets the same amount of source energy as a roof-mounted PV system of the same area. This array composition increases the thermal energy gain by 47% over a BIPV/T array composed solely of PV modules.

  17. Transparent building-integrated PV modules. Phase 1: Comprehensive report

    SciTech Connect (OSTI)

    NONE

    1998-09-28

    This Comprehensive Report encompasses the activities that have been undertaken by Kiss + Cathcart, Architects, in conjunction with Energy Photovoltaics, Incorporated (EPV), to develop a flexible patterning system for thin-film photovoltaic (PV) modules for building applications. There are two basic methods for increasing transparency/light transmission by means of patterning the PV film: widening existing scribe lines, or scribing a second series of lines perpendicular to the first. These methods can yield essentially any degree of light transmission, but both result in visible patterns of light and dark on the panel surface. A third proposed method is to burn a grid of dots through the films, independent of the normal cell scribing. This method has the potential to produce a light-transmitting panel with no visible pattern. Ornamental patterns at larger scales can be created using combinations of these techniques. Kiss + Cathcart, Architects, in conjunction with EPV are currently developing a complementary process for the large-scale lamination of thin-film PVs, which enables building integrated (BIPV) modules to be produced in sizes up to 48 in. x 96 in. Flexible laser patterning will be used for three main purposes, all intended to broaden the appeal of the product to the building sector: To create semitransparent thin-film modules for skylights, and in some applications, for vision glazing.; to create patterns for ornamental effects. This application is similar to fritted glass, which is used for shading, visual screening, graphics, and other purposes; and to allow BIPV modules to be fabricated in various sizes and shapes with maximum control over electrical characteristics.

  18. Net Metering and Market Feedback Loops: Exploring the Impact of Retail Rate Design on Distributed PV Deployment

    SciTech Connect (OSTI)

    Darghouth, Naïm R.; Wiser, Ryan; Barbose, Galen; Mills, Andrew

    2015-01-13

    The substantial increase in deployment of customer-sited solar photovoltaics (PV) in the United States has been driven by a combination of steeply declining costs, financing innovations, and supportive policies. Among those supportive policies is net metering, which in most states effectively allows customers to receive compensation for distributed PV generation at the full retail electricity price. The current design of retail electricity rates and the presence of net metering have elicited concerns that the possible under-recovery of fixed utility costs from PV system owners may lead to a feedback loop of increasing retail prices that accelerate PV adoption and further rate increases. However, a separate and opposing feedback loop could offset this effect: increased PV deployment may lead to a shift in the timing of peak-period electricity prices that could reduce the bill savings received under net metering where time-varying retail electricity rates are used, thereby dampening further PV adoption. In this paper, we examine the impacts of these two competing feedback dynamics on U.S. distributed PV deployment through 2050 for both residential and commercial customers, across states. Our results indicate that, at the aggregate national level, the two feedback effects nearly offset one another and therefore produce a modest net effect, although their magnitude and direction vary by customer segment and by state. We also model aggregate PV deployment trends under various rate designs and net-metering rules, accounting for feedback dynamics. Our results demonstrate that future adoption of distributed PV is highly sensitive to retail rate structures. Whereas flat, time-invariant rates with net metering lead to higher aggregate national deployment levels than the current mix of rate structures (+5% in 2050), rate structures with higher monthly fixed customer charges or PV compensation at levels lower than the full retail rate can dramatically erode aggregate customer

  19. Shape Memory Alloys and their Applications in Power Generation and Refrigeration

    SciTech Connect (OSTI)

    Cui, Jun

    2013-07-01

    The shape memory effect is closely related to the reversible martensitic phase transformation, which is diffusionless and involves shear deformation. The recoverable transformation between the two phases with different crystalline symmetry results in reversible changes in physical properties such as electrical conductivity, magnetization, and elasticity. Accompanying the transformation is a change of entropy. Fascinating applications are developed based on these changes. In this paper, the history, fundamentals and technical challenges of both thermoelastic and ferromagnetic shape memory alloys are briefly reviewed; applications related to energy conversion such as power generation and refrigeration as well as recent developments will be discussed.

  20. Shape Memory Alloys and Their Applications in Power Generation and Refrigeration

    SciTech Connect (OSTI)

    Cui, Jun

    2013-03-27

    The shape memory effect is closely related to the reversible martensitic phase transformation, which is diffusionless and involves shear deformation. The recoverable transformation between the two phases with different crystalline symmetry results in reversible changes in physical properties such as electrical conductivity, magnetization, and elasticity. Accompanying the transformation is a change of entropy. Fascinating applications are developed based on these changes. In this paper, the history, fundamentals and technical challenges of both thermoelastic and ferromagnetic shape memory alloys are briefly reviewed; applications related to energy conversion such as power generation and refrigeration as well as recent developments will be discussed.

  1. Real Power and Reactive Power Control of a Three-Phase Single-Stage-PV System and PV voltage Stability

    SciTech Connect (OSTI)

    Li, Huijuan; Xu, Yan; Adhikari, Sarina; Rizy, D Tom; Li, Fangxing; Irminger, Philip

    2012-01-01

    Grid-connected photovoltaic (PV) systems with power electronic interfaces can provide both real and reactive power to meet power system needs with appropriate control algorithms. This paper presents the control algorithm design for a three-phase single-stage grid-connected PV inverter to achieve either maximum power point tracking (MPPT) or a certain amount of real power injection, as well as the voltage/var control. The switching between MPPT control mode and a certain amount of real power control mode is automatic and seamless. Without the DC-to-DC booster stage, PV DC voltage stability is an important issue in the control design especially when the PV inverter is operating at maximum power point (MPP) with voltage/var control. The PV DC voltage collapse phenomenon and its reason are discussed. The method based on dynamic correction of the PV inverter output is proposed to ensure PV DC voltage stability. Simulation results of the single-stage PV system during system disturbances and fast solar irradiation changes confirm that the proposed control algorithm for single-stage PV inverters can provide appropriate real and reactive power services and ensure PV DC voltage stability during dynamic system operation and atmospheric conditions.

  2. NREL Releases High-Penetration PV Handbook for Distribution Engineers |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Integration | NREL Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable

  3. NREL Releases High-Penetration PV Handbook for Distribution Engineers |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid Modernization | NREL Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable solar

  4. NREL Helps Establish New PV Quality Standards for Manufacturers - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL Helps Establish New PV Quality Standards for Manufacturers February 8, 2016 Working with partners around the world, researchers at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) have completed five years of work toward helping establish an international quality standard for manufacturing photovoltaic (PV) modules. PV manufacturers will use the new standard to increase the level of confidence investors, utilities, and consumers have in solar panel

  5. PROJECT PROFILE: Performance Models and Standards for Bifacial PV Module

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Performance Models and Standards for Bifacial PV Module Technologies PROJECT PROFILE: Performance Models and Standards for Bifacial PV Module Technologies Funding Opportunity: SuNLaMP SunShot Subprogram: Photovoltaics Location: Sandia National Laboratories, Albuquerque, NM Amount Awarded: $3,000,000 Bifacial PV modules absorb sunlight and produce electricity from both the front and back sides of the module and can take advantage of light reflected from a

  6. Smart Grid Ready PV Inverters with Utility Communication | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Smart Grid Ready PV Inverters with Utility Communication Smart Grid Ready PV Inverters with Utility Communication EPRI logo.jpg -- This project is inactive -- Electric Power Research Institute (EPRI) will develop, implement, and demonstrate smart-grid ready inverters with grid support functionality and required communication links to capture the full value of distributed photovoltaic (PV). APPROACH epri segis summary poster.png This project will develop, implement, and demonstrate

  7. NREL: Photovoltaics Research - NREL Releases High-Penetration PV Handbook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Distribution Engineers Releases High-Penetration PV Handbook for Distribution Engineers A new resource sponsored by the Energy Department's SunShot Initiative helps distribution engineers understand the challenges of high-penetration PV integration. January 27, 2016 As solar photovoltaic (PV) systems are increasingly installed throughout the country at distribution-level utility scale, a new challenge is emerging: how to safely and effectively integrate greater amounts of variable solar

  8. European American Solar Deployment Conference (PV Rollout), 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rd European American Solar Deployment Conference (PV Rollout), 2013 PV Distribution Interconnection Study Analysis Matthew J. Reno, Robert J. Broderick, Jimmy E. Quiroz, Santiago Grijalva 777 Atlantic Dr. NW, Atlanta, GA 30332, USA Phone: 505-620-6560 E-Mail: matthew.reno@gatech.edu Introduction Deployment of distributed PV systems is increasing rapidly. High penetration scenarios, which are becoming increasingly common, have the potential to affect the distribution feeder equipment [1] and the

  9. SunShot Presentation PV Module Reliabity Workshop Opening Session |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Presentation PV Module Reliabity Workshop Opening Session SunShot Presentation PV Module Reliabity Workshop Opening Session This PowerPoint slide deck was originally presented at the opening session of the 2013 NREL PV Module Reliability Workshop on Feb. 26-27, 2013 in Golden, CO. It provides an overview of the DOE SunShot initiative, discusses systems integration and technology validation activities, and highlighted the goals and key agenda items for the workshop.

  10. Präsentation Bernhard Gatzka PV*SOL Expert

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Calculation in PV*SOL Expert Bernhard Gatzka Valentin Software, Germany Presented at the 2013 Sandia PV Performance Modeling Workshop Santa Clara, CA. May 1-2, 2013 Published by Sandia National Laboratories with the Permission of the Author. * Horizon, Near and Inter Row Shading * Method of Calculation * PV Module Model  Software Development of Design, Simulation and Modeling tools for Photovoltaic and Solar Heating Systems  Established 1988  40 employees (of which over 50% are

  11. Impact and Detection of Pyranometer Failure on PV Performance | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Impact and Detection of Pyranometer Failure on PV Performance Impact and Detection of Pyranometer Failure on PV Performance Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps1_nrel_jordan.pdf (1.24 MB) More Documents & Publications Experimental and Modeling Investigation of Radionuclide Interaction and Transport in Representative Geologic Media Brine Migration Experimental Studies for Salt Repositories Performance Assessment of

  12. Next Generation Photovoltaics 3 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Photovoltaics 3 Next Generation Photovoltaics 3 SunShot's next generation PV projects investigate transformational photovoltaic (PV) technologies with the potential to meet SunShot cost targets. The projects' goals are to: Increase efficiency Reduce costs Improve reliability Create more secure and sustainable supply chains. On October 22, 2014, SunShot awarded more than $14 million to 10 research institutions to meet or exceed SunShot targets by improving performance, efficiency,

  13. Sandia/EPRI PV Symposium - Save the Date!

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia/EPRI PV Symposium - Save the Date! Save the Date! Sandia/EPRI 2014 PV Systems Symposium (May 5-7, 2014) May 5-6 at the Biltmore Hotel in Santa Clara, CA May 7 at EPRI Headquarters in Palo Alto, CA Sandia National Laboratories and the Electric Power Research Institute (EPRI) are delighted to host this symposium on technical issues related to PV systems and technologies. Core areas of focus will include PV performance modeling, distribution hosting capacity and screening methods, component

  14. Smart-Grid Ready PV Inverters with Utility Communication

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTEGRATION Smart-Grid Ready PV Inverters with Utility Communication Electric Power Research Institute Brian Seal, Tom Key, Aminul Huque, Lindsey Rogers Technical Contact Brian ...

  15. Zhangjiagang Sunlink PV Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Province, China Zip: 215600 Product: Specialises in developing, manufacturing and marketing of crystalline silicon PV products. Coordinates: 31.950001, 120.449997 Show Map...

  16. Stichting Triodos PV Partners defunct | Open Energy Information

    Open Energy Info (EERE)

    22209 Product: Stichting Triodos PV Partners, a JV Triodos Bank Group, Environmental Enterprises Assistance Fund, & Global Transition Consulting, was wound up and the management of...

  17. Water Impacts of High Solar PV Electricity Penetration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Impacts of High Solar PV Electricity Penetration Jordan Macknick and Stuart Cohen National Renewable Energy Laboratory (NREL) Technical Report NRELTP-6A20-63011 September...

  18. PROJECT PROFILE: Reducing PV Performance Uncertainty by Accurately...

    Broader source: Energy.gov (indexed) [DOE]

    data when compared to the results from current methods, thereby leading to a reduced price of solar electricity and increasing the expected return on investment of PV projects.

  19. An Analysis of Residential PV System Price Differences between...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Residential photovoltaic (PV) systems were twice as expensive in the United States as in ... Tracking the Sun VIII: The Installed Price of Residential and Non-Residential Photovoltaic ...

  20. Overcoming Structural Engineering Barriers to PV Permits and...

    Office of Scientific and Technical Information (OSTI)

    Title: Overcoming Structural Engineering Barriers to PV Permits and Installations. Abstract not provided. Authors: Dwyer, Stephen F. ; Harper, Alan Publication Date: 2010-02-01 ...

  1. PvXchange GmbH | Open Energy Information

    Open Energy Info (EERE)

    Berlin, Germany Zip: 10963 Sector: Services Product: A German platform for PV module spot trades. Also provides data on spot prices and offers consulting services. Coordinates:...

  2. NREL: Performance and Reliability R&D - PV Module Reliability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Performance Reliability R&D Photovoltaics Research Performance Reliability R and D Printable Version PV Module Reliability Workshop NREL hosts an annual Photovoltaic Module...

  3. Final Report- High Penetration Solar PV Deployment Sunshine State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Along with models and data, at least 70 supporting MATLAB functions have been developed and made available, with complete documentation. High Penetration Solar PV Deployment ...

  4. Instrumentation for Evaluating PV System Performance Losses from Snow: Preprint

    SciTech Connect (OSTI)

    Marion, B.; Rodriguez, J.; Pruett, J.

    2009-04-01

    Describes the use of a pyranometer with a heater and a digital camera to determine losses related to snow for PV systems located at National Renewable Energy Laboratory.

  5. Solar America Initiative (SAI) PV Technology Incubator Program: Preprint

    SciTech Connect (OSTI)

    Keyes, B.; Symko-Davies, M.; Mitchell, R.; Ullal H.; von Roedern, B.; Greene, L.; Stephens, S.

    2008-05-01

    The SAI PV Technology Incubator Program is designed to accelerate technologies/prodesses that have successfully demonstrated a proof-of-concept/process in a laboratory.

  6. PROJECT PROFILE: Improving PV performance Estimates in the System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This project will improve the forecasting of lifetime PV system performance as well as operations and maintenance costs by incorporating the Photovoltaic Reliability and ...

  7. Enhanced Modeling and Monitoring Tools for Distributed PV Interconnect...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Advanced Inverters Grid Design + Operation Solar Forecasting Where is it optimal to site ... are approaching PV integration limits, how do we prioritize and assess grid upgrade costs? ...

  8. Global Solar Photovoltaic (PV) Installation Market to be Propelled...

    Open Energy Info (EERE)

    Global Solar Photovoltaic (PV) Installation Market to be Propelled by Greater Concerns over Carbon Footprint Home > Groups > Renewable Energy RFPs John55364's picture Submitted by...

  9. Weathering Performance of PV Backsheets | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Laboratory Tests Using Simultaneous UV, Temperature, and Moisture for PV ... Sheet, Noryl PPE Sheet-Back Sheet Test Procedure for UV Weathering Resistance of Backsheet

  10. NY-Sun PV Incentive Program (Residential and Small Business)...

    Broader source: Energy.gov (indexed) [DOE]

    NY-Sun CommercialIndustrial Incentive program that offers incentives for grid connected PV systems larger than 200 KW. The New York State Energy Research and Development...

  11. Sandia to host PV Bankability workshop at Solar Power International...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    host PV Bankability workshop at Solar Power International (SPI) 2013 - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & ...

  12. Sandia Energy - Photovoltaic (PV) Regional Test Center (RTC)...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photovoltaic (PV) Regional Test Center (RTC) Website Goes Live Home Renewable Energy Energy Partnership News SunShot News & Events Photovoltaic Solar National Solar Thermal Test...

  13. Siemens PV Technology now Konarka | Open Energy Information

    Open Energy Info (EERE)

    Siemens PV Technology (now Konarka) Place: Germany Product: Formerly the organic photovoltaic research operations of Siemens, which became part of Konarka Technologies on...

  14. NREL Mesa Top PV System | Open Energy Information

    Open Energy Info (EERE)

    PV System Facility National Renewable Energy Laboratory Sector Solar Facility Type Photovoltaic Owner SunEdison Solar Developer SunEdison Solar Energy Purchaser National Renewable...

  15. Overview of the PV Module Model in PVWatts (Presentation)

    SciTech Connect (OSTI)

    Marion, B.

    2010-09-22

    Overview of the PV module model. PVWatts module power estimates were compared with those using the Sandia model for three modules and data sets.

  16. GridPV Toolbox Version 2 Now Available

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, ... GridPV Toolbox Version 2 Now Available HomeDistribution Grid Integration, News, ...

  17. PV QA Task Group #2: Thermal and Mechanical Fatigue Including...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Rating System Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado Accelerated Stress Testing, Qualification Testing, HAST, Field Experience

  18. NREL: Photovoltaics Research - NREL Hosts PV Module Reliability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability Workshop for Industry March 1, 2016 Nearly 200 researchers from more than 100 companies and representing 16 countries attended the 7th annual PV Module Reliability ...

  19. NREL: Performance and Reliability R&D - PV Module Reliability...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PV Module Reliability Workshop NREL hosts an annual Photovoltaic Module Reliability Workshop (PVMRW) so that solar technology experts can share information leading to the ...

  20. NREL: Solar Research - NREL Hosts PV Module Reliability Workshop...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reliability Workshop for Industry March 1, 2016 Nearly 200 researchers from more than 100 companies and representing 16 countries attended the 7th annual PV Module Reliability ...

  1. Development of a Dispatchable PV Peak Shainv System. PV: Bonus Program - Phase 1 Report. Volume 1

    SciTech Connect (OSTI)

    1995-10-01

    This report summarizes the work performed by Delmarva Power and Light and its subcontractors in Phase 1 of the US Department of Energy's PV:BONUS Program. The purpose of the program is to develop products and systems for buildings which utilize photovoltaic (N) technology. Beginning with a cooperative research effort with the University of Delaware's Center for Energy and Environmental Policy Research Delmarva Power developed and demonstrated the concept of Dispatchable PV Peak Shaving. This concept and the system which resulted horn the development work are unique from other grid-connected PV systems because it combines a PV, battery energy storage, power conversion and control technologies into an integrated package. Phase 1 began in July 1993 with the installation of a test and demonstration system at Delmarva's Northern Division General Office building near Newark, Delaware. Following initial testing throughout the summer and fall of 1993, significant modifications were made under an amendment to the DOE contract. Work on Phase 1 concluded in the early spring of 1995. Significant progress towards the goal of commercializing the system was made during Phase 1, and is summarized. Based on progress in Phase 1, a proposal to continue the work in Phase 2 was submitted to the US DOE in May 1995. A contract amendment and providing funds for the Phase 2 work is expected in July 1995.

  2. Comparison of a Recurrent Neural Network PV System Model with a Traditional Component-Based PV System Model

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a Recurrent Neural Network PV System Model with a Traditional Component-Based PV System Model Daniel Riley, Sandia National Laboratories, Albuquerque, New Mexico, USA | Ganesh K. Venayagamoorthy, Missouri University of Science and Technology, Rolla, Missouri, USA Abstract Traditional PV system modeling approaches require system components to be tested in order to determine performance parameters. In some cases, system owners may wish to predict system performance, but lack the parameters

  3. Strategic Sequencing for State Distributed PV Policies: A Quantitative Analysis of Policy Impacts and Interactions

    SciTech Connect (OSTI)

    Doris, E.; Krasko, V.A.

    2012-10-01

    State and local policymakers show increasing interest in spurring the development of customer-sited distributed generation (DG), in particular solar photovoltaic (PV) markets. Prompted by that interest, this analysis examines the use of state policy as a tool to support the development of a robust private investment market. This analysis builds on previous studies that focus on government subsidies to reduce installation costs of individual projects and provides an evaluation of the impacts of policies on stimulating private market development.

  4. Improving Data Transparency for the Distributed PV Interconnection Process: Emergent Utility Practices and State Requirements Transcript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data Transparency for the Distributed PV Page 1 of 21 Interconnection Process Emergent Utility Practices and State Requirements Kristen Adrani, Emerson Reiter, Joslyn Sato, Michael Conway Page 1 of 21 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us for today's quarterly meeting of the Distributed Generation Interconnection Collaborative, or the DGIC. My name is Kristen Ardani. I'm a solar analyst here at NREL and I'll be moderating today's discussion. The topic for today

  5. Grid-tied PV battery systems.

    SciTech Connect (OSTI)

    Barrett, Keith Phillip; Gonzalez, Sigifredo; Hund, Thomas D.

    2010-09-01

    Grid tied PV energy smoothing was implemented by using a valve regulated lead-acid (VRLA) battery as a temporary energy storage device to both charge and discharge as required to smooth the inverter energy output from the PV array. Inverter output was controlled by the average solar irradiance over the previous 1h time interval. On a clear day the solar irradiance power curve is offset by about 1h, while on a variable cloudy day the inverter output power curve will be smoothed based on the average solar irradiance. Test results demonstrate that this smoothing algorithm works very well. Battery state of charge was more difficult to manage because of the variable system inefficiencies. Testing continued for 30-days and established consistent operational performance for extended periods of time under a wide variety of resource conditions. Both battery technologies from Exide (Absolyte) and East Penn (ALABC Advanced) proved to cycle well at a Partial state of charge over the time interval tested.

  6. Performance of improved magnetostrictive vibrational power generator, simple and high power output for practical applications

    SciTech Connect (OSTI)

    Ueno, Toshiyuki

    2015-05-07

    Vibration based power generation technology is utilized effectively in various fields. Author has invented novel vibrational power generation device using magnetostrictive material. The device is based on parallel beam structure consisting of a rod of iron-gallium alloy wound with coil and yoke accompanied with permanent magnet. When bending force is applied on the tip of the device, the magnetization inside the rod varies with induced stress due to the inverse magnetostrictive effect. In vibration, the time variation of the magnetization generates voltage on the wound coil. The magnetostrictive type is advantageous over conventional such using piezoelectric or moving magnet types in high efficiency and high robustness, and low electrical impedance. Here, author has established device configuration, simple, rigid, and high power output endurable for practical applications. In addition, the improved device is lower cost using less volume of Fe-Ga and permanent magnet compared to our conventional, and its assembly by soldering is easy and fast suitable for mass production. Average power of 3 mW/cm{sup 3} under resonant vibration of 212 Hz and 1.2 G was obtained in miniature prototype using Fe-Ga rod of 2 × 0.5× 7 mm{sup 3}. Furthermore, the damping effect was observed, which demonstrates high energy conversion of the generator.

  7. Application of Gene-Shuffling for the Rapid Generation of Novel [FeFe]-Hydrogenase Libraries

    SciTech Connect (OSTI)

    Nagy, L. E.; Meuser, J. E.; Plummer, S.; Seibert, M.; Ghirardi, M. L.; King, P. W.; Ahmann, D.; Posewitz, M. C.

    2007-01-01

    A gene-shuffling technique was identified, optimized and used to generate diverse libraries of recombinant [FeFe]-hydrogenases. Six native [FeFe]-hydrogenase genes from species of Clostridia were first cloned and separately expressed in Escherichia coli concomitantly with the assembly proteins required for [FeFe]-hydrogenase maturation. All enzymes, with the exception of C. thermocellum HydA, exhibited significant activity when expressed. Single-stranded DNA fragments from genes encoding the two most active [FeFe]-hydrogenases were used to optimize a gene-shuffling protocol and generate recombinant enzyme libraries. Random sampling demonstrates that several shuffled products are active. This represents the first successful application of gene-shuffling using hydrogenases. Moreover, we demonstrate that a single set of [FeFe]-hydrogenase maturation proteins is sufficient for the heterologous assembly of the bioinorganic active site of several native and shuffled [FeFe]-hydrogenases.

  8. Final Technical Report - Photovoltaics for You (PV4You) Program

    SciTech Connect (OSTI)

    Weissman, J. M.; Sherwood, L.; Pulaski, J.; Cook, C.; Kalland, S.; Haynes, J.

    2005-08-14

    In September 2000, the Interstate Renewable Energy Council (IREC) began its 5-year work on contract # DE-FGO3-00SF22116, the Photovoltaics for You (PV4You) Project. The objective was to develop and distribute information on photovoltaics and to educate key stakeholder groups including state government agencies, local government offices, consumer representative agencies, school officials and students, and Million Solar Roofs Partnerships. In addition, the project was to identify barriers to the deployment of photovoltaics and implement strategies to overcome them. Information dissemination and education was accomplished by publishing newsletters; creating a base of information, guides, and models on the www.irecusa.org and the www.millionsolarroofs.org web sites; convening workshops and seminars; engaging multiple stakeholders; and widening the solar network to include new consumers and decision makers. Two major web sites were maintained throughout the project cycle. The www.irecusa.org web site housed dedicated pages for Connecting to the Grid, Schools Going Solar, Community Outreach, and Certification & Training. The www.millionsolarroofs.org web site was created to serve the MSR Partnerships with news, interviews, key documents, and resource material. Through the course of this grant, the Interstate Renewable Energy Council has been supporting the Department of Energy's solar energy program goals by providing the Department with expertise services for their network of city, state, and community stakeholders. IREC has been the leading force at the state and federal levels regarding net metering and interconnection policy for photovoltaic systems. The principal goal and benefit of the interconnection and net metering work is to lower both barriers and cost for the installation of PV. IREC typically plays a leadership role among small generator stakeholders and has come to be relied upon for its expertise by industry and regulators. IREC also took a leadership

  9. U.S. Department of Energy PV Roadmaps | Open Energy Information

    Open Energy Info (EERE)

    PV Roadmaps Jump to: navigation, search Logo: U.S. Department of Energy PV Roadmaps Name U.S. Department of Energy PV Roadmaps AgencyCompany Organization United States Department...

  10. Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress Presented at the PV Module ...

  11. Impact of residential PV adoption on Retail Electricity Rates

    SciTech Connect (OSTI)

    Cai, DWH; Adlakha, S; Low, SH; De Martini, P; Chandy, KM

    2013-11-01

    The price of electricity supplied from home rooftop photo voltaic (PV) solar cells has fallen below the retail price of grid electricity in some areas. A number of residential households have an economic incentive to install rooftop PV systems and reduce their purchases of electricity from the grid. A significant portion of the costs incurred by utility companies are fixed costs which must be recovered even as consumption falls. Electricity rates must increase in order for utility companies to recover fixed costs from shrinking sales bases. Increasing rates will, in turn, result in even more economic incentives for customers to adopt rooftop PV. In this paper, we model this feedback between PV adoption and electricity rates and study its impact on future PV penetration and net-metering costs. We find that the most important parameter that determines whether this feedback has an effect is the fraction of customers who adopt PV in any year based solely on the money saved by doing so in that year, independent of the uncertainties of future years. These uncertainties include possible changes in rate structures such as the introduction of connection charges, the possibility of PV prices dropping significantly in the future, possible changes in tax incentives, and confidence in the reliability and maintainability of PV. (C) 2013 Elsevier Ltd. All rights reserved.

  12. Innovative Ballasted Flat Roof Solar PV Racking System

    SciTech Connect (OSTI)

    Peek, Richard T.

    2015-01-23

    The objective of this project was to reduce the cost of racking for PV solar on flat commercial rooftops. Cost reductions would come from both labor savings and material savings related to the installation process. The rack would need to accommodate the majority of modules available on the market. Cascade Engineering has a long history of converting traditional metal type applications over to plastic. Injection molding of plastics have numerous advantages including selection of resin for the application, placing the material exactly where it is needed, designing in features that will speed up the installation process, and weight reduction of the array. A plastic rack would need to meet the requirements of UL2703, Mounting systems, mounting devices, clamping/retention devices, and ground lugs for use with flat-plate photovoltaic modules and panels. Comparing original data to the end of project racking design, racking material costs were reduced 50% and labor costs reduced 64%. The racking product accommodates all 60 and 72 cell panels on the market, meets UL2703 requirements, contributes only 1.3 pounds per square foot of weight to the array, requires little ballast to secure the array, automatically grounds the module when the module is secured, stacks/nests well for shipping/fewer lifts to the roof, provides integrated wire routing, allows water to drain on the roof, and accommodates various seismic roof connections. Project goals were achieved as noted in the original funding application.

  13. Exact calculation of the time convolutionless master equation generator: Application to the nonequilibrium resonant level model

    SciTech Connect (OSTI)

    Kidon, Lyran; Wilner, Eli Y.; Rabani, Eran

    2015-12-21

    The generalized quantum master equation provides a powerful tool to describe the dynamics in quantum impurity models driven away from equilibrium. Two complementary approaches, one based on Nakajima–Zwanzig–Mori time-convolution (TC) and the other on the Tokuyama–Mori time-convolutionless (TCL) formulations provide a starting point to describe the time-evolution of the reduced density matrix. A key in both approaches is to obtain the so called “memory kernel” or “generator,” going beyond second or fourth order perturbation techniques. While numerically converged techniques are available for the TC memory kernel, the canonical approach to obtain the TCL generator is based on inverting a super-operator in the full Hilbert space, which is difficult to perform and thus, nearly all applications of the TCL approach rely on a perturbative scheme of some sort. Here, the TCL generator is expressed using a reduced system propagator which can be obtained from system observables alone and requires the calculation of super-operators and their inverse in the reduced Hilbert space rather than the full one. This makes the formulation amenable to quantum impurity solvers or to diagrammatic techniques, such as the nonequilibrium Green’s function. We implement the TCL approach for the resonant level model driven away from equilibrium and compare the time scales for the decay of the generator with that of the memory kernel in the TC approach. Furthermore, the effects of temperature, source-drain bias, and gate potential on the TCL/TC generators are discussed.

  14. Interconnection Assessment Methodology and Cost Benefit Analysis for High-Penetration PV Deployment in the Arizona Public Service System

    SciTech Connect (OSTI)

    Baggu, Murali; Giraldez, Julieta; Harris, Tom; Brunhart-Lupo, Nicholas; Lisell, Lars; Narang, David

    2015-06-14

    In an effort to better understand the impacts of high penetrations of photovoltaic (PV) generators on distribution systems, Arizona Public Service and its partners completed a multi-year project to develop the tools and knowledge base needed to safely and reliably integrate high penetrations of utility- and residential-scale PV. Building upon the APS Community Power Project-Flagstaff Pilot, this project investigates the impact of PV on a representative feeder in northeast Flagstaff. To quantify and catalog the effects of the estimated 1.3 MW of PV that will be installed on the feeder (both smaller units at homes and large, centrally located systems), high-speed weather and electrical data acquisition systems and digital 'smart' meters were designed and installed to facilitate monitoring and to build and validate comprehensive, high-resolution models of the distribution system. These models are being developed to analyze the impacts of PV on distribution circuit protection systems (including coordination and anti-islanding), predict voltage regulation and phase balance issues, and develop volt/VAr control schemes. This paper continues from a paper presented at the 2014 IEEE PVSC conference that described feeder model evaluation and high penetration advanced scenario analysis, specifically feeder reconfiguration. This paper presents results from Phase 5 of the project. Specifically, the paper discusses tool automation; interconnection assessment methodology and cost benefit analysis.

  15. Innovations in Wind and Solar PV Financing

    SciTech Connect (OSTI)

    Cory, K.; Coughlin, J.; Jenkin, T.; Pater, J.; Swezey, B.

    2008-02-01

    There is growing national interest in renewable energy development based on the economic, environmental, and security benefits that these resources provide. Historically, greater development of our domestic renewable energy resources has faced a number of hurdles, primarily related to cost, regulation, and financing. With the recent sustained increase in the costs and associated volatility of fossil fuels, the economics of renewable energy technologies have become increasingly attractive to investors, both large and small. As a result, new entrants are investing in renewable energy and new business models are emerging. This study surveys some of the current issues related to wind and solar photovoltaic (PV) energy project financing in the electric power industry, and identifies both barriers to and opportunities for increased investment.

  16. Analytical Improvements in PV Degradation Rate Determination

    SciTech Connect (OSTI)

    Jordan, D. C.; Kurtz, S. R.

    2011-02-01

    As photovoltaic (PV) penetration of the power grid increases, it becomes vital to know how decreased power output may affect cost over time. In order to predict power delivery, the decline or degradation rates must be determined accurately. For non-spectrally corrected data several complete seasonal cycles (typically 3-5 years) are required to obtain reasonably accurate degradation rates. In a rapidly evolving industry such a time span is often unacceptable and the need exists to determine degradation rates accurately in a shorter period of time. Occurrence of outliers and data shifts are two examples of analytical problems leading to greater uncertainty and therefore to longer observation times. In this paper we compare three methodologies of data analysis for robustness in the presence of outliers, data shifts and shorter measurement time periods.

  17. SUSTAINABLE AND HOLISTIC INTEGRATION OF ENERGY STORAGE AND SOLAR PV (SHINES)

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Sustainable and Holistic Integration of Energy Storage and Solar PV (SHINES) program develops and demonstrates integrated photovoltaic (PV) and energy storage solutions that are scalable,...

  18. Utility Scale PV Perspective on SunShot Progress and Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Utility Scale PV Perspective on SunShot Progress and Opportunities Utility Scale PV Perspective on SunShot Progress and Opportunities These slides correspond to a presentation ...

  19. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects...

    Office of Environmental Management (EM)

    The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy...

  20. Linkage to Previous International PV Module QA Task Force Workshops; Proposal for Rating System (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.; Kondo, M.

    2013-05-01

    This presentation gives the historical background of the creation of the International PV QA Task Force as an introduction to the PV Module Reliability Workshop.

  1. Design, Fabrication, and Certification of Advanced Modular PV Power Systems Final Technical Progress Report

    SciTech Connect (OSTI)

    Lambarski, T.; Minyard, G.

    1998-10-06

    This report describes the overall accomplishments and benefits of Solar Electric Specialties Co. (SES) under this Photovoltaic Manufacturing Technology (PVMaT) subcontract. SES addressed design issues related to their modular autonomous PV power supply (MAPPS) and a mobile photogenset. MAPPS investigations included gel-cell batteries mounted horizontally; redesign of the SES power supply; modified battery enclosure for increased safety and reduced cost; programmable, interactive battery charge controllers; and UL and FM listings. The photogenset systems incorporate generators, battery storage, and PV panels for a mobile power supply. The unit includes automatic oil-change systems for the propane generators, collapsible array mounts for the PV enclosure, and internal stowage of the arrays. Standardizing the products resulted in product lines of MAPPS and Photogensets that can be produced more economically and with shorter lead times, while increasing product quality and reliability. Product assembly and quality control have also been improved and streamlined with the development of standardized assembly processes and QC testing procedures. SES offers the UL-listed MAPPS at about the same price as its previous non-standardized, unlisted products.

  2. Applications of automatic mesh generation and adaptive methods in computational medicine

    SciTech Connect (OSTI)

    Schmidt, J.A.; Macleod, R.S.; Johnson, C.R.; Eason, J.C.

    1995-12-31

    Important problems in Computational Medicine exist that can benefit from the implementation of adaptive mesh refinement techniques. Biological systems are so inherently complex that only efficient models running on state of the art hardware can begin to simulate reality. To tackle the complex geometries associated with medical applications we present a general purpose mesh generation scheme based upon the Delaunay tessellation algorithm and an iterative point generator. In addition, automatic, two- and three-dimensional adaptive mesh refinement methods are presented that are derived from local and global estimates of the finite element error. Mesh generation and adaptive refinement techniques are utilized to obtain accurate approximations of bioelectric fields within anatomically correct models of the heart and human thorax. Specifically, we explore the simulation of cardiac defibrillation and the general forward and inverse problems in electrocardiography (ECG). Comparisons between uniform and adaptive refinement techniques are made to highlight the computational efficiency and accuracy of adaptive methods in the solution of field problems in computational medicine.

  3. NREL PV AR D 11th review meeting, May 13--15, 1992, Denver Marriott City Center, Denver, Colorado

    SciTech Connect (OSTI)

    Not Available

    1992-01-01

    This is a collection of abstracts from papers presented at the National Renewable Energy Laboratory (NREL) Photovoltaic (PV) research and development review meeting held May 1992. Subject areas covered include solar cell and solar module manufacturing and development, materials, polycrystalline thin films, applications, amorphous silicon, solar cell performance and testing, crystalline silicon and other photovoltaic and safety perspectives. (GHH)

  4. Electricity storage for grid-connected household dwellings with PV panels

    SciTech Connect (OSTI)

    Mulder, Grietus; Six, Daan; Ridder, Fjo De

    2010-07-15

    Classically electricity storage for PV panels is mostly designed for stand-alone applications. In contrast, we focus in this article on houses connected to the grid with a small-scale storage to store a part of the solar power for postponed consumption within the day or the next days. In this way the house owner becomes less dependent on the grid and does only pay for the net shortage of his energy production. Local storage solutions pave the way for many new applications like omitting over-voltage of the line and bridging periods of power-line black-out. Since 2009 using self-consumption of PV energy is publicly encouraged in Germany, which can be realised by electric storage. This paper develops methods to determine the optimal storage size for grid-connected dwellings with PV panels. From measurements in houses we were able to establish calculation rules for sizing the storage. Two situations for electricity storage are covered: - the storage system is an optimum to cover most of the electricity needs; - it is an optimum for covering the peak power need of a dwelling. After these calculation rules a second step is needed to determine the size of the real battery. The article treats the aspects that should be taken into consideration before buying a specific battery like lead-acid and lithium-ion batteries. (author)

  5. Precise Application of Transparent Conductive Oxide Coatings for Flat Panel

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Displays and Photovoltaic Cells | Argonne National Laboratory Precise Application of Transparent Conductive Oxide Coatings for Flat Panel Displays and Photovoltaic Cells Technology available for licensing: New transparent conducting oxide (TCO) coatings are deposited using atomic layer deposition (ALD). Provides uniform coating of complex, 3D nanostructures such as electrodes for next-generation PV cells Improved coating precision uses less material and reduces cost PDF icon

  6. PV Validation and Bankability Workshop: San Jose, California

    SciTech Connect (OSTI)

    Granata, J.; Howard, J.

    2011-12-01

    This report is a collaboration between Sandia National Laboratories, the National Renewable Energy Laboratory, and the Florida Solar Energy Center (FSEC). The report provides feedback from the U.S. Department of Energy's (DOE) Solar Program PV Validation and Bankability Workshop in San Jose, California on August 31, 2011. It focuses on the current state of PV in the United States, private funding to fund U.S. PV industry growth, roles and functions of the regional test center program, and ways to improve the current validation and bankability practices.

  7. Potential Applications for Nuclear Energy besides Electricity Generation: AREVA Global Perspective of HTR Potential Market

    SciTech Connect (OSTI)

    Soutworth, Finis; Gauthier, Jean-Claude; Lecomte, Michel; Carre, Franck

    2007-07-01

    Energy supply is increasingly showing up as a major issue for electricity supply, transportation, settlement, and process heat industrial supply including hydrogen production. Nuclear power is part of the solution. For electricity supply, as exemplified in Finland and France, the EPR brings an immediate answer; HTR could bring another solution in some specific cases. For other supply, mostly heat, the HTR brings a solution inaccessible to conventional nuclear power plants for very high or even high temperature. As fossil fuels costs increase and efforts to avoid generation of Greenhouse gases are implemented, a market for nuclear generated process heat will develop. Following active developments in the 80's, HTR have been put on the back burner up to 5 years ago. Light water reactors are widely dominating the nuclear production field today. However, interest in the HTR technology was renewed in the past few years. Several commercial projects are actively promoted, most of them aiming at electricity production. ANTARES is today AREVA's response to the cogeneration market. It distinguishes itself from other concepts with its indirect cycle design powering a combined cycle power plant. Several reasons support this design choice, one of the most important of which is the design flexibility to adapt readily to combined heat and power applications. From the start, AREVA made the choice of such flexibility with the belief that the HTR market is not so much in competition with LWR in the sole electricity market but in the specific added value market of cogeneration and process heat. In view of the volatility of the costs of fossil fuels, AREVA's choice brings to the large industrial heat applications the fuel cost predictability of nuclear fuel with the efficiency of a high temperature heat source free of greenhouse gases emissions. The ANTARES module produces 600 MWth which can be split into the required process heat, the remaining power drives an adapted prorated

  8. Smart Applications Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Co Ltd Jump to: navigation, search Name: Smart Applications Co Ltd Place: Cheonan, South Chungcheong, Korea (Republic) Product: Korean manufacturer of PV ingots and wafers; other...

  9. NREL: Photovoltaics Research - Materials Applications and Performance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    about the scientists specializing in each area of PV research: National Center for Photovoltaics research staff Materials Applications and Performance research staff Materials...

  10. Application and development of technologies for engine-condition-based maintenance of emergency diesel generators

    SciTech Connect (OSTI)

    Choi, K. H.; Sang, G.; Choi, L. Y. S.; Lee, B. O.

    2012-07-01

    The emergency diesel generator (EDG) of a nuclear power plant has the role of supplying emergency electric power to protect the reactor core system in the event of the loss of offsite power supply. Therefore, EDGs should be subject to periodic surveillance testing to verify their ability to supply specified frequencies and voltages at design power levels within a limited time. To maintain optimal reliability of EDGs, condition monitoring/diagnosis technologies must be developed. Changing from periodic disassemble maintenance to condition-based maintenance (CBM) according to predictions of equipment condition is recommended. In this paper, the development of diagnosis technology for CBM and the application of a diesel engine condition-analysis system are described. (authors)

  11. Application of active quenching of second generation wire for current limiting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Solovyov, Vyacheslav F.; Li, Qiang

    2015-10-19

    Superconducting fault current limiters (SFCL's) are increasingly implemented in the power grid as a protection of substation equipment from fault currents. Resistive SFCL's are compact and light, however they are passively triggered and thus may not be sufficiently sensitive to respond to faults in the distribution grid. Here, we explore the prospect of adding an active management feature to a traditional resistive SFCL. A flexible radio-frequency coil, which is an integral part of the switching structure, acts as a triggering device. We show that the application of a short, 10 ms, burst of ac magnetic field during the fault triggersmore » a uniform quench of the wire and significantly reduces the reaction time of the wire at low currents. The ac field burst generates a high density of normal zones, which merge into a continuous resistive region at a rate much faster than that of sparse normal zones created by the transport current alone.« less

  12. Application of active quenching of second generation wire for current limiting

    SciTech Connect (OSTI)

    Solovyov, Vyacheslav F.; Li, Qiang

    2015-10-19

    Superconducting fault current limiters (SFCL's) are increasingly implemented in the power grid as a protection of substation equipment from fault currents. Resistive SFCL's are compact and light, however they are passively triggered and thus may not be sufficiently sensitive to respond to faults in the distribution grid. Here, we explore the prospect of adding an active management feature to a traditional resistive SFCL. A flexible radio-frequency coil, which is an integral part of the switching structure, acts as a triggering device. We show that the application of a short, 10 ms, burst of ac magnetic field during the fault triggers a uniform quench of the wire and significantly reduces the reaction time of the wire at low currents. The ac field burst generates a high density of normal zones, which merge into a continuous resistive region at a rate much faster than that of sparse normal zones created by the transport current alone.

  13. Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

    SciTech Connect (OSTI)

    2012-01-25

    Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’s new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.

  14. Parallel Application Performance on Two Generations of Intel Xeon HPC Platforms

    SciTech Connect (OSTI)

    Chang, Christopher H.; Long, Hai; Sides, Scott; Vaidhynathan, Deepthi; Jones, Wesley

    2015-10-15

    Two next-generation node configurations hosting the Haswell microarchitecture were tested with a suite of microbenchmarks and application examples, and compared with a current Ivy Bridge production node on NREL" tm s Peregrine high-performance computing cluster. A primary conclusion from this study is that the additional cores are of little value to individual task performance--limitations to application parallelism, or resource contention among concurrently running but independent tasks, limits effective utilization of these added cores. Hyperthreading generally impacts throughput negatively, but can improve performance in the absence of detailed attention to runtime workflow configuration. The observations offer some guidance to procurement of future HPC systems at NREL. First, raw core count must be balanced with available resources, particularly memory bandwidth. Balance-of-system will determine value more than processor capability alone. Second, hyperthreading continues to be largely irrelevant to the workloads that are commonly seen, and were tested here, at NREL. Finally, perhaps the most impactful enhancement to productivity might occur through enabling multiple concurrent jobs per node. Given the right type and size of workload, more may be achieved by doing many slow things at once, than fast things in order.

  15. Design, fabrication, and certification of advanced modular PV power systems. Final technical progress report

    SciTech Connect (OSTI)

    Lambarski, T.; Minyard, G.

    1998-10-01

    Solar Electric Specialties Company (SES) has completed a two and a half year effort under the auspices of the US Department of Energy (DOE) PVMaT (Photovoltaic Manufacturing Technology) project. Under Phase 4A1 of the project for Product Driven System and Component Technology, the SES contract ``Design, Fabrication and Certification of Advanced Modular PV Power Systems`` had the goal to reduce installed system life cycle costs through development of certified (Underwriters Laboratories or other listing) and standardized prototype products for two of the product lines, MAPPS{trademark} (Modular Autonomous PV Power Supply) and Photogensets{trademark}. MAPPS are small DC systems consisting of Photovoltaic modules, batteries and a charge controller and producing up to about a thousand watt-hours per day. Photogensets are stand-alone AC systems incorporating a generator as backup for the PV in addition to a DC-AC inverter and battery charger. The program tasks for the two-year contract consisted of designing and fabricating prototypes of both a MAPPS and a Photogenset to meet agency listing requirements using modular concepts that would support development of families of products, submitting the prototypes for listing, and performing functionality testing at Sandia and NREL. Both prototypes were candidates for UL (Underwriters Laboratories) listing. The MAPPS was also a candidate for FM (Factory Mutual) approval for hazardous (incendiary gases) locations.

  16. Final Report- Transforming PV installations toward dispatchable, schedulable energy solutions

    Office of Energy Efficiency and Renewable Energy (EERE)

    Awardee: AE Solar EnergyLocation: Bend, ORSubprogram: Systems IntegrationFunding Program: SEGIS-ACProject: Transforming PV installations toward dispatchable, schedulable energy solutionsPrincipal...

  17. PV Technologies India Ltd Moser Baer Solar Plc | Open Energy...

    Open Energy Info (EERE)

    India Ltd Moser Baer Solar Plc Jump to: navigation, search Name: PV Technologies India Ltd (Moser Baer Solar Plc) Place: New Delhi, Delhi (NCT), India Zip: 110020 Product: One of...

  18. Taunton Municipal Lighting Plant- Residential PV Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Customers of Taunton Municipal Lighting Plant (TMLP) may be eligible for a $1.50/watt rebate on solar photovoltaic (PV) installations, up to a maximum rebate of $4,500. The system must be installed...

  19. City of Shasta Lake Electric Utility- PV Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    City of Shasta Lake Electric Utility is providing rebates to their customers for the purchase of photovoltaic (PV) systems. The rebate levels will decrease annually over the life of the program. ...

  20. Agenda for the PV Module Reliability Workshop, February 26 -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PID Failure of c-Si and Thin-Film Modules and Possible Correlation with Leakage Currents Comparing Accelerated Testing and Outdoor Exposure Study on PID Resistance of HIT PV ...

  1. AEP Texas Central Company - SMART Source Solar PV Rebate Program...

    Broader source: Energy.gov (indexed) [DOE]

    from the date of installation. PV modules must be new and certified to UL 1703, and inverters must be new and certified to UL 1741. All installations must be performed service...

  2. Utility Participation in the Rooftop Solar PV Market Transcript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... systems that we're installing are identical to grid ... reducing the impact of cost shift from solar to non-solar customers ... 3.5 megawatts of PV panels and hundreds of ...

  3. Instrumentation for Evaluating PV System Performance Losses from Snow

    SciTech Connect (OSTI)

    Marion, B.; Rodriguez, J.; Pruett, J.

    2009-01-01

    When designing a photovoltaic (PV) system for northern climates, the prospective installation should be evaluated with respect to the potentially detrimental effects of snow preventing solar radiation from reaching the PV cells. The extent to which snow impacts performance is difficult to determine because snow events also increase the uncertainty of the solar radiation measurement, and the presence of snow needs to be distinguished from other events that can affect performance. This paper describes two instruments useful for evaluating PV system performance losses from the presence of snow: (1) a pyranometer with a heater to prevent buildup of ice and snow, and (2) a digital camera for remote retrieval of images to determine the presence of snow on the PV array.

  4. Tucson's Solar Experience: Developing PV with RFPs and PPAs

    Broader source: Energy.gov [DOE]

    This presentation was given January 15, 2013, by Bruce Plenk, Solar Coordinator for the City of Tucson, Arizona, as part of the CommRE Developing PV Projects With RFPs and PPAs webinar.

  5. Full Steam Ahead for PV in US Homes?

    SciTech Connect (OSTI)

    Bolinger, Mark A; Barbose, Galen; Wiser, Ryan

    2009-01-15

    In October 2008, the United States Congress extended both the residential and commercial solar investment tax credits (ITCs) for an unprecedented eight years, lifted the $2,000 cap on the residential credit, removed the prohibition on utility use of the commercial credit, and eliminated restrictions on the use of both credits in conjunction with the Alternative Minimum Tax. These significant changes, which apply to systems placed in service on or after January 1, 2009, will increase the value of the solar credits for residential system owners in particular, and are likely--in conjunction with state, local, and utility rebate programs targeting solar--to spur significant growth in residential, commercial, and utility-scale photovoltaic (PV) installations in the years ahead. This article focuses specifically on the residential credit, describing three areas in which removal of the $2,000 cap on the residential ITC will have significant implications for PV rebate program administrators, PV system owners, and the PV industry.

  6. Yangrui PV Technology Fujian Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    (Fujian) Co Ltd Place: Fujian Province, China Product: Involved in the production of a-Si thin-film cells using a turnkey technology supplier. References: Yangrui PV Technology...

  7. Giant Leap Forward Toward Quality Assurance of PV Modules (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.; Wohlgemuth, J.; Sample, T.; Yamamichi, M.

    2012-03-01

    The presentation describes the composition of and motivation for the International PV QA Task Force, then describes the presentations and discussion that occurred at the workshop on Feb. 29th, 2012.

  8. U.S. PV-Suitable Rooftop Resources

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Phillips, Caleb; Melius, Jenny

    2016-06-14

    This dataset contains zipcode resolution estimates of suitable area on small (1,000-5,000 m^2), medium (5,000-10,000 m^2) and large (>10,000 m^2) buildings' rooftops for PV deployment.

  9. Interconnecting PV on New York City's Secondary Network Distribution System

    SciTech Connect (OSTI)

    Anderson, K.; Coddington, M.; Burman, K.; Hayter, S.; Kroposki, B.; Watson, A.

    2009-12-01

    This study describes technical assistance provided by NREL to help New York City and Con Edison improve the interconnection of distributed PV systems on a secondary network distribution system.

  10. Anaheim Public Utilities- PV Buydown Program

    Broader source: Energy.gov [DOE]

    Next Solar Rebate Application period will take place May 14, 2015 (8:00am) through May 28, 2015 (5:00pm). Rebate applications will be awarded via lottery if total applications exceeds budget. 

  11. NREL, SolarCity Complete Experimental Evaluation of PV Inverter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios | Energy Systems Integration | NREL NREL, SolarCity Complete Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios First known work using actual hardware to examine scenarios with multiple solar photovoltaic inverters connected to multiple different points on the grid July 26, 2016 Distributed energy resources (DERs) such as solar photovoltaic (PV)

  12. NREL, SolarCity Complete Experimental Evaluation of PV Inverter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios | Grid Modernization | NREL NREL, SolarCity Complete Experimental Evaluation of PV Inverter Anti-Islanding with Grid Support Functions in Multi-Inverter Island Scenarios First known work using actual hardware to examine scenarios with multiple solar photovoltaic inverters connected to multiple different points on the grid July 26, 2016 Distributed energy resources (DERs) such as solar photovoltaic (PV) systems have

  13. NREL: Photovoltaics Research - Solar PV Recycling Identified as Untapped

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Business Opportunity Solar PV Recycling Identified as Untapped Business Opportunity June 27, 2016 A new report, End-of-Life Management: Solar Photovoltaic Panels, highlights that recycling or repurposing solar PV panels at the end of their roughly 30-year lifetime can unlock a large stock of raw materials and other valuable components. The report, co-authored by NREL, the International Renewable Energy Agency (IRENA) and the International Energy Agency's Photovoltaic Power Systems Programme

  14. Device Tosses Out Unusable PV Wafers - News Feature | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Device Tosses Out Unusable PV Wafers January 11, 2013 Photo of a scientist in safety glasses using tweezers to hold a rectangular gray silicon wafer. He is about to load it into a large silver-metallic instrument. Enlarge image NREL postdoctoral scientist Rene Rivero readies a wafer for the Silicon Photovoltaic Wafer Screening System. Credit: Dennis Schroeder Silicon wafers destined to become photovoltaic (PV) cells can take a bruising through assembly lines, as they are oxidized, annealed,

  15. Distributed PV Interconnection Screening Procedures and Online Tools

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Distributed PV Interconnection Screening Procedures and Online Tools" Joel Dickinson with Salt River Project Solar Initiatives Group August 27, 2014 2 Speakers Joel Dickinson Sr. Engineer Salt River Project Kristen Ardani Solar Analyst National Renewable Energy Laboratory (DGIC moderator) August 27th, 2014 Joel Dickinson, P.E. Sr. Engineer Solar Initiatives Distributed PV Interconnection Screening and Online Tools Salt River Project  Established in 1903 after Theodore Roosevelt signed

  16. Time-dependent first-principles approaches to PV materials

    SciTech Connect (OSTI)

    Miyamoto, Yoshiyuki

    2013-12-10

    Computational scheme for designing photovoltaic (PV) materials is presented. First-principles electron dynamics of photo-excitation and subsequent electron-hole splitting is performed based on the time-dependent density functional theory. Photo-induced enhancement of dipole moment was observed in a polar crystal and a donor-acceptor molecular pair. These experiences will pave a way to design PV material from first-principles simulations.

  17. Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Enhanced Modeling and Monitoring Tools for Distributed PV Interconnection Page 1 of 27 Kristen Ardani, Rick Thompson, Mark Rawson, David Pinney Page 1 of 27 [Speaker: Kristen Ardani] Cover Slide: Thank you everyone for joining us today for the DG Interconnection Collaborative's informational webinar. The focus of today's presentation will be on enhanced modeling and monitoring tools for distributed PV interconnection. We have a guest speaker from Green Tech Media (GTM) today, Rick Thompson. So

  18. PV Module Intraconnect Thermomechanical Durability Damage Prediction Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy Module Intraconnect Thermomechanical Durability Damage Prediction Model PV Module Intraconnect Thermomechanical Durability Damage Prediction Model Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps2_dow_gaston.pdf (1.26 MB) More Documents & Publications FY2015 Status Report: CIRFT Testing of High-Burnup Used Nuclear Fuel Rods from Pressurized Water Reactor and BWR Environments 2014 Propulsion Materials R&D Annual

  19. DOE-LPO-MiniReport_PV_v10

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy's Loan Programs O ce (LPO) was instrumental in launching the utility-scale photovoltaic (PV) solar industry in the United States. In 2009, there was not a single PV solar facility larger than 100 megawatts (MW) operating in the United States. Despite growing demand for this clean, renewable energy source, developers faced challenges securing the financing necessary to build these large projects. LPO stepped in to address this market barrier by providing more than $4.6

  20. Integrating PV in Distributed Grids: Solutions and Technologies Workshop |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Systems Integration | NREL Integrating PV in Distributed Grids: Solutions and Technologies Workshop In October 2015, NREL's Energy Systems Integration team hosted a workshop on ways to safely integrate more photovoltaics (PV) onto the grid. The workshop was held at the Energy Systems Integration Facility. Presenters from industry, vendors, academia, NREL, and the U.S. Department of Energy participated in the workshops, bringing a broad perspective to the discussions. Below are

  1. Understanding the Temperature and Humidity Environment Inside a PV Module

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Presentation), NREL (National Renewable Energy Laboratory) | Department of Energy Understanding the Temperature and Humidity Environment Inside a PV Module (Presentation), NREL (National Renewable Energy Laboratory) Understanding the Temperature and Humidity Environment Inside a PV Module (Presentation), NREL (National Renewable Energy Laboratory) This PowerPoint presentation was originally given by Michael Kempe of NREL in February 2013 detailing a project funded by the SunShot Initiative.

  2. Integrating Solar PV into Energy Services Performance Contracts: Options

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Local Governments Nationwide | Department of Energy Integrating Solar PV into Energy Services Performance Contracts: Options for Local Governments Nationwide Integrating Solar PV into Energy Services Performance Contracts: Options for Local Governments Nationwide The guide contains several helpful resources, including a comprehensive list of the economic, operational, resilience, and sustainability-related benefits of entering into a performance contract and using that contract to invest

  3. PV Derived Data for Predicting Performance; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Marion, Bill

    2015-09-14

    A method is described for providing solar irradiance data for modeling PV performance by using measured PV performance data and back-solving for the unknown direct normal irradiance (DNI) and diffuse horizontal irradiance (DHI), which can then be used to model the performance of PV systems of any size, PV array tilt, or PV array azimuth orientation. Ideally situated for using the performance data from PV modules with micro-inverters, the PV module operating current is used to determine the global tilted irradiance (GTI), and a separation model is then used to determine the DNI and DHI from the GTI.

  4. Integrating High Penetrations of PV into Southern California

    SciTech Connect (OSTI)

    Kroposki, B.; Mather, B.; Hasper-Tuttle, J.; Neal, R.; Katiraei, F.; Yazdani, A.; Aguero, J. R.; Hoff, T. E.; Norris, B. L.; Parkins, A.; Seguin, R.; Schauder, C.

    2011-01-01

    California regulators recently approved a plan proposed by Southern California Edison (SCE) to install 500 MW of distributed photovoltaic (PV) energy in its utility service territory over the next 5 years. The installations will include 250 MW of utility-owned solar and 250 MW of independently owned solar. SCE expects that the majority of these systems will be commercial-scale rooftop PV systems connected at various points in the distribution system. Each of the SCE rooftop PV systems will typically have a rating of 1-3 MW. To understand the impact of high-penetration PV on the distribution grid, the National Renewable Energy Laboratory (NREL) and SCE brought together a team of experts in resource assessment, distribution modeling, and planning to help analyze the impacts of adding high penetration of PV into the distribution system. Through modeling and simulation, laboratory testing, and field demonstrations, the team will address the issues identified in the analysis by fully examining the challenges, developing solutions, and transitioning those solutions to the field for large-scale deployment. This paper gives an update on the project and discusses technical results of integrating a large number of distributed PV systems into the grid.

  5. Continuing Developments in PV Risk Management: Strategies, Solutions, and Implications

    SciTech Connect (OSTI)

    Lowder, T.; Mendelsohn, M.; Speer, B.; Hill, R.

    2013-02-01

    As the PV industry matures, successful risk management practices will become more imperative to ensure investor confidence, control costs, and facilitate further growth. This report discusses several key aspects of risk management during the commercial- and utility-scale project life cycle, from identification of risks, to the process of mitigating and allocating those risks among project parties, to transferring those risks through insurance. The report also explores novel techniques in PV risk management, options to offload risks onto the capital markets, and innovative insurance policies (namely warranty policies) that address risks unique to the PV sector. One of the major justifications for robust risk management in the PV industry is the cost-reduction opportunities it affords. If the PV industry can demonstrate the capability to successfully manage its risks, thereby inspiring confidence in financiers, it may be able to obtain a lower cost of capital in future transactions. A lower cost of capital translates to a lower cost of energy, which will in turn enhance PV?s competitiveness at a time when it will have to rely less on subsidies to support its market penetration.

  6. How Can We Make PV Modules Safer?: Preprint

    SciTech Connect (OSTI)

    Wohlgemuth, J. H.; Kurtz, S. R.

    2012-06-01

    Safety is a prime concern for the photovoltaics (PV) industry. As a technology deployed on residential and commercial buildings, it is critical that PV not cause damage to the buildings nor harm the occupants. Many of the PV systems on buildings are of sufficiently high voltage (300 to 600 Volts dc) that they may present potential hazards. These PV systems must be safe in terms of mechanical damage (nothing falls on someone), shock hazard (no risk of electrical shock when touching an exposed circuit element), and fire (the modules neither cause nor promote a fire). The present safety standards (IEC 61730 and UL 1703) do a good job of providing for design rules and test requirements for mechanical, shock, and spread of flame dangers. However, neither standard addresses the issue of electrical arcing within a module that can cause a fire. To make PV modules, they must be designed, built, and installed with an emphasis on minimizing the potential for open circuits and ground faults. This paper provides recommendations on redundant connection designs, robust mounting methods, and changes to the safety standards to yield safer PV modules.

  7. Lanai high-density irradiance sensor network for characterizing solar resource variability of MW-scale PV system.

    SciTech Connect (OSTI)

    Stein, Joshua S.; Johnson, Lars; Ellis, Abraham; Kuszmaul, Scott S.

    2012-01-01

    Sandia National Laboratories (Sandia) and SunPower Corporation (SunPower) have completed design and deployment of an autonomous irradiance monitoring system based on wireless mesh communications and a battery operated data acquisition system. The Lanai High-Density Irradiance Sensor Network is comprised of 24 LI-COR{reg_sign} irradiance sensors (silicon pyranometers) polled by 19 RF Radios. The system was implemented with commercially available hardware and custom developed LabVIEW applications. The network of solar irradiance sensors was installed in January 2010 around the periphery and within the 1.2 MW ac La Ola PV plant on the island of Lanai, Hawaii. Data acquired at 1 second intervals is transmitted over wireless links to be time-stamped and recorded on SunPower data servers at the site for later analysis. The intent is to study power and solar resource data sets to correlate the movement of cloud shadows across the PV array and its effect on power output of the PV plant. The irradiance data sets recorded will be used to study the shape, size and velocity of cloud shadows. This data, along with time-correlated PV array output data, will support the development and validation of a PV performance model that can predict the short-term output characteristics (ramp rates) of PV systems of different sizes and designs. This analysis could also be used by the La Ola system operator to predict power ramp events and support the function of the future battery system. This experience could be used to validate short-term output forecasting methodologies.

  8. EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 EXPERIENCES ON PID TESTING OF PV MODULES IN 2012 Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_htv_fraunhofer_dietrich.pdf (612.23 KB) More Documents & Publications PID-free C-Si PV Module Using Novel Chemically-Tempered Glass Potential Induced Degradation (PID) Tests for Commercially Available PV Modules Characterization of Dynamic Loads on Solar Modules with Respect to Fracture of Solar

  9. EERE Success Story-Raising the Bar for Quality PV Modules | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Raising the Bar for Quality PV Modules EERE Success Story-Raising the Bar for Quality PV Modules October 30, 2014 - 4:58pm Addthis As photovoltaics (PV) markets expand across the United States the manufacture of safe, reliable, and high-quality PV modules is critical to achieve cost competitive solar energy. Since the development and codification of testing standards for PV modules requires a lengthy multiyear process, Department of Energy's SunShot Initiative and National Renewable

  10. All-AC, building integrated PV system for mass deployment of residential PV systems

    SciTech Connect (OSTI)

    Kevin Cammack; Joe Augenbraun; Dan Sun

    2011-05-17

    Project Objective: Solar Red is developing novel PV installation methods and system designs that lower costs dramatically and allow seamless integration into the structure of any sloped roof using existing construction tools and processes. The overall objective of this project is to address the greatest barriers to massive adoption of residential and small commercial rooftop solar scalability of installation and total cost of ownership - by moving Solar Reds snap-in/snap-out PV installation method from the pre-prototype design phase to the development and construction of a deployed prototype system. Financial Summary: ? Funded through ARRA, DOE and Match Funding ? Original Project Budget: $229,310 o DOE/ARRA Funding: $150,000 o Match Funding: $79,310 ? Actual Cost: $216,598 o DOE/ARRA Funding: $150,000 o Match Funding: $120,087 Project Summary: Develop snap-in/snap-out mounting system for low-cost, thin-film solar panels Lower installation cost Lower sales costs Lower training/expertise barriers

  11. Development of Liquid-Vapor Core Reactors with MHD Generator for Space Power and Propulsion Applications

    SciTech Connect (OSTI)

    Samim Anghaie

    2002-08-13

    Any reactor that utilizes fuel consisting of a fissile material in a gaseous state may be referred to as a gaseous core reactor (GCR). Studies on GCRs have primarily been limited to the conceptual phase, mostly due to budget cuts and program cancellations in the early 1970's. A few scientific experiments have been conducted on candidate concepts, primarily of static pressure fissile gas filling a cylindrical or spherical cavity surrounded by a moderating shell, such as beryllium, heavy water, or graphite. The main interest in this area of nuclear power generation is for space applications. The interest in space applications has developed due to the promise of significant enhancement in fuel utilization, safety, plant efficiency, special high-performance features, load-following capabilities, power conversion optimization, and other key aspects of nuclear power generation. The design of a successful GCR adapted for use in space is complicated. The fissile material studied in the pa st has been in a fluorine compound, either a tetrafluoride or a hexafluoride. Both of these molecules have an impact on the structural material used in the making of a GCR. Uranium hexafluoride as a fuel allows for a lower operating temperature, but at temperatures greater than 900K becomes essentially impossible to contain. This difficulty with the use of UF6 has caused engineers and scientists to use uranium tetrafluoride, which is a more stable molecule but has the disadvantage of requiring significantly higher operating temperatures. Gas core reactors have traditionally been studied in a steady state configuration. In this manner a fissile gas and working fluid are introduced into the core, called a cavity, that is surrounded by a reflector constructed of materials such as Be or BeO. These reactors have often been described as cavity reactors because the density of the fissile gas is low and criticality is achieved only by means of the reflector to reduce neutron leakage from the core

  12. Property Tax Assessments as a Finance Vehicle for Residential PV Installations: Opportunities and Potential Limitations

    SciTech Connect (OSTI)

    Bolinger, Mark A; Bolinger, Mark

    2008-02-01

    Readily accessible credit has often been cited as a necessary ingredient to open up the market for residential photovoltaic (PV) systems. Though financing does not reduce the high up-front cost of PV, by spreading that cost over some portion of the system's life, financing can certainly make PV systems more affordable. As a result, a number of states have, in the past, set up special residential loan programs targeting the installation of renewable energy systems and/or energy efficiency improvements, and often featuring low interest rates, longer terms, and no-hassle application requirements. Historically, these loan programs have met with mixed success (particularly for PV), for a variety of reasons, including: (1) historical lack of homeowner interest in PV, (2) lack of program awareness, (3) reduced appeal in a low-interest-rate environment, and (4) a tendency for early PV adopters to be wealthy, and not in need of financing. Although some of these barriers have begun to fade--most notably, homeowner interest in PV has grown in some states, particularly those that offer solar rebates--the passage of the Energy Policy Act of 2005 (EPAct 2005) introduced one additional roadblock to the success of low-interest PV loan programs: a residential solar investment tax credit (ITC), subject to the Federal government's 'anti-double-dipping' rules. Specifically, the residential solar ITC--equal to 30% of the system's tax basis, capped at $2000--will be reduced or offset if the system also benefits from what is known as 'subsidized energy financing', which is likely to include most government-sponsored low-interest loan programs. Within this context, it has been interesting to note the recent flurry of announcements from several U.S cities concerning a new type of PV financing program. Led by the City of Berkeley, California, these cities propose to offer their residents the ability to finance the installation of a PV system using increased property tax assessments, rather

  13. Integration, Validation, and Application of a PV Snow Coverage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Marion et al. (2013) into the National Renewable Energy Laboratory's (NREL) System Advisor Model (SAM). In this work, we describe how the snow model is implemented in SAM, and...

  14. Evaluating the Impact of Solar Generation on Balancing Requirements in Southern Nevada System

    SciTech Connect (OSTI)

    Ma, Jian; Lu, Shuai; Etingov, Pavel V.; Makarov, Yuri V.

    2012-07-26

    Abstract—In this paper, the impacts of solar photovoltaic (PV) generation on balancing requirements including regulation and load following in the Southern Nevada balancing area are analyzed. The methodology is based on the “swinging door” algorithm and a probability box method developed by PNNL. The regulation and load following signals are mimicking the system’s scheduling and real-time dispatch processes. Load, solar PV generation and distributed PV generation (DG) data are used in the simulation. Different levels of solar PV generation and DG penetration profiles are used in the study. Sensitivity of the regulation requirements with respect to real-time solar PV generation forecast errors is analyzed.

  15. Blockstructured 3-D grid generation for aerodynamic applications at complex configurations

    SciTech Connect (OSTI)

    Hoeld, R.K.

    1996-12-31

    The paper presents a grid generation technique for blockstructured 3-D grids developed and used by Daimler-Benz Aerospace Munich (Dasa-LM). This grid generation technique is composed of an interactive surface grid generation technique and a new grid generation method based on elliptic PDEs. This new grid generation method is emphasis of this paper. It is characterized by a high level of flexibility and automation. A simple method to define source term distributions allows efficient control of grid points within this grid generation method. Clustering of grid lines even for high Reynolds number flow can be handled in an automatic fashion. Testcases show the high quality of grids generated by this method.

  16. Lodi Electric Utility- PV Rebate Program

    Broader source: Energy.gov [DOE]

    Note: Lodi Electric Utility accepted applications for program year 2015 from January 2 - 30, 2015. The program is fully subscribed for 2015.  

  17. Distributed PV Interconnection Recent Analysis Findings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... After all, there are many touch points that the applications have to go through: metering ... more streamlined, including the use of smart meters for the remote meter programming ...

  18. PV Cell and Module Calibration Activities at NREL

    SciTech Connect (OSTI)

    Emery, K.; Anderberg, A.; Kiehl, J.; Mack, C.; Moriarty, T.; Ottoson, L.; Rummel, S.

    2005-11-01

    The performance of PV cells and modules with respect to standard reference conditions is a key indicator of progress of a given technology. This task provides the U.S. terrestrial PV community with the most accurate measurements that are technically possible in a timely fashion. The international module certification and accreditation program PVGap requires certification laboratories to maintain their calibration traceability path to groups like this one. The politics of a "world record" efficiency requires that an independent laboratory perform these measurements for credibility. Most manufacturers base their module peak watt rating upon standards and reference cells calibrated under this task. This task has been involved in reconciling disputes between manufacturers and their cell suppliers in terms of expected versus actual performance. This task has also served as a resource to the PV community for consultation on solar simulation, current versus voltage measurement instrumentation, measurement procedures and measurement artifacts.

  19. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    SciTech Connect (OSTI)

    Enbar, Nadav; Weng, Dean; Klise, Geoffrey Taylor

    2015-12-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives on current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefi t the industry at-large.

  20. Budgeting for Solar PV Plant Operations & Maintenance: Practices and Pricing.

    SciTech Connect (OSTI)

    Enbar, Nadav; Weng, Dean; Klise, Geoffrey Taylor

    2016-01-01

    With rising grid interconnections of solar photovoltaic (PV) systems, greater attention is being trained on lifecycle performance, reliability, and project economics. Expected to meet production thresholds over a 20-30 year timeframe, PV plants require a steady diet of operations and maintenance (O&M) oversight to meet contractual terms. However, industry best practices are only just beginning to emerge, and O&M budgets—given the arrangement of the solar project value chain—appear to vary widely. Based on insights from in-depth interviews and survey research, this paper presents an overview of the utility-scale PV O&M budgeting process along with guiding rationales, before detailing perspectives on current plant upkeep activities and price points largely in the U.S. It concludes by pondering potential opportunities for improving upon existing O&M budgeting approaches in ways that can benefit the industry at-large.

  1. The Impact of Rate Design and Net Metering on the Bill Savings from Distributed PV for Residential Customers in California

    SciTech Connect (OSTI)

    Energy and Resources Group, University of California, Berkeley; Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-06-01

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate.

  2. Simulator Developed to Drastically Reduce Time of Multijunction PV Device Efficiency Measurements (Fact Sheet), NREL Highlights, Research & Development

    SciTech Connect (OSTI)

    Not Available

    2011-11-01

    NREL's new simulator helps speed up research in the race to improve photovoltaic efficiency. Scientists at the National Renewable Energy Laboratory (NREL) needed a quick and accurate method to predict energy generated from multijunction photovoltaic (PV) test devices. This method had to take into account the nonlinear behavior of multijunction PV. NREL achieved this by developing the One-Sun Multi-Source Simulator (OSMSS), which reduces the time for this type of reference spectrum efficiency measurement from hours or days to minutes. The OSMSS is an automated, spectrally adjustable light source that builds a unique simulator spectrum that causes a multijunction PV device to behave as it would under a reference spectrum. This new simulator consists of four light sources separated into nine wavelength bands between 350 and 2,000 nm. The irradiance in each band is adjustable from zero to about 1.5 suns. All bands are recombined via optical fibers and integrating optics to produce a nearly 10 cm x 10 cm uniform spot. The operator simply links the OSMSS to the quantum efficiency data for the test device, and the OSMSS does the rest. The OSMSS can also determine the power as a function of the spectral irradiance (beyond the reference spectra), total irradiance, and temperature. Major components of the system were built to NREL specification by LabSphere, Inc. NREL developed a new, fully automated tool that rapidly builds a spectrum under which all junctions of a multijunction PV device behave as they would under a reference spectrum. Such a spectrum is essential to properly characterize multijunction devices. The OSMSS reduces the time for building spectra for current vs. voltage measurements from hours or days to minutes. This makes it possible to quickly characterize a multijunction device under many different conditions. The OSMSS will be an important tool to help predict the yearly energy output of a multijunction PV device in a particular environment when provided

  3. Toward integrated PV panels and power electronics using printing technologies

    SciTech Connect (OSTI)

    Ababei, Cristinel; Yuvarajan, Subbaraya; Schulz, Douglas L.

    2010-07-15

    In this paper, we review the latest developments in the area of printing technologies with an emphasis on the fabrication of control-embedded photovoltaics (PV) with on-board active and passive devices. We also review the use of power converters and maximum power point tracking (MPPT) circuits with PV panels. Our focus is on the investigation of the simplest implementations of such circuits in view of their integration with solar cells using printing technologies. We see this concept as potentially enabling toward further cost reduction. Besides a discussion as to feasibility, we shall also present some projections and guidelines toward possible integration. (author)

  4. Selecting Solar: Insights into Residential Photovoltaic (PV) Quote Variation

    SciTech Connect (OSTI)

    Davidson, Carolyn; Margolis, Robert

    2015-10-01

    Before investing in a system, a prospective PV customer must not only have initial concept 'buy in,' but also be able to evaluate the tradeoffs associated with different system parameters. Prospective customers might need to evaluate disparate costs for each system attribute by comparing multiple bids. The difficulty of making such an evaluation with limited information can create a cognitive barrier to proceeding with the investment. This analysis leverages recently available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  5. Final Report- 1366 Project Silicon: Reclaiming US Silicon PV Leadership

    Office of Energy Efficiency and Renewable Energy (EERE)

    1366 Technologies’ Project Silicon addresses two of the major goals of the DOE’s PV Manufacturing Initiative Part 2 program: 1) How to reclaim a strong silicon PV manufacturing presence and; 2) How to lower the levelized cost of electricity (“LCOE”) for solar to $0.05-$0.07/kWh, enabling wide-scale U.S. market adoption. To achieve these two goals, US companies must commercialize disruptive, high-value technologies that are capable of rapid scaling, defensible from foreign competition, and suited for US manufacturing. These are the aims of 1366 Technologies Direct Wafer ™ process.

  6. Outdoor PV Module Degradation of Current-Voltage Parameters: Preprint

    SciTech Connect (OSTI)

    Smith, R. M.; Jordan, D. C.; Kurtz, S. R.

    2012-04-01

    Photovoltaic (PV) module degradation rate analysis quantifies the loss of PV power output over time and is useful for estimating the impact of degradation on the cost of energy. An understanding of the degradation of all current-voltage (I-V) parameters helps to determine the cause of the degradation and also gives useful information for the design of the system. This study reports on data collected from 12 distinct mono- and poly-crystalline modules deployed at the National Renewable Energy Laboratory (NREL) in Golden, Colorado. Most modules investigated showed < 0.5%/year decrease in maximum power due to short-circuit current decline.

  7. Reactive power interconnection requirements for PV and wind plants : recommendations to NERC.

    SciTech Connect (OSTI)

    McDowell, Jason; Walling, Reigh; Peter, William; Von Engeln, Edi; Seymour, Eric; Nelson, Robert; Casey, Leo; Ellis, Abraham; Barker, Chris.

    2012-02-01

    Voltage on the North American bulk system is normally regulated by synchronous generators, which typically are provided with voltage schedules by transmission system operators. In the past, variable generation plants were considered very small relative to conventional generating units, and were characteristically either induction generator (wind) or line-commutated inverters (photovoltaic) that have no inherent voltage regulation capability. However, the growing level of penetration of non-traditional renewable generation - especially wind and solar - has led to the need for renewable generation to contribute more significantly to power system voltage control and reactive power capacity. Modern wind-turbine generators, and increasingly PV inverters as well, have considerable dynamic reactive power capability, which can be further enhanced with other reactive support equipment at the plant level to meet interconnection requirements. This report contains a set of recommendations to the North-America Electricity Reliability Corporation (NERC) as part of Task 1-3 (interconnection requirements) of the Integration of Variable Generation Task Force (IVGTF) work plan. The report discusses reactive capability of different generator technologies, reviews existing reactive power standards, and provides specific recommendations to improve existing interconnection standards.

  8. PNM- Performance-Based Solar PV Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Note: The program is closed for applications until July 2016 for systems 100 kW and below. There is currently 67% of capacity available for systems larger than 100 kW up to 1 MW.

  9. IID Energy- PV Solutions Rebate Program

    Broader source: Energy.gov [DOE]

    IID accepted applications for the 2015 PV Solutions Program from Jan. 3, 2015 – Jan. 31, 2015. Winners were determined via lottery. The program is now closed for the remainder of 2015, but another...

  10. PV based systems, with wind, diesel or LPG genset backup, supplying small TV rebroadcast stations in Portugal

    SciTech Connect (OSTI)

    Ramos, H.F.

    1994-12-31

    This paper describes the implementation of a program intended to introduce PV based hybrid power systems to supply electrical power to small size TV rebroadcast stations in Portugal. Reliability is a major concern to this type of application, as well as economical and social constraints, so wind or diesel/LPG genset backup are used. This paper includes a description of the systems behavior, comparison among these topologies and economical viability data from a users viewpoint.

  11. DOE Request for Information (RFI) DE-FOA-0000153 PV Manufacturing Initiative: Summary Report, February 2010

    SciTech Connect (OSTI)

    Not Available

    2010-02-01

    This document sums up results of the PV Manufacturing Request for Information (RFI), DE-FOA-0000153, which supports the PV Manufacturing Initiative, launched by DOE Solar Energy Technologies Program.

  12. Why Are Resiential PV Prices in Germany So Much Lower Than in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Why Are Resiential PV Prices in Germany So Much Lower Than in the United States? Why Are Resiential PV Prices in Germany So Much Lower Than in the United States? The U.S. ...

  13. Final Report - Integration of Behind-the-Meter PV Fleet Forecasts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Final Report - Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System ...

  14. Climatically Diverse Data Set for Flat-Plate PV Module Model Validations (Presentation)

    SciTech Connect (OSTI)

    Marion, B.

    2013-05-01

    Photovoltaic (PV) module I-V curves were measured at Florida, Colorado, and Oregon locations to provide data for the validation and development of models used for predicting the performance of PV modules.

  15. Breakout Session: Getting in the Loop: PV Hardware Recycling and Sustainability

    Broader source: Energy.gov [DOE]

    As PV system installations continue to ramp up across the United States, the process for handling used and expired PV modules in the next  20-30 years would benefit from serious planning and...

  16. Delamination Failures in Long-Term Field Aged PV Modules from...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delamination Failures in Long-Term Field Aged PV Modules from Point of View of Encapsulant Delamination Failures in Long-Term Field Aged PV Modules from Point of View of ...

  17. China Sunergy Co Ltd CEEG Nanjing PV Tech Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Sunergy Co Ltd CEEG Nanjing PV Tech Co Ltd Jump to: navigation, search Name: China Sunergy Co Ltd (CEEG Nanjing PV-Tech Co Ltd) Place: Nanjing, Jiangsu Province, China Zip: 211100...

  18. The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects The Falling Price of Utility-Scale Solar Photovoltaic (PV) Projects Data courtesy of National Renewable Energy Lab. Chart

  19. Video: O&M Best Practices for Small-Scale PV Systems Success Story |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy O&M Best Practices for Small-Scale PV Systems Success Story Video: O&M Best Practices for Small-Scale PV Systems Success Story See how the Federal Energy Management Program's eTraining course, O&M Best Practices for Small-Scale PV Systems, helped federal energy and facility management professionals complete successful photovoltaics (PV) projects

  20. A Comparison of Key PV Backsheet and Module Properties from Fielded Module

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Exposures and Accelerated Test Conditions | Department of Energy A Comparison of Key PV Backsheet and Module Properties from Fielded Module Exposures and Accelerated Test Conditions A Comparison of Key PV Backsheet and Module Properties from Fielded Module Exposures and Accelerated Test Conditions Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps5_dupont_gambogi.pdf (781.38 KB) More Documents & Publications Agenda for the PV Module

  1. A Multi-Perspective Approach to PV Module Reliability and Degradation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A Multi-Perspective Approach to PV Module Reliability and Degradation A Multi-Perspective Approach to PV Module Reliability and Degradation Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps2_bnl_colli.pdf (2.86 MB) More Documents & Publications Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado DOE-STD-1628-2013 State Energy Advisory Board October 2012 Meeting

  2. PV technology differences and discrepancies in modelling between simulation programs and measurements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sensitivity and limitations of present and alternative PV models The sensitivity and limitations of present and alternative PV models Steve Ransome - Independent PV Consultant, SRCL, UK Juergen Sutterlueti - TEL Solar, Switzerland Sandia PV Modelling Workshop; Santa Clara, USA 1 st May 2013 Published by Sandia National Laboratories with the permission of the author * Many recent independent outdoor studies find <±5% kWh/kWp (with different rankings between technologies) there's less kWh/kWp

  3. Literature Review of the Effects of UV Exposure on PV Modules | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Literature Review of the Effects of UV Exposure on PV Modules Literature Review of the Effects of UV Exposure on PV Modules This PowerPoint presentation, originally presented at the NREL 2013 PV Module Reliability Workshop on Feb. 26-27, 2013 in Denver, CO, presents the literature review of the effects of prolonged UV exposure of PV modules, with a particular emphasis on UV exposure testing using artificial light sources, including fluorescent, Xenon, and metal halide lamps.

  4. Rethinking Standby & Fixed Cost Charges: Regulatory & Rate Design Pathways to Deeper Solar PV Cost Reductions

    Office of Energy Efficiency and Renewable Energy (EERE)

    While solar PV's impact on utilities has been frequently discussed the past year, little attention has been paid to the potentially impact posed by solar PV-specific rate designs (often informally referred to as solar "fees" or "taxes") upon non-hardware "soft" cost reductions. In fact, applying some rate designs to solar PV customers could potentially have a large impact on the economics of PV systems.

  5. PV QA Task Group #2: Thermal and Mechanical Fatigue Including Vibration |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy QA Task Group #2: Thermal and Mechanical Fatigue Including Vibration PV QA Task Group #2: Thermal and Mechanical Fatigue Including Vibration Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_tmf_taskgroup2.pdf (500.28 KB) More Documents & Publications Linkage to Previous International PV Module QA Task Force Workshops: Proposal for Rating System Agenda for the PV Module Reliability Workshop, February 26 - 27 2013,

  6. Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design Partial Shading in Monolithic Thin Film PV Modules: Analysis and Design Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps1_purdue_dongaonkar.pdf (2.37 MB) More Documents & Publications Advanced Combustion Modeling with STAR-CD using Transient Flemelet Models: TIF and TPV Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden,

  7. Microsoft Word - 2016 PV Systems Symposium - Save the Date v6.docx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia/EPRI PV Symposium - Save the Date! Save the Date and Call for Abstracts Sandia-EPRI 2016 PV Systems Symposium May 9-11 th at the Biltmore Hotel in Santa Clara, CA Sandia National Laboratories (SNL) and the Electric Power Research Institute (EPRI) are delighted to host this symposium on the technical challenges and opportunities related to solar photovoltaic (PV) systems and technologies. Core areas of focus will include PV performance modeling, distribution hosting capacity and screening

  8. Third-Party Financing and Power Purchase Agreements for Public Sector PV

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects | Department of Energy Third-Party Financing and Power Purchase Agreements for Public Sector PV Projects Third-Party Financing and Power Purchase Agreements for Public Sector PV Projects Introductory presentation on the third party PPA model for public sector PV. Date May 2009 Topic Solar Basics & Educating Consumers Financing, Incentives & Market Analysis Subprogram Soft Costs Author National Renewable Energy Laboratory may_27th_ppa_for_pv_webinar_jason_coughlin_nrel.ppt

  9. Modeling and Analysis of High-Penetration PV in California | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Modeling and Analysis of High-Penetration PV in California Modeling and Analysis of High-Penetration PV in California NREL logo.jpg The NREL project team will utilize field verification to improve the ability to model and understand the impacts of high-penetration PV on electric utility systems and develop solutions to ease high-penetration PV deployments. The team will develop and verify advanced modeling and simulation methods for distribution system planning and operations; define

  10. Video: O&M Best Practices for Small-Scale PV Systems Success Story |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Video: O&M Best Practices for Small-Scale PV Systems Success Story Video: O&M Best Practices for Small-Scale PV Systems Success Story See how the Federal Energy Management Program's eTraining course, O&M Best Practices for Small-Scale PV Systems, helped federal energy and facility management professionals complete successful photovoltaics (PV) projects.

  11. Silicon Oxynitride Thin Film Barriers for PV Packaging (Poster)

    SciTech Connect (OSTI)

    del Cueto, J. A.; Glick, S. H.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2006-10-03

    Dielectric, adhesion-promoting, moisture barriers comprised of silicon oxynitride thin film materials (SiOxNy with various material stoichiometric compositions x,y) were applied to: 1) bare and pre-coated soda-lime silicate glass (coated with transparent conductive oxide SnO2:F and/or aluminum), and polymer substrates (polyethylene terephthalate, PET, or polyethylene napthalate, PEN); plus 2) pre- deposited photovoltaic (PV) cells and mini-modules consisting of amorphous silicon (a-Si) and copper indium gallium diselenide (CIGS) thin-film PV technologies. We used plasma enhanced chemical vapor deposition (PECVD) process with dilute silane, nitrogen, and nitrous oxide/oxygen gas mixtures in a low-power (< or = 10 milliW per cm2) RF discharge at ~ 0.2 Torr pressure, and low substrate temperatures < or = 100(degrees)C, over deposition areas ~ 1000 cm2. Barrier properties of the resulting PV cells and coated-glass packaging structures were studied with subsequent stressing in damp-heat exposure at 85(degrees)C/85% RH. Preliminary results on PV cells and coated glass indicate the palpable benefits of the barriers in mitigating moisture intrusion and degradation of the underlying structures using SiOxNy coatings with thicknesses in the range of 100-200 nm.

  12. PV Systems Reliability Final Technical Report: Ground Fault Detection

    SciTech Connect (OSTI)

    Lavrova, Olga; Flicker, Jack David; Johnson, Jay

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  13. Selecting Solar. Insights into Residential Photovoltaic (PV) Quote Variation

    SciTech Connect (OSTI)

    Davidson, Carolyn; Margolis, Robert

    2015-10-01

    This analysis leverages available data from EnergySage, an online solar marketplace, to offer the first data-driven characterization of quote variation faced by prospective PV customers, lending early insight into the decisions customers face once they have initial buy-in.

  14. Minnesota Power- Solar-Electric (PV) Rebate Program

    Office of Energy Efficiency and Renewable Energy (EERE)

    Minnesota Power offers a rebate of $1,000 per kilowatt (kW) DC for grid-connected solar-electric (PV) systems, with a maximum award of $20,000 per customer or 60% installed costs per customer. This...

  15. Local control of reactive power by distributed photovoltaic generators

    SciTech Connect (OSTI)

    Chertkov, Michael; Turitsyn, Konstantin; Sulc, Petr; Backhaus, Scott

    2010-01-01

    High penetration levels of distributed photovoltaic (PV) generation on an electrical distribution circuit may severely degrade power quality due to voltage sags and swells caused by rapidly varying PV generation during cloud transients coupled with the slow response of existing utility compensation and regulation equipment. Although not permitted under current standards for interconnection of distributed generation, fast-reacting, VAR-capable PV inverters may provide the necessary reactive power injection or consumption to maintain voltage regulation under difficult transient conditions. As side benefit, the control of reactive power injection at each PV inverter provides an opportunity and a new tool for distribution utilities to optimize the performance of distribution circuits, e.g. by minimizing thermal losses. We suggest a local control scheme that dispatches reactive power from each PV inverter based on local instantaneous measurements of the real and reactive components of the consumed power and the real power generated by the PVs. Using one adjustable parameter per circuit, we balance the requirements on power quality and desire to minimize thermal losses. Numerical analysis of two exemplary systems, with comparable total PV generation albeit a different spatial distribution, show how to adjust the optimization parameter depending on the goal. Overall, this local scheme shows excellent performance; it's capable of guaranteeing acceptable power quality and achieving significant saving in thermal losses in various situations even when the renewable generation in excess of the circuit own load, i.e. feeding power back to the higher-level system.

  16. Junction Evolution During Fabrication of CdS/CdTe Thin-film PV Solar Cells (Presentation)

    SciTech Connect (OSTI)

    Gessert, T. A.

    2010-09-01

    Discussion of the formation of CdTe thin-film PV junctions and optimization of CdTe thin-film PV solar cells.

  17. Solar PV Manufacturing Cost Model Group: Installed Solar PV System Prices (Presentation)

    SciTech Connect (OSTI)

    Goodrich, A. C.; Woodhouse, M.; James, T.

    2011-02-01

    EERE's Solar Energy Technologies Program is charged with leading the Secretary's SunShot Initiative to reduce the cost of electricity from solar by 75% to be cost competitive with conventional energy sources without subsidy by the end of the decade. As part of this Initiative, the program has funded the National Renewable Energy Laboratory (NREL) to develop module manufacturing and solar PV system installation cost models to ensure that the program's cost reduction targets are carefully aligned with current and near term industry costs. The NREL cost analysis team has leveraged the laboratories' extensive experience in the areas of project finance and deployment, as well as industry partnerships, to develop cost models that mirror the project cost analysis tools used by project managers at leading U.S. installers. The cost models are constructed through a "bottoms-up" assessment of each major cost element, beginning with the system's bill of materials, labor requirements (type and hours) by component, site-specific charges, and soft costs. In addition to the relevant engineering, procurement, and construction costs, the models also consider all relevant costs to an installer, including labor burdens and overhead rates, supply chain costs, and overhead and materials inventory costs, and assume market-specific profits.

  18. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt; Schmitt, Denis P.; Skelt, Christopher

    2010-11-23

    In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

  19. System for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher

    2012-07-31

    In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

  20. System for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher

    2012-09-04

    In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

  1. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Chirstopher

    2013-10-15

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency range and the second frequency, and wherein the non-linear medium has a velocity of sound between 100 m/s and 800 m/s.

  2. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

    2013-10-01

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency and the second frequency; and transmitting the collimated beam through a diverging acoustic lens to compensate for a refractive effect caused by the curvature of the borehole.

  3. DOE Request for Information (RFI) DE-FOA-0000153 PV Manufacturing Initiative

    SciTech Connect (OSTI)

    none,

    2010-02-01

    This draft report summarizes the results of the U.S. Department of Energy PV Manufacturing Request for Information (RFI), DE-FOA-0000153, that was released in September 2009. The PV Manufacturing Initiative is intended to help facilitate the development of a strong PV manufacturing industry in the United States.

  4. Distributed Solar PV for Electricity System Resiliency: Policy and Regulatory Considerations (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-11-01

    Distributed Solar PV systems have the potential of increasing the grid's resiliency to unforeseen events, such as extreme weather events and attacks. This paper presents the role that distributed PV can play in electric grid resiliency, introduces basic system design requirements and options, and discusses the regulatory and policy options for supporting the use of distributed PV for the purpose of increased electricity resiliency.

  5. Going Solar in Record Time with Plug-and-Play PV | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Going Solar in Record Time with Plug-and-Play PV Going Solar in Record Time with Plug-and-Play PV April 24, 2012 - 6:10pm Addthis A plug-and-play PV system is envisioned as a...

  6. Distributed PV Interconnection Recent Analysis Findings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Recent Analysis Findings Page 1 of 18 Kristen Ardani, Miriam Makhyoun Page 1 of 18 [Speaker: Kristen Ardani] Cover Slide: Good afternoon, everyone. Thank you for joining the Distributed Generation Interconnection Collaborative informational webinar. Today, we are kicking off 2015 with a joint presentation from SEPA and NREL, in which each will discuss recent research and analysis findings related to interconnection. Slide 2: So really, the purpose of today's meeting is to hear recent research

  7. Davis PV plant operation and maintenance manual

    SciTech Connect (OSTI)

    1994-09-01

    This operation and maintenance manual contains the information necessary to run the Photovoltaics for Utility Scale Applications (PVUSA) test facility in Davis, California. References to more specific information available in drawings, data sheets, files, or vendor manuals are included. The PVUSA is a national cooperative research and demonstration program formed in 1987 to assess the potential of utility scale photovoltaic systems.

  8. NREL: Technology Deployment - Distributed Generation Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaborative Distributed Generation Interconnection Collaborative Become a Member DGIC members are included in quarterly informational meetings and discussions related to distributed PV interconnection practices, research, and innovation. For more information, contact Kristen Ardani. Subscribe to DGIC Updates Learn about upcoming webinars and other DGIC announcements. NREL facilitates the Distributed Generation Interconnection Collaborative (DGIC) with support from the Smart Electric Power

  9. Field Demonstration of Using Advanced PV Inverter Functionality to Mitigate the Impacts of High-Penetration PV Grid Integration on the Distribution System

    SciTech Connect (OSTI)

    Mather, Barry; Gebeyehu, Araya

    2015-06-14

    This paper describes a field demonstration that was completed to show the ability of currently installed PV inverters to implement advanced PV inverter functionality and that such functionality was effective at reducing the voltage-related PV impacts of high-penetration PV integration. A distribution circuit was instrumented and then tested for a two week period using off-unity power factor operation. Specifically, an inductive power factor of -0.95 was demonstrated. The results show that the PV inverters were capable of such operation and that the use of off-unity power factor operation was highly effective at reducing the voltage-related impacts of the PV systems interconnected to the circuits used in the demonstration. The impacts of using off-unity power factor operation - resulting in additional reactive current flow on the distribution circuit - are also presented and analyzed.

  10. Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Searchable Application Supplemental Information

  11. Energy Storage and Generation for Extreme Temperature and Pressure and Directional Measurement While Drilling Applications

    SciTech Connect (OSTI)

    Signorelli, Riccardo; Cooley, John

    2015-10-14

    of 10x. The electronics have demonstrated a substantially reduced design cycle time by way of process and material selection innovations and have been qualified for 250°C / 10 Grms for at least 200 hours. FastCAP has also invented a rotary inertial energy generator (RIEG) to harvest various mechanical energy sources that exist downhole. This device is flow-independent and has been demonstrated as a proof of concept to survive geothermal well temperatures under this project. The herein energy harvester has been developed to provide operational power by harvesting rotational mechanical energy that exists downhole in geothermal drilling. The energy harvester has been tested at 250°C / 10 Grms for 200 hours. Deployment of these technologies in geothermal drilling and exploration applications could have an immediate and significant impact on the effectiveness and efficiency of drilling processes, particularly with regard to use of advanced logging and monitoring techniques. The ultimate goal of this work is to reduce drilling risk to make geothermal energy more attractive and viable to the customer. Generally speaking, we aim to support the transfer of MWD techniques from oil and gas to geothermal exploration with considerations toward the practical differences between the two. One of the most significant obstacles to the deployment of advanced drilling and production techniques in the geothermal context are limitations related to the maximum operating temperatures of downhole batteries used to provide power for downhole sensors, steering tools, telemetry equipment and other MWD/LWD technologies. FastCAP’s higher temperature ultracapacitor technology will provide power solutions for similar advanced drilling and production techniques, even in the harsher environments associated with geothermal energy production. This ultracapacitor will enable downhole power solutions for the geothermal industry capable of the same reliable and safe operation our team has demonstrated

  12. Real-time POD-CFD Wind-Load Calculator for PV Systems

    SciTech Connect (OSTI)

    Huayamave, Victor; Divo, Eduardo; Ceballos, Andres; Barriento, Carolina; Stephen, Barkaszi; Hubert, Seigneur

    2014-03-21

    The primary objective of this project is to create an accurate web-based real-time wind-load calculator. This is of paramount importance for (1) the rapid and accurate assessments of the uplift and downforce loads on a PV mounting system, (2) identifying viable solutions from available mounting systems, and therefore helping reduce the cost of mounting hardware and installation. Wind loading calculations for structures are currently performed according to the American Society of Civil Engineers/ Structural Engineering Institute Standard ASCE/SEI 7; the values in this standard were calculated from simplified models that do not necessarily take into account relevant characteristics such as those from full 3D effects, end effects, turbulence generation and dissipation, as well as minor effects derived from shear forces on installation brackets and other accessories. This standard does not include provisions that address the special requirements of rooftop PV systems, and attempts to apply this standard may lead to significant design errors as wind loads are incorrectly estimated. Therefore, an accurate calculator would be of paramount importance for the preliminary assessments of the uplift and downforce loads on a PV mounting system, identifying viable solutions from available mounting systems, and therefore helping reduce the cost of the mounting system and installation. The challenge is that although a full-fledged three-dimensional computational fluid dynamics (CFD) analysis would properly and accurately capture the complete physical effects of air flow over PV systems, it would be impractical for this tool, which is intended to be a real-time web-based calculator. CFD routinely requires enormous computation times to arrive at solutions that can be deemed accurate and grid-independent even in powerful and massively parallel computer platforms. This work is expected not only to accelerate solar deployment nationwide, but also help reach the SunShot Initiative goals

  13. Distributed PV Interconnection: Recent Analysis Findings

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    January 21, 2015 "NREL and SEPA Recent Analysis Findings" Miriam Makhyoun, Solar Electric Power Association (SEPA) Kristen Ardani, National Renewable Energy Laboratory (NREL) 2 Purpose of Today's Meeting * Hear results from SEPA's recent survey of utility interconnection practices. o SEPA finds that utilities confront common challenges as they move towards more streamlined interconnection application processing. * Hear NREL results of forthcoming DGIC data collection and analysis,

  14. PV Charging System for Remote Area Operations

    SciTech Connect (OSTI)

    Ilsemann, Frederick; Thompson, Roger

    2008-07-31

    The objective of this project is to provide the public with a study of new as well existing technology to recharge batteries used in the field. A new product(s) will also be built based upon the information ascertained. American Electric Vehicles, Inc. (AEV) developed systems and methods suitable for charging state-of-the-art lithium-ion batteries in remote locations under both ideal and cloudy weather conditions. Conceptual designs are described for existing and next generation technology, particularly as regards solar cells, peak power trackers and batteries. Prototype system tests are reported.

  15. Radioisotope Thermophotovoltaic (RTPV) Generator and Its Applicability to an Illustrative Space Mission

    SciTech Connect (OSTI)

    Schock, A.; Mukunda, M.; Or, T.; Kumar, V.; Summers, G.

    1994-02-14

    The paper describes the results of a DOE-sponsored design study of a radioisotope thermophotovoltaic generator (RTPV), to complement similar studies of Radioisotope Thermoelectric Generators (RTGs) and Stirling Generators (RSGs) previously published by the author. Instead of conducting a generic study, it was decided to focus the design effort by directing it at a specific illustrative space mission, Pluto Fast Flyby (PFF). That mission, under study by JPL, envisages a direct eight-year flight to Pluto (the only unexplored planet in the solar system), followed by comprehensive mapping, surface composition, and atmospheric structure measurements during a brief flyby of the planet and its moon Charon, and transmission of the recorded science data to Earth during a post-encounter cruise lasting up to one year.

  16. Onboard Plasmatron Generation of Hydrogen rich Gas for Diesel Engine Exhaust Aftertreatment and Other Applications

    SciTech Connect (OSTI)

    Bromberg, L.; Cohn, D.R.; Heywood,J.; Rabinovich, A.

    2002-08-25

    Plasmatron reformers can provide attractive means for conversion of diesel fuel into hydrogen rich gas. The hydrogen rich gas can be used for improved NOx trap technology and other aftertreatment applications.

  17. Combined Modular Pumped Hydro Energy Storage Plus Solar PV Proposal for Rio Rancho High School, New Mexico

    SciTech Connect (OSTI)

    Bibeault, Mark Leonide

    2015-08-25

    This is a proposal to locate a combined Modular Pumped Hydro (MPH) Energy Storage plus PV solar facility at Rio Rancho High School, NM. The facility will functionally provide electricity at night derived from renewable solar energy. Additionally the facility will provide STEM related educational opportunities for students and staff of the school, public community outreach, and validation of an energy storage approach applicable for the Nation (up to 1,000,000 kWh per installation). The proposal will summarize the nature of electricity, why energy storage is useful, present the combined MPH and solar PV production design, present how the actual design will be built and operated in a sustainable manner, how the project could be funded, and how the project could be used in STEM related activities.

  18. Formulating a simplified equivalent representation of distribution circuits for PV impact studies.

    SciTech Connect (OSTI)

    Reno, Matthew J.; Broderick, Robert Joseph; Grijalva, Santiago

    2013-04-01

    With an increasing number of Distributed Generation (DG) being connected on the distribution system, a method for simplifying the complexity of the distribution system to an equivalent representation of the feeder is advantageous for streamlining the interconnection study process. The general characteristics of the system can be retained while reducing the modeling effort required. This report presents a method of simplifying feeders to only specified buses-of-interest. These buses-of-interest can be potential PV interconnection locations or buses where engineers want to verify a certain power quality. The equations and methodology are presented with mathematical proofs of the equivalence of the circuit reduction method. An example 15-bus feeder is shown with the parameters and intermediate example reduction steps to simplify the circuit to 4 buses. The reduced feeder is simulated using PowerWorld Simulator to validate that those buses operate with the same characteristics as the original circuit. Validation of the method is also performed for snapshot and time-series simulations with variable load and solar energy output data to validate the equivalent performance of the reduced circuit with the interconnection of PV.

  19. Sensitivity of Rooftop PV Projections in the SunShot Vision Study to Market Assumptions

    SciTech Connect (OSTI)

    Drury, E.; Denholm, P.; Margolis, R.

    2013-01-01

    The SunShot Vision Study explored the potential growth of solar markets if solar prices decreased by about 75% from 2010 to 2020. The SolarDS model was used to simulate rooftop PV demand for this study, based on several PV market assumptions--future electricity rates, customer access to financing, and others--in addition to the SunShot PV price projections. This paper finds that modeled PV demand is highly sensitive to several non-price market assumptions, particularly PV financing parameters.

  20. Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado pvmrw13_ps4_espec_suzuki.pdf (2.81 MB) More Documents & Publications The Acceleration of Degradation by HAST and Air-HAST in c-Si PV Modules Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado