National Library of Energy BETA

Sample records for generation iv technology

  1. Generation IV International Forum Updates Technology Roadmap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation IV International Forum Updates Technology Roadmap and Builds Future Collaboration Generation IV International Forum Updates Technology Roadmap and Builds Future ...

  2. Generation IV International Forum Updates Technology Roadmap and Builds

    Office of Environmental Management (EM)

    Future Collaboration | Department of Energy Generation IV International Forum Updates Technology Roadmap and Builds Future Collaboration Generation IV International Forum Updates Technology Roadmap and Builds Future Collaboration December 31, 2013 - 12:14pm Addthis GIF Policy Group Meeting in Brussels, Belgium, November 2013 GIF Policy Group Meeting in Brussels, Belgium, November 2013 Deputy Assistant Secretary Kelly Deputy Assistant Secretary Kelly Deputy Assistant Secretary for Nuclear

  3. Updated Generation IV Reactors Integrated Materials Technology Program Plan, Revision 2

    SciTech Connect (OSTI)

    Corwin, William R; Burchell, Timothy D; Halsey, William; Hayner, George; Katoh, Yutai; Klett, James William; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Stoller, Roger E; Wilson, Dane F

    2005-12-01

    The Department of Energy's (DOE's) Generation IV Nuclear Energy Systems Program will address the research and development (R&D) necessary to support next-generation nuclear energy systems. Such R&D will be guided by the technology roadmap developed for the Generation IV International Forum (GIF) over two years with the participation of over 100 experts from the GIF countries. The roadmap evaluated over 100 future systems proposed by researchers around the world. The scope of the R&D described in the roadmap covers the six most promising Generation IV systems. The effort ended in December 2002 with the issue of the final Generation IV Technology Roadmap [1.1]. The six most promising systems identified for next generation nuclear energy are described within the roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor - SCWR and the Very High Temperature Reactor - VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor - GFR, the Lead-cooled Fast Reactor - LFR, and the Sodium-cooled Fast Reactor - SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides, and may provide an alternative to accelerator-driven systems. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. Accordingly, DOE has identified materials as one of the focus areas for Gen IV technology development.

  4. DEVELOPMENT OF RISK-BASED AND TECHNOLOGY-INDEPENDENT SAFETY CRITERIA FOR GENERATION IV SYSTEMS

    SciTech Connect (OSTI)

    William E. Kastenberg; Edward Blandford; Lance Kim

    2009-03-31

    This project has developed quantitative safety goals for Generation IV (Gen IV) nuclear energy systems. These safety goals are risk based and technology independent. The foundations for a new approach to risk analysis has been developed, along with a new operational definition of risk. This project has furthered the current state-of-the-art by developing quantitative safety goals for both Gen IV reactors and for the overall Gen IV nuclear fuel cycle. The risk analysis approach developed will quantify performance measures, characterize uncertainty, and address a more comprehensive view of safety as it relates to the overall system. Appropriate safety criteria are necessary to manage risk in a prudent and cost-effective manner. This study is also important for government agencies responsible for managing, reviewing, and for approving advanced reactor systems because they are charged with assuring the health and safety of the public.

  5. Generation IV Reactors Integrated Materials Technology Program Plan: Focus on Very High Temperature Reactor Materials

    SciTech Connect (OSTI)

    Corwin, William R; Burchell, Timothy D; Katoh, Yutai; McGreevy, Timothy E; Nanstad, Randy K; Ren, Weiju; Snead, Lance Lewis; Wilson, Dane F

    2008-08-01

    Since 2002, the Department of Energy's (DOE's) Generation IV Nuclear Energy Systems (Gen IV) Program has addressed the research and development (R&D) necessary to support next-generation nuclear energy systems. The six most promising systems identified for next-generation nuclear energy are described within this roadmap. Two employ a thermal neutron spectrum with coolants and temperatures that enable hydrogen or electricity production with high efficiency (the Supercritical Water Reactor-SCWR and the Very High Temperature Reactor-VHTR). Three employ a fast neutron spectrum to enable more effective management of actinides through recycling of most components in the discharged fuel (the Gas-cooled Fast Reactor-GFR, the Lead-cooled Fast Reactor-LFR, and the Sodium-cooled Fast Reactor-SFR). The Molten Salt Reactor (MSR) employs a circulating liquid fuel mixture that offers considerable flexibility for recycling actinides and may provide an alternative to accelerator-driven systems. At the inception of DOE's Gen IV program, it was decided to significantly pursue five of the six concepts identified in the Gen IV roadmap to determine which of them was most appropriate to meet the needs of future U.S. nuclear power generation. In particular, evaluation of the highly efficient thermal SCWR and VHTR reactors was initiated primarily for energy production, and evaluation of the three fast reactor concepts, SFR, LFR, and GFR, was begun to assess viability for both energy production and their potential contribution to closing the fuel cycle. Within the Gen IV Program itself, only the VHTR class of reactors was selected for continued development. Hence, this document will address the multiple activities under the Gen IV program that contribute to the development of the VHTR. A few major technologies have been recognized by DOE as necessary to enable the deployment of the next generation of advanced nuclear reactors, including the development and qualification of the structural materials needed to ensure their safe and reliable operation. The focus of this document will be the overall range of DOE's structural materials research activities being conducted to support VHTR development. By far, the largest portion of material's R&D supporting VHTR development is that being performed directly as part of the Next-Generation Nuclear Plant (NGNP) Project. Supplementary VHTR materials R&D being performed in the DOE program, including university and international research programs and that being performed under direct contracts with the American Society for Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, will also be described. Specific areas of high-priority materials research that will be needed to deploy the NGNP and provide a basis for subsequent VHTRs are described, including the following: (1) Graphite: (a) Extensive unirradiated materials characterization and assessment of irradiation effects on properties must be performed to qualify new grades of graphite for nuclear service, including thermo-physical and mechanical properties and their changes, statistical variations from billot-to-billot and lot-to-lot, creep, and especially, irradiation creep. (b) Predictive models, as well as codification of the requirements and design methods for graphite core supports, must be developed to provide a basis for licensing. (2) Ceramics: Both fibrous and load-bearing ceramics must be qualified for environmental and radiation service as insulating materials. (3) Ceramic Composites: Carbon-carbon and SiC-SiC composites must be qualified for specialized usage in selected high-temperature components, such as core stabilizers, control rods, and insulating covers and ducting. This will require development of component-specific designs and fabrication processes, materials characterization, assessment of environmental and irradiation effects, and establishment of codes and standards for materials testing and design requirements. (4) Pressure Vessel Steels: (a) Qualification of short-term, high-temperature properties of light water reactor steels for anticipated VHTR off-normal conditions must be determined, as well as the effects of aging on tensile, creep, and toughness properties, and on thermal emissivity. (b) Large-scale fabrication process for higher temperature alloys, such as 9Cr-1MoV, including ensuring thick-section and weldment integrity must be developed, as well as improved definitions of creep-fatigue and negligible creep behavior. (5) High-Temperature Alloys: (a) Qualification and codification of materials for the intermediate heat exchanger, such as Alloys 617 or 230, for long-term very high-temperature creep, creep-fatigue, and environmental aging degradation must be done, especially in thin sections for compact designs, for both base metal and weldments. (b) Constitutive models and an improved methodology for high-temperature design must be developed.

  6. An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems

    SciTech Connect (OSTI)

    Timothy J. Leahy

    2010-06-01

    The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated “toolkit” consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

  7. Generation IV International Forum Framework Agreement Extended to 2025

    Broader source: Energy.gov [DOE]

    The Generation IV International Forum (GIF) “Framework Agreement for International Collaboration on Research and Development of Generation IV Nuclear Energy Systems” was recently extended to 2025, paving the way for continued collaboration among participating countries.

  8. Generation IV International Forum Signs Agreement to Collaborate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    France, Japan, South Africa, South Korea, Switzerland, the United Kingdom, the ... Forum 39th Policy Group Meeting China and Russia to Join the Generation IV International ...

  9. Generation IV International Forum 39th Policy Group Meeting

    Broader source: Energy.gov [DOE]

    The Generation IV International Forum (GIF) will hold the third GIF Symposium, May 19-20, 2015, in conjunction with the International Conference on Nuclear Engineering (ICONE-23), at Makuhari Messe in Chiba, Japan.

  10. Automatic generation and analysis of solar cell IV curves

    SciTech Connect (OSTI)

    Kraft, Steven M.; Jones, Jason C.

    2014-06-03

    A photovoltaic system includes multiple strings of solar panels and a device presenting a DC load to the strings of solar panels. Output currents of the strings of solar panels may be sensed and provided to a computer that generates current-voltage (IV) curves of the strings of solar panels. Output voltages of the string of solar panels may be sensed at the string or at the device presenting the DC load. The DC load may be varied. Output currents of the strings of solar panels responsive to the variation of the DC load are sensed to generate IV curves of the strings of solar panels. IV curves may be compared and analyzed to evaluate performance of and detect problems with a string of solar panels.

  11. Generation-IV Roadmap Report of the Fuel Cycle Crosscut Group

    Broader source: Energy.gov [DOE]

    The Charter of the Generation IV Roadmap Fuel Cycle Crosscut Group (FCCG) is to (1) examine the fuel cycle implications for alternative nuclear power scenarios in terms of Generation IV goals and ...

  12. DEVELOPMENT OF A METHODOLOGY TO ASSESS PROLIFERATION RESISTANCE AND PHYSICAL PROTECTION FOR GENERATION IV SYSTEMS

    SciTech Connect (OSTI)

    Nishimura, R.; Bari, R.; Peterson, P.; Roglans-Ribas, J.; Kalenchuk, D.

    2004-10-06

    Enhanced proliferation resistance and physical protection (PR&PP) is one of the technology goals for advanced nuclear concepts, such as Generation IV systems. Under the auspices of the Generation IV International Forum, the Office of Nuclear Energy, Science and Technology of the U.S. DOE, the Office of Nonproliferation Policy of the National Nuclear Security Administration, and participating organizations from six other countries are sponsoring an international working group to develop an evaluation methodology for PR&PP. This methodology will permit an objective PR&PP comparison between alternative nuclear systems (e.g., different reactor types or fuel cycles) and support design optimization to enhance robustness against proliferation, theft and sabotage. The paper summarizes the proposed assessment methodology including the assessment framework, measures used to express the PR&PP characteristics of the system, threat definition, system element and target identification, pathway identification and analysis, and estimation of the measures.

  13. Generation IV Nuclear Energy Systems Ten-Year Program Plan Fiscal Year 2005, Volume 1

    SciTech Connect (OSTI)

    2005-03-01

    As reflected in the U.S. ''National Energy Policy'', nuclear energy has a strong role to play in satisfying our nation's future energy security and environmental quality needs. The desirable environmental, economic, and sustainability attributes of nuclear energy give it a cornerstone position, not only in the U.S. energy portfolio, but also in the world's future energy portfolio. Accordingly, on September 20, 2002, U.S. Energy Secretary Spencer Abraham announced that, ''The United States and nine other countries have agreed to develop six Generation IV nuclear energy concepts''. The Secretary also noted that the systems are expected to ''represent significant advances in economics, safety, reliability, proliferation resistance, and waste minimization''. The six systems and their broad, worldwide research and development (R&D) needs are described in ''A Technology Roadmap for Generation IV Nuclear Energy Systems'' (hereafter referred to as the Generation IV Roadmap). The first 10 years of required U.S. R&D contributions to achieve the goals described in the Generation IV Roadmap are outlined in this Program Plan.

  14. Generation IV PR and PP Methods and Applications

    SciTech Connect (OSTI)

    Bari,R.A.

    2008-10-13

    This paper presents an evaluation methodology for proliferation resistance and physical protection (PR&PP) of Generation IV nuclear energy systems (NESs). For a proposed NES design, the methodology defines a set of challenges, analyzes system response to these challenges, and assesses outcomes. The challenges to the NES are the threats posed by potential actors (proliferant States or sub-national adversaries). The characteristics of Generation IV systems, both technical and institutional, are used to evaluate the response of the system and determine its resistance against proliferation threats and robustness against sabotage and terrorism threats. The outcomes of the system response are expressed in terms of six measures for PR and three measures for PP, which are the high-level PR&PP characteristics of the NES. The methodology is organized to allow evaluations to be performed at the earliest stages of system design and to become more detailed and more representative as design progresses. Uncertainty of results are recognized and incorporated into the evaluation at all stages. The results are intended for three types of users: system designers, program policy makers, and external stakeholders. Particular current relevant activities will be discussed in this regard. The methodology has been illustrated in a series of demonstration and case studies and these will be summarized in the paper.

  15. The Industrialization of Thermoelectric Power Generation Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for...

  16. Technology Advancements for Next Generation Falling Particle...

    Office of Scientific and Technical Information (OSTI)

    Technology Advancements for Next Generation Falling Particle Receivers. Citation Details In-Document Search Title: Technology Advancements for Next Generation Falling Particle...

  17. Other Distributed Generation Technologies | Open Energy Information

    Open Energy Info (EERE)

    Other Distributed Generation Technologies Jump to: navigation, search TODO: Add description List of Other Distributed Generation Technologies Incentives Retrieved from "http:...

  18. Advanced Thermoelectric Materials and Generator Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM ...

  19. Quadrennial Technology Review's Alternative Generation Workshop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Review's Alternative Generation Workshop Slides Preliminary Slides for Alternative Generation Workshop including Carbon Capture and Sequestration, Nuclear Power,...

  20. The Industrialization of Thermoelectric Power Generation Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy The Industrialization of Thermoelectric Power Generation Technology The Industrialization of Thermoelectric Power Generation Technology Presents module and system requirements for high volume power generation with thermoelectrics such desirable thermoelectric properties, low material toxicity, interface compatibility, cost scalability, raw material availability and module reliability PDF icon miner.pdf More Documents & Publications Performance, Market and

  1. Next-Generation Wind Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Next-Generation Wind Technology Next-Generation Wind Technology Next-Generation Wind Technology The Wind Program works with industry partners to increase...

  2. Assessment of the Technical Maturity of Generation IV Concepts for Test or Demonstration Reactor Applications, Revision 2

    SciTech Connect (OSTI)

    Gougar, Hans David

    2015-10-01

    The United States Department of Energy (DOE) commissioned a study the suitability of different advanced reactor concepts to support materials irradiations (i.e. a test reactor) or to demonstrate an advanced power plant/fuel cycle concept (demonstration reactor). As part of the study, an assessment of the technical maturity of the individual concepts was undertaken to see which, if any, can support near-term deployment. A Working Group composed of the authors of this document performed the maturity assessment using the Technical Readiness Levels as defined in DOE’s Technology Readiness Guide . One representative design was selected for assessment from of each of the six Generation-IV reactor types: gas-cooled fast reactor (GFR), lead-cooled fast reactor (LFR), molten salt reactor (MSR), supercritical water-cooled reactor (SCWR), sodium-cooled fast reactor (SFR), and very high temperature reactor (VHTR). Background information was obtained from previous detailed evaluations such as the Generation-IV Roadmap but other technical references were also used including consultations with concept proponents and subject matter experts. Outside of Generation IV activity in which the US is a party, non-U.S. experience or data sources were generally not factored into the evaluations as one cannot assume that this data is easily available or of sufficient quality to be used for licensing a US facility. The Working Group established the scope of the assessment (which systems and subsystems needed to be considered), adapted a specific technology readiness scale, and scored each system through discussions designed to achieve internal consistency across concepts. In general, the Working Group sought to determine which of the reactor options have sufficient maturity to serve either the test or demonstration reactor missions.

  3. Distributed generation: Early markets for emerging technologies

    SciTech Connect (OSTI)

    Lenssen, N.; Cler, G.

    1999-11-01

    How will developers of emerging distributed generation technologies successfully commercialize their products. This paper presents one approach for these developers, borrowing from the experience of other developers of innovative technologies and services. E Source`s analysis suggests, however, that there is already more of a market for distributed generation than is generally recognized. US and Canadian firms already buy about 3,400 megawatts of small generators each year, mostly for backup power but some as the primary power source for selected loads and facilities. This demand is expected to double in 10 years. The global market for small generators is already more than 10 times this size, at some 40,000 megawatts per year, and it is expected to continue growing rapidly, especially in developing nations. Just how the emerging distributed generation technologies, such as microturbines, fuel cells, and Stirling engines compete-or surpass-the conventional technologies will have a huge impact on their eventual commercial success.

  4. Fundamental Understanding of Crack Growth in Structural Components of Generation IV Supercritical Light Water Reactors

    SciTech Connect (OSTI)

    Iouri I. Balachov; Takao Kobayashi; Francis Tanzella; Indira Jayaweera; Palitha Jayaweera; Petri Kinnunen; Martin Bojinov; Timo Saario

    2004-11-17

    This work contributes to the design of safe and economical Generation-IV Super-Critical Water Reactors (SCWRs) by providing a basis for selecting structural materials to ensure the functionality of in-vessel components during the entire service life. During the second year of the project, we completed electrochemical characterization of the oxide film properties and investigation of crack initiation and propagation for candidate structural materials steels under supercritical conditions. We ranked candidate alloys against their susceptibility to environmentally assisted degradation based on the in situ data measure with an SRI-designed controlled distance electrochemistry (CDE) arrangement. A correlation between measurable oxide film properties and susceptibility of austenitic steels to environmentally assisted degradation was observed experimentally. One of the major practical results of the present work is the experimentally proven ability of the economical CDE technique to supply in situ data for ranking candidate structural materials for Generation-IV SCRs. A potential use of the CDE arrangement developed ar SRI for building in situ sensors monitoring water chemistry in the heat transport circuit of Generation-IV SCWRs was evaluated and proved to be feasible.

  5. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  6. validation and Enhancement of Computational Fluid Dynamics and Heat Transfer Predictive Capabilities for Generation IV Reactor Systems

    SciTech Connect (OSTI)

    Robert E. Spall; Barton Smith; Thomas Hauser

    2008-12-08

    Nationwide, the demand for electricity due to population and industrial growth is on the rise. However, climate change and air quality issues raise serious questions about the wisdom of addressing these shortages through the construction of additional fossil fueled power plants. In 1997, the President's Committee of Advisors on Science and Technology Energy Research and Development Panel determined that restoring a viable nuclear energy option was essential and that the DOE should implement a R&D effort to address principal obstacles to achieving this option. This work has addressed the need for improved thermal/fluid analysis capabilities, through the use of computational fluid dynamics, which are necessary to support the design of generation IV gas-cooled and supercritical water reactors.

  7. Articles about Next-Generation Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Technologies Articles about Next-Generation Technologies RSS Below are stories about next-generation technologies featured by the U.S. Department of Energy (DOE)...

  8. Fuel Cell Comparison of Distributed Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Comparison of Distributed Power Generation Technologies Fuel Cell Comparison of Distributed Power Generation Technologies This report examines backup power and prime power systems...

  9. MHK Technologies/OCGen turbine generator unit TGU | Open Energy...

    Open Energy Info (EERE)

    OCGen turbine generator unit TGU < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage OCGen turbine generator unit TGU.jpg Technology Profile...

  10. Category:Electricity Generating Technologies | Open Energy Information

    Open Energy Info (EERE)

    Electricity Generating Technologies Jump to: navigation, search Electricity Generating Technologies Subcategories This category has the following 5 subcategories, out of 5 total. B...

  11. Silicon Nanostructure-based Technology for Next Generation Energy...

    Office of Environmental Management (EM)

    Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2013 DOE Hydrogen and Fuel Cells...

  12. Overview of Progress in Thermoelectric Power Generation Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Progress in Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Presents progress in government- and...

  13. MHK Technologies/Platform generators | Open Energy Information

    Open Energy Info (EERE)

    homepage Platform generators.jpg Technology Profile Primary Organization Aqua Magnetics Inc Technology Resource Click here Wave Technology Type Click here Reciprocating...

  14. MHK Technologies/Floating wave Generator | Open Energy Information

    Open Energy Info (EERE)

    homepage Floating wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Attenuator...

  15. MHK Technologies/The Ocean Hydro Electricity Generator Plant...

    Open Energy Info (EERE)

    The Ocean Hydro Electricity Generator Plant.jpg Technology Profile Primary Organization Free Flow 69 Technology Type Click here Axial Flow Turbine Technology Description The O H E...

  16. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    SciTech Connect (OSTI)

    Mynatt Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-11-12

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs.

  17. Benchmark Development in Support of Generation-IV Reactor Validation (IRPhEP 2010 Handbook)

    SciTech Connect (OSTI)

    John D. Bess; J. Blair Briggs

    2010-06-01

    The March 2010 edition of the International Reactor Physics Experiment Evaluation Project (IRPhEP) Handbook includes additional benchmark data that can be implemented in the validation of data and methods for Generation IV (GEN-IV) reactor designs. Evaluations supporting sodium-cooled fast reactor (SFR) efforts include the initial isothermal tests of the Fast Flux Test Facility (FFTF) at the Hanford Site, the Zero Power Physics Reactor (ZPPR) 10B and 10C experiments at the Idaho National Laboratory (INL), and the burn-up reactivity coefficient of Japan’s JOYO reactor. An assessment of Russia’s BFS-61 assemblies at the Institute of Physics and Power Engineering (IPPE) provides additional information for lead-cooled fast reactor (LFR) systems. Benchmarks in support of the very high temperature reactor (VHTR) project include evaluations of the HTR-PROTEUS experiments performed at the Paul Scherrer Institut (PSI) in Switzerland and the start-up core physics tests of Japan’s High Temperature Engineering Test Reactor. The critical configuration of the Power Burst Facility (PBF) at the INL which used ternary ceramic fuel, U(18)O2-CaO-ZrO2, is of interest for fuel cycle research and development (FCR&D) and has some similarities to “inert-matrix” fuels that are of interest in GEN-IV advanced reactor design. Two additional evaluations were revised to include additional evaluated experimental data, in support of light water reactor (LWR) and heavy water reactor (HWR) research; these include reactor physics experiments at Brazil’s IPEN/MB-01 Research Reactor Facility and the French High Flux Reactor (RHF), respectively. The IRPhEP Handbook now includes data from 45 experimental series (representing 24 reactor facilities) and represents contributions from 15 countries. These experimental measurements represent large investments of infrastructure, experience, and cost that have been evaluated and preserved as benchmarks for the validation of methods and collection of data in support of current and future reactor design and development.

  18. Integrated, Automated Distributed Generation Technologies Demonstration

    SciTech Connect (OSTI)

    Jensen, Kevin

    2014-09-30

    The purpose of the NETL Project was to develop a diverse combination of distributed renewable generation technologies and controls and demonstrate how the renewable generation could help manage substation peak demand at the ATK Promontory plant site. The Promontory plant site is located in the northwestern Utah desert approximately 25 miles west of Brigham City, Utah. The plant encompasses 20,000 acres and has over 500 buildings. The ATK Promontory plant primarily manufactures solid propellant rocket motors for both commercial and government launch systems. The original project objectives focused on distributed generation; a 100 kW (kilowatt) wind turbine, a 100 kW new technology waste heat generation unit, a 500 kW energy storage system, and an intelligent system-wide automation system to monitor and control the renewable energy devices then release the stored energy during the peak demand time. The original goal was to reduce peak demand from the electrical utility company, Rocky Mountain Power (RMP), by 3.4%. For a period of time we also sought to integrate our energy storage requirements with a flywheel storage system (500 kW) proposed for the Promontory/RMP Substation. Ultimately the flywheel storage system could not meet our project timetable, so the storage requirement was switched to a battery storage system (300 kW.) A secondary objective was to design/install a bi-directional customer/utility gateway application for real-time visibility and communications between RMP, and ATK. This objective was not achieved because of technical issues with RMP, ATK Information Technology Department’s stringent requirements based on being a rocket motor manufacturing facility, and budget constraints. Of the original objectives, the following were achieved: • Installation of a 100 kW wind turbine. • Installation of a 300 kW battery storage system. • Integrated control system installed to offset electrical demand by releasing stored energy from renewable sources during peak hours of the day. Control system also monitors the wind turbine and battery storage system health, power output, and issues critical alarms. Of the original objectives, the following were not achieved: • 100 kW new technology waste heat generation unit. • Bi-directional customer/utility gateway for real time visibility and communications between RMP and ATK. • 3.4% reduction in peak demand. 1.7% reduction in peak demand was realized instead.

  19. Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors: Final Scientific/Technical Report

    SciTech Connect (OSTI)

    Vierow, Karen; Aldemir, Tunc

    2009-09-10

    The project entitled, “Uncertainty Quantification in the Reliability and Risk Assessment of Generation IV Reactors”, was conducted as a DOE NERI project collaboration between Texas A&M University and The Ohio State University between March 2006 and June 2009. The overall goal of the proposed project was to develop practical approaches and tools by which dynamic reliability and risk assessment techniques can be used to augment the uncertainty quantification process in probabilistic risk assessment (PRA) methods and PRA applications for Generation IV reactors. This report is the Final Scientific/Technical Report summarizing the project.

  20. Articles about Next-Generation Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next-Generation Technologies Articles about Next-Generation Technologies RSS Below are stories about next-generation technologies featured by the U.S. Department of Energy (DOE) Wind Program. November 13, 2015 Secretary Moniz Announces Clean Energy Technologies are Accelerating in the U.S. Marketplace According to New Revolution...Now Report revolution-now-infographic.png October 27, 2015 Articles about Next-Generation Technologies Innovative Study Helps Offshore Wind Developers Protect Wildlife

  1. Overview of Progress in Thermoelectric Power Generation Technologies in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Japan | Department of Energy Progress in Thermoelectric Power Generation Technologies in Japan Overview of Progress in Thermoelectric Power Generation Technologies in Japan Presents progress in government- and private-funded thermoelectric power generation R&D in Japan PDF icon kajikawa.pdf More Documents & Publications Overview of Thermoelectric Power Generation Technologies in Japan Overview of Thermoelectric Power Generation Technologies in Japan Overview of Japanese Activities in

  2. DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Fuel Cell Technologies Office Record Record #: 13010 Date: June 11, 2013 Title: Onboard Type IV Compressed Hydrogen Storage Systems - Current Performance and Cost Originators: Scott McWhorter and Grace Ordaz Approved by: Sunita Satyapal Date: July 17, 2013 Item: This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable hydrogen, for onboard light-duty automotive

  3. Fostering the Next Generation of Nuclear Energy Technology |...

    Broader source: Energy.gov (indexed) [DOE]

    Fostering the Next Generation of Nuclear Energy Technology Peter W. Davidson Peter W. ... make available 12.6 billion in loan guarantees for advanced nuclear energy technologies. ...

  4. SMALL TURBOGENERATOR TECHNOLOGY FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Sy Ali; Bob Moritz

    2001-09-01

    This report is produced in under Contract DE-FC26-00NT40914, awarded in accordance with U.S. Department of Energy solicitation DE-PS26-00FT40759, ''Development of Technologies and Capabilities for Fossil Energy-Wide Coal, Natural Gas and Oil R&D Programs'', area of interest 7, ''Advanced Turbines and Engines.'' As a result of ten years of collaborative fuel cell systems studies with U.S. fuel cell manufacturers, initiated to evaluate the gas turbine opportunities likely to result from this technology, Rolls-Royce in Indianapolis has established a clear need for the creation of a turbogenerator to a specification that cannot be met by available units. Many of the required qualities are approached, but not fully met, by microturbines, which tend to be too small and low in pressure ratio. Market evaluation suggests a 1 MW fuel cell hybrid, incorporating a turbogenerator of about 250 kW, is a good market entry product (large enough to spread the costs of a relatively complex plant, but small enough to be acceptable to early adopters). The fuel cell stack occupies the position of a combustor in the turbogenerator, but delivers relatively low turbine entry temperature (1600 F [870 C]). If fitted with a conventional combustor and run stand-alone at full uncooled turbine temperature (1800 F [980 C]), the turbogenerator will develop more power. The power can be further enhanced if the turbogenerator is designed to have flow margin in its fuel cell role (by running faster). This margin can be realized by running at full speed and it is found that power can be increased to the 0.7 to 1.0 MW range, depending on initial fuel cell stack flow demand. The fuel cell hybrid applications require increased pressure ratio (at least 6 rather than the 3-4 of microturbines) and very long life for a small machine. The outcome is a turbogenerator that is very attractive for stand-alone operation and has been the subject of unsolicited enthusiasm from potential users who see an application in grid support. The machine is consistent with 21st century power generation objectives. It will be more efficient than a microturbine and also more cost effective because it does not require an expensive recuperator. It will produce ultra-low emissions because it has a low combustor delivery temperature. It will also avoid producing hazardous waste because it requires no lube system. These qualities are obtained by combining, and in some instances extending, the best of available technologies rather than breaking wholly new ground. Limited ''barrier technology'' rig tests of bearing systems and alternator configuration are proposed to support the extension of technology. Low combustion temperature also has merit in handling alternative fuels with minimum emissions and minimum materials degradation. Program continuation is proposed that will simultaneously provide technology support to a SECA fuel cell hybrid system and a distributed generation turbogenerator. This technology program will be led by a Rolls-Royce team based in Indianapolis with access to extensive small turbogenerator experience gathered in DOE (and other) programs by Allison Mobile Power Systems. It is intended that subsequent production will be in the U.S., but the products may have substantial export potential.

  5. Overview of Thermoelectric Power Generation Technologies in Japan

    Broader source: Energy.gov [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting

  6. Next-Generation Wind Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Next-Generation Wind Technology Next-Generation Wind Technology Next-Generation Wind Technology The Wind Program works with industry partners to increase the performance and reliability of next-generation wind technologies while lowering the cost of wind energy. The program's research efforts have helped to increase the average capacity factor (a measure of power plant productivity) from 22% for wind turbines installed before 1998 to an average of 33% today, up from

  7. Silicon Nanostructure-based Technology for Next Generation Energy Storage |

    Energy Savers [EERE]

    Department of Energy Silicon Nanostructure-based Technology for Next Generation Energy Storage Silicon Nanostructure-based Technology for Next Generation Energy Storage 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon es126_stefan_2013_p.pdf More Documents & Publications Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure-based Technology for Next Generation Energy Storage Vehicle

  8. ZERO EMISSION POWER GENERATION TECHNOLOGY DEVELOPMENT

    SciTech Connect (OSTI)

    Ronald Bischoff; Stephen Doyle

    2005-01-20

    Clean Energy Systems (CES) was previously funded by DOE's ''Vision 21'' program. This program provided a proof-of-concept demonstration that CES' novel gas generator (combustor) enabled production of electrical power from fossil fuels without pollution. CES has used current DOE funding for additional design study exercises which established the utility of the CES-cycle for retrofitting existing power plants for zero-emission operations and for incorporation in zero-emission, ''green field'' power plant concepts. DOE funding also helped define the suitability of existing steam turbine designs for use in the CES-cycle and explored the use of aero-derivative turbines for advanced power plant designs. This work is of interest to the California Energy Commission (CEC) and the Norwegian Ministry of Petroleum & Energy. California's air quality districts have significant non-attainment areas in which CES technology can help. CEC is currently funding a CES-cycle technology demonstration near Bakersfield, CA. The Norwegian government is supporting conceptual studies for a proposed 40 MW zero-emission power plant in Stavager, Norway which would use the CES-cycle. The latter project is called Zero-Emission Norwegian Gas (ZENG). In summary, current engineering studies: (1) supported engineering design of plant subsystems applicable for use with CES-cycle zero-emission power plants, and (2) documented the suitability and availability of steam turbines for use in CES-cycle power plants, with particular relevance to the Norwegian ZENG Project.

  9. Fueling the Next Generation of Vehicle Technology | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fueling the Next Generation of Vehicle Technology Fueling the Next Generation of Vehicle Technology February 6, 2013 - 11:20am Addthis Professor Jack Brouwer, Associate Director and Chief Technology Officer of the National Fuel Cell Research Center, points out the tri-generation facility that uses biogas from Orange County Sanitation District’s wastewater treatment plant to produce hydrogen, heat and power. | Photo courtesy of the Energy Department. Professor Jack Brouwer, Associate

  10. Summary of New Generation Technologies and Resources

    SciTech Connect (OSTI)

    1993-01-08

    This compendium includes a PG&E R&D program perspective on the Advanced Energy Systems Technology Information Module (TIM) project, a glossary, a summary of each TIM, updated information on the status and trends of each technology, and a bibliography. The objectives of the TIMs are to enhance and document the PG&E R&D Program's understanding of the technology status, resource potential, deployment hurdles, commercial timing, PG&E applications and impacts, and R&D issues of advanced technologies for electric utility applications in Northern California. [DJE-2005

  11. Distributed Generation Technologies DGT | Open Energy Information

    Open Energy Info (EERE)

    Commercializing a technology to convert organic waste into pure and compressed methane gas via anaerobic digestion. Coordinates: 39.93746, -84.553194 Show Map Loading...

  12. Overview of Thermoelectric Power Generation Technologies in Japan...

    Broader source: Energy.gov (indexed) [DOE]

    Discusses thermoelectric power generation technologies as applied to waste heat recovery, renewable thermal energy sources, and energy harvesting PDF icon kajikawa.pdf More ...

  13. Articles about Next-Generation Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    27, 2015 Articles about Next-Generation Technologies Innovative Study Helps Offshore Wind Developers Protect Wildlife The Biodiversity Research Institute's (BRI) new report on a...

  14. Vehicle Technologies Office Merit Review 2014: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  15. Vehicle Technologies Office Merit Review 2015: Next Generation Inverter

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next generation inverter.

  16. List of Other Distributed Generation Technologies Incentives...

    Open Energy Info (EERE)

    Solar Thermal Process Heat Photovoltaics Wind Biomass Fuel Cells Ground Source Heat Pumps Hydrogen Biodiesel Fuel Cells using Renewable Fuels Other Distributed Generation...

  17. NREL: Technology Deployment - Distributed Generation Interconnection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Collaborative Distributed Generation Interconnection Collaborative Become a Member DGIC members are included in quarterly informational meetings and discussions related to distributed PV interconnection practices, research, and innovation. For more information, contact Kristen Ardani. Subscribe to DGIC Updates Learn about upcoming webinars and other DGIC announcements. NREL facilitates the Distributed Generation Interconnection Collaborative (DGIC) with support from the Solar Electric Power

  18. Mechanisms Governing the Creep Behavior of High Temperature Alloys for Generation IV Nuclear Energy Systems

    SciTech Connect (OSTI)

    Vasudevan, Vijay; Carroll, Laura; Sham, Sam

    2015-04-06

    This research project, which includes collaborators from INL and ORNL, focuses on the study of alloy 617 and alloy 800H that are candidates for applications as intermediate heat exchangers in GEN IV nuclear reactors, with an emphasis on the effects of grain size, grain boundaries and second phases on the creep properties; the mechanisms of dislocation creep, diffusional creep and cavitation; the onset of tertiary creep; and theoretical modeling for long-term predictions of materials behavior and for high temperature alloy design.

  19. Generation mechanism of the slowly drifting narrowband structure in the type IV solar radio bursts observed by AMATERAS

    SciTech Connect (OSTI)

    Katoh, Y.; Nishimura, Y.; Kumamoto, A.; Ono, T.; Iwai, K.; Misawa, H.; Tsuchiya, F.

    2014-05-20

    We investigate the type IV burst event observed by AMATERAS on 2011 June 7, and reveal that the main component of the burst was emitted from the plasmoid eruption identified in the EUV images of the Solar Dynamics Observatory (SDO)/AIA. We show that a slowly drifting narrowband structure (SDNS) appeared in the burst's spectra. Using statistical analysis, we reveal that the SDNS appeared for a duration of tens to hundreds of milliseconds and had a typical bandwidth of 3 MHz. To explain the mechanism generating the SDNS, we propose wave-wave coupling between Langmuir waves and whistler-mode chorus emissions generated in a post-flare loop, which were inferred from the similarities in the plasma environments of a post-flare loop and the equatorial region of Earth's inner magnetosphere. We assume that a chorus element with a rising tone is generated at the top of a post-flare loop. Using the magnetic field and plasma density models, we quantitatively estimate the expected duration of radio emissions generated from coupling between Langmuir waves and chorus emissions during their propagation in the post-flare loop, and we find that the observed duration and bandwidth properties of the SDNS are consistently explained by the proposed generation mechanism. While observations in the terrestrial magnetosphere show that the chorus emissions are a group of large-amplitude wave elements generated naturally and intermittently, the mechanism proposed in the present study can explain both the intermittency and the frequency drift in the observed spectra.

  20. Challenges to Integration of Safety and Reliability with Proliferation Resistance and Physical Protection for Generation IV Nuclear Energy Systems

    SciTech Connect (OSTI)

    H. Khalil; P. F. Peterson; R. Bari; G. -L. Fiorini; T. Leahy; R. Versluis

    2012-07-01

    The optimization of a nuclear energy system's performance requires an integrated consideration of multiple design goals - sustainability, safety and reliability (S&R), proliferation resistance and physical protection (PR&PP), and economics - as well as careful evaluation of trade-offs for different system design and operating parameters. Design approaches motivated by each of the goal areas (in isolation from the other goal areas) may be mutually compatible or in conflict. However, no systematic methodology approach has yet been developed to identify and maximize synergies and optimally balance conflicts across the possible design configurations and operating modes of a nuclear energy system. Because most Generation IV systems are at an early stage of development, design, and assessment, designers and analysts are only beginning to identify synergies and conflicts between PR&PP, S&R, and economics goals. The close coupling between PR&PP and S&R goals has motivated early attention within the Generation IV International Forum to their integrated consideration to facilitate the optimization of their effects and the minimization of potential conflicts. This paper discusses the status of this work.

  1. Investigation of a Novel NDE Method for Monitoring Thermomechanical Damage and Microstructure Evolution in Ferritic-Martensitic Steels for Generation IV Nuclear Energy Systems

    SciTech Connect (OSTI)

    Nagy, Peter

    2013-09-30

    The main goal of the proposed project is the development of validated nondestructive evaluation (NDE) techniques for in situ monitoring of ferritic-martensitic steels like Grade 91 9Cr-1Mo, which are candidate materials for Generation IV nuclear energy structural components operating at temperatures up to ~650{degree}C and for steam-generator tubing for sodium-cooled fast reactors. Full assessment of thermomechanical damage requires a clear separation between thermally activated microstructural evolution and creep damage caused by simultaneous mechanical stress. Creep damage can be classified as "negligible" creep without significant plastic strain and "ordinary" creep of the primary, secondary, and tertiary kind that is accompanied by significant plastic deformation and/or cavity nucleation and growth. Under negligible creep conditions of interest in this project, minimal or no plastic strain occurs, and the accumulation of creep damage does not significantly reduce the fatigue life of a structural component so that low-temperature design rules, such as the ASME Section III, Subsection NB, can be applied with confidence. The proposed research project will utilize a multifaceted approach in which the feasibility of electrical conductivity and thermo-electric monitoring methods is researched and coupled with detailed post-thermal/creep exposure characterization of microstructural changes and damage processes using state-of-the-art electron microscopy techniques, with the aim of establishing the most effective nondestructive materials evaluation technique for particular degradation modes in high-temperature alloys that are candidates for use in the Next Generation Nuclear Plant (NGNP) as well as providing the necessary mechanism-based underpinnings for relating the two. Only techniques suitable for practical application in situ will be considered. As the project evolves and results accumulate, we will also study the use of this technique for monitoring other GEN IV materials. Through the results obtained from this integrated materials behavior and NDE study, new insight will be gained into the best nondestructive creep and microstructure monitoring methods for the particular mechanisms identified in these materials. The proposed project includes collaboration with a national laboratory partner and the results will also serve as a foundation to guide the efforts of scientists in the DOE laboratory, university, and industrial communities concerned with the technological challenges of monitoring creep and microstructural evolution in materials planned to be used in Generation IV Nuclear Energy Systems.

  2. Fuel cycle comparison of distributed power generation technologies.

    SciTech Connect (OSTI)

    Elgowainy, A.; Wang, M. Q.; Energy Systems

    2008-12-08

    The fuel-cycle energy use and greenhouse gas (GHG) emissions associated with the application of fuel cells to distributed power generation were evaluated and compared with the combustion technologies of microturbines and internal combustion engines, as well as the various technologies associated with grid-electricity generation in the United States and California. The results were primarily impacted by the net electrical efficiency of the power generation technologies and the type of employed fuels. The energy use and GHG emissions associated with the electric power generation represented the majority of the total energy use of the fuel cycle and emissions for all generation pathways. Fuel cell technologies exhibited lower GHG emissions than those associated with the U.S. grid electricity and other combustion technologies. The higher-efficiency fuel cells, such as the solid oxide fuel cell (SOFC) and molten carbonate fuel cell (MCFC), exhibited lower energy requirements than those for combustion generators. The dependence of all natural-gas-based technologies on petroleum oil was lower than that of internal combustion engines using petroleum fuels. Most fuel cell technologies approaching or exceeding the DOE target efficiency of 40% offered significant reduction in energy use and GHG emissions.

  3. MHK Technologies/Submergible Power Generator | Open Energy Information

    Open Energy Info (EERE)

    Type Click here Axial Flow Turbine Technology Description The design of the SPG leverages water flows in varying scenarios to generate electricity While the focus of the C2C...

  4. MHK Technologies/Under Bottom Wave Generator | Open Energy Information

    Open Energy Info (EERE)

    mounted inside the lower portion of the pipe the upward and downward flow of water will spin the propellar in both direcitons The propellar is connected to a generator Technology...

  5. Advanced Thermoelectric Materials and Generator Technology for Automotive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Waste Heat at GM | Department of Energy Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Advanced Thermoelectric Materials and Generator Technology for Automotive Waste Heat at GM Overview of design, fabrication, integration, and test of working prototype TEG for engine waste heat recovery on Suburban test vehicle, and continuing investigation of skutterudite materials systems PDF icon meisner.pdf More Documents & Publications Advanced Thermoelectric

  6. Technology Advancements for Next Generation Falling Particle Receivers.

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Technology Advancements for Next Generation Falling Particle Receivers. Citation Details In-Document Search Title: Technology Advancements for Next Generation Falling Particle Receivers. Abstract not provided. Authors: Ho, Clifford K. ; Gill, David Dennis ; Jeter, S. ; Abdel-Khalik, S. ; Sadowski, D. ; Siegel, Nathan Phillip ; Al-Ansary, H. ; Amsbeck, L. ; Buck, R. ; Gobereit, B. ; Christian, Joshua Mark Publication Date: 2013-09-01 OSTI Identifier: 1140577

  7. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  8. Technology for distributed generation in a global marketplace

    SciTech Connect (OSTI)

    Leeper, J.D.; Barich, J.T.

    1998-12-31

    During the last 20 years, great strides have been made in the development and demonstration of distributed generation technologies. Wind, phosphoric acid fuel cells, and photovoltaic systems are now competitive in selected niche markets. Other technologies such as MTG, higher temperature fuel cells, and fuel cell hybrids are expected to become competitive in selected applications in the next few years. As the electric utility industry moves toward restructuring and increasing demand in emerging countries, one can expect even greater demand for environmentally friendly distributed generation technologies.

  9. Managing Model Data Introduced Uncertainties in Simulator Predictions for Generation IV Systems via Optimum Experimental Design

    SciTech Connect (OSTI)

    Turinsky, Paul J; Abdel-Khalik, Hany S; Stover, Tracy E

    2011-03-31

    An optimization technique has been developed to select optimized experimental design specifications to produce data specifically designed to be assimilated to optimize a given reactor concept. Data from the optimized experiment is assimilated to generate posteriori uncertainties on the reactor concept’s core attributes from which the design responses are computed. The reactor concept is then optimized with the new data to realize cost savings by reducing margin. The optimization problem iterates until an optimal experiment is found to maximize the savings. A new generation of innovative nuclear reactor designs, in particular fast neutron spectrum recycle reactors, are being considered for the application of closing the nuclear fuel cycle in the future. Safe and economical design of these reactors will require uncertainty reduction in basic nuclear data which are input to the reactor design. These data uncertainty propagate to design responses which in turn require the reactor designer to incorporate additional safety margin into the design, which often increases the cost of the reactor. Therefore basic nuclear data needs to be improved and this is accomplished through experimentation. Considering the high cost of nuclear experiments, it is desired to have an optimized experiment which will provide the data needed for uncertainty reduction such that a reactor design concept can meet its target accuracies or to allow savings to be realized by reducing the margin required due to uncertainty propagated from basic nuclear data. However, this optimization is coupled to the reactor design itself because with improved data the reactor concept can be re-optimized itself. It is thus desired to find the experiment that gives the best optimized reactor design. Methods are first established to model both the reactor concept and the experiment and to efficiently propagate the basic nuclear data uncertainty through these models to outputs. The representativity of the experiment to the design concept is quantitatively determined. A technique is then established to assimilate this data and produce posteriori uncertainties on key attributes and responses of the design concept. Several experiment perturbations based on engineering judgment are used to demonstrate these methods and also serve as an initial generation of the optimization problem. Finally, an optimization technique is developed which will simultaneously arrive at an optimized experiment to produce an optimized reactor design. Solution of this problem is made possible by the use of the simulated annealing algorithm for solution of optimization problems. The optimization examined in this work is based on maximizing the reactor cost savings associated with the modified design made possible by using the design margin gained through reduced basic nuclear data uncertainties. Cost values for experiment design specifications and reactor design specifications are established and used to compute a total savings by comparing the posteriori reactor cost to the a priori cost plus the cost of the experiment. The optimized solution arrives at a maximized cost savings.

  10. Generation technologies for a carbon-constrained world

    SciTech Connect (OSTI)

    Douglas, J.

    2006-07-01

    Planning future generation investments can be difficult in the context of today's high fuel costs and regulatory uncertainties. Of particular concern are sharp changes in the price of natural gas and the possibility of future mandatory limits on the atmospheric release of CO{sub 2}. Research on advanced coal, nuclear, natural gas and renewable energy technologies promises to substantially increase the deployment of low and non-carbon-emitting generation options over the next two decades. The article looks in turn at developments in these technologies. Prudent power provides are likely to invest in a number of these advanced technologies, weighing the advantages and risks of each option to build a strategically balanced generation portfolio. 12 figs.

  11. Generation IV benchmarking of TRISO fuel performance models under accident conditions. Modeling input data

    SciTech Connect (OSTI)

    Blaise Collin

    2014-09-01

    This document presents the benchmark plan for the calculation of particle fuel performance on safety testing experiments that are representative of operational accidental transients. The benchmark is dedicated to the modeling of fission product release under accident conditions by fuel performance codes from around the world, and the subsequent comparison to post-irradiation experiment (PIE) data from the modeled heating tests. The accident condition benchmark is divided into three parts: the modeling of a simplified benchmark problem to assess potential numerical calculation issues at low fission product release; the modeling of the AGR-1 and HFR-EU1bis safety testing experiments; and, the comparison of the AGR-1 and HFR-EU1bis modeling results with PIE data. The simplified benchmark case, thereafter named NCC (Numerical Calculation Case), is derived from ''Case 5'' of the International Atomic Energy Agency (IAEA) Coordinated Research Program (CRP) on coated particle fuel technology [IAEA 2012]. It is included so participants can evaluate their codes at low fission product release. ''Case 5'' of the IAEA CRP-6 showed large code-to-code discrepancies in the release of fission products, which were attributed to ''effects of the numerical calculation method rather than the physical model''[IAEA 2012]. The NCC is therefore intended to check if these numerical effects subsist. The first two steps imply the involvement of the benchmark participants with a modeling effort following the guidelines and recommendations provided by this document. The third step involves the collection of the modeling results by Idaho National Laboratory (INL) and the comparison of these results with the available PIE data. The objective of this document is to provide all necessary input data to model the benchmark cases, and to give some methodology guidelines and recommendations in order to make all results suitable for comparison with each other. The participants should read this document thoroughly to make sure all the data needed for their calculations is provided in the document. Missing data will be added to a revision of the document if necessary.

  12. Reducing Nitrogen Oxide Emissions: 1996 Compliance with Title IV Limits

    Reports and Publications (EIA)

    1998-01-01

    The purpose of this article is to summarize the existing federal nitrogen oxide (Nox) regulations and the 1996 performance of the 239 Title IV generating units. It also reviews the basics of low-Nox burner technology and presents cost and performance data for retrofits at Title IV units.

  13. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect (OSTI)

    Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

    2010-11-01

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  14. Venezuela-MEM/USA-DOE Fossil Energy Report IV-11: Supporting technology for enhanced oil recovery - EOR thermal processes

    SciTech Connect (OSTI)

    Venezuela

    2000-04-06

    This report contains the results of efforts under the six tasks of the Tenth Amendment anti Extension of Annex IV, Enhanced Oil Recovery Thermal Processes of the Venezuela/USA Energy Agreement. This report is presented in sections (for each of the six Tasks) and each section contains one or more reports that were prepared to describe the results of the effort under each of the Tasks. A statement of each Task, taken from the Agreement Between Project Managers, is presented on the first page of each section. The Tasks are numbered 68 through 73. The first through tenth report on research performed under Annex IV Venezuela MEM/USA-DOE Fossil Energy Report Number IV-1, IV-2, IV-3, IV-4, IV-5, IV-6, IV-7, IV-8, IV-9, IV-10 contain the results of the first 67 Tasks. These reports are dated April 1983, August 1984, March 1986, July 1987, November 1988, December 1989, October 1991, February 1993, March 1995, and December 1997, respectively.

  15. Distributed electrical generation technologies and methods for their economic assessment

    SciTech Connect (OSTI)

    Kreider, J.F.; Curtiss, P.S.

    2000-07-01

    A confluence of events in the electrical generation and transmission industry has produced a new paradigm for distributed electrical generation and distribution in the US Electrical deregulation, reluctance of traditional utilities to commit capital to large central plants and transmission lines, and a suite of new, efficient generation hardware have all combined to bring this about. Persistent environmental concerns have further stimulated several new approaches. In this paper the authors describe the near term distributed generation technologies and their differentiating characteristics along with their readiness for the US market. In order to decide which approaches are well suited to a specific project, an assessment methodology is needed. A technically sound approach is therefore described and example results are given.

  16. Observations on A Technology Roadmap for Generation IV Nuclear Energy Systems: Technical Roadmap Report

    Broader source: Energy.gov [DOE]

    The development of advanced nuclear energy systems in the U.S. will depend greatly on the continued success of currently operating light water nuclear power plants and the ordering of new...

  17. Modernizing a Technology From Vacuum Tube Era To Generate Cheap Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Modernizing a Technology From Vacuum Tube Era To Generate Cheap Power

  18. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost and Performance Assumptions for Modeling Electricity Generation Technologies Rick Tidball, Joel Bluestein, Nick Rodriguez, and Stu Knoke ICF International Fairfax, Virginia Subcontract Report NREL/SR-6A20-48595 November 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 *

  19. Fuel Cell Comparison of Distributed Power Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Fuel Cycle Comparison of Distributed Power Generation Technologies Energy Systems Division About Argonne National Laboratory Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory's main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne, see www.anl.gov. Availability of This Report This report is available, at no cost, at http://www.osti.gov/bridge. It is

  20. Next-Generation Photovoltaic Technologies in the United States: Preprint

    SciTech Connect (OSTI)

    McConnell, R.; Matson, R.

    2004-06-01

    This paper describes highlights of exploratory research into next-generation photovoltaic (PV) technologies funded by the United States Department of Energy (DOE) through its National Renewable Energy Laboratory (NREL) for the purpose of finding disruptive or ''leap frog'' technologies that may leap ahead of conventional PV in energy markets. The most recent set of 14 next-generation PV projects, termed Beyond the Horizon PV, will complete their third year of research this year. The projects tend to take two notably different approaches: high-efficiency solar cells that are presently too expensive, or organic solar cells having potential for low cost although efficiencies are currently too low. We will describe accomplishments for several of these projects. As prime examples of what these last projects have accomplished, researchers at Princeton University recently reported an organic solar cell with 5% efficiency (not yet NREL-verified). And Ohio State University scientists recently demonstrated an 18% (NREL-verified) single-junction GaAs solar cell grown on a low-cost silicon substrate. We also completed an evaluation of proposals for the newest set of exploratory research projects, but we are unable to describe them in detail until funding becomes available to complete the award process.

  1. MHK Technologies/KESC Tidal Generator | Open Energy Information

    Open Energy Info (EERE)

    Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early...

  2. MHK Technologies/Turbo Ocean Power Generator MadaTech 17 | Open...

    Open Energy Info (EERE)

    Turbo Ocean Power Generator MadaTech 17 < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Turbo Ocean Power Generator MadaTech 17.jpg Technology...

  3. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

    2011-03-01

    Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

  4. Super Boiler 2nd Generation Technology for Watertube Boilers

    SciTech Connect (OSTI)

    Mr. David Cygan; Dr. Joseph Rabovitser

    2012-03-31

    This report describes Phase I of a proposed two phase project to develop and demonstrate an advanced industrial watertube boiler system with the capability of reaching 94% (HHV) fuel-to-steam efficiency and emissions below 2 ppmv NOx, 2 ppmv CO, and 1 ppmv VOC on natural gas fuel. The boiler design would have the capability to produce >1500 F, >1500 psig superheated steam, burn multiple fuels, and will be 50% smaller/lighter than currently available watertube boilers of similar capacity. This project is built upon the successful Super Boiler project at GTI. In that project that employed a unique two-staged intercooled combustion system and an innovative heat recovery system to reduce NOx to below 5 ppmv and demonstrated fuel-to-steam efficiency of 94% (HHV). This project was carried out under the leadership of GTI with project partners Cleaver-Brooks, Inc., Nebraska Boiler, a Division of Cleaver-Brooks, and Media and Process Technology Inc., and project advisors Georgia Institute of Technology, Alstom Power Inc., Pacific Northwest National Laboratory and Oak Ridge National Laboratory. Phase I of efforts focused on developing 2nd generation boiler concepts and performance modeling; incorporating multi-fuel (natural gas and oil) capabilities; assessing heat recovery, heat transfer and steam superheating approaches; and developing the overall conceptual engineering boiler design. Based on our analysis, the 2nd generation Industrial Watertube Boiler when developed and commercialized, could potentially save 265 trillion Btu and $1.6 billion in fuel costs across U.S. industry through increased efficiency. Its ultra-clean combustion could eliminate 57,000 tons of NOx, 460,000 tons of CO, and 8.8 million tons of CO2 annually from the atmosphere. Reduction in boiler size will bring cost-effective package boilers into a size range previously dominated by more expensive field-erected boilers, benefiting manufacturers and end users through lower capital costs.

  5. MHK Technologies/Sabella River Generator | Open Energy Information

    Open Energy Info (EERE)

    Organization Sabella Energy Project(s) where this technology is utilized *MHK ProjectsSR 01 Technology Resource Click here CurrentTidal Technology Type Click here Axial Flow...

  6. MHK Technologies/The Linear Generator | Open Energy Information

    Open Energy Info (EERE)

    here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery Concept Definition Early Stage Development & Design & Engineering Technology Description The...

  7. MHK Technologies/Tidal Hydraulic Generators THG | Open Energy...

    Open Energy Info (EERE)

    Description The concept of generating energy in this way is made unique by our novel design feature. The generator, devised in 1998, is a hydraulic accumulator system,...

  8. DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage Systems—Current Performance and Cost

    Broader source: Energy.gov [DOE]

    This record summarizes the current status of the projected capacities and manufacturing costs of Type IV, 350- and 700-bar compressed hydrogen storage systems, storing 5.6 kg of usable hydrogen, for onboard light-duty automotive applications when manufactured at a volume of 500,000 units per year, and presents the current projected performance and cost of these systems against the DOE hydrogen storage system targets.

  9. Next Generation Surfactants for Improved Chemical Flooding Technology

    SciTech Connect (OSTI)

    Laura Wesson; Prapas Lohateeraparp; Jeffrey Harwell; Bor-Jier Shiau

    2012-05-31

    The principle objective of this project was to characterize and test current and next generation high performance surfactants for improved chemical flooding technology, focused on reservoirs in the Pennsylvanian-aged (Penn) sands. In order to meet this objective the characteristic curvatures (Cc) of twenty-eight anionic surfactants selected for evaluation for use in chemical flooding formulations were determined. The Cc values ranged from -6.90 to 2.55 with the majority having negative values. Crude oil samples from nine Penn sand reservoirs were analyzed for several properties pertinent to surfactant formulation for EOR application. These properties included equivalent alkane carbon numbers, total acid numbers, and viscosity. The brine samples from these same reservoirs were analyzed for several cations and for total dissolved solids. Surfactant formulations were successfully developed for eight reservoirs by the end of the project period. These formulations were comprised of a tertiary mixture of anionic surfactants. The identities of these surfactants are considered proprietary, but suffice to say the surfactants in each mixture were comprised of varying chemical structures. In addition to the successful development of surfactant formulations for EOR, there were also two successful single-well field tests conducted. There are many aspects that must be considered in the development and implementation of effective surfactant formulations. Taking into account these other aspects, there were four additional studies conducted during this project. These studies focused on the effect of the stability of surfactant formulations in the presence of polymers with an associated examination of polymer rheology, the effect of the presence of iron complexes in the brine on surfactant stability, the potential use of sacrificial agents in order to minimize the loss of surfactant to adsorption, and the effect of electrolytes on surfactant adsorption. In these last four studies the effects of such things as temperature, electrolyte concentration and the effect of different types of electrolytes were taken into consideration.

  10. Energy Generation by State and Technology (2009) - Datasets ...

    Open Energy Info (EERE)

    2009, reported in MWh. Also includes facility-level data (directly from EIA Form 923). Data and Resources Energy Generation by Fuel Source and State, 2009XLS Energy Generation by...

  11. ARPA-E Announces $30 Million for Distributed Generation Technologies

    Broader source: Energy.gov [DOE]

    REBELS Program Aims to Develop Innovative Intermediate-Temperature Fuel Cells for Low-Cost Stationary Power Generation

  12. MHK Technologies/Sub Surface Counter Rotation Current Generator...

    Open Energy Info (EERE)

    that operate independently that tether freely anchored offshore in deep waters in the Gulf Stream Current producing continuos clean energy for the eastern seaboard Technology...

  13. MHK Technologies/Brandl Generator | Open Energy Information

    Open Energy Info (EERE)

    direct connected magnets that induce an electrical current when they move through the induction coils. This drawing shows the basic idea. Technology Dimensions Width (m) 10 Height...

  14. High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies

    Broader source: Energy.gov [DOE]

    Key technologies and system approaches to excellent record of thermoelectric power sources in deep space missions and development of higher performance TE materials for the next generation systems

  15. MHK Technologies/Water Current Generator Motor | Open Energy...

    Open Energy Info (EERE)

    Simple Vertical Axis fully submerged open design flow through unit operating an onboard Pump unit that drives an on shore power generation system Slow turning swim through for...

  16. MHK Technologies/Current Electric Generator | Open Energy Information

    Open Energy Info (EERE)

    harnessing the motion of water current to rotate the generator Two forms of magnetic induction and solar cells on the outer housing will produce electricity very efficiently The...

  17. Development and Validation of Temperature Dependent Thermal Neutron Scattering Laws for Applications and Safety Implications in Generation IV Reactor Designs

    SciTech Connect (OSTI)

    Ayman Hawari

    2008-06-20

    The overall obljectives of this project are to critically review the currently used thermal neutron scattering laws for various moderators as a function of temperature, select as well documented and representative set of experimental data sensitive to the neutron spectra to generate a data base of benchmarks, update models and models parameters by introducing new developments in thermalization theory and condensed matter physics into various computational approaches in establishing the scattering laws, benchmark the results against the experimentatl set. In the case of graphite, a validation experiment is performed by observing nutron slowing down as a function of temperatures equal to or greater than room temperature.

  18. Fuel Cell Comparison of Distributed Power Generation Technologies

    Broader source: Energy.gov [DOE]

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  19. MHK Technologies/Electric Generating Wave Pipe | Open Energy...

    Open Energy Info (EERE)

    Dimensions Technology Nameplate Capacity (MW) Potential 40 500KW 5MW per unit within cluster Cluster quantity unlimited Device Testing Date Submitted 56:42.6 << Return to the MHK...

  20. New Generating Technology to Reduce Greenhouse Gas Emissions

    U.S. Energy Information Administration (EIA) Indexed Site

    ... then address barriers and accelerate use of new technology. - Set deadlines that provide market "pull", but don't risk supply adequacy, energy security, a "bust" in the program.

  1. Motion-to-Energy (M2E) Power Generation Technology

    ScienceCinema (OSTI)

    INL

    2009-09-01

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking.

  2. MHK Technologies/Direct Drive Power Generation Buoy | Open Energy...

    Open Energy Info (EERE)

    license agreement with Columbia Power Technologies to jointly develop a direct drive wave energy conversion device Designed to be anchored 2 5 miles off the Oregon coast in 130...

  3. Feasibility Study of Sustainable Distributed Generation Technologies for the Duck Valley Reservation

    Office of Environmental Management (EM)

    of Sustainable Distributed Generation Technologies for the Duck Valley Reservation Feasibility Study of Sustainable Distributed Generation Technologies for the Duck Valley Reservation Office of Energy Efficiency and Renewable Energy TRIBAL ENERGY PROGRAM FY2004 Program Review Meeting Denver West Holiday Inn Golden, Colorado Shoshone-Paiute Tribes of the Duck Valley Reservation CSHQA New West Technologies Idaho Department of Water Resources INEEL Feasibility Study of Sustainable Distributed

  4. Next Generation Lighting Technologies (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Siminovittch, Micheal

    2014-05-06

    For the past several years, Michael Siminovittch, a researcher in the Environmental Energy Technologies Division of Lawrence Berkeley National Laboratory, has worked to package efficient lighting in an easy-to-use and good-looking lamp. His immensely popular "Berkeley Lamp" has redefined how America lights its offices.

  5. New Materials for NGNP/Gen IV

    SciTech Connect (OSTI)

    Robert W. Swindeman; Douglas L. Marriott

    2009-12-18

    The bounding conditions were briefly summarized for the Next Generation Nuclear Plant (NGNP) that is the leading candidate in the Department of Energy Generation IV reactor program. Metallic materials essential to the successful development and proof of concept for the NGNP were identified. The literature bearing on the materials technology for high-temperature gas-cooled reactors was reviewed with emphasis on the needs identified for the NGNP. Several materials were identified for a more thorough study of their databases and behavioral features relative to the requirements ASME Boiler and Pressure Vessel Code, Section III, Division 1, Subsection NH.

  6. Next generation sequencing (NGS)technologies and applications

    SciTech Connect (OSTI)

    Vuyisich, Momchilo

    2012-09-11

    NGS technology overview: (1) NGS library preparation - Nucleic acids extraction, Sample quality control, RNA conversion to cDNA, Addition of sequencing adapters, Quality control of library; (2) Sequencing - Clonal amplification of library fragments, (except PacBio), Sequencing by synthesis, Data output (reads and quality); and (3) Data analysis - Read mapping, Genome assembly, Gene expression, Operon structure, sRNA discovery, and Epigenetic analyses.

  7. Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure-based Technology for Next Generation Energy Storage

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  8. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  9. Vehicle Technologies Office Merit Review 2015: Next-generation Ultra-Lean Burn Powertrain

    Broader source: Energy.gov [DOE]

    Presentation given by MAHLE Powertrain LLC at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next-generation ultra...

  10. Vehicle Technologies Office Merit Review 2014: Next-Generation Ultra Lean Burn Powertrain

    Broader source: Energy.gov [DOE]

    Presentation given by MAHLE Powertrain, LLC at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next-generation ultra...

  11. Systematic Review and Harmonization of Life Cycle GHG Emission Estimates for Electricity Generation Technologies (Presentation)

    SciTech Connect (OSTI)

    Heath, G.

    2012-06-01

    This powerpoint presentation to be presented at the World Renewable Energy Forum on May 14, 2012, in Denver, CO, discusses systematic review and harmonization of life cycle GHG emission estimates for electricity generation technologies.

  12. Examination of incentive mechanisms for innovative technologies applicable to utility and nonutility power generators

    SciTech Connect (OSTI)

    McDermott, K.A.; Bailey, K.A.; South, D.W.

    1993-08-01

    Innovative technologies, built by either utility or nonutility power generators, have the potential to lower costs with less environmental emissions than conventional technologies. However, the public-good nature of information, along with uncertain costs, performance, and reliability, discourages rapid adoption of these technologies. The effect of regulation of electricity production may also have an adverse impact on motivation to innovate. Slower penetration of cleaner, more efficient technologies could result in greater levels of pollution, higher electricity prices, and a reduction in international competitiveness. Regulatory incentives could encourage adoption and deployment of innovative technologies of all kinds, inducting clean coal technologies. Such incentives must be designed to offset risks inherent in innovative technology and encourage cost-effective behavior. To evaluate innovative and conventional technologies equally, the incremental cost of risk (ICR) of adopting the innovative technology must be determined. Through the ICR, the magnitude of incentive required to make a utility (or nonutility) power generator equally motivated to use either conventional or innovative technologies can be derived. Two technology risks are examined: A construction risk, represented by a 15% cost overrun, and an operating risk, represented by a increased forced outage rate (decreased capacity factor). Different incentive mechanisms and measurement criteria are used to assess the effects of these risks on ratepayers and shareholders. In most cases, a regulatory incentive could offset the perceived risks while encouraging cost-effective behavior by both utility and nonutility power generators. Not only would the required incentive be recouped, but the revenue requirements would be less for the innovative technology; also, less environmental pollution would be generated. In the long term, ratepayers and society would benefit from innovative technologies.

  13. New generation enrichment monitoring technology for gas centrifuge enrichment plants

    SciTech Connect (OSTI)

    Ianakiev, Kiril D; Alexandrov, Boian S.; Boyer, Brian D.; Hill, Thomas R.; Macarthur, Duncan W.; Marks, Thomas; Moss, Calvin E.; Sheppard, Gregory A.; Swinhoe, Martyn T.

    2008-06-13

    The continuous enrichment monitor, developed and fielded in the 1990s by the International Atomic Energy Agency, provided a go-no-go capability to distinguish between UF{sub 6} containing low enriched (approximately 4% {sup 235}U) and highly enriched (above 20% {sup 235}U) uranium. This instrument used the 22-keV line from a {sup 109}Cd source as a transmission source to achieve a high sensitivity to the UF{sub 6} gas absorption. The 1.27-yr half-life required that the source be periodically replaced and the instrument recalibrated. The instrument's functionality and accuracy were limited by the fact that measured gas density and gas pressure were treated as confidential facility information. The modern safeguarding of a gas centrifuge enrichment plant producing low-enriched UF{sub 6} product aims toward a more quantitative flow and enrichment monitoring concept that sets new standards for accuracy stability, and confidence. An instrument must be accurate enough to detect the diversion of a significant quantity of material, have virtually zero false alarms, and protect the operator's proprietary process information. We discuss a new concept for advanced gas enrichment assay measurement technology. This design concept eliminates the need for the periodic replacement of a radioactive source as well as the need for maintenance by experts. Some initial experimental results will be presented.

  14. Design Features and Technology Uncertainties for the Next Generation Nuclear Plant

    SciTech Connect (OSTI)

    John M. Ryskamp; Phil Hildebrandt; Osamu Baba; Ron Ballinger; Robert Brodsky; Hans-Wolfgang Chi; Dennis Crutchfield; Herb Estrada; Jeane-Claude Garnier; Gerald Gordon; Richard Hobbins; Dan Keuter; Marilyn Kray; Philippe Martin; Steve Melancon; Christian Simon; Henry Stone; Robert Varrin; Werner von Lensa

    2004-06-01

    This report presents the conclusions, observations, and recommendations of the Independent Technology Review Group (ITRG) regarding design features and important technology uncertainties associated with very-high-temperature nuclear system concepts for the Next Generation Nuclear Plant (NGNP). The ITRG performed its reviews during the period November 2003 through April 2004.

  15. The role of advanced technology in the future of the power generation industry

    SciTech Connect (OSTI)

    Bechtel, T.F.

    1994-10-01

    This presentation reviews the directions that technology has given the power generation industry in the past and how advanced technology will be the key for the future of the industry. The topics of the presentation include how the industry`s history has defined its culture, how today`s economic and regulatory climate has constrained its strategy, and how certain technology options might give some of the players an unfair advantage.

  16. Technology status and project development risks of advanced coal power generation technologies in APEC developing economies

    SciTech Connect (OSTI)

    Lusica, N.; Xie, T.; Lu, T.

    2008-10-15

    The report reviews the current status of IGCC and supercritical/ultrasupercritical pulverized-coal power plants and summarizes risks associated with project development, construction and operation. The report includes an economic analysis using three case studies of Chinese projects; a supercritical PC, an ultrasupercritical PC, and an IGCC plant. The analysis discusses barriers to clean coal technologies and ways to encourage their adoption for new power plants. 25 figs., 25 tabs.

  17. Gen IV Materials Handbook Implementation Plan

    SciTech Connect (OSTI)

    Rittenhouse, P.; Ren, W.

    2005-03-29

    A Gen IV Materials Handbook is being developed to provide an authoritative single source of highly qualified structural materials information and materials properties data for use in design and analyses of all Generation IV Reactor Systems. The Handbook will be responsive to the needs expressed by all of the principal government, national laboratory, and private company stakeholders of Gen IV Reactor Systems. The Gen IV Materials Handbook Implementation Plan provided here addresses the purpose, rationale, attributes, and benefits of the Handbook and will detail its content, format, quality assurance, applicability, and access. Structural materials, both metallic and ceramic, for all Gen IV reactor types currently supported by the Department of Energy (DOE) will be included in the Gen IV Materials Handbook. However, initial emphasis will be on materials for the Very High Temperature Reactor (VHTR). Descriptive information (e.g., chemical composition and applicable technical specifications and codes) will be provided for each material along with an extensive presentation of mechanical and physical property data including consideration of temperature, irradiation, environment, etc. effects on properties. Access to the Gen IV Materials Handbook will be internet-based with appropriate levels of control. Information and data in the Handbook will be configured to allow search by material classes, specific materials, specific information or property class, specific property, data parameters, and individual data points identified with materials parameters, test conditions, and data source. Details on all of these as well as proposed applicability and consideration of data quality classes are provided in the Implementation Plan. Website development for the Handbook is divided into six phases including (1) detailed product analysis and specification, (2) simulation and design, (3) implementation and testing, (4) product release, (5) project/product evaluation, and (6) product maintenance and enhancement. Contracting of development of the Handbook website is discussed in terms of host server options, cost, technology, developer background and cooperative nature, and company stability. One of the first and most important activities in website development will be the generation of a detailed Handbook product requirements document including case diagrams and functional requirements tables. The Implementation Plan provides a detailed overview of the organizational structure of the Handbook and details of Handbook preparation, publication, and distribution. Finally, the Implementation Plan defines Quality Assurance requirements for the Handbook.

  18. Coal-fired power generation: Proven technologies and pollution control systems

    SciTech Connect (OSTI)

    Balat, M.

    2008-07-01

    During the last two decades, significant advances have been made in the reduction of emissions from coal-fired power generating plants. New technologies include better understanding of the fundamentals of the formation and destruction of criteria pollutants in combustion processes (low nitrogen oxides burners) and improved methods for separating criteria pollutants from stack gases (FGD technology), as well as efficiency improvements in power plants (clean coal technologies). Future demand for more environmentally benign electric power, however, will lead to even more stringent controls of pollutants (sulphur dioxide and nitrogen oxides) and greenhouse gases such as carbon dioxide.

  19. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    SciTech Connect (OSTI)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  20. Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy (2010 JGI User Meeting)

    ScienceCinema (OSTI)

    Khanna, Madhu

    2011-04-26

    Madhu Khanna from the University of Illinois at Urbana-Champaign and the Energy Biosciences Institute on "Competitiveness of Second Generation Biofuel Feedstocks: Role of Technology and Policy" on March 25, 2010 at the 5th Annual DOE JGI User Meeting

  1. A Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, Jordan; Newmark, Robin; Heath, Garvin; Hallett, K. C.

    2011-03-01

    This report provides estimates of operational water withdrawal and water consumption factors for electricity generating technologies in the United States. Estimates of water factors were collected from published primary literature and were not modified except for unit conversions. The presented water factors may be useful in modeling and policy analyses where reliable power plant level data are not available.

  2. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    SciTech Connect (OSTI)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise be unused and convert it to electricity or useful thermal energy. Recycled energy produces no or little increase in fossil fuel consumption and pollutant emissions. Examples of energy recycling methods include industrial gasification technologies to increase energy recovery, as well as less traditional CHP technologies, and the use of energy that is typically discarded from pressure release vents or from the burning and flaring of waste streams. These energy recovery technologies have the ability to reduce costs for power generation. This report is a preliminary study of the potential contribution of this ''new'' generation of clean recycled energy supply technologies to the power supply of the United States. For each of the technologies this report provides a short technical description, as well as an estimate of the potential for application in the U.S., estimated investment and operation costs, as well as impact on air pollutant emission reductions. The report summarizes the potential magnitude of the benefits of these new technologies. The report does not yet provide a robust cost-benefit analysis. It is stressed that the report provides a preliminary assessment to help focus future efforts by the federal government to further investigate the opportunities offered by new clean power generation technologies, as well as initiate policies to support further development and uptake of clean power generation technologies.

  3. Technology on In-Situ Gas Generation to Recover Residual Oil Reserves

    SciTech Connect (OSTI)

    Sayavur Bakhtiyarov

    2008-02-29

    This final technical report covers the period October 1, 1995 to February 29, 2008. This chapter begins with an overview of the history of Enhanced Oil Recovery techniques and specifically, CO2 flood. Subsequent chapters conform to the manner consistent with the Activities, Tasks, and Sub-tasks of the project as originally provided in Exhibit C1 in the Project Management Plan dated September 20, 1995. These chapters summarize the objectives, status and conclusions of the major project activities performed during the project period. The report concludes by describing technology transfer activities stemming from the project and providing a reference list of all publications of original research work generated by the project team or by others regarding this project. The overall objective of this project was a final research and development in the United States a technology that was developed at the Institute for Geology and Development of Fossil Fuels in Moscow, Russia. Before the technology can be convincingly adopted by United States oil and gas producers, the laboratory research was conducted at Mew Mexico Institute of Mining and Technology. The experimental studies were conducted to measure the volume and the pressure of the CO{sub 2} gas generated according to the new Russian technology. Two experimental devices were designed, built and used at New Mexico Tech facilities for these purposes. The designed setup allowed initiating and controlling the reaction between the 'gas-yielding' (GY) and 'gas-forming' (GF) agents proposed by Russian technology. The temperature was controlled, and the generated gas pressure and volume were recorded during the reaction process. Additionally, the effect of surfactant addition on the effectiveness of the process was studied. An alternative GY reactant was tested in order to increase the efficiency of the CO2 gas generation process. The slim tube and the core flood experimental studies were conducted to define the sweep efficiency of the in-situ generated CO{sub 2} gas. A set of core flood experiments were conducted to define effect of surfactant on recovery efficiency. The results demonstrated obvious advantages of the foamy system over the brine solution in order to achieve higher sweep efficiency and recovery coefficient. It is shown that a slug injection is not an efficient method for mixing GY and GF solutions and it can't generate considerable gas inside the slim-tube.

  4. Annual Site Environmental Report, Department of Energy Operations at the Energy Technology Engineering Center – Area IV, Santa Susana Field Laboratory

    SciTech Connect (OSTI)

    Frazee, Brad; Hay, Scott; Wondolleck, John; Sorrels, Earl; Rutherford, Phil; Dassler, David; Jones, John

    2015-05-01

    This Annual Site Environmental Report (ASER) for 2014 describes the environmental conditions related to work performed for the DOE at Area IV of the Santa Susana Field Laboratory (SSFL). The ETEC, a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  5. Table 8.2. Cost and performance characteristics of new central station electricity generating technologies

    Gasoline and Diesel Fuel Update (EIA)

    Table 8.2. Cost and performance characteristics of new central station electricity generating technologies Contingency Factors Technology Online Year 1 Size (MW) Lead time (years) Base Overnight Cost in 2014 (2013 $/kW) Project Contin- gency Factor 2 Techno- logical Optimism Factor 3 Total Overnight Cost in 2014 4 (2013 $/kW) Variable O&M 5 (2013 $/mWh) Fixed O&M (2013 $/ kW/yr.) Heatrate 6 in 2014 (Btu/ kWh) nth-of-a- kind Heatrate (Btu/kWh Scrubbed Coal New 2018 1300 4 2,726 1.07 1.00

  6. Calibrating spectral estimation for the LISA Technology Package with multichannel synthetic noise generation

    SciTech Connect (OSTI)

    Ferraioli, Luigi; Hueller, Mauro; Vitale, Stefano; Heinzel, Gerhard; Hewitson, Martin; Monsky, Anneke; Nofrarias, Miquel

    2010-08-15

    The scientific objectives of the LISA Technology Package experiment on board of the LISA Pathfinder mission demand accurate calibration and validation of the data analysis tools in advance of the mission launch. The level of confidence required in the mission outcomes can be reached only by intensively testing the tools on synthetically generated data. A flexible procedure allowing the generation of a cross-correlated stationary noise time series was set up. A multichannel time series with the desired cross-correlation behavior can be generated once a model for a multichannel cross-spectral matrix is provided. The core of the procedure comprises a noise coloring, multichannel filter designed via a frequency-by-frequency eigendecomposition of the model cross-spectral matrix and a subsequent fit in the Z domain. The common problem of initial transients in a filtered time series is solved with a proper initialization of the filter recursion equations. The noise generator performance was tested in a two-dimensional case study of the closed-loop LISA Technology Package dynamics along the two principal degrees of freedom.

  7. Considerations Associated with Reactor Technology Selection for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    L.E. Demick

    2010-09-01

    At the inception of the Next Generation Nuclear Plant Project and during predecessor activities, alternative reactor technologies have been evaluated to determine the technology that best fulfills the functional and performance requirements of the targeted energy applications and market. Unlike the case of electric power generation where the reactor performance is primarily expressed in terms of economics, the targeted energy applications involve industrial applications that have specific needs in terms of acceptable heat transport fluids and the associated thermodynamic conditions. Hence, to be of interest to these industrial energy applications, the alternative reactor technologies are weighed in terms of the reactor coolant/heat transport fluid, achievable reactor outlet temperature, and practicality of operations to achieve the very high reliability demands associated with the petrochemical, petroleum, metals and related industries. These evaluations have concluded that the high temperature gas-cooled reactor (HTGR) can uniquely provide the required ranges of energy needs for these target applications, do so with promising economics, and can be commercialized with reasonable development risk in the time frames of current industry interest – i.e., within the next 10-15 years.

  8. Idaho Nuclear Technology and Engineering Center Newly Generated Liquid Waste Demonstration Project Feasibility Study

    SciTech Connect (OSTI)

    Herbst, A.K.

    2000-02-01

    A research, development, and demonstration project for the grouting of newly generated liquid waste (NGLW) at the Idaho Nuclear Technology and Engineering Center is considered feasible. NGLW is expected from process equipment waste, decontamination waste, analytical laboratory waste, fuel storage basin waste water, and high-level liquid waste evaporator condensate. The potential grouted waste would be classed as mixed low-level waste, stabilized and immobilized to meet RCRA LDR disposal in a grouting process in the CPP-604 facility, and then transported to the state.

  9. Development of ITM oxygen technology for integration in IGCC and other advanced power generation

    SciTech Connect (OSTI)

    Armstrong, Phillip A.

    2015-03-31

    Ion Transport Membrane (ITM) technology is based on the oxygen-ion-conducting properties of certain mixed-metal oxide ceramic materials that can separate oxygen from an oxygen-containing gas, such as air, under a suitable driving force. The “ITM Oxygen” air separation system that results from the use of such ceramic membranes produces a hot, pure oxygen stream and a hot, pressurized, oxygen-depleted stream from which significant amounts of energy can be extracted. Accordingly, the technology integrates well with other high-temperature processes, including power generation. Air Products and Chemicals, Inc., the Recipient, in conjunction with a dozen subcontractors, developed ITM Oxygen technology under this five-phase Cooperative Agreement from the laboratory bench scale to implementation in a pilot plant capable of producing power and 100 tons per day (TPD) of purified oxygen. A commercial-scale membrane module manufacturing facility (the “CerFab”), sized to support a conceptual 2000 TPD ITM Oxygen Development Facility (ODF), was also established and operated under this Agreement. In the course of this work, the team developed prototype ceramic production processes and a robust planar ceramic membrane architecture based on a novel ceramic compound capable of high oxygen fluxes. The concept and feasibility of the technology was thoroughly established through laboratory pilot-scale operations testing commercial-scale membrane modules run under industrial operating conditions with compelling lifetime and reliability performance that supported further scale-up. Auxiliary systems, including contaminant mitigation, process controls, heat exchange, turbo-machinery, combustion, and membrane pressure vessels were extensively investigated and developed. The Recipient and subcontractors developed efficient process cycles that co-produce oxygen and power based on compact, low-cost ITMs. Process economics assessments show significant benefits relative to state-of-the-art cryogenic air separation technology in energy-intensive applications such as IGCC with and without carbon capture.

  10. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, Chad; Bain, Richard; Chapman, Jamie; Denholm, Paul; Drury, Easan; Hall, Douglas G.; Lantz, Eric; Margolis, Robert; Thresher, Robert; Sandor, Debra; Bishop, Norman A.; Brown, Stephen R.; Felker, Fort; Fernandez, Steven J.; Goodrich, Alan C.; Hagerman, George; Heath, Garvin; O'Neil, Sean; Paquette, Joshua; Tegen, Suzanne; Young, Katherine

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  11. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  12. Development and Analysis of Advanced High-Temperature Technology for Nuclear Heat Transport and Power Conversion

    SciTech Connect (OSTI)

    Per F. Peterson

    2010-03-01

    This project by the Thermal Hydraulics Research Laboratory at U.C. Berkeley Studied advanced high-temperature heat transport and power conversion technology, in support of the Nuclear Hydrogen Initiative and Generation IV.

  13. CONSTRUCTION OF WEB-ACCESSIBLE MATERIALS HANDBOOK FORGENERATION IV NUCLEAR REACTORS

    SciTech Connect (OSTI)

    Ren, Weiju

    2005-01-01

    The development of a web-accessible materials handbook in support of the materials selection and structural design for the Generation IV nuclear reactors is being planned. Background of the reactor program is briefly introduced. Evolution of materials handbooks for nuclear reactors over years is reviewed in light of the trends brought forth by the rapid advancement in information technologies. The framework, major features, contents, and construction considerations of the web-accessible Gen IV Materials Handbook are discussed. Potential further developments and applications of the handbook are also elucidated.

  14. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  15. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    2013-06-04

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  16. Life Cycle analysis data and results for geothermal and other electricity generation technologies

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sullivan, John

    Life cycle analysis (LCA) is an environmental assessment method that quantifies the environmental performance of a product system over its entire lifetime, from cradle to grave. Based on a set of relevant metrics, the method is aptly suited for comparing the environmental performance of competing products systems. This file contains LCA data and results for electric power production including geothermal power. The LCA for electric power has been broken down into two life cycle stages, namely plant and fuel cycles. Relevant metrics include the energy ratio and greenhouse gas (GHG) ratios, where the former is the ratio of system input energy to total lifetime electrical energy out and the latter is the ratio of the sum of all incurred greenhouse gases (in CO2 equivalents) divided by the same energy output. Specific information included herein are material to power (MPR) ratios for a range of power technologies for conventional thermoelectric, renewables (including three geothermal power technologies), and coproduced natural gas/geothermal power. For the geothermal power scenarios, the MPRs include the casing, cement, diesel, and water requirements for drilling wells and topside piping. Also included herein are energy and GHG ratios for plant and fuel cycle stages for the range of considered electricity generating technologies. Some of this information are MPR data extracted directly from the literature or from models (eg. ICARUS – a subset of ASPEN models) and others (energy and GHG ratios) are results calculated using GREET models and MPR data. MPR data for wells included herein were based on the Argonne well materials model and GETEM well count results.

  17. Shipment and Disposal of Solidified Organic Waste (Waste Type IV) to the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    D'Amico, E. L; Edmiston, D. R.; O'Leary, G. A.; Rivera, M. A.; Steward, D. M.

    2006-07-01

    In April of 2005, the last shipment of transuranic (TRU) waste from the Rocky Flats Environmental Technology Site to the WIPP was completed. With the completion of this shipment, all transuranic waste generated and stored at Rocky Flats was successfully removed from the site and shipped to and disposed of at the WIPP. Some of the last waste to be shipped and disposed of at the WIPP was waste consisting of solidified organic liquids that is identified as Waste Type IV in the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC) document. Waste Type IV waste typically has a composition, and associated characteristics, that make it significantly more difficult to ship and dispose of than other Waste Types, especially with respect to gas generation. This paper provides an overview of the experience gained at Rocky Flats for management, transportation and disposal of Type IV waste at WIPP, particularly with respect to gas generation testing. (authors)

  18. Next Generation Nuclear Plant Project Technology Development Roadmaps: The Technical Path Forward for 750–800°C Reactor Outlet Temperature

    SciTech Connect (OSTI)

    John Collins

    2009-08-01

    This document presents the NGNP Critical PASSCs and defines their technical maturation path through Technology Development Roadmaps (TDRMs) and their associated Technology Readiness Levels (TRLs). As the critical PASSCs advance through increasing levels of technical maturity, project risk is reduced and the likelihood of within-budget and on-schedule completion is enhanced. The current supplier-generated TRLs and TDRMs for a 750–800°C reactor outlet temperature (ROT) specific to each supplier are collected in Appendix A.

  19. Research and Development Technology Development Roadmaps for the Next Generation Nuclear Plant Project

    SciTech Connect (OSTI)

    Ian McKirdy

    2011-07-01

    The U.S. Department of Energy (DOE) has selected the high temperature gas-cooled reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for process heat, hydrogen and electricity production. The reactor will be graphite moderated with helium as the primary coolant and may be either prismatic or pebble-bed. Although, final design features have not yet been determined. Research and Development (R&D) activities are proceeding on those known plant systems to mature the technology, codify the materials for specific applications, and demonstrate the component and system viability in NGNP relevant and integrated environments. Collectively these R&D activities serve to reduce the project risk and enhance the probability of on-budget, on-schedule completion and NRC licensing. As the design progresses, in more detail, toward final design and approval for construction, selected components, which have not been used in a similar application, in a relevant environment nor integrated with other components and systems, must be tested to demonstrate viability at reduced scales and simulations prior to full scale operation. This report and its R&D TDRMs present the path forward and its significance in assuring technical readiness to perform the desired function by: Choreographing the integration between design and R&D activities; and proving selected design components in relevant applications.

  20. Next Generation Metallic Iron Nodule Technology in Electric Arc Steelmaking - Phase II

    SciTech Connect (OSTI)

    Donald R. Fosnacht; Iwao Iwasaki; Richard F. Kiesel; David J. Englund; David W. Hendrickson; Rodney L. Bleifuss

    2010-12-22

    The current trend in the steel industry is a gradual decline in conventional steelmaking from taconite pellets in blast furnaces, and an increasing number of alternative processes using metallic scrap iron, pig iron and metallized iron ore products. Currently, iron ores from Minnesota and Michigan are pelletized and shipped to the lower Great Lakes ports as blast furnace feed. The existing transportation system and infrastructure is geared to handling these bulk materials. In order to expand the opportunities for the existing iron ore mines beyond their blast furnace customer base, a new material is needed to satisfy the needs of the emerging steel industry while utilizing the existing infrastructure and materials handling. A recent commercial installation employing Kobe Steel’s ITmk3 process, was installed in Northeastern Minnesota. The basic process uses a moving hearth furnace to directly reduce iron oxides to metallic iron from a mixture of iron ore, coals and additives. The resulting products can be shipped using the existing infrastructure for use in various steelmaking processes. The technology reportedly saves energy by 30% over the current integrated steelmaking process and reduces emissions by more than 40%. A similar large-scale pilot plant campaign is also currently in progress using JFE Steel’s Hi-QIP process in Japan. The objective of this proposal is to build upon and improve the technology demonstrated by Kobe Steel and JFE, by further reducing cost, improving quality and creating added incentive for commercial development. This project expands previous research conducted at the University of Minnesota Duluth’s Natural Resources Research Institute and that reported by Kobe and JFE Steel. Three major issues have been identified and are addressed in this project for producing high-quality nodular reduced iron (NRI) at low cost: (1) reduce the processing temperature, (2) control the furnace gas atmosphere over the NRI, and (3) effectively use sub-bituminous coal as a reductant. From over 4000 laboratory tube and box furnace tests, it was established that the correct combination of additives, fluxes, and reductant while controlling the concentration of CO and CO2 in the furnace atmosphere (a) lowers the operating temperature, (b) decreases the use of reductant coal (c) generates less micro nodules of iron, and (d) promotes desulphurization. The laboratory scale work was subsequently verified on 12.2 m (40 ft) long pilot scale furnace. High quality NRI could be produced on a routine basis using the pilot furnace facility with energy provided from oxy-gas or oxy-coal burner technologies. Specific strategies were developed to allow the use of sub-bituminous coals both as a hearth material and as part of the reaction mixture. Computational Fluid Dynamics (CFD) modeling was used to study the overall carbothermic reduction and smelting process. The movement of the furnace gas on a pilot hearth furnace and larger simulated furnaces and various means of controlling the gas atmosphere were evaluated. Various atmosphere control methods were identified and tested during the course of the investigation. Based on the results, the appropriate modifications to the furnace were made and tested at the pilot scale. A series of reduction and smelting tests were conducted to verify the utility of the processing conditions. During this phase, the overall energy use characteristics, raw materials, alternative fuels, and the overall economics predicted for full scale implementation were analyzed. The results indicate that it should be possible to lower reaction temperatures while simultaneously producing low sulfur, high carbon NRI if the right mix chemistry and atmosphere are employed. Recommendations for moving the technology to the next stage of commercialization are presented.

  1. Proposed Rules IV. Conclusion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vol. 81, No. 44 Monday, March 7, 2016 Proposed Rules IV. Conclusion For the ... Dated at Rockville, Maryland, this 29th day of February, 2016. For the Nuclear Regulatory ...

  2. Generation IV International Forum | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    These early years of the 21st century mark a pivotal time for our world in terms of peace ... In his famous "Atoms for Peace" speech, Eisenhower foresaw nuclear energy's ability to ...

  3. Renewable Electricity Futures Study Volume 2: Renewable Electricity Generation and Storage Technologies

    Broader source: Energy.gov [DOE]

    This volume includes chapters discussing biopower, geothermal, hydropower, ocean, solar, wind, and storage technologies. Each chapter includes a resource availability estimate, technology cost and performance characterization, discussions of output characteristics and grid service possibilities, large-scale production and deployment issues, and barriers to high penetration along with possible responses to them. Only technologies that are currently commercially available—biomass, geothermal, hydropower, solar PV, CSP, and wind-powered systems—are included in the modeling analysis. Some of these renewable technologies—such as run-of-river hydropower, onshore wind, hydrothermal geothermal, dedicated and co-fired-with-coal biomass—are relatively mature and well-characterized. Other renewable technologies—such as fixed-bottom offshore wind, solar PV, and solar CSP—are at earlier stages of deployment with greater potential for future technology advancements over the next 40 years.

  4. Vehicle Technologies Office Merit Review 2015: Next Generation SCR-Dosing System Investigation

    Broader source: Energy.gov [DOE]

    Presentation given by Pacific Northwest National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next...

  5. Evaluation of Representative Smart Grid Investment Grant Project Technologies: Distributed Generation

    SciTech Connect (OSTI)

    Singh, Ruchi; Vyakaranam, Bharat GNVSR

    2012-02-14

    This document is one of a series of reports estimating the benefits of deploying technologies similar to those implemented on the Smart Grid Investment Grant (SGIG) projects. Four technical reports cover the various types of technologies deployed in the SGIG projects, distribution automation, demand response, energy storage, and renewables integration. A fifth report in the series examines the benefits of deploying these technologies on a national level. This technical report examines the impacts of addition of renewable resources- solar and wind in the distribution system as deployed in the SGIG projects.

  6. Vehicle Technologies Office Merit Review 2014: Next Generation Environmentally Friendly Driving Feedback Systems Research and Development

    Broader source: Energy.gov [DOE]

    Presentation given by University of California at Riverside at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about next...

  7. Motion-to-Energy (M2Eâ?¢) Power Generation Technology

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2010-01-08

    INL researchers developed M2E, a new technology that converts motion to energy. M2E uses an innovative, optimized microgenerator with power management circuitry that kinetically charges mobile batteries from natural motion such as walking. To learn more,

  8. Global Assessment of Hydrogen Technologies – Task 5 Report Use of Fuel Cell Technology in Electric Power Generation

    SciTech Connect (OSTI)

    Fouad, Fouad H.; Peters, Robert W.; Sisiopiku, Virginia P.; Sullivan Andrew J.; Ahluwalia, Rajesh K.

    2007-12-01

    The purpose of this work was to assess the performance of high temperature membranes and observe the impact of different parameters, such as water-to-carbon ratio, carbon formation, hydrogen formation, efficiencies, methane formation, fuel and oxidant utilization, sulfur reduction, and the thermal efficiency/electrical efficiency relationship, on fuel cell performance. A 250 KW PEM fuel cell model was simulated [in conjunction with Argonne National Laboratory (ANL) with the help of the fuel cell computer software model (GCtool)] which would be used to produce power of 250 kW and also produce steam at 120oC that can be used for industrial applications. The performance of the system was examined by estimating the various electrical and thermal efficiencies achievable, and by assessing the effect of supply water temperature, process water temperature, and pressure on thermal performance. It was concluded that increasing the fuel utilization increases the electrical efficiency but decreases the thermal efficiency. The electrical and thermal efficiencies are optimum at ~85% fuel utilization. The low temperature membrane (70oC) is unsuitable for generating high-grade heat suitable for useful cogeneration. The high temperature fuel cells are capable of producing steam through 280oC that can be utilized for industrial applications. Increasing the supply water temperature reduces the efficiency of the radiator. Increasing the supply water temperature beyond the dew point temperature decreases the thermal efficiency with the corresponding decrease in high-grade heat utilization. Increasing the steam pressure decreases the thermal efficiency. The environmental impacts of fuel cell use depend upon the source of the hydrogen rich fuel used. By using pure hydrogen, fuel cells have virtually no emissions except water. Hydrogen is rarely used due to problems with storage and transportation, but in the future, the growth of a “solar hydrogen economy” has been projected. Photovoltaic cells convert sunlight into electricity. This electricity can be used to split water (electrolysis) into hydrogen and oxygen, to store the sun's energy as hydrogen fuel. In this scenario, fuel cell powered vehicles or generating stations have no real emissions of greenhouse or acid gases, or any other pollutants. It is predominantly during the fuel processing stage that atmospheric emissions are released by a fuel cell power plant. When methanol from biomass is used as a fuel, fuel cells have no net emissions of carbon dioxide (CO2, a greenhouse gas) because any carbon released was recently taken from the atmosphere by photosynthetic plants. Any high temperature combustion, such as that which would take place in a spark ignition engine fueled by methanol, produces nitrous oxides (NOx), gases which contribute to acid rain. Fuel cells virtually eliminate NOx emissions because of the lower temperatures of their chemical reactions. Fuel cells, using processed fossil fuels, have emissions of CO2 and sulfur dioxide (SO2) but these emissions are much lower than those from traditional thermal power plants or spark ignition engines due to the higher efficiency of fuel cell power plants. Higher efficiencies result in less fuel being consumed to produce a given amount of electricity or to travel a given distance. This corresponds to lower CO2 and SO2 emissions. Fuel cell power plants also have longer life expectancies and lower maintenance costs than their alternatives.

  9. Power-Gen `95. Book III: Generation trends. Volume 1 - current fossil fuel technologies. Volume 2 - advanced fossil fuel technologies. Volume 3 - gas turbine technologies I

    SciTech Connect (OSTI)

    1995-12-31

    This document is Book III of Power-Gen 1995 for the Americas. I contains papers on the following subjects: (1) Coal technologies, (2) atmospheric fluidized bed combustion, (3) repowering, (4) pressurized fluidized bed combustion, (5) combined cycle facilities, and (6) aeroderivitive and small gas turbines.

  10. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect (OSTI)

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  11. Appendix M - GPRA06 estimate of penetration of generating technologies into green power markets

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The Green Power Market Model (GPMM or the model) identifies and analyzes the potential electric-generating capacity additions that will result from “green power” programs, which are not captured in the “least-cost” analyses performed by the National Energy Modeling System (NEMS) and the Market Allocation (MARKAL) model. The term "green power" is used to define power generated from renewable energy sources, such as wind, solar, geothermal, and various forms of biomass. The Green Power market is an increasingly important element of the national renewable energy contribution, with changes in the regulatory and legislative environment and the recent dramatic changes in natural gas prices slowly altering the size of this opportunity.

  12. Proposed Rules IV. Conclusion

    Energy Savers [EERE]

    686 Federal Register / Vol. 81, No. 44 / Monday, March 7, 2016 / Proposed Rules IV. Conclusion For the reasons cited in this document, the NRC is denying PRM- 50-106. The NRC is denying this petition because the current regulations already address environmental qualification in both mild and design basis event conditions of electrical equipment located both inside and outside of the containment building that is important to safety, and the petitioners did not provide significant new or

  13. Advanced technologies for co-processing fossil and biomass resources for transportation fuels and power generation

    SciTech Connect (OSTI)

    Steinberg, M.; Dong, Y.

    2004-07-01

    Over the past few decades, a number of processes have been proposed or are under development for coprocessing fossil fuel and biomass for transportation fuels and power generation. The paper gives a brief description of the following processes: the Hydrocarb system for converting biomass and other carbonaceous fuels to elemental carbon and hydrogen, methane or methanol; the Hynol process where the second step of the Hydrocarb process is replaced with a methane steam reformer to convert methane to CO and H{sub 2}S without deposition of carbon; the Carnol process where CO{sub 2} from coal and the biomass power plants is reacted with hydrogen to produce methanol; and advanced biomass high efficiency power generator cycle where a continuous plasma methane decomposition reactor (PDR) is used with direct carbon fuel cell to produce power and carbon and hydrogen. 13 refs., 5 figs., 2 tabs.

  14. A new generation of refractory concretes colloid-chemical aspect of their technology

    SciTech Connect (OSTI)

    Pivinskii, Y.E.

    1994-09-01

    Some peculiarities of the technology of new refractory concretes (ceramoconcretes, low-cement refractory concretes, and vibrocompacted thixotropic fluid refractory pastes) are analyzed from the standpoint of modern colloid chemistry. Interactions of disperse particles and the aggregation stability of disperse systems are discussed. Using a highly concentrated binding suspension (HCBS) of quartz glass as an example, a diagram of the regions of stability and coagulation of particles depending on the pH index of the suspension has been constructed. The state and form of the bonds of water in disperse systems are analyzed. It is shown for clays and HCBS of a number of materials that the strength properties of binders depend on the electrokinetic potential of the initial disperse system. A correlation between the acid-basic properties of the solid phase and the characteristics of the binder is demonstrated. The effects of heterocoagulation in systems with a mixed solid phase are also discussed.

  15. Technolog

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research in Science and Technolog y Sandia pushes frontiers of knowledge to meet the nation's needs, today and tomorrow Sandia National Laboratories' fundamental science and technology research leads to greater understanding of how and why things work and is intrinsic to technological advances. Basic research that challenges scientific assumptions enables the nation to push scientific boundaries. Innovations and breakthroughs produced at Sandia allow it to tackle critical issues, from

  16. DOE Fuel Cell Technologies Office Record 13010: Onboard Type...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: Onboard Type IV Compressed Hydrogen Storage Systems-Current Performance and Cost DOE Fuel Cell Technologies Office Record 13010: Onboard Type IV Compressed Hydrogen Storage...

  17. Industrial Waste Landfill IV upgrade package

    SciTech Connect (OSTI)

    Not Available

    1994-03-29

    The Y-12 Plant, K-25 Site, and ORNL are managed by DOE`s Operating Contractor (OC), Martin Marietta Energy Systems, Inc. (Energy Systems) for DOE. Operation associated with the facilities by the Operating Contractor and subcontractors, DOE contractors and the DOE Federal Building result in the generation of industrial solid wastes as well as construction/demolition wastes. Due to the waste streams mentioned, the Y-12 Industrial Waste Landfill IV (IWLF-IV) was developed for the disposal of solid industrial waste in accordance to Rule 1200-1-7, Regulations Governing Solid Waste Processing and Disposal in Tennessee. This revised operating document is a part of a request for modification to the existing Y-12 IWLF-IV to comply with revised regulation (Rule Chapters 1200-1-7-.01 through 1200-1-7-.08) in order to provide future disposal space for the ORR, Subcontractors, and the DOE Federal Building. This revised operating manual also reflects approved modifications that have been made over the years since the original landfill permit approval. The drawings referred to in this manual are included in Drawings section of the package. IWLF-IV is a Tennessee Department of Environmental and Conservation/Division of Solid Waste Management (TDEC/DSWM) Class 11 disposal unit.

  18. Shiloh IV | Open Energy Information

    Open Energy Info (EERE)

    Shiloh IV Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner EDF Renewable Energy Developer EDF Renewable Energy Energy Purchaser Pacific...

  19. Miravalles IV | Open Energy Information

    Open Energy Info (EERE)

    Information Name Miravalles IV Facility Geothermal Power Plant Sector Geothermal energy Location Information Coordinates 10.5251574, -85.254136 Loading map......

  20. Building upon Historical Competencies: Next-generation Clean-up Technologies for World-Wide Application - 13368

    SciTech Connect (OSTI)

    Guevara, K.C.; Fellinger, A.P.; Aylward, R.S.; Griffin, J.C.; Hyatt, J.E.; Bush, S.R.

    2013-07-01

    The Department of Energy's Savannah River Site has a 60-year history of successfully operating nuclear facilities and cleaning up the nuclear legacy of the Cold War era through the processing of radioactive and otherwise hazardous wastes, remediation of contaminated soil and groundwater, management of nuclear materials, and deactivation and decommissioning of excess facilities. SRS recently unveiled its Enterprise.SRS (E.SRS) strategic vision to identify and facilitate application of the historical competencies of the site to current and future national and global challenges. E.SRS initiatives such as the initiative to Develop and Demonstrate Next generation Clean-up Technologies seek timely and mutually beneficial engagements with entities around the country and the world. One such ongoing engagement is with government and industry in Japan in the recovery from the devastation of the Fukushima Daiichi Nuclear Power Station. (authors)

  1. Solar Energy Education. Reader, Part IV. Sun schooling (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Solar Energy Education. Reader, Part IV. Sun schooling Citation Details In-Document Search Title: Solar Energy Education. Reader, Part IV. Sun schooling Ă— You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this

  2. Annex IV Environmental Webinar: Adaptive Management in the Marine Renewable

    Energy Savers [EERE]

    Energy Industry | Department of Energy Annex IV Environmental Webinar: Adaptive Management in the Marine Renewable Energy Industry Annex IV Environmental Webinar: Adaptive Management in the Marine Renewable Energy Industry March 15, 2016 11:00AM to 12:30PM EDT On February 24, 2016, Environmental Interactions of Marine Renewable Energy Technologies hosted workshops on environmental impacts of marine renewable energy, in advance of the 2016 International Conference on Ocean Energy in

  3. Evaluation of the Effectiveness of a New Technology for Extraction of Insoluble Impurities from Nuclear Power Plant Steam Generators with Purge Water

    SciTech Connect (OSTI)

    Bud'ko, I. O.; Zhukov, A. G.

    2013-11-15

    An experimental technology for the removal of insoluble impurities from a horizontal steam generator with purge water during planned shutdowns of the power generating unit is improved through a more representative determination of the concentration of impurities in the purge water ahead of the water cleanup facility and a more precise effective time for the duration of the purge process. Tests with the improved technique at power generating unit No. 1 of the Rostov Nuclear Power Plant show that the efficiency with which insoluble impurities are removed from the steam generator volume was more than two orders of magnitude greater than under the standard regulations.

  4. Technology Options for a Fast Spectrum Test Reactor

    SciTech Connect (OSTI)

    D. M. Wachs; R. W. King; I. Y. Glagolenko; Y. Shatilla

    2006-06-01

    Idaho National Laboratory in collaboration with Argonne National Laboratory has evaluated technology options for a new fast spectrum reactor to meet the fast-spectrum irradiation requirements for the USDOE Generation IV (Gen IV) and Advanced Fuel Cycle Initiative (AFCI) programs. The US currently has no capability for irradiation testing of large volumes of fuels or materials in a fast-spectrum reactor required to support the development of Gen IV fast reactor systems or to demonstrate actinide burning, a key element of the AFCI program. The technologies evaluated and the process used to select options for a fast irradiation test reactor (FITR) for further evaluation to support these programmatic objectives are outlined in this paper.

  5. INFLUENCE OF NATURAL AND SYNTHETIC ORGANIC LIGANDS ON THE STABILITY AND MOBILITY OF REDUCED TC(IV)

    SciTech Connect (OSTI)

    Nathalie A. Wall; Baohua Gu

    2012-12-20

    The primary objectives were (1) to quantify the interactions of organic ligands with Tc(IV) through the generation of thermodynamic (complexation) and kinetic parameters needed to assess and predict the mobility of reduced Tc(IV) at DOE contaminated sites; and (2) to determine the impact of organic ligands on the mobility and fate of reduced Tc(IV) under field geochemical conditions.

  6. EIS-0402: Remediation of Area IV of the Santa Susana Field Laboratory,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    California | Department of Energy 02: Remediation of Area IV of the Santa Susana Field Laboratory, California EIS-0402: Remediation of Area IV of the Santa Susana Field Laboratory, California Summary DOE is preparing an EIS for cleanup of Area IV, including the Energy Technology Engineering Center (ETEC), as well as the Northern Buffer Zone of the Santa Susana Field Laboratory (SSFL) in eastern Ventura County, California, approximately 29 miles north of downtown Los Angeles. (DOE's

  7. Foreign Trip Report MATGEN-IV Sep 24- Oct 26, 2007

    SciTech Connect (OSTI)

    de Caro, M S

    2007-10-30

    Gen-IV activities in France, Japan and US focus on the development of new structural materials for Gen-IV nuclear reactors. Oxide dispersion strengthened (ODS) F/M steels have raised considerable interest in nuclear applications. Promising collaborations can be established seeking fundamental knowledge of relevant Gen-IV ODS steel properties (see attached travel report on MATGEN- IV 'Materials for Generation IV Nuclear Reactors'). Major highlights refer to results on future Ferritic/Martensitic steel cladding candidates (relevant to Gen-IV materials properties for LFR Materials Program) and on thermodynamic and mechanic behavior of metallic FeCr binary alloys, base matrix for future candidate steels (for the LLNL-LDRD project on Critical Issues on Materials for Gen-IV Reactors).

  8. Vehicle Technologies Office Merit Review 2015: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  9. Rapid, Enhanced IV Characterization of Multi-Junction PV Devices under One Sun at NREL: Preprint

    SciTech Connect (OSTI)

    Moriarty, Tom; France, Ryan; Steiner, Myles

    2015-09-15

    Multi-junction technology is rapidly advancing, which puts increasing demands on IV characterization resources. We report on a tool and procedure for fast turn-around of IV data under the reference conditions, but also under controlled variations from the reference conditions. This enhanced data set can improve further iterations of device optimization.

  10. Solar Energy Education. Reader, Part IV. Sun schooling (Technical Report) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Reader, Part IV. Sun schooling Citation Details In-Document Search Title: Solar Energy Education. Reader, Part IV. Sun schooling Ă— You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy science and technology. A paper copy of this document is also available for

  11. Technology for Treatment of Liquid Radioactive Waste Generated during Uranium and Plutonium Chemical and Metallurgical Manufacturing in FSUE PO Mayak - 13616

    SciTech Connect (OSTI)

    Adamovich, D. [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation)] [SUE MosSIA Radon, 2/14 7th Rostovsky lane, Moscow, 119121 (Russian Federation); Batorshin, G.; Logunov, M.; Musalnikov, A. [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)] [FSUE 'PO Mayak', 31 av. Lenin, Ozyorsk, Chelyabinsk region, 456780 (Russian Federation)

    2013-07-01

    Created technological scheme for treatment of liquid radioactive waste generated while uranium and plutonium chemical and metallurgical manufacturing consists of: - Liquid radioactive waste (LRW) purification from radionuclides and its transfer into category of manufacturing waste; - Concentration of suspensions containing alpha-nuclides and their further conversion to safe dry state (calcinate) and moving to long controlled storage. The following technologies are implemented in LRW treatment complex: - Settling and filtering technology for treatment of liquid intermediate-level waste (ILW) with volume about 1500m{sup 3}/year and alpha-activity from 10{sup 6} to 10{sup 8} Bq/dm{sup 3} - Membrane and sorption technology for processing of low-level waste (LLW) of radioactive drain waters with volume about 150 000 m{sup 3}/year and alpha-activity from 10{sup 3} to 10{sup 4} Bq/dm{sup 3}. Settling and filtering technology includes two stages of ILW immobilization accompanied with primary settling of radionuclides on transition metal hydroxides with the following flushing and drying of the pulp generated; secondary deep after settling of radionuclides on transition metal hydroxides with the following solid phase concentration by the method of tangential flow ultrafiltration. Besides, the installation capacity on permeate is not less than 3 m{sup 3}/h. Concentrates generated are sent to calcination on microwave drying (MW drying) unit. Membrane and sorption technology includes processing of averaged sewage flux by the method of tangential flow ultrafiltration with total capacity of installations on permeate not less than 18 m{sup 3}/h and sorption extraction of uranium from permeate on anionite. According to radionuclide contamination level purified solution refers to general industrial waste. Concentrates generated during suspension filtering are evaporated in rotary film evaporator (RFE) in order to remove excess water, thereafter they are dried on infrared heating facility. Solid concentrate produced is sent for long controlled storage. Complex of the procedures carried out makes it possible to solve problems on treatment of LRW generated while uranium and plutonium chemical and metallurgical manufacturing in Federal State Unitary Enterprise (FSUE) Mayak and cease its discharge into open water reservoirs. (authors)

  12. Energy Technology Engineering Center

    Broader source: Energy.gov [DOE]

    The Energy Technology Engineering Center (ETEC) is located within Area IV of the Santa Susana Field Laboratory. The ETEC occupies 90-acres within the 290 acre site. The Santa Susana Field...

  13. CO2 CAPTURE PROJECT - AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    SciTech Connect (OSTI)

    Dr. Helen Kerr

    2003-08-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (1) European Union (DG Res & DG Tren), (2) Norway (Klimatek) and (3) the U.S.A. (Department of Energy). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. (4) Capture Technology, Pre -Combustion: in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies are making substantial progress towards their goals. Some technologies are emerging as preferred over others. Pre-combustion Decarbonization (hydrogen fuel) technologies are showing good progress and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options that may have niche roles. Storage, measurement, and verification studies are moving rapidly forward. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Many studies are nearing completion or have been completed. Their preliminary results are summarized in the attached report and presented in detail in the attached appendices.

  14. Interim Project Results: United Parcel Service's Second-Generation Hybrid-Electric Delivery Vans (Fact Sheet), Vehicle Technologies Program (VTP)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    part of its commitment to reducing fuel use and emissions, the United Parcel Service (UPS) operates more than 2,500 natural gas, propane, electric, and hybrid-electric vehicles worldwide. The company uses these advanced vehicles as a "rolling laboratory" to learn how such technologies can best serve its large delivery fleet. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) has a long history of helping UPS determine the impact of hybrid technology on fuel

  15. Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Plenary IV: Advances in Bioenergy ...

  16. China and Russia to Join the Generation IV International Forum...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As a result of today's vote, China and Russia will join the United States, Argentina, Brazil, Canada, France, Japan, Republic of Korea, Republic of South Africa, Switzerland, the ...

  17. Magnetic Processing – A Pervasive Energy Efficient Technology for Next Generation Materials for Aerospace and Specialty Steel Markets

    SciTech Connect (OSTI)

    Mackiewicz-Ludtka, G.; Ludtka, G.M.; Ray, P.; Magee, J.

    2010-09-10

    Thermomagnetic Magnetic Processing is an exceptionally fertile, pervasive and cross-cutting technology that is just now being recognized by several major industry leaders for its significant potential to increase energy efficiency and materials performance for a myriad of energy intensive industries in a variety of areas and applications. ORNL has pioneered the use and development of large magnetic fields in thermomagnetically processing (T-MP) materials for altering materials phase equilibria and transformation kinetics. ORNL has discovered that using magnetic fields, we can produce unique materials responses. T-MP can produce unique phase stabilities & microstructures with improved materials performance for structural and functional applications not achieved with traditional processing techniques. These results suggest that there are unprecedented opportunities to produce significantly enhanced materials properties via atomistic level (nano-) microstructural control and manipulation. ORNL (in addition to others) have shown that grain boundary chemistry and precipitation kinetics are also affected by large magnetic fields. This CRADA has taken advantage of ORNL’s unique, custom-designed thermo-magnetic, 9 Tesla superconducting magnet facility that enables rapid heating and cooling of metallic components within the magnet bore; as well as ORNL’s expertise in high magnetic field (HMF) research. Carpenter Technologies, Corp., is a a US-based industrial company, that provides enhanced performance alloys for the Aerospace and Specialty Steel products. In this CRADA, Carpenter Technologies, Corp., is focusing on applying ORNL’s Thermomagnetic Magnetic Processing (TMP) technology to improve their current and future proprietary materials’ product performance and open up new markets for their Aerospace and Specialty Steel products. Unprecedented mechanical property performance improvements have been demonstrated for a high strength bainitic alloy industrial/commercial alloy that is envisioned to provide the potential for new markets for this alloy. These thermomechanical processing results provide these alloys with a major breakthrough demonstrating that simultaneous improvements in yield strength and ductility are achieved: 12 %, 10%, 13%, and 22% increases in yield strength, elongation, reduction-in-area, and impact energy respectively. In addition, TMP appears to overcome detrimental chemical homogeneity impacts on uniform microstructure evolution.

  18. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (Japanese translation)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations.

  19. Task 3.14 - demonstration of technologies for remote power generation in Alaska. Semi-annual report, July 1, 1996--December 31, 1996

    SciTech Connect (OSTI)

    Jones, M.L.

    1998-12-31

    This paper very briefly summarizes progress in the demonstration of a small (up to 6 MWe), environmentally acceptable electric generating system fueled by indigenous fuels and waste materials to serve power distribution systems typical of Alaskan Native communities. Two detailed appendices supplement the report. The project is focused on two primary technologies: (1) atmospheric fluidized bed combustion (AFBC), and (2) coalbed methane and coal-fired diesel technologies. Two sites have been selected as possible locations for an AFBC demonstration, and bid proposals are under review. The transfer of a coal-fired diesel clean coal demonstration project from Maryland to Fairbanks, Alaska was approved, and the environmental assessment has been initiated. Federal support for a fuel cell using coalbed methane is also being pursued. The appendices included in the report provide: (1) the status of the conceptual design study for a 600-kWe coal-fired cogeneration plant in McGrath, Alaska; and (2) a global market assessment of coalbed methane, fluidized-bed combustion, and coal-fired diesel technologies in remote applications.

  20. SECTION IV: ATOMIC AND MOLECULAR SCIENCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    collisions... IV-3 R. D. DuBois, A. C. F. Santos, R. Olson, V. Horvat, R. L. Watson, A. N. Perumal, and Y. Peng...

  1. Proceedings of the 2. MIT international conference on the next generation of nuclear power technology. Final report

    SciTech Connect (OSTI)

    1993-12-31

    The goal of the conference was to try to attract a variety of points of view from well-informed people to debate issues concerning nuclear power. Hopefully from that process a better understanding of what one should be doing will emerge. In organizing the conference lessons learned from the previous one were applied. A continuous effort was made to see to it that the arguments for the alternatives to nuclear power were given abundant time for presentation. This is ultimately because nuclear power is going to have to compete with all of the energy technologies. Thus, in discussing energy strategy all of the alternatives must be considered in a reasonable fashion. The structure the conference used has seven sessions. The first six led up to the final session which was concerned with what the future nuclear power strategy should be. Each session focused upon a question concerning the future. None of these questions has a unique correct answer. Rather, topics are addressed where reasonable people can disagree. In order to state some of the important arguments for each session`s question, the combination of a keynote paper followed by a respondent was used. The respondent`s paper is not necessarily included to be a rebuttal to the keynote; but rather, it was recognized that two people will look at a complex question with different shadings. Through those two papers the intention was to get out the most important arguments affecting the question for the session. The purpose of the papers was to set the stage for about an hour of discussion. The real product of this conference was that discussion.

  2. Geothermal Program Review IV: proceedings

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    The research and development program of DOE's Geothermal Technology Division is reviewed in separate presentations according to program area. Separate abstracts have been prepared for the individual papers. (ACR)

  3. Vehicle Technologies Office: Graduate Automotive Technology Education

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (GATE) | Department of Energy Education & Workforce Development » Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) Vehicle Technologies Office: Graduate Automotive Technology Education (GATE) DOE established the Graduate Automotive Technology Education (GATE) Centers of Excellence to provide future generations of engineers and scientists with knowledge and skills in advanced automotive technologies. By funding curriculum development and expansion as well as

  4. Plutonium(IV) precipitates formed in alkaline media in the presence of various anions

    SciTech Connect (OSTI)

    Krot, N.N.; Shilov, V.P.; Yusov, A.B.; Tananaev, I.G.; Grigoriev, M.S.; Garnov, A.Yu.; Perminov, V.P.; Astafurova, L.N.

    1998-09-01

    The tendency of Pu(IV) to hydrolyze and form true solutions, colloid solutions, or insoluble precipitates has been known since the Manhattan Project. Since then, specific studies have been performed to examine in detail the equilibria of Pu(IV) hydrolytic reactions in various media. Great attention also has been paid to the preparation, structure, and properties of Pu(IV) polymers or colloids. These compounds found an important application in sol-gel technology for the preparation of nuclear fuel materials. A most important result of these works was the conclusion that Pu(IV) hydroxide, after some aging, consists of very small PuO{sub 2} crystallites and should therefore be considered to be Pu(IV) hydrous oxide. However, studies of the properties and behavior of solid Pu(IV) hydroxide in complex heterogeneous systems are rare. The primary goal of this investigation was to obtain data on the composition and properties of Pu(IV) hydrous oxide or other compounds formed in alkaline media under different conditions. Such information is important to understand Pu(IV) behavior and the forms of its existence in the Hanford Site alkaline tank waste sludge. This knowledge then may be applied in assessing plutonium criticality hazards in the storage, retrieval, and treatment of Hanford Site tank wastes as well as in understanding its contribution to the transuranic waste inventory (threshold at 100 nCi/g or about 5 {times} 10{sup {minus}6} M) of the separate solution and solid phases.

  5. Bioconversion Technologies | Open Energy Information

    Open Energy Info (EERE)

    to: navigation, search Name: Bioconversion Technologies Place: United Kingdom Sector: Biofuels Product: Second-generation biofuels technology developer References: Bioconversion...

  6. SECTION IV: ATOMIC, MOLECULAR AND MATERIALS SCIENCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systematics of K and L x-ray satellite spectra.......................................................................... IV-1 V. Horvat and R. L. Watson Kα x-ray satellite distribution of Ar produced in heavy ion collisions..................................... IV-3 V. Horvat, R.L. Watson, and Y. Peng Kα x-ray satellite and hypersatellite intensity distributions of vanadium metal and oxides excited in heavy ion

  7. Safety evaluation of RTG launches aboard Titan IV launch vehicles

    SciTech Connect (OSTI)

    Rosko, Robert J.; Loughin, Stephen

    1997-01-10

    The analytical tool used to evaluate accidents aboard a Titan IV launch vehicle involving a Radioisotope Thermoelectric Generator (RTG) is discussed. The Launch Accident Scenario Evaluation Program-Titan IV version (LASEP-T) uses a Monte Carlo approach to determine the response of an RTG to various threatening environments. The threatening environments arise from a complex interplay of probabilistic and deterministic processes, and are therefore parameterized by a set of random variables with probability distributions. The assessment of the RTG response to a given environment is based on both empirical data and theoretical modeling. Imbedding detailed, complex response models into the LASEP-T calculation was not practical. Simpler response models have been constructed to capture both the inherent variability due to the phenomenology of the accident scenario along with the uncertainty of predicting response behavior. The treatment of variability and uncertainty as it pertains to the launch accident evaluation of RTG response will be discussed.

  8. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pathway for readying the next generation of affordable clean energy technology -Carbon ... developed to be applicable to nuclear-fuel- waste technology, provides a ...

  9. Bush Administration Moves Forward to Develop Next Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Japan, South Africa, South Korea, Switzerland, the United Kingdom, and the United States. ... on Sodium Cooled Fast Reactors China and Russia to Join the Generation IV International ...

  10. Finishing Using Next Generation Technologies

    SciTech Connect (OSTI)

    Van Tonder, Andries

    2010-06-03

    Andries van Tonder of Wellcome Trust Sanger Institute discusses a pipeline for finishing genomes to the gold standard on June 3, 2010 at the "Sequencing, Finishing, Analysis in the Future" meeting in Santa Fe, NM

  11. A rationalization of the Type IV loading dependence in the

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kärger-Pfeifer classification of self-diffusivities | Center for Gas SeparationsRelevant to Clean Energy Technologies | Blandine Jerome rationalization of the Type IV loading dependence in the Kärger-Pfeifer classification of self-diffusivities Previous Next List Rajamani Krishna, Jasper M. van Baten, Microporous Mesoporous Mater., 142, 745-748 (2011) DOI: 10.1016/j.micromeso.2011.01.002 Full-size image (41 K) Abstract: Kärger and Pfeifer (1987) [1] have listed five different types of

  12. Next Generation Materials:

    Office of Environmental Management (EM)

    Next Generation Materials: 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ............................................................................................... 1 4 1.1 Overview ....................................................................................................................................... 1 5 1.2 Public and private roles and activities .......................................................................................... 3 6 2.

  13. SECTION IV: ATOMIC, MOLECULAR AND MATERIALS SCIENCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ATOMIC, MOLECULAR AND MATERIALS SCIENCE A semiempirical scaling law for target K x-ray production in heavy ion collisions... IV-1 R. L. Watson, Y. Peng, V. Horvat, and A....

  14. Appendix IV Closed Corrective Action Units

    National Nuclear Security Administration (NNSA)

    IV Closed Corrective Action Units Revision No.: 26 July 2009 Federal Facility Agreement and Consent Order (FFACO) FFACO Appendix IV - Closed Corrective Action Units Owner: NNSA / Industrial Sites - DP CAU Number: 34 Area 3 Contaminated Waste Sites CAU Notice of Completion: 6/25/2002 Submitted as CADD/CR. CR regulatory milestone not established prior to CADD/CR submittal. CAS Number CAS Description Functional Category Map Name General Location Mud Pit Mud Disposal Crater Yucca Flat U-3ag at Mud

  15. NREL: Geothermal Technologies - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... studies, regional sedimentary basin exploration, prospect generation, reservoir ... Technologies Office in assessment and evaluation of research and development projects. ...

  16. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  17. Medicine Bow Wind Farm IV | Open Energy Information

    Open Energy Info (EERE)

    IV Jump to: navigation, search Name Medicine Bow Wind Farm IV Facility Medicine Bow Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Platte...

  18. Periodic Trends in Highly Dispersed Groups IV and V Supported...

    Office of Scientific and Technical Information (OSTI)

    Periodic Trends in Highly Dispersed Groups IV and V Supported Metal Oxide Catalysts for ... Title: Periodic Trends in Highly Dispersed Groups IV and V Supported Metal Oxide Catalysts ...

  19. Victory Gardens Phase IV Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    II Jump to: navigation, search Name Victory Gardens Phase IV Wind Farm II Facility Victory Gardens- Phase IV Sector Wind energy Facility Type Commercial Scale Wind Facility Status...

  20. Annex IV Environmental Webinar: Marine Renewable Energy Test...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Annex IV Environmental Webinar: Marine Renewable Energy Test Centers and Environmental Effects Research Annex IV Environmental Webinar: Marine Renewable Energy Test Centers and...

  1. The potential for distributed generation in Japanese prototype buildings: A DER-CAM analysis of policy, tariff design, building energy use, and technology development (English Version)

    SciTech Connect (OSTI)

    Zhou, Nan; Marnay, Chris; Firestone, Ryan; Gao, Weijun; Nishida, Masaru

    2004-10-15

    The August 2003 blackout of the northeastern U.S. and CANADA caused great economic losses and inconvenience to New York City and other affected areas. The blackout was a warning to the rest of the world that the ability of conventional power systems to meet growing electricity demand is questionable. Failure of large power systems can lead to serious emergencies. Introduction of on-site generation, renewable energy such as solar and wind power and the effective utilization of exhaust heat is needed, to meet the growing energy demands of the residential and commercial sectors. Additional benefit can be achieved by integrating these distributed technologies into distributed energy resource (DER) systems. This work demonstrates a method for choosing and designing economically optimal DER systems. An additional purpose of this research is to establish a database of energy tariffs, DER technology cost and performance characteristics, and building energy consumption for Japan. This research builds on prior DER studies at the Ernest Orlando Lawrence Berkeley National Laboratory (LBNL) and with their associates in the Consortium for Electric Reliability Technology Solutions (CERTS) and operation, including the development of the microgrid concept, and the DER selection optimization program, the Distributed Energy Resources Customer Adoption Model (DER-CAM). DER-CAM is a tool designed to find the optimal combination of installed equipment and an idealized operating schedule to minimize a site's energy bills, given performance and cost data on available DER technologies, utility tariffs, and site electrical and thermal loads over a test period, usually an historic year. Since hourly electric and thermal energy data are rarely available, they are typically developed by building simulation for each of six end use loads used to model the building: electric-only loads, space heating, space cooling, refrigeration, water heating, and natural-gas-only loads. DER-CAM provides a global optimization, albeit idealized, that shows how the necessary useful energy loads can be provided for at minimum cost by selection and operation of on-site generation, heat recovery, cooling, and efficiency improvements. This study examines five prototype commercial buildings and uses DER-CAM to select the economically optimal DER system for each. The five building types are office, hospital, hotel, retail, and sports facility. Each building type was considered for both 5,000 and 10,000 square meter floor sizes. The energy consumption of these building types is based on building energy simulation and published literature. Based on the optimization results, energy conservation and the emissions reduction were also evaluated. Furthermore, a comparison study between Japan and the U.S. has been conducted covering the policy, technology and the utility tariffs effects on DER systems installations. This study begins with an examination of existing DER research. Building energy loads were then generated through simulation (DOE-2) and scaled to match available load data in the literature. Energy tariffs in Japan and the U.S. were then compared: electricity prices did not differ significantly, while commercial gas prices in Japan are much higher than in the U.S. For smaller DER systems, the installation costs in Japan are more than twice those in the U.S., but this difference becomes smaller with larger systems. In Japan, DER systems are eligible for a 1/3 rebate of installation costs, while subsidies in the U.S. vary significantly by region and application. For 10,000 m{sup 2} buildings, significant decreases in fuel consumption, carbon emissions, and energy costs were seen in the economically optimal results. This was most noticeable in the sports facility, followed the hospital and hotel. This research demonstrates that office buildings can benefit from CHP, in contrast to popular opinion. For hospitals and sports facilities, the use of waste heat is particularly effective for water and space heating. For the other building types, waste heat is most effectively used for both heating and cooling. The same examination was done for the 5,000 m{sup 2} buildings. Although CHP installation capacity is smaller and the payback periods are longer, economic, fuel efficiency, and environmental benefits are still seen. While these benefits remain even when subsidies are removed, the increased installation costs lead to lower levels of installation capacity and thus benefit.

  2. Technology Roadmap Instrumentation, Control, and Human-Machine Interface to Support DOE Advanced Nuclear Energy Programs

    SciTech Connect (OSTI)

    Donald D Dudenhoeffer; Burce P Hallbert

    2007-03-01

    Instrumentation, Controls, and Human-Machine Interface (ICHMI) technologies are essential to ensuring delivery and effective operation of optimized advanced Generation IV (Gen IV) nuclear energy systems. In 1996, the Watts Bar I nuclear power plant in Tennessee was the last U.S. nuclear power plant to go on line. It was, in fact, built based on pre-1990 technology. Since this last U.S. nuclear power plant was designed, there have been major advances in the field of ICHMI systems. Computer technology employed in other industries has advanced dramatically, and computing systems are now replaced every few years as they become functionally obsolete. Functional obsolescence occurs when newer, more functional technology replaces or supersedes an existing technology, even though an existing technology may well be in working order.Although ICHMI architectures are comprised of much of the same technology, they have not been updated nearly as often in the nuclear power industry. For example, some newer Personal Digital Assistants (PDAs) or handheld computers may, in fact, have more functionality than the 1996 computer control system at the Watts Bar I plant. This illustrates the need to transition and upgrade current nuclear power plant ICHMI technologies.

  3. Vehicle Technologies Office Merit Review 2014: High Performance Cast Aluminum Alloys for Next Generation Passenger Vehicle Engines 2012 FOA 648 Topic 3a

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about high...

  4. Cours-IV/Clavin2015.key

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jump across an hydrodynamic discontinuity IV 1) U L U b - U L Flame Unburnt mixture at rest Burnt gas Zoom T b T u d L Temperature u + 0 u u U L b U b p + u 2 + 0 w +...

  5. PART IV Â… REPRESENTATIONS AND INSTRUCTIONS

    National Nuclear Security Administration (NNSA)

    K, Page i PART IV - REPRESENTATIONS AND INSTRUCTIONS SECTION K REPRESENTATIONS, CERTIFICATIONS, AND OTHER STATEMENTS OF OFFERORS K-1 FAR 52.204-8 ANNUAL REPRESENTATIONS AND CERTIFICATIONS (DEC 2014) .................. 131 K-2 FAR 52.204-16 COMMERCIAL AND GOVERNMENT ENTITY CODE REPORTING (JUL 2015) ...................................................................................................................................................................... 135 K-3 FAR 52.209-7 INFORMATION

  6. PART IV Â… REPRESENTATIONS AND INSTRUCTIONS

    National Nuclear Security Administration (NNSA)

    K, Page i PART IV - REPRESENTATIONS AND INSTRUCTIONS SECTION K REPRESENTATIONS, CERTIFICATIONS, AND OTHER STATEMENTS OF OFFERORS K-1 FAR 52.204-8 ANNUAL REPRESENTATIONS AND CERTIFICATIONS (DEC 2014) .................. 131 K-2 FAR 52.204-16 COMMERCIAL AND GOVERNMENT ENTITY CODE REPORTING (JUL 2015) ...................................................................................................................................................................... 135 K-3 FAR 52.209-7 INFORMATION

  7. Enhanced control of fine particles following Title IV coal switching and NOx control

    SciTech Connect (OSTI)

    Durham, M.D.; Baldrey, K.E.; Bustard, C.J.; Martin, C.

    1997-12-31

    Electrostatic precipitators (ESPs) serve as the primary particle control devices for a majority of coal-fired power generating units in the United States. ESPs are used to collect particulate matter that range in size from less than one micrometer in diameter to several hundred micrometers. Many of the options that utilities will use to respond to Title IV of the 1990 Clean Air Act Amendments will result in changes to the ash that will be detrimental to the performance of the ESP causing increased emissions of fine particles and higher opacity. For example, a switch to low-sulfur coal significantly increases particle resistivity while low-NO{sub x} burners increase the carbon content of ashes. Both of these changes could result in derating of the boiler to comply with emissions standards. ADA has developed a chemical additive that is designed to improve the operation of ESI`s to bring these systems into compliance operation without the need for expensive capital modifications. The additives provide advantages over competing technologies in terms of low capital cost, easy to handle chemicals, and relatively non-toxic chemicals. In addition, the new additive is insensitive to ash chemistry which will allow the utility complete flexibility to select the most economical coal. Results from full-scale and pilot plant demonstrations are reported.

  8. EIS-0402: Remediation of Area IV of the Santa Susana Field Laboratory, California

    Broader source: Energy.gov [DOE]

    DOE is preparing an EIS for cleanup of Area IV, including the Energy Technology Engineering Center (ETEC), as well as the Northern Buffer Zone of the Santa Susana Field Laboratory (SSFL) in eastern Ventura County, California, approximately 29 miles north of downtown Los Angeles. (DOE’s operations bordered the Northern Buffer Zone. DOE is responsible for soil cleanup in Area IV and the Northern Buffer Zone.) In the EIS, DOE will evaluate reasonable alternatives for disposition of radiological facilities and support buildings, remediation of contaminated soil and groundwater, and disposal of all resulting waste at permitted facilities.

  9. Safety evaluation of RTG launches aboard Titan IV launch vehicles

    SciTech Connect (OSTI)

    Rosko, R.J.; Loughin, S.

    1997-01-01

    The analytical tool used to evaluate accidents aboard a Titan IV launch vehicle involving a Radioisotope Thermoelectric Generator (RTG) is discussed. The Launch Accident Scenario Evaluation Program-Titan IV version (LASEP-T) uses a Monte Carlo approach to determine the response of an RTG to various threatening environments. The threatening environments arise from a complex interplay of probabilistic and deterministic processes, and are therefore parameterized by a set of random variables with probability distributions. The assessment of the RTG response to a given environment is based on both empirical data and theoretical modeling. Imbedding detailed, complex response models into the LASEP-T calculation was not practical. Simpler response models have been constructed to capture both the inherent variability due to the phenomenology of the accident scenario along with the uncertainty of predicting response behavior. The treatment of variability and uncertainty as it pertains to the launch accident evaluation of RTG response will be discussed. {copyright} {ital 1997 American Institute of Physics.}

  10. IPower Technologies | Open Energy Information

    Open Energy Info (EERE)

    Place: Andersen, Indiana Zip: 46013 Product: iPower Technologies provides advanced technologies and systems integration capabilities for the distributed generation market....

  11. Vehicle Technologies Office Merit Review 2014: Cost-Competitive Advanced Thermoelectric Generators for Direct Conversion of Vehicle Waste Heat into Useful Electrical Power

    Broader source: Energy.gov [DOE]

    Presentation given by General Motors at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about cost-competitive advanced...

  12. Vehicle Technologies Office Merit Review 2014: Ionic Liquids as Anti-Wear Additives for Next-Generation Low-Viscosity Fuel-Efficient Engine Lubricants

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about ionic liquids...

  13. In vitro removal of actinide (IV) ions

    DOE Patents [OSTI]

    Weitl, Frederick L. (Martinez, CA); Raymond, Kenneth N. (Berkeley, CA)

    1982-01-01

    A compound of the formula: ##STR1## wherein X is hydrogen or a conventional electron-withdrawing group, particularly --SO.sub.3 H or a salt thereof; n is 2, 3, or 4; m is 2, 3, or 4; and p is 2 or 3. The present compounds are useful as specific sequestering agents for actinide (IV) ions. Also described is a method for the 2,3-dihydroxybenzamidation of azaalkanes.

  14. Type IV COPV Cold Gas Operation Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Type IV COPV Cold Gas Operation Challenges DAVID W. GOTTHOLD November 30, 2015 1 Pacific Northwest National Laboratory Cold Gas Motivation and Challenges November 30, 2015 2 200 K H 2 Lower pressure Higher density H 2 CGO ~25% CF savings Cost Savings from reduced CF use Cold gas operation allows for reduced pressures for the same volume for significant CF and cost reductions. Materials properties change significantly at cold gas temperatures and must be studied. Example: HDPE DBT ~ 200 K Higher

  15. Biomass: Biogas Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BIOGAS GENERATOR Curriculum: Biomass Power (organic chemistry, chemical/carbon cycles, plants, energy resources/transformations) Grade Level: Middle School (6-8) Small groups (3 to 4) Time: 90 minutes to assemble, days to generate sufficient gas to burn Summary: Students build a simple digester to generate a quantity of gas to burn. This demonstrates the small amount of technology needed to generate a renewable energy source. Biogas has been used in the past and is still used today as an energy

  16. Conventional Hydropower Technologies (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01

    The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity.

  17. CO2 Capture Project-An Integrated, Collaborative Technology Development Project for Next Generation CO2 Separation, Capture and Geologic Sequestration

    SciTech Connect (OSTI)

    Helen Kerr; Linda M. Curran

    2005-04-15

    The CO{sub 2} Capture Project (CCP) was a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, ENI, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union [DG RES & DG TREN], the Norwegian Research Council [Klimatek Program] and the U.S. Department of Energy [NETL]). The project objective was to develop new technologies that could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies were to be developed to ''proof of concept'' stage by the end of 2003. Certain promising technology areas were increased in scope and the studies extended through 2004. The project budget was approximately $26.4 million over 4 years and the work program is divided into eight major activity areas: Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. Capture Technology, Post Combustion: technologies, which can remove CO{sub 2} from exhaust gases after combustion. Capture Technology, Oxyfuel: where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with high CO{sub 2} for storage. Capture Technology, Pre-Combustion: in which, natural gas and petroleum cokes are converted to hydrogen and CO{sub 2} in a reformer/gasifier. Common Economic Model/Technology Screening: analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. Geologic Storage, Monitoring and Verification (SMV): providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Pre-combustion De-carbonization (hydrogen fuel) technologies showed excellent results and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. Post-combustion technologies emerged as higher cost options that may only have niche roles. Storage, measurement, and verification studies suggest that geologic sequestration will be a safe form of long-term CO{sub 2} storage. Economic modeling shows that options to reduce costs by 50% exist. A rigorous methodology for technology evaluation was developed. Public acceptance and awareness were enhanced through extensive communication of results to the stakeholder community (scientific, NGO, policy, and general public). Two volumes of results have been published and are available to all. Well over 150 technical papers were produced. All funded studies for this phase of the CCP are complete. The results are summarized in this report and all final reports are presented in the attached appendices.

  18. CO2 CAPTURE PROJECT-AN INTEGRATED, COLLABORATIVE TECHNOLOGY DEVELOPMENT PROJECT FOR NEXT GENERATION CO2 SEPARATION, CAPTURE AND GEOLOGIC SEQUESTRATION

    SciTech Connect (OSTI)

    Helen Kerr

    2004-04-01

    The CO{sub 2} Capture Project (CCP) is a joint industry project, funded by eight energy companies (BP, ChevronTexaco, EnCana, Eni, Norsk Hydro, Shell, Statoil, and Suncor) and three government agencies (European Union (DG Res & DG Tren), Norway (Klimatek) and the U.S.A. (Department of Energy)). The project objective is to develop new technologies, which could reduce the cost of CO{sub 2} capture and geologic storage by 50% for retrofit to existing plants and 75% for new-build plants. Technologies are to be developed to ''proof of concept'' stage by the end of 2003. The project budget is approximately $24 million over 3 years and the work program is divided into eight major activity areas: (1) Baseline Design and Cost Estimation--defined the uncontrolled emissions from each facility and estimate the cost of abatement in $/tonne CO{sub 2}. (2) Capture Technology, Post Combustion--technologies, which can remove CO{sub 2} from exhaust gases after combustion. (3) Capture Technology, Oxyfuel--where oxygen is separated from the air and then burned with hydrocarbons to produce an exhaust with wet high concentrations of CO{sub 2} for storage. (4) Capture Technology, Pre-Combustion--in which, natural gas and petroleum coke are converted to hydrogen and CO{sub 2} in a reformer/gasifier. (5) Common Economic Model/Technology Screening--analysis and evaluation of each technology applied to the scenarios to provide meaningful and consistent comparison. (6) New Technology Cost Estimation: on a consistent basis with the baseline above, to demonstrate cost reductions. (7) Geologic Storage, Monitoring and Verification (SMV)--providing assurance that CO{sub 2} can be safely stored in geologic formations over the long term. (8) Non-Technical: project management, communication of results and a review of current policies and incentives governing CO{sub 2} capture and storage. Technology development work dominated the past six months of the project. Numerous studies have completed their 2003 stagegate review and are reported here. Some will proceed to the next stagegate review in 2004. Some technologies are emerging as preferred over others. Pre-combustion De-carbonization (hydrogen fuel) technologies are showing excellent results and may be able to meet the CCP's aggressive cost reduction targets for new-build plants. The workscopes planned for the next key stagegates are under review before work begins based on the current economic assessment of their performance. Chemical looping to produce oxygen for oxyfuel combustion shows real promise. As expected, post-combustion technologies are emerging as higher cost options but even so some significant potential reductions in cost have been identified and will continue to be explored. Storage, measurement, and verification studies are moving rapidly forward and suggest that geologic sequestration can be a safe form of long-term CO{sub 2} storage. Hyper-spectral geo-botanical measurements may be an inexpensive and non-intrusive method for long-term monitoring. Modeling studies suggest that primary leakage routes from CO{sub 2} storage sites may be along old wellbores in areas disturbed by earlier oil and gas operations. This is good news because old wells are usually mapped and can be repaired during the site preparation process. Wells are also easy to monitor and intervention is possible if needed. The project will continue to evaluate and bring in novel studies and ideas within the project scope as requested by the DOE. The results to date are summarized in the attached report and presented in detail in the attached appendices.

  19. Next Generation Inverter | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Inverter Next Generation Inverter 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon ape040_smith_2012_o.pdf More Documents & Publications Next Generation Inverter Vehicle Technologies Office Merit Review 2014: Next Generation Inverter Vehicle Technologies Office Merit Review 2015: Next Generation Inverter

  20. Power Generating Stationary Engines Nox Control: A Closed Loop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generating Stationary Engines Nox Control: A Closed Loop Control Technology Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology Poster presented at...

  1. High Reliability, High TemperatureThermoelectric Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies High Reliability, High TemperatureThermoelectric Power Generation Materials and Technologies...

  2. SECTION IV. ATOMIC AND MOLECULAR SCIENCE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    IV. ATOMIC AND MOLECULAR SCIENCE Cross Sections for Cu K-Vacancy Production in Fast Heavy Ion Collisions R.L. Watson, J.M. Blackadar and V. Horvat Enhancement of the Cu Kα x-ray Diagram Lines in Fast Heavy Ion Collisions R.L. Watson, V. Horvat and J.M. Blackadar K-shell Ionization by Secondary Electrons V. Horvat, R.L. Watson and J.M. Blackadar Target-atom Inner-shell Vacancy Distributions Created in Collisions with Heavy Ion Projectiles V. Horvat, R.L. Watson and J.M. Blackadar Systematics of

  3. Part IV Council on Environmental Quality

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    79 Wednesday, No. 247 December 24, 2014 Part IV Council on Environmental Quality Revised Draft Guidance for Federal Departments and Agencies on Consideration of Greenhouse Gas Emissions and the Effects of Climate Change in NEPA Reviews; Notice VerDate Sep<11>2014 18:20 Dec 23, 2014 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\24DEN2.SGM 24DEN2 mstockstill on DSK4VPTVN1PROD with NOTICES2 77802 Federal Register / Vol. 79, No. 247 / Wednesday, December 24, 2014 / Notices 1 A

  4. Gen IV Materials Handbook Functionalities and Operation

    SciTech Connect (OSTI)

    Ren, Weiju

    2009-12-01

    This document is prepared for navigation and operation of the Gen IV Materials Handbook, with architecture description and new user access initiation instructions. Development rationale and history of the Handbook is summarized. The major development aspects, architecture, and design principles of the Handbook are briefly introduced to provide an overview of its past evolution and future prospects. Detailed instructions are given with examples for navigating the constructed Handbook components and using the main functionalities. Procedures are provided in a step-by-step fashion for Data Upload Managers to upload reports and data files, as well as for new users to initiate Handbook access.

  5. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  6. AISI/DOE Technology Roadmap Program: Characterization of Fatigue and Crash Performance of New Generation High Strength Steels for Automotive Applications

    SciTech Connect (OSTI)

    Brenda Yan; Dennis Urban

    2003-04-21

    A 2-year project (2001-2002) to generate fatigue and high strain data for a new generation of high strength steels (HSS) has been completed in December 2002. The project tested eleven steel grades, including Dual Phase (DP) steels, Transformation-Induced Plasticity (TRIP) steels, Bake Hardenable (BH) steels, and conventional High Strength Low Alloy (HSLA) steels. All of these steels are of great interest in automotive industry due to the potential benefit in weight reduction, improved fuel economy, enhanced crash energy management and total system cost savings. Fatigue behavior includes strain controlled fatigue data notch sensitivity for high strength steels. High strain rate behavior includes stress-strain data for strain rates from 0.001/s to 1000/s, which are considered the important strain rate ranges for crash event. The steels were tested in two phases, seven were tested in Phase 1 and the remaining steels were tested in Phase. In a addition to the fatigue data and high st rain rate data generated for the steels studied in the project, analyses of the testing results revealed that Advanced High Strength Steels (AHSS) exhibit significantly higher fatigue strength and crash energy absorption capability than conventional HSS. TRIP steels exhibit exceptionally better fatigue strength than steels of similar tensile strength but different microstructure, for conditions both with or without notches present

  7. Mountain View IV | Open Energy Information

    Open Energy Info (EERE)

    AES Wind Generation Energy Purchaser Southern California Edison Co Location White Water CA Coordinates 33.95475187, -116.7015839 Show Map Loading map......

  8. Industrial innovations for tomorrow: Advances in industrial energy-efficiency technologies. Commercial power plant tests blend of refuse-derived fuel and coal to generate electricity

    SciTech Connect (OSTI)

    Not Available

    1993-11-01

    MSW can be converted to energy in two ways. One involves the direct burning of MSW to produce steam and electricity. The second converts MSW into refuse-derived fuel (RDF) by reducing the size of the MSW and separating metals, glass, and other inorganic materials. RDF can be densified or mixed with binders to form fuel pellets. As part of a program sponsored by DOE`s Office of Industrial Technologies, the National Renewable Energy Laboratory participated in a cooperative research and development agreement to examine combustion of binder-enhanced, densified refuse-derived fuel (b-d RDF) pellets with coal. Pelletized b-d RDF has been burned in coal combustors, but only in quantities of less than 3% in large utility systems. The DOE project involved the use of b-d RDF in quantities up to 20%. A major goal was to quantify the pollutants released during combustion and measure combustion performance.

  9. Solar Energy Education. Reader, Part IV. Sun schooling Not Available...

    Office of Scientific and Technical Information (OSTI)

    Reader, Part IV. Sun schooling Not Available 14 SOLAR ENERGY; SOLAR ENERGY; EDUCATION; BIOMASS; CURRICULUM GUIDES; GREENHOUSE EFFECT; METHANE; OCEAN THERMAL POWER PLANTS; RENEWABLE...

  10. Under the Saturn IV Rocket | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Under the Saturn IV Rocket Under the Saturn IV Rocket October 10, 2013 - 12:05pm Addthis Under the Saturn IV Rocket <em>Photo credit: Kelly Visconti</em> Under the Saturn IV Rocket Photo credit: Kelly Visconti On the Road with Kelly Visconti I went to Space Camp! In January I went to the Davidson Space and Rocket Center (the home of Space Camp) in Huntsville Alabama for a workshop sponsored by the Advanced Manufacturing National Program Office (AMNPO). Over 350 people from private

  11. MHK Technologies/HyPEG | Open Energy Information

    Open Energy Info (EERE)

    Profile Primary Organization Hydrokinetic Laboratory Technology Type Click here Axial Flow Turbine Technology Description Their Hydro kinetically Powered Electrical Generators...

  12. U.S. Department of Energy Geothermal Electricity Technology Evaluation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    spreadsheet model developed by the Geothermal Technologies Program to assess power generation costs and the potential for technology improvements to impact those generation...

  13. BPA seeks research partners to advance technology solutions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transmission technologies, data intelligence, next-generation energy efficiency and demand response technologies, generation asset management. A copy of each roadmap is...

  14. Financial Institution Partnership Program - Commercial Technology Renewable

    Office of Environmental Management (EM)

    Energy Generation Projects Issued: October 7, 2009 | Department of Energy Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 PDF icon Financial Institution Partnership Program - Commercial Technology Renewable Energy Generation Projects Issued: October 7, 2009 PDF icon Fixed Rate Agreement

  15. TECHNOLOGY READINESS ASSESSMENT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DECEMBER 2012 Pathway for readying the next generation of affordable clean energy technology -Carbon Capture, Utilization, and Storage (CCUS) 2012 TECHNOLOGY READINESS ASSESSMENT -OVERVIEW 2 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 2012 TECHNOLOGY READINESS ASSESSMENT-OVERVIEW 3 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any

  16. CALIBRATING C-IV-BASED BLACK HOLE MASS ESTIMATORS

    SciTech Connect (OSTI)

    Park, Daeseong; Woo, Jong-Hak; Shin, Jaejin [Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Denney, Kelly D., E-mail: pds2001@astro.snu.ac.kr, E-mail: woo@astro.snu.ac.kr, E-mail: jjshin@astro.snu.ac.kr, E-mail: kelly@dark-cosmology.dk [Dark Cosmology Centre, Niels Bohr Institute, Juliane Maries Vej 30, DK-2100 Copenhagen O (Denmark)

    2013-06-20

    We present the single-epoch black hole mass estimators based on the C IV {lambda}1549 broad emission line, using the updated sample of the reverberation-mapped active galactic nuclei and high-quality UV spectra. By performing multi-component spectral fitting analysis, we measure the C IV line widths (FWHM{sub C{sub IV}} and line dispersion, {sigma}{sub C{sub IV}}) and the continuum luminosity at 1350 A (L{sub 1350}) to calibrate the C-IV-based mass estimators. By comparing with the H{beta} reverberation-based masses, we provide new mass estimators with the best-fit relationships, i.e., M{sub BH}{proportional_to}L{sub 1350}{sup 0.50{+-}0.07}{sigma}{sub C{sub IV}{sup 2}} and M{sub BH}{proportional_to}L{sub 1350}{sup 0.52{+-}0.09} FWHM{sub C{sub IV}{sup 0.56{+-}0.48}}. The new C-IV-based mass estimators show significant mass-dependent systematic difference compared to the estimators commonly used in the literature. Using the published Sloan Digital Sky Survey QSO catalog, we show that the black hole mass of high-redshift QSOs decreases on average by {approx}0.25 dex if our recipe is adopted.

  17. Actinide Corroles: Synthesis and Characterization of Thorium(IV) and Uranium(IV) bis(-chloride) Dimers

    SciTech Connect (OSTI)

    Ward, Ashleigh L.; Buckley, Heather L.; Gryko, Daniel T.; Lukens, Wayne W.; Arnold, John

    2013-12-01

    The first synthesis and structural characterization of actinide corroles is presented. Thorium(IV) and uranium(IV) macrocycles of Mes2(p-OMePh)corrole were synthesised and characterized by single-crystal X-ray diffraction, UV-Visible spectroscopy, variable-temperature 1H NMR, ESI mass spectrometry and cyclic voltammetry.

  18. Hydrogain Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: Hydrogain Technologies Inc Place: Florida Zip: FL 33069 Sector: Hydro, Hydrogen Product: Developers of hydrogen fuel generation and storage technology for...

  19. Environmental effects of marine energy development around the world. Annex IV Final Report

    SciTech Connect (OSTI)

    Copping, Andrea; Hanna, Luke; Whiting, Johnathan; Geerlofs, Simon; Grear, Molly; Blake, Kara ); Coffey, Anna; Massaua, Meghan; Brown-Saracino, Jocelyn; Battey, Hoyt )

    2013-01-15

    Annex IV is an international collaborative project to examine the environmental effects of marine energy devices among countries through the International Energy Agency’s Ocean Energy Systems Initiative (OES). The U.S. Department of Energy (DOE) serves as the Operating Agent for the Annex, in partnership with the Bureau of Ocean Energy Management (BOEM; formerly the Minerals Management Service), the Federal Energy Regulatory Commission (FERC), and National Oceanographic and Atmospheric Administration (NOAA). Numerous ocean energy technologies and devices are being developed around the world, and the few data that exist about the environmental effects of these technologies are dispersed among countries and developers. The purpose of Annex IV is to facilitate efficient government oversight of the development of ocean energy systems by compiling and disseminating information about the potential environmental effects of marine energy technologies and to identify methods of monitoring for these effects. Beginning in 2010, this three-year effort produced a publicly available searchable online database of environmental effects information (Tethys). It houses scientific literature pertaining to the environmental effects of marine energy systems, as well as metadata on international ocean energy projects and research studies. Two experts’ workshops were held in Dublin, Ireland (September 2010 and October 2012) to engage with international researchers, developers, and regulators on the scope and outcomes of the Annex IV project. Metadata and information stored in the Tethys database and feedback obtained from the two experts’ workshops were used as resources in the development of this report. This Annex IV final report contains three case studies of specific interactions of marine energy devices with the marine environment that survey, compile, and analyze the best available information in one coherent location. These case studies address 1) the physical interactions between animals and tidal turbines; 2) the acoustic impact of marine energy devices on marine animals; and 3) the effects of energy removal on physical systems. Each case study contains a description of environmental monitoring efforts and research studies, lessons learned, and analysis of remaining information gaps. The information collected through the Annex IV effort and referenced in this report, can be accessed on the Tethys database at http://mhk.pnnl.gov/wiki/index.php/Tethys_ Home.

  20. Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure...

    Office of Environmental Management (EM)

    2: Silicon Nanostructure-based Technology for Next Generation Energy Storage Vehicle Technologies Office Merit Review 2012: Silicon Nanostructure-based Technology for Next...

  1. MHK Technologies/Yongsoo Wave Power Plant | Open Energy Information

    Open Energy Info (EERE)

    here Axial Flow Turbine Technology Description Oscillating water column type with turbines and generators Technology Dimensions Technology Nameplate Capacity (MW) 5 Device...

  2. Site Environmental Report For Calendar Year 2012. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Dassler, David

    2013-09-01

    This Annual Site Environmental Report (ASER) for 2012 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2012 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  3. Site Environmental Report for Calendar Year 2011. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Dassler, David

    2012-09-01

    This Annual Site Environmental Report (ASER) for 2011 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2011 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  4. Site Environmental Report for Calendar Year 2010. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2011-09-01

    This Annual Site Environmental Report (ASER) for 2010 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2010 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  5. Site Environmental Report for Calendar Year 2009. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2010-09-01

    This Annual Site Environmental Report (ASER) for 2009 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2009 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  6. Site Environmental Report for Calendar Year 2008. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil; Amar, Ravnesh

    2009-09-01

    This Annual Site Environmental Report (ASER) for 2008 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. In May 2007, the D&D operations in Area IV were suspended by the DOE. The environmental monitoring programs were continued throughout the year. Results of the radiological monitoring program for the calendar year 2008 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  7. Vehicle Technologies Office: Technologies

    Broader source: Energy.gov [DOE]

    To support DOE's goal to provide clean and secure energy, the Vehicle Technologies Office (VTO) invests in research and development that:

  8. Quadrennial Technology Review 2015

    Broader source: Energy.gov (indexed) [DOE]

    program supported improvements in this technology, such as the use of nano-clay for next-generation HVDC cables. A research emphasis is also needed on superconducting HVDC cables,...

  9. Chapter 4: Advancing Clean Electric Power Technologies | Fast...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (ASTRID) in 2025 (France), the Prototype Generation-IV Sodium-cooled Fast Reactor (PGSFR) in 2028 (South Korea), and the SVBR-100 in 2017 and BREST-300 in 2020 (Russia). ...

  10. Selection of materials for sodium fast reactor steam generators

    SciTech Connect (OSTI)

    Dubiez-Le Goff, S.; Garnier, S.; Gelineau, O.; Dalle, F.; Blat-Yrieix, M.; Augem, J. M.

    2012-07-01

    Sodium Fast Reactor (SFR) is considered in France as the most mature technology of the different Generation IV systems. In the short-term the designing work is focused on the identification of the potential tracks to demonstrate licensing capability, availability, in-service inspection capability and economical performance. In that frame materials selection for the major components, as the steam generator, is a particularly key point managed within a French Research and Development program launched by AREVA, CEA and EDF. The choice of the material for the steam generator is indeed complex because various aspects shall be considered like mechanical and thermal properties at high temperature, interaction with sodium on one side and water and steam on the other side, resistance to wastage, procurement, fabrication, weldability and ability for inspection and in-situ intervention. The following relevant options are evaluated: the modified 9Cr1Mo ferritic-martensitic grade and the Alloy 800 austenitic grade. The objective of this paper is to assess for both candidates their abilities to reach the current SFR needs regarding material design data, from AFCEN RCC-MRx Code in particular, compatibility with environments and manufacturability. (authors)

  11. Shekel Technologies | Open Energy Information

    Open Energy Info (EERE)

    solar concentrators with gas turbines and energy storage for medium and large scale distributed electricity generation. References: Shekel Technologies1 This article is a stub....

  12. Raven Technology | Open Energy Information

    Open Energy Info (EERE)

    technology known as "AC-Direct," which seeks to overcome the limitations of inverters and synchronous generators for mobile, off-grid, and distributed power applications....

  13. TOTAL SES SL EJ//EK EN IV EN III

    National Nuclear Security Administration (NNSA)

    SL EJEK EN IV EN III NN (Engineering) NQ (ProfTechAdmin) NU (TechAdminSupport) RETIREMENT ELIGIBLE TO RETIRE IMMEDIATELY 11 13.9% ELIGIBLE TO RETIRE BY 3272014 29 36.7%...

  14. The Sloan Digital Sky Survey Quasar Lens Search. IV. Statistical...

    Office of Scientific and Technical Information (OSTI)

    The Sloan Digital Sky Survey Quasar Lens Search. IV. Statistical Lens Sample from the Fifth Data Release Citation Details In-Document Search Title: The Sloan Digital Sky Survey...

  15. Advanced Reactor Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Reactor Technologies » Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research, development and deployment (RD&D) activities through its Next Generation Nuclear Plant (NGNP), Advanced Reactor Concepts (ARC), and Advanced Small Modular Reactor (aSMR) programs to promote safety, technical, economical, and environmental advancements of innovative

  16. Articles about Next-Generation Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is that most projections put the operation and maintenance (O&M) costs of offshore wind farms between 2 to 5 times the current average costs for land-based wind farms. One way...

  17. Power Generation Asset Management Technology Roadmap M

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions degrade, and the likelihood of equipment damage or failure increases. Such failures can result in forced outages of units that can hamper BPA's ability to meet power...

  18. A New Generation of Parabolic Trough Technology

    Office of Environmental Management (EM)

    truss design Larger aperture (15% ) 2x as long (100 meters) Lower tolerance pieces (lower cost) Alignment jig required for assembly Inadequate torsion stiffness Cost...

  19. Simulating the Next Generation of Energy Technologies

    Broader source: Energy.gov [DOE]

    Computer simulations offer a huge potential for the auto industry to allow us to make modifications to engines faster and cheaper -- and come up with the most energy efficient solution.

  20. A New Generation of Parabolic Trough Technology

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  1. Table IV: Technical Targets for Membranes: Stationary | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy IV: Technical Targets for Membranes: Stationary Table IV: Technical Targets for Membranes: Stationary "Technical targets for fuel cell membranes in stationary applications defined by the High Temperature Working Group (February 2003). " PDF icon technical_targets_membr_stat.pdf More Documents & Publications Table II: Technical Targets for Membranes: Automotive Table III: Technical Targets for Catalyst Coated Membranes (CCMs): Stationary Table I: Technical Targets for

  2. Generation Planning (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Generation Planning Thumbnail image of BPA White Book BPA White Book (1998-2014) Draft Dry...

  3. LIQUID PHASE FISCHER-TROPSCH (III & IV) DEMONSTRATION IN THE LAPORTE ALTERNATIVE FUELS DEVELOPMENT UNIT. Final Topical Report. Volume I/II: Main Report. Task 1: Engineering Modifications (Fischer-Tropsch III & IV Demonstration) and Task 2: AFDU Shakedown, Operations, Deactivation (Shut-Down) and Disposal (Fischer-Tropsch III & IV Demonstration).

    SciTech Connect (OSTI)

    Bharat L. Bhatt

    1999-06-01

    Slurry phase Fischer-Tropsch technology was successfully demonstrated in DOE's Alternative Fuels Development Unit (AFDU) at LaPorte, Texas. Earlier work at LaPorte, with iron catalysts in 1992 and 1994, had established proof-of-concept status for the slurry phase process. The third campaign (Fischer-Tropsch III), in 1996, aimed at aggressively extending the operability of the slurry reactor using a proprietary cobalt catalyst. Due to an irreversible plugging of catalyst-wax separation filters as a result of unexpected catalyst fines generation, the operations had to be terminated after seven days on-stream. Following an extensive post-run investigation by the participants, the campaign was successfully completed in March-April 1998, with an improved proprietary cobalt catalyst. These runs were sponsored by the U. S. Department of Energy (DOE), Air Products & Chemicals, Inc., and Shell Synthetic Fuels, Inc. (SSFI). A productivity of approximately 140 grams (gm) of hydrocarbons (HC)/ hour (hr)-liter (lit) of expanded slurry volume was achieved at reasonable system stability during the second trial (Fischer-Tropsch IV). The productivity ranged from 110-140 at various conditions during the 18 days of operations. The catalyst/wax filters performed well throughout the demonstration, producing a clean wax product. For the most part, only one of the four filter housings was needed for catalyst/wax filtration. The filter flux appeared to exceed the design flux. A combination of use of a stronger catalyst and some innovative filtration techniques were responsible for this success. There was no sign of catalyst particle attrition and very little erosion of the slurry pump was observed, in contrast to the Fischer-Tropsch III operations. The reactor operated hydrodynamically stable with uniform temperature profile and gas hold-ups. Nuclear density and differential pressure measurements indicated somewhat higher than expected gas hold-up (45 - 50 vol%) during Fischer-Tropsch IV operations. The high gas hold-up was confirmed by a dynamic gas disengagement test conducted at the end of the run. Heat transfer in the reactor was better than expected. Heat, mass and elemental balance calculations indicated excellent closure. After the initial learning curve with system dynamics, the plant was restarted very quickly (24 hours and 17 hours) following two plant trips. This demonstrates the ease and flexibility of the slurry technology. In-situ reduction of catalyst pre-cursor was completed successfully during F-T IV operations. Water measurements proved to be inaccurate due to wax/oil contamination of the analytical system. However, the reduction appeared to proceed well as close to expected syngas conversion was obtained at the beginning of the run. The selectivity to wax was lower than expected, with higher methane selectivity. Returning to the baseline condition indicated a productivity decline from 135-140 to 125-130 gm HC/hr-lit. of reactor volume in two weeks of operation. This may be a result of some catalyst loss from the reactor as well as initial catalyst deactivation. Significant quantities of product and samples were collected for further processing and analysis by the participants. Gas, liquid and solid phase mixing were studied as planned at two operating conditions using radioactive materials. A large amount of data were collected by ICI Tracerco using 43 detectors around the reactor. The data are being analyzed by Washington University as part of the Hydrodynamic Program with DOE.

  4. Technology disrupted

    SciTech Connect (OSTI)

    Papatheodorou, Y.

    2007-02-15

    Three years ago, the author presented a report on power generation technologies which in summary said 'no technology available today has the potential of becoming transformational or disruptive in the next five to ten years'. In 2006 the company completed another strategic view research report covering the electric power, oil, gas and unconventional energy industries and manufacturing industry. This article summarises the strategic view findings and then revisits some of the scenarios presented in 2003. The cost per megawatt-hour of the alternatives is given for plants ordered in 2005 and then in 2025. The issue of greenhouse gas regulation is dealt with through carbon sequestration and carbon allowances or an equivalent carbon tax. Results reveal substantial variability through nuclear power, hydro, wind, geothermal and biomass remain competitive through every scenario. Greenhouse gas scenario analysis shows coal still be viable, albeit less competitive against nuclear and renewable technologies. A carbon tax or allowance at $24 per metric ton has the same effect on IGCC cost as a sequestration mandate. However, the latter would hurt gas plants much more than a tax or allowance. Sequestering CO{sub 2} from a gas plant is almost as costly per megawatt-hour as for coal. 5 refs., 5 figs., 5 tabs.

  5. Technology and energy supply

    Gasoline and Diesel Fuel Update (EIA)

    Donald L. Paul Executive Director, USC Energy Institute and William M. Keck Chair of Energy Resources 06 April 2010 EIA and SAIS 2010 Energy Conference Energy and the Economy Technology and Energy Transformation Science and Technology + Economics and Business + Society and Environment + Policy and Government Scale, time, and complexity 3 Existing supply and demand infrastructure New resources, infrastructures, and paradigms Multiple generations of technology History, the present, and the future

  6. Distributed generation hits market

    SciTech Connect (OSTI)

    1997-10-01

    The pace at which vendors are developing and marketing gas turbines and reciprocating engines for small-scale applications may signal the widespread growth of distributed generation. Loosely defined to refer to applications in which power generation equipment is located close to end users who have near-term power capacity needs, distributed generation encompasses a broad range of technologies and load requirements. Disagreement is inevitable, but many industry observers associate distributed generation with applications anywhere from 25 kW to 25 MW. Ten years ago, distributed generation users only represented about 2% of the world market. Today, that figure has increased to about 4 or 5%, and probably could settle in the 20% range within a 3-to-5-year period, according to Michael Jones, San Diego, Calif.-based Solar Turbines Inc. power generation marketing manager. The US Energy Information Administration predicts about 175 GW of generation capacity will be added domestically by 2010. If 20% comes from smaller plants, distributed generation could account for about 35 GW. Even with more competition, it`s highly unlikely distributed generation will totally replace current market structures and central stations. Distributed generation may be best suited for making market inroads when and where central systems need upgrading, and should prove its worth when the system can`t handle peak demands. Typical applications include small reciprocating engine generators at remote customer sites or larger gas turbines to boost the grid. Additional market opportunities include standby capacity, peak shaving, power quality, cogeneration and capacity rental for immediate demand requirements. Integration of distributed generation systems--using gas-fueled engines, gas-fired combustion engines and fuel cells--can upgrade power quality for customers and reduce operating costs for electric utilities.

  7. MHK Projects/Tidal Generation Ltd EMEC | Open Energy Information

    Open Energy Info (EERE)

    Overseeing Organization Tidal Generation Ltd Project Technology *MHK TechnologiesDeep Gen Tidal Turbines Project Licensing Environmental Monitoring and Mitigation Efforts See...

  8. Site Environmental Report for Calendar Year 2013. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    2014-06-30

    This Annual Site Environmental Report (ASER) for 2013 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of the Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2013 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling. Due to the suspension of D&D activities in Area IV, no effluents were released into the atmosphere during 2013. Therefore, the potential radiation dose to the general public through airborne release was zero. Similarly, the radiation dose to an offsite member of the public (maximally exposed individual) due to direct radiation from SSFL is indistinguishable from background. All radioactive wastes are processed for disposal at DOE disposal sites and/or other licensed sites approved by DOE for radioactive waste disposal. No liquid radioactive wastes were released into the environment in 2013.

  9. Distributed Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Untapped Value of Backup Generation While new guidelines and regulations such as IEEE (Institute of Electrical and Electronics Engineers) 1547 have come a long way in addressing interconnection standards for distributed generation, utilities have largely overlooked the untapped potential of these resources. Under certain conditions, these units (primarily backup generators) represent a significant source of power that can deliver utility services at lower costs than traditional centralized

  10. DFC Technology Status

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pinakin Patel Mohammad Farooque FuelCell Energy, Inc. 3 Great Pasture Road Danbury, Ct 06813 DFC Technology Status * Distributed generation puts power where it's needed * Increases power reliability * Near zero emissions allow units to be sited almost anywhere - even polluted urban areas * Reduces need for central generation plants * Reduces grid congestion and need for new transmission lines * Distributed generation enables smart grid * Balances the grid with 24/7 power * Meets requirements for

  11. Design of Radiation-Tolerant Structural Alloys for Generation IV Nuclear Energy Systems

    SciTech Connect (OSTI)

    Todd R. Allen

    2009-06-30

    This project will use proton irradiation to further understand the microstructural stability of ceramics being considered as matrix material for advanced nuclear fuels.

  12. Tritium permeation characterization of materials for fusion and generation IV very high temperature reactors

    SciTech Connect (OSTI)

    Thomson, S.; Pilatzke, K.; McCrimmon, K.; Castillo, I.; Suppiah, S.

    2015-03-15

    The objective of this work is to establish the tritium-permeation properties of structural alloys considered for Fusion systems and very high temperature reactors (VHTR). A description of the work performed to set up an apparatus to measure permeation rates of hydrogen and tritium in 304L stainless steel is presented. Following successful commissioning with hydrogen, the test apparatus was commissioned with tritium. Commissioning tests with tritium suggest the need for a reduction step that is capable of removing the oxide layer from the test sample surfaces before accurate tritium-permeation data can be obtained. Work is also on-going to clearly establish the temperature profile of the sample to correctly estimate the tritium-permeability data.

  13. Generation IV International Forum Signs Agreement to Collaborate on Sodium Cooled Fast Reactors

    Broader source: Energy.gov [DOE]

    FUKUI , JAPAN - The Department of Energy today announced that the United States signed a sodium-cooled fast reactor systems arrangement with France and Japan, providing the framework for...

  14. Demonstration of Next Generation PEM CHP Systems for Global Markets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI Membrane Technology Demonstration of Next Generation PEM CHP Systems for Global Markets Using PBI ...

  15. Project Profile: Next-Generation Parabolic Trough Collectors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the next generation of lower-cost parabolic trough technologies that can compete on an equal footing with conventional power generation. Innovation Abengoa is focusing on ...

  16. Next Generation Environmentally Friendly Driving Feedback Systems...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon vss086barth2012o.pdf More Documents & Publications Next Generation Environmentally Friendly...

  17. Rational Ligand Design for U(VI) and Pu(IV)

    SciTech Connect (OSTI)

    Szigethy, Geza

    2009-08-12

    Nuclear power is an attractive alternative to hydrocarbon-based energy production at a time when moving away from carbon-producing processes is widely accepted as a significant developmental need. Hence, the radioactive actinide power sources for this industry are necessarily becoming more widespread, which is accompanied by the increased risk of exposure to both biological and environmental systems. This, in turn, requires the development of technology designed to remove such radioactive threats efficiently and selectively from contaminated material, whether that be contained nuclear waste streams or the human body. Raymond and coworkers (University of California, Berkeley) have for decades investigated the interaction of biologically-inspired, hard Lewis-base ligands with high-valent, early-actinide cations. It has been established that such ligands bind strongly to the hard Lewis-acidic early actinides, and many poly-bidentate ligands have been developed and shown to be effective chelators of actinide contaminants in vivo. Work reported herein explores the effect of ligand geometry on the linear U(IV) dioxo dication (uranyl, UO{sub 2}{sup 2+}). The goal is to utilize rational ligand design to develop ligands that exhibit shape selectivity towards linear dioxo cations and provides thermodynamically favorable binding interactions. The uranyl complexes with a series of tetradentate 3-hydroxy-pyridin-2-one (3,2-HOPO) ligands were studied in both the crystalline state as well as in solution. Despite significant geometric differences, the uranyl affinities of these ligands vary only slightly but are better than DTPA, the only FDA-approved chelation therapy for actinide contamination. The terepthalamide (TAM) moiety was combined into tris-beidentate ligands with 1,2- and 3,2-HOPO moieties were combined into hexadentate ligands whose structural preferences and solution thermodynamics were measured with the uranyl cation. In addition to achieving coordinative saturation, these ligands exhibited increased uranyl affinity compared to bis-Me-3,2-HOPO ligands. This result is due in part to their increased denticity, but is primarily the result of the presence of the TAM moiety. In an effort to explore the relatively unexplored coordination chemistry of Pu(IV) with bidentate moieties, a series of Pu(IV) complexes were also crystallized using bidentate hydroxypyridinone and hydroxypyrone ligands. The geometries of these complexes are compared to that of the analogous Ce(IV) complexes. While in some cases these showed the expected structural similarities, some ligand systems led to significant coordination changes. A series of crystal structure analyses with Ce(IV) indicated that these differences are most likely the result of crystallization condition differences and solvent inclusion effects.

  18. Estimate of the allowable dimensions of diagnosed defects in category III and IV welded pipeline joints{sup 1}

    SciTech Connect (OSTI)

    Grin', E. A.; Bochkarev, V. I.

    2013-01-15

    An approach for estimating the permissible dimensions of technological defects in butt welded joints in category III and IV pipelines is described. The allowable size of a welding defect is determined from the condition of compliance with the specifications on strength for a reference cross section (damaged joint) of the pipeline taking into account its weakening by a given defect.With regard to the fairly widespread discovery of technological defects in butt welded joints during diagnostics of auxiliary pipelines for thermal electric power plants, the proposed approach can be used in practice by repair and consulting organizations.

  19. Site Environmental Report for Calendar Year 2006. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    Liu, Ning; Rutherford, Phil

    2007-09-01

    This Annual Site Environmental Report (ASER) for 2006 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). In the past, the Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder components. All nuclear work was terminated in 1988; all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Closure of the liquid metal test facilities began in 1996. Results of the radiological monitoring program for the calendar year 2006 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  20. Tethys and Annex IV Progress Report for FY 2012

    SciTech Connect (OSTI)

    Hanna, Luke A.; Butner, R. Scott; Whiting, Jonathan M.; Copping, Andrea E.

    2013-09-01

    The marine and hydrokinetic (MHK) environmental Impacts Knowledge Management System, dubbed “Tethys” after the mythical Greek titaness of the seas, is being developed by the Pacific Northwest National Laboratory (PNNL) to support the U.S. Department of Energy’s Wind and Water Power Program (WWPP). Functioning as a smart database, Tethys enables its users to identify key words or terms to help gather, organize and make available information and data pertaining to the environmental effects of MHK and offshore wind (OSW) energy development. By providing and categorizing relevant publications within a simple and searchable database, Tethys acts as a dissemination channel for information and data which can be utilized by regulators, project developers and researchers to minimize the environmental risks associated with offshore renewable energy developments and attempt to streamline the permitting process. Tethys also houses a separate content-related Annex IV data base with identical functionality to the Tethys knowledge base. Annex IV is a collaborative project among member nations of the International Energy Agency (IEA) Ocean Energy Systems – Implementing Agreement (OES-IA) that examines the environmental effects of ocean energy devices and projects. The U.S. Department of Energy leads the Annex IV working with federal partners such as the Federal Energy Regulatory Commission (FERC), the Bureau of Ocean Energy Management (BOEM), and the National Oceanic Atmospheric Administration (NOAA). While the Annex IV database contains technical reports and journal articles, it is primarily focused on the collection of project site and research study metadata forms (completed by MHK researchers and developers around the world, and collected by PNNL) which provide information on environmental studies and the current progress of the various international MHK developments in the Annex IV member nations. The purpose of this report is to provide a summary of the content, accessibility and functionality enhancements made to the Annex IV and Tethys knowledge bases in FY12.

  1. GASIFICATION FOR DISTRIBUTED GENERATION

    SciTech Connect (OSTI)

    Ronald C. Timpe; Michael D. Mann; Darren D. Schmidt

    2000-05-01

    A recent emphasis in gasification technology development has been directed toward reduced-scale gasifier systems for distributed generation at remote sites. The domestic distributed power generation market over the next decade is expected to be 5-6 gigawatts per year. The global increase is expected at 20 gigawatts over the next decade. The economics of gasification for distributed power generation are significantly improved when fuel transport is minimized. Until recently, gasification technology has been synonymous with coal conversion. Presently, however, interest centers on providing clean-burning fuel to remote sites that are not necessarily near coal supplies but have sufficient alternative carbonaceous material to feed a small gasifier. Gasifiers up to 50 MW are of current interest, with emphasis on those of 5-MW generating capacity. Internal combustion engines offer a more robust system for utilizing the fuel gas, while fuel cells and microturbines offer higher electric conversion efficiencies. The initial focus of this multiyear effort was on internal combustion engines and microturbines as more realistic near-term options for distributed generation. In this project, we studied emerging gasification technologies that can provide gas from regionally available feedstock as fuel to power generators under 30 MW in a distributed generation setting. Larger-scale gasification, primarily coal-fed, has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries. Commercial-scale gasification activities are under way at 113 sites in 22 countries in North and South America, Europe, Asia, Africa, and Australia, according to the Gasification Technologies Council. Gasification studies were carried out on alfalfa, black liquor (a high-sodium waste from the pulp industry), cow manure, and willow on the laboratory scale and on alfalfa, black liquor, and willow on the bench scale. Initial parametric tests evaluated through reactivity and product composition were carried out on thermogravimetric analysis (TGA) equipment. These tests were evaluated and then followed by bench-scale studies at 1123 K using an integrated bench-scale fluidized-bed gasifier (IBG) which can be operated in the semicontinuous batch mode. Products from tests were solid (ash), liquid (tar), and gas. Tar was separated on an open chromatographic column. Analysis of the gas product was carried out using on-line Fourier transform infrared spectroscopy (FT-IR). For selected tests, gas was collected periodically and analyzed using a refinery gas analyzer GC (gas chromatograph). The solid product was not extensively analyzed. This report is a part of a search into emerging gasification technologies that can provide power under 30 MW in a distributed generation setting. Larger-scale gasification has been used commercially for more than 50 years to produce clean synthesis gas for the refining, chemical, and power industries, and it is probable that scaled-down applications for use in remote areas will become viable. The appendix to this report contains a list, description, and sources of currently available gasification technologies that could be or are being commercially applied for distributed generation. This list was gathered from current sources and provides information about the supplier, the relative size range, and the status of the technology.

  2. Plutonium Oxidation and Subsequent Reduction by Mn (IV) Minerals

    SciTech Connect (OSTI)

    KAPLAN, DANIEL

    2005-09-13

    Plutonium sorbed to rock tuff was preferentially associated with manganese oxides. On tuff and synthetic pyrolusite (Mn{sup IV}O{sub 2}), Pu(IV) or Pu(V) was initially oxidized, but over time Pu(IV) became the predominant oxidation state of sorbed Pu. Reduction of Pu(V/VI), even on non-oxidizing surfaces, is proposed to result from a lower Gibbs free energy of the hydrolyzed Pu(IV) surface species versus that of the Pu(V) or Pu(VI) surface species. This work suggests that despite initial oxidation of sorbed Pu by oxidizing surfaces to more soluble forms, the less mobile form of Pu, Pu(IV), will dominate Pu solid phase speciation during long term geologic storage. The safe design of a radioactive waste or spent nuclear fuel geologic repository requires a risk assessment of radionuclides that may potentially be released into the surrounding environment. Geochemical knowledge of the radionuclide and the surrounding environment is required for predicting subsurface fate and transport. Although difficult even in simple systems, this task grows increasingly complicated for constituents, like Pu, that exhibit complex environmental chemistries. The environmental behavior of Pu can be influenced by complexation, precipitation, adsorption, colloid formation, and oxidation/reduction (redox) reactions (1-3). To predict the environmental mobility of Pu, the most important of these factors is Pu oxidation state. This is because Pu(IV) is generally 2 to 3 orders of magnitude less mobile than Pu(V) in most environments (4). Further complicating matters, Pu commonly exists simultaneously in several oxidation states (5, 6). Choppin (7) reported Pu may exist as Pu(IV), Pu(V), or Pu(VI) oxic natural groundwaters. It is generally accepted that plutonium associated with suspended particulate matter is predominantly Pu(IV) (8-10), whereas Pu in the aqueous phase is predominantly Pu(V) (2, 11-13). The influence of the character of Mn-containing minerals expected to be found in subsurface repository environments on Pu oxidation state distributions has been the subject of much recent research. Kenney-Kennicutt and Morse (14), Duff et al. (15), and Morgenstern and Choppin (16) observed oxidation of Pu facilitated by Mn(IV)-bearing minerals. Conversely, Shaughnessy et al. (17) used X-ray Absorption near-edge spectroscopy (XANES) to show reduction of Pu(VI) by hausmannite (Mn{sup II}Mn{sub 2}{sup III}O{sub 4}) and manganite ({gamma}-Mn{sup III}OOH) and Kersting et al., (18) observed reduction of Pu(VI) by pyrolusite (Mn{sup IV}O{sub 2}). In this paper, we attempt to reconcile the apparently conflicting datasets by showing that Mn-bearing minerals can indeed oxidize Pu, however, if the oxidized species remains on the solid phase, the oxidation step competes with the formation of Pu(IV) that becomes the predominant solid phase Pu species with time. The experimental approach we took was to conduct longer term (approximately two years later) oxidation state analyses on the Pu sorbed to Yucca Mountain tuff (initial analysis reported by Duff et al., (15)) and measure the time-dependant changes in the oxidation state distribution of Pu in the presence of the Mn mineral pyrolusite.

  3. Technology Validation Fact Sheet | Department of Energy

    Energy Savers [EERE]

    Technology Validation Fact Sheet Technology Validation Fact Sheet Fact sheet produced by the Fuel Cell Technologies Office describing hydrogen and fuel cell technology validation efforts (September 2013). PDF icon Technology Validation More Documents & Publications Tri-Generation Success Story: World's First Tri-Gen Energy Station-Fountain Valley Fuel Cell Technologies Program Overview: 2012 DOE Polymer and Composite Materials Meetings Fuel Cell Technologies Program Overview: 2012 IEA HIA

  4. Automotive Thermoelectric Generators and HVAC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generators and HVAC Automotive Thermoelectric Generators and HVAC Provides overview of DOE-supported projects in automotive thermoelectric generators and heaters/air conditioners PDF icon deer12_fairbanks.pdf More Documents & Publications Thermoelectrics: The New Green Automotive Technology Vehicular Thermoelectrics: The New Green Technology Thermoelectrics: The New Green Automotive Technology

  5. Industry Participation Sought for Design of Next Generation Nuclear Plant |

    Energy Savers [EERE]

    Department of Energy Industry Participation Sought for Design of Next Generation Nuclear Plant Industry Participation Sought for Design of Next Generation Nuclear Plant June 29, 2006 - 2:41pm Addthis Gen IV Reactor Capable of Producing Electricity and/or Hydrogen WASHINGTON, DC - The U.S. Department of Energy (DOE) is seeking expressions of interest from prospective industry teams interested in participating in the development and conceptual design for the Next Generation Nuclear Plant

  6. Parameter extraction from I-V characteristics of PV devices

    SciTech Connect (OSTI)

    Macabebe, Erees Queen B.; Sheppard, Charles J.; Dyk, E. Ernest van

    2011-01-15

    Device parameters such as series and shunt resistances, saturation current and diode ideality factor influence the behaviour of the current-voltage (I-V) characteristics of solar cells and photovoltaic modules. It is necessary to determine these parameters since performance parameters are derived from the I-V curve and information provided by the device parameters are useful in analyzing performance losses. This contribution presents device parameters of CuIn(Se,S){sub 2}- and Cu(In,Ga)(Se,S){sub 2}-based solar cells, as well as, CuInSe{sub 2}, mono- and multicrystalline silicon modules determined using a parameter extraction routine that employs Particle Swarm Optimization. The device parameters of the CuIn(Se,S){sub 2}- and Cu(In,Ga)(Se,S){sub 2}-based solar cells show that the contribution of recombination mechanisms exhibited by high saturation current when coupled with the effects of parasitic resistances result in lower maximum power and conversion efficiency. Device parameters of photovoltaic modules extracted from I-V characteristics obtained at higher temperature show increased saturation current. The extracted values also reflect the adverse effect of temperature on parasitic resistances. The parameters extracted from I-V curves offer an understanding of the different mechanisms involved in the operation of the devices. The parameter extraction routine utilized in this study is a useful tool in determining the device parameters which reveal the mechanisms affecting device performance. (author)

  7. Microwave generator

    DOE Patents [OSTI]

    Kwan, T.J.T.; Snell, C.M.

    1987-03-31

    A microwave generator is provided for generating microwaves substantially from virtual cathode oscillation. Electrons are emitted from a cathode and accelerated to an anode which is spaced apart from the cathode. The anode has an annular slit there through effective to form the virtual cathode. The anode is at least one range thickness relative to electrons reflecting from the virtual cathode. A magnet is provided to produce an optimum magnetic field having the field strength effective to form an annular beam from the emitted electrons in substantial alignment with the annular anode slit. The magnetic field, however, does permit the reflected electrons to axially diverge from the annular beam. The reflected electrons are absorbed by the anode in returning to the real cathode, such that substantially no reflexing electrons occur. The resulting microwaves are produced with a single dominant mode and are substantially monochromatic relative to conventional virtual cathode microwave generators. 6 figs.

  8. Fuels Technologies

    Office of Environmental Management (EM)

    Fuels Technologies Program Mission To develop more energy efficient and environmentally friendly highway transportation technologies that enable America to use less petroleum. --EERE Strategic Plan, October 2002-- Kevin Stork, Team Leader Fuel Technologies & Technology Deployment Vehicle Technologies Program Energy Efficiency and Renewable Energy U.S. Department of Energy DEER 2008 August 6, 2008 Presentation Outline n Fuel Technologies Research Goals Fuels as enablers for advanced engine

  9. Site Environmental Report for Calendar Year 2005. DOE Operations at The Boeing Company, Santa Susana Field Laboratory, Area IV

    SciTech Connect (OSTI)

    2006-09-30

    This annual report describes the environmental monitoring programs related to the Department of Energy’s (DOE) activities at the Santa Susana Field Laboratory (SSFL) facility located in Ventura County, California during 2005. Part of the SSFL facility, known as Area IV, had been used for DOE’s activities since the 1950s. A broad range of energy related research and development (R&D) projects, including nuclear technologies projects, was conducted at the site. All the nuclear R&D operations in Area IV ceased in 1988. Current efforts are directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and closure of facilities used for liquid metal research.

  10. Cerium(IV), Neptunium(IV), and Plutonium(IV) 1,2-phenyldiphosphonates: Correlations and Differences between Early Transuranium Elements and Their Proposed Surrogates

    SciTech Connect (OSTI)

    Diwu, Juan; Wang, Shuao; Liao, Zuolei; Burns, Peter C.; Albrecht-Schmitt, Thomas E.

    2010-10-04

    The in situ hydrothermal reduction of Np(VI) to Np(IV) and Pu(VI) to Pu(IV) in the presence of 1,2-phenylenediphosphonic acid (PhP2) results in the crystallization of Np[C6H4(PO3H)2]2·2H2O (NpPhP2) and Pu[C6H4(PO3H)(PO3H2)][C6H4(PO3H)(PO3)]·2H2O (PuPhP2), respectively. Similar reactions have been explored with Ce(IV) resulting in the isolation of the Ce(IV) phenylenediphosphonate Ce[C6H4(PO3H)(PO3H2)][C6H4(PO3H)(PO3)]·2H2O (CePhP2). Single crystal diffraction studies reveal that although all these three compounds all crystallize in the triclinic space group P1-, only PuPhP2 and CePhP2 are isotypic, whereas NpPhP2 adopts a distinct structure. In the cerium and plutonium compounds edge-sharing dimers of MO8 polyhedra are bridged by the diphosphonate ligand to create one-dimensional chains. NpPhP2 also forms chains. However, the NpO8 units are monomeric. The protonation of the ligands is also different in the two structure types. Furthermore, the NpO8 polyhedra are best described as square antiprisms (D4d), whereas the CeO8 and PuO8 units are trigonal dodecahedra (D2d). Bond-valence parameters of Ro = 1.972 and b = 0.538 have been derived for Np4+ using a combination of the data reported in this work with that available in crystallographic databases. The UV-vis-NIR absorption spectra of NpPhP2 and PuPhP2 are also reported and used to confirm the tetravalent oxidation states.

  11. Exploration Technologies - Technology Needs Assessment

    SciTech Connect (OSTI)

    Greene, Amanda I.; Thorsteinsson, Hildigunnur; Reinhardt, Tim; Solomon, Samantha; James, Mallory

    2011-06-01

    This assessment is a critical component of ongoing technology roadmapping efforts, and will be used to guide the Geothermal Technology Program's research and development.

  12. Geothermal fracture stimulation technology. Volume IV. Proppant analysis at geothermal conditions

    SciTech Connect (OSTI)

    Not Available

    1981-01-01

    Crushing and degradation mechanisms of proppants are examined to characterize proppants and assess their usability in geothermal wells. Short-term tests can tell the physical strength of a proppant, but long-term tests are required to ascertain any interrelated chemical effects. Degradation of proppants is measured as a loss in permeability and can be correlated to temperature, time, and closure stress. Sand is a common proppant which is strongly affected by higher temperature and closure stress. Even at low stress levels, sand degrades in brine or hot water with long-term exposure. Most geothermal waters and their pH levels can also be detrimental to sand. There are some proppants with desirable properties at geothermal conditions. These are resistant to the crushing loads or closure stress in geothermal wells and will not react or dissolve in high temperature brines. While there are limits to these proppants, an unqualified list of possible geothermal proppants is given: aluminum oxide, garnet, resin-coated proppants, and sintered bauxite.

  13. Magnetocumulative generator

    DOE Patents [OSTI]

    Pettibone, J.S.; Wheeler, P.C.

    1981-06-08

    An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing providing a housing chamber with an electrically conducting surface. The chamber forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber, from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers disposed adjacent to the housing causes a phased closure of the chamber which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

  14. NREL: Technology Transfer - Technology Partnership Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ombuds. Printable Version Technology Transfer Home About Technology Transfer Technology Partnership Agreements Agreements for Commercializing Technology CRADAs Work for...

  15. High Impact Technology Catalyst: Technology Deployment Strategies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: ...

  16. Photon generator

    DOE Patents [OSTI]

    Srinivasan-Rao, Triveni (Shoreham, NY)

    2002-01-01

    A photon generator includes an electron gun for emitting an electron beam, a laser for emitting a laser beam, and an interaction ring wherein the laser beam repetitively collides with the electron beam for emitting a high energy photon beam therefrom in the exemplary form of x-rays. The interaction ring is a closed loop, sized and configured for circulating the electron beam with a period substantially equal to the period of the laser beam pulses for effecting repetitive collisions.

  17. Cluster generator

    DOE Patents [OSTI]

    Donchev, Todor I. (Urbana, IL); Petrov, Ivan G. (Champaign, IL)

    2011-05-31

    Described herein is an apparatus and a method for producing atom clusters based on a gas discharge within a hollow cathode. The hollow cathode includes one or more walls. The one or more walls define a sputtering chamber within the hollow cathode and include a material to be sputtered. A hollow anode is positioned at an end of the sputtering chamber, and atom clusters are formed when a gas discharge is generated between the hollow anode and the hollow cathode.

  18. Thermoelectric generator

    DOE Patents [OSTI]

    Pryslak, N.E.

    1974-02-26

    A thermoelectric generator having a rigid coupling or stack'' between the heat source and the hot strap joining the thermoelements is described. The stack includes a member of an insulating material, such as ceramic, for electrically isolating the thermoelements from the heat source, and a pair of members of a ductile material, such as gold, one each on each side of the insulating member, to absorb thermal differential expansion stresses in the stack. (Official Gazette)

  19. National Wind Technology Center to Debut New Dynamometer (Fact...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    facility will be used to accelerate the development and deployment of next-generation wind energy technologies. This fall, the National Wind Technology Center (NWTC) at the...

  20. GreenChek Technology Inc | Open Energy Information

    Open Energy Info (EERE)

    GreenChek Technology Inc Place: San Francisco, California Zip: 94111 Sector: Hydro, Hydrogen Product: Maker of onboard hydrogen generation and injection (OHGI) technology to...

  1. Combination & Integration of DPF-SCR Aftertreatment Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of DPF-SCR Aftertreatment Technologies Work is undertaken to examine the feasibility of integrating SCR and DPF technologies for the next generation of emission control...

  2. Micro- & Nano-Technologies Enabling More Compact, Lightweight...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Micro- & Nano-Technologies Enabling More Compact, Lightweight Thermoelectric Power Generation & Cooling Systems Micro- & Nano-Technologies Enabling More Compact,...

  3. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S. (Pleasanton, CA); Wilson, James R. (Livermore, CA); McDonald, Jr., Charles A. (Danville, CA)

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  4. Next Generation Manufacturing Processes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development Projects » Next Generation Manufacturing Processes Next Generation Manufacturing Processes New process technologies can rejuvenate U.S. manufacturing. Novel processing concepts can open pathways to double net energy productivity, enabling rapid manufacture of energy-efficient, high-quality products at competitive cost. Four process technology areas are expected to generate large energy, carbon, and economic benefits across the manufacturing sector. Click the areas

  5. MHK Technologies/Small power take off module | Open Energy Information

    Open Energy Info (EERE)

    module.jpg Technology Profile Primary Organization Wavegen subsidiary of Voith Siemens Hydro Power Generation Technology Resource Click here Wave Technology Description The 18...

  6. Method of synthesis of anhydrous thorium(IV) complexes

    DOE Patents [OSTI]

    Kiplinger, Jaqueline L; Cantat, Thibault

    2013-04-30

    Method of producing anhydrous thorium(IV) tetrahalide complexes, utilizing Th(NO.sub.3).sub.4(H.sub.2O).sub.x, where x is at least 4, as a reagent; method of producing thorium-containing complexes utilizing ThCl.sub.4(DME).sub.2 as a precursor; method of producing purified ThCl.sub.4(ligand).sub.x compounds, where x is from 2 to 9; and novel compounds having the structures: ##STR00001##

  7. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Thomas Lynch

    2004-01-07

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

  8. Business Talks at the Technology Showcase | Department of Energy

    Energy Savers [EERE]

    Business Talks at the Technology Showcase Business Talks at the Technology Showcase February 27, 2013 - 3:26pm Addthis The Technology Showcase: AC Kinetics 1 of 11 The Technology Showcase: AC Kinetics The Technology Showcase at the 2013 ARPA-E Energy Innovation Summit presents America's next generation of transformational energy technologies. In this photo, motor control company AC Kinetics, Inc. highlighted its next-generation motor control technology on the showcase floor. Image: Sarah

  9. Analysis of the raw data of sample plots in NFIMAP Cycle IV ...

    Open Energy Info (EERE)

    raw data of sample plots in NFIMAP Cycle IV (English version) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Analysis of the raw data of sample plots in NFIMAP Cycle IV...

  10. Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress Sensitivities of I-V Parameters in C-Si PV Modules of Hygrothermal Stress Presented at the PV Module ...

  11. Low-level detection and quantification of Plutonium(III, IV,...

    Office of Scientific and Technical Information (OSTI)

    IV, V,and VI) using a liquid core waveguide Citation Details In-Document Search Title: Low-level detection and quantification of Plutonium(III, IV, V,and VI) using a ...

  12. Detection and Quantification of Pu(III, IV, V, and VI) Using...

    Office of Scientific and Technical Information (OSTI)

    of Pu(III, IV, V, and VI) Using a1.0-meter Liquid Core Waveguide Citation Details In-Document Search Title: Detection and Quantification of Pu(III, IV, V, and VI) Using ...

  13. Annex IV Environmental Webinar: Effects of Energy Removal on Physical Systems

    Broader source: Energy.gov [DOE]

    Please mark your calendars for the next Annex IV Environmental webinar titled: Effects of Energy Removal on Physical Systems. Held under the auspices of the Annex IV initiative to the IEA Ocean...

  14. Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Plenary IV: Advances in Bioenergy Feedstocks-From Field to Fuel Addressing Biomass Supply Chain Challenges With AFEX(tm) Technology Allen Julian, Chief Business Officer, MBI PDF icon julian_biomass_2014.pdf More Documents & Publications 2015 Peer Review Presentations-Biochemical Conversion Process Design and Economics for Biochemical

  15. Biogass Generator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Another internet tool by: Build Your Own Page 1 of 5 Teach...build...learn...renewable energy! Biogas Generator A Renewable Energy Project Kit The Pembina Institute What Is Biogas? Biogas is actually a mixture of gases, usually carbon dioxide and methane. It is produced by a few kinds of microorganisms, usually when air or oxygen is absent. (The absence of oxygen is called "anaerobic conditions.") Animals that eat a lot of plant material, particularly grazing animals such as cattle,

  16. CONNECTICUT BIOFUELS TECHNOLOGY PROJECT

    SciTech Connect (OSTI)

    BARTONE, ERIK

    2010-09-28

    DBS Energy Inc. (“DBS”) intends on using the Connecticut Biofuels Technology Project for the purpose of developing a small-scale electric generating systems that are located on a distributed basis and utilize biodiesel as its principle fuel source. This project will include research and analysis on the quality and applied use of biodiesel for use in electricity production, 2) develop dispatch center for testing and analysis of the reliability of dispatching remote generators operating on a blend of biodiesel and traditional fossil fuels, and 3) analysis and engineering research on fuel storage options for biodiesel of fuels for electric generation.

  17. MHK Technologies/hyWave | Open Energy Information

    Open Energy Info (EERE)

    column (OWC) is converted to electricity by a Wells generator and specially designed induction generators. Technology Dimensions Device Testing Date Submitted 922010 << Return...

  18. Vehicle Technologies Office - Materials Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Materials Technologies Ed Owens Jerry Gibbs Will Joost eere.energy.gov 2 | Vehicle Technologies Program Materials Technologies Materials Technologies $36.9 M Lightweight Materials $28.0 M Values are FY14 enacted Propulsion Materials $8.9 M Properties and Manufacturing Multi-Material Enabling Modeling & Computational Mat. Sci. Engine Materials, Cast Al & Fe High Temp Alloys Exhaust Sys. Materials, Low T Catalysts Lightweight Propulsion FY13 Enacted $27.5 M

  19. Monthly Generation System Peak (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Generation > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Monthly Generation System Peak (GSP) This site is no longer maintained. Page last...

  20. Progress reports for Gen IV sodium fast reactor activities FY 2007.

    SciTech Connect (OSTI)

    Cahalan, J. E.; Tentner, A. M.; Nuclear Engineering Division

    2007-10-04

    An important goal of the US DOE Sodium Fast Reactor (SFR) program is to develop the technology necessary to increase safety margins in future fast reactor systems. Although no decision has been made yet about who will build the next demonstration fast reactor, it seems likely that the construction team will include a combination of international companies, and the safety design philosophy for the reactor will reflect a consensus of the participating countries. A significant amount of experience in the design and safety analysis of Sodium Fast Reactors (SFR) using oxide fuel has been developed in both Japan and France during last few decades. In the US, the traditional approach to reactor safety is based on the principle of defense-in-depth, which is usually expressed in physical terms as multiple barriers to release of radioactive material (e.g. cladding, reactor vessel, containment building), but it is understood that the 'barriers' may consist of active systems or even procedures. As implemented in a reactor design, defense-in-depth is classed in levels of safety. Level 1 includes measures to specify and build a reliable design with significant safety margins that will perform according to the intentions of the designers. Level 2 consists of additional design measures, usually active systems, to protect against unlikely accidental events that may occur during the life of the plant. Level 3 design measures are intended to protect the public in the event of an extremely unlikely accident not foreseen to occur during the plant's life. All of the design measures that make up the first three levels of safety are within the design basis of the plant. Beyond Level 3, and beyond the normal design basis, there are accidents that are not expected to occur in a whole generation of plants, and it is in this class that severe accidents, i.e. accidents involving core melting, are included. Beyond design basis measures to address severe accidents are usually identified as being for prevention of progression into severe accident conditions (prevention of core melting) or for mitigation of severe accident consequences (mitigation of the impact of core melting to protect public health and safety). Because design measures for severe accident prevention and mitigation are beyond the normal design basis, established regulatory guidelines and codes do not provide explicit identification of the design performance requirements for severe accident accommodation. The treatment of severe accidents is one of the key issues of R&D plans for the Gen IV systems in general, and for the Sodium Fast Reactor (SFR) in particular. Despite the lack of an unambiguous definition of safety approach applicable for severe accidents, there is an emerging consensus on the need for their consideration for the design. The US SFR program and Argonne National Laboratory (ANL) in particular have actively studied the potential scenarios and consequences of Hypothetical Core Disruptive Accidents (HCDA) for SFRs with oxide fuel during the Fast Flux Test Facility (FFTF) and Clinch River Breeder Reactor Plant (CRBRP) programs in the 70s and 80s. Later, the focus of the US SFR safety R&D activities shifted to the prevention of all HCDAs through passive safety features of the SFRs with metal fuel in the Integral Fast Reactor (IFR) program, and the study of severe accident consequences was de-emphasized. The goal of this paper is to provide an overview of the current SFR safety approach and the role of severe accidents in Japan and France, in preparation for an expected and more active collaboration in this area between the US, Japan, and France.

  1. Magnetocumulative generator

    DOE Patents [OSTI]

    Pettibone, Joseph S. (Livermore, CA); Wheeler, Paul C. (Livermore, CA)

    1983-01-01

    An improved magnetocumulative generator is described that is useful for producing magnetic fields of very high energy content over large spatial volumes. The polar directed pleated magnetocumulative generator has a housing (100, 101, 102, 103, 104, 105) providing a housing chamber (106) with an electrically conducting surface. The chamber (106) forms a coaxial system having a small radius portion and a large radius portion. When a magnetic field is injected into the chamber (106), from an external source, most of the magnetic flux associated therewith positions itself in the small radius portion. The propagation of an explosive detonation through high-explosive layers (107, 108) disposed adjacent to the housing causes a phased closure of the chamber (106) which sweeps most of the magnetic flux into the large radius portion of the coaxial system. The energy content of the magnetic field is greatly increased by flux stretching as well as by flux compression. The energy enhanced magnetic field is utilized within the housing chamber itself.

  2. GETEM -Geothermal Electricity Technology Evaluation Model

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 GETEM -Geothermal Electricity Technology Evaluation Model Background: GETEM was originally developed for the Department of Energy's Geothermal Technologies Program to provide both a method for quantifying the power generation cost from geothermal energy, and a means of assessing how technology advances might impact those generation costs. Generation cost is determined as the Levelized-Cost-of-Electricity (LCOE). The model is intended to provide representative estimates of cost and performance

  3. Triboelectric generator

    DOE Patents [OSTI]

    Wang, Zhong L; Fan, Fengru; Lin, Long; Zhu, Guang; Pan, Caofeng; Zhou, Yusheng

    2015-11-03

    A generator includes a thin first contact charging layer and a thin second contact charging layer. The thin first contact charging layer includes a first material that has a first rating on a triboelectric series. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer includes a second material that has a second rating on a triboelectric series that is more negative than the first rating. The thin first contact charging layer has a first side with a first conductive electrode applied thereto and an opposite second side. The thin second contact charging layer is disposed adjacent to the first contact charging layer so that the second side of the second contact charging layer is in contact with the second side of the first contact charging layer.

  4. Available Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    application. Search Our Technologies submit Advanced Materials Advanced Materials Biotechnology Biotechnology Chemistry Chemistry Energy Energy High Performance Computing:...

  5. Licensing Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Licensing Technology Licensing Technology The primary function of Los Alamos Licensing Program is to move Los Alamos technology to the marketplace for the benefit of the U.S. economy. Our intellectual property may be licensed for commercial use, research applications, and U.S. government use. Contact thumbnail of Marcus Lucero Head of Licensing Marcus Lucero Richard P. Feynman Center for Innovation (505) 665-6569 Email Although Los Alamos's primary mission is national security, our technologies

  6. Technology Opportunities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intellectual Property » Technology Opportunities Technology Opportunities We deliver innovation through an integrated portfolio of R&D work across our key national security sponsoring agencies, enhanced by the ideas developed through our strategic internal investments. Contact Business Development Team Richard P. Feynman Center for Innovation (505) 665-9090 Email Periodically, the Laboratory notifies the public of technologies and capabilities that may be of interest. These technologies may

  7. Technology Partnering

    Energy Savers [EERE]

    on Technology Transfer and Related Technology Partnering Activities at the National Laboratories and Other Facilities Fiscal Years 2009-2013 Report to Congress May 2015 United States Department of Energy Washington, DC 20585 Message from the Secretary The Report on Technology Transfer and Related Partnering Activities at the National Laboratories and Other Facilities for Fiscal Year 2009-2013 is prepared in accordance with the requirements of the Technology Transfer and Commercialization Act of

  8. NREL: Technology Deployment - Electric Utility Assistance and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    utilities to help further the integration of renewable energy and energy efficiency technologies into the electric grid. Distributed Generation Interconnection Collaborative The...

  9. NREL: National Wind Technology Center Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    working laboratory for interconnection and systems integration testing. This state-of-the-art facility includes generation, storage, and interconnection technologies as well as...

  10. UQM Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    80530 Sector: Vehicles Product: UQM Technologies develops and manufactures electric motors, generators and electronic controllers for electrically-propelled vehicles. It earns...

  11. Energy Technologies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Our Vision National User Facilities Research Areas In Focus Global Solutions ⇒ Navigate Section Our Vision National User Facilities Research Areas In Focus Global Solutions Energy Technologies Area (ETA) Building Technology & Urban Systems Energy Analysis & Environmental Impacts Energy Storage & Distributed Resources

  12. Technology Assessment

    Energy Savers [EERE]

    - FOR OFFICIAL USE ONLY - DRAFT 1 Advanced Composites Materials and their Manufacture 1 Technology Assessment 2 Contents 3 1. Introduction to the Technology/System ................................................................................................ 2 4 2. Technology Potential and Assessment .................................................................................................. 4 5 2.1 The Potential for Advanced Composites for Clean Energy Application Areas

  13. Geothermal Technologies Program Fact Sheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Domestic Power The U.S. Department of Energy's (DOE's) Geothermal Technologies Program (GTP) is committed to developing and deploying a port- folio of innovative technologies for clean, domestic power generation. GTP conducts research, promotes development, and builds partnerships to establish geothermal energy as a significant contributor to America's fu- ture electricity generation. Geothermal energy, a virtually untapped energy resource from the heat of the earth, is more important than ever

  14. 2012 Wind Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Technologies Market Report 2012 Wind Technologies Market Report An annual report on the wind energy industry including key statistics, economic data, installation, capacity, and generation statistics, and more. PDF icon 2012_wind_technologies_market_report.pdf More Documents & Publications 2012 Wind Technologies Market Report 2013 Wind Technologies Market Report 2014 Wind Technologies Market Report

  15. Energy Department Announces New Concentrating Solar Power Technology...

    Office of Environmental Management (EM)

    Concentrating Solar Power Technology Investments to American Industry, Universities Energy Department Announces New ... and commercial production for clean electricity generation. ...

  16. R and D of On-line Reprocessing Technology for Molten-Salt Reactor Systems

    SciTech Connect (OSTI)

    Uhlir, Jan; Tulackova, Radka; Chuchvalcova Bimova, Karolina

    2006-07-01

    The Molten Salt Reactor (MSR) represents one of promising future nuclear reactor concept included in the Generation IV reactors family. The reactor can be operated as the thorium breeder or as the actinide transmuter. However, the future deployment of Molten-Salt Reactors will be significantly dependent on the successful mastering of advanced reprocessing technologies dedicated to their fuel cycle. Here the on-line reprocessing technology connected with the fuel circuit of MSR is of special importance because the reactor cannot be operated for a long run without the fuel salt clean-up. Generally, main MSR reprocessing technologies are pyrochemical, majority of them are fluoride technologies. The proposed flow-sheets of MSR on-line reprocessing are based on a combination of molten-salt / liquid metal extraction and electro-separation processes, which can be added to the gas extraction process already verified during the MSRE project in ORNL. The crucial separation method proposed for partitioning of actinides from fission products is based on successive Anodic dissolution and Cathodic deposition processes in molten fluoride media. (authors)

  17. Energy 101: Fuel Cell Technology

    ScienceCinema (OSTI)

    None

    2014-06-06

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  18. Energy 101: Fuel Cell Technology

    SciTech Connect (OSTI)

    2014-03-11

    Learn how fuel cell technology generates clean electricity from hydrogen to power our buildings and transportation-while emitting nothing but water. This video illustrates the fundamentals of fuel cell technology and its potential to supply our homes, offices, industries, and vehicles with sustainable, reliable energy.

  19. Next Generation Electric Machines | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Machines Next Generation Electric Machines Next Generation Electric Machines AMO's Next Generation Electric Machines (NGEM) program is an RD&D effort leveraging recent technology advancements in power electronics and electric motors to develop a new generation of energy efficient, high power density, high speed, integrated MV drive systems for a wide variety of critical energy applications. Industrial electric motor systems are employed in a wide range of applications including

  20. Partial return yoke for MICE step IV and final step

    SciTech Connect (OSTI)

    Witte, H.; Plate, S.; Berg, J. S.; Tarrant, J.; Bross, A.

    2015-05-03

    This paper reports on the progress of the design and construction of a retro-fitted return yoke for the international Muon Ionization Cooling Experiment (MICE). MICE is a proof-of-principle experiment aiming to demonstrate ionization cooling experimentally. In earlier studies we outlined how a partial return yoke can be used to mitigate stray magnetic field in the experimental hall; we report on the progress of the construction of the partial return yoke for MICE Step IV. We also discuss an extension of the Partial Return Yoke for the final step of MICE; we show simulation results of the expected performance.

  1. EXHIBIT IV DOE/EV-0003/29 ORNL-5734

    Office of Legacy Management (LM)

    v EXHIBIT IV - DOE/EV-0003/29 ORNL-5734 Radiological Survey of the Former Kellex Research Facility, Jersey City, New Jersey 6. A. Berven H. W. Dickson W. A. Goldsmith W. M. Johnson W. D. Cottrell R. W. Doane F. F. Haywood M. T. Ryan W. H. Shinpaugh DOE/EV-0005/29 ORNL-5734 Dist. Category UC-70 Contract No. W-7405-eng-26 Health and Safety Research Division RADIOLOGICAL SURVEY OF THE FORMER KELLEX RESEARCH FACILITY, JERSEY CITY, NEW JERSEY B. A. Berven W. D. Cottrell H. W. Dickson R. W. Doane W.

  2. IvPE-cEAEs?nILE!! P

    Office of Legacy Management (LM)

    Cw-rent: _______ rT--- Owner contacted 0 yes J7' j-r~~; if ye.. date contacted ___ IvPE-cEAEs?nILE!! P Research & Development 0 Production scale testing Cl Pilot Scale 0 Bench Scale Process 0 Theoretical Studies 0 Sample & Analysis 0 Production 0 Disposal/Storage 0 Prime ,!Z! Subcontract& JZl Purchase Order q Facility Type q Manufacturing q University 0 Research Organization 0 Government Sponsored Facility 0 Other --------------------- [7 Other information (i.e., cost + fixed fee,

  3. NEXT GENERATION TURBINE PROGRAM

    SciTech Connect (OSTI)

    William H. Day

    2002-05-03

    The Next Generation Turbine (NGT) Program's technological development focused on a study of the feasibility of turbine systems greater than 30 MW that offer improvement over the 1999 state-of-the-art systems. This program targeted goals of 50 percent turndown ratios, 15 percent reduction in generation cost/kW hour, improved service life, reduced emissions, 400 starts/year with 10 minutes to full load, and multiple fuel usage. Improvement in reliability, availability, and maintainability (RAM), while reducing operations, maintenance, and capital costs by 15 percent, was pursued. This program builds on the extensive low emissions stationary gas turbine work being carried out by Pratt & Whitney (P&W) for P&W Power Systems (PWPS), which is a company under the auspices of the United Technologies Corporation (UTC). This study was part of the overall Department of Energy (DOE) NGT Program that extends out to the year 2008. A follow-on plan for further full-scale component hardware testing is conceptualized for years 2002 through 2008 to insure a smooth and efficient transition to the marketplace for advanced turbine design and cycle technology. This program teamed the National Energy Technology Laboratory (NETL), P&W, United Technologies Research Center (UTRC), kraftWork Systems Inc., a subcontractor on-site at UTRC, and Multiphase Power and Processing Technologies (MPPT), an off-site subcontractor. Under the auspices of the NGT Program, a series of analyses were performed to identify the NGT engine system's ability to serve multiple uses. The majority were in conjunction with a coal-fired plant, or used coal as the system fuel. Identified also was the ability of the NGT system to serve as the basis of an advanced performance cycle: the humid air turbine (HAT) cycle. The HAT cycle is also used with coal gasification in an integrated cycle HAT (IGHAT). The NGT systems identified were: (1) Feedwater heating retrofit to an existing coal-fired steam plant, which could supply both heat and peaking power (Block 2 engine); (2) Repowering of an older coal-fired plant (Block 2 engine); (3) Gas-fired HAT cycle (Block 1 and 2 engines); (4) Integrated gasification HAT (Block 1 and 2 engines). Also under Phase I of the NGT Program, a conceptual design of the combustion system has been completed. An integrated approach to cycle optimization for improved combustor turndown capability has been employed. The configuration selected has the potential for achieving single digit NO{sub x}/CO emissions between 40 percent and 100 percent load conditions. A technology maturation plan for the combustion system has been proposed. Also, as a result of Phase I, ceramic vane technology will be incorporated into NGT designs and will require less cooling flow than conventional metallic vanes, thereby improving engine efficiency. A common 50 Hz and 60 Hz power turbine was selected due to the cost savings from eliminating a gearbox. A list of ceramic vane technologies has been identified for which the funding comes from DOE, NASA, the U.S. Air Force, and P&W.

  4. Next-generation purex flowsheets with acetohydroxamic acid as complexant for FBR and thermal-fuel reprocessing

    SciTech Connect (OSTI)

    Kumar, Shekhar; Koganti, S.B.

    2008-07-01

    Acetohydroxamic acid (AHA) is a novel complexant for recycle of nuclear-fuel materials. It can be used in ordinary centrifugal extractors, eliminating the need for electro-redox equipment or complex maintenance requirements in a remotely maintained hot cell. In this work, the effect of AHA on Pu(IV) distribution ratios in 30% TBP system was quantified, modeled, and integrated in SIMPSEX code. Two sets of batch experiments involving macro Pu concentrations (conducted at IGCAR) and one high-Pu flowsheet (literature) were simulated for AHA based U-Pu separation. Based on the simulation and validation results, AHA based next-generation reprocessing flowsheets are proposed for co-processing based FBR and thermal-fuel reprocessing as well as evaporator-less macro-level Pu concentration process required for MOX fuel fabrication. Utilization of AHA results in significant simplification in plant design and simpler technology implementations with significant cost savings. (authors)

  5. Digital Actuator Technology

    SciTech Connect (OSTI)

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator technology over legacy analog sensor technology in both quantitative and qualitative ways. 2. To recognize and address the added difficulty of digital technology qualification, especially in regard to software common cause failure (SCCF), that is introduced by the use of digital actuator technology.

  6. NREL: Photovoltaics Research - Emerging Technologies Engineering Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Evaluation Emerging Technologies Engineering Testing and Evaluation NREL's Photovoltaic (PV) Engineering group supports the industry through field and laboratory testing and evaluation, as well as data collection for PV components, modules, and systems. The following key projects highlight the group's capabilities: Shared Data Set for Flat-Plate PV Module Model Validations This project developed a comprehensive data set of measured I-V curves and associated meteorological data for PV

  7. Technology '90

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    The US Department of Energy (DOE) laboratories have a long history of excellence in performing research and development in a number of areas, including the basic sciences, applied-energy technology, and weapons-related technology. Although technology transfer has always been an element of DOE and laboratory activities, it has received increasing emphasis in recent years as US industrial competitiveness has eroded and efforts have increased to better utilize the research and development resources the laboratories provide. This document, Technology '90, is the latest in a series that is intended to communicate some of the many opportunities available for US industry and universities to work with the DOE and its laboratories in the vital activity of improving technology transfer to meet national needs. Technology '90 is divided into three sections: Overview, Technologies, and Laboratories. The Overview section describes the activities and accomplishments of the DOE research and development program offices. The Technologies section provides descriptions of new technologies developed at the DOE laboratories. The Laboratories section presents information on the missions, programs, and facilities of each laboratory, along with a name and telephone number of a technology transfer contact for additional information. Separate papers were prepared for appropriate sections of this report.

  8. The dependence of C IV broad absorption line properties on accompanying Si IV and Al III absorption: relating quasar-wind ionization levels, kinematics, and column densities

    SciTech Connect (OSTI)

    Filiz Ak, N.; Brandt, W. N.; Schneider, D. P.; Trump, J. R.; Hall, P. B.; Anderson, S. F.; Hamann, F.; Myers, Adam D.; Pâris, I.; Petitjean, P.; Ross, Nicholas P.; Shen, Yue; York, Don

    2014-08-20

    We consider how the profile and multi-year variability properties of a large sample of C IV Broad Absorption Line (BAL) troughs change when BALs from Si IV and/or Al III are present at corresponding velocities, indicating that the line of sight intercepts at least some lower ionization gas. We derive a number of observational results for C IV BALs separated according to the presence or absence of accompanying lower ionization transitions, including measurements of composite profile shapes, equivalent width (EW), characteristic velocities, composite variation profiles, and EW variability. We also measure the correlations between EW and fractional-EW variability for C IV, Si IV, and Al III. Our measurements reveal the basic correlated changes between ionization level, kinematics, and column density expected in accretion-disk wind models; e.g., lines of sight including lower ionization material generally show deeper and broader C IV troughs that have smaller minimum velocities and that are less variable. Many C IV BALs with no accompanying Si IV or Al III BALs may have only mild or no saturation.

  9. Submersible Generator for Marine Hydrokinetics

    SciTech Connect (OSTI)

    Robert S. Cinq-Mars; Timothy Burke; Dr. James Irish; Brian Gustafson; Dr. James Kirtley; Dr. Aiman Alawa

    2011-09-01

    A submersible generator was designed as a distinct and critical subassembly of marine hydrokinetics systems, specifically tidal and stream energy conversion. The generator is designed to work with both vertical and horizontal axis turbines. The final product is a high-pole-count, radial-flux, permanent magnet, rim mounted generator, initially rated at twenty kilowatts in a two-meter-per-second flow, and designed to leverage established and simple manufacturing processes. The generator was designed to work with a 3 meter by 7 meter Gorlov Helical Turbine or a marine hydrokinetic version of the FloDesign wind turbine. The team consisted of experienced motor/generator design engineers with cooperation from major US component suppliers (magnetics, coil winding and electrical steel laminations). Support for this effort was provided by Lucid Energy Technologies and FloDesign, Inc. The following tasks were completed: � Identified the conditions and requirements for MHK generators. � Defined a methodology for sizing and rating MHK systems. � Selected an MHK generator topology and form factor. � Completed electromechanical design of submersible generator capable of coupling to multiple turbine styles. � Investigated MHK generator manufacturing requirements. � Reviewed cost implications and financial viability. � Completed final reporting and deliverables

  10. Distributed generation implementation guidelines

    SciTech Connect (OSTI)

    Guzy, L.; O`Sullivan, J.B.; Jacobs, K.; Major, W.

    1999-11-01

    The overall economics of a distributed generation project is based on cost elements which include: Equipment and financing, fuel, displaced electricity cost, operation and maintenance. Of critical importance is how the facility is managed, including adequate provision for a comprehensive operator training program. Proper equipment maintenance and fuel procurement policy will also lead to greater system availability and optimal system economics. Various utility tariffs are available which may be economically attractive, with an added benefit to the utility of providing a peak shaving resource during peak periods. Changing modes of operation of the distributed generation system may affect staff readiness, require retraining and could affect maintenance costs. The degree of control and oversight that is provided during a project`s implementation and construction phases will impact subsequent maintenance and operating costs. The long term effect of siting impacts, such as building facades that restrict turbine inlet airflow will affect subsequent operations and require supplemental maintenance action. It is possible to site a variety of distributed generation technologies in settings which vary from urban to remote unattended locations with successful results from both an economic and operational perspective.

  11. Stirling technology development status

    SciTech Connect (OSTI)

    Dochat, G.R. ); Dudenhoefer, J.E. )

    1993-01-15

    Free-piston Stirling power converters have the potential to meet the many future space power requirements for a wide variety of applications with less mass, better efficiency, and less total area (collector and radiator) than other power converter options. These benefits result in significant dollar savings over the projected mission lifetime. The National Aeronautics and Space Administration (NASA)---Lewis Research Center (LeRC), which has the responsibility to evaluate and develop power technologies that can satisfy anticipated future space mission power requirements, has been developing free-piston Stirling power converters and is bringing the Stirling technology to readiness. As the principal contractor to NASA-LeRC, Mechanical Technology Incorporated (MTI) is under contract to develop the necessary space Stirling technology but also demonstrate the readiness of the technology in two generations of full-scale power converters. The first generation Stirling power converter, the component test power converter (CTPC), initiated cold end testing at the end of 1991, with hot testing scheduled during 1992. This paper reviews test progress of the CTPC including the initial hot engine test results. Modifications incorporated into the CTPC from the earlier space power demonstrator engine are reviewed as well.

  12. NREL: Geothermal Technologies Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geothermal Technologies Photo of a red-hot pool of molten lava within a broad lava bed and with snow-capped peaks in the distance. Geothermal energy taps the heat from beneath the earth's surface to generate electricity. Existing reservoirs of steam or hot water are brought to the surface to power electrical generators throughout the Western United States. In the future, the intense heat deep below the surface will be accessed for electricity generation by the advanced engineering of reservoirs

  13. Why SOFC Technology? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Why SOFC Technology? Why SOFC Technology? Why SOFC Technology? Like most fuel cell technologies, SOFCs are modular, scalable, and efficient. They are not subject to Carnot cycle limitations because they are not heat engines. Also, they benefit the public by minimizing emissions, such as oxides of nitrogen (NOx) <0.5 PPM compared to earlier combustion-based electrical power generation technologies due to lower operating temperatures. There are more reasons why SOFCs are the fuel cell

  14. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Gary Harmond; Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. During the reporting period, various methods to remove low-level contaminants for the synthesis gas were reviewed. In addition, there was a transition of the project personnel for GEC which has slowed the production of the outstanding project reports.

  15. Tidal Generation Ltd | Open Energy Information

    Open Energy Info (EERE)

    Generation Ltd EMEC This company is involved in the following MHK Technologies: Deep Gen Tidal Turbines This article is a stub. You can help OpenEI by expanding it. Tidal...

  16. Direct Conversion Technology

    SciTech Connect (OSTI)

    Back, L.H.; Fabris, G.; Ryan, M.A.

    1992-07-01

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

  17. Huazhong Science Technology University Yongtai Science Technology...

    Open Energy Info (EERE)

    Huazhong Science Technology University Yongtai Science Technology Co Ltd Jump to: navigation, search Name: Huazhong Science & Technology University Yongtai Science & Technology Co...

  18. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE’s Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  19. Marine and Hydrokinetic Technology Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    DOE’s Marine and Hydrokinetic Technology Database provides up-to-date information on marine and hydrokinetic renewable energy, both in the U.S. and around the world. The database includes wave, tidal, current, and ocean thermal energy, and contains information on the various energy conversion technologies, companies active in the field, and development of projects in the water. Depending on the needs of the user, the database can present a snapshot of projects in a given region, assess the progress of a certain technology type, or provide a comprehensive view of the entire marine and hydrokinetic energy industry. Results are displayed as a list of technologies, companies, or projects. Data can be filtered by a number of criteria, including country/region, technology type, generation capacity, and technology or project stage. The database was updated in 2009 to include ocean thermal energy technologies, companies, and projects.

  20. INDEPENDENT VERIFICATION SURVEY REPORT FOR EXPOSURE UNITS Z2-24, Z2-31, Z2-32, AND Z2-36 IN ZONE 2 OF THE EAST TENNESSEE TECHNOLOGY PARK OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    2013-10-10

    The U.S. Department of Energy (DOE) Oak Ridge Office of Environmental Management selected Oak Ridge Associated Universities (ORAU), through the Oak Ridge Institute for Science and Education (ORISE) contract, to perform independent verification (IV) at Zone 2 of the East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. ORAU has concluded IV surveys, per the project-specific plan (PSP) (ORAU 2013a) covering exposure units (EUs) Z2-24, -31, -32, and -36. The objective of this effort was to verify the following. • Target EUs comply with requirements in the Zone 2 Record of Decision (ROD) (DOE 2005), as implemented by using the dynamic verification strategy presented in the dynamic work plan (DWP) (BJC 2007) • Commitments in the DWP were adequately implemented, as verified via IV surveys and soil sampling The Zone 2 ROD establishes maximum remediation level (RLmax) values and average RL (RLavg) values for the primary contaminants of concern (COCs) U-234, U-235, U-238, Cs-137, Np-237, Ra-226, Th-232, arsenic, mercury, and polychlorinated biphenyls (PCBs). Table 1.1 lists Zone 2 COCs with associated RLs. Additional radiological and chemical contaminants were also identified during past characterization and monitoring actions, though the ROD does not present RLs for these potential contaminants. IV activities focused on the identification and quantification of ROD-specific COCs in surface soils, but also generated data for other analytes to support future decisions. ORAU personnel also reviewed EU-specific phased construction completion reports (PCCRs) to focus IV activities and identify potential judgmental sample locations, if any.

  1. NREL: Technology Deployment - Technology Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Acceleration NREL offers technology-specific assistance to federal and private industry to help address market barriers to sustainable energy technologies. Learn more about NREL's work in the following areas: Biopower and Waste-to-Energy Biopower and Waste-to-Energy Buildings Buildings Fuels, Vehicles, & Transportation Fuels, Vehicles, and Transportation Microgrid Design Microgrid Design Solar Solar Wind Wind Contact Us For more information on NREL's market transformation work,

  2. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  3. Technology Assessment

    Energy Savers [EERE]

    Roll to Roll (R2R) Processing 1 Technology Assessment 2 3 Contents 4 1. Introduction to the Technology/System ............................................................................................... 2 5 1.1. Introduction to R2R Processing..................................................................................................... 2 6 1.2. R2R Processing Mechanisms ......................................................................................................... 3 7 2.

  4. Levelized cost and levelized avoided cost of new generation resources...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3 The importance of the factors varies among the technologies. For technologies such as solar and wind generation that have no fuel costs and relatively small variable O&M costs,...

  5. Department of Energy Awards $425 Million for Next Generation Supercomputing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies | Department of Energy $425 Million for Next Generation Supercomputing Technologies Department of Energy Awards $425 Million for Next Generation Supercomputing Technologies November 14, 2014 - 10:05am Addthis News Media Contact 202-586-4940 WASHINGTON - U.S. Secretary of Energy Ernest Moniz today announced two new High Performance Computing (HPC) awards to put the nation on a fast-track to next generation exascale computing, which will help to advance U.S. leadership in

  6. Internal/External Split Field Generator - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Internal/External Split Field Generator Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryThese technologies are designs and methods that boost the efficiency of electric generators by decoupling the magnetic polarity of the driving mechanism while increasing the operational frequency of the machine. Both are unique, low cost methods to develop a generator with a higher power density.DescriptionCommercial applications include stationary, rotational or

  7. ACME-III and ACME-IV Final Campaign Reports

    SciTech Connect (OSTI)

    Biraud, S. C.

    2016-01-01

    The goals of the Atmospheric Radiation Measurement (ARM) Climate Research Facility’s third and fourth Airborne Carbon Measurements (ACME) field campaigns, ACME-III and ACME-IV, are: 1) to measure and model the exchange of CO2, water vapor, and other greenhouse gases by the natural, agricultural, and industrial ecosystems of the Southern Great Plains (SGP) region; 2) to develop quantitative approaches to relate these local fluxes to the concentration of greenhouse gases measured at the Central Facility tower and in the atmospheric column above the ARM SGP Central Facility, 3) to develop and test bottom-up measurement and modeling approaches to estimate regional scale carbon balances, and 4) to develop and test inverse modeling approaches to estimate regional scale carbon balance and anthropogenic sources over continental regions. Regular soundings of the atmosphere from near the surface into the mid-troposphere are essential for this research.

  8. Generating power with drained coal mine methane

    SciTech Connect (OSTI)

    2005-09-01

    The article describes the three technologies most commonly used for generating electricity from coal mine methane: internal combustion engines, gas turbines, and microturbines. The most critical characteristics and features of these technologies, such as efficiency, output and size are highlighted. 5 refs.

  9. Nanomaterials: Organic and Inorganic for Next-Generation Diesel

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies | Department of Energy Nanomaterials: Organic and Inorganic for Next-Generation Diesel Technologies Nanomaterials: Organic and Inorganic for Next-Generation Diesel Technologies 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). PDF icon deer07_vanderwal.pdf More Documents & Publications 21st Century Truck

  10. Engaging the Next Generation of Automotive Engineers through Advanced

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Competition | Department of Energy Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition Engaging the Next Generation of Automotive Engineers through Advanced Vehicle Technology Competition The Advanced Vehicle Technology Competition (AVTC) program is an engineering education program managed by Argonne National Laboratory for the U.S. Department of Energy in partnership with Natural Resources Canada and the U.S. and Canadian

  11. Plasma generators, reactor systems and related methods - Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visit the Technology Transfer and Commercialization Office Website Abstract: A plasma generator, reactor and associated systems and methods are provided in accordance with the...

  12. Transparent Cost Database for Generation at Regional Level? ...

    Open Energy Info (EERE)

    cost of electricity generation using different technologies. I think at all these data are national averages, however. I was wondering if such data was available at...

  13. Renewable Energy for Electricity Generation in Latin America...

    Open Energy Info (EERE)

    and Outlook (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and...

  14. TurboGenerator Power Systems{trademark} for distributed generation

    SciTech Connect (OSTI)

    Weinstein, C.H.

    1998-12-31

    The AlliedSignal TurboGenerator is a cost effective, environmentally benign, low cost, highly reliable and simple to maintain generation source. Market Surveys indicate that the significant worldwide market exists, for example, the United States Electric Power Research Institute (EPRI) which is the uniform research facility for domestic electric utilities, predicts that up to 40% of all new generation could be distributed generation by the year 2006. In many parts of the world, the lack of electric infrastructure (transmission and distribution lines) will greatly expedite the commercialization of distributed generation technologies since central plants not only cost more per kW, but also must have expensive infrastructure installed to deliver the product to the consumer. Small, multi-fuel, modular distributed generation units, such as the TurboGenerator, can help alleviate current afternoon brownouts and blackouts prevalent in many parts of the world. Its simple, one moving part concept allows for low technical skill maintenance and its low overall cost allows for wide spread purchase in those parts of the world where capital is sparse. In addition, given the United States emphasis on electric deregulation and the world trend in this direction, consumers of electricity will now have not only the right to choose the correct method of electric service but also a new cost effective choice from which to choose.

  15. EIS-0469: Wilton IV Wind Energy Center; Burleigh County, North Dakota |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy 9: Wilton IV Wind Energy Center; Burleigh County, North Dakota EIS-0469: Wilton IV Wind Energy Center; Burleigh County, North Dakota Summary Western Area Power Administration is evaluating the potential environmental impacts of interconnecting NextEra Energy Resources proposed Wilton IV Wind Energy Center Project, near Bismarck, North Dakota, to Western's existing Wilton/Baldwin substation and allowing NextEra's existing wind projects in this area to operate above 50

  16. Technology Commercialization Showcase 2008 Vehicle Technologies Program

    SciTech Connect (OSTI)

    Davis, Patrick B.

    2009-06-19

    Presentation illustrating various technology commercialization opportunities and unexploited investment gaps for the Vehicle Technologies Program.

  17. Power Technologies Energy Data Book - Fourth Edition

    SciTech Connect (OSTI)

    Aabakken, J.

    2006-08-01

    This report, prepared by NREL's Strategic Energy Analysis Center, includes up-to-date information on power technologies, including complete technology profiles. The data book also contains charts on electricity restructuring, power technology forecasts, electricity supply, electricity capability, electricity generation, electricity demand, prices, economic indicators, environmental indicators, and conversion factors.

  18. NO{sub x} reduction RACT compliance requires careful technology selection

    SciTech Connect (OSTI)

    Heckler, G.B.

    1996-05-01

    After the Clean Air Act Amendments passed in 1990, Title I (Attainment and Maintenance of Ambient Air Quality Standards) and Title IV (Acid Deposition Control) of the Act required power plants to submit and implement compliance plans for NO{sub x} and volatile organic compounds (VOC) emissions, among other pollutants. This legislation affected PECO Energy Co.`s Eddystone Generating Station, requiring the utility to comply with the Act under reasonably available control technology (RACT) rules established by the state of Pennsylvania. After carefully considering alternatives aligned with the RACT rules for Pennsylvania, PECO adopted a compliance strategy and submitted it to the Pennsylvania Department of Environmental Protection (PaDEP) for review and approval. Under the case-by-case RACT proposals, the proposed NO{sub x} reduction technology for Units 3 and 4 was to rehabilitate existing OFA ports which had been bricked over. Each of the four corners of these units was originally constructed with an OFA port located in the boiler side walls. Also under the case-by-case RACT proposals, the proposed NO{sub x} reduction technology for the A, B and C auxiliary boilers was to install low-NO{sub x} burners. Under presumptive RACT proposals, PECO proposed low-NO{sub x} burners with close-coupled OFA (CCOFA) and separated OFA (SOFA) as the proposed NO{sub x}-reduction technology for Units 1 and 2. For the combustion turbines PECO proposed to reduce NO{sub x} by limiting the annual capacity factor to 5 percent or less on a 12-month rolling basis. After considering technological and economic feasibility, the utility proposed no VOC reductions because none of the available VOC reduction technologies fell within RACT guidelines.

  19. Tag: technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tags 

    technology<...

  20. Technology Validation

    Broader source: Energy.gov [DOE]

    To reduce solar technology risks, DOE and its partners evaluate the performance and reliability of novel photovoltaic (PV) hardware and systems through laboratory and field testing. The focus of...

  1. Onboard Type IV Compressed Hydrogen Storage System Cost Analysis Webinar

    Broader source: Energy.gov [DOE]

    Access the recording and download the presentation slides from the Fuel Cell Technologies Office webinar "Update to the 700 bar Compressed Hydrogen Storage System Cost Projection" held on February 25, 2016.

  2. Progress Towards Commercialization of Electrochemical Membrane Technology

    Office of Scientific and Technical Information (OSTI)

    for CO2 Capture and Power Generation (Journal Article) | SciTech Connect Progress Towards Commercialization of Electrochemical Membrane Technology for CO2 Capture and Power Generation Citation Details In-Document Search Title: Progress Towards Commercialization of Electrochemical Membrane Technology for CO2 Capture and Power Generation To address the concerns about climate change resulting from emission of CO2 by coal-fueled power plants, FuelCell Energy, Inc. has developed Combined Electric

  3. Distributed Generation: Challenges and Opportunities, 7. edition

    Office of Scientific and Technical Information (OSTI)

    (Miscellaneous) | SciTech Connect Miscellaneous: Distributed Generation: Challenges and Opportunities, 7. edition Citation Details In-Document Search Title: Distributed Generation: Challenges and Opportunities, 7. edition The report is a comprehensive study of the Distributed Generation (DG) industry. The report takes a wide-ranging look at the current and future state of DG and both individually and collectively addresses the technologies of Microturbines, Reciprocating Engines, Stirling

  4. Next Generation Photovoltaics 3 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Photovoltaics 3 Next Generation Photovoltaics 3 SunShot's next generation PV projects investigate transformational photovoltaic (PV) technologies with the potential to meet SunShot cost targets. The projects' goals are to: Increase efficiency Reduce costs Improve reliability Create more secure and sustainable supply chains. On October 22, 2014, SunShot awarded more than $14 million to 10 research institutions to meet or exceed SunShot targets by improving performance, efficiency,

  5. Next Generation Rooftop Unit | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emerging Technologies » Next Generation Rooftop Unit Next Generation Rooftop Unit The U.S. Department of Energy is currently conducting research in a next generation rooftop unit (RTU). More than half of U.S. commercial building space is cooled by packaged heating, ventilation, and air conditioning (HVAC) equipment. Existing rooftop HVAC units consume more than 1.3% of the United States' annual energy usage annually. Project Description This project seeks to evaluate optimal design strategies

  6. Decay Heat Removal in GEN IV Gas-Cooled Fast Reactors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cheng, Lap-Yan; Wei, Thomas Y. C.

    2009-01-01

    The safety goal of the current designs of advanced high-temperature thermal gas-cooled reactors (HTRs) is that no core meltdown would occur in a depressurization event with a combination of concurrent safety system failures. This study focused on the analysis of passive decay heat removal (DHR) in a GEN IV direct-cycle gas-cooled fast reactor (GFR) which is based on the technology developments of the HTRs. Given the different criteria and design characteristics of the GFR, an approach different from that taken for the HTRs for passive DHR would have to be explored. Different design options based on maintaining core flow weremore » evaluated by performing transient analysis of a depressurization accident using the system code RELAP5-3D. The study also reviewed the conceptual design of autonomous systems for shutdown decay heat removal and recommends that future work in this area should be focused on the potential for Brayton cycle DHRs.« less

  7. The Quadrennial Technology Review | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Quadrennial Technology Review The Quadrennial Technology Review The Quadrennial Technology Review ACCESS ALL OF THE QUADRENNIAL TECHNOLOGY REVIEW 2015 CONTENT The last four years have been defined by dramatic change in the nation's energy landscape. Domestic production of oil and natural gas has boomed, causing the United States to become the world leader in combined oil and natural gas production for the last three consecutive years. Electricity generation from solar photovoltaic cells has

  8. Renewable Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy Technology Basics Renewable Energy Technology Basics Renewable energy technologies produce sustainable, clean energy from sources such as the sun, the wind, plants, and water. According to the Energy Information Administration, in 2007, renewable sources of energy accounted for about 7% of total energy consumption and 9.4% of total electricity generation in the United States. Renewable energy technologies have the potential to strengthen our nation's energy security, improve

  9. Wind Energy Technology Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renewable Energy » Wind Energy Technology Basics Wind Energy Technology Basics August 15, 2013 - 4:10pm Addthis Photo of a hilly field, with six visible wind turbines spinning in the wind. Wind energy technologies use the energy in wind for practical purposes such as generating electricity, charging batteries, pumping water, and grinding grain. Most wind energy technologies can be used as stand-alone applications, connected to a utility power grid, or even combined with a photovoltaic system.

  10. Technical Session IV Talks | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    IV Talks Scientific User Facilities (SUF) Division SUF Home About User Facilities Projects Accelerator & Detector Research Science Highlights Principal Investigators' Meetings BES Home 2011 Accelerator Detector RD PI Meeting files Technical Session IV Talks Print Text Size: A A A FeedbackShare Page Future Light Sources (Ben-Zvi) .pdf file (6.2MB

  11. Technology Roadmap Analysis 2013: Assessing Automotive Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Roadmap Analysis 2013: Assessing Automotive Technology R&D Relevant to DOE Power Electronics Cost Targets Technology Roadmap Analysis 2013: Assessing Automotive Technology R&D ...

  12. National Energy Technology Laboratory Technology Marketing Summaries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Energy Technology Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the National Energy...

  13. Renewable energy generation sources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology. The result is a reliable, competitive solution that optimizes CLFR technology benefits by ensuring that the energy harvested can be dispatched night or day through the...

  14. Functional Diversification of Maize RNA Polymerase IV and V subtypes via Alternative Catalytic Subunits

    SciTech Connect (OSTI)

    Haag, Jeremy R.; Brower-Toland, Brent; Krieger, Elysia K.; Sidorenko, Lyudmila; Nicora, Carrie D.; Norbeck, Angela D.; Irsigler, Andre; LaRue, Huachun; Brzeski, Jan; Mcginnis, Karen A.; Ivashuta, Sergey; Pasa-Tolic, Ljiljana; Chandler, Vicki L.; Pikaard, Craig S.

    2014-10-01

    Unlike nuclear multisubunit RNA polymerases I, II, and III, whose subunit compositions are conserved throughout eukaryotes, plant RNA polymerases IV and V are nonessential, Pol II-related enzymes whose subunit compositions are still evolving. Whereas Arabidopsis Pols IV and V differ from Pol II in four or five of their 12 subunits, respectively, and differ from one another in three subunits, proteomic ana- lyses show that maize Pols IV and V differ from Pol II in six subunits but differ from each other only in their largest subunits. Use of alternative catalytic second subunits, which are nonredundant for development and paramutation, yields at least two sub- types of Pol IV and three subtypes of Pol V in maize. Pol IV/Pol V associations with MOP1, RMR1, AGO121, Zm_DRD1/CHR127, SHH2a, and SHH2b extend parallels between paramutation in maize and the RNA-directed DNA methylation pathway in Arabidopsis.

  15. Analysis of Cadmium in Undissolved Anode Materials of Mark-IV Electrorefiner

    SciTech Connect (OSTI)

    Tae-Sic Yoo; Guy L. Fredrickson; DeeEarl Vaden; Brian R. Westphal

    2013-10-01

    The Mark-IV electrorefiner (Mk-IV ER) contains an electrolyte/molten cadmium system for refining uranium electrochemically. Typically, the anode of the Mk-IV ER consists of the chopped sodium-bonded metallic driver fuels, which have been primarily U-10Zr binary fuels. Chemical analysis of the residual anode materials after electrorefining indicates that a small amount of cadmium is removed from the Mk-IV ER along with the undissolved anode materials. Investigation of chemical analysis data indicates that the amount of cadmium in the undissolved anode materials is strongly correlated with the anode rotation speeds and the residence time of the anode in the Mk-IV ER. Discussions are given to explain the prescribed correlation.

  16. Hybrid Fuel Cell Technology Overview

    SciTech Connect (OSTI)

    None available

    2001-05-31

    For the purpose of this STI product and unless otherwise stated, hybrid fuel cell systems are power generation systems in which a high temperature fuel cell is combined with another power generating technology. The resulting system exhibits a synergism in which the combination performs with an efficiency far greater than can be provided by either system alone. Hybrid fuel cell designs under development include fuel cell with gas turbine, fuel cell with reciprocating (piston) engine, and designs that combine different fuel cell technologies. Hybrid systems have been extensively analyzed and studied over the past five years by the Department of Energy (DOE), industry, and others. These efforts have revealed that this combination is capable of providing remarkably high efficiencies. This attribute, combined with an inherent low level of pollutant emission, suggests that hybrid systems are likely to serve as the next generation of advanced power generation systems.

  17. Manufacturing technologies

    SciTech Connect (OSTI)

    1995-09-01

    The Manufacturing Technologies Center is an integral part of Sandia National Laboratories, a multiprogram engineering and science laboratory, operated for the Department of Energy (DOE) with major facilities at Albuquerque, New Mexico, and Livermore, California. Our Center is at the core of Sandia`s Advanced Manufacturing effort which spans the entire product realization process.

  18. Plasma technology

    SciTech Connect (OSTI)

    Herlitz, H.G.

    1986-11-01

    This paper describes the uses of plasma technology for the thermal destruction of hazardous wastes such as PCBs, dioxins, hydrocarbons, military chemicals and biological materials; for metals recovery from steel making dusts. One advantage of the process is that destruction of wastes can be carried out on site. Systems in several countries use the excess thermal energy for district heating.

  19. (Environmental technology)

    SciTech Connect (OSTI)

    Boston, H.L.

    1990-10-12

    The traveler participated in a conference on environmental technology in Paris, sponsored by the US Embassy-Paris, US Environmental Protection Agency (EPA), the French Environmental Ministry, and others. The traveler sat on a panel for environmental aspects of energy technology and made a presentation on the potential contributions of Oak Ridge National Laboratory (ORNL) to a planned French-American Environmental Technologies Institute in Chattanooga, Tennessee, and Evry, France. This institute would provide opportunities for international cooperation on environmental issues and technology transfer related to environmental protection, monitoring, and restoration at US Department of Energy (DOE) facilities. The traveler also attended the Fourth International Conference on Environmental Contamination in Barcelona. Conference topics included environmental chemistry, land disposal of wastes, treatment of toxic wastes, micropollutants, trace organics, artificial radionuclides in the environment, and the use biomonitoring and biosystems for environmental assessment. The traveler presented a paper on The Fate of Radionuclides in Sewage Sludge Applied to Land.'' Those findings corresponded well with results from studies addressing the fate of fallout radionuclides from the Chernobyl nuclear accident. There was an exchange of new information on a number of topics of interest to DOE waste management and environmental restoration needs.

  20. Tuning the reactivity of mononuclear nonheme manganese(iv)-oxo complexes by triflic acid

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Junying; Yoon, Heejung; Lee, Yong -Min; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2015-04-14

    Triflic acid (HOTf)-bound nonheme Mn(IV)-oxo complexes, [(L)MnIV(O)]2+–(HOTf)2 (L = N4Py and Bn-TPEN; N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine and Bn-TPEN = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), were synthesized by adding HOTf to the solutions of the [(L)MnIV(O)]2+ complexes and were characterized by various spectroscopies. The one-electron reduction potentials of the MnIV(O) complexes exhibited a significant positive shift upon binding of HOTf. The driving force dependences of electron transfer (ET) from electron donors to the MnIV(O) and MnIV(O)–(HOTf)2 complexes were examined and evaluated in light of the Marcus theory of ET to determine the reorganization energies of ET. The smaller reorganization energies and much more positive reduction potentialsmore » of the [(L)MnIV(O)]2+–(HOTf)2 complexes resulted in greatly enhanced oxidation capacity towards one-electron reductants and para-X-substituted-thioanisoles. The reactivities of the Mn(IV)-oxo complexes were markedly enhanced by binding of HOTf, such as a 6.4 × 105-fold increase in the oxygen atom transfer (OAT) reaction (i.e., sulfoxidation). Such a remarkable acceleration in the OAT reaction results from the enhancement of ET from para-X-substituted-thioanisoles to the MnIV(O) complexes as revealed by the unified ET driving force dependence of the rate constants of OAT and ET reactions of [(L)MnIV(O)]2+–(HOTf)2. In contrast, deceleration was observed in the rate of H-atom transfer (HAT) reaction of [(L)MnIV(O)]2+–(HOTf)2 complexes with 1,4-cyclohexadiene as compared with those of the [(L)MnIV(O)]2+ complexes. Thus, the binding of two HOTf molecules to the MnIV(O) moiety resulted in remarkable acceleration of the ET rate when the ET is thermodynamically feasible. When the ET reaction is highly endergonic, the rate of the HAT reaction is decelerated due to the steric effect of the counter anion of HOTf.« less

  1. Tuning the reactivity of mononuclear nonheme manganese(iv)-oxo complexes by triflic acid

    SciTech Connect (OSTI)

    Chen, Junying; Yoon, Heejung; Lee, Yong -Min; Seo, Mi Sook; Sarangi, Ritimukta; Fukuzumi, Shunichi; Nam, Wonwoo

    2015-04-14

    Triflic acid (HOTf)-bound nonheme Mn(IV)-oxo complexes, [(L)MnIV(O)]2+–(HOTf)2 (L = N4Py and Bn-TPEN; N4Py = N,N-bis(2-pyridylmethyl)-N-bis(2-pyridyl)methylamine and Bn-TPEN = N-benzyl-N,N',N'-tris(2-pyridylmethyl)ethane-1,2-diamine), were synthesized by adding HOTf to the solutions of the [(L)MnIV(O)]2+ complexes and were characterized by various spectroscopies. The one-electron reduction potentials of the MnIV(O) complexes exhibited a significant positive shift upon binding of HOTf. The driving force dependences of electron transfer (ET) from electron donors to the MnIV(O) and MnIV(O)–(HOTf)2 complexes were examined and evaluated in light of the Marcus theory of ET to determine the reorganization energies of ET. The smaller reorganization energies and much more positive reduction potentials of the [(L)MnIV(O)]2+–(HOTf)2 complexes resulted in greatly enhanced oxidation capacity towards one-electron reductants and para-X-substituted-thioanisoles. The reactivities of the Mn(IV)-oxo complexes were markedly enhanced by binding of HOTf, such as a 6.4 × 105-fold increase in the oxygen atom transfer (OAT) reaction (i.e., sulfoxidation). Such a remarkable acceleration in the OAT reaction results from the enhancement of ET from para-X-substituted-thioanisoles to the MnIV(O) complexes as revealed by the unified ET driving force dependence of the rate constants of OAT and ET reactions of [(L)MnIV(O)]2+–(HOTf)2. In contrast, deceleration was observed in the rate of H-atom transfer (HAT) reaction of [(L)MnIV(O)]2+–(HOTf)2 complexes with 1,4-cyclohexadiene as compared with those of the [(L)MnIV(O)]2+ complexes. Thus, the binding of two HOTf molecules to the MnIV(O) moiety resulted in remarkable acceleration of the ET rate when the ET is thermodynamically feasible. When the ET reaction is highly endergonic, the rate of the HAT reaction is decelerated due to the steric effect of the counter anion of HOTf.

  2. A Clustering Graph Generator

    SciTech Connect (OSTI)

    Winlaw, Manda; De Sterck, Hans; Sanders, Geoffrey

    2015-10-26

    In very simple terms a network can be de ned as a collection of points joined together by lines. Thus, networks can be used to represent connections between entities in a wide variety of elds including engi- neering, science, medicine, and sociology. Many large real-world networks share a surprising number of properties, leading to a strong interest in model development research and techniques for building synthetic networks have been developed, that capture these similarities and replicate real-world graphs. Modeling these real-world networks serves two purposes. First, building models that mimic the patterns and prop- erties of real networks helps to understand the implications of these patterns and helps determine which patterns are important. If we develop a generative process to synthesize real networks we can also examine which growth processes are plausible and which are not. Secondly, high-quality, large-scale network data is often not available, because of economic, legal, technological, or other obstacles [7]. Thus, there are many instances where the systems of interest cannot be represented by a single exemplar network. As one example, consider the eld of cybersecurity, where systems require testing across diverse threat scenarios and validation across diverse network structures. In these cases, where there is no single exemplar network, the systems must instead be modeled as a collection of networks in which the variation among them may be just as important as their common features. By developing processes to build synthetic models, so-called graph generators, we can build synthetic networks that capture both the essential features of a system and realistic variability. Then we can use such synthetic graphs to perform tasks such as simulations, analysis, and decision making. We can also use synthetic graphs to performance test graph analysis algorithms, including clustering algorithms and anomaly detection algorithms.

  3. Information technology equipment cooling method

    DOE Patents [OSTI]

    Schultz, Mark D.

    2015-10-20

    According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools air utilized by the rack of information technology equipment to cool the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat generated by the rack of information technology equipment.

  4. Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)

    SciTech Connect (OSTI)

    Conocophillips

    2007-09-30

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and later COP and the industrial partners investigated the use of syngas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort were to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from syngas derived from coal, or, coal in combination with some other carbonaceous feedstock. The intended result of the project was to provide the necessary technical, economic, and environmental information that would be needed to move the EECP forward to detailed design, construction, and operation by industry. The EECP study conducted in Phase 1 of the IMPPCCT Project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there were minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the syngas. However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase 2 was to conduct RD&T as outlined in the Phase 1 RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies were designed to address the technical concerns that would mak

  5. Stationary/Distributed Generation Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology Validation » Stationary/Distributed Generation Projects Stationary/Distributed Generation Projects Stationary power is the most mature application for fuel cells. Stationary fuel cell units are used for backup power, power for remote locations, stand-alone power plants for towns and cities, distributed generation for buildings, and co-generation (in which excess thermal energy from electricity generation is used for heat). Approximately, 600 systems that produce 10 kilowatts or more

  6. Direct conversion technology

    SciTech Connect (OSTI)

    Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

    1992-01-07

    The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

  7. Power Generating Stationary Engines Nox Control: A Closed Loop Control

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Generating Stationary Engines Nox Control: A Closed Loop Control Technology Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010. PDF icon p-11_servati.pdf More Documents & Publications A Low-Cost Continuous Emissions Monitoring System for Mobile and Stationary Engine SCR/DPF

  8. Renewable energy generation sources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy generation sources have begun to generate significant amounts of power for the national electricity grid. With the Molten Salt Test Loop (MSTL), Sandia and its industry ...

  9. A Qualitative Assessment of Diversion Scenarios for an Example Sodium Fast Reactor Using the GEN IV PR&PP Methodology

    SciTech Connect (OSTI)

    Zentner, Michael D.; Coles, Garill A.; Therios, Ike

    2012-01-20

    FAST REACTORS;NUCLEAR ENERGY;NUCLEAR MATERIALS MANAGEMENT;PROLIFERATION;SAFEGUARDS;THEFT; A working group was created in 2002 by the Generation IV International Forum (GIF) for the purpose of developing an internationally accepted methodology for assessing the Proliferation Resistance of a nuclear energy system (NES) and its individual elements. A two year case study is being performed by the experts group using this methodology to assess the proliferation resistance of a hypothetical NES called the Example Sodium Fast Reactor (ESFR). This work demonstrates how the PR and PP methodology can be used to provide important information at various levels of details to NES designers, safeguard administrators and decision makers. The study analyzes the response of the complete ESFR nuclear energy system to different proliferation and theft strategies. The challenges considered include concealed diversion, concealed misuse and 'break out' strategies. This paper describes the work done in performing a qualitative assessment of concealed diversion scenarios from the ESFR.

  10. Recent Emulsion Technologies

    SciTech Connect (OSTI)

    Ariga, A.

    2011-10-06

    Emulsion technologies are very much developed in the last decade and still developing in both the emulsion gel and the data taking. Emulsion detectors are suitable for the neutrino experiments because they can distinguish all 3 flavors of neutrino. The OPERA experiment, a recent pillar in the emulsion experiments aiming at the first observation of the neutrino oscillation in CNGS beam in appearance mode, is running, showing the good capability to separate 3 flavor neutrino interactions. In this poster, the recent developments and prospects of the emulsions for the next generation experiments are reported.

  11. GEOTHERMAL POWER GENERATION PLANT

    SciTech Connect (OSTI)

    Boyd, Tonya

    2013-12-01

    Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OIT’s Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the “waste” water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the “waste” water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

  12. Preparing the Next Generation of Bioenergy Leaders | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Preparing the Next Generation of Bioenergy Leaders Preparing the Next Generation of Bioenergy Leaders March 31, 2015 - 5:12pm Addthis Dr. Valerie Sarisky-Reed Dr. Valerie Sarisky-Reed Deputy Director, Bioenergy Technologies Office Engaging and supporting the next generation of renewable energy researchers and innovators is one of the important roles the Bioenergy Technologies Office (BETO) plays in advancing bioenergy and biofuels. BETO provides numerous resources from biomass basics to

  13. First Generation Advanced High-Strength Steels Deformation Fundamentals |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Generation Advanced High-Strength Steels Deformation Fundamentals First Generation Advanced High-Strength Steels Deformation Fundamentals 2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting PDF icon lm067_sun_2012_o.pdf More Documents & Publications Coherent Research Plan for the 3rd Generation Advanced high Strength Steels for Automotive Applications Vehicle Technologies Office: 2010 Lightweight

  14. Building Technologies Office Overview

    SciTech Connect (OSTI)

    2013-04-01

    Building Technologies Office Overview Presentation for the 2013 Building Technologies Office's Program Peer Review

  15. Energy Storage Technologies: State of Development for Stationary and

    Office of Environmental Management (EM)

    Vehicular Applications | Department of Energy Technologies: State of Development for Stationary and Vehicular Applications Energy Storage Technologies: State of Development for Stationary and Vehicular Applications Testimony of Thomas S. Key, Technical Leader, Renewables and Distributed Generation, Electric Power Research Institute (EPRI) on Energy Storage Technologies: State of Development for Stationary and Vehicular Applications before the House Science and Technology Committee Energy and

  16. Property:Project(s) where this technology is utilized | Open...

    Open Energy Info (EERE)

    Tidal Generation Ltd EMEC + MHK TechnologiesDeep Water Pipelines + MHK ProjectsOTEC + MHK TechnologiesDeltaStream + MHK ProjectsDeltaStream +, MHK ProjectsDeltaStream...

  17. Chapter 4: Advancing Clean Electric Power Technologies | Stationary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... are from Table 1.3 of the EPA "Catalog of CHP Technologies" (see endnote 4). 57 Elgowainy, A., Wang, M. "Fuel Cycle Comparison of Distributed Power Generation Technologies." ...

  18. NETL Carbon Capture Technologies to Be Used in Commercial

    Energy Savers [EERE]

    Biomass-to-Biofuel Conversion Process with Power Generation | Department of Energy Carbon Capture Technologies to Be Used in Commercial Biomass-to-Biofuel Conversion Process with Power Generation NETL Carbon Capture Technologies to Be Used in Commercial Biomass-to-Biofuel Conversion Process with Power Generation January 20, 2016 - 10:14am Addthis Photo courtesy of Noble Foundation. Some rights reserved Photo courtesy of Noble Foundation. Some rights reserved The National Energy Technology

  19. Columbia Power Technologies Inc | Open Energy Information

    Open Energy Info (EERE)

    company is involved in the following MHK Technologies: Direct Drive Power Generation Buoy This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:...

  20. MHK Technologies/Seahorse | Open Energy Information

    Open Energy Info (EERE)

    cords and the generator can be described as a two drum two cord system In this way two drums have different sizes for the two cords to get correct speeds and force Technology...

  1. Conventional Hydropower Technologies, Wind And Water Power Program (WWPP)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (Fact Sheet) | Department of Energy Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity. PDF icon Conventional Hydropower Technologies More Documents & Publications Water Power for a Clean Energy Future

  2. Conventional Hydropower Technologies, Wind And Water Power Program (WWPP)

    Office of Environmental Management (EM)

    (Fact Sheet) | Department of Energy Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) Conventional Hydropower Technologies, Wind And Water Power Program (WWPP) (Fact Sheet) The US Department of Energy conducts research on conventional hydropower technologies to increase generation and improve existing means of generating hydroelectricity. PDF icon Conventional Hydropower Technologies More Documents & Publications Water Power for a Clean Energy Future

  3. 2008 Geothermal Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Geothermal Technologies Market Report 2008 Geothermal Technologies Market Report This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States,

  4. 2008 Geothermal Technologies Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    08 Geothermal Technologies Market Report 2008 Geothermal Technologies Market Report This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United

  5. Technology Name

    Energy Savers [EERE]

    Tech Fact Sheet Site Project & Identifier Tech Stage: Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To

  6. Technology Name

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tech Fact Sheet Site Project & Identifier Tech Stage: Development DE-EM0000598 D&D KM-IT For the deployment of Information Technology for D&D knowledge management Page 1 of 2 Florida International University Florida D&D Knowledge Management Information Tool Challenge Deactivation and decommissioning (D&D) work is a high priority across the DOE Complex. The D&D community associated with the various DOE sites has gained extensive knowledge and experience over the years. To

  7. TECHNOLOGY TRANSFER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    404-NOV. 1, 2000 TECHNOLOGY TRANSFER COMMERCIALIZATION ACT OF 2000 VerDate 11-MAY-2000 04:52 Nov 16, 2000 Jkt 089139 PO 00000 Frm 00001 Fmt 6579 Sfmt 6579 E:\PUBLAW\PUBL404.106 APPS27 PsN: PUBL404 114 STAT. 1742 PUBLIC LAW 106-404-NOV. 1, 2000 Public Law 106-404 106th Congress An Act To improve the ability of Federal agencies to license federally owned inventions. Be it enacted by the Senate and House of Representatives of the United States of America in Congress assembled, SECTION 1. SHORT

  8. Commercialization of Bulk Thermoelectric Materials for Power Generation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Commercialization of Bulk Thermoelectric Materials for Power Generation Commercialization of Bulk Thermoelectric Materials for Power Generation Critical aspects of technology commercialization of preproduction high performance thermoelectric materials available for device developers, data analysis, and future plans are discussed PDF icon kossakovski.pdf More Documents & Publications Commercialization of Bulk Thermoelectric Materials for Power Generation Fact #897:

  9. NEXT GENERATION GAS TURBINE SYSTEMS STUDY

    SciTech Connect (OSTI)

    Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

    2003-03-01

    Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

  10. NREL: Solar Research - Materials and Chemical Science and Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key program areas include solar energy conversion ... for renewable energy technologies, hydrogen production and storage, and ... problem-solving for current and next-generation ...

  11. Upcoming Funding Opportunity for Technology Incubator for Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sites Innovative, low-cost technologies that enable prognostic system health monitoring and predictive operation and maintenance scheduling for wind power generation equipment. ...

  12. MHK Technologies/HydroVenturi | Open Energy Information

    Open Energy Info (EERE)

    and eventually enable HydroVenturi to generate electricity at costs competitive with fossil fuels with low recurring maintenance or fuel costs Technology Dimensions Device...

  13. Department of Energy Quadrennial Technology Review Clean Electricity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Slide 1 Quadrennial Technology Review's Alternative Generation Workshop Slides IEA-GIA ExCo - National Geothermal Data System and Online Tools...

  14. MHK Technologies/The DUCK | Open Energy Information

    Open Energy Info (EERE)

    Technology Description The Duck is a crest spanning spine mounted slack moored deep water floating electricity generating terminator Tank tests showed that it could capture...

  15. Small Businesses Receive $2 Million to Advance HVAC Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The U.S. Department of Energy announced March 20, 2014, approximately 2 million to advance next generation water heating technologies developed by America's small businesses. The ...

  16. Federal Support for Hydrogen and Fuel Cell Technologies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... dependency on oil for transportation and natural gas for power generation * 22% increase ... for domestic manufacturing * Includes language supporting R&D in new energy technology ...

  17. Emerging Technologies Program Overview - 2015 BTO Peer Review...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PDF icon Emerging Technologies Program Overview - 2015 BTO Peer Review More Documents & Publications Research & Development Roadmap: Next-Generation Low Global Warming Potential ...

  18. Vehicle Technologies Office Merit Review 2014: Development of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (AHSS) with an Integrated Experimental and Simulation Approach Vehicle Technologies Office Merit Review 2014: Development of 3rd Generation Advanced High Strength Steels (AHSS) ...

  19. Vehicle Technologies Office: 2013 Lightweight Materials R&D Annual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (AHSS) with an Integrated Experimental and Simulation Approach Vehicle Technologies Office Merit Review 2014: Development of 3rd Generation Advanced High Strength Steels (AHSS) ...

  20. Sunovia Energy Technologies Inc formerly Sun Energy Solar Inc...

    Open Energy Info (EERE)

    Developing PV encapsulates, next generation solar cells, solar power storage, and LED lightings. References: Sunovia Energy Technologies Inc (formerly Sun Energy Solar...

  1. MHK Technologies/Electroactive Polymer Artificial Muscle EPAM...

    Open Energy Info (EERE)

    that it uses SRI s Electroactive Polymer Artificial Muscle EPAM technology a rubbery material that can generate electricity by simply being stretched and allowed to return to its...

  2. PNNL Technology Planning and Deployment Group | Open Energy Informatio...

    Open Energy Info (EERE)

    decisions Life-Cycle Analysis - energy costs and consumption, economic options and new technology impacts Marketing Definition, outreach plans and materials Next generation...

  3. National Wind Technology Center to Debut New Dynamometer (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    New test facility will be used to accelerate the development and deployment of next-generation offshore and land-based wind energy technologies.

  4. MHK Technologies/C Plane | Open Energy Information

    Open Energy Info (EERE)

    Type Click here Cross Flow Turbine Technology Description The Aquantis C Plane is a dual horizontal axis rotor device with two nacelles housing power generation systems Mooring...

  5. Vehicle Technologies Office Publishes 2015 Annual Merit Review...

    Energy Savers [EERE]

    generating future work plans. The meeting also provided attendees with a forum for interaction and technology information transfer. The VTO Merit Review is held jointly with the...

  6. MHK Technologies/Water Wings | Open Energy Information

    Open Energy Info (EERE)

    Water Wings are an oscillating wave surge converter device that swing back and forth driving hydraulics which in turn drives a generator Technology Dimensions Device...

  7. Chapter 4: Advancing Clean Electric Power Technologies | Biopower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Review 2015 Biopower Chapter 4: Technology Assessments Introduction Biopower, the generation of electricity and ... reported by the Energy Information Administration (EIA) and ...

  8. MHK Technologies/Archimedes Wave Swing | Open Energy Information

    Open Energy Info (EERE)

    the lower part, or silo, is converted to electricity by means of a hydraulic system and motor-generator set. Technology Dimensions Device Testing Date Submitted 9282010 << Return...

  9. MHK Technologies/Finavera Buoy | Open Energy Information

    Open Energy Info (EERE)

    Generation Buoy 2008 2009 large scale production outfitting electrical mechanical hydraulic pneumatic Technology Dimensions Device Testing Date Submitted 52:10.8 << Return to...

  10. Technical Session IV Talks | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Meetings BES Home 2011 Accelerator Detector RD PI Meeting files Technical Session IV Talks Print Text Size: A A A FeedbackShare Page Future Light Sources (Ben-Zvi) .pdf file (6.2MB...

  11. NAC 445B.352 et seq - Air Pollution Control: Class IV Operating...

    Open Energy Info (EERE)

    52 et seq - Air Pollution Control: Class IV Operating Permits Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- RegulationRegulation: NAC 445B.352...

  12. Nuclear Reactor Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reactor Technologies Nuclear Reactor Technologies TVA Watts Bar Nuclear Power Plant | Photo courtesy of Tennessee Valley Authority TVA Watts Bar Nuclear Power Plant | Photo courtesy of Tennessee Valley Authority Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Small

  13. Gamma ray generator

    DOE Patents [OSTI]

    Firestone, Richard B; Reijonen, Jani

    2014-05-27

    An embodiment of a gamma ray generator includes a neutron generator and a moderator. The moderator is coupled to the neutron generator. The moderator includes a neutron capture material. In operation, the neutron generator produces neutrons and the neutron capture material captures at least some of the neutrons to produces gamma rays. An application of the gamma ray generator is as a source of gamma rays for calibration of gamma ray detectors.

  14. NEXT GENERATION TURBINE SYSTEM STUDY

    SciTech Connect (OSTI)

    Frank Macri

    2002-02-28

    Rolls-Royce has completed a preliminary design and marketing study under a Department of Energy (DOE) cost shared contract (DE-AC26-00NT40852) to analyze the feasibility of developing a clean, high efficiency, and flexible Next Generation Turbine (NGT) system to meet the power generation market needs of the year 2007 and beyond. Rolls-Royce evaluated the full range of its most advanced commercial aerospace and aeroderivative engines alongside the special technologies necessary to achieve the aggressive efficiency, performance, emissions, economic, and flexibility targets desired by the DOE. Heavy emphasis was placed on evaluating the technical risks and the economic viability of various concept and technology options available. This was necessary to ensure the resulting advanced NGT system would provide extensive public benefits and significant customer benefits without introducing unacceptable levels of technical and operational risk that would impair the market acceptance of the resulting product. Two advanced cycle configurations were identified as offering significant advantages over current combined cycle products available in the market. In addition, balance of plant (BOP) technologies, as well as capabilities to improve the reliability, availability, and maintainability (RAM) of industrial gas turbine engines, have been identified. A customer focused survey and economic analysis of a proposed Rolls-Royce NGT product configuration was also accomplished as a part of this research study. The proposed Rolls-Royce NGT solution could offer customers clean, flexible power generation systems with very high efficiencies, similar to combined cycle plants, but at a much lower specific cost, similar to those of simple cycle plants.

  15. GEOTHERMAL POWER GENERATION PLANT

    Broader source: Energy.gov [DOE]

    Project objectives: Drilling a deep geothermal well on the Oregon Institute of Technology campus, Klamath Falls, OR. Constructing a geothermal power plant on the Oregon Institute of Technology campus.

  16. Next-Generation Solar Collectors for CSP

    Office of Energy Efficiency and Renewable Energy (EERE)

    This fact sheet on Next-Generation Collectors for CSP highlights a solar energy program awarded through the 2012 SunShot Concentrating Solar Power R&D awards. The team is developing new solar collector base technologies for next-generation heliostats used in power tower systems. If successful, this project will result in a 50% reduction in solar field equipment cost and a 30% reduction in field installation cost compared to existing heliostat designs.

  17. Next Generation Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Next Generation Materials Innovative materials with increased functionality can improve the energy productivity of U.S. manufacturing. Materials with novel properties will enable energy savings in energy-intensive processes and applications and will create a new design space for renewable energy generation. Breakthroughs in materials science and engineering are needed to enable these new capabilities. Our R&D portfolio will pursue promising materials technologies that offer the

  18. Microsoft PowerPoint - Roberts, IV and Stewardship (SSAB April 2010).ppt [Compatibility Mode]

    Office of Environmental Management (EM)

    Independent Verification and Independent Verification and Stewardship April 29, 2010 Sarah Roberts, CHP Acting Program Director, ORISE IEAV Benefits of IV "IV is an important quality assurance step that ensures cleanup goals have been achieved" (DOE Lessons Learned from Independent have been achieved (DOE Lessons Learned from Independent Verification Activities, July 2008) * Offers a cost-effective way to provide assurance that the site was successfully remediated to the risk-based

  19. Next Generation Inverter

    Broader source: Energy.gov [DOE]

    2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  20. Biomass Support for the China Renewable Energy Law: International Biomass Energy Technology Review Report, January 2006

    SciTech Connect (OSTI)

    Not Available

    2006-10-01

    Subcontractor report giving an overview of the biomass power generation technologies used in China, the U.S., and Europe.

  1. Advancing Small Modular Reactors: How We're Supporting Next-Gen Nuclear Energy Technology

    Broader source: Energy.gov [DOE]

    Learn about the Energy Department's support for the next-generation nuclear energy technology -- small modular reactors.

  2. Oakland Operations Office, Oakland, California: Technology summary

    SciTech Connect (OSTI)

    Not Available

    1994-11-01

    DOE`s Office of Technology Development manages an aggressive national program for applied research, development, demonstration, testing, and evaluation. This program develops high, payoff technologies to clean up the inventory of DOE nuclear component manufacturing sites and to manage DOE-generated waste faster, safer, and cheaper than current environmental cleanup technologies. OTD programs are designed to make new, innovative, and more effective technologies available for transfer to users through progressive development. Projects are demonstrated, tested, and evaluated to produce solutions to current problems. Transition of technologies into more advanced stages of development is based upon technological, regulatory, economic, and institutional criteria. New technologies are made available for use in eliminating radioactive, hazardous, and other wastes in compliance with regulatory mandates. The primary goal is to protect human health and prevent further contamination. OTD technologies address three specific problem areas: (1) groundwater and soils cleanup; (2) waste retrieval and processing; and (3) pollution prevention.

  3. INDEPENDENT VERIFICATION SURVEY REPORT FOR ZONE 1 OF THE EAST TENNESSEE TECHNOLOGY PARK IN OAK RIDGE, TENNESSEE

    SciTech Connect (OSTI)

    King, David A.

    2012-08-16

    Oak Ridge Associated Universities (ORAU) conducted in-process inspections and independent verification (IV) surveys in support of DOE's remedial efforts in Zone 1 of East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. Inspections concluded that the remediation contractor's soil removal and survey objectives were satisfied and the dynamic verification strategy (DVS) was implemented as designed. Independent verification (IV) activities included gamma walkover surveys and soil sample collection/analysis over multiple exposure units (EUs).

  4. Marine & hydrokinetic technology development.

    SciTech Connect (OSTI)

    LiVecchi, Al; Jepsen, Richard Alan

    2010-06-01

    The Wind and Water Power Program supports the development of marine and hydrokinetic devices, which capture energy from waves, tides, ocean currents, the natural flow of water in rivers, and marine thermal gradients, without building new dams or diversions. The program works closely with industry and the Department of Energy's national laboratories to advance the development and testing of marine and hydrokinetic devices. In 2008, the program funded projects to develop and test point absorber, oscillating wave column, and tidal turbine technologies. The program also funds component design, such as techniques for manufacturing and installing coldwater pipes critical for ocean thermal energy conversion (OTEC) systems. Rigorous device testing is necessary to validate and optimize prototypes before beginning full-scale demonstration and deployment. The program supports device testing by providing technology developers with information on testing facilities. Technology developers require access to facilities capable of simulating open-water conditions in order to refine and validate device operability. The program has identified more than 20 tank testing operators in the United States with capabilities suited to the marine and hydrokinetic technology industry. This information is available to the public in the program's Hydrodynamic Testing Facilities Database. The program also supports the development of open-water, grid-connected testing facilities, as well as resource assessments that will improve simulations done in dry-dock and closed-water testing facilities. The program has established two university-led National Marine Renewable Energy Centers to be used for device testing. These centers are located on coasts and will have open-water testing berths, allowing researchers to investigate marine and estuary conditions. Optimal array design, development, modeling and testing are needed to maximize efficiency and electricity generation at marine and hydrokinetic power plants while mitigating nearby and distant impacts. Activities may include laboratory and computational modeling of mooring design or research on device spacing. The geographies, resources, technologies, and even nomenclature of the U.S. marine and hydrokinetic technology industry have yet to be fully understood or defined. The program characterizes and assesses marine and hydrokinetic devices, and then organizes the collected information into a comprehensive and searchable Web-based database, the Marine and Hydrokinetic Technology Database. The database, which reflects intergovernmental and international collaboration, provides industry with one of the most comprehensive and up-to-date public resources on marine and hydrokinetic devices.

  5. Vehicle Technologies Office Merit Review 2014: Silicon Nanowire Anodes for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Energy Storage | Department of Energy Silicon Nanowire Anodes for Next Generation Energy Storage Vehicle Technologies Office Merit Review 2014: Silicon Nanowire Anodes for Next Generation Energy Storage Presentation given by Amprius, Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about silicon nanowire anodes for next generation energy storage. PDF icon es126_stefan_2014_p.pdf More Documents

  6. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo

    2005-06-14

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  7. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2008-04-22

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  8. Cylindrical neutron generator

    DOE Patents [OSTI]

    Leung, Ka-Ngo (Hercules, CA)

    2009-12-29

    A cylindrical neutron generator is formed with a coaxial RF-driven plasma ion source and target. A deuterium (or deuterium and tritium) plasma is produced by RF excitation in a cylindrical plasma ion generator using an RF antenna. A cylindrical neutron generating target is coaxial with the ion generator, separated by plasma and extraction electrodes which contain many slots. The plasma generator emanates ions radially over 360.degree. and the cylindrical target is thus irradiated by ions over its entire circumference. The plasma generator and target may be as long as desired. The plasma generator may be in the center and the neutron target on the outside, or the plasma generator may be on the outside and the target on the inside. In a nested configuration, several concentric targets and plasma generating regions are nested to increase the neutron flux.

  9. Reduced waste generation, FY 1986

    SciTech Connect (OSTI)

    Not Available

    1986-02-01

    The United States Department of Energy is committed to the principles of minimizing the quantity and transuranic content of its transuranium (TRU) waste being generated at its nuclear facilities. The reasons are to reduce costs associated with waste handling and disposal, and also to reduce radiation exposure to workers and risk for radionuclide release to man and the environment. The purpose of this document is to provide the USDOE with a plan of research and development tasks for waste minimization, and is prepared so as to provide the maximum impact on volumes based on cost/benefit factors. The document is to be updated annually or as needed to reflect current and future tasks. The Reduced Waste Generation (RWG) tasks encompass a wide range of activities with the principal goals of (1) preventing the generation of waste and (2) converting TRU waste into low-level wastes (LLW) by sorting or decontamination. Concepts for reducing the volume such as in incineration and compaction are considered within the discipline of Reduced Waste Generation, but are considered as somewhat developed technology with only a need for implementation. 33 refs.

  10. Appropriate Technology Management Information System

    SciTech Connect (OSTI)

    Not Available

    1984-02-01

    From 1978 to 1981, the Department of Energy (DOE) awarded more than 2200 small grants worth more than $25 million to individuals, organizations and small businesses across the nation for the purposes of researching, developing and demonstrating appropriate technologies. Grants were given in the full range of technology areas, including conservation, solar, biomass, wind, geothermal, and hydro power. The final report from each DOE grantee was reviewed in an effort to extract information about new ideas and proven concepts that could be of value to the public. To manage the growing wealth of information from the grant reports, and to monitor the report review process, the Appropriate Technology Management Information System (ATMIS), a computer data base, was developed. The ATMIS can classify data into numerous categories (technology area, geographic location, project status, etc.). This manual was generated directly from the data base.

  11. NATIONAL ENERGY TECHNOLOGY LABORATORY Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL Issues Licenses for its Arc Position Sensing Technology Success Story The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has issued two licenses involving its Arc Position Sensing (APS) technology to KW Associates LLC , an Oregon-based company founded by the technology's inventors. APS technology is a patented, award- winning measurement technology developed for the specialty metals industry to identify arc distribution conditions during arc melting. The unique

  12. NREL: Technology Transfer - Technologies Available for Licensing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies Available for Licensing Photo of NREL scientist in the NREL Hydrogen Lab. NREL's scientists and engineers develop award-winning technologies available for licensing. NREL scientists and engineers produce breakthrough and award-winning renewable energy and energy efficiency technologies that are available for licensing. We have many licensing opportunities for NREL-developed technologies, including our featured LED technologies. To see all our technologies available for licensing,

  13. Distributed Energy Technology Characterization (Desiccant Technologies),

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    January 2004 | Department of Energy Characterization (Desiccant Technologies), January 2004 Distributed Energy Technology Characterization (Desiccant Technologies), January 2004 The purpose of this report is to characterize desiccant technology and applications, and to show how these technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. This technology characterization is intended to provide decision-makers and system developers

  14. High Impact Technology Catalyst: Technology Deployment Strategies |

    Energy Savers [EERE]

    Department of Energy Catalyst: Technology Deployment Strategies High Impact Technology Catalyst: Technology Deployment Strategies The Energy Department released the High Impact Technology Catalyst: Technology Deployment Strategies to serve as an overview of the HIT Catalyst program activities, including a summary of the selection process undertaken to identify, evaluate and prioritize the current HITs, descriptions of the technologies and markets for each HIT, and plans for deployment. PDF

  15. NETL Technologies Recognized for Technology Development, Transfer |

    Office of Environmental Management (EM)

    Department of Energy Recognized for Technology Development, Transfer NETL Technologies Recognized for Technology Development, Transfer October 25, 2013 - 1:31pm Addthis Did you know? The Federal Laboratory Consortium for Technology Transfer is the nationwide network of federal laboratories that provides the forum to develop strategies and opportunities for linking laboratory mission technologies and expertise with the marketplace. In consonance with the Federal Technology Transfer Act of

  16. Pulsed Power Technology at Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PULSED POWER TECHNOLOGY AT SANDIA NATIONAL LABORATORIES Pulsed Power Technology (PPT) is used to generate and apply energetic beams and high-power energy pulses. It is distinguished by the development of repetitive pulsed power technologies, x-ray and energetic beam sources, and electromagnetic and radiation hydrodynamic codes for a wide variety of applications. Some examples of these applications are: Nuclear survivability and hardness testing Measurement of material properties Z-pinch-driven

  17. Fuel Cycle Technologies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cycle Technologies Fuel Cycle Technologies Fuel Cycle Technologies Preparing for Tomorrow's Energy Demands Powerful imperatives drive the continued need for nuclear power, among them the need for reliable, baseload electricity and the threat of global climate change. As the only large-scale source of nearly greenhouse gas-free energy, nuclear power is an essential part of our all-of-the-above energy strategy, generating about 20 percent of our nation's electricity and more than 60 percent

  18. MINIMIZING GLOVEBOX GLOVE BREACHES, PART IV: CONTROL CHARTS

    SciTech Connect (OSTI)

    COURNOYER, MICHAEL E.; LEE, MICHELLE B.; SCHREIBER, STEPHEN B.

    2007-02-05

    At the Los Alamos National Laboratory (LANL) Plutonium Facility, plutonium. isotopes and other actinides are handled in a glovebox environment. The spread of radiological contamination, and excursions of contaminants into the worker's breathing zone, are minimized and/or prevented through the use of glovebox technology. Evaluating the glovebox configuration, the glovebo gloves are the most vulnerable part of this engineering control. Recognizing this vulnerability, the Glovebox Glove Integrity Program (GGIP) was developed to minimize and/or prevent unplanned openings in the glovebox environment, i.e., glove failures and breaches. In addition, LANL implement the 'Lean Six Sigma (LSS)' program that incorporates the practices of Lean Manufacturing and Six Sigma technologies and tools to effectively improve administrative and engineering controls and work processes. One tool used in LSS is the use of control charts, which is an effective way to characterize data collected from unplanned openings in the glovebox environment. The benefit management receives from using this tool is two-fold. First, control charts signal the absence or presence of systematic variations that result in process instability, in relation to glovebox glove breaches and failures. Second, these graphical representations of process variation detennine whether an improved process is under control. Further, control charts are used to identify statistically significant variations (trends) that can be used in decision making to improve processes. This paper discusses performance indicators assessed by the use control charts, provides examples of control charts, and shows how managers use the results to make decisions. This effort contributes to LANL Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations.

  19. Vehicle Technologies Office: 2009 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2009 Advanced Vehicle ...

  20. Vehicle Technologies Office: 2008 Advanced Vehicle Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technology Analysis and Evaluation Activities and Heavy Vehicle Systems Optimization Program Annual Progress Report Vehicle Technologies Office: 2008 Advanced Vehicle ...

  1. Distributed Energy Technology Characterization (Desiccant Technologies...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    applications, and to show how these technologies can be designed to utilize the available thermal energy from a combined heat and power (CHP) system. This technology...

  2. Three-Dimensional Topological Insulators in I-III-VI2 and II-IV-V2 Chalcopyrite Semiconductors

    SciTech Connect (OSTI)

    Feng, wanxiang; Ding, Jun; Yao, yugui

    2011-01-01

    The recent discovery of topological insulators with exotic metallic surface states has garnered great interest in the fields of condensed matter physics and materials science.1 A number of spectacular quantum phenomena have been predicted when the surface states are under the influence of magnetism and superconductivity,2 5 which could open up new opportunities for technological applications in spintronics and quantum computing. To achieve this goal, material realization of topological insulators with desired physical properties is of crucial importance. Based on first-principles calculations, here we show that a large number of ternary chalcopyrite compounds of composition I-III-VI2 and II-IV-V2 can realize the topological insulating phase in their native states. The crystal structure of chalcopyrites is derived from the frequently used zinc-blende structure, and many of them possess a close lattice match to important mainstream semiconductors, which is essential for a smooth integration into current semiconductor technology. The diverse optical, electrical and structural properties of chalcopyrite semiconductors,6 and particularly their ability to host room-temperature ferromagnetism,7 9 make them appealing candidates for novel spintronic devices.

  3. Nuclear Science & Technology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Science & Technology Nuclear Science & Technology1354608000000Nuclear Science & TechnologySome of these resources are LANL-only and will require Remote Access. No...

  4. Anaerobic U(IV) Bio-oxidation and the Resultant Remobilization of Uranium in Contaminated Sediments

    SciTech Connect (OSTI)

    Coates, John D.

    2005-06-01

    A proposed strategy for the remediation of uranium (U) contaminated sites is based on immobilizing U by reducing the oxidized soluble U, U(VI), to form a reduced insoluble end product, U(IV). Due to the use of nitric acid in the processing of nuclear fuels, nitrate is often a co-contaminant found in many of the environments contaminated with uranium. Recent studies indicate that nitrate inhibits U(VI) reduction in sediment slurries. However, the mechanism responsible for the apparent inhibition of U(VI) reduction is unknown, i.e. preferential utilization of nitrate as an electron acceptor, direct biological oxidation of U(IV) coupled to nitrate reduction, and/or abiotic oxidation by intermediates of nitrate reduction. Recent studies indicates that direct biological oxidation of U(IV) coupled to nitrate reduction may exist in situ, however, to date no organisms have been identified that can grow by this metabolism. In an effort to evaluate the potential for nitrate-dependent bio-oxidation of U(IV) in anaerobic sedimentary environments, we have initiated the enumeration of nitrate-dependent U(IV) oxidizing bacteria. Sediments, soils, and groundwater from uranium (U) contaminated sites, including subsurface sediments from the NABIR Field Research Center (FRC), as well as uncontaminated sites, including subsurface sediments from the NABIR FRC and Longhorn Army Ammunition Plant, Texas, lake sediments, and agricultural field soil, sites served as the inoculum source. Enumeration of the nitrate-dependent U(IV) oxidizing microbial population in sedimentary environments by most probable number technique have revealed sedimentary microbial populations ranging from 9.3 x 101 - 2.4 x 103 cells (g sediment)-1 in both contaminated and uncontaminated sites. Interestingly uncontaminated subsurface sediments (NABIR FRC Background core FB618 and Longhorn Texas Core BH2-18) both harbored the most numerous nitrate-dependent U(IV) oxidizing population 2.4 x 103 cells (g sediment)-1. The nitrate-dependent U(IV) oxidizing microbial population in groundwaters is less numerous ranging from 0 cells mL-1 (Well FW300, Uncontaminated Background NABIR FRC) to 4.3 x 102 cells mL-1 (Well TPB16, Contaminated Area 2 NABIR FRC). The presence of nitrate-dependent U(IV) oxidizing bacteria supports our hypothesis that bacteria capable of anaerobic U(IV) oxidation are ubiquitous and indigenous to sedimentary and groundwater environments.

  5. Advanced Building Technologies: Toward a New Generation of Net...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... response - AIA Integrated Practice initiative - Asset Management, Design Build, Outsourcing,... - Financing, valuation * Leverage National Activities, e.g. - AIA 2030 Challenge ...

  6. Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking

    SciTech Connect (OSTI)

    2007-09-01

    This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metallized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metallized iron nodules at low cost.

  7. Next Generation Metallic Iron Nodule Technology in Electric Furnace...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steelmaking (September 2007) More Documents & Publications Steel Success Story - Ironmaking: Quality and Supply Critical to Steel Industry Paired Straight Hearth Furnace...

  8. Second Generation Super Boiler Technology for Watertube Boilers

    SciTech Connect (OSTI)

    2007-07-01

    This factsheet describes a research project to develop a high-pressure watertube boiler system that incorporates and improves upon the capabilities of the firetube Super Boiler system.

  9. Next-Generation Subsea Technology |GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Global Innovation Fuels Offshore Oil and Gas Exploration Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Global Innovation Fuels Offshore Oil and Gas Exploration Christof Sihler 2014.05.29 Oil and gas exploration is pushing out into deeper waters further offshore - up to 3000m deep and over 100km away from the coast. In

  10. MHK Technologies/Syphon Wave Generator | Open Energy Information

    Open Energy Info (EERE)

    the water level will be higher at that pipe than at the second vertical pipe This causes water to flow up the first pipe and through the horizontal pipe thus turning the propeller...

  11. Learning About Wind Turbine Technology, Motors and Generators...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I'll be talking to you about one of the latest subjects taught in the program's A course, Electric Machines. In a recent post, Dave Shoudy talked to you about the course on Power...

  12. Silicon Nanostructure-based Technology for Next Generation Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Yoni Cohen, Program Administrator Amprius, Inc. May 13, 2013 ES126 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 * Start date: October 2011 * End date: September 2014 * Percent complete: 50% * Performance - Energy Density - Specific Energy - Power * Life - Cycle life - Shelf life * Total project funding: $8,215,068 - DOE share: $4,998,336 - Contractor share: $3,216,732 * FY12 received: $1,998,662.76 * FY13 projected: $1,469,323.09

  13. Silicon Nanostructure-based Technology for Next Generation Energy Storage

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tianyue Yu, Program Administrator Amprius, Inc. May 14, 2012 ES126 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 * Start date: December 2011 * End date: January 2015 * Percent complete: 15% * Performance - Energy Density - Specific Energy - Power * Life - Cycle life - Shelf life * Total project funding: $8,197,288 - DOE share: $4,998,336 - Contractor share: $3,198,952 * Funding received in FY11: $0 * Funding for FY12: $2.158,701 Timeline

  14. MHK Technologies/Yu Oscillating Generator YOG | Open Energy Informatio...

    Open Energy Info (EERE)

    to side The lower half will then drive a turbine producing power As it slows due to resistance the actuator will harness force again to drive the device Making up for any loss...

  15. MHK Technologies/Gyroscopic wave power generation system | Open...

    Open Energy Info (EERE)

    particular its outstanding feature is that it utilizes the gyroscopic spinning effect A motor is used to turn a 1 meter diameter steel disc flywheel inside the apparatus and when...

  16. Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking

    Broader source: Energy.gov [DOE]

    This factsheet describes a research project whose objective is to investigate reducing processing temperature, controlling the gas temperature and gas atmosphere over metalized iron nodules, and effectively using sub-bituminous coal as a reductant for producing high quality metalized iron nodules at low cost.

  17. WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)

    SciTech Connect (OSTI)

    Albert Tsang

    2003-03-14

    The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, effort continues on identifying potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis. A liquid phase Claus process and a direct sulfur oxidation process were evaluated. Preliminary discussion was held with interested parties on cooperating on RD&T in Phase II of the project. Also, significant progress was made during the period in the submission of project deliverables. A meeting was held at DOE's National Energy Technology Laboratory in Morgantown between GEC and the DOE IMPPCCT Project Manager on the status of the project, and reached an agreement on the best way to wrap up Phase I and transition into the Phase II RD&T. Potential projects for the Phase II, cost, and fund availability were also discussed.

  18. Clean coal technologies market potential

    SciTech Connect (OSTI)

    Drazga, B.

    2007-01-30

    Looking at the growing popularity of these technologies and of this industry, the report presents an in-depth analysis of all the various technologies involved in cleaning coal and protecting the environment. It analyzes upcoming and present day technologies such as gasification, combustion, and others. It looks at the various technological aspects, economic aspects, and the various programs involved in promoting these emerging green technologies. Contents: Industry background; What is coal?; Historical background of coal; Composition of coal; Types of coal; Environmental effects of coal; Managing wastes from coal; Introduction to clean coal; What is clean coal?; Byproducts of clean coal; Uses of clean coal; Support and opposition; Price of clean coal; Examining clean coal technologies; Coal washing; Advanced pollution control systems; Advanced power generating systems; Pulverized coal combustion (PCC); Carbon capture and storage; Capture and separation of carbon dioxide; Storage and sequestration of carbon dioxide; Economics and research and development; Industry initiatives; Clean Coal Power Initiative; Clean Coal Technology Program; Coal21; Outlook; Case Studies.

  19. Underwater power generator

    SciTech Connect (OSTI)

    Bowley, W.W.

    1983-05-10

    Apparatus and method for generating electrical power by disposing a plurality of power producing modules in a substantially constant velocity ocean current and mechanically coupling the output of the modules to drive a single electrical generator is disclosed.

  20. Thermoacoustic co-generation unit. Final report

    SciTech Connect (OSTI)

    Swift, G.W.; Corey, J.

    1997-12-09

    The combination of a thermoacoustic engine with a STAR alternator promises to comprise a simple, reliable combustion-powered electric generator. In this CRADA, the authors married these two technologies for the first time, to learn what technical issues arise in the combination. The results are encouraging, but the work is not yet complete.