Powered by Deep Web Technologies
Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Distributed Generation Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Systems Inc Distributed Generation Systems Inc Name Distributed Generation Systems Inc Address 200 Union Blvd Place Lakewood, Colorado Zip 80228 Sector Wind energy Product Developer of electricity generation wind power facilities Website http://www.disgenonline.com/ Coordinates 39.718048°, -105.1324055° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.718048,"lon":-105.1324055,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

2

Next-generation information systems for genomics  

E-Print Network (OSTI)

The advent of next-generation sequencing technologies is transforming biology by enabling individual researchers to sequence the genomes of individual organisms or cells on a massive scale. In order to realize the ...

Mungall, Christopher

2011-06-27T23:59:59.000Z

3

Next Generation (NextGen) Geospatial Information System (GIS) | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next Generation (NextGen) Geospatial Information System (GIS) Next Generation (NextGen) Geospatial Information System (GIS) Next Generation (NextGen) Geospatial Information System (GIS) July 12, 2013 - 12:17pm Addthis The U.S. Department of Energy Office of Legacy Management (LM) manages environmental records from Cold War legacy sites spanning nearly 40 years. These records are a key LM asset and must be managed and maintained efficiently and effectively. There are over 16 different applications that support the databases containing environmental and geospatial information. The current applications, respective systems, and processes require upgrades to effectively operate in the future. A multi-disciplined LM team collaborated to develop functional requirements and implement NextGen GIS; this system will replace the Geospatial

4

Western Renewable Energy Generation Information System | Open Energy  

Open Energy Info (EERE)

Information System Information System Jump to: navigation, search Name Western Renewable Energy Generation Information System Place Sacramento, California Zip 95814-5504 Sector Renewable Energy Product WREGIS tracks renewable energy certificates throughout the Western Interconnection. Coordinates 38.579065°, -121.491014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.579065,"lon":-121.491014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

5

Property:Distributed Generation System Enclosure | Open Energy Information  

Open Energy Info (EERE)

System Enclosure System Enclosure Jump to: navigation, search This is a property of type String. The allowed values for this property are: Indoor Outdoor Dedicated Shelter Pages using the property "Distributed Generation System Enclosure" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Indoor + Distributed Generation Study/615 kW Waukesha Packaged System + Outdoor + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Outdoor + Distributed Generation Study/Arrow Linen + Outdoor + Distributed Generation Study/Dakota Station (Minnegasco) + Outdoor + Distributed Generation Study/Elgin Community College + Indoor + Distributed Generation Study/Emerling Farm + Dedicated Shelter + Distributed Generation Study/Floyd Bennett + Outdoor +

6

A Power Energy Generation Systems Ltd APWR | Open Energy Information  

Open Energy Info (EERE)

Generation Systems Ltd APWR Generation Systems Ltd APWR Jump to: navigation, search Name A-Power Energy Generation Systems Ltd (APWR) Place Shenyang, Liaoning Province, China Zip 110021 Product Chinese-based provider of power generation systems, acting as the holding company of Liaoning Gaoke Energy. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

7

Next Generation Power Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Next Generation Power Systems Inc Next Generation Power Systems Inc Jump to: navigation, search Name Next Generation Power Systems Inc. Place Pipestone, Minnesota Zip 56164 Sector Services, Wind energy Product NextGen is a full-service company that provides site analysis, maintenance, and installation services for small-scale wind turbines and PV systems. Coordinates 43.99413°, -96.317104° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.99413,"lon":-96.317104,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

8

Distributed Generation Systems Inc DISGEN | Open Energy Information  

Open Energy Info (EERE)

DISGEN DISGEN Jump to: navigation, search Name Distributed Generation Systems Inc (DISGEN) Place Lakewood, Colorado Zip 80228 Sector Wind energy Product Developer of Green Mountain (10.4 MW) and Ponnequin (16 MW) wind generation projects in the US. Manages everything from site selection through construction. Coordinates 45.300538°, -88.522572° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.300538,"lon":-88.522572,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

9

15.568B Management Information Systems: Generating Business Value from Information Technology, Spring 2003  

E-Print Network (OSTI)

Concepts, frameworks, tools, techniques, and processes that assist management in its interaction with and direction of computer-based information systems today. Discusses the impact of the Internet, changes in the IT ...

Weill, Peter

10

An on-line information system for radioisotope thermal generator production  

SciTech Connect

An on-line production information system has been designed to support radioisotope thermal generator assembly and testing in a new facility being built at the Department of Energy Hanford Site in Washington State. This system is intended to make handling the large volumes of information associated with radioisotope thermal generator production and certification more efficient with less opportunity for error than traditional paper methods. It provides for tracking materials, implementing work procedures directly from computer terminals, and cross referencing among materials, procedures, and other documents related to production. This system will be implemented on a network of microcomputers using UNIX{sup TM} for its operating system. It has been designed to allow increased capabilities to be added as operating experience with the new facility dictates.

Kiebel, G.R.; Wiemers, M.J. (Westinghouse Hanford Company, P.O. Box 1970, Mail Stop N1-42, Richland, Washington 99352 (US))

1991-01-01T23:59:59.000Z

11

Monthly Generation System Peak (pbl/generation)  

NLE Websites -- All DOE Office Websites (Extended Search)

Generation > Generation Hydro Power Wind Power Monthly GSP BPA White Book Dry Year Tools Firstgov Monthly Generation System Peak (GSP) This site is no longer maintained. Page last...

12

Generation Disclosure | Open Energy Information  

Open Energy Info (EERE)

Disclosure Disclosure Jump to: navigation, search Some states require electric utilities to provide their customers with specific information about the electricity that the utility supplies. This information, which generally must be shared with customers periodically, usually includes the utility's fuel mix percentages and emissions statistics. In states with restructured electricity markets, generation disclosure policies are designed to help consumers make informed decisions about the electricity and suppliers they choose. A few states that have not fully restructured their electricity markets require generation disclosure by utilities. [1] Generation Disclosure Incentives CSV (rows 1 - 40) Incentive Incentive Type Place Applicable Sector Eligible Technologies Active

13

Electrical power systems (Panama). Energy generation and control equipment, July 1991. Export trade information  

SciTech Connect

Concerning energy generation equipment, the Panamanian market is supplied entirely by imports, mainly from the United States, the United Kingdom, Japan and Korea. The market is heavily dependent on government purchases, mainly generators and transformers. Imports showed a promising growth of 17% during 1990. Most energy generation and control equipment products are imported as local manufacturing is non existent, with the exception of copper cables.

Not Available

1991-07-01T23:59:59.000Z

14

Photovoltaic Geographical Information System | Open Energy Information  

Open Energy Info (EERE)

Photovoltaic Geographical Information System Photovoltaic Geographical Information System Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Photovoltaic Geographical Information System Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: re.jrc.ec.europa.eu/pvgis/ Equivalent URI: cleanenergysolutions.org/content/photovoltaic-geographical-information Language: English Policies: Deployment Programs DeploymentPrograms: Demonstration & Implementation This tool provides a geographical inventory of solar energy resources and an assessment of the electricity generation from photovoltaic systems in Europe, Africa, and southwest Asia. The tools allows for analysis of the technical, environmental, and socio-economic factors of solar electricity generation. Users may access maps and posters generated using the tool, as

15

Solaire Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search Name Solaire Generation Place New York, New York Zip 10001 Sector Solar Product New York-based rooftop PV mounting systems and solar canopy maker. References Solaire Generation[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Solaire Generation is a company located in New York, New York . References ↑ "Solaire Generation" Retrieved from "http://en.openei.org/w/index.php?title=Solaire_Generation&oldid=351239" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs Linked Data

16

Open Energy Information Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OpenEIS (energy information OpenEIS (energy information systems) Jessica Granderson Lawrence Berkeley National Laboratory JGranderson@lbl.gov, 510.486.6792 April 3, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Advanced algorithms and analyses can enable 5-40% savings, yet are rarely adopted; 3 relevant barriers include: 1. Lack of awareness that simple analytics can be used to generate valuable insights and actionable information, without further training

17

Open Energy Information Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

OpenEIS (energy information OpenEIS (energy information systems) Jessica Granderson Lawrence Berkeley National Laboratory JGranderson@lbl.gov, 510.486.6792 April 3, 2013 2 | Building Technologies Office eere.energy.gov Purpose & Objectives Problem Statement: Advanced algorithms and analyses can enable 5-40% savings, yet are rarely adopted; 3 relevant barriers include: 1. Lack of awareness that simple analytics can be used to generate valuable insights and actionable information, without further training

18

Hospital Information System  

Science Journals Connector (OSTI)

Ahospital information system is an information system for processing data, information and knowledge in hospital ...

2008-01-01T23:59:59.000Z

19

Generation IV Nuclear Energy Systems ...  

E-Print Network (OSTI)

Generation IV Nuclear Energy Systems ... The U.S. Department of Energy's Office of Nuclear Energy enhance safety and security, and develop nuclear power as an energy source for industrial applications Information ... U.S. Department of Energy www.energy.gov DOE Office of Nuclear Energy www.nuclear

Kemner, Ken

20

Steam generator support system  

DOE Patents (OSTI)

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances.

Moldenhauer, James E. (Simi Valley, CA)

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Steam generator support system  

DOE Patents (OSTI)

A support system for connection to an outer surface of a J-shaped steam generator for use with a nuclear reactor or other liquid metal cooled power source is disclosed. The J-shaped steam generator is mounted with the bent portion at the bottom. An arrangement of elongated rod members provides both horizontal and vertical support for the steam generator. The rod members are interconnected to the steam generator assembly and a support structure in a manner which provides for thermal distortion of the steam generator without the transfer of bending moments to the support structure and in a like manner substantially minimizes forces being transferred between the support structure and the steam generator as a result of seismic disturbances. 4 figs.

Moldenhauer, J.E.

1987-08-25T23:59:59.000Z

22

Wind power generating system  

SciTech Connect

Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

1985-03-12T23:59:59.000Z

23

Geographic Information System (GIS)  

Science Journals Connector (OSTI)

The geographic information system is abranch of health information system and public health information system ...developed for the capture, storage, manipulation, analysis, and visualization of geographic ...

2008-01-01T23:59:59.000Z

24

Geothermal Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermal Generation This article is a stub. You can help OpenEI by expanding it. Global Geothermal Energy Generation Global Geothermal Electricity Generation in 2007 (in millions of kWh):[1] United States: 14,637 Philippines: 12,080 Indonesia: 6,083 Mexico: 5,844 (Note: Select countries are listed; this is not an exhaustive list.) United States Geothermal Energy Generation U.S. geothermal energy generation remained relatively stable from 2000 to 2006, with more than 3% growth in 2007 and 2008.[1] U.S. geothermal electricity generation in 2008 was 14,859 GWh.[1] References ↑ 1.0 1.1 1.2 (Published: July 2009) "US DOE 2008 Renewable Energy Data Book" Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Generation&oldid=599391"

25

Training Management Information System  

SciTech Connect

The Training Management Information System (TMIS) is an integrated information system for all training related activities. TMIS is at the leading edge of training information systems used in the nuclear industry. The database contains all the necessary records to confirm the department's adherence to accreditation criteria and houses all test questions, student records and information needed to evaluate the training process. The key to the TMIS system is that the impact of any change (i.e., procedure change, new equipment, safety incident in the commercial nuclear industry, etc.) can be tracked throughout the training process. This ensures the best training can be performed that meets the needs of the employees. TMIS is comprised of six functional areas: Job and Task Analysis, Training Materials Design and Development, Exam Management, Student Records/Scheduling, Evaluation, and Commitment Tracking. The system consists of a VAX 6320 Cluster with IBM and MacIntosh computers tied into an ethernet with the VAX. Other peripherals are also tied into the system: Exam Generation Stations to include mark sense readers for test grading, Production PC's for Desk-Top Publishing of Training Material, and PC Image Workstations. 5 figs.

Rackley, M.P.

1989-01-01T23:59:59.000Z

26

Sempra Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search Name Sempra Generation Place California Utility Id 55701 Utility Location Yes Ownership W NERC WECC Yes ISO CA Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Sempra_Generation&oldid=411504" Categories: EIA Utility Companies and Aliases

27

Intelligent Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search Name Intelligent Generation Place Chicago, Illinois Zip 60603 Sector Renewable Energy Product Chicago-based maker of software aimed at optimising distributed renewable energy generation and power storage. Coordinates 41.88415°, -87.632409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88415,"lon":-87.632409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

28

Information technology equipment cooling system  

SciTech Connect

According to one embodiment, a system for removing heat from a rack of information technology equipment may include a sidecar indoor air to liquid heat exchanger that cools warm air generated by the rack of information technology equipment. The system may also include a liquid to liquid heat exchanger and an outdoor heat exchanger. The system may further include configurable pathways to connect and control fluid flow through the sidecar heat exchanger, the liquid to liquid heat exchanger, the rack of information technology equipment, and the outdoor heat exchanger based upon ambient temperature and/or ambient humidity to remove heat from the rack of information technology equipment.

Schultz, Mark D.

2014-06-10T23:59:59.000Z

29

Transforming our information systems  

E-Print Network (OSTI)

Transforming our information systems and technology Information Systems Development Framework #12 university. In support of this position we are transforming our information systems, servicesDonald Principal and Vice-Chancellor #12;Strategy for transformation Tactical Delivering the services and tools our

Strathclyde, University of

30

A Technique to Utilize Smart Meter Load Information for Adapting Overcurrent Protection for Radial Distribution Systems with Distributed Generations  

E-Print Network (OSTI)

overcurrent protection scheme to reduce the number of customers affected by faults in RDS with DGs. Further, a technique is presented that utilizes customers loading information from smart meters in AMI to improve the sensitivity of substation OC relays...

Ituzaro, Fred Agyekum

2012-07-16T23:59:59.000Z

31

Next Generation Environmentally Friendly Driving Feedback Systems...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Next Generation Environmentally Friendly Driving Feedback Systems Research and Development Next Generation Environmentally Friendly Driving Feedback Systems Research and...

32

Laboratories for the 21st Century Best Practices: Onsite Distributed Generation Systems For Laboratories  

Energy.gov (U.S. Department of Energy (DOE))

Guide describes general information on implementing onsite distributed generation systems in laboratory environments.

33

Hydrogen storage and generation system  

DOE Patents (OSTI)

A system for storing and generating hydrogen generally and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses the beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

2010-08-24T23:59:59.000Z

34

Definition: Automatic Generation Control | Open Energy Information  

Open Energy Info (EERE)

Automatic Generation Control Automatic Generation Control Jump to: navigation, search Dictionary.png Automatic Generation Control Equipment that automatically adjusts generation in a Balancing Authority Area from a central location to maintain the Balancing Authority's interchange schedule plus Frequency Bias. AGC may also accommodate automatic inadvertent payback and time error correction.[1] View on Wikipedia Wikipedia Definition Related Terms system, power, electricity generation, load, frequency bias, balancing authority, balancing authority area, smart grid References ↑ Glossary of Terms Used in Reliability Standards An inline LikeLike UnlikeLike You like this.Sign Up to see what your friends like. Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Automatic_Generation_Control&oldid=502513"

35

Climate Registry Information System | Open Energy Information  

Open Energy Info (EERE)

Climate Registry Information System Climate Registry Information System Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Climate Registry Information System Agency/Company /Organization: The Climate Registry Sector: Climate Focus Area: Greenhouse Gas Phase: Determine Baseline, Evaluate Effectiveness and Revise as Needed Resource Type: Online calculator User Interface: Website Website: www.theclimateregistry.org/climate-registry-information-system-cris/ Web Application Link: www.theclimateregistry.org/climate-registry-information-systhttps://ww Cost: Free References: General Reporting Protocol[1] The Climate Registry Information System (CRIS) is the official online greenhouse gas calculation, reporting, and verifcation tool for The Climate Registry, a North American registry through which members voluntarily

36

REQUEST FOR INFORMATION Student Information System  

E-Print Network (OSTI)

REQUEST FOR INFORMATION Student Information System This form is to be used by those requesting information from the Registrar's Office. Federal privacy regulations require strict monitoring of access to student information. PERSONS OR ORGANIZATIONS MUST DEMOSTRATE THAT THE INFORMATION IS NEEDED

Thaxton, Christopher S.

37

Thermoelectric Power Generation System with Loop Thermosyphon...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency...

38

Next generation solar bimodal systems  

SciTech Connect

One of the principal advantages of a solar thermal propulsion system as compared to a conventional chemical propulsion one is high specific impulse which is proportional to the square root of a propellant temperature. Obviously, next generation solar propulsion and bimodal systems must take advantage of high and ultra-high temperatures. This requires use of an appropriate energy conversion system capable to take advantage of high temperature potentially achievable in a solar receiver. High efficiency and power density of a high temperature thermionic converter open new perspectives in the development of advanced bimodal power systems having performance significantly higher than that achievable by the state-of-the-art technology. The paper presents an innovative concept of a cascaded solar bimodal power system with a high temperature Cs-Ba thermionic converter. The paper shows that the use of high temperature Knudsen cesium-barium thermionic converter in a solar bimodal system allows to eliminate thermal insulation sleeve, generate electrical power in the propulsion mode, and precise control thermal state of the solar receiver. In the Cs-Ba thermionic converter an electron instability and high amplitude current oscillations develop. These effects can be used to obtain alternate current power directly in the converter. Possibility and potential advantage of such a generator are discussed.

Babanin, V.I.; Ender, A.Y.; Kolyshkin, I.N.; Kuznetsov, V.I.; Sitnov, V.I. [Ioffe Physico-Technical Institute, St. Petersburg (Russian Federation); Paramonov, D.V. [Westinghouse Science and Technology Center, Pittsburgh, PA (United States)

1997-12-31T23:59:59.000Z

39

Information discovery applied to a power generation database  

SciTech Connect

An information discovery system is presented that extracts knowledge from databases in a form that is much more compact and easy to understand than the original set of records. The system was tested with a subset of a real power generation database of the Federal Commission of Electricity in Mexico (CFE = Comision Federal de Electricidad). The paper discusses a machine learning algorithm for induction of rules and the heuristics used to obtain the simplest rules that define the knowledge hidden in a database.

Rodriguez, G.; Hernandez, V. [Electrical Research Inst., Cuernavaca (Mexico). Information Systems Dept.

1996-11-01T23:59:59.000Z

40

NIM (NERSC Information Management) system  

NLE Websites -- All DOE Office Websites (Extended Search)

NERSC Information Management (NIM) portal The NERSC Information Management (NIM) system is a web portal used to view and modify user account, usage, and allocations information....

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Geographic Information System | Open Energy Information  

Open Energy Info (EERE)

Geographic Information System Geographic Information System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Geographic Information System Details Activities (24) Areas (11) Regions (4) NEPA(0) Exploration Technique Information Exploration Group: Data and Modeling Techniques Exploration Sub Group: Data Techniques Parent Exploration Technique: Data Techniques Information Provided by Technique Lithology: Any mapable information Stratigraphic/Structural: Any mapable information Hydrological: Any mapable information Thermal: Any mapable information Cost Information Low-End Estimate (USD): 70.007,000 centUSD 0.07 kUSD 7.0e-5 MUSD 7.0e-8 TUSD / hour Median Estimate (USD): 80.008,000 centUSD 0.08 kUSD 8.0e-5 MUSD 8.0e-8 TUSD / hour High-End Estimate (USD): 150.0015,000 centUSD

42

Definition: Distributed generation | Open Energy Information  

Open Energy Info (EERE)

generation generation Jump to: navigation, search Dictionary.png Distributed generation A term used by the power industry to describe localized or on-site power generation[1] View on Wikipedia Wikipedia Definition Distributed generation, also called on-site generation, dispersed generation, embedded generation, decentralized generation, decentralized energy or distributed energy, generates electricity from many small energy sources. Most countries generate electricity in large centralized facilities, such as fossil fuel, nuclear, large solar power plants or hydropower plants. These plants have excellent economies of scale, but usually transmit electricity long distances and can negatively affect the environment. Distributed generation allows collection of energy from many

43

Information Systems Engineering Guidance (ISEG)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Departmental Information Systems Engineering (DISE) Departmental Information Systems Engineering (DISE) Volume 1 Information Systems Engineering Lifecycle January 31, 2002 Software Quality and Systems Engineering Program Office of the Associate CIO of Architecture, Standards & Planning Office of the Chief Information Officer Title Page Document Series: Departmental Information Systems Engineering Document Name: Volume 1, Information Systems Engineering Lifecycle Publication Date: 01/31/02 Document Owner: Software Quality and Systems Engineering Program Office of the Associate CIO of Architecture, Standards & Planning The concepts and processes in this document are aligned with the DOE Information Management (IM) Strategic Plan Mission and Goals. The Information Management Mission is:

44

Other Distributed Generation Technologies | Open Energy Information  

Open Energy Info (EERE)

Generation Technologies Incentives Retrieved from "http:en.openei.orgwindex.php?titleOtherDistributedGenerationTechnologies&oldid267183...

45

Solar energy power generation system  

SciTech Connect

A solar energy power generation system is described which consists of: (a) means for collecting and concentrating solar energy; (b) heat storage means; (c) Stirling engine means for producing power; (d) first heat transfer means for receiving the concentrated solar energy and for transferring heat to the heat storage means; and (e) second heat transfer means for controllably transferring heat from the storage means to the Stirling engine means and including a discharge heat pipe means for transferring heat to the Stirling engine means and further including means for inserting and withdrawing the discharge heat pipe means into and out of the heat storage means.

Nilsson, J.E.; Cochran, C.D.

1986-05-06T23:59:59.000Z

46

PIA - Human Resources Information System (HRIS) | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Information System (HRIS) PIA - Human Resources Information System (HRIS) PIA - Human Resources Information System (HRIS) PIA - Human Resources Information System (HRIS) More...

47

Heat engine generator control system  

DOE Patents (OSTI)

An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power.

Rajashekara, Kaushik (Carmel, IN); Gorti, Bhanuprasad Venkata (Towson, MD); McMullen, Steven Robert (Anderson, IN); Raibert, Robert Joseph (Fishers, IN)

1998-01-01T23:59:59.000Z

48

Heat engine generator control system  

DOE Patents (OSTI)

An electrical power generation system includes a heat engine having an output member operatively coupled to the rotor of a dynamoelectric machine. System output power is controlled by varying an electrical parameter of the dynamoelectric machine. A power request signal is related to an engine speed and the electrical parameter is varied in accordance with a speed control loop. Initially, the sense of change in the electrical parameter in response to a change in the power request signal is opposite that required to effectuate a steady state output power consistent with the power request signal. Thereafter, the electrical parameter is varied to converge the output member speed to the speed known to be associated with the desired electrical output power. 8 figs.

Rajashekara, K.; Gorti, B.V.; McMullen, S.R.; Raibert, R.J.

1998-05-12T23:59:59.000Z

49

Design and implementation of a prototype generator monitoring system  

E-Print Network (OSTI)

protective relays, circuit breakers, and switches. Based on this data, the system performs continuous monitoring of the electrical part of the generator and informs operators of any deviations from the normal operating conditions. The monitoring involves...

Sun, Jianyong

2012-06-07T23:59:59.000Z

50

Local Generation Limited | Open Energy Information  

Open Energy Info (EERE)

Generation Limited Place: United Kingdom Sector: Biomass Product: UK-based biomass firm developing anaerobic digestion plants. References: Local Generation Limited1 This article...

51

Definition: Geographic Information System | Open Energy Information  

Open Energy Info (EERE)

Geographic Information System Geographic Information System Jump to: navigation, search Dictionary.png Geographic Information System A GIS is an organized collection of computer hardware, software, geographic data, and personnel designed to efficiently capture, store, update, manipulate, analyze, and display all forms of geographically referenced information[1] View on Wikipedia Wikipedia Definition References ↑ http://ciesin.columbia.edu/docs/005-331/005-331.html Ret LikeLike UnlikeLike You like this.Sign Up to see what your friends like. rieved from "http://en.openei.org/w/index.php?title=Definition:Geographic_Information_System&oldid=579407" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

52

Technetium-99m generator system  

DOE Patents (OSTI)

A .sup.99 Mo/.sup.99m Tc generator system includes a sorbent column loaded with a composition containing .sup.99 Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating .sup.99m Tc eluted from the sorbent column. A method of preparing a concentrated solution of .sup.99m Tc includes the general steps of: a. providing a sorbent column loaded with a composition containing .sup.99 Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; b. eluting the sorbent column with a salt solution to elute .sup.99m Tc from the sorbent and to trap and concentrate the eluted .sup.99m Tc on the ion-exchange column; and c. eluting the concentrated .sup.99m Tc from the ion-exchange column with a solution comprising a reductive complexing agent.

Mirzadeh, Saed (Knoxville, TN); Knapp, Jr., Furn F. (Oak Ridge, TN); Collins, Emory D. (Knoxville, TN)

1998-01-01T23:59:59.000Z

53

Technetium-99m generator system  

DOE Patents (OSTI)

A {sup 99}Mo/{sup 99m}Tc generator system includes a sorbent column loaded with a composition containing {sup 99}Mo. The sorbent column has an effluent end in fluid communication with an anion-exchange column for concentrating {sup 99m}Tc eluted from the sorbent column. A method of preparing a concentrated solution of {sup 99m}Tc includes the general steps of: (a) providing a sorbent column loaded with a composition containing {sup 99}Mo, the sorbent column having an effluent end in fluid communication with an anion-exchange column; (b) eluting the sorbent column with a salt solution to elute {sup 99m}Tc from the sorbent and to trap and concentrate the eluted {sup 99m}Tc on the ion-exchange column; and (c) eluting the concentrated {sup 99m}Tc from the ion-exchange column with a solution comprising a reductive complexing agent. 1 fig.

Mirzadeh, S.; Knapp, F.F. Jr.; Collins, E.D.

1998-06-30T23:59:59.000Z

54

Definition: Net generation | Open Energy Information  

Open Energy Info (EERE)

Net generation Net generation Jump to: navigation, search Dictionary.png Net generation Equal to gross generation less electrical energy consumed at the generating station(s).[1][2] View on Wikipedia Wikipedia Definition Related Terms Electricity generation, Gross generation, power, gross generation References ↑ http://www1.eere.energy.gov/site_administration/glossary.html#N ↑ http://205.254.135.24/tools/glossary/index.cfm?id=N Retrie LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ved from "http://en.openei.org/w/index.php?title=Definition:Net_generation&oldid=480320" Category: Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

55

Information Systems Engineering Guidance (ISEG)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Departmental Information Systems Engineering (DISE) Departmental Information Systems Engineering (DISE) Guidance Volume 2 Managing DOE IT Projects March 26, 2002 Revised December 27, 2002 Developed by the Software Quality and Systems Engineering Program Office of the Chief Information Officer Departmental Information Systems Engineering Guidance Title Page Document Series: Departmental Information Systems Engineering (DISE) Guidance Document Name: Volume 2, Managing DOE IT Projects Publication Date: 03/26/03, Revised 12/27/02 Document Owner: Office of the Chief Information Officer Software Quality and Systems Engineering Brenda Coblentz, IM-21, Program Manager Acknowledgement: Wayne Jones, author of the DOE (HQ) IM Project Management Guide, September 1998

56

The renewable electric plant information system  

SciTech Connect

This report explains the procedures used for creating the Renewable Electric Plant Information System (REPiS) database, describes the database fields, and summarizes the data. The REPiS database contains comprehensive information on grid-connected renewable electric generation plants in the United States. Originally designed in 1987 and updated in 1990, the database includes information through 1994. The report also illustrates ways of using the data for analysis is and describes how researchers validated the data.

Sinclair, K.

1995-12-01T23:59:59.000Z

57

Definition: Gross generation | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Gross generation Jump to: navigation, search Dictionary.png Gross generation The total amount of electric energy produced by generating units (e.g. power plants) and measured at the generating terminal in kilowatt-hours (kWh) or megawatt-hours (MWh).[1] View on Wikipedia Wikipedia Definition Related Terms Electricity generation, Net generation, power References ↑ http://205.254.135.24/tools/glossary/index.cfm?id=G#gross_gen Retri Like Like You like this.Sign Up to see what your friends like. eved from "http://en.openei.org/w/index.php?title=Definition:Gross_generation&oldid=480543" Category: Definitions What links here Related changes Special pages Printable version Permanent link

58

Definition: Electric generator | Open Energy Information  

Open Energy Info (EERE)

generator generator Jump to: navigation, search Dictionary.png Electric generator A device for converting mechanical energy to electrical energy. Note: The EIA defines "electric generator" as a facility rather than as a device; per the EIA definition, examples include electric utilities and independent power producers.[1][2] View on Wikipedia Wikipedia Definition In electricity generation, an electric generator is a device that converts mechanical energy to electrical energy. A generator forces electric current to flow through an external circuit. The source of mechanical energy may be a reciprocating or turbine steam engine, water falling through a turbine or waterwheel, an internal combustion engine, a wind turbine, a hand crank, compressed air, or any other source of

59

Definition: Electricity generation | Open Energy Information  

Open Energy Info (EERE)

Electricity generation Electricity generation Jump to: navigation, search Dictionary.png Electricity generation The process of producing electric energy or the amount of electric energy produced by transforming other forms of energy into electrical energy; commonly expressed in kilowatt-hours (kWh) or megawatt-hours (MWh).[1][2] View on Wikipedia Wikipedia Definition Electricity generation is the process of generating electrical power from other sources of primary energy. The fundamental principles of electricity generation were discovered during the 1820s and early 1830s by the British scientist Michael Faraday. His basic method is still used today: electricity is generated by the movement of a loop of wire, or disc of copper between the poles of a magnet. For electric utilities, it is the

60

Definition: Optimized Generator Operation | Open Energy Information  

Open Energy Info (EERE)

Optimized Generator Operation Optimized Generator Operation Jump to: navigation, search Dictionary.png Optimized Generator Operation Better forecasting and monitoring of load and grid performance would enable grid operators to dispatch a more efficient mix of generation that could be optimized to reduce cost. The coordinated operation of energy storage, distributed generation, or plug-in electric vehicle assets could also result in completely avoiding central generation dispatch.[1] Related Terms sustainability References ↑ SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Optimized_Generator_Operation&oldid=502509" Categories:

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

TDX Manley Generating LLC | Open Energy Information  

Open Energy Info (EERE)

TDX Manley Generating LLC TDX Manley Generating LLC Jump to: navigation, search Name TDX Manley Generating LLC Place Alaska Utility Id 56503 Utility Location Yes Ownership M Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.6340/kWh Commercial: $0.6920/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=TDX_Manley_Generating_LLC&oldid=411634

62

National Grid Generation, LLC | Open Energy Information  

Open Energy Info (EERE)

National Grid Generation, LLC National Grid Generation, LLC (Redirected from KeySpan Generation LLC) Jump to: navigation, search Name National Grid Generation, LLC Place New York Service Territory Massachusetts, New Hampshire, New York, Rhode Island Website www1.nationalgridus.com/C Green Button Landing Page www1.nationalgridus.com/S Green Button Reference Page www.whitehouse.gov/blog/2 Green Button Implemented Yes Utility Id 26751 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it.

63

Hydro Generation Ltd | Open Energy Information  

Open Energy Info (EERE)

Hydro Generation Ltd Place: Devon, United Kingdom Zip: EX16 9EU Sector: Hydro, Services Product: Micro hydropower company. Provides technical services such as feasibility studies,...

64

Information Concerning Reliability Impacts under Various System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Concerning Reliability Impacts under Various System Information Concerning Reliability Impacts under Various System Configurations of the Mirant Potomac River Plant Information Concerning Reliability Impacts under Various System Configurations of the Mirant Potomac River Plant Docket No. EO-05-01: PJM Interconnection, L.L.C. and PEPCO Holdings, Inc. is hereby providing you with additional information concerning reliability impacts under various system conditions associated with the unavailability of the Potomac River Generating Station to serve load in the D.C. area. Also enclosed as part of this submittal is material provided by PEPCO (balance of sentence redacted) In addition, there is a discussion concerning the impacts of demand side response in addressing this situation. Information Concerning Reliability Impacts under Various System

65

National Grid Generation, LLC | Open Energy Information  

Open Energy Info (EERE)

Generation, LLC Generation, LLC Jump to: navigation, search Name National Grid Generation, LLC Place New York Service Territory Massachusetts, New Hampshire, New York, Rhode Island Website www1.nationalgridus.com/C Green Button Reference Page www.nationalgridus.com/ab Green Button Committed Yes Utility Id 26751 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NY Yes Operates Generating Plant Yes Activity Generation Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates

66

Radioisotope thermoelectric generator transport trailer system  

SciTech Connect

The Radioisotope Thermoelectric Generator (RTG) Transportation System, designated as System 100, comprises four major systems. The four major systems are designated as the Packaging System (System 120), Trailer System (System 140), Operations and Ancillary Equipment System (System 160), and Shipping and Receiving Facility Transport System (System 180). Packaging System (System 120), including the RTG packaging is licensed (regulatory) hardware; it is certified by the U.S. Department of Energy to be in accordance with Title 10, {ital Code} {ital of} {ital Federal} {ital Regulations}, Part 71 (10 CFR 71). System 140, System 160, and System 180 are nonlicensed (nonregulatory) hardware. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}

Ard, K.E.; King, D.A.; Leigh, H.; Satoh, J.A. [Westinghouse Hanford Company, P.O. Box 1970, MSIN N1-25, Richland, Washington 99352 (United States)

1995-01-20T23:59:59.000Z

67

Part III - Information Systems  

Science Journals Connector (OSTI)

Abstract This part enters into the main territory of enterprise architecture for information systems which is as rich in technology specialties as the IT ecosystem is diverse. Most organizations fail to recognize the need for diverse specialization within architecture because they fail to understand the depth of complexity and the costs associated with mediocrity within each area of specialization. They also believe that a general practioner, which we will call a solution architect, is qualified and appropriate to address the complexities across a wide array of technology areas. In reality, this is equivalent to staffing a medical center primarily with general practioners that act as the specialists. A healthy organization maintains top specialists with which the general practioners can participate in getting expertise that is in alignment with a future state vision that reduces complexity and costs.

James V. Luisi

2014-01-01T23:59:59.000Z

68

Definition: Thermoelectric power generation | Open Energy Information  

Open Energy Info (EERE)

Thermoelectric power generation Thermoelectric power generation Jump to: navigation, search Dictionary.png Thermoelectric power generation The conversion of thermal energy into electrical energy. Thermoelectric generation relies on a fuel source (e.g. fossil, nuclear, biomass, geothermal, or solar) to heat a fluid to drive a turbine[1] View on Wikipedia Wikipedia Definition The thermoelectric effect is the direct conversion of temperature differences to electric voltage and vice-versa. A thermoelectric device creates voltage when there is a different temperature on each side. Conversely, when a voltage is applied to it, it creates a temperature difference. At the atomic scale, an applied temperature gradient causes charge carriers in the material to diffuse from the hot side to the cold

69

Property:GeneratingCapacity | Open Energy Information  

Open Energy Info (EERE)

GeneratingCapacity GeneratingCapacity Jump to: navigation, search Property Name GeneratingCapacity Property Type Quantity Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

70

Pacific Northwest Generating Coop | Open Energy Information  

Open Energy Info (EERE)

Northwest Generating Coop Northwest Generating Coop Jump to: navigation, search Name Pacific Northwest Generating Coop Place Portland, Oregon Utility Id 14323 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] SGIC[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Pacific Northwest Generating Cooperative Smart Grid Project was awarded $19,576,743 Recovery Act Funding with a total project value of $39,172,987. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References

71

Tidal Hydraulic Generators Ltd | Open Energy Information  

Open Energy Info (EERE)

Generators Ltd Address: 14 Thislesboon Drive Place: Mumbles Zip: SA3 4HY Region: United Kingdom Sector: Marine and Hydrokinetic Phone Number: 44 (0)1792 360400 Website: http:...

72

Pod Generating Group | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Name: Pod Generating Group Place: Sault Ste Marie, Ontario, Canada Zip: P6A 2G4 Sector: Solar Product: Canadian developer of utility-scale solar...

73

CalEnergy Generation | Open Energy Information  

Open Energy Info (EERE)

CalEnergy Generation CalEnergy Generation Jump to: navigation, search Logo: CalEnergy Generation Name CalEnergy Generation Place Calipatria, California Sector Geothermal energy Year founded 1971 Website http://www.calenergy.com/ Coordinates 33.1255957°, -115.5141538° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1255957,"lon":-115.5141538,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

74

Power Generating Inc | Open Energy Information  

Open Energy Info (EERE)

while consuming on-site emissions of volatile organic compounds (VOC's). References: Power Generating Inc1 This article is a stub. You can help OpenEI by expanding it. Power...

75

Category:Geographic Information System | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Geothermalpower.jpg Looking for the Geographic Information System page? For detailed information on Geographic Information System, click here....

76

Solar Generations LLC | Open Energy Information  

Open Energy Info (EERE)

Generations LLC Generations LLC Jump to: navigation, search Name Solar Generations LLC Address 965 W. Main Street Place Branford, Massachusetts Zip 06405 Sector Solar Product Distributor of solar thermal products Website http://www.solargenerations.ne Coordinates 41.2956385°, -72.7924612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.2956385,"lon":-72.7924612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

77

Siemens Power Generation | Open Energy Information  

Open Energy Info (EERE)

Generation Generation Jump to: navigation, search Name Siemens Power Generation Place Erlangen, Bavaria, Germany Zip 91058 Product Erlangen-based subsidiary of Siemens AG that develops, manufactures, and installs power plants and related equipment such as turbines. Its fuel cell subsidiary is Siemens Westinghouse. Coordinates 49.59795°, 11.00258° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.59795,"lon":11.00258,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

Generation PV Inc | Open Energy Information  

Open Energy Info (EERE)

Generation PV Inc. Generation PV Inc. Place Markham, Ontario, Canada Zip L6E 1A9 Sector Wind energy Product Ontario-based Generation PV distributes and installs PV modules and wind turbines made by outside equipment makers, for industrial, residental and wholesale customers. Coordinates 38.9028°, -78.001804° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9028,"lon":-78.001804,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

79

AEP Generating Company | Open Energy Information  

Open Energy Info (EERE)

Company Company Jump to: navigation, search Name AEP Generating Company Place Ohio Service Territory Ohio Website www.aep.com Green Button Reference Page www.aep.com/newsroom/news Green Button Committed Yes Utility Id 343 Utility Location Yes Ownership I NERC Location RFC NERC RFC Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a"

80

PIA - Human Resources Management Information System (HRMIS) ...  

Energy Savers (EERE)

Information System (HRMIS) PIA - Human Resources Management Information System (HRMIS) PIA - Human Resources Management Information System (HRMIS) PIA - Human Resources Management...

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Neural networks as perpetual information generators  

Science Journals Connector (OSTI)

The information gain in a neural network cannot be larger than the bit capacity of the synapses. It is shown that the equation derived by Engel et al. [Phys. Rev. A 42, 4998 (1990)] for the strongly diluted network with persistent stimuli contradicts this condition. Furthermore, for any time step the correct equation is derived by taking the correlation between random variables into account.

Harald Englisch; Yegao Xiao; Kailun Yao

1991-07-15T23:59:59.000Z

82

Tidal Generation Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Ltd Jump to: navigation, search Name Tidal Generation Ltd Address University Gate East Park Row Place Bristol, United Kingdom Zip BS1 5UB Sector Marine and Hydrokinetic Product Tidal Generation is developing a 1MW fully submerged tidal turbine to generate electricity from tidal currents in water depths up to 50m. Phone number 4.41E+11 Website http://www.tidalgeneration.co. Coordinates 42.55678°, -88.050449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.55678,"lon":-88.050449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

83

Project Records Information System (PRIS)  

SciTech Connect

The Project Records Information System (PRIS) is an interactive system developed for the Information Services Division (ISD) of Martin Marietta Energy Systems, Inc., to perform indexing, maintenance, and retrieval of information about Engineering project record documents for which they are responsible. This PRIS User's Manual provides instruction on the use of this system. This manual presents an overview of PRIS, describing the system's purpose; the data that it handles; functions it performs; hardware, software, and access; and help and error functions. This manual describes the interactive menu-driven operation of PRIS. Appendixes A, B, C, and D contain the data dictionary, help screens, report descriptions, and a primary menu structure diagram, respectively.

Smith, P.S.; Schwarz, R.K.

1990-11-01T23:59:59.000Z

84

Form:Energy Generation Facility | Open Energy Information  

Open Energy Info (EERE)

Facility Jump to: navigation, search Input the name of an Energy Generation Facility below. If the resource already exists, you will be able to edit its information. AddEdit an...

85

Fuel cell using a hydrogen generation system  

DOE Patents (OSTI)

A system is described for storing and generating hydrogen and, in particular, a system for storing and generating hydrogen for use in an H.sub.2/O.sub.2 fuel cell. The hydrogen storage system uses beta particles from a beta particle emitting material to degrade an organic polymer material to release substantially pure hydrogen. In a preferred embodiment of the invention, beta particles from .sup.63Ni are used to release hydrogen from linear polyethylene.

Dentinger, Paul M. (Sunol, CA); Crowell, Jeffrey A. W. (Castro Valley, CA)

2010-10-19T23:59:59.000Z

86

Distributed Generation Technologies DGT | Open Energy Information  

Open Energy Info (EERE)

DGT DGT Jump to: navigation, search Name Distributed Generation Technologies (DGT) Place Ithaca, New York Zip 14850 Product Commercializing a technology to convert organic waste into pure and compressed methane gas via anaerobic digestion. Coordinates 39.93746°, -84.553194° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.93746,"lon":-84.553194,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

87

Advanced Distributed Generation LLC | Open Energy Information  

Open Energy Info (EERE)

LLC LLC Jump to: navigation, search Name Advanced Distributed Generation LLC Address 200 West Scott Park Drive, MS # 410 Place Toledo, Ohio Zip 43607 Sector Solar Product Agriculture; Consulting; Installation; Maintenance and repair; Retail product sales and distribution Phone number 419-725-3401 Website http://www.advanced-dg.com Coordinates 41.6472294°, -83.5975882° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.6472294,"lon":-83.5975882,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

88

Generation Resources Holding Co | Open Energy Information  

Open Energy Info (EERE)

Resources Holding Co Resources Holding Co Jump to: navigation, search Name Generation Resources Holding Co Place Leawood, Kansas Zip 66211-2607 Sector Renewable Energy, Wind energy Product Renewable energy project developer focused on wind. Coordinates 37.02958°, -94.479173° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.02958,"lon":-94.479173,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

89

Generation Energy Inc | Open Energy Information  

Open Energy Info (EERE)

Energy, Inc. Energy, Inc. Place Sterling, Virginia Zip 20166 Sector Renewable Energy, Wind energy Product Generation Energy is a privately held renewable energy company focused on developing, building and managing utility scale wind energy projects throughout the US. Coordinates 39.033075°, -77.406568° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.033075,"lon":-77.406568,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

90

Information Systems Management (ISM) 2011 Department of Supply Chain & Information Systems  

E-Print Network (OSTI)

Information Systems Management (ISM) 2011 Department of Supply Chain & Information Systems Information Systems Management Minor Application Overview The Information Systems Management focuses Systems Management and Applications c. MIS 431 (3) Business Data Management d. MIS 446 (3) Information

Yener, Aylin

91

HyperionNext-Generation Battlespace Information Services  

Science Journals Connector (OSTI)

......agents, self-organizing middleware, a smart data filtering system and a 3-D battlespace...resources. The targeted organizational benefit is an agile tactical communications network...unexpected data from an underwater sensor grid (provided by a new coalition partner......

Robert Ghanea-Hercock; E. Gelenbe; Nicholas R. Jennings; Oliver Smith; David N. Allsopp; Alex Healing; Hakan Duman; Simon Sparks; Nishan C. Karunatillake; Perukrishnen Vytelingum

2007-11-01T23:59:59.000Z

92

Integrated risk information system (IRIS)  

SciTech Connect

The Integrated Risk Information System (IRIS) is an electronic information system developed by the US Environmental Protection Agency (EPA) containing information related to health risk assessment. IRIS is the Agency`s primary vehicle for communication of chronic health hazard information that represents Agency consensus following comprehensive review by intra-Agency work groups. The original purpose for developing IRIS was to provide guidance to EPA personnel in making risk management decisions. This original purpose for developing IRIS was to guidance to EPA personnel in making risk management decisions. This role has expanded and evolved with wider access and use of the system. IRIS contains chemical-specific information in summary format for approximately 500 chemicals. IRIS is available to the general public on the National Library of Medicine`s Toxicology Data Network (TOXNET) and on diskettes through the National Technical Information Service (NTIS).

Tuxen, L. [Environmental Protection Agency, Washington, DC (United States)

1990-12-31T23:59:59.000Z

93

Information Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Systems Information Systems Information Systems Project Assessment and Reporting System (PARS II) PARS II is the Department's official "System of Record" for capital asset project performance information. Because PARS II uses the same data as maintained in our contractors' project management systems, everyone from the Federal Project Director's staff to the Secretary of Energy will have easy access to the same data. The PARS II software application is managed by the MA Office of Acquisition and Project Management and is used by federal and contractor personnel across the nation to record and track the progress of major construction and environmental cleanup projects. Questions or comments about PARS II should be directed to the PARS II Help Desk via email at i-Manage.eas@hq.doe.gov or by calling 301-903-2500

94

Control system for fluid heated steam generator  

DOE Patents (OSTI)

A control system for controlling the location of the nucleate-boiling region in a fluid heated steam generator comprises means for measuring the temperature gradient (change in temperature per unit length) of the heating fluid along the steam generator; means for determining a control variable in accordance with a predetermined function of temperature gradients and for generating a control signal in response thereto; and means for adjusting the feedwater flow rate in accordance with the control signal.

Boland, J.F.; Koenig, J.F.

1984-05-29T23:59:59.000Z

95

MHK Technologies/Platform generators | Open Energy Information  

Open Energy Info (EERE)

generators generators < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Platform generators.jpg Technology Profile Primary Organization Aqua Magnetics Inc Technology Resource Click here Wave Technology Type Click here Reciprocating Device Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description In the platform configuration the generators sit on a platform and buoy floats move the generator s coil up and down as waves and swell pass underneath Technology Dimensions Device Testing Date Submitted 06:09.4 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Platform_generators&oldid=681636

96

Distributed Generation System Characteristics and Costs in the Buildings Sector  

Gasoline and Diesel Fuel Update (EIA)

Distributed Generation System Distributed Generation System Characteristics and Costs in the Buildings Sector August 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Distributed Generation System Characteristics and Costs in the Buildings Sector i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the U.S. Department of Energy or other Federal agencies.

97

Dynamic power systems for power generation  

SciTech Connect

The characteristics of dynamic power systems have considerable potential value, especially for the space station. The base of technology that makes these dynamic power systems practical is reviewed. The following types of power-generating systems are examined herein: organic Rankine cycle, potassium Rankine cycle, Brayton cycle, and Stirling cycle.

English, R.E.

1984-04-01T23:59:59.000Z

98

Chapter 10 - Novel Power Generating Systems  

Science Journals Connector (OSTI)

Abstract In this chapter, some novel power generating systems are discussed. It is believed that sustainable thermal energy sources such as industrial waste heat recovery, concentrated solar radiation, ocean thermal energy, nuclear heat, and biomass combustion will gradually become more important. The first part of the chapter presents a novel system for power conversion from low-grade heat. This is an advanced ammoniawater-based power cycle able to operate with minimal exergy destruction due to an excellent match of temperature profiles at the heat source and sink. The chapter continues with thermoelectric power generators that can address the challenge of efficient power generation from high-grade thermal energy. Chemical looping combustion systems for power generation are treated thereafter for situations when carbon emissions must be reduced by carbon dioxide separation and sequestration or partial recycling. The last section of the chapter presents a number of selected novel systems for power generation, including magneto-hydrodynamic generators, thermoacoustic generators, and cryogenic compression oxy-combustion power plants with supercritical carbon dioxide and some novel integrated systems.

Ibrahim Dincer; Calin Zamfirescu

2014-01-01T23:59:59.000Z

99

Faulkner I Energy Generation Facility | Open Energy Information  

Open Energy Info (EERE)

Faulkner I Energy Generation Facility Faulkner I Energy Generation Facility Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Faulkner I Energy Generation Facility General Information Name Faulkner I Energy Generation Facility Facility Faulkner I Energy Generation Facility Sector Geothermal energy Location Information Location Humboldt County, Nevada, Coordinates 40.995188°, -118.142681° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.995188,"lon":-118.142681,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

100

Information System Owner | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Owner Information System Owner The Information System Owner (also referred to as System Owner) is the individual responsible for the overall procurement, development, integration,...

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Energy Management and Information Systems  

E-Print Network (OSTI)

?infrastructure energy?audits,?HVAC?upgrades,? heat?recovery,?etc. Improve?operations processes?and?day?to?day? operations,?retro? commissioning ENERGY?MANAGEMENT?INFORMATION?SYSTEM the?project Hardware ? $3.0?million?investment ? 400+?meters...

Conraud, J.

2013-01-01T23:59:59.000Z

102

Property:Distributed Generation Prime Mover | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Distributed Generation Prime Mover Jump to: navigation, search Property Name Distributed Generation Prime Mover Property Type Page Description Make and model of power sources. Pages using the property "Distributed Generation Prime Mover" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Ingersoll Rand I-R PowerWorks 70 + Distributed Generation Study/615 kW Waukesha Packaged System + Waukesha VGF 36GLD + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Aisin Seiki G60 + Distributed Generation Study/Arrow Linen + Coast Intelligen 150-IC with ECS + Distributed Generation Study/Dakota Station (Minnegasco) + Capstone C30 +

103

MHK Technologies/Tidal Hydraulic Generators THG | Open Energy Information  

Open Energy Info (EERE)

Generators THG Generators THG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Tidal Hydraulic Generators THG.jpg Technology Profile Primary Organization Tidal Hydraulic Generators Ltd Project(s) where this technology is utilized *MHK Projects/Ramsey Sound Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The concept of generating energy in this way is made unique by our novel design feature. The generator, devised in 1998, is a hydraulic accumulator system, involving relatively small revolving blades which gather power to a central collector, where electricity is generated. The generator, which is situated under water, is 80 metres square, stands at 15 metres high, and is designed to run for a minimum of ten years without service.

104

Request for Information Renewable Energy Generation/Production Shreveport  

Open Energy Info (EERE)

Request for Information Renewable Energy Generation/Production Shreveport Request for Information Renewable Energy Generation/Production Shreveport Airport Authority - Response Deadline 2 January 2014 Home > Groups > Renewable Energy RFPs Rosborne318's picture Submitted by Rosborne318(5) Member 2 December, 2013 - 11:06 pv land use Solar solar land use Solar Power The Shreveport Airport Authority intends to issue a Request for Proposal (RFP) at some future time for renewable energy generation opportunities on Shreveport Airport property. The Authority is particularly interested in solar photovoltaic generation but other technically and economically feasible technologies may also be included. A study by NREL estimates the annual capacity factor of fixed tilt covered parking at 15.3% and for one-axis tracking at 19.4%. Specifically, the

105

Waste Management Information System (WMIS) User Guide  

SciTech Connect

This document provides the user of the Waste Management Information System (WMIS) instructions on how to use the WMIS software. WMIS allows users to initiate, track, and close waste packages. The modular design supports integration and utilization of data throuh the various stages of waste management. The phases of the waste management work process include generation, designation, packaging, container management, procurement, storage, treatment, transportation, and disposal.

R. E. Broz

2008-12-22T23:59:59.000Z

106

Generation and Transmission Maximization Model | Open Energy Information  

Open Energy Info (EERE)

Generation and Transmission Maximization Model Generation and Transmission Maximization Model Jump to: navigation, search Tool Summary Name: Generation and Transmission Maximization Model Agency/Company /Organization: Argonne National Laboratory Sector: Energy Topics: Pathways analysis Resource Type: Software/modeling tools User Interface: Desktop Application Website: www.dis.anl.gov/projects/Gtmax.html Cost: Paid Generation and Transmission Maximization Model Screenshot References: Generation and Transmission Maximization Model [1] Logo: Generation and Transmission Maximization Model The GTMax model helps researchers study complex marketing and system operational issues. With the aid of this comprehensive model, utility operators and managers can maximize the value of the electric system, taking into account not only its limited energy and transmission resources,

107

MHK Technologies/The Linear Generator | Open Energy Information  

Open Energy Info (EERE)

Linear Generator Linear Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage The Linear Generator.jpg Technology Profile Primary Organization Trident Energy Ltd Project(s) where this technology is utilized *MHK Projects/TE4 Technology Resource Click here Wave Technology Type Click here Point Absorber Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The simplicity of the Trident Energy solution is based around the fact that the system has only one moving part - float / linear generator translator, which is powered by the motion of floats placed in the sea. As waves pass through the wavefarm, so the floats rise and fall. This causes relative motion between the two components of the linear generator (the translator and stator) and electricity is immediately generated. There is absolutely no contact between the two parts of the generator as the energy conversion is entirely electromagnetic.

108

Information Access Router for Integrated Information Access System Koji Murakami  

E-Print Network (OSTI)

Information Access Router for Integrated Information Access System Koji Murakami Department System (IIAS) that accepts diverse kinds of questions and provides the requested information in the most suit- able format for the information need. We designed a set of 18 Information Access Types

109

Evolution of toxicology information systems  

SciTech Connect

Society today is faced with new health risk situations that have been brought about by recent scientific and technical advances. Federal and state governments are required to assess the many potential health risks to exposed populations from the products (chemicals) and by-products (pollutants) of these advances. Because a sound analysis of any potential health risk should be based on the use of relevant information, it behooves those individuals responsible for making the risk assessments to know where to obtain needed information. This paper reviews the origins of toxicology information systems and explores the specialized information center concept that was proposed in 1963 as a means of providing ready access to scientific and technical information. As a means of illustrating this concept, the operation of one specialized information center (the Environmental Mutagen Information Center at Oak Ridge National Laboratory) will be discussed. Insights into how toxicological information resources came into being, their design and makeup, will be of value to those seeking to acquire information for risk assessment purposes. 7 refs., 1 fig., 4 tabs.

Wassom, J.S.; Lu, P.Y. [Oak Ridge National Laboratory, TN (United States)

1990-12-31T23:59:59.000Z

110

Value Added Energy Information Systems VAEIS | Open Energy Information  

Open Energy Info (EERE)

Value Added Energy Information Systems VAEIS Value Added Energy Information Systems VAEIS Jump to: navigation, search Name Value Added Energy Information Systems (VAEIS) Place Arlington, New Hampshire Zip 2474 Sector Solar, Wind energy Product Provides turn-key monitoring systems for the performance of solar, wind, fuel cell and other distributed generation installations. Coordinates 43.337585°, -89.379449° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.337585,"lon":-89.379449,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

111

Center for Information Systems Research Research Briefings 2002  

E-Print Network (OSTI)

This paper is comprised of research briefings from the MIT Sloan School of Management's Center for Information Systems Research (CISR). CISR's mission is to perform practical empirical research on how firms generate business ...

ROSS, JEANNE W.

2003-06-02T23:59:59.000Z

112

Zambia-Long-Term Generation Expansion Study | Open Energy Information  

Open Energy Info (EERE)

Zambia-Long-Term Generation Expansion Study Zambia-Long-Term Generation Expansion Study Jump to: navigation, search Logo: Zambia-Long-Term Generation Expansion Study Name Zambia-Long-Term Generation Expansion Study Agency/Company /Organization Argonne National Laboratory Sector Energy Topics Implementation, GHG inventory, Background analysis Resource Type Software/modeling tools, Lessons learned/best practices Website http://www.dis.anl.gov/pubs/61 Country Zambia UN Region Eastern Africa References Zambia-Long-Term Generation Expansion Study[1] Abstract The objective of this study is to analyze possible long-term development options of the Zambian electric power system in the period up to 2015. Overview "The objective of this study is to analyze possible long-term development options of the Zambian electric power system in the period up to 2015. The

113

Correlation resonance generated by coupled enzymatic processing: Supplementary information  

E-Print Network (OSTI)

H. Mather1,2 , Natalie A. Cookson1,3 , Jeff Hasty3,2,1 , Lev S. Tsimring1 and Ruth J. Williams4Correlation resonance generated by coupled enzymatic processing: Supplementary information William Jolla CA 92093-0112 USA. Email: williams@stochastic.ucsd.edu. Throughout this supplement, N and Q

114

Classified Information Systems Security Manual  

Directives, Delegations, and Requirements

This Manual provides requirements and implementation instructions for the graded protection of the confidentiality, integrity, and availability of information processed on all automated information systems used to collect, create, process, transmit, store, and disseminate classified information by, or on behalf of, the Department of Energy (DOE). DOE N 205.4 cancels Chapter III section 8, Incident Reporting, and DOE N 205.3 cancels Chapter VI, paragraph 4j(2), 4j(6); and Chapter VII, paragraph 12a(2)(a). Cancels: DOE M 5639.6A-1. Canceled by DOE M 205.1-4.

1999-08-03T23:59:59.000Z

115

Lincoln Electric System | Open Energy Information  

Open Energy Info (EERE)

System System (Redirected from LES) Jump to: navigation, search Name Lincoln Electric System Place Nebraska Utility Id 11018 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1000 W Mercury Vapor- Security Light Lighting 150 W High Pressure Sodium - Security Light Lighting 175 W Mercury Vapor- Security Light Lighting

116

Two-stage electric generator system  

SciTech Connect

The system described herein is particularly adapted to convert mechanical energy from a wind or hydraulic driven turbine into electric energy and comprises: an exciter generator and a main generator in a housing traversed by a rotatable shaft; the exciter generator consists of permanent magnet mounted to the housing envelope and of a rotor mounted to the shaft and having a one-phase winding, the rotor being made of non-magnetic material to eliminate cogging and static torque associated with permanent magnet excitation; the main generator consists of a three-phase stator winding on a magnetic core mounted to the housing envelope and of a pole-type rotor mounted to the shaft, the rotor having a winding wound on a magnetic core; a rectifying bridge is rotatably mounted to the shaft and is connected to the one-phase winding of the rotor of the exciter generator and to the winding of the main generator rotor so that the rotation of the shaft as a result of mechanical energy generates a three-phase electric energy output from the stator winding.

Leroux, A.

1981-09-29T23:59:59.000Z

117

Distributed Generation Study/SUNY Buffalo | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Study/SUNY Buffalo Distributed Generation Study/SUNY Buffalo < Distributed Generation Study Jump to: navigation, search Study Location Buffalo, New York Site Description Institutional-School/University Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Gerster Trane System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 600000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2002/12/11 Monitoring Termination Date 2004/08/11

118

Next Generation Attics and Roof Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Next Generation Attics Next Generation Attics and Roof Systems William (Bill) Miller, Ph.D. ORNL WML@ORNL.GOV____ (865) 574-2013 April 4, 2013 Goals: Develop New Roof and Attic Designs  Reduce Space Conditioning Due to Attic  Convince Industry to Adopt Designs Building Envelope Program  Dr. William Miller  Dr. Som Shrestha  Kaushik Biswas, Ken Childs, Jerald Atchley, Phil Childs Andre Desjarlais (Group Leader) 32% Primary Energy 28% Primary Energy 2 | Building Technologies Office eere.energy.gov Purpose & Objectives

119

Protective, Modular Wave Power Generation System  

SciTech Connect

The concept of small wave energy conversion modules that can be built into large, scalable arrays, in the same vein as solar panels, has been developed. This innovation lends itself to an organic business and development model, and enables the use of large-run manufacturing technology to reduce system costs. The first prototype module has been built to full-scale, and tested in a laboratory wave channel. The device has been shown to generate electricity and dissipate wave energy. Improvements need to be made to the electrical generator and a demonstration of an array of modules should be made in natural conditions.

Vvedensky, Jane M.; Park, Robert Y.

2012-11-27T23:59:59.000Z

120

MULTIOBJECTIVE OPTIMIZATION POWER GENERATION SYSTEMS INVOLVING CHEMICAL LOOPING COMBUSTION  

SciTech Connect

Integrated Gasification Combined Cycle (IGCC) system using coal gasification is an important approach for future energy options. This work focuses on understading the system operation and optimizing it in the presence of uncertain operating conditions using ASPEN Plus and CAPE-OPEN compliant stochastic simulation and multiobjective optimization capabilities developed by Vishwamitra Research Institute. The feasible operating surface for the IGCC system is generated and deterministic multiobjective optimization is performed. Since the feasible operating space is highly non-convex, heuristics based techniques that do not require gradient information are used to generate the Pareto surface. Accurate CFD models are simultaneously developed for the gasifier and chemical looping combustion system to characterize and quantify the process uncertainty in the ASPEN model.

Juan M. Salazar; Urmila M. Diwekar; Stephen E. Zitney

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Information flow in entangled quantum systems  

Science Journals Connector (OSTI)

...research-article Research Article Information flow in entangled quantum systems David...of Oxford, , Oxford OX1 3PU, UK All information in quantum systems is, notwithstanding...Heisenberg picture to analyse quantum information processing makes this locality explicit...

2000-01-01T23:59:59.000Z

122

Lincoln Electric System | Open Energy Information  

Open Energy Info (EERE)

Lincoln Electric System Lincoln Electric System Place Nebraska Utility Id 11018 Utility Location Yes Ownership M NERC Location MRO NERC MRO Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png 1000 W Mercury Vapor- Security Light Lighting 150 W High Pressure Sodium - Security Light Lighting 175 W Mercury Vapor- Security Light Lighting 250 W High Pressure Sodium - Security Light Lighting

123

MHK Technologies/Submergible Power Generator | Open Energy Information  

Open Energy Info (EERE)

Submergible Power Generator Submergible Power Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Submergible Power Generator.jpg Technology Profile Primary Organization Current to Current Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description The design of the SPG leverages water flows in varying scenarios to generate electricity While the focus of the C2C deployments is ocean currents the SPG works in a bi directional manner Therefore the SPG can be deployed to generate electricity from tidal differential tidal streams In areas where currents and tidal differential streams converge the SPG with remote control and telemetry systems will track the water velocity In this manner the SPG can be maneuver in three dimensions to optimize water flow Each tube of the catamaran is approximately 150 feet in length The inner tube contains the electronic components and the outer tube is the rotating impeller system comprising a generator with a four blade turbine which measures approximately 100 feet in diameter The total area covered by each SPG is about the size of a football field

124

WIMS - Waste Information Management System  

Office of Environmental Management (EM)

Welcome To WIMS Welcome To WIMS Waste Information Management System WIMS new web address: http://www.emwims.org WIMS is developed to provide DOE Headquarters and site waste managers with the tools necessary to easily visualize, understand, and manage the vast volumes, categories, and problems of forecasted waste streams. WIMS meets this need by providing a user-friendly online system to gather, organize, and present waste forecast data from DOE sites. This system provides a method for identification of waste forecast volumes, material classes, disposition pathways, and potential choke points and barriers to final disposition. Disclaimer: Disposition facility information presented is for planning purposes only and does not represent DOE's decisions or commitments. Any selection of disposition facility will be made after technical, economic, and policy considerations.

125

TDX North Slope Generating Co | Open Energy Information  

Open Energy Info (EERE)

Generating Co Generating Co Jump to: navigation, search Name TDX North Slope Generating Co Place Alaska Utility Id 19277 Utility Location Yes Ownership I NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Commercial: $0.1310/kWh The following table contains monthly sales and revenue data for TDX North Slope Generating Co (Alaska). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS

126

Engineering Design Information System (EDIS)  

SciTech Connect

This manual is a guide to the use of the Engineering Design Information System (EDIS) Phase I. The system runs on the Martin Marietta Energy Systems, Inc., IBM 3081 unclassified computer. This is the first phase in the implementation of EDIS, which is an index, storage, and retrieval system for engineering documents produced at various plants and laboratories operated by Energy Systems for the Department of Energy. This manual presents on overview of EDIS, describing the system's purpose; the functions it performs; hardware, software, and security requirements; and help and error functions. This manual describes how to access EDIS and how to operate system functions using Database 2 (DB2), Time Sharing Option (TSO), Interactive System Productivity Facility (ISPF), and Soft Master viewing features employed by this system. Appendix A contains a description of the Soft Master viewing capabilities provided through the EDIS View function. Appendix B provides examples of the system error screens and help screens for valid codes used for screen entry. Appendix C contains a dictionary of data elements and descriptions.

Smith, P.S.; Short, R.D.; Schwarz, R.K.

1990-11-01T23:59:59.000Z

127

Implementation of optimum solar electricity generating system  

Science Journals Connector (OSTI)

Under the 10th Malaysian Plan the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015 which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia harnessing technologies related to solar energy resources have great potential for implementation. However the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time and there is a need for electrical energy storage system so that there is electricity available during the night time as well. The meteorological condition such as clouds haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper the technical aspects of the implementation of optimum SEGS is discussed especially pertaining to the positioning of the PV panels.

2014-01-01T23:59:59.000Z

128

NEXT GENERATION GAS TURBINE SYSTEMS STUDY  

SciTech Connect

Under sponsorship of the U.S. Department of Energy's National Energy Technology Laboratory, Siemens Westinghouse Power Corporation has conducted a study of Next Generation Gas Turbine Systems that embraces the goals of the DOE's High Efficiency Engines and Turbines and Vision 21 programs. The Siemens Westinghouse Next Generation Gas Turbine (NGGT) Systems program was a 24-month study looking at the feasibility of a NGGT for the emerging deregulated distributed generation market. Initial efforts focused on a modular gas turbine using an innovative blend of proven technologies from the Siemens Westinghouse W501 series of gas turbines and new enabling technologies to serve a wide variety of applications. The flexibility to serve both 50-Hz and 60-Hz applications, use a wide range of fuels and be configured for peaking, intermediate and base load duty cycles was the ultimate goal. As the study progressed the emphasis shifted from a flexible gas turbine system of a specific size to a broader gas turbine technology focus. This shift in direction allowed for greater placement of technology among both the existing fleet and new engine designs, regardless of size, and will ultimately provide for greater public benefit. This report describes the study efforts and provides the resultant conclusions and recommendations for future technology development in collaboration with the DOE.

Benjamin C. Wiant; Ihor S. Diakunchak; Dennis A. Horazak; Harry T. Morehead

2003-03-01T23:59:59.000Z

129

MHK Technologies/Sabella River Generator | Open Energy Information  

Open Energy Info (EERE)

Sabella River Generator Sabella River Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sabella River Generator.jpg Technology Profile Primary Organization Sabella Energy Project(s) where this technology is utilized *MHK Projects/SR 01 Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description A unidirectional river bed turbine Technology Dimensions Technology Nameplate Capacity (MW) 2 Device Testing Date Submitted 7/11/2012 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Sabella_River_Generator&oldid=680598

130

Distributed Generation Study/Harbec Plastics | Open Energy Information  

Open Energy Info (EERE)

< Distributed Generation Study < Distributed Generation Study Jump to: navigation, search Study Location Ontario, New York Site Description Industrial-Plastics Processing Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C30 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Northern Development System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 25 Stand-alone Capability None Power Rating 750 kW0.75 MW 750,000 W 750,000,000 mW 7.5e-4 GW 7.5e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 3750000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2005/10/06 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

131

Distributed Generation Study/Sea Rise 2 | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Study Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Coast Intelligen CI60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Grenadier Realty System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1300000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/08/30 Monitoring Termination Date 1969/12/31

132

Distributed Generation Study/Sea Rise 1 | Open Energy Information  

Open Energy Info (EERE)

Distributed Generation Study Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Coast Intelligen CI60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Grenadier Realty System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1300000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/08/30 Monitoring Termination Date 1969/12/31

133

SOFC combined cycle systems for distributed generation  

SciTech Connect

The final phase of the tubular SOFC development program will focus on the development and demonstration of pressurized solid oxide fuel cell (PSOFC)/gas turbine (GT) combined cycle power systems for distributed power applications. The commercial PSOFC/GT product line will cover the power range 200 kWe to 50 MWe, and the electrical efficiency for these systems will range from 60 to 75% (net AC/LHV CH4), the highest of any known fossil fueled power generation technology. The first demonstration of a pressurized solid oxide fuel cell/gas turbine combined cycle will be a proof-of-concept 250 kWe PSOFC/MTG power system consisting of a single 200 kWe PSOFC module and a 50 kWe microturbine generator (MTG). The second demonstration of this combined cycle will be 1.3 MWe fully packaged, commercial prototype PSOFC/GT power system consisting of two 500 kWe PSOFC modules and a 300 kWe gas turbine.

Brown, R.A.

1997-05-01T23:59:59.000Z

134

MHK Technologies/Syphon Wave Generator | Open Energy Information  

Open Energy Info (EERE)

Syphon Wave Generator Syphon Wave Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Syphon Wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Oscillating Water Column Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Syphon Wave Generator is composed of a horizontal pipe containing a propeller driven generator mounted above the highest normal wave at high tide and two or more vertical pipes at least one at each end of the horizontal pipe Each vertical pipe must extend below the water surface at all times and have openings below the surface All the air must be removed from the pipe thus filling the unit completely with water When the crest of a wave reaches the first vertical pipe the water level will be higher at that pipe than at the second vertical pipe This causes water to flow up the first pipe and through the horizontal pipe thus turning the propeller and generator to produce electricity and then down the second vertical pipe due to the siphon effect When the crest of the wave moves to the second vertical pipe the water level is higher there than at the first pipe This will cause the water to flow up the second pipe and through the system in the opposite direction again prod

135

Next-Generation Search Engines for Information Retrieval  

SciTech Connect

In the recent years, there have been significant advancements in the areas of scientific data management and retrieval techniques, particularly in terms of standards and protocols for archiving data and metadata. Scientific data is rich, and spread across different places. In order to integrate these pieces together, a data archive and associated metadata should be generated. Data should be stored in a format that can be retrievable and more importantly it should be in a format that will continue to be accessible as technology changes, such as XML. While general-purpose search engines (such as Google or Bing) are useful for finding many things on the Internet, they are often of limited usefulness for locating Earth Science data relevant (for example) to a specific spatiotemporal extent. By contrast, tools that search repositories of structured metadata can locate relevant datasets with fairly high precision, but the search is limited to that particular repository. Federated searches (such as Z39.50) have been used, but can be slow and the comprehensiveness can be limited by downtime in any search partner. An alternative approach to improve comprehensiveness is for a repository to harvest metadata from other repositories, possibly with limits based on subject matter or access permissions. Searches through harvested metadata can be extremely responsive, and the search tool can be customized with semantic augmentation appropriate to the community of practice being served. One such system, Mercury, a metadata harvesting, data discovery, and access system, built for researchers to search to, share and obtain spatiotemporal data used across a range of climate and ecological sciences. Mercury is open-source toolset, backend built on Java and search capability is supported by the some popular open source search libraries such as SOLR and LUCENE. Mercury harvests the structured metadata and key data from several data providing servers around the world and builds a centralized index. The harvested files are indexed against SOLR search API consistently, so that it can render search capabilities such as simple, fielded, spatial and temporal searches across a span of projects ranging from land, atmosphere, and ocean ecology. Mercury also provides data sharing capabilities using Open Archive Initiatives Protocol for Metadata Handling (OAI-PMH). In this paper we will discuss about the best practices for archiving data and metadata, new searching techniques, efficient ways of data retrieval and information display.

Devarakonda, Ranjeet [ORNL; Hook, Leslie A [ORNL; Palanisamy, Giri [ORNL; Green, James M [ORNL

2011-01-01T23:59:59.000Z

136

Geographic Information System At Central Nevada Seismic Zone Region (Laney,  

Open Energy Info (EERE)

Geographic Information System At Central Nevada Seismic Zone Region (Laney, Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Laney, 2005) Exploration Activity Details Location Central Nevada Seismic Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital

137

Corporate Information Systems | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Corporate Information Systems Corporate Information Systems Corporate Information Systems The mission of the Office of Corporate Information Systems (CF-40) is to plan and manage the design, development, operation and maintenance of the Department's Integrated Management Navigation (iManage) program and projects; identify and implement business process automation initiatives; provide technical support for legacy systems operations and maintenance; provide technical support for web design, development and maintenance; manage cyber security and enterprise architecture activities; and serve as the liaison to Chief Information Officer for Information Technology services. Functions: Plan and manage the design, integration, and implementation of the Department's corporate business systems through the iManage program,

138

Strategic Information Systems and Business Outcomes  

Science Journals Connector (OSTI)

This large-scale study of 1,990 responses from practitioners in a wide range of industries developed and tested a model of relationships among a specific type of strategic information system --strategic performance measurement systems SPMS --characteristics ... Keywords: Design Purposes, Financial and Non-Financial-Measures, Impact On Business Outcomes, Information Quality, Information Technology Use, Strategic Performance Measurement Systems SPMS, System Effectiveness

Alberto Bento, Regina Bento, Lourdes White, Ana Bento

2014-01-01T23:59:59.000Z

139

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Sites Sites These rankings are based on the EM-40 Release Site Methodology. Select a release site to receive information concerning that site. Please note that not all of the listed sites are linked to further information. Big Bayou Creek Big Bayou Creek Monitoring Station C-100 South Side Berm C-100 Trailer Complex Soil Contamination C-200 Underground Gasoline Tanks (UST) C-304 Bldg/HVAC Piping System (Soil Backfill) C-310 PCB Soil Contamination (West Side) C-331 PCB Soil Contamination (Southeast) C-331 PCB Soil Contamination (West) C-331 RCW Leak East Side C-331 RCW Leak Northwest Side C-333-A Vaporizer C-333 PCB Soil Contamination C-333 Cooling Tower Scrap Wood Pile C-333 PCB Soil Contamination (West) C-333 PCB Waste Storage Area C-333A Sewage Treatment Aeration Tank

140

Method and system for radioisotope generation  

DOE Patents (OSTI)

A system and a process for producing selected isotopic daughter products from parent materials characterized by the steps of loading the parent material upon a sorbent having a functional group configured to selectively bind the parent material under designated conditions, generating the selected isotopic daughter products, and eluting said selected isotopic daughter products from the sorbent. In one embodiment, the process also includes the step of passing an eluent formed by the elution step through a second sorbent material that is configured to remove a preselected material from said eluent. In some applications a passage of the material through a third sorbent material after passage through the second sorbent material is also performed.

Toth, James J.; Soderquist, Chuck Z.; Greenwood, Lawrence R.; Mattigod, Shas V.; Fryxell, Glen E.; O'Hara, Matthew J.

2014-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Generator coordinate method for the multicluster system  

Science Journals Connector (OSTI)

We have introduced a new "hole" formulation by using two rules for deriving the generator coordinate method kernels of the multicluster system with any cluster partitions. The uniform formulae for the overlap kernel, kinetic energy kernel, and potential energy kernel given in this paper can be used easily and are available for computing codes without any further treatment. We have used them to calculate the binding energies of 1p shell nuclei and 1p shell ? hypernuclei.NUCLEAR STRUCTURE Derived formulae of kernels. Calculated binding energies of 1p shell nuclei, ? hypernuclei.

Shi Yi-jin

1983-12-01T23:59:59.000Z

142

EcoGeneration Solutions LLC | Open Energy Information  

Open Energy Info (EERE)

EcoGeneration Solutions LLC EcoGeneration Solutions LLC Jump to: navigation, search Name EcoGeneration Solutions LLC Place Houston, Texas Zip 77070 Sector Solar Product Holds several technology companies in the fields of cogeneration and solar energy systems. Coordinates 29.76045°, -95.369784° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.76045,"lon":-95.369784,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

143

Environmentally Protective Power Generation EPPG | Open Energy Information  

Open Energy Info (EERE)

Environmentally Protective Power Generation EPPG Environmentally Protective Power Generation EPPG Jump to: navigation, search Name Environmentally Protective Power Generation (EPPG) Place Tucson, Arizona Sector Wind energy Product Seeking financing for a Tower system, about which little has been disclosed, which would have wind and other backup. Coordinates 32.221553°, -110.969754° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.221553,"lon":-110.969754,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

144

Distributed Generation Study/Modern Landfill | Open Energy Information  

Open Energy Info (EERE)

Landfill Landfill < Distributed Generation Study Jump to: navigation, search Study Location Model City, New York Site Description Other Utility Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G3516 Heat Recovery Systems Built-in Fuel Biogas System Installer Innovative Energy Systems System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 7 Stand-alone Capability Seamless Power Rating 5600 kW5.6 MW 5,600,000 W 5,600,000,000 mW 0.0056 GW 5.6e-6 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 28000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2004/12/31 Monitoring Termination Date 1969/12/31

145

Distributed Generation Study/VIP Country Club | Open Energy Information  

Open Energy Info (EERE)

VIP Country Club VIP Country Club < Distributed Generation Study Jump to: navigation, search Study Location New Rochelle, New York Site Description Commercial-Other Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Advanced Power Systems System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 3 Stand-alone Capability Seamless Power Rating 180 kW0.18 MW 180,000 W 180,000,000 mW 1.8e-4 GW 1.8e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 750000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/01/24 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

146

MHK Technologies/KESC Tidal Generator | Open Energy Information  

Open Energy Info (EERE)

KESC Tidal Generator KESC Tidal Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage KESC Tidal Generator.jpg Technology Profile Primary Organization Kinetic Energy Systems Project(s) where this technology is utilized *MHK Projects/Newfound Harbor Project Technology Resource Click here Current/Tidal Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1-3: Discovery / Concept Definition / Early Stage Development & Design & Engineering Technology Description The Tidal Generator is based on free flow hydrodynamics for regions that have flood and ebb tides. Strategically attached to bridges, pilings, river, channel, or sea bottoms, this multi-directional generator contains two sets of turbine blades. As the tide flows inward the inward turbine blades opens to maximum rotor diameter while the outward turbine closes into the outward cone-shaped hub to create a hydro dynamically clean surface for water to flow without drag. The center diameter is 75% of the diameter of the turbine blades at full rotor extension for stability.

147

Geographic information systems (GIS) for geologic mapping  

SciTech Connect

The computer-based Geographic Information System (GIS) is a powerful and versatile tool for preparation of geologic maps. Using GIS different types of geographically oriented information can be displayed on a common base in a flexible format that facilitates examination of relationships between the types of information. In addition, text-based and graphic information (attributes) from separate databases can be attached to points, lines or areas within the different map layers. Although GIS has enormous potential for geologic mapping, it must be used with care. Key considerations when using GIS include realistic representation of the geology, choice of an appropriate scale for the maps, and comparison of the computer-generated maps with field observations to maintain quality control. In building multilayer GIS maps, the data sources must be at a scale appropriate to the intended use. Information derived from diverse sources must be examined carefully to assure that it is valid at the scale of representation required. Examples of GIS products created for one purpose, but potentially misused for a different purpose, include formation contacts (lines) on a regional geologic map scaled up for a facility siting study or well locations on a small-scale location map subsequently contoured for contaminant plume prediction at a very large scale. In using GIS to prepare geologic maps, it is essential to have a clear rationale for the map and use an appropriate scale to depict the various layers of information. The authors of GIS-based geologic maps must be aware that the attractive, polished appearance of their products may tempt some end users to stretch and misinterpret the information displayed.

Schock, S.C. (Environmental Protection Agency, Cincinnati, OH (United States). Center for Environmental Research Information)

1993-03-01T23:59:59.000Z

148

Information sharing for distributed intrusion detection systems  

Science Journals Connector (OSTI)

In this paper, we present an information sharing model for distributed intrusion detection systems. The typical challenges faced by distributed intrusion detection systems is what information to share and how to share information. We address these problems ... Keywords: Anomaly detection, Denial of service attack, Distributed intrusion detection, Information sharing, Reflector attack

Tao Peng; Christopher Leckie; Kotagiri Ramamohanarao

2007-08-01T23:59:59.000Z

149

STUDENT INFORMATION SYSTEMS: 2008-2009 MANUAL  

E-Print Network (OSTI)

STUDENT INFORMATION SYSTEMS: 2008-2009 MANUAL Student Academic Affairs Office College of Education #12;ii #12;SIS Manual: 2008-2009 iii TABLE OF CONTENTS ABOUT STUDENT INFORMATION SYSTEMS (SIS.............................................................................................1 STUDENTS

Gilbert, Matthew

150

Northwest Habitat Institute Integrated Habitat and Biodiversity Information SystemIntegrated Habitat and Biodiversity Information System  

E-Print Network (OSTI)

Northwest Habitat Institute Integrated Habitat and Biodiversity Information SystemIntegrated Habitat and Biodiversity Information System (IBIS) for the Columbia River Basin(IBIS) for the Columbia

151

MHK Technologies/Water Current Generator Motor | Open Energy Information  

Open Energy Info (EERE)

Generator Motor Generator Motor < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Global Energies Inc Technology Type Click here Cross Flow Turbine Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description Simple Vertical Axis fully submerged open design flow through unit operating an onboard Pump unit that drives an on shore power generation system Slow turning swim through for Marine life Anchoring depends on topography and composition of resource bed Removable Scalable Please note that the Website is very old and needs updating In 2007 we hired Independent Engineering firm in Seattle to conduct extensive fluid dynamic testing or our design concepts and overall system Tests were completed much more extensively than we envisioned and were very positive for our needs and build out of a full size model We have been stuck and broke as it s all out of pocket in this position ever since as those Engineering costs were much more than anticipated

152

Geographic Information System At International Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area, Indonesia (Nash, Et Al., 2002) Exploration...

153

Geographic Information System (Monaster And Coolbaugh, 2007)...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System (Monaster And Coolbaugh, 2007) Exploration Activity Details Location...

154

United Solar Systems | Open Energy Information  

Open Energy Info (EERE)

United Solar Systems Place: Troy, MI References: United Solar Systems1 Information About Partnership with NREL Partnership with NREL Yes Partnership Type "CRADA" is not in the...

155

Information Concerning Reliability Impacts under Various System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impacts under Various System Configurations of the Mirant Potomac River Plant Information Concerning Reliability Impacts under Various System Configurations of the Mirant...

156

Distributed Generation Study/Emerling Farm | Open Energy Information  

Open Energy Info (EERE)

Emerling Farm Emerling Farm < Distributed Generation Study Jump to: navigation, search Study Location Perry, New York Site Description Agricultural Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G379 Heat Recovery Systems Built-in Fuel Biogas System Installer RCM Digesters System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability Seamless Power Rating 200 kW0.2 MW 200,000 W 200,000,000 mW 2.0e-4 GW 2.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 2000000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/06/07 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

157

Distributed Generation Study/Floyd Bennett | Open Energy Information  

Open Energy Info (EERE)

Bennett Bennett < Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Other Study Type Long-term Monitoring Technology Microturbine Prime Mover Capstone C60 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Montreal Construction System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability Seamless Power Rating 120 kW0.12 MW 120,000 W 120,000,000 mW 1.2e-4 GW 1.2e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 230000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2005/07/21 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

158

Distributed Generation Study/Arrow Linen | Open Energy Information  

Open Energy Info (EERE)

Study/Arrow Linen Study/Arrow Linen < Distributed Generation Study Jump to: navigation, search Study Location Brooklyn, New York Site Description Commercial-Other Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Coast Intelligen 150-IC with ECS Heat Recovery Systems Built-in Fuel Natural Gas System Installer Energy Concepts System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 300 kW0.3 MW 300,000 W 300,000,000 mW 3.0e-4 GW 3.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 3000000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2005/03/01 Monitoring Termination Date 1969/12/31

159

Distributed Generation Study/Tudor Gardens | Open Energy Information  

Open Energy Info (EERE)

Tudor Gardens Tudor Gardens < Distributed Generation Study Jump to: navigation, search Study Location New York, New York Site Description Residential-Multifamily-Single Building Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Tecogen CM-75 Heat Recovery Systems Built-in Fuel Natural Gas System Installer Aegis Energy System Enclosure Indoor System Application Combined Heat and Power Number of Prime Movers 2 Stand-alone Capability None Power Rating 150 kW0.15 MW 150,000 W 150,000,000 mW 1.5e-4 GW 1.5e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 980000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2005/07/01 Monitoring Termination Date 1969/12/31

160

Distributed Generation Study/Patterson Farms | Open Energy Information  

Open Energy Info (EERE)

Farms Farms < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Caterpillar G3508 Heat Recovery Systems Built-in Fuel Biogas System Installer RCM Digesters System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability Seamless Power Rating 180 kW0.18 MW 180,000 W 180,000,000 mW 1.8e-4 GW 1.8e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 2000 Cooling Capacity (Refrig/Tons) Origin of Controller Manufacturer-Integrated Component Integration Factory Integrated Start Date 2006/03/10 Monitoring Termination Date 1969/12/31 Primary Power Application Based Load

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Distributed Generation Study/Matlink Farm | Open Energy Information  

Open Energy Info (EERE)

Matlink Farm Matlink Farm < Distributed Generation Study Jump to: navigation, search Study Location Clymers, New York Site Description Agricultural Study Type Long-term Monitoring Technology Internal Combustion Engine Prime Mover Waukesha 145 Heat Recovery Systems Built-in Fuel Biogas System Installer Martin Machine System Enclosure Outdoor System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 145 kW0.145 MW 145,000 W 145,000,000 mW 1.45e-4 GW 1.45e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1500000 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Off-the-Shelf Component Integration Customer Assembled Start Date 2004/10/28 Monitoring Termination Date 2005/07/16 Primary Power Application Based Load

162

MANAGEMENT INFORMATION SYSTEMS (MIS) CONCENTRATION FOR UNDERGRADUATES  

E-Print Network (OSTI)

MANAGEMENT INFORMATION SYSTEMS (MIS) CONCENTRATION FOR UNDERGRADUATES The management information systems concentration, like a major, focuses on the use of information technology for value creation creation. Link to Rensselaer 2012-2013 Catalog Required Courses MGMT 4240 Systems Analysis & Design MGMT

Salama, Khaled

163

Intelligent Control of Energy-Saving Power Generation System  

Science Journals Connector (OSTI)

Highway power generation system which is environmentally friendly and sustainable provides an innovative method of energy conversion. It is also as a kind ... solar electric generation system integration. Develop...

Zhiyuan Zhang; Guoqing Zhang; Zhizhong Guo

2013-01-01T23:59:59.000Z

164

A benchmark diagnostic model generation system  

Science Journals Connector (OSTI)

It is critical to use automated generators for synthetic models and data given the sparsity of benchmark models for empirical analysis and the cost of generating models by hand. We describe an automated generator for benchmark models that is based on ... Keywords: benchmark model generation, compositional modeling, diagnosis

Jun Wang; Gregory Provan

2010-05-01T23:59:59.000Z

165

Geographic Information System (Laney, 2005) | Open Energy Information  

Open Energy Info (EERE)

Geographic Information System (Laney, 2005) Geographic Information System (Laney, 2005) Exploration Activity Details Location Unspecified Exploration Technique Geographic Information System Activity Date Usefulness useful DOE-funding Unknown Notes Geology and Geophysics of Geothermal Systems, Gregory Nash, 2005. This project has also reinforced the value of geographic information systems (GIS) in exploration efforts. GIS has enabled the visualization of data, storage and access of disparate data sets, and merging of data that would not be possible using any other technology. While CAD is preferred by some in geothermal exploration, it lacks a multitude of the functions facilitated with GIS. References Patrick Laney (2005) Federal Geothermal Research Program Update - Fiscal Year 2004 Retrieved from "http://en.openei.org/w/index.php?title=Geographic_Information_System_(Laney,_2005)&oldid=38930

166

Coal pulverizing systems for power generation  

SciTech Connect

The pulverized coal-fired boiler for power generation is a mature technology which requires the production of fine coal for combustion. The product material particle size is smaller than 250 microns and about 70 percent smaller than 75 microns. It is no coincidence that most of the new coal technologies for combustion or gasification require a product with a similar particle size distribution for complete reaction. This particle size distribution provides coal particles which can react with oxygen in the air at local velocities and resident times in the boiler furnace to result in almost complete combustion or gasification with 1 or 2 percent carbon loss in the resulting ash. Size reduction, while being one of the most common unit operations on material is also one of the least understood, requiring a high energy input. When pulverizing coal of the particle size required there is an added complication that the product may spontaneously ignite, particularly if the process passes through a stage when an explosive or at least highly combustible mixture of fine coal and air is present. The pulverized coal system covers that portion of the power station from coal bunkers to feeders, pulverizers and delivery system to the boiler burner or gasifier injection point. The transport medium has traditionally been air and in some cases inert gases. The system has usually been lean phase with air to coal ratios in excess of 1:4:1. More recently, a few systems have been dense phase with air to coal ratios of 1:30 up to 1:100. This has the distinct advantage of reduced transport pipe diameter. The key element in the system, the coal pulverizer, will be considered first.

Sligar, J.

1993-12-31T23:59:59.000Z

167

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)  

E-Print Network (OSTI)

Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the potential to meet the worldwide demand of electricity and they contribute to the total generation

Suo, Zhigang

168

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for TETRACHLOROETHYLENE Condensed Toxicity Summary for TETRACHLOROETHYLENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. MARCH 1993 Prepared by: Mary Lou Daugherty, M.S., Chemical Hazard Evaluation Group, Biomedical Environmental Information Analysis Section, Health and Safety Research Division, Oak Ridge National Laboratory*, Oak Ridge, Tennessee. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Tetrachloroethylene (CAS No. 127-18-4) is a halogenated aliphatic

169

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for ETHYLBENZENE Condensed Toxicity Summary for ETHYLBENZENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. Prepared by: Dennis M. Opresko, Ph.D., Chemical Hazard Evaluation Group in the Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, Oak Ridge National Laboratory*. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Ethylbenzene is a colorless, flammable liquid with a pungent odor (Cavender 1994). The water solubility of ethylbenzene is 0.014 g/100 mL and its vapor

170

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

BENZO[A]PYRENE BENZO[A]PYRENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. December 1994 Prepared by: Rosmarie A. Faust, Ph.D., Chemical Hazard Evaluation Group, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *, Oak Ridge, Tennessee. Prepared for: OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Benzo[a]pyrene is a polycyclic aromatic hydrocarbon (PAH) that can be derived from coal tar. Benzo[a]pyrene occurs ubiquitously in products of

171

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for AROCLOR-1260 Condensed Toxicity Summary for AROCLOR-1260 NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. Prepared by C. B. Bast, Ph.D., D.A.B.T., Chemical Hazard Evaluation Group, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400 Aroclor® 1260 is a polychlorinated biphenyl (PCB) mixture containing approximately 38% C12H4Cl6, 41% C12H3Cl7, 8% C12H2Cl8, and 12% C12H5Cl5

172

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for ZINC AND ZINC COMPOUNDS Condensed Toxicity Summary for ZINC AND ZINC COMPOUNDS NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. April 1992 Prepared by Dennis M. Opresko, Ph.D., Chemical Hazard Evaluation and Communication Group, Biomedical and Environmental Information Analysis Section, Health and Safety Research Division, Oak Ridge National Laboratory*, Oak Ridge, Tennessee Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400 Zinc is used primarily in galvanized metals and metal alloys, but zinc

173

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for THALLIUM Condensed Toxicity Summary for THALLIUM NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. DECEMBER 1994 Prepared by: Tim Borges and Mary Lou Daugherty, Chemical Hazard Evaluation Group, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, Oak Ridge National Laboratory*, Oak Ridge, Tennessee. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. This report is an update of the Toxicity Summary for Thallium (CAS Registry

174

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for ASBESTOS Condensed Toxicity Summary for ASBESTOS NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. August 1995 Prepared by: Rosmarie A. Faust, Ph.D., Chemical Hazard Evaluation Group, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *, Oak Ridge, Tennessee. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM. *Managed by Lockheed Martin Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Asbestos (CAS No. 1332-21-4) is the generic name for a variety of naturally formed hydrated silicates containing metal cations such as sodium,

175

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for METHYL ISOBUTYL KETONE Condensed Toxicity Summary for METHYL ISOBUTYL KETONE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. July 1995 Prepared by Rosmarie A. Faust, Ph.D., Chemical Hazard Evaluation and Communication Program, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *, Oak Ridge, Tennessee. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM. *Managed by Lockheed Martin Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Methyl isobutyl ketone (MIBK) (CAS Reg. No. 108-10-1), a clear liquid with

176

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

-DINITROTOLUENE -DINITROTOLUENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. Prepared by: Rosmarie A. Faust, Ph.D., Chemical Hazard Evaluation Group in the Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, Oak Ridge National Laboratory*. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. This report is an update of the Toxicity Summary for 2,4-Dinitrotoluene (CAS Registry No. 121-14-2). The original summary for this chemical was

177

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for VANADIUM Condensed Toxicity Summary for VANADIUM NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. DECEMBER 1991 Prepared by: Dennis M. Opresko, Ph.D., Chemical Hazard Evaluation and Communication Group Biomedical and Environmental Information Analysis Section, Health and Safety Research Division, *. Oak Ridge, Tennessee Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Vanadium is a metallic element that occurs in six oxidation states and

178

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for MANGANESE Condensed Toxicity Summary for MANGANESE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. July 1995 Prepared by A. A. Francis and C. Forsyth, Chemical Hazard Evaluation Group, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *, Oak Ridge, Tennessee Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM *Managed by Lockheed Martin Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400 Manganese is an essential trace element in humans that can elicit a variety of serious toxic responses upon prolonged exposure to elevated

179

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

2-DICHLOROETHANE 2-DICHLOROETHANE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. May 1994 Prepared by Dennis M. Opresko, Ph.D., Chemical Hazard Evaluation and Communication Program, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *, Oak Ridge, Tennessee. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under contract No. DE-AC05-84OR21400. 1,2-Dichloroethane is used primarily in the manufacture of vinyl chloride, as well as in the synthesis of tetrachloroethylene, trichloroethylene,

180

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

COPPER COPPER NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. DECEMBER 1992 Prepared by: Rosmarie A. Faust, Ph.D., Chemical Hazard Evaluation and Communication Group, Biomedical and Environmental Information Analysis Section, Health and Safety Research Division, *, Oak Ridge, Tennessee. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Copper occurs naturally in elemental form and as a component of many minerals. Because of its high electrical and thermal conductivity, it is

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

TRICHLOROETHENE TRICHLOROETHENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. MARCH 1993 Prepared by: Rosmarie A. Faust, Ph.D, Chemical Hazard Evaluation Group, Biomedical Environmental Information Analysis Section, Health and Safety Research Division, *, Oak Ridge, Tennessee Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Trichloroethene (TCE) is an industrial solvent used primarily in metal degreasing and cleaning operations. TCE can be absorbed through the lungs,

182

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

CHLORDANE CHLORDANE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. December 1994 Prepared by: Carol S. Forsyth, Ph.D., Chemical Hazard Evaluation Group, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *, Oak Ridge, Tennessee. Prepared for: OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM. *Managed by Martin Marietta Energy Systems Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Technical grade chlordane is a mixture of structurally related compounds including trans-chlordane, cis-chlordane, -chlordene, heptachlor, and

183

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for METHYL MERCURY Condensed Toxicity Summary for METHYL MERCURY NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. FEBRUARY, 1992 Prepared by: Robert A. Young, Ph.D., D.A.B.T., Chemical Hazard Evaluation and Communication Group Biomedical and Environmental Information Analysis Section, Health and Safety Research Division, *, Oak Ridge, Tennessee. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Methyl mercury is formed by biotic and abiotic methylation of mercury

184

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

FLUORANTHENE FLUORANTHENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. August 1993 Prepared by Rosmarie A. Faust, Ph.D., Chemical Hazard Evaluation and Communication Program, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *, Oak Ridge, Tennessee. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under contract No. DE-AC05-84OR21400. Fluoranthene is a polycyclic aromatic hydrocarbon (PAH) that can be derived from coal tar. Occurring ubiquitously in products of incomplete combustion

185

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for BENZENE Condensed Toxicity Summary for BENZENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. September 1992 Prepared by: Mary Lou Daugherty, M.S., Chemical Hazard Evaluation and Communication Group, Biomedical and Environmental Information Analysis Section, Health and Safety Research Division*, , Oak Ridge, Tennessee. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Benzene is absorbed via ingestion, inhalation, and skin application.

186

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for METHYLENE CHLORIDE Condensed Toxicity Summary for METHYLENE CHLORIDE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. September 1993 Prepared by Cheryl B. Bast, Ph.D., Chemical Hazard Evaluation and Communication Program, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *, Oak Ridge, Tennessee. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under contract No. DE-AC05-84OR21400. Methylene chloride (CH2Cl2, CAS No. 75-09-2), also known as dichloromethane

187

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

SELENIUM SELENIUM NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. MARCH 1993 Prepared by: Dennis M. Opresko, Ph.D, Chemical Hazard Evaluation Group, Biomedical Environmental Information Analysis Section, Health and Safety Research Division, Oak Ridge National Laboratory*, Oak Ridge, Tennessee. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Selenium is an essential trace element important in many biochemical and physiological processes including the biosynthesis of coenzyme Q (a

188

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for MOLYBDENUM Condensed Toxicity Summary for MOLYBDENUM NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. JANUARY 1993 Prepared by: Dennis M. Opresko, Ph.D., Chemical Hazard Evaluation Group, Biomedical and Environmental Information Analysis Section, Health and Safety Research Division, *, Oak Ridge, Tennessee. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Molybdenum (Mo) occurs naturally in various ores; the principal source being molybdenite (MoS2) (Stokinger, 1981). Molybdenum compounds are used

189

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

LITHIUM LITHIUM NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. May 1995 Prepared by Dennis M. Opresko, Ph.D., Chemical Hazard Evaluation and Communication Program, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *, Oak Ridge, Tennessee. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under contract No. DE-AC05-84OR21400. Lithium is an alkali metal similar to magnesium and sodium in its properties (Birch, 1988; Arena, 1986) and has a molecular weight of 6.941

190

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for ALUMINUM Condensed Toxicity Summary for ALUMINUM NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. September 1993 Prepared by Cheryl B. Bast, Chemical Hazard Evaluation Group, Biomedical Environmental Information Analysis Section, Health Sciences Research Division, *, Oak Ridge, Tennessee. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. Aluminum is a silver-white flexible metal with a vast number of uses. It is poorly absorbed and efficiently eliminated; however, when absorption does

191

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

CYANIDE CYANIDE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. February 1994 Prepared by Rosmarie A. Faust, Ph.D., Chemical Hazard Evaluation and Communication Group, Biomedical and Environmental Information Analysis Section, Health and Safety Research Division, *, Oak Ridge, Tennessee. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400 Cyanide most commonly occurs as hydrogen cyanide and its salts--sodium and potassium cyanide. Cyanides are both man-made and naturally occurring

192

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for 1,4-DICHLOROBENZENE Condensed Toxicity Summary for 1,4-DICHLOROBENZENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. Prepared by: James C. Norris, Ph.D, Chemical Hazard Evaluation Group in the Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, Oak Ridge National Laboratory*. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. 1,4-Dichlorobenzene (CAS 106-46-7), also referred to as para-DCB, p-DCB, paracide, Paramoth®, Parazene®, PDB, and Santochlor®, has a benzene ring

193

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Condensed Toxicity Summary for 2,6-DINITROTOLUENE Condensed Toxicity Summary for 2,6-DINITROTOLUENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. Prepared by: Rosmarie A. Faust, Ph.D., Chemical Hazard Evaluation Group in the Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, Oak Ridge National Laboratory*. Prepared for: Oak Ridge Reservation Environmental Restoration Program. *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400. 2,6-Dinitrotoluene (2,6-DNT; 2-methyl-1,3-dinitrobenzene; CAS Reg. No. 606-20-2) is a pale yellow crystalline solid and one of six possible

194

Nevada Application For Renewable Energy System Generators | Open...  

Open Energy Info (EERE)

Nevada Application For Renewable Energy System Generators Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: Nevada Application For Renewable Energy System...

195

Geographic Information System At Walker-Lane Transitional Zone Region  

Open Energy Info (EERE)

Geographic Information System At Walker-Lane Geographic Information System At Walker-Lane Transitional Zone Region (Laney, 2005) Exploration Activity Details Location Walker-Lane Transition Zone Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial

196

Geographic Information System At Northern Basin & Range Region (Laney,  

Open Energy Info (EERE)

Geographic Information System At Northern Basin & Geographic Information System At Northern Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northern Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial

197

WHO Statistical Information System (WHOSIS) | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » WHO Statistical Information System (WHOSIS) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: WHO Statistical Information System (WHOSIS) Agency/Company /Organization: World Health Organization (WHO) Topics: Co-benefits assessment, Policies/deployment programs, Resource assessment Resource Type: Dataset Website: www.who.int/whosis/en/ WHO Statistical Information System (WHOSIS) Screenshot References: WHO Statistical Information System (WHOSIS)[1] Overview "The World Health Organization is the United Nations specialized agency for health. WHO's objective, as set out in its Constitution, is the attainment by all peoples of the highest possible level of health. The WHO Statistical Information System is the guide to health and

198

Automatic generation of stop word lists for information retrieval and analysis  

DOE Patents (OSTI)

Methods and systems for automatically generating lists of stop words for information retrieval and analysis. Generation of the stop words can include providing a corpus of documents and a plurality of keywords. From the corpus of documents, a term list of all terms is constructed and both a keyword adjacency frequency and a keyword frequency are determined. If a ratio of the keyword adjacency frequency to the keyword frequency for a particular term on the term list is less than a predetermined value, then that term is excluded from the term list. The resulting term list is truncated based on predetermined criteria to form a stop word list.

Rose, Stuart J

2013-01-08T23:59:59.000Z

199

Information Systems Engineering | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Information Information Systems Engineering Information Systems Engineering The OCIO is dedicated to supporting the development and maintenance of DOE Department wide and site-specific software and IT systems engineering initiatives. This webpage contains resources, checklists, templates, and samples that can be downloaded, plus links to many other informative web sites. In particular, the Department of Energy has issued the DOE Systems Engineering Methodology (SEM), which documents the minimum software and IT systems engineering practices that should be implemented on DOE projects, as well as other accompanying guidance documents. The DOE SEM is the Department's standard lifecycle methodology. It integrates IT systems engineering, software engineering, project management, and quality

200

Martifer Energy Systems SA | Open Energy Information  

Open Energy Info (EERE)

Martifer Energy Systems SA Place: Oliveira de Frades, Portugal Sector: Biofuels Product: Portugal-based project developer in the biofuels and electricity generation sectors that...

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Environmental remediation and waste management information systems  

SciTech Connect

The purpose of this paper is to document a few of the many environmental information systems that currently exist worldwide. The paper is not meant to be a comprehensive list; merely a discussion of a few of the more technical environmental database systems that are available. Regulatory databases such as US Environmental Protection Agency`s (EPA`s) RODS (Records of Decision System) database [EPA, 1993] and cost databases such as EPA`s CORA (Cost of Remedial Action) database [EPA, 1993] are not included in this paper. Section 2 describes several US Department of Energy (DOE) Environmental Restoration and Waste Management (EM) information systems and databases. Section 3 discusses several US EPA information systems on waste sites and technologies. Section 4 summarizes a few of the European Community environmental information systems, networks, and clearinghouses. And finally, Section 5 provides a brief overview of Geographical Information Systems. Section 6 contains the references, and the Appendices contain supporting information.

Harrington, M.W.; Harlan, C.P.

1993-12-31T23:59:59.000Z

202

Similarity and Clustering in Chemical Information Systems  

Science Journals Connector (OSTI)

From the Publisher:This book describes the latest developments in computational techniques which increase the effectiveness of the storage, retrieval, and processing of information in computerized chemical information systems. Covers the specifics of ...

John 1953- Willett

1987-04-01T23:59:59.000Z

203

Technology Lecture: Developments in Scientific Information Systems  

Science Journals Connector (OSTI)

...research-article Technology Lecture: Developments...in Scientific Information Systems Robert...application of technology can improve aspects...use electronic information capture, storage...availability of technology may govern choice...

1983-01-01T23:59:59.000Z

204

PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE...  

Energy Savers (EERE)

SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS ENCLAVE PIA - INL SECURITY INFORMATION MANAGEMENT SYSTEM BUSINESS...

205

Ningxia Yinyi Wind Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Yinyi Wind Power Generation Co Ltd Jump to: navigation, search Name: Ningxia Yinyi Wind Power Generation Co Ltd Place: Ningxia Autonomous Region, China Sector: Wind energy Product:...

206

EPA Hazardous Waste Generators Website | Open Energy Information  

Open Energy Info (EERE)

Generators Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: EPA Hazardous Waste Generators Website Abstract This webpage provides general...

207

Datang Jilin Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Jilin Power Generation Co Ltd Jump to: navigation, search Name: Datang Jilin Power Generation Co Ltd Place: Changchun, Jilin Province, China Sector: Wind energy Product: Set up...

208

Velagapudi Power Generation Ltd VPGL | Open Energy Information  

Open Energy Info (EERE)

Velagapudi Power Generation Ltd VPGL Jump to: navigation, search Name: Velagapudi Power Generation Ltd. (VPGL) Place: Vijayawada, Andhra Pradesh, India Zip: 520 007 Sector: Biomass...

209

Project Recap Humanitarian Engineering Biodiesel Boiler System for Steam Generator  

E-Print Network (OSTI)

Project Recap Humanitarian Engineering ­ Biodiesel Boiler System for Steam Generator Currently 70 biodiesel boiler system to drive a steam engine generator. This system is to provide electricity the customer needs, a boiler fueled by biodiesel and outputting to a steam engine was decided upon. The system

Demirel, Melik C.

210

Aircraft AC Generators: Hybrid System Modeling and Simulation  

E-Print Network (OSTI)

1 Aircraft AC Generators: Hybrid System Modeling and Simulation Ashraf Tantawy, Student Member--Integrated Drive Generators (IDGs) are the main source of electrical power for a number of critical systems is a difficult task. dq0 models have been developed for design and control of generators, but these models

Koutsoukos, Xenofon D.

211

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Prepared by C. B. Bast, Ph.D., D.A.B.T., Chemical Hazard Evaluation Group, Prepared by C. B. Bast, Ph.D., D.A.B.T., Chemical Hazard Evaluation Group, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *. Prepared for OAK RIDGE RESERVATION ENVIRONMENTAL RESTORATION PROGRAM *Managed by Martin Marietta Energy Systems, Inc., for the U.S. Department of Energy under Contract No. DE-AC05-84OR21400 Aroclor® 1254 is a polychlorinated biphenyl (PCB) mixture containing approximately 21% C12H6Cl4, 48% C12H5Cl5, 23% C12H4Cl6, and 6% C12H3Cl7 with an average chlorine content of 54% (USAF 1989). PCBs are inert, thermally and physically stable, and have dielectric properties. In the environment, the behavior of PCB mixtures is directly correlated to the degree of chlorination. Aroclor® is strongly sorbed to soil and remains

212

Power Electronic Control for Wind Generation Systems  

Science Journals Connector (OSTI)

...? mathematical models for wind turbines such as wind turbine (WT) with doubly fed induction generator (DFIG) and WT with direct-drive permanent magnet...

Xiao-Ping Zhang; Christian Rehtanz

2012-01-01T23:59:59.000Z

213

Property:Distributed Generation System Application | Open Energy  

Open Energy Info (EERE)

System Application System Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Application" Showing 22 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Combined Heat and Power + Distributed Generation Study/615 kW Waukesha Packaged System + Combined Heat and Power + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Combined Heat and Power + Distributed Generation Study/Arrow Linen + Combined Heat and Power + Distributed Generation Study/Dakota Station (Minnegasco) + Combined Heat and Power + Distributed Generation Study/Elgin Community College + Combined Heat and Power + Distributed Generation Study/Emerling Farm + Combined Heat and Power +

214

Geothermal Binary Power Generation System Using Unutilized Energy  

Science Journals Connector (OSTI)

Binary power generating system is based on the Rankine cycle with geothermal fluid as heating source and low boiling ... can generate electric power from low temperature (energy) source. Employing the binary powe...

Hiroaki Shibata; Hiroshi Oyama

2007-01-01T23:59:59.000Z

215

Control Strategy for Wind and Solar Hybrid Generation System  

Science Journals Connector (OSTI)

Solar energy and wind energy are the two most viable renewable ... . This paper presents a control strategy for wind & solar hybrid power generating systems. If the power generation sources produce more ... strat...

Xin Gao

2011-01-01T23:59:59.000Z

216

Current Generated Harmonics and Their Effect Upon Electrical Industrial Systems  

E-Print Network (OSTI)

This paper provides a general overview of harmonics and addresses the causes of current generated harmonics in electrical systems. In addition, problems caused by current generated harmonics and their affects upon different types of electrical...

Alexander, H. R.; Rogge, D. S.

217

Department of Management Science and Information Systems Seminar  

E-Print Network (OSTI)

Department of Management Science and Information Systems Seminar You are cordially invited, to provide a methodology for generating the conditional price-transition probabilities, as required's eBay store. We are using a model where each period there is a probability a price-transition occurs

Lin, Xiaodong

218

Recommended Security Controls for Federal Information Systems...  

NLE Websites -- All DOE Office Websites (Extended Search)

NIST 800-53 Revision 3 + Draft Revision 4 Recommended Security Controls for Federal Information Systems and Organizations Note: CNTL NO. Table D2: Security Control Base Lines...

219

Hydrothermal System | Open Energy Information  

Open Energy Info (EERE)

Hydrothermal System Hydrothermal System (Redirected from Hydrothermal Systems) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hydrothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Dictionary.png Hydrothermal Systems: A hydrothermal system is one that included fluid, heat, and permeability in a naturally occurring geological formation for the production of electricity. Other definitions:Wikipedia Reegle Geothermal production well at Imperial Valley, California. The drilling of production wells, such as this one in southern California, results in

220

Advanced Distributed Generation LLC ADG | Open Energy Information  

Open Energy Info (EERE)

LLC ADG LLC ADG Jump to: navigation, search Name Advanced Distributed Generation LLC (ADG) Place Toledo, Ohio Zip OH 43607 Product ADG is a general contracting company specializing in the design and installation of photovoltaic (PV) systems. Coordinates 46.440613°, -122.847838° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.440613,"lon":-122.847838,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Definition: Distribution Management System | Open Energy Information  

Open Energy Info (EERE)

Management System Management System Jump to: navigation, search Dictionary.png Distribution Management System A Distribution Management System (DMS) is a utility IT system capable of collecting, organizing, displaying and analyzing real-time or near real-time electric distribution system information. A DMS can also allow operators to plan and execute complex distribution system operations in order to increase system efficiency, optimize power flows, and prevent overloads. A DMS can interface with other operations applications such as geographic information systems (GIS), outage management systems (OMS), and customer information systems (CIS) to create an integrated view of distribution operations.[1] View on Wikipedia Wikipedia Definition In the recent years, utilization of electrical energy increased

222

Altergy Systems | Open Energy Information  

Open Energy Info (EERE)

Zip: 95630 Product: Designs and manufactures proprietary proton exchange membrane (PEM) fuel cell systems. References: Altergy Systems1 This article is a stub. You can help...

223

Information Systems Projects Company Description  

E-Print Network (OSTI)

insurance claims processing, billing, and remittance for auto repair and maintenance facilities around/agency data, from which valuable pipeline and performance statistics can be reported. All of this information

Dahl, David B.

224

Wind energy systems information user study  

SciTech Connect

This report describes the results of a series of telephone interviews with potential users of information on wind energy conversion. These interviews, part of a larger study covering nine different solar technologies, attempted to identify: the type of information each distinctive group of information users needed, and the best way of getting information to that group. Groups studied include: wind energy conversion system researchers; wind energy conversion system manufacturer representatives; wind energy conversion system distributors; wind turbine engineers; utility representatives; educators; county agents and extension service agents; and wind turbine owners.

Belew, W.W.; Wood, B.L.; Marle, T.L.; Reinhardt, C.L.

1981-01-01T23:59:59.000Z

225

Small Wind Guidebook/How Much Energy Will My System Generate | Open Energy  

Open Energy Info (EERE)

How Much Energy Will My System Generate How Much Energy Will My System Generate < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information

226

EIS-0416: Ivanpah Solar Electric Generating System in San Bernardino...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Generating System (07-AFC-5) Project, Proposal to Construct a 400-m Megawatt Concentrated Solar Power Tower, Thermal-Electric Power Plant, San Bernardino County, California July 1,...

227

Graduate Certificate in Geographic Information Systems (GIS)  

E-Print Network (OSTI)

Graduate Certificate in Geographic Information Systems (GIS) Texas A&M University GIS technologies 651/BAEN 651 ­ Geographic Information Systems · GEOG 660 ­ Applications for GIS Intermediate Level (Both are required) 6 hours · ESSM 652/BAEN 652 ­ Advanced Topics in GIS · GEOG 665 ­ GIS ­ based

228

Security Controls for Unclassified Information Systems Manual  

Directives, Delegations, and Requirements

The Manual establishes minimum implementation standards for cyber security technical, management, and operational controls that will be followed in all information systems operated by DOE and the information systems. Does not cancel other directives. Canceled by DOE O 205.1B

2009-01-05T23:59:59.000Z

229

Security Controls for Unclassified Information Systems Manual  

Directives, Delegations, and Requirements

The Manual establishes minimum implementation standards for cyber security technical, management, and operational controls that will be followed in all information systems operated by DOE and the information systems. Admin Chg 1 dated 9-1-09; Admin Chg 2 dated 12-22-09. Canceled by DOE O 205.1B.

2009-01-05T23:59:59.000Z

230

Security Controls for Unclassified Information Systems Manual  

Directives, Delegations, and Requirements

The Manual establishes minimum implementation standards for cyber security technical, management, and operational controls that will be followed in all information systems operated by DOE and the information systems. Admin Chg 1 dated 9-1-09. Canceled by DOE O 205.1B.

2009-01-05T23:59:59.000Z

231

Taking industry seriously in information systems research  

Science Journals Connector (OSTI)

In this essay, we argue that industry receives little attention in information systems research and theory, despite its increasingly important influence on IS activities. This is evident both in the narrow range of industries examined in IS research ... Keywords: industry context, information systems theory, institutional theory

Mike W. Chiasson; Elizabeth Davidson

2005-12-01T23:59:59.000Z

232

Property:Distributed Generation System Power Application | Open Energy  

Open Energy Info (EERE)

Application Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Power Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Based Load + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Based Load + Distributed Generation Study/Arrow Linen + Based Load + Distributed Generation Study/Dakota Station (Minnegasco) + Based Load +, Backup + Distributed Generation Study/Elgin Community College + Based Load +, Backup + Distributed Generation Study/Emerling Farm + Based Load + Distributed Generation Study/Floyd Bennett + Based Load + Distributed Generation Study/Harbec Plastics + Based Load + Distributed Generation Study/Hudson Valley Community College + Based Load +

233

Definition: Reliability Coordinator Information System | Open Energy  

Open Energy Info (EERE)

Reliability Coordinator Information System Reliability Coordinator Information System Jump to: navigation, search Dictionary.png Reliability Coordinator Information System The system that Reliability Coordinators use to post messages and share operating information in real time.[1] Related Terms Reliability Coordinator References ↑ Glossary of Terms Used in Reliability Standards An LikeLike UnlikeLike You like this.Sign Up to see what your friends like. inline Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Reliability_Coordinator_Information_System&oldid=480407" Categories: Definitions ISGAN Definitions What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

234

Zhejiang Windey Wind Generating Engineering | Open Energy Information  

Open Energy Info (EERE)

Windey Wind Generating Engineering Windey Wind Generating Engineering Jump to: navigation, search Name Zhejiang Windey Wind Generating Engineering Place Zhejiang Province, China Zip 313200 Sector Wind energy Product Engaged in the marketing, technical development of wind turbines, quality control, assembly and after sales service. References Zhejiang Windey Wind Generating Engineering[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Zhejiang Windey Wind Generating Engineering is a company located in Zhejiang Province, China . References ↑ "Zhejiang Windey Wind Generating Engineering" Retrieved from "http://en.openei.org/w/index.php?title=Zhejiang_Windey_Wind_Generating_Engineering&oldid=353509"

235

Rayapati Power Generation Pvt Ltd RPGPL | Open Energy Information  

Open Energy Info (EERE)

Rayapati Power Generation Pvt Ltd RPGPL Rayapati Power Generation Pvt Ltd RPGPL Jump to: navigation, search Name Rayapati Power Generation Pvt. Ltd. (RPGPL) Place Hyderabad, Andhra Pradesh, India Zip 500 082 Sector Biomass Product Biomass plant developer and operater. References Rayapati Power Generation Pvt. Ltd. (RPGPL)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Rayapati Power Generation Pvt. Ltd. (RPGPL) is a company located in Hyderabad, Andhra Pradesh, India . References ↑ "[ Rayapati Power Generation Pvt. Ltd. (RPGPL)]" Retrieved from "http://en.openei.org/w/index.php?title=Rayapati_Power_Generation_Pvt_Ltd_RPGPL&oldid=350208" Categories: Clean Energy Organizations

236

MHK Technologies/Current Electric Generator | Open Energy Information  

Open Energy Info (EERE)

Generator Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Current Electric Generator.jpg Technology Profile Primary Organization Current Electric Technology Resource Click here Current Technology Type Click here Axial Flow Turbine Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Current Electric Generator will create electricity in three different processes simultaniously by harnessing the motion of water current to rotate the generator Two forms of magnetic induction and solar cells on the outer housing will produce electricity very efficiently The generators will be wired up together in large fields on open waterways sumerged from harm The electricity will be sent back to mainland via an underwater wire for consumption The Current Electric Generator is designed with the environment in mind and will primarilly be constructed from recycled materials cutting emmisions cost

237

Property:NbrGeneratingUnits | Open Energy Information  

Open Energy Info (EERE)

NbrGeneratingUnits NbrGeneratingUnits Jump to: navigation, search Property Name NbrGeneratingUnits Property Type Number Description Number of Generating Units. Pages using the property "NbrGeneratingUnits" Showing 12 pages using this property. B BLM Geothermal Facility + 3 + Blundell 1 Geothermal Facility + 1 + Blundell 2 Geothermal Facility + 1 + E ENEL Salt Wells Geothermal Facility + 2 + F Faulkner I Energy Generation Facility + 6 + N Navy I Geothermal Facility + 3 + Navy II Geothermal Facility + 3 + Neal Hot Springs Geothermal Power Plant + 3 + North Brawley Geothermal Power Plant + 5 + P Puna Geothermal Facility + 10 + R Raft River Geothermal Facility + 1 + Rocky Mountain Oilfield Testing Center + 1 + Retrieved from "http://en.openei.org/w/index.php?title=Property:NbrGeneratingUnits&oldid=400184#SMWResults"

238

Cognitive Systems Foundations of Information Processing  

E-Print Network (OSTI)

1 Cognitive Systems Foundations of Information Processing in Natural and Artificial Systems 2010 Cognitive Systems 1: Topics · Perception · Memory and Reasoning · Learning and Action · Communication 3 Cognitive Systems 2: Topics · Methods from psychology, neuroscience, informatics: Cognitive modeling

Bremen, Universität

239

Command and Control Information Systems Engineering: Progress and Prospects  

Science Journals Connector (OSTI)

Publisher Summary Systems engineering engrosses all the activities that extend over the life cycle of a system, including requirements definitions, functional designs, development, testing, and evaluation. This chapter describes and provides an analysis of the generic information systems engineering (ISE) process, the domain of military command and control (C2), and the application of the principles of multidisciplinary information systems engineering to C2 information and decision systems engineering. The chapter also presents some command and control ISE case studies intended to illustrate the most salient features of the ISE process. ISE represents an innovative way to think about systems design and development; C2 represents an expanding applications domain; the marriage between ISE and C2 is likely to yield some creative system solutions to existing and future requirements. System solutions are not found only in structured design methodology; but also in the application of advanced and emerging technologies. ISE is structured, yet flexible enough to exploit new technological opportunities. New opportunities for the application of advanced information technology are rising dramatically. Next-generation C2 information and decision systems will appear very different to users; they will be far more powerful, much easier to use, and able to communicate with problem-solving cousins distributed across large, secure and reconstitutable networks.

Stephen J. Andriole

1990-01-01T23:59:59.000Z

240

INFORMATION SYSTEMS UNIT Topic Policies  

E-Print Network (OSTI)

, but not limited to: � Damaging hardware or corrupting software; � Attempting to `hack' into systems; � Using

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Sensorpedia: Information Sharing Across Autonomous Sensor Systems  

SciTech Connect

The concept of adapting social media technologies is introduced as a means of achieving information sharing across autonomous sensor systems. Historical examples of interoperability as an underlying principle in loosely-coupled systems is compared and contrasted with corresponding tightly-coupled, integrated systems. Examples of ad hoc information sharing solutions based on Web 2.0 social networks, mashups, blogs, wikis, and data tags are presented and discussed. The underlying technologies of these solutions are isolated and defined, and Sensorpedia is presented as a formalized application for implementing sensor information sharing across large-scale enterprises with incompatible autonomous sensor systems.

Gorman, Bryan L [ORNL; Resseguie, David R [ORNL; Tomkins-Tinch, Christopher H [ORNL

2009-01-01T23:59:59.000Z

242

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Frequently Asked Questions Frequently Asked Questions This page represents the most commonly approached topics from our users. What internet browser works best for the RAIS? We attempt to accommodate every browser. If there is a problem viewing the RAIS pages or downloading items, let us know what browser you are using and we will try and fix the problem. How can I use the information on the RAIS? The information on the RAIS can be used for teaching material and performing risk assessments that comply with EPA guidance. Feel free to use the information; it is available to the public. However, please give proper credit to the RAIS and the team from Oak Ridge National Laboratory and The University of Tennessee where you see fit. Also, the databases we maintain are updated on a quarterly basis or sooner, so you may need to "time-stamp"

243

Synchronization System for Next Generation Light Sources  

SciTech Connect

An alternative synchronization technique one that would allow explicit control of the pulse train including its repetition rate and delay is clearly desired. We propose such a scheme. Our method is based on optical interferometry and permits synchronization of the pulse trains generated by two independent mode-locked lasers. As the next generation x-ray sources will be driven by a clock signal derived from a mode-locked optical source, our technique will provide a way to synchronize x-ray probe with the optical pump pulses.

Zavriyev, Anton

2014-03-27T23:59:59.000Z

244

Hydrothermal System | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Hydrothermal) (Redirected from Hydrothermal) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hydrothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Dictionary.png Hydrothermal Systems: A hydrothermal system is one that included fluid, heat, and permeability in a naturally occurring geological formation for the production of electricity. Other definitions:Wikipedia Reegle Geothermal production well at Imperial Valley, California. The drilling of production wells, such as this one in southern California, results in one-third to one-half of the cost of a geothermal project. Copyright ©

245

Hydrothermal System | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Hydrothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Dictionary.png Hydrothermal Systems: A hydrothermal system is one that included fluid, heat, and permeability in a naturally occurring geological formation for the production of electricity. Other definitions:Wikipedia Reegle Geothermal production well at Imperial Valley, California. The drilling of production wells, such as this one in southern California, results in one-third to one-half of the cost of a geothermal project. Copyright ©

246

Adura Systems | Open Energy Information  

Open Energy Info (EERE)

Systems Systems Jump to: navigation, search Name Adura Systems Place Menlo Park, California Zip 94025 Product California-based, developer of hybrid vehicle technology. References Adura Systems[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Adura Systems is a company located in Menlo Park, California . References ↑ "Adura Systems" Retrieved from "http://en.openei.org/w/index.php?title=Adura_Systems&oldid=341767" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load) Guru Meditation:

247

Deseret Generation & Tran Coop | Open Energy Information  

Open Energy Info (EERE)

Deseret Generation & Tran Coop Deseret Generation & Tran Coop Jump to: navigation, search Name Deseret Generation & Tran Coop Place Utah Utility Id 40230 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Deseret_Generation_%26_Tran_Coop&oldid=410580"

248

Property:EIA/861/ActivityGeneration | Open Energy Information  

Open Energy Info (EERE)

ActivityGeneration ActivityGeneration Jump to: navigation, search This is a property of type Boolean. Description: Activity Generation Entity engages in power generation activity (Y or N) [1] References ↑ EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA/861/ActivityGeneration" Showing 25 pages using this property. (previous 25) (next 25) A A & N Electric Coop (Virginia) + true + AEP Generating Company + true + AEP Texas North Company + true + AES Eastern Energy LP + true + AGC Division of APG Inc + true + Akiachak Native Community Electric Co + true + Alabama Municipal Elec Authority + true + Alabama Power Co + true + Alaska Electric & Energy Coop + true + Alaska Electric Light&Power Co + true + Alaska Energy Authority + true +

249

MHK Technologies/Floating wave Generator | Open Energy Information  

Open Energy Info (EERE)

Generator Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Floating wave Generator.jpg Technology Profile Primary Organization Green Energy Corp Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Floating Wave Powered Generator is an attenuator that uses three pontoons that pivot on rigid arms as the wave passes driving gears that turn a generator Technology Dimensions Device Testing Date Submitted 45:12.2 << Return to the MHK database homepage Retrieved from "http://en.openei.org/w/index.php?title=MHK_Technologies/Floating_wave_Generator&oldid=681577"

250

Template:Energy Generation Facility | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Template Edit History Facebook icon Twitter icon » Template:Energy Generation Facility Jump to: navigation, search This is the Energy Generation Facility template. Includes facility properties table in sidebar. To update the Geothermal facilities display, edit Template:EnergyGenerationFacilityGeothermalFields. Trying to add your Energy Generation Facility? Add it on the Energy Generation form page instead of editing this page. It should be called in the following format: {{Energy Generation Facility |Facility= |Sector= |FacilityType= |FacilityStatus= |Owner= |Developer= |EnergyPurchaser= |Address= |Place= |Zip= |Coordinates=

251

Loranger Power Generation Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Loranger Power Generation Wind Farm Loranger Power Generation Wind Farm Jump to: navigation, search Name Loranger Power Generation Wind Farm Facility Loranger Power Generation Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Loranger Power Generation Developer Loranger Power Generation Location Berlin NH Coordinates 44.501183°, -71.231588° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.501183,"lon":-71.231588,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

252

Network Reconfiguration at the Distribution System with Distributed Generators  

Science Journals Connector (OSTI)

This article proposes a novel model for distribution network reconfiguration to meet current distribution system operating demands. In the model the connection of distributed generators to distribution system is ...

Gao Xiaozhi; Li Linchuan; Xue Hailong

2010-01-01T23:59:59.000Z

253

Intelligent-controlled doubly fed induction generator system using PFNN  

Science Journals Connector (OSTI)

An intelligent-controlled doubly fed induction generator (DFIG) system using probabilistic fuzzy neural network ( ... the transient and steady-state responses of the DFIG system at different operating conditions....

Faa-Jeng Lin; Yi-Sheng Huang; Kuang-Hsiung Tan

2013-06-01T23:59:59.000Z

254

Kraftwerk Union KWU Siemens Power Generation | Open Energy Information  

Open Energy Info (EERE)

Services Product: KWU is a provider of components and services to the commercial nuclear utility industry. References: Kraftwerk Union (KWU) - Siemens Power Generation.1...

255

Category:Electricity Generating Technologies | Open Energy Information  

Open Energy Info (EERE)

Energy (4 categories) W + Wind (2 categories) 3 pages Pages in category "Electricity Generating Technologies" The following 3 pages are in this category, out of 3...

256

Deseret Generation & Tran Coop (Colorado) | Open Energy Information  

Open Energy Info (EERE)

Coop (Colorado) Jump to: navigation, search Name: Deseret Generation & Tran Coop Place: Colorado References: EIA Form EIA-861 Final Data File for 2010 - File220101 EIA Form 861...

257

Energy-Economic Information System (SIEE) | Open Energy Information  

Open Energy Info (EERE)

Energy-Economic Information System (SIEE) Energy-Economic Information System (SIEE) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Energy-Economic Information System (SIEE) Database Agency/Company /Organization: Latin American Energy Organization Sector: Energy Topics: Baseline projection, GHG inventory, Background analysis Resource Type: Dataset Website: www.olade.org/sieeEn.html Country: Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama, Mexico, Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela, Barbados, Cuba, Grenada, Haiti, Jamaica, Trinidad & Tobago, Dominican Republic Central America, Central America, Central America, Central America, Central America, Central America, Central America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean

258

Legal Energy Information System (SIEL) Database | Open Energy Information  

Open Energy Info (EERE)

Legal Energy Information System (SIEL) Database Legal Energy Information System (SIEL) Database Jump to: navigation, search Tool Summary Name: Legal Energy Information System (SIEL) Database Agency/Company /Organization: Latin American Energy Organization Sector: Energy Focus Area: Renewable Energy Topics: Policies/deployment programs, Background analysis Resource Type: Dataset Website: www.olade.org/sielEn.html Country: Costa Rica, El Salvador, Guatemala, Honduras, Nicaragua, Panama, Mexico, Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, Venezuela, Barbados, Cuba, Grenada, Haiti, Jamaica, Trinidad & Tobago, Dominican Republic Central America, Central America, Central America, Central America, Central America, Central America, Central America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, South America, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean, Caribbean

259

Drilling Systems | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Drilling Systems Jump to: navigation, search Contents 1 Geothermal Lab Call Projects for Drilling Systems 2 Geothermal ARRA Funded Projects for Drilling Systems Geothermal Lab Call Projects for Drilling Systems Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":200,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

260

Vitex Systems | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name: Vitex Systems Place: San Jose, California Zip: CA 95131 USA Product: Production of OLEDs and commercialization of flat panel displays (FPDs)...

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

River Protection Project information systems assessment  

SciTech Connect

The Information Systems Assessment Report documents the results from assessing the Project Hanford Management Contract (PHMC) Hanford Data Integrator 2000 (HANDI 2000) system, Business Management System (BMS) and Work Management System phases (WMS), with respect to the System Engineering Capability Assessment Model (CAM). The assessment was performed in accordance with the expectations stated in the fiscal year (FY) 1999 Performance Agreement 7.1.1, item (2) which reads, ''Provide an assessment report on the selected Integrated Information System by July 31, 1999.'' This report assesses the BMS and WMS as implemented and planned for the River Protection Project (RPP). The systems implementation is being performed under the PHMC HANDI 2000 information system project. The project began in FY 1998 with the BMS, proceeded in FY 1999 with the Master Equipment List portion of the WMS, and will continue the WMS implementation as funding provides. This report constitutes an interim quality assessment providing information necessary for planning RPP's information systems activities. To avoid confusion, HANDI 2000 will be used when referring to the entire system, encompassing both the BMS and WMS. A graphical depiction of the system is shown in Figure 2-1 of this report.

JOHNSON, A.L.

1999-07-28T23:59:59.000Z

262

A reliability assessment methodology for distribution systems with distributed generation  

E-Print Network (OSTI)

Generation and Micro-Grid Networks. v TABLE OF CONTENTS CHAPTER Page I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B. Distribution System Reliability... Generation and Micro-Grid Networks. v TABLE OF CONTENTS CHAPTER Page I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1 A. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B. Distribution System Reliability...

Duttagupta, Suchismita Sujaya

2006-08-16T23:59:59.000Z

263

ENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS  

E-Print Network (OSTI)

and the thermoelectric module should be performed. Active cooling and the design of the heat sink are customized to findENERGY PAYBACK OPTIMIZATION OF THERMOELECTRIC POWER GENERATOR SYSTEMS Kazuaki Yazawa Dept model for optimizing thermoelectric power generation system is developed and utilized for parametric

264

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Profile Tool Chemical Profile Tool Using the Chemical Data Profiles Tool Click on the steps below for detailed instructions about each page of the Chemical Data Profiles Tool. 1. Select Chemical 2. Chemical Profile 1. Select Chemical Select the chemical of interest and click "submit". 2. Chemical Profile Basic information for the chemical is shown in the first section. Next, toxicity infomation (Oral RfDs, Inhalation RfCs, and Cancer Toxicity Values) is displayed in tables filled with data from IRIS, PPRTV, ATSDR, CALEPA, and HEAST. The last section contains an extensive list of parameters for the chemical followed by tables of parameters from EPI, CRC, PERRY, LANGE, and YAWS. Hover over the source to see more information. The "Back" button can be used to view a different chemical profile.

265

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

ORR Offsite: Relative Risk Ranking Sites ORR Offsite: Relative Risk Ranking Sites These rankings are based on the EM-40 Release Site Methodology. Select a release site to receive information concering that site. Please note that not all of the listed sites are linked to further information. Animal Burial Site I Animal Burial Site II Animal Burial Site III Atomic City Auto Parts - Contaminated Creek Sediments Atomic City Auto Parts - Contaminated Soils Atomic City Auto Parts - Surface Debris Clinch River/Poplar Creek CSX Railroad David Witherspoon, Inc., 1630 Site David Witherspoon, Inc., 901 Site Low Dose Rate Irradiation Facility (LDRIF) Lower East Fork Poplar Creek - Bruner Site Lower East Fork Poplar Creek - NOAA Site Lower Watts Bar Reservoir Oak Ridge Tool Engineering, Inc. Solway Drums Site Swine Waste Lagoons

266

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

ORNL: Relative Risk Ranking Sites ORNL: Relative Risk Ranking Sites These rankings are based on the EM-40 Release Site Methodology. Select a release site to receive information concerning that site. Please note that not all of the listed sites are linked to further information. 3001 Storage Canal (OGR) 3517 Filter Pit (Fission Product Development Laboratory) Abandoned Burn Pit Abandoned Sanitary Waste Pipeline and Septic Tank N of 7917 Abandoned Underground Waste Oil Storage Tank 7002A Above-ground Demineralized-water Holding Tanks Aircraft Reactor Experiment Contaminated Tool Storage Aircraft Reactor Experiment Surface Impoundment Buried Scrap Metal Area C-14 Allocation in White Oak Trees C-14 Allocation in White Pine Trees C-14 Allocation in Woody Biomass Plantation Species C-14 Efflux in Yellow Poplar Stand

267

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Plant: Relative Risk Ranking Sites Plant: Relative Risk Ranking Sites These rankings are based on the EM-40 Release Site Methodology. Select a release site to receive information concerning that site. Please note that not all of the listed sites are linked to further information. Abandoned Nitric Acid Pipeline ACN Drum Yard Bear Creek Burial Grounds Bear Creek Contaminated Floodplain Soils Beta-4 Security Pits Building 81-10 Area Mercury Contaminated Soils Building 9201-2 Transformer and Capacitor Storage Area Building 9201-3 Coolant Salt Technology Facility Building 9201-4 Building 9201-4 External Pipes Building 9201-5E Northeast Yard Waste Storage Area Building 9202 East Pad Waste Storage Area Building 9204-2 West Yard Waste Storage Area Building 9206 Underground Tank Building 9215 West Pad Waste Storage Area

268

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

ETTP: Relative Risk Ranking Sites ETTP: Relative Risk Ranking Sites These rankings are based on the EM-40 Release Site Methodology. Select a release site to receive information concerning that site. Please note that not all of the listed sites are linked to further information. 518 Main Substation 600 Series Oil Storage Area 695/687 Oil Storage Operations Building 523 Grease {Burial Site} Building 526 Heavy Equipment Shop Building 569 Heavy Equipment Shop Building 665 Steam Shed Building F-29 Gasoline Station Demolition Materials Placement Area Duct Island Road F-05 Laboratory Burial Ground F-07 Material Warehouse F-08 Laboratory Flannagans Loop Road Groundwater Plume Centered Under North Side of K-1070-C/D Groundwater Plume Emanating from K-1401 Acid Line Groundwater Plume near Mitchell Branch Groundwater Plume Originating from K-1420 Building

269

Energistic Systems | Open Energy Information  

Open Energy Info (EERE)

Energistic Systems Energistic Systems Jump to: navigation, search Logo: Energistic Systems Name Energistic Systems Address 13551 W. 43rd Street Dr Place Golden, Colorado Zip 80403 Sector Solar Product Solar PV and solar thermal systems Website http://www.energisticsystems.u Coordinates 39.749637°, -105.215984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.749637,"lon":-105.215984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

270

Siemens Westinghouse Power Generation SWPG | Open Energy Information  

Open Energy Info (EERE)

Siemens Westinghouse Power Generation SWPG Siemens Westinghouse Power Generation SWPG Jump to: navigation, search Name Siemens Westinghouse Power Generation (SWPG) Place Pittsburgh, Pennsylvania Zip PA 15235-5 Product Siemens Westinghouse Power Generation is the fuel cell subsidiary of Siemens Power Generation. It develops and manufactures stationary solide oxide fuel cells. Coordinates 40.438335°, -79.997459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.438335,"lon":-79.997459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

271

Property:PotentialBiopowerSolidGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerSolidGeneration PotentialBiopowerSolidGeneration Jump to: navigation, search Property Name PotentialBiopowerSolidGeneration Property Type Quantity Description The estimated potential energy generation from solid biopower for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialBiopowerSolidGeneration" Showing 25 pages using this property. (previous 25) (next 25)

272

Property:PotentialHydropowerGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialHydropowerGeneration PotentialHydropowerGeneration Jump to: navigation, search Property Name PotentialHydropowerGeneration Property Type Quantity Description The estimated potential energy generation from Hydropower for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialHydropowerGeneration" Showing 25 pages using this property. (previous 25) (next 25)

273

FirstEnergy Generation Corp | Open Energy Information  

Open Energy Info (EERE)

Generation Corp Generation Corp Jump to: navigation, search Name FirstEnergy Generation Corp Place Ohio Utility Id 6389 Utility Location Yes Ownership W NERC Location RFC NERC RFC Yes Activity Generation Yes Activity Buying Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=FirstEnergy_Generation_Corp&oldid=410695" Categories: EIA Utility Companies and Aliases

274

Property:PotentialEGSGeothermalGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialEGSGeothermalGeneration PotentialEGSGeothermalGeneration Jump to: navigation, search Property Name PotentialEGSGeothermalGeneration Property Type Quantity Description The estimated potential energy generation from EGS Geothermal for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialEGSGeothermalGeneration" Showing 25 pages using this property. (previous 25) (next 25)

275

Property:PotentialOffshoreWindGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindGeneration PotentialOffshoreWindGeneration Jump to: navigation, search Property Name PotentialOffshoreWindGeneration Property Type Quantity Description The estimated potential energy generation from Offshore Wind for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialOffshoreWindGeneration" Showing 25 pages using this property. (previous 25) (next 25)

276

Property:PotentialBiopowerGaseousGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialBiopowerGaseousGeneration PotentialBiopowerGaseousGeneration Jump to: navigation, search Property Name PotentialBiopowerGaseousGeneration Property Type Quantity Description The estimated potential energy generation from gaseous biopower for a particular place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialBiopowerGaseousGeneration" Showing 25 pages using this property. (previous 25) (next 25)

277

Division of Information Information Systems Documentation Enterprise Systems Management Framework Version 6.0  

E-Print Network (OSTI)

Division of Information Information Systems Documentation Enterprise Systems Management Framework Version 6.0 Enterprise Systems Management Framework Version: 6.0 Date: 2 Jan 2008 Status: Endorsed Systems Management Framework Version 6.0 DOCUMENT DETAILS Document Number CIS 0002/200504466 Document

Botea, Adi

278

Arisdyne Systems | Open Energy Information  

Open Energy Info (EERE)

Arisdyne Systems Arisdyne Systems Jump to: navigation, search Name Arisdyne Systems Place Cleveland, Ohio Zip 44142 Product Arisdyne Systems is a former subsidiary of Five Star Technologies that concentrates on development of biofuel processing technologies, including its patented Controlled Flow Cavitation technology. Coordinates 41.504365°, -81.690459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.504365,"lon":-81.690459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

279

Redwood Systems | Open Energy Information  

Open Energy Info (EERE)

Redwood Systems Redwood Systems Place Fremont, California Zip 94538 Product Redwood Systems is a Fremont-based technology developer of lighting management systems. Coordinates 44.2605°, -88.880509° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.2605,"lon":-88.880509,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

280

An Integrated Safety Assessment Methodology for Generation IV Nuclear Systems  

SciTech Connect

The Generation IV International Forum (GIF) Risk and Safety Working Group (RSWG) was created to develop an effective approach for the safety of Generation IV advanced nuclear energy systems. Early work of the RSWG focused on defining a safety philosophy founded on lessons learned from current and prior generations of nuclear technologies, and on identifying technology characteristics that may help achieve Generation IV safety goals. More recent RSWG work has focused on the definition of an integrated safety assessment methodology for evaluating the safety of Generation IV systems. The methodology, tentatively called ISAM, is an integrated toolkit consisting of analytical techniques that are available and matched to appropriate stages of Generation IV system concept development. The integrated methodology is intended to yield safety-related insights that help actively drive the evolving design throughout the technology development cycle, potentially resulting in enhanced safety, reduced costs, and shortened development time.

Timothy J. Leahy

2010-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Policy enabled information sharing system  

DOE Patents (OSTI)

A technique for dynamically sharing information includes executing a sharing policy indicating when to share a data object responsive to the occurrence of an event. The data object is created by formatting a data file to be shared with a receiving entity. The data object includes a file data portion and a sharing metadata portion. The data object is encrypted and then automatically transmitted to the receiving entity upon occurrence of the event. The sharing metadata portion includes metadata characterizing the data file and referenced in connection with the sharing policy to determine when to automatically transmit the data object to the receiving entity.

Jorgensen, Craig R.; Nelson, Brian D.; Ratheal, Steve W.

2014-09-02T23:59:59.000Z

282

National Security Information Systems (NSIS) -National Security Systems &  

NLE Websites -- All DOE Office Websites (Extended Search)

NSSA: National Security Information Systems NSSA: National Security Information Systems Nonproliferation & National Security (NPNS) Overview Technical Nonproliferation Policy Support Strategic Trade Control Review of export license applications Multilateral Export Control Arrangements Interdiction Engagement & Training INECP INSEP GIPP Safeguards Concepts and Approaches Human Capital Development Additional Protocol Technical Assistance National Security Systems & Assessments National Security Information Systems Vulnerability Assessment Team (VAT) Radiation Detection & Response (RDR) Contact NPNS Other Major Programs Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE Division on Flickr Nonproliferation and National Security Program National Security Systems & Assessments

283

Information imperfection processing in supervised classification systems  

Science Journals Connector (OSTI)

Along with possibility theory, fuzzy relation composition rules will be used in our novel approach to deal with the imperfection and the uncertainty that can affect the information elements in any classification system. This takes place at the level ... Keywords: fuzzy relation composition, information imperfection and uncertainty, possibility theory

Anas Dahabiah; Basel Solaiman; John Puentes

2010-02-01T23:59:59.000Z

284

WWTP Power Generation Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Power Generation Station Biomass Facility Power Generation Station Biomass Facility Jump to: navigation, search Name WWTP Power Generation Station Biomass Facility Facility WWTP Power Generation Station Sector Biomass Facility Type Non-Fossil Waste Location Alameda County, California Coordinates 37.6016892°, -121.7195459° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6016892,"lon":-121.7195459,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

285

Ottawa Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Generating Station Biomass Facility Generating Station Biomass Facility Jump to: navigation, search Name Ottawa Generating Station Biomass Facility Facility Ottawa Generating Station Sector Biomass Facility Type Landfill Gas Location Ottawa County, Michigan Coordinates 42.953023°, -86.0937312° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.953023,"lon":-86.0937312,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

286

Middlesex Generating Facility Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Middlesex Generating Facility Biomass Facility Middlesex Generating Facility Biomass Facility Jump to: navigation, search Name Middlesex Generating Facility Biomass Facility Facility Middlesex Generating Facility Sector Biomass Facility Type Non-Fossil Waste Location Middlesex County, New Jersey Coordinates 40.4111363°, -74.3587473° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.4111363,"lon":-74.3587473,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

287

Property:PotentialOnshoreWindGeneration | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindGeneration PotentialOnshoreWindGeneration Jump to: navigation, search Property Name PotentialOnshoreWindGeneration Property Type Quantity Description The area of potential onshore wind in a place. Use this type to express a quantity of energy. The default unit for energy on OpenEI is the Kilowatt hour (kWh), which is 3,600,000 Joules. http://en.wikipedia.org/wiki/Unit_of_energy It's possible types are Watt hours - 1000 Wh, Watt hour, Watthour Kilowatt hours - 1 kWh, Kilowatt hour, Kilowatthour Megawatt hours - 0.001 MWh, Megawatt hour, Megawatthour Gigawatt hours - 0.000001 GWh, Gigawatt hour, Gigawatthour Joules - 3600000 J, Joules, joules Pages using the property "PotentialOnshoreWindGeneration" Showing 25 pages using this property. (previous 25) (next 25)

288

Grand Blanc Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Grand Blanc Generating Station Biomass Facility Grand Blanc Generating Station Biomass Facility Jump to: navigation, search Name Grand Blanc Generating Station Biomass Facility Facility Grand Blanc Generating Station Sector Biomass Facility Type Landfill Gas Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

289

Brent Run Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Brent Run Generating Station Biomass Facility Brent Run Generating Station Biomass Facility Jump to: navigation, search Name Brent Run Generating Station Biomass Facility Facility Brent Run Generating Station Sector Biomass Facility Type Landfill Gas Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

290

MHK Technologies/Brandl Generator | Open Energy Information  

Open Energy Info (EERE)

Generator Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Brandl Generator.jpg Technology Profile Primary Organization Brandl Motor Technology Resource Click here Wave Technology Type Click here Point Absorber - Floating Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The Brandl Generator consists of a floating disc that is 10 meters in diameter and one meter thick that rises and falls with the waves A pendulum mass hanging beneath a spring moves up and down anticyclically This mass drives the direct connected magnets that induce an electrical current when they move through the induction coils This drawing shows the basic idea Legend 1 magnets 2 inductance coil 3 floating disc 4 spring 5 pendulum mass

291

MHK Technologies/Under Bottom Wave Generator | Open Energy Information  

Open Energy Info (EERE)

Under Bottom Wave Generator Under Bottom Wave Generator < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Under Bottom Wave Generator.jpg Technology Profile Primary Organization Glen Edward Cook Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description Water will flow up into the pipe from the down stroke and out of the pipe back into the ocean on the up stroke Waves rolling by will push water into the pipe This will mock the ocean swell A propellar is mounted inside the lower portion of the pipe the upward and downward flow of water will spin the propellar in both direcitons The propellar is connected to a generator

292

Blackburn Landfill Co-Generation Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Blackburn Landfill Co-Generation Biomass Facility Blackburn Landfill Co-Generation Biomass Facility Jump to: navigation, search Name Blackburn Landfill Co-Generation Biomass Facility Facility Blackburn Landfill Co-Generation Sector Biomass Facility Type Landfill Gas Location Catawba County, North Carolina Coordinates 35.6840748°, -81.2518833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.6840748,"lon":-81.2518833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

293

Peoples Generating Station Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Peoples Generating Station Biomass Facility Peoples Generating Station Biomass Facility Jump to: navigation, search Name Peoples Generating Station Biomass Facility Facility Peoples Generating Station Sector Biomass Facility Type Landfill Gas Location Genesee County, Michigan Coordinates 43.0777289°, -83.6773928° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0777289,"lon":-83.6773928,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

294

Generating Facility Rate-Making | Open Energy Information  

Open Energy Info (EERE)

Rate-Making Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Retrieved from "http:en.openei.orgwindex.php?titleGeneratingFacilityRate...

295

Identification of Information in Decision Systems  

E-Print Network (OSTI)

Extending unique identification to non-physical objects (data, information, decisions, knowledge) is a challenging problem in systems engineering. The tools and technologies available for naming physical objects may soon ...

Datta, Shoumen

2007-01-01T23:59:59.000Z

296

Transportation Routing Analysis Geographic Information System...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Analysis Geographic Information System (TRAGIS) to Spent Fuel Routing Analysis P. E. Johnson R.R. Rawl Oak Ridge National Laboratory TRAGIS is being used by OCRWM to identify...

297

Envia systems | Open Energy Information  

Open Energy Info (EERE)

Envia systems Envia systems Jump to: navigation, search Name Envia systems Place Hayward, California Zip 94545 3732 Product California-based company specializing in high performance, low cost energy storage solutions using lithium iron batteries. Coordinates 46.014045°, -91.482944° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":46.014045,"lon":-91.482944,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

298

KUKA Systems | Open Energy Information  

Open Energy Info (EERE)

KUKA Systems KUKA Systems Jump to: navigation, search Name KUKA Systems Place Augsburg, Germany Zip D-86165 Sector Solar, Wind energy Product German manufacturer of assembly lines for solar and wind industries. Coordinates 48.370335°, 10.897892° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":48.370335,"lon":10.897892,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

299

Crystal Systems | Open Energy Information  

Open Energy Info (EERE)

Crystal Systems Crystal Systems Name Crystal Systems Address 27 Congress Street Place Salem, Massachusetts Zip 01970 Sector Solar Product Silicon producer Year founded 1971 Website http://www.crystalsystems.com/ Coordinates 42.5190384°, -70.8896271° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5190384,"lon":-70.8896271,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

300

Generating Communications Systems Through Shared Context  

E-Print Network (OSTI)

In a distributed model of intelligence, peer components need to communicate with one another. I present a system which enables two agents connected by a thick twisted bundle of wires to bootstrap a simple communication ...

Beal, Jacob

2002-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

MHK Technologies/Electric Generating Wave Pipe | Open Energy Information  

Open Energy Info (EERE)

Generating Wave Pipe Generating Wave Pipe < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Electric Generating Wave Pipe.jpg Technology Profile Primary Organization Able Technologies Technology Resource Click here Wave Technology Type Click here Point Absorber - Submerged Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description The EGWAP incorporates a specially designed environmentally sound hollow noncorroding pipe also known as a tube or container whose total height is from the ocean floor to above the highest wave peak The pipe is anchored securely beneath the ocean floor When the water level in the pipe rises due to wave action a float rises and a counterweight descends This action will empower a main drive gear and other gearings to turn a generator to produce electricity The mechanism also insures that either up or down movement of the float will turn the generator drive gear in the same direction Electrical output of the generator is fed into a transmission cable

302

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

COPPER COPPER NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. EXECUTIVE SUMMARY 1. INTRODUCTION 2. METABOLISM AND DISPOSITION 2.1 ABSORPTION 2.2 DISTRIBUTION 2.3 METABOLISM 2.4 EXCRETION 3. NONCARCINOGENIC HEALTH EFFECTS 3.1 ORAL EXPOSURES 3.2 INHALATION EXPOSURES 3.3 OTHER ROUTES OF EXPOSURE 3.4 TARGET ORGANS/CRITICAL EFFECTS 4. CARCINOGENICITY 4.1 ORAL EXPOSURES 4.2 INHALATION EXPOSURES 4.3 OTHER ROUTES OF EXPOSURE 4.4 EPA WEIGHT-OF-EVIDENCE 4.5 CARCINOGENICITY SLOPE FACTORS 5. REFERENCES DECEMBER 1992 Prepared by: Rosmarie A. Faust, Ph.D., Chemical Hazard Evaluation and Communication Group, Biomedical and Environmental Information Analysis

303

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Formal Toxicity Summary for STRONTIUM-90 Formal Toxicity Summary for STRONTIUM-90 NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. EXECUTIVE SUMMARY 1. INTRODUCTION 2. METABOLISM AND DISPOSITION 3. NONCARCINOGENIC HEALTH EFFECTS 3.1 ORAL EXPOSURES 3.2 INHALATION EXPOSURES 3.3 OTHER ROUTES OF EXPOSURE 3.4 TARGET ORGANS/CRITICAL EFFECTS 4. CARCINOGENICITY 4.1 ORAL EXPOSURES 4.2 INHALATION EXPOSURES 4.3 OTHER ROUTES OF EXPOSURE 4.4 EPA WEIGHT-OF-EVIDENCE 4.5 CARCINOGENICITY SLOPE FACTORS 5. REFERENCES DECEMBER 1994 Prepared by: Sylvia S. Talmage, Ph.D., D.A.B.T., Chemical Hazard Evaluation Group, Biomedical and Environmental Information Analysis Section, Health

304

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

THALLIUM THALLIUM NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. EXECUTIVE SUMMARY 1. INTRODUCTION 2. METABOLISM AND DISPOSITION 2.1 ABSORPTION 2.2 DISTRIBUTION 2.3 METABOLISM 2.4 EXCRETION 3. NONCARCINOGENIC HEALTH EFFECTS 3.1 ORAL EXPOSURES 3.2 INHALATION EXPOSURES 3.3 OTHER ROUTES OF EXPOSURE 3.4 TARGET ORGANS/CRITICAL EFFECTS 4. CARCINOGENICITY 4.1 ORAL EXPOSURES 4.2 CARCINOGENICITY SLOPE FACTORS 5. REFERENCES DECEMBER 1994 Prepared by: Tim Borges and Mary Lou Daugherty, Chemical Hazard Evaluation Group, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, Oak Ridge National Laboratory*, Oak Ridge,

305

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

HEPTACHLOR HEPTACHLOR NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. EXECUTIVE SUMMARY 1. INTRODUCTION 2. METABOLISM AND DISPOSITION 2.1 ABSORPTION 2.2 DISTRIBUTION 2.3 METABOLISM 2.4 EXCRETION 3. NONCARCINOGENIC HEALTH EFFECTS 3.1 ORAL EXPOSURES 3.2 INHALATION EXPOSURES 3.3 OTHER ROUTES OF EXPOSURE 3.4 TARGET ORGANS/CRITICAL EFFECTS 4. CARCINOGENICITY 4.1 ORAL EXPOSURES 4.2 INHALATION EXPOSURES 4.3 OTHER ROUTES OF EXPOSURE 4.4 EPA WEIGHT-OF-EVIDENCE 4.5 CARCINOGENICITY SLOPE FACTORS 5. REFERENCES The toxicity information included in this summary was researched and compiled by R. A. Faust, Ph.D., who is a member of the Chemical Hazard

306

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

CYANIDE CYANIDE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. EXECUTIVE SUMMARY 1. INTRODUCTION 2. METABOLISM AND DISPOSITION 2.1 ABSORPTION 2.2 DISTRIBUTION 2.3 METABOLISM 2.4 EXCRETION 3. NONCARCINOGENIC HEALTH EFFECTS 3.1 ORAL EXPOSURES 3.2 INHALATION EXPOSURES 3.3 OTHER ROUTES OF EXPOSURE 3.4 TARGET ORGANS/CRITICAL EFFECTS 4. CARCINOGENICITY 4.1 ORAL EXPOSURES 4.2 INHALATION EXPOSURES 4.3 OTHER ROUTES OF EXPOSURE 4.4 EPA WEIGHT-OF-EVIDENCE 4.5 CARCINOGENICITY SLOPE FACTORS 5. REFERENCES February 1994 Prepared by Rosmarie A. Faust, Ph.D., Chemical Hazard Evaluation and Communication Group, Biomedical and Environmental Information Analysis

307

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

XYLENE XYLENE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. EXECUTIVE SUMMARY 1. INTRODUCTION 2. METABOLISM AND DISPOSITION 2.1 ABSORPTION 2.2 DISTRIBUTION 2.3 METABOLISM 2.4 EXCRETION 3. NONCARCINOGENIC HEALTH EFFECTS 3.1 ORAL EXPOSURES 3.2 INHALATION EXPOSURES 3.3 OTHER ROUTES OF EXPOSURE 3.4 TARGET ORGANS/CRITICAL EFFECTS 4. CARCINOGENICITY 4.1 ORAL EXPOSURES 4.2 INHALATION EXPOSURES 4.3 OTHER ROUTES OF EXPOSURE 4.4 EPA WEIGHT-OF-EVIDENCE 4.5 CARCINOGENICITY SLOPE FACTORS 5. REFERENCES September 1994 Prepared by Carol S. Forsyth, Ph.D. and Rosmarie A. Faust, Ph.D., Chemical Hazard Evaluation Group, Biomedical and Environmental Information Analysis

308

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

ARSENIC ARSENIC NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. EXECUTIVE SUMMARY 1. INTRODUCTION 2. METABOLISM AND DISPOSITION 2.1 ABSORPTION 2.2 DISTRIBUTION 2.3 METABOLISM 2.4 EXCRETION 3. NONCARCINOGENIC HEALTH EFFECTS 3.1 ORAL EXPOSURES 3.2 INHALATION EXPOSURES 3.3 OTHER ROUTES OF EXPOSURE 3.4 TARGET ORGANS/CRITICAL EFFECTS 4. CARCINOGENICITY 4.1 ORAL EXPOSURES 4.2 INHALATION EXPOSURES 4.3 OTHER ROUTES OF EXPOSURE 4.4 EPA WEIGHT-OF-EVIDENCE 4.5 CARCINOGENICITY SLOPE FACTORS 5. REFERENCES April 1992 Prepared by: Dennis M. Opresko, Ph.D., Chemical Hazard Evaluation and Communication Group, Biomedical and Environmental Information Analysis

309

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Formal Toxicity Summary for SULFATE Formal Toxicity Summary for SULFATE NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. EXECUTIVE SUMMARY 1. INTRODUCTION 2. METABOLISM AND DISPOSITION 3. NONCARCINOGENIC HEALTH EFFECTS 3.1 ORAL EXPOSURES 3.2 INHALATION EXPOSURES 3.3 OTHER ROUTES OF EXPOSURE 3.4 TARGET ORGANS/CRITICAL EFFECTS 4. CARCINOGENICITY 5. REFERENCES JUNE 1991 Prepared by: Cheryl Bast, Chemical Hazard Evaluation and Communication Group, Biomedical and Environmental Information Analysis Section, Health and Safety Research Division, Oak Ridge National Laboratory*, Oak Ridge, Tennessee. Prepared for: Oak Ridge Reservation Environmental Restoration Program.

310

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

LEAD LEAD NOTE: Although the toxicity values presented in these toxicity profiles were correct at the time they were produced, these values are subject to change. Users should always refer to the Toxicity Value Database for the current toxicity values. EXECUTIVE SUMMARY 1. INTRODUCTION 2. METABOLISM AND DISPOSITION 2.1 ABSORPTION 2.2 DISTRIBUTION 2.3 METABOLISM 2.4 EXCRETION 3. NONCARCINOGENIC HEALTH EFFECTS 3.1 HUMAN 3.2 ANIMAL 3.3 REFERENCE DOSE 3.4 TARGET ORGANS/CRITICAL EFFECTS 4. CARCINOGENICITY 4.1 HUMAN 4.2 ANIMAL 4.3 EPA WEIGHT-OF-EVIDENCE 4.4 CARCINOGENICITY SLOPE FACTORS 5. REFERENCES December 1994 Prepared by Kowetha A. Davidson, Ph.D., Chemical Hazard Evaluation and Communication Program, Biomedical and Environmental Information Analysis Section, Health Sciences Research Division, *, Oak Ridge, Tennessee.

311

Argonne's National Security Information Systems National  

NLE Websites -- All DOE Office Websites (Extended Search)

National Security National Security Information Systems National Security The NSIS team has worked with various government agencies and programs over the past 15 years to create customized technological solutions that meet specific needs, while also fulfilling national security objectives, improving efficiency and reducing costs. Applying a broad range of expertise and experience, the Argonne team develops both unclassified and classified information technology (IT) systems for national security and nonproliferation programs, with a focus on security operations, international treaty implementation, export control and law enforcement support. Some examples of NSIS-developed systems include:  Electronic Facility Clearance (e-FCL) System for the U.S. Department of Defense (DOD)

312

ShieldGen: Automatic Data Patch Generation for Unknown Vulnerabilities with Informed Probing  

E-Print Network (OSTI)

ShieldGen: Automatic Data Patch Generation for Unknown Vulnerabilities with Informed Probing generating a data patch or a vulnerability signature for an unknown vulnerability, given a zero-day attack. In this paper, we aim to automate this process and enable fast, patch-level pro- tection generation

Locasto, Michael E.

313

REpower Systems | Open Energy Information  

Open Energy Info (EERE)

Systems Systems Address 101 SW Main St Place Portland, Oregon Zip 97209 Sector Wind energy Product Wind energy developer Website http://www.repower.de/index.ph Coordinates 45.515534°, -122.675333° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.515534,"lon":-122.675333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

314

Solar Systems | Open Energy Information  

Open Energy Info (EERE)

Name Solar Systems Name Solar Systems Address 45 Grosvenor Street Place Abbotsford, Australia Sector Solar Product Solar concentrators Phone number +61 3 9413 8000 Website http://www.solarsystems.com.au Coordinates -37.808702°, 145.006698° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":-37.808702,"lon":145.006698,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

315

NRG Systems | Open Energy Information  

Open Energy Info (EERE)

NRG Systems NRG Systems Place Hinesburg, Vermont Zip 5461 Sector Wind energy Product A US-based manufacturer of wind measurement and turbine control equipment. Coordinates 44.335002°, -73.109687° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.335002,"lon":-73.109687,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

316

Iowa Distributed Wind Generation Project | Open Energy Information  

Open Energy Info (EERE)

Generation Project Generation Project Jump to: navigation, search Name Iowa Distributed Wind Generation Project Facility Iowa Distributed Wind Generation Project Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Consortium -- Cedar Falls leads with 2/3 ownership Developer Iowa Distributed Wind Generation Project Energy Purchaser Consortium -- Cedar Falls leads with 2/3 ownership Location Algona IA Coordinates 43.0691°, -94.2255° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.0691,"lon":-94.2255,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

317

Project Records Information System (PRIS) user's manual  

SciTech Connect

The Projects Record Information System (PRIS) is an interactive system developed for the Information Services Division (ISD) of Martin Marietta Energy Systems, Inc., to perform indexing, maintenance, and retrieval of information about Engineering project record documents for which they are responsible. This PRIS User's Manual provides instruction on the use of this system. Section 2.0 of this manual presents an overview of PRIS, describing the system's purpose; the data that it handles, functions it performs; hardware, software, and access; and help and error functions. Section 3.0 describes the interactive menu-driven operation of PRIS. Appendixes A, B,C, and D contain the data dictionary, help screens, report descriptions, and a primary menu structure diagram, respectively.

Smith, P.S.; Nations, J.A.; Short, R.D.

1991-08-01T23:59:59.000Z

318

MHK Technologies/Gyroscopic wave power generation system | Open Energy  

Open Energy Info (EERE)

Gyroscopic wave power generation system Gyroscopic wave power generation system < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Technology Profile Primary Organization Gyrodynamics Corporation Technology Resource Click here Wave Technology Type Click here Attenuator Technology Readiness Level Click here TRL 5 6 System Integration and Technology Laboratory Demonstration Technology Description This gyroscopic wave power generation system is a pure rotational mechanical system that does not use conventional air turbines and is housed on a unique floating platform float In particular its outstanding feature is that it utilizes the gyroscopic spinning effect A motor is used to turn a 1 meter diameter steel disc flywheel inside the apparatus and when the rolling action of waves against the float tilts it at an angle the gyroscopic effect causes the disc to rotate longitudinally This energy turns a generator producing electricity

319

Adaptive information filtering through automatic Boolean query generation  

E-Print Network (OSTI)

The subject of this thesis is the development and graphics. testing of a new algorithm for intelligently altering information content on the World Wide Web and in other similar domains. The approach described in this thesis is a hybrid algorithm...

Nichols, Michael Roddy

1998-01-01T23:59:59.000Z

320

The Risk Assessment Information System  

NLE Websites -- All DOE Office Websites (Extended Search)

Radionuclide Decay Chain Radionuclide Decay Chain Using the Radionuclide Decay Chain Tool Click on the steps below for detailed instructions about each page of the Radionuclide Chain Tool. 1. Select Isotope 2. Decay Chain Table 3. Decay Chain Animation 1. Select Isotope Select the isotope of interest and click the "Submit" button. 2. Decay Chain Table A table of the ICRP 107 decay chain appears that displays the parent and all daughters in the decay chain through the stable isotope(s). The half-life, decay modes, and the branching fractions are given. Decay chains that are repeated as a result of multiple branching fractions are only presented once in the table. Text below the decay chain table contains decay mode definitions and further information on the daughters included in the +D slope factors for risk assessment purposes. A back button is provided to return to the main page. To watch an animated representation of the decay process, click the link "Click for visual diagram."

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Template:Energy Generation Facilities by Sector | Open Energy Information  

Open Energy Info (EERE)

Facilities by Sector Facilities by Sector Jump to: navigation, search This is the Energy Generation Facilities by Sector template. It will display energy generation facilities for the specified sector in a map, or in a list with CSV link depending on SUBPAGENAME; the purpose being the separation of the map content from the underlying data. If the page it is included on ends in '/Data' it will display the raw data and the CSV link. Otherwise, it will display the full screen map. Parameters sector - the sector to query on (for example: Biomass, Solar, Wind energy, Geothermal energy) (required) Usage It should be called in the following format: {{Energy Generation Facilities by Sector}} Example For an example of this template in use, see one of the pages listed in 'What links here' below.

322

Property:Distributed Generation/Site Description | Open Energy Information  

Open Energy Info (EERE)

Generation/Site Description Generation/Site Description Jump to: navigation, search This is a property of type String. The allowed values for this property are: Agricultural Commercial-Hotel Commercial-Ice Arena Commercial-High Rise Office Commercial-Low Rise Office Commercial-Refrigerated Warehouse Commercial-Restaurant Commercial-Retail Store Commercial-Supermarket Commercial-Theater Commercial-Other Institutional-Hospital/Health Care Institutional-Nursing Home Institutional-School/University Institutional-Other Residential-Multifamily-Single Building Residential-Multifamily-Multibuilding Residential-Single Family Industrial-Food Processing Industrial-Plastics Processing Industrial-Wood Products Industrial-Other Testing Laboratory Water Utility Other Utility Other Pages using the property "Distributed Generation/Site Description"

323

Jiangsu Dongsheng Biomass Power Generation Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Dongsheng Biomass Power Generation Co Ltd Dongsheng Biomass Power Generation Co Ltd Jump to: navigation, search Name Jiangsu Dongsheng Biomass Power Generation Co Ltd Place Dongtai, Jiangsu Province, China Zip 224212 Sector Biomass Product A biomass project developer in China. Coordinates 32.845699°, 120.301224° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.845699,"lon":120.301224,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

324

Qingdao Hengfeng Wind Power Generator Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Qingdao Hengfeng Wind Power Generator Co Ltd Qingdao Hengfeng Wind Power Generator Co Ltd Jump to: navigation, search Name Qingdao Hengfeng Wind Power Generator Co Ltd Place Jiaonan, Shandong Province, China Sector Wind energy Product Shandong, Jiaonan-based wind turbine supplier. Coordinates 35.875°, 119.977203° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.875,"lon":119.977203,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

325

MHK Technologies/Yu Oscillating Generator YOG | Open Energy Information  

Open Energy Info (EERE)

Oscillating Generator YOG Oscillating Generator YOG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Yu Oscillating Generator YOG.jpg Technology Profile Primary Organization Yu Energy Corp Technology Resource Click here Wave Technology Type Click here Oscillating Wave Surge Converter Technology Readiness Level Click here TRL 1 3 Discovery Concept Def Early Stage Dev Design Engineering Technology Description By harnessing force located on top of the device s mast Known as a form of actuator You would get a levered mechanical gain converted to torque for a period of time oscillating the lower half side to side The lower half will then drive a turbine producing power As it slows due to resistance the actuator will harness force again to drive the device Making up for any loss motion do to resistance

326

Property:Distributed Generation System Heating-Cooling Application | Open  

Open Energy Info (EERE)

Heating-Cooling Application Heating-Cooling Application Jump to: navigation, search This is a property of type Page. Pages using the property "Distributed Generation System Heating-Cooling Application" Showing 21 pages using this property. D Distributed Generation Study/10 West 66th Street Corp + Domestic Hot Water +, Space Heat and/or Cooling + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Domestic Hot Water + Distributed Generation Study/Arrow Linen + Domestic Hot Water + Distributed Generation Study/Dakota Station (Minnegasco) + Space Heat and/or Cooling +, Other + Distributed Generation Study/Elgin Community College + Space Heat and/or Cooling +, Domestic Hot Water + Distributed Generation Study/Emerling Farm + Domestic Hot Water +, Process Heat and/or Cooling +

327

BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION  

SciTech Connect

SECTION 01000SUMMARY OF WORK PART 1GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractors responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to fuel systems. 4. Install power to new dampers/louvers from panel and breakers as shown on drawings. Wiring shall be similar to installation to existing dampers/louvers. Utilize existing conduits already routed to louver areas to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to new dampers/louvers. 5. Install power to jacket water heaters for new generators 3 and 4 from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 6. Install new neutral grounding resistor and associated parts and wiring for new generators 3 and 4 to match existing installation for generators 1 and 2. Grounding resistors will be Government Furnished Equipment (GFE). 7. Install two new switchgear sections, one for generator #3 and one for generator #4, to match existing generator #1 cubicle design and installation and in accordance with drawings and existing parts lists. This switchgear will be provided as GFE. 8. Ground all new switchgear, generators 3 and 4, and any other new equipment to match existing grounding connections for generators 1 and 2, switchgear and other equipment. See drawings for additional details. Grounding grid is already existing. Ensure that all grounding meets National Electrical Code requirements. 9. Cummins DMC control for the generator and switchgear syste

Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

2006-07-01T23:59:59.000Z

328

Category:Energy Generation Facilities | Open Energy Information  

Open Energy Info (EERE)

Energy Generation Facilities Energy Generation Facilities Jump to: navigation, search All Geothermal Loading map... {"format":"googlemaps3","type":"SATELLITE","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":1000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

329

VTIS: A Volunteered Travelers Information System  

Science Journals Connector (OSTI)

VTIS is a dynamic notification system that takes in a user's route and calculates the time-delay imposed by disruptions to the normal traversal. The disruptions are calculated by using crowdsourced notifications. This is accomplished by the creation ... Keywords: ITS, crowdsource, data mining, traveler information system, twitter

Roland Varriale; Shuo Ma; Ouri Wolfson

2013-11-01T23:59:59.000Z

330

Definition: Special Protection System | Open Energy Information  

Open Energy Info (EERE)

Protection System Protection System Jump to: navigation, search Dictionary.png Special Protection System An automatic protection system designed to detect abnormal or predetermined system conditions, and take corrective actions other than and/or in addition to the isolation of faulted components to maintain system reliability. Such action may include changes in demand, generation (MW and Mvar), or system configuration to maintain system stability, acceptable voltage, or power flows. An SPS does not include (a) underfrequency or undervoltage load shedding or (b) fault conditions that must be isolated or (c) out-of-step relaying (not designed as an integral part of an SPS). Also called Remedial Action Scheme.[1] Also Known As Remedial Action Scheme Related Terms system References

331

Springerville Generating Station Solar System Solar Power Plant | Open  

Open Energy Info (EERE)

Springerville Generating Station Solar System Solar Power Plant Springerville Generating Station Solar System Solar Power Plant Jump to: navigation, search Name Springerville Generating Station Solar System Solar Power Plant Facility Springerville Generating Station Solar System Sector Solar Facility Type Photovoltaic Developer Tucson Electric Power Location Springerville, Arizona Coordinates 34.1333799°, -109.2859196° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":34.1333799,"lon":-109.2859196,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

332

Generative Design Systems Applied to Low-Energy Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Generative Design Systems Applied to Low-Energy Buildings Generative Design Systems Applied to Low-Energy Buildings Speaker(s): Maria Luisa de Oliveira Gama Caldas Date: March 15, 2012 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Paul Mathew Generative Design Systems (GDS) represent a step beyond parametric models, integrating design goals, building simulations and shape generation. In this seminar, present and future research projects on the application of different GDS to low-energy buildings are discussed. The software GENE_ARCH integrates energy simulations with multicriteria search methods such as pareto genetic algorithms, to locate acceptable alternatives that move the current design towards performance goals set by the user. DIVA, a system that integrates parametric geometrical modeling with Radiance, Daysim and

333

A Natural-Gas-Fired Thermoelectric Power Generation System  

Science Journals Connector (OSTI)

This paper presents a combustion-driven thermoelectric power generation system that uses PbSnTe-based thermoelectric modules. The modules were integrated into a gas-fired furnace with a special burner design. The...

K. Qiu; A.C.S. Hayden

2009-07-01T23:59:59.000Z

334

Quantifying the system balancing cost when wind energy is incorporated into electricity generation system.  

E-Print Network (OSTI)

??Incorporation of wind energy into the electricity generation system requires a detailed analysis of wind speed in order to minimize system balancing cost and avoid (more)

Issaeva, Natalia

2009-01-01T23:59:59.000Z

335

Deciphering next-generation pharmacogenomics: an information technology perspective  

Science Journals Connector (OSTI)

...P. Endnotes 1 These terms are often used interchangeably...PubMed papers pertaining to search terms PGx (pharmacogenomics...CYP genes; it offers searches for: (i) to find information...interactions that allows users to enter the names of several different...

2014-01-01T23:59:59.000Z

336

MHK Projects/Tidal Generation Ltd EMEC | Open Energy Information  

Open Energy Info (EERE)

Generation Ltd EMEC Generation Ltd EMEC < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":59.1302,"lon":-2.77188,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

337

Third Generation Environmentalism (E3G) Feed | Open Energy Information  

Open Energy Info (EERE)

Generation Environmentalism (E3G) Feed Generation Environmentalism (E3G) Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP)

338

Solana Generating Plant Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

Plant Solar Power Plant Plant Solar Power Plant Jump to: navigation, search Name Solana Generating Plant Solar Power Plant Facility Solana Generating Plant Sector Solar Facility Type Concentrating Solar Power Facility Status Under Construction Developer Abengoa Solar Location Gila Bend, Arizona Coordinates 32.916163°, -112.968727° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.916163,"lon":-112.968727,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

339

Third Generation Environmentalism (E3G) | Open Energy Information  

Open Energy Info (EERE)

Environmentalism (E3G) Environmentalism (E3G) Jump to: navigation, search Logo: Third Generation Environmentalism (E3G) Name Third Generation Environmentalism (E3G) Address 4th floor, In Tuition House 210 Borough High Street Place London, United Kingdom Phone number +44 (0)20 7234 9880 Website http://www.e3g.org/about/ References E3G[1] LinkedIn Connections "E3G works with corporate and institutional partners to deliver the strategic visions and organisational change that underpin successful responses to the risks and opportunities of sustainable development. We facilitate strategic thinking processes, undertake political and policy analysis of complex challenges, and develop decision-making tools for ongoing use." E3G Tools Add Tool E3G Programs E3G-China-Low Carbon Development Zones

340

Nanjing Sunec Wind Generator Equipment Factory | Open Energy Information  

Open Energy Info (EERE)

Sunec Wind Generator Equipment Factory Sunec Wind Generator Equipment Factory Jump to: navigation, search Name Nanjing Sunec Wind Generator Equipment Factory Place Nanjing, Jiangsu Province, China Zip 211100 Sector Wind energy Product A Chinese manufacturer for power supply, grid automation equipment and small-to-medium wind turbines, as well as a wind project developer. Coordinates 32.0485°, 118.778969° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.0485,"lon":118.778969,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Ionic Power Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

Ionic Power Systems Ltd Ionic Power Systems Ltd Jump to: navigation, search Name Ionic Power Systems Ltd. Place San Diego, California Zip 92126 Product Ionix Power Systems, Ltd. is a developer of new and innovative products and tools designed to aid in the development of next-generation energy technologies such as batteries, fuel cells, and advanced capacitors. References Ionic Power Systems Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Ionic Power Systems Ltd. is a company located in San Diego, California . References ↑ "Ionic Power Systems Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Ionic_Power_Systems_Ltd&oldid=347099" Categories:

342

Nome Joint Utility Systems | Open Energy Information  

Open Energy Info (EERE)

Joint Utility Systems Joint Utility Systems Jump to: navigation, search Name Nome Joint Utility Systems Place Alaska Utility Id 13642 Utility Location Yes Ownership M NERC Location AK Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Electrical Charge Residential Power Cost Equalization Average Rates Residential: $0.3600/kWh Commercial: $0.3310/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Nome_Joint_Utility_Systems&oldid=411195

343

A third generation mobile high energy radiography system  

SciTech Connect

A third generation mobile high energy radiographic capability has been completed and put into service by the Los Alamos National Laboratory. The system includes a 6 MeV linac x-ray generator, Co-60 gamma source, all-terrain transportation, on-board power, real-time radiography (RTR), a control center, and a complete darkroom capability. The latest version includes upgraded and enhanced portability, flexibility, all-terrain operation, all-weather operation, and ease of use features learned from experience with the first and second generation systems. All systems were required to have the following characteristics; all-terrain, all-weather operation, self-powered, USAF airlift compatible, reliable, simple to setup, easy to operate, and all components two-person portable. The systems have met these characteristics to differing degrees, as is discussed in the following section, with the latest system being the most capable.

Fry, D.A.; Valdez, J.E.; Johnson, C.S.; Kimerly, H.J.; Vananne, J.R.

1997-12-01T23:59:59.000Z

344

Field application of a chemical heat and nitrogen generating system  

SciTech Connect

Heat is often required to stimulate production in wells with recurrent histories of paraffin deposition and plugging. A chemical system which produces heat and nitrogen at a predetermined well depth is proposed as an alternative to the traditional hot oil and steam generation treatments. The system is described briefly and case histories are given for 3 wells in California and 5 wells in Wyoming. The field results indicate that heat produced by the nitrogen generating system effectively stimulates production from paraffin plugged wells. The heat and nitrogen generating system further shows increased production cycle lengths over those which result from hot oil or paraffin solvent treatments. Beneficial effects of including a paraffin inhibitor in the treatment design are discussed, along with other potential applications for the heat produced by this system.

Mitchell, T.I.; Collesi, J.B.; Donovan, S.C.; McSpadden, H.W.

1984-04-01T23:59:59.000Z

345

Definition: Outage Management System | Open Energy Information  

Open Energy Info (EERE)

Outage Management System Outage Management System A software application that can process outage reports from a variety of utility operational systems including SCADA, AMI, and customer phone calls, and display outage information to utility operators. The OMS can help a utility interpret outage information and determine where the likely cause of an outage may be. It can also help the utility optimize its service restoration resources.[1] Related Terms advanced metering infrastructure References ↑ https://www.smartgrid.gov/category/technology/outage_management_system [[C LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ategory: Smart Grid Definitionssmart grid,smart grid, |Template:BASEPAGENAME]]smart grid,smart grid, Retrieved from "http://en.openei.org/w/index.php?title=Definition:Outage_Management_System&oldid=502507

346

Geographic Information System for Visualization of PHEV Fleet...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Geographic Information System for Visualization of PHEV Fleet Data Geographic Information System for Visualization of PHEV Fleet Data 2010 DOE Vehicle Technologies and Hydrogen...

347

Open Energy Information Systems - 2013 Peer Review | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Open Energy Information Systems - 2013 Peer Review Open Energy Information Systems - 2013 Peer Review Emerging Technologies Project for the 2013 Building Technologies Office's...

348

Information flow within stochastic dynamical systems  

E-Print Network (OSTI)

Information flow or information transfer is an important concept in dynamical systems which has applications in a wide variety of scientific disciplines. In this study, we show that a rigorous formalism can be established in the context of a generic stochastic dynamical system. The resulting measure of of information transfer possesses a property of transfer asymmetry and, when the stochastic perturbation to the receiving component does not rely on the giving component, has a form same as that for the corresponding deterministic system. An application with a two-dimensional system is presented, and the resulting transfers are just as expected. A remarkable observation is that, for two highly correlated time series, there could be no information transfer from one certain series, say $x_2$, to the other ($x_1$). That is to say, the evolution of $x_1$ may have nothing to do with $x_2$, even though $x_1$ and $x_2$ are highly correlated. Information transfer analysis thus extends the traditional notion of correlation analysis by providing a quantitative measure of causality between time series.

X. San Liang

2007-10-04T23:59:59.000Z

349

Distributed generation capabilities of the national energy modeling system  

SciTech Connect

This report describes Berkeley Lab's exploration of how the National Energy Modeling System (NEMS) models distributed generation (DG) and presents possible approaches for improving how DG is modeled. The on-site electric generation capability has been available since the AEO2000 version of NEMS. Berkeley Lab has previously completed research on distributed energy resources (DER) adoption at individual sites and has developed a DER Customer Adoption Model called DER-CAM. Given interest in this area, Berkeley Lab set out to understand how NEMS models small-scale on-site generation to assess how adequately DG is treated in NEMS, and to propose improvements or alternatives. The goal is to determine how well NEMS models the factors influencing DG adoption and to consider alternatives to the current approach. Most small-scale DG adoption takes place in the residential and commercial modules of NEMS. Investment in DG ultimately offsets purchases of electricity, which also eliminates the losses associated with transmission and distribution (T&D). If the DG technology that is chosen is photovoltaics (PV), NEMS assumes renewable energy consumption replaces the energy input to electric generators. If the DG technology is fuel consuming, consumption of fuel in the electric utility sector is replaced by residential or commercial fuel consumption. The waste heat generated from thermal technologies can be used to offset the water heating and space heating energy uses, but there is no thermally activated cooling capability. This study consists of a review of model documentation and a paper by EIA staff, a series of sensitivity runs performed by Berkeley Lab that exercise selected DG parameters in the AEO2002 version of NEMS, and a scoping effort of possible enhancements and alternatives to NEMS current DG capabilities. In general, the treatment of DG in NEMS is rudimentary. The penetration of DG is determined by an economic cash-flow analysis that determines adoption based on the n umber of years to a positive cash flow. Some important technologies, e.g. thermally activated cooling, are absent, and ceilings on DG adoption are determined by some what arbitrary caps on the number of buildings that can adopt DG. These caps are particularly severe for existing buildings, where the maximum penetration for any one technology is 0.25 percent. On the other hand, competition among technologies is not fully considered, and this may result in double-counting for certain applications. A series of sensitivity runs show greater penetration with net metering enhancements and aggressive tax credits and a more limited response to lowered DG technology costs. Discussion of alternatives to the current code is presented in Section 4. Alternatives or improvements to how DG is modeled in NEMS cover three basic areas: expanding on the existing total market for DG both by changing existing parameters in NEMS and by adding new capabilities, such as for missing technologies; enhancing the cash flow analysis but incorporating aspects of DG economics that are not currently represented, e.g. complex tariffs; and using an external geographic information system (GIS) driven analysis that can better and more intuitively identify niche markets.

LaCommare, Kristina Hamachi; Edwards, Jennifer L.; Marnay, Chris

2003-01-01T23:59:59.000Z

350

Final Report Early Evaluation of a Second Generation Information  

E-Print Network (OSTI)

..................................................................... 3-5 4. Description of Building and Energy Use History........................................................................................................................ 4-2 4.3. Energy Management Control Systems............................................................................. 4-3 4.4. Building Energy Use

351

Smart Mobility: Next Generation Transportation System (position paper)  

E-Print Network (OSTI)

. Current schemes of traffic management are based on batch/platoon/bulk/aggregated information Sensors, Vehicle Re-identification, Pay-as-Go units, and Smart Cameras & Video processing. · Smart-vehicle information systems, and Driver Identification. · Smart Communications: Various forms of wireless

Rajkumar, Ragunathan "Raj"

352

The next generation of oxy-fuel boiler systems  

SciTech Connect

Research in the area of oxy-fuel combustion which is being pioneered by Jupiter Oxygen Corporation combined with boiler research conducted by the USDOE/Albany Research Center has been applied to designing the next generation of oxy-fuel combustion systems. The new systems will enhance control of boiler systems during turn-down and improve response time while improving boiler efficiency. These next generation boiler systems produce a combustion product that has been shown to be well suited for integrated pollutant removal. These systems have the promise of reducing boiler foot-print and boiler construction costs. The modularity of the system opens the possibility of using this design for replacement of boilers for retrofit on existing systems.

Ochs, Thomas L.; Gross, Alex (Jupiter Oxygen Corp.); Patrick, Brian (Jupiter Oxygen Corp.); Oryshchyn, Danylo B.; Summers, Cathy A.; Turner, Paul C.

2005-01-01T23:59:59.000Z

353

System level modeling of thermoelectric generators for automotive applications  

Energy.gov (U.S. Department of Energy (DOE))

Uses a model to predict and analyze the system-level performance of a thermoelectric generator in terms of the power output and the power density ? at the element, module and system-level and for a wide range of operating conditions.

354

Category:Energy Generation Organizations | Open Energy Information  

Open Energy Info (EERE)

Category Category Edit History Facebook icon Twitter icon » Category:Energy Generation Organizations Jump to: navigation, search Add a new Company Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":1000,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026 further results","default":"","geoservice":"google","zoom":false,"width":"600px","height":"350px","centre":false,"layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","icon":"","visitedicon":"","forceshow":true,"showtitle":true,"hidenamespace":false,"template":false,"title":"","label":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"locations":[{"text":"

355

Extreme events in excitable systems and mechanisms of their generation  

E-Print Network (OSTI)

We study deterministic systems, composed of excitable units of FitzHugh-Nagumo type, that are capable of self-generating and self-terminating strong deviations from their regular dynamics without the influence of noise or parameter change. These deviations are rare, short-lasting, and recurrent and can therefore be regarded as extreme events. Employing a range of methods we analyze dynamical properties of the systems, identifying features in the systems' dynamics that may qualify as precursors to extreme events. We investigate these features and elucidate mechanisms that may be responsible for the generation of the extreme events.

Gerrit Ansmann; Rajat Karnatak; Klaus Lehnertz; Ulrike Feudel

2014-08-27T23:59:59.000Z

356

Kinetic Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Systems Systems Jump to: navigation, search Name Kinetic Energy Systems Place Ocala, Florida Zip 34476 Sector Hydro Product Designs and develops tidal generators. Has notably patented the KESC Tidal Generator which is based on free flow hydrodynamics. Coordinates 29.187525°, -82.140394° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.187525,"lon":-82.140394,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

357

Easley Combined Utility System | Open Energy Information  

Open Energy Info (EERE)

Easley Combined Utility System Easley Combined Utility System Jump to: navigation, search Name Easley Combined Utility System Place South Carolina Utility Id 6709 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Church electric service rate (Inside city limits) Commercial Church electric service rate (Outside city limits) Commercial Residential service rate (Inside city limits) Residential Residential service rate (Outside city limits) Residential

358

Next-Generation Distributed Power Management for Photovoltaic Systems  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Distributed Power Management for Photovoltaic Systems Next-Generation Distributed Power Management for Photovoltaic Systems Speaker(s): Jason Stauth Date: July 29, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Steven Lanzisera In recent years, the balance of systems (BOS) side of photovoltaic (PV) energy has become a major focus in the effort to drive solar energy towards grid parity. The power management architecture has expanded to include a range of distributed solutions, including microinverters and 'micro' DC-DC converters to solve problems with mismatch (shading), expand networking and control, and solve critical BOS issues such as fire safety. This talk will introduce traditional and distributed approaches for PV systems, and will propose a next-generation architecture based on a new

359

Voltage controlled stand-alone microhydro induction generator system  

Science Journals Connector (OSTI)

The paper discusses simulated control cases of the wound rotor self-excited induction generator WRSEIG. The generator external controller is designed to regulate the output voltage and frequency for constant or variable speed operation of the prime mover and has the inherent capability of protecting the load from short circuit, which permits voltage collapse under heavy loads. WRSEIG is self-excited using one set of excitation capacitance connected across the generator stator side. At the rotor side, a PWM controlled resistor is connected to the rotor windings through the rotating slips and act as a slip power controller. The controller can be configured to regulate the voltage as the speed or the load changes. The presented system has the capability to generate good quality AC power source with minimum controlling elements and can operate under constant or adjustable prime mover speed that suits many microhydro electricity-generating plants.

K.A. Nigim

2005-01-01T23:59:59.000Z

360

Distributed Generation System Characteristics and Costs in the Buildings  

Gasoline and Diesel Fuel Update (EIA)

1.6 mb) 1.6 mb) Appendix A - Photovoltaic (PV) Cost and Performance Characteristics for Residential and Commercial Applications (1.0 mb) Appendix B - The Cost and Performance of Distributed Wind Turbines, 2010-35 (0.5 mb) Distributed Generation System Characteristics and Costs in the Buildings Sector Release date: August 7, 2013 Distributed generation in the residential and commercial buildings sectors refers to the on-site generation of energy, often electricity from renewable energy systems such as solar photovoltaics (PV) and small wind turbines. Many factors influence the market for distributed generation, including government policies at the local, state, and federal level, and project costs, which vary significantly depending on time, location, size, and application.

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Supporting accessibility in higher education information systems  

Science Journals Connector (OSTI)

Higher education institutions (HEI) and students are highly dependent of information systems, implemented as web applications. Students must be able to access this applications, thought accessible web interfaces, in order to perform their academic activities. ... Keywords: DSpace, W3C, accessibility, higher education institutions, moodle

Arsnio Reis; Joo Barroso; Ramiro Gonalves

2013-07-01T23:59:59.000Z

362

SF STATE Extended Learning INFORMATION SYSTEMS (GIS)  

E-Print Network (OSTI)

SF STATE Extended Learning 2013/2014 GEOGRAPHIC INFORMATION SYSTEMS (GIS) at San Francisco State University Jerry Davis, Director | Seth Hiatt, Associate Director (415) 338-3566, email igisc@sfsu.edu, www.cel.sfsu.edu/gis/ Also offering a new certificate: GIS Certificate in Environmental Analysis The use of geographic

363

Classified Automated Information System Security Program  

Directives, Delegations, and Requirements

To establish uniform requirements, policies, responsibilities, and procedures for the development and implementation of a Department of Energy (DOE) Classified Computer Security Program to ensure the security of classified information in automated data processing (ADP) systems. Cancels DOE O 5637.1. Canceled by DOE O 471.2.

1994-07-15T23:59:59.000Z

364

A novel dual stator-winding induction generator system applied in wind power generation  

Science Journals Connector (OSTI)

This paper presents a novel usage of 6/3-phase dual stator-winding induction generator (DWIG) with a static excitation power controller (SEC) as a wind power generator. This generator is composed of a standard squirrel-cage rotor and two sets of winding housed in the stator slots. One is referred to as the 6-phase power winding, and the other is defined as the 3-phase control winding. On the basis of the instantaneous power theory, the control mechanism of DWIG wind power system is analysed, and the control winding flux orientation control strategy is obtained consequently. The simulation and experimental results from a prototype of 18 kW 6/3-phase DWIG wind power system are presented to verify the correctness and feasibility of control strategy, and a desirable performance is implemented.

Bu Feifei; Huang Wenxin; Hu Yuwen; Shi Kai

2010-01-01T23:59:59.000Z

365

Geographic information system applications in coal transportation analysis  

SciTech Connect

Geographic information systems (GIS) offer great potential to the coal transportation industry for capitalizing on the growing availability of spatially-referenced data. As computer-based systems for the collection, storage, retrieval and analysis of spatial data, generating information products in a variety of formats, GIS have a great capability to improve the efficiency and effectiveness of coal transportation operations, planning, engineering, and facilities management. Currently GIS are used in the transportation industry at large to analyze, and display information about network infrastructure, fleet operations, property ownership, routing and scheduling, and utilities. Current coal transportation applications include consumer service inquiries, train and locomotive scheduling, and evaluation of network usage. The paper describes the significant potential uses of GIS in the coal transportation sector when integrated with optimization and decision support systems, scientific visualization, data forecasting, and strategic system planning approaches. Ultimately consumer demand and the drive for economic efficiency are likely to stimulate the integration and management of spatial information across the entire coal chain.

Elmes, G. [West Virginia Univ., Morgantown, WV (United States)

1996-12-31T23:59:59.000Z

366

Northern Power Systems | Open Energy Information  

Open Energy Info (EERE)

Northern Power Systems Northern Power Systems Place Barre, VT Website http://www.northernpowersystem References Northern Power Systems[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type CRADA Partnering Center within NREL National Wind Technology Center Partnership Year 2000 Link to project description http://www.nrel.gov/news/press/2000/34three.html LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Northern Power Systems is a company located in Barre, VT. References ↑ "Northern Power Systems" Retrieved from "http://en.openei.org/w/index.php?title=Northern_Power_Systems&oldid=379254" Categories: Clean Energy Organizations Companies Organizations What links here Related changes Special pages Printable version

367

Definition: Bulk Electric System | Open Energy Information  

Open Energy Info (EERE)

Bulk Electric System Bulk Electric System Jump to: navigation, search Dictionary.png Bulk Electric System As defined by the Regional Reliability Organization, the electrical generation resources, transmission lines, interconnections with neighboring systems, and associated equipment, generally operated at voltages of 100 kV or higher. Radial transmission facilities serving only load with one transmission source are generally not included in this definition.[1] Related Terms Regional Reliability Organization, transmission lines, transmission line References ↑ Glossary of Terms Used in Reliability Standards An in LikeLike UnlikeLike You like this.Sign Up to see what your friends like. line Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Bulk_Electric_System&oldid=48030

368

Automatically generating information from a Z speci cation to support the Classi cation Tree  

E-Print Network (OSTI)

Automatically generating information from a Z speci#12;cation to support the Classi#12;cation Tree, Brunel University, Uxbridge, Middlesex, UB8 3PH, UK 2 DaimlerChrysler AG, Research Information. The Classi#12;cation Tree Method provides a exible basis for systematic testing. Traditionally

Singer, Jeremy

369

Metrology/viewing system for next generation fusion reactors  

SciTech Connect

Next generation fusion reactors require accurate measuring systems to verify sub-millimeter alignment of plasma-facing components in the reactor vessel. A metrology system capable of achieving such accuracy must be compatible with the vessel environment of high gamma radiation, high vacuum, elevated temperature, and magnetic field. This environment requires that the system must be remotely deployed. A coherent, frequency modulated laser radar system is being integrated with a remotely operated deployment system to meet these requirements. The metrology/viewing system consists of a compact laser transceiver optics module which is linked through fiber optics to the laser source and imaging units that are located outside of the harsh environment. The deployment mechanism is a telescopic-mast positioning system. This paper identifies the requirements for the International Thermonuclear Experimental Reactor metrology and viewing system, and describes a remotely operated precision ranging and surface mapping system.

Spampinato, P.T.; Barry, R.E.; Chesser, J.B.; Menon, M.M. [Oak Ridge National Lab., TN (United States); Dagher, M.A. [Boeing Rocketdyne Div., Canoga Park, CA (United States)

1997-02-01T23:59:59.000Z

370

ITN Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Systems Systems Jump to: navigation, search Name ITN Energy Systems Place Littleton, CO Website http://www.itnes.com/ References NREL Research Review[1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Other Relationship Partnering Center within NREL National Center for Photovoltaics Partnership Year 2007 Link to project description http://www.nrel.gov/research_review/2007/deployment_thin_film.html LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! ITN Energy Systems is a company located in Littleton, CO. References ↑ "NREL Research Review" Retrieved from "http://en.openei.org/w/index.php?title=ITN_Energy_Systems&oldid=381779" Categories: Clean Energy Organizations Companies Organizations

371

Procurement of a fully licensed radioisotope thermoelectric generator transportation system  

SciTech Connect

A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable U.S. Department of Transportation regulations without the use of a DOE Alternative.'' The U.S. Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992.

Adkins, H.E.; Bearden, T.E. (Westinghouse Hanford Company, P.O. Box 1970, N1-42, Richland, Washington 99352 (US))

1991-01-01T23:59:59.000Z

372

Procurement of a fully licensed radioisotope thermoelectric generator transportation system  

SciTech Connect

A fully licensed transportation system for Radioisotope Thermoelectric Generators and Light-Weight Radioisotope Heater Units is currently being designed and built. The system will comply with all applicable US Department of Transportation regulations without the use of a DOE Alternative.'' The US Department of Transportation has special double containment'' requirements for plutonium. The system packaging uses a doubly contained bell jar'' concept. A refrigerated trailer is used for cooling the high-heat payloads. The same packaging is used for both high- and low-heat payloads. The system is scheduled to be available for use by mid-1992. 4 refs., 4 figs., 2 tabs.

Adkins, H.E.; Bearden, T.E.

1990-10-01T23:59:59.000Z

373

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Hybrid Power Generation Systems, LLC (HPGS) during the July 2003 to December 2003 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a micro-turbine. In addition, an activity included in this program focuses on the development of an integrated coal gasification fuel cell system concept based on planar SOFC technology. Also, another activity included in this program focuses on the development of SOFC scale up strategies.

Faress Rahman; Nguyen Minh

2004-01-04T23:59:59.000Z

374

Information systems for engineering sustainable development  

SciTech Connect

The ability of a country to follow sustainable development paths is determined to a large extent by the capacity or capabilities of its people and its institutions. Specifically, capacity-building in the UNCED terminology encompasses the country's human, scientific, technological, organizational, institutional, and resource capabilities. A fundamental goal of capacity-building is to enhance the ability to pose, evaluate and address crucial questions related to policy choices and methods of implementation among development options. As a result the United Nations Conference on Environment and Development (UNCED) Agenda 21 planning process has identified the need for better methods by which information can be transferred between industrialized nations and developing nations. The reasons for better methods of information transfer include facilitating decisions related to sustainable development and building the capacity of developing nations to better plan their future in both an economical and environmentally sound manner. This paper is a discussion on mechanisms for providing information and technologies available for presenting the information to a variety of cultures and levels of technical literacy. Consideration is given to access to information technology as well as to the cost to the user. One concept discussed includes an Engineering Partnership'' which brings together the talents and resources of private consulting engineers, corporations, non-profit professional organizations, government agencies and funding institution which work in partnership with each other and associates in developing countries. Concepts which are related to information technologies include a hypertext based, user configurable cultural translator and information navigator and the use of multi-media technologies to educate engineers about the concepts of sustainability, and the adaptation of the concept of metabolism to creating industrial systems.

Leonard, R.S.

1992-02-27T23:59:59.000Z

375

Automated two column generator systems for medical radionuclides  

Science Journals Connector (OSTI)

This work describes automated chromatographic methods for the separation of medically useful radionuclides from source material containing their parent radionuclides. The separation techniques employ two chromatographic columns to ensure high chemical and radiochemical purity of the product radionuclide. The separations were performed using an automated system, the automated radionuclide separator (ARS2), consisting of syringe pumps and multiport valves controlled through a computer interface. Generator systems for 68Ga, 99mTc, 188Re and 213Bi will be described.

Daniel R. McAlister; E. Philip Horwitz

2009-01-01T23:59:59.000Z

376

Radioisotope thermoelectric generator transportation system subsystem 143 software development plan  

SciTech Connect

This plan describes the activities to be performed and the controls to be applied to the process of specifying, developing, and qualifying the data acquisition software for the Radioisotope Thermoelectric Generator (RTG) Transportation System Subsystem 143 Instrumentation and Data Acquisition System (IDAS). This plan will serve as a software quality assurance plan, a verification and validation (V and V) plan, and a configuration management plan.

King, D.A.

1994-11-10T23:59:59.000Z

377

Application of Next-Generation Sensor Systems in HTRs  

E-Print Network (OSTI)

. This thesis develops neutron flux reconstruction methods for in-core sensors placed in HTRs. Sensor systems developed for current generation reactors cannot be used in HTRs. The high temperatures inside HTRs preclude the use of existing in-core sensors...

Johnson, Matthew Paul

2013-04-30T23:59:59.000Z

378

Electricity Distribution Systems: How Information Will Lead the Transformation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

IBM IBM Electricity Distribution Systems How information will lead the transformation Allan Schurr VP Energy and Utilities 24 September 2012 Corporation Challenges facing the energy grid New entrants and disruptive technologies environmental concerns Increased pressure on Climate change and Aging asset performance operational efficiency with increased expectations and workforce on reliability productivity Increasing desire by consumers for a role in energy management and Growth in renewable generation and distributed resources conservation © 2012 IBM Corporation 2 Other transformed industries have lessons for the power grid Common Themes * Technology innovation * Disruptive new entrants * New business models Benefits for the consumer © 2012 IBM Corporation

379

Legume Information System | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

Legume Information System Legume Information System Agriculture Community Menu DATA APPS EVENTS DEVELOPER STATISTICS COLLABORATE ABOUT Agriculture You are here Data.gov » Communities » Agriculture » Data Legume Information System Dataset Summary Description LIS stores genetic and genomic data for crops and modal species in the legume family. LIS stores datasets from numerous legumes through species-specific webpages, and uses the reference species Glycine max, Lotus japonicus, and Medicago truncatula as a basis for comparisons between and among diverse legume species. Other genomes are being added as they become available. For other legume species, LIS hosts transcriptome assemblies (both traditional EST and NGS-based) and other datasets. Comparative maps, reference datasets, sequence search tools, etc. make these datasets available for exploration and discovery. New features in 2013 include powerful new sequence-search methods and interfaces; new genome browsers for chickpea, common bean, and pigeonpea; inferred syntenic relationships between all sequenced legume genomes; and a new database of trait and QTL data for bean and peanut. LIS is funded by the USDA-ARS, and is developed and maintained jointly by the National Center for Genome Resources (NCGR) and the USDA-ARS at Ames, Iowa.

380

UNIVERSITY OF PITTSBURGH AT GREENSBURG Management -Information Systems  

E-Print Network (OSTI)

UNIVERSITY OF PITTSBURGH AT GREENSBURG Management - Information Systems u n d e r g r a d u a t e p r o g r a m Management - Information Systems 48 credits Bachelor of Science Management - Information Accounting MGMT 1818 Management Science INFSCI 0010 Introduction to Information Systems and Society Area

Sibille, Etienne

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Scaling of Health Information Systems in India: Challenges and Approaches  

E-Print Network (OSTI)

on experiences from an ongoing project to implement health information systems within the primary health care in the context of health care and health information systems (HIS) in developing countries, whichScaling of Health Information Systems in India: Challenges and Approaches Sundeep Sahay Information

Sahay, Sundeep

382

Lilliputian Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Lilliputian Systems Inc Lilliputian Systems Inc Jump to: navigation, search Name Lilliputian Systems Inc Address 36 Jonspin Road Place Wilmington, Massachusetts Zip 01887 Sector Hydrogen Product Portable fuel cell generators Website http://www.lilliputiansystemsi Coordinates 42.5960633°, -71.1509692° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.5960633,"lon":-71.1509692,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

383

Hydrovolt Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Hydrovolt Energy Systems Hydrovolt Energy Systems Jump to: navigation, search Name Hydrovolt Energy Systems Place Sacramento, California Product California based company developing Solid Oxide Fuel Cells and External Combustion powered generators. Coordinates 38.579065°, -121.491014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.579065,"lon":-121.491014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

384

Direct Drive Systems DDS | Open Energy Information  

Open Energy Info (EERE)

Systems DDS Systems DDS Jump to: navigation, search Name Direct Drive Systems (DDS) Place Cerritos, California Zip CA 90703 Product Manufactures high speed, permanent magnet (PM), high-power motors, generators and power electronics. Coordinates 33.868545°, -118.063704° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.868545,"lon":-118.063704,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

385

Northern Power Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Northern Power Systems Inc Northern Power Systems Inc Place Waitsfield, Vermont Zip 5648 Sector Wind energy Product Vermont-based wind energy company that designs, builds, installs and maintains power generation systems. Coordinates 44.184296°, -72.838898° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.184296,"lon":-72.838898,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

386

ReEnergie Systems | Open Energy Information  

Open Energy Info (EERE)

ReEnergie Systems ReEnergie Systems Jump to: navigation, search Name ReEnergie Systems Place Behringersdorf, Germany Zip D-90571 Sector Biomass, Hydro, Solar, Wind energy Product Distributor and marketer of equipment using solar, wind, biomass and hydro energy generation techniques. Coordinates 49.480289°, 11.20016° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":49.480289,"lon":11.20016,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

387

A flexible information management system for supporting manufacturing activities  

Science Journals Connector (OSTI)

The lack of seamless information interchange hinders the accomplishment of manufacturing activities, which are related to the efficient bi-directional flow of information, coordination of decisions and enhancement of assimilation of practices within ... Keywords: data exchange, flexibility, information flow, information management, information sharing, information systems, manufacturing activities, object technology

G. T. S. Ho; H. C. W. Lau; C. K. M. Lee; A. W. H. Ip

2007-04-01T23:59:59.000Z

388

Information processing systems, reasoning modules, and reasoning system design methods  

DOE Patents (OSTI)

Information processing systems, reasoning modules, and reasoning system design methods are described. According to one aspect, an information processing system includes working memory comprising a semantic graph which comprises a plurality of abstractions, wherein the abstractions individually include an individual which is defined according to an ontology and a reasoning system comprising a plurality of reasoning modules which are configured to process different abstractions of the semantic graph, wherein a first of the reasoning modules is configured to process a plurality of abstractions which include individuals of a first classification type of the ontology and a second of the reasoning modules is configured to process a plurality of abstractions which include individuals of a second classification type of the ontology, wherein the first and second classification types are different.

Hohimer, Ryan E; Greitzer, Frank L; Hampton, Shawn D

2014-03-04T23:59:59.000Z

389

Quantifying the system balancing cost when wind energy is incorporated into electricity generation system  

E-Print Network (OSTI)

Incorporation of wind energy into the electricity generation system requires a detailed analysis of wind speed in order to minimize system balancing cost and avoid a significant mismatch between supply and demand. Power ...

Issaeva, Natalia

2009-01-01T23:59:59.000Z

390

Distributed Generation Study/Patterson Farms CHP System Using Renewable  

Open Energy Info (EERE)

Farms CHP System Using Renewable Farms CHP System Using Renewable Biogas < Distributed Generation Study Jump to: navigation, search Study Location Auburn, New York Site Description Agricultural Study Type Field Test Technology Internal Combustion Engine Prime Mover Caterpillar G379 Heat Recovery Systems Built-in Fuel Biogas System Installer Martin Machinery System Enclosure Dedicated Shelter System Application Combined Heat and Power Number of Prime Movers 1 Stand-alone Capability None Power Rating 200 kW0.2 MW 200,000 W 200,000,000 mW 2.0e-4 GW 2.0e-7 TW Nominal Voltage (V) 480 Heat Recovery Rating (BTU/hr) 1366072 Cooling Capacity (Refrig/Tons) Origin of Controller 3rd Party Custom Made Component Integration Customer Assembled Start Date 2007/05/02 Monitoring Termination Date 2007/05/26

391

Building Energy Information Systems: User Case Studies  

SciTech Connect

Measured energy performance data are essential to national efforts to improve building efficiency, as evidenced in recent benchmarking mandates, and in a growing body of work that indicates the value of permanent monitoring and energy information feedback. This paper presents case studies of energy information systems (EIS) at four enterprises and university campuses, focusing on the attained energy savings, and successes and challenges in technology use and integration. EIS are broadly defined as performance monitoring software, data acquisition hardware, and communication systems to store, analyze and display building energy information. Case investigations showed that the most common energy savings and instances of waste concerned scheduling errors, measurement and verification, and inefficient operations. Data quality is critical to effective EIS use, and is most challenging at the subsystem or component level, and with non-electric energy sources. Sophisticated prediction algorithms may not be well understood but can be applied quite effectively, and sites with custom benchmark models or metrics are more likely to perform analyses external to the EIS. Finally, resources and staffing were identified as a universal challenge, indicating a need to identify additional models of EIS use that extend beyond exclusive in-house use, to analysis services.

Granderson, Jessica; Piette, Mary Ann; Ghatikar, Girish

2010-03-22T23:59:59.000Z

392

Unitil Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Systems Systems Jump to: navigation, search Name Unitil Energy Systems Place New Hampshire Utility Id 24590 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Activity Buying Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png D Domestic Rate Residential G1 Large General Service Commercial G2 General Service Commercial Average Rates Residential: $0.0576/kWh Commercial: $0.0510/kWh Industrial: $0.1210/kWh The following table contains monthly sales and revenue data for Unitil

393

Decontamination Systems Information and Research Program  

SciTech Connect

The Decontamination Systems Information and Research Program at West Virginia University consists of research and development associated with hazardous waste remediation problems at the Department of Energy complex and elsewhere. This program seeks to facilitate expedited development and implementation of solutions to the nation`s hazardous waste clean-up efforts. By a unique combination of university research and private technology development efforts, new paths toward implementing technology and speeding clean-ups are achievable. Mechanisms include aggressive industrial tie-ins to academic development programs, expedited support of small business technology development efforts, enhanced linkages to existing DOE programs, and facilitated access to hazardous waste sites. The program topically falls into an information component, which includes knowledge acquisition, technology evaluation and outreach activities and an R and D component, which develops and implements new and improved technologies. Projects began in February 1993 due to initiation of a Cooperative Agreement between West Virginia University and the Department of Energy.

Berg, M.; Sack, W.A.; Gabr, M. [and others

1994-12-31T23:59:59.000Z

394

Advanced Energy Systems Ltd | Open Energy Information  

Open Energy Info (EERE)

Ltd Ltd Jump to: navigation, search Name Advanced Energy Systems Ltd Place Welshpool, Western Australia, Australia Zip 6016 Sector Solar, Wind energy Product Manufacturer and distributor of micro wind turbines, solar systems, gas generators and balance of plant. Currently undergoing restructuring. Coordinates 38.211449°, -85.574524° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.211449,"lon":-85.574524,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

395

The Lie point symmetry generators admitted by systems of linear differential equations  

Science Journals Connector (OSTI)

...1008 59 112 4 The Lie point symmetry generators admitted by systems of linear differential...existence of a basis of infinitesimal generators (as determined by Lie's algorithm...symmetry|linear system|infinitesimal generator|fibre-preserving|affine bundle...

2014-01-01T23:59:59.000Z

396

Next Generation Nuclear Plant Resilient Control System Functional Analysis  

SciTech Connect

Control Systems and their associated instrumentation must meet reliability, availability, maintainability, and resiliency criteria in order for high temperature gas-cooled reactors (HTGRs) to be economically competitive. Research, perhaps requiring several years, may be needed to develop control systems to support plant availability and resiliency. This report functionally analyzes the gaps between traditional and resilient control systems as applicable to HTGRs, which includes the Next Generation Nuclear Plant; defines resilient controls; assesses the current state of both traditional and resilient control systems; and documents the functional gaps existing between these two controls approaches as applicable to HTGRs. This report supports the development of an overall strategy for applying resilient controls to HTGRs by showing that control systems with adequate levels of resilience perform at higher levels, respond more quickly to disturbances, increase operational efficiency, and increase public protection.

Lynne M. Stevens

2010-07-01T23:59:59.000Z

397

High-efficiency solar dynamic space power generation system  

SciTech Connect

Space power technologies have undergone significant advances over the past few years, and great emphasis is being placed on the development of dynamic power systems at this time. A design study has been conducted to evaluate the applicability of a combined cycle concept-closed Brayton cycle and organic Rankine cycle coupling-for solar dynamic space power generation systems. In the concept presented in this paper (solar dynamic combined cycle), the waste heat rejected by the closed Brayton cycle working fluid is utilized to heat the organic working fluid of an organic Rankine cycle system. This allows the solar dynamic combined cycle efficiency to be increased compared to the efficiencies of two subsystems (closed Brayton cycle and organic fluid cycle). Also, for small-size space power systems (up to 50 kW), the efficiency of the solar dynamic combined cycle can be comparable with Stirling engine performance. The closed Brayton cycle and organic Rankine cycle designs are based on a great deal of maturity assessed in much previous work on terrestrial and solar dynamic power systems. This is not yet true for the Stirling cycles. The purpose of this paper is to analyze the performance of the new space power generation system (solar dynamic combined cycle). The significant benefits of the solar dynamic combined cycle concept such as efficiency increase, mass reduction, specific area-collector and radiator-reduction, are presented and discussed for a low earth orbit space station application.

Massardo, A. (Dept. di Ingegneria Energetica, Univ. di Genova, 16145 Genova (IT))

1991-08-01T23:59:59.000Z

398

CDCA Final EIS for Ivanpah Solar Electric Generating System  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CALIFORNIA DESERT CONSERVATION AREA PLAN CALIFORNIA DESERT CONSERVATION AREA PLAN AMENDMENT / FINAL ENVIRONMENTAL IMPACT STATEMENT FOR IVANPAH SOLAR ELECTRIC GENERATING SYSTEM FEIS-10-31 JULY 2010 BLM/CA/ES-2010-010+1793 In Reply Refer To: In reply refer to: 1610-5.G.1.4 2800lCACA-48668 Dear Reader: Enclosed is the proposed California Desert Conservation Area Plan Amendment and Final Environmental Impact Statement (CDCA Plan Amendment/FEIS) for the Ivanpah Solar Electric Generating System (ISEGS) project. The Bureau of Land Management (BLM) prepared the CDCA Plan Amendment/FEIS for the ISEGS project in consultation with cooperating agencies and California State agencies, taking into account public comments received during the National Environmental Policy Act (NEPA) process. The proposed plan amendment adds the Ivanpah

399

Power System Modeling of 20percent Wind-Generated Electricity by 2030  

E-Print Network (OSTI)

power system modeling, wind energy I. I NTRODUCTION Generating electricity from wind technology has several advantages

Hand, Maureen

2008-01-01T23:59:59.000Z

400

Attachment 2 … List of Major Information Systems  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 - List of Major Information Systems 1 - List of Major Information Systems Defense Line of Business National Nuclear Security Administration ADaPT Networked: Develops and deploys emerging information networking technology to production processes in support of the U.S. nuclear weapons stockpile. National Nuclear Security Administration ADaPT Network Infrastructure: Develops and deploys emerging information networking technology to production processes in

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

An overview of the Radioisotope Thermoelectric Generator Transportation System Program  

SciTech Connect

Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft. However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The U.S. Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administration{close_quote}s Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent major changes in the U.S. Department of Energy structure and resources will be outlined. {copyright} {ital 1996 American Institute of Physics.}

McCoy, J.C.; Becker, D.L. [Westinghouse Hanford Company, P.O. Box 1970, Richland, Washington 99352 (United States)

1996-03-01T23:59:59.000Z

402

An overview of the Radioisotope Thermoelectric Generator Transporation System Program  

SciTech Connect

Radioisotope Thermoelectric Generators (RTG) convert the heat generated by radioactive decay to electricity using thermocouples. RTGs have a long operating life, are reasonably lightweight, and require little or no maintenance once assembled and tested. These factors make RTGs particularly attractive for use in spacecraft However, because RTGs contain significant quantities of radioactive materials, normally plutonium-238 and its decay products, they must be transported in packages built in accordance with Title 10, Code of Federal Regulations, Part 71. The US Department of Energy assigned the Radioisotope Thermoelectric Generator Transportation System (RTGTS) Program to Westinghouse Hanford Company in 1988 to develop a system meeting the regulatory requirements. The program objective was to develop a transportation system that would fully comply with 10 CFR 71 while protecting RTGs from adverse environmental conditions during normal conditions of transport (e.g., shock and heat). The RTGTS is scheduled for completion in December 1996 and will be available to support the National Aeronautics and Space Administrations Cassini mission to Saturn in October 1997. This paper provides an overview of the RTGTS and discusses the hardware being produced. Additionally, various program management innovations mandated by recent ma or changes in the US Department of Energy structure and resources will be outlined.

McCoy, J.C.

1995-10-01T23:59:59.000Z

403

Electronic DOE Information Security System (eDISS) PIA, Office...  

Office of Environmental Management (EM)

DOE Information Security System (eDISS) PIA, Office of Health Safety and Security Electronic DOE Information Security System (eDISS) PIA, Office of Health Safety and Security...

404

Business Process Design: Towards Service- Based Green Information Systems  

Science Journals Connector (OSTI)

This paper discusses the impact of energy consumption on information systems and business processes design. The goal is the development of contextaware and sustainable information systems where energy consumpt...

Barbara Pernici; Danilo Ardagna

2008-01-01T23:59:59.000Z

405

Develop a Web-Based Information System | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

a Web-Based Information System Develop a Web-Based Information System Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in...

406

Information Engineering for the Development of Spatial Information Systems: a Research Agenda  

E-Print Network (OSTI)

Information Engineering for the Development of Spatial Information Systems: a Research Agenda Y. B�dard Proceedings of the 27th Annual Conference of the Urban and Regional Information Systems Association Vol. IV, pp. 43-53. Boston, August 6-10, 1989 B�dard, Y., 1989, Information engineering for the development

407

Supporting Information Power generation by packed-bed air-cathode microbial fuel cells  

E-Print Network (OSTI)

1 Supporting Information Power generation by packed-bed air-cathode microbial fuel cells Xiaoyuan b a State Key Joint Laboratory of Environment Simulation and Pollution Control, THU­ VEOLIA Informatics, China University of Mining and Technology, Xuzhou 221116, PR China * Corresponding author: E

408

On designing a control system for a new generation of accelerators  

SciTech Connect

A well-conceived plan of attack is essential to the task of designing a control system for a large accelerator. Several aspects of such a plan have been investigated during recent work at LAMPF on design strategies for an Advanced Hadron Facility control system. Aspects discussed in this paper include: identification of requirements, creation and enforcement of standards, interaction with users, consideration of commercial controls products, integration with existing control systems, planning for continual change, and establishment of design reviews. We emphasize the need for the controls group to acquire and integrate accelerator design information from the start of the design process. We suggest that a controls design for a new generation of accelerators be done with a new generation of software tools. 12 refs.

Schaller, S.C.; Schultz, D.E.

1987-01-01T23:59:59.000Z

409

Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation  

SciTech Connect

This report summarizes the work performed by Honeywell during the January 2002 to March 2002 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. For this reporting period the following activities have been carried out: {lg_bullet} Conceptual system design trade studies were performed {lg_bullet} System-level performance model was created {lg_bullet} Dynamic control models are being developed {lg_bullet} Mechanical properties of candidate heat exchanger materials were investigated {lg_bullet} SOFC performance mapping as a function of flow rate and pressure was completed

Nguyen Minh

2002-03-31T23:59:59.000Z

410

Information System Security Manager (ISSM) | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

ISSM Core Competency Training Worksheet More Documents & Publications Information System Security Officer (ISSO) Cybersecurity Program Manager (CSPM) Authorizing Official (AO)...

411

Design of a digital dissertation information management system  

E-Print Network (OSTI)

Gobinda G. Chowdhury,G.G.C. Program: Electronic Library and Information Systems Volume 36 pp 152-165

Gobinda G.; Chowdhury, G.G.C.; Program: Electronic Library and Information Systems Volume 36 pp 152-165 [More Details

412

Geographic Information System At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Lightning Dock Geothermal Area (Getman, 2014) Exploration Activity...

413

W.E.T. Automotive Systems | Open Energy Information  

Open Energy Info (EERE)

Automotive Systems Jump to: navigation, search Name: W.E.T. Automotive Systems Place: Odelzhausen, Germany Information About Partnership with NREL Partnership with NREL Yes...

414

Forest Products Market Information Systems in the UNECE region.  

E-Print Network (OSTI)

Forest Products Market Information Systems in the UNECE region. L. Farquharson August 2007 #12;#12;A report into Forest Products Market Information Systems_____________________________ 1 1. EXECUTIVE____________________________________________________15 #12;2 ____________________________ A report into Forest Products Market Information Systems 2 1

415

Method and system of integrating information from multiple sources  

DOE Patents (OSTI)

A system and method of integrating information from multiple sources in a document centric application system. A plurality of application systems are connected through an object request broker to a central repository. The information may then be posted on a webpage. An example of an implementation of the method and system is an online procurement system.

Alford, Francine A. (Livermore, CA); Brinkerhoff, David L. (Antioch, CA)

2006-08-15T23:59:59.000Z

416

Modeling, control and electromagnetic transient simulation of the doubly fed induction generator-based wind energy generation system  

Science Journals Connector (OSTI)

This paper presents the dynamic modeling and the stator-voltage-aligned control (SVAC) strategies of the doubly fed induction generator (DFIG)-based wind energy generation system (WEGS). The state-space dynamic model of the DFIG is derived in the synchronous ... Keywords: EMTP-ATP, double-fed induction generators, engineering education, internal model control, maximum power-point tracking algorithm, stator-voltage-aligned control, wind power generation

Yang Han, Pan Shen

2014-03-01T23:59:59.000Z

417

Application of a geographic information system for radiologic emergency response  

SciTech Connect

A geographic information system (GIS) is a multifunctional analytical tool that can be used to compile available data and derive information. A GIS is a computerized database management system for the capture, storage, retrieval, analysis, and display of spatial data. Maps are the most common type of spatial data, but any type of data that can be referenced by an x-y location or geographic coordinate can be used in a GIS. In a radiological emergency, it is critical that data of all types be rapidly compiled into a common format in order to make accurate observations and informed decisions. Developing a baseline GIS for nuclear facilities would offer a significant incentive for all organizations to contribute to and utilize this powerful data management tool. The system being developed could integrate all elements of emergency planning, from the initial protective actions based on models through the emergency monitoring phase, and finally ending with the complex reentry and recovery phase. Within the Federal Radiological Monitoring and Assessment Center (FRMAC), there is a continuing effort to improve the data management and communication process. To demonstrate the potential of GIS for emergency response, the system has been utilized in interagency FRMAC exercises. An interactive GIS system has been deployed and used to analyze the available spatial data to help determine the impact of a hypothetical radiological release and to develop mitigation plans. For this application, both hardcopy and real-time spatial displays were generated with the GIS. Composite maps with different sizes, scales, and themes were produced to support the exercises.

Best, R.G.; Doyle, J.F.

1995-03-01T23:59:59.000Z

418

Methodology for the production and delivery of generative music for the personal listener : systems for realtime generative music production  

E-Print Network (OSTI)

This thesis will describe a system for the production of generative music through specific methodology, and provide an approach for the delivery of this material. The system and body of work will be targeted specifically ...

Murphy, Michael J.

2013-11-27T23:59:59.000Z

419

Princeton Energy Systems PES | Open Energy Information  

Open Energy Info (EERE)

PES PES Jump to: navigation, search Name Princeton Energy Systems (PES) Place Philadelphia, Pennsylvania Zip PA 19118 Sector Efficiency, Services, Solar Product US-based energy services that combines distributed power generation (solar electric and combined heat and power) with traditional energy efficiency technologies. Coordinates 39.95227°, -75.162369° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.95227,"lon":-75.162369,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

420

Development, Demonstration, and Field Testing of Enterprise-Wide Distributed Generation Energy Management System: Final Report  

SciTech Connect

This report details progress on subcontract NAD-1-30605-1 between the National Renewable Energy Laboratory and RealEnergy (RE), the purpose of which is to describe RE's approach to the challenges it faces in the implementation of a nationwide fleet of clean cogeneration systems to serve contemporary energy markets. The Phase 2 report covers: utility tariff risk and its impact on market development; the effect on incentives on distributed energy markets; the regulatory effectiveness of interconnection in California; a survey of practical field interconnection issues; trend analysis for on-site generation; performance of dispatch systems; and information design hierarchy for combined heat and power.

Greenberg, S.; Cooley, C.

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Low-power electricity generation from dynamical systems  

Science Journals Connector (OSTI)

This talk will review our research on energy harvesting from electroelastic dynamical systems for low-power electricity generation with an emphasis on piezoelectric transduction. The transformation of vibrations into electricity using piezoelectric materials with the goal of powering small electronic components has received growing attention over the last decade. Enabling energy-autonomous small electronic components can lead to reduced maintenance costs in various wireless applications such as structural health monitoring of civil and military systems. After a brief discussion of energy harvesting methods for low-power electricity generation this talk will be focused on linear and nonlinear energy harvesting using piezoelectric materials through the topics of distributed-parameter electroelastic dynamics of energy harvesters performance and frequency bandwidth enhancement by exploiting nonlinear dynamic phenomena deterministic and stochastic excitation of monostable and bistable configurations effects of dissipative and inherent electroelastic nonlinearities electroaeroelastic flow energy harvesting using airfoil-based and bluff body-based configurations and enhanced harvesting of structure-borne propagating waves using elastoacoustic mirrors and metamaterial structures. A brief introduction to our efforts on multifunctional underwater thrust and power generation using flexible piezoelectric composites will also be given.

Alper Erturk

2013-01-01T23:59:59.000Z

422

Decontamination systems information and research program  

SciTech Connect

It is estimated that over 3700 hazardous waste sites are under the jurisdiction of the Department of Energy (DOE). These sites were primarily generated from 45 years worth of environmental pollution from the design and manufacture of nuclear materials and weapons, and contain numerous types of wastes including: (1) volatile, low-volatile and nonvolatile organics, (2) radionuclides (e.g., uranium, plutonium and cesium), (3) nonradioactive heavy metals (e.g., chromium, nickel, and lead), and (4) toxic chemicals. These contaminants affect several media including soils (saturated and unsaturated), groundwater, vegetation, and air. Numerous and diverse DOE hazardous waste sites can be enumerated from soils contaminated by organics such as trichloroethylene (TCE) and perchloroethylene (PCE) at the Savannah River site to biota and vegetation contaminated by radionuclides such as radiocesium and radiostrontium at the Oak Ridge site. Over the next 30 years, the Department of Energy (DOE) is committed to bringing all its facilities into compliance with applicable Federal, State, and local environmental laws and regulations. This clean-up task is quite complex involving numerous sites containing various radioactive, organic and inorganic contaminants. To perform this clean-up effort in the most efficient manner at each site will require that DOE managers have access to all available information on pertinent technologies; i.e., to aid in maximum technology transfer. The purpose of this effort is to systematically develop a databast of those currently available and emerging clean-up technologies.

Not Available

1993-01-01T23:59:59.000Z

423

Information Technology Specialist (Systems Analysis/ Applications Software)  

Energy.gov (U.S. Department of Energy (DOE))

(See Frequently Asked Questions for more information). Where would I be working ? Western Area Power Administration, Corporate Services Office, Office of the Chief Information Officer, Enterprise...

424

3rd Generation SCR System Using Solid Ammonia Storage and Direct...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

rd Generation SCR System Using Solid Ammonia Storage and Direct Gas Dosing 3rd Generation SCR System Using Solid Ammonia Storage and Direct Gas Dosing SCR system provides direct...

425

SOLID OXIDE FUEL CELL HYBRID SYSTEM FOR DISTRIBUTED POWER GENERATION  

SciTech Connect

This report summarizes the work performed by Honeywell during the July 2001 to September 2001 reporting period under Cooperative Agreement DE-FC26-01NT40779 for the U. S. Department of Energy, National Energy Technology Laboratory (DOE/NETL) entitled ''Solid Oxide Fuel Cell Hybrid System for Distributed Power Generation''. The main objective of this project is to develop and demonstrate the feasibility of a highly efficient hybrid system integrating a planar Solid Oxide Fuel Cell (SOFC) and a turbogenerator. An internal program kickoff was held at Honeywell in Torrance, CA. The program structure was outlined and the overall technical approach for the program was presented to the team members. Detail program schedules were developed and detailed objectives were defined. Initial work has begun on the system design and pressurized SOFC operation.

Unknown

2002-03-01T23:59:59.000Z

426

System and method for generating current by selective electron heating  

DOE Patents (OSTI)

A system for the generation of toroidal current in a plasma which is prepared in a toroidal magnetic field. The system utilizes the injection of high-frequency waves into the plasma by means of waveguides. The wave frequency and polarization are chosen such that when the waveguides are tilted in a predetermined fashion, the wave energy is absorbed preferentially by electrons traveling in one toroidal direction. The absorption of energy in this manner produces a toroidal electric current even when the injected waves themselves do not have substantial toroidal momentum. This current can be continuously maintained at modest cost in power and may be used to confine the plasma. The system can operate efficiently on fusion grade tokamak plasmas.

Fisch, Nathaniel J. (Princeton, NJ); Boozer, Allen H. (Rocky Hill, NJ)

1984-01-01T23:59:59.000Z

427

Scaled modeling and simulation of ocean wave linear generator buoy systems.  

E-Print Network (OSTI)

??Accurate scaled modeling and simulation are critical to advancing ocean wave linear generator buoys. A 100th scaled model of ocean wave generator buoy systems is (more)

Gore, Ganesh P.

2006-01-01T23:59:59.000Z

428

List of Major Information Systems,National Nuclear Security Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

List of Major Information Systems,National Nuclear Security List of Major Information Systems,National Nuclear Security Administration ADaPT Networked: List of Major Information Systems,National Nuclear Security Administration ADaPT Networked: List of Major Information Systems, Defense Line of Business National Nuclear Security Administration ADaPT Networked: Develops and deploys emerging information networking technology to production processes in support of the U.S. nuclear weapons stockpile. National Nuclear Security Administration ADaPT Network Infrastructure: Develops and deploys emerging information networking technology to production processes in support of the U.S. nuclear weapons stockpile. .major_information_systems.pdf List of Major Information Systems,National Nuclear Security Administration ADaPT Networked:

429

INTEGRATED POWER GENERATION SYSTEMS FOR COAL MINE WASTE METHANE UTILIZATION  

SciTech Connect

An integrated system to utilize the waste coal mine methane (CMM) at the Federal No. 2 Coal Mine in West Virginia was designed and built. The system includes power generation, using internal combustion engines, along with gas processing equipment to upgrade sub-quality waste methane to pipeline quality standards. The power generation has a nominal capacity of 1,200 kw and the gas processing system can treat about 1 million cubic feet per day (1 MMCFD) of gas. The gas processing is based on the Northwest Fuel Development, Inc. (NW Fuel) proprietary continuous pressure swing adsorption (CPSA) process that can remove nitrogen from CMM streams. The two major components of the integrated system are synergistic. The byproduct gas stream from the gas processing equipment can be used as fuel for the power generating equipment. In return, the power generating equipment provides the nominal power requirements of the gas processing equipment. This Phase III effort followed Phase I, which was comprised of a feasibility study for the project, and Phase II, where the final design for the commercial-scale demonstration was completed. The fact that NW Fuel is desirous of continuing to operate the equipment on a commercial basis provides the validation for having advanced the project through all of these phases. The limitation experienced by the project during Phase III was that the CMM available to operate the CPSA system on a commercial basis was not of sufficiently high quality. NW Fuel's CPSA process is limited in its applicability, requiring a relatively high quality of gas as the feed to the process. The CPSA process was demonstrated during Phase III for a limited time, during which the processing capabilities met the expected results, but the process was never capable of providing pipeline quality gas from the available low quality CMM. The NW Fuel CPSA process is a low-cost ''polishing unit'' capable of removing a few percent nitrogen. It was never intended to process CMM streams containing high levels of nitrogen, as is now the case at the Federal No.2 Mine. Even lacking the CPSA pipeline delivery demonstration, the project was successful in laying the groundwork for future commercial applications of the integrated system. This operation can still provide a guide for other coal mines which need options for utilization of their methane resources. The designed system can be used as a complete template, or individual components of the system can be segregated and utilized separately at other mines. The use of the CMM not only provides an energy fuel from an otherwise wasted resource, but it also yields an environmental benefit by reducing greenhouse gas emissions. The methane has twenty times the greenhouse effect as compared to carbon dioxide, which the combustion of the methane generates. The net greenhouse gas emission mitigation is substantial.

Peet M. Soot; Dale R. Jesse; Michael E. Smith

2005-08-01T23:59:59.000Z

430

An intelligent biological information management system  

Science Journals Connector (OSTI)

......Mishra 3 1Computer Science Department...and Information Science, Indiana University...for information management from data retrieval...filtering (IF) approach as a possible...and Information Science, University...1985) A New Approach to the Design...of information management, i.e. mapping......

Mathew Palakal; Snehasis Mukhopadhyay; Javed Mostafa; Rajeev Raje; Mathias N'Cho; Santosh Mishra

2002-10-01T23:59:59.000Z

431

How information-sharing values influence the use of information systems: An investigation in the business intelligence systems context  

Science Journals Connector (OSTI)

Abstract Although the constituents of information systems (IS) success and their relationships have been well documented in the business value of information technology (IT) and strategic IS literature, our understanding of how information-sharing values affect the relationships among IS success dimensions is limited. In response, we conduct a quantitative study of 146 medium and large firms that have implemented a business intelligence system in their operations. Our results highlight that in the business intelligence systems context information-sharing values are not directly linked to IT-enabled information use, yet they act as significant moderators of information systems success dimensions relationships.

Ale Popovi?; Ray Hackney; Pedro Simes Coelho; Jurij Jakli?

2014-01-01T23:59:59.000Z

432

Property:Heat Recovery Systems | Open Energy Information  

Open Energy Info (EERE)

Systems Systems Jump to: navigation, search Property Name Heat Recovery Systems Property Type Page Description Distributed Data heat recovery systems Pages using the property "Heat Recovery Systems" Showing 25 pages using this property. (previous 25) (next 25) C Capstone C30 + Unifin + Capstone C60 + Unifin HX + D Distributed Generation Study/10 West 66th Street Corp + Built-in + Distributed Generation Study/615 kW Waukesha Packaged System + Sondex PHE-Type SL140-TM-EE-190 +, Sondex PHE-Type SL140-TM-EE-150 +, Cain UTR1-810A17.5SSP + Distributed Generation Study/Aisin Seiki G60 at Hooligans Bar and Grille + Built-in + Distributed Generation Study/Arrow Linen + Built-in + Distributed Generation Study/Dakota Station (Minnegasco) + Unifin + Distributed Generation Study/Elgin Community College + Beaird Maxim Model TRP-12 +

433

Geographic Information System At Nw Basin & Range Region (Laney, 2005) |  

Open Energy Info (EERE)

Geographic Information System At Nw Basin & Range Geographic Information System At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration Technique Geographic Information System Activity Date Usefulness useful regional reconnaissance DOE-funding Unknown Notes Regional Assessment of Exploration Potential for Geothermal Systems in The Great Basin Using a Geographic Information System (GIS) - Part II, Coolbaugh, Zehner, Raines, Shevenell, Minor, Sawatzky and Oppliger. The objective is to generate new exploration targets for both conventional and EGS capable geothermal systems by analyzing regional data in a GIS. Digital geothermal data will be made available to industry and researchers on a web site. Relationships among the data will be explored using spatial

434

TWRS information locator database system administrator`s manual  

SciTech Connect

This document is a guide for use by the Tank Waste Remediation System (TWRS) Information Locator Database (ILD) System Administrator. The TWRS ILD System is an inventory of information used in the TWRS Systems Engineering process to represent the TWRS Technical Baseline. The inventory is maintained in the form of a relational database developed in Paradox 4.5.

Knutson, B.J., Westinghouse Hanford

1996-09-13T23:59:59.000Z

435

Integrating hospital information systems: a bottom-up approach  

Science Journals Connector (OSTI)

The growing complexity of hospital information systems has prompted information systems managers to seek applicable solutions for integrating their systems. While many successful applications of information systems have been introduced and implemented in the hospital environment, the integration of heterogeneous applications in existing, multi-vendor, computing environments into a cohesive hospital-wide information system has proved to be complicated and difficult to accomplish. This paper discusses systems integration in hospitals and presents a conceptual framework for bottom-up integration of hospital information systems. The scope of the proposed framework is the integration of stand-alone clinical, administrative and financial information elements of a hospital into a unified system environment with a central medical data warehouse.

Moshe Zviran; Aviad Armoni

1999-01-01T23:59:59.000Z

436

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation  

E-Print Network (OSTI)

Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part II: Parametric Evaluation been proposed to model thermoelectric generators (TEGs) for automotive waste heat recovery. Details: Thermoelectric generators, waste heat recovery, automotive exhaust, skutterudites INTRODUCTION In part I

Xu, Xianfan

437

Knowledge-information autopoietic cycle: towards the wisdom systems  

Science Journals Connector (OSTI)

Decision-making processes are characterised by purposeful coordination of interrelated activities of pre-decision, decision and post-decision stages. In this sense, human decision-making processes require explicit knowledge generation, enhancement and renewal. So far, the areas of decision-making have remained mostly free of knowledge and knowledge management, process orientation and autopoiesis and self-producing cycles in general. Yet, in this paper, we move further ahead. The transition from information to knowledge is still going on and much remains to be accomplished, but the next transition ?? from knowledge to wisdom ?? is already taking shape. We formulate clear, unambiguous and pragmatic definitions and distinctions of knowledge and information, establish simple and natural measures of the value of knowledge and describe the knowledge-information autopoietic cycle A-C-I-S and its circulatory nature in managing knowledge of the enterprise. Then we elaborate on the future evolution of knowledge management by discussing the outlines of wisdom, wisdom systems and the contours of the Wise Enterprise.

Milan Zeleny

2006-01-01T23:59:59.000Z

438

Information Please return to ITS Support Center, Mail Stop: ITS Kerr University Administrative Information System  

E-Print Network (OSTI)

Information Please return to ITS Support Center, Mail Stop: ITS Kerr Technology Services University Administrative Information System ACCESS TO INFORMATION STATEMENT Federal law, California law, and University policy protects any information that is maintained by the University that identifies or describes

California at Santa Cruz, University of

439

A Method of Decreasing Power Output Fluctuation of Solar Chimney Power Generating Systems  

Science Journals Connector (OSTI)

Severe fluctuation of power output is a common problem in the various generating systems of renewable energies. The hybrid energy storage system with water and soil is adopted to decrease the fluctuation of solar chimney power generating systems in the ... Keywords: Solar chimney power generating system, power output fluctuation, hybrid energy storage layer, collector, chimney

Meng Fanlong; Ming Tingzhen; Pan Yuan

2011-01-01T23:59:59.000Z

440

An Intranet and Internet based Information System for Administration and Information purposes*  

E-Print Network (OSTI)

groups etc.) the prefecture of Corfu. It is exploiting Intranet and Extranet technologies in order with this important problem has designed and now is implementing an Information System based on Intranet technologies1 An Intranet and Internet based Information System for Administration and Information purposes

Bouras, Christos

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

System analysis of membrane facilitated water generation from air humidity  

Science Journals Connector (OSTI)

Abstract The use of water vapor selective membranes can reduce the energy requirement for extracting water out of humid air by more than 50%. We performed a system analysis of a proposed unit, that uses membranes to separate water vapor from other atmospheric gases. This concentrated vapor can then be condensed specifically, rather than cooling the whole body of air. The driving force for the membrane permeation is maintained with a condenser and a vacuum pump. The pump regulates the total permeate side pressure by removing non-condensable gases that leak into the system. We show that by introducing a low-pressure, recirculated, sweep stream, the total permeate side pressure can be increased without impairing the water vapor permeation. This measure allows energy efficiency even in the presence of leakages, as it significantly lowers the power requirements of the vacuum pump. Such a constructed atmospheric water generator with a power of 62kW could produce 9.19m3/day of water (583MJ/m3) as compared to 4.45m3/day (1202MJ/m3) that can be condensed without membranes. Due to the physical barrier the membrane imposes, fresh water generated in this manner is also cleaner and of higher quality than water condensed directly out of the air.

D. Bergmair; S.J. Metz; H.C. de Lange; A.A. van Steenhoven

2014-01-01T23:59:59.000Z

442

Information systems for healthcare: a conceptual framework for improving decision making through better information, not technology  

Science Journals Connector (OSTI)

The theory of Information Systems (IS) concentrates on getting the right information at the right time in the right format to the right user. The development of information systems, therefore, requires focus on organisational objectives, design and dynamics as much as it requires focus on the procurement of the most appropriate hardware and software. Today, the concentration on issues pertaining to computer-based information systems (CBIS) is often incorrectly emphasised. Computers play an integral role in the development and operation of information systems. However, the computer-related functions should be primarily supporting (to the information systems strategic objectives) in nature. The essence of the ''systems analysis'' should focus on the root of the problem, which is the need for information. Supplemental discussion, only then, should concentrate on the computer-related issues, i.e., the type of software and the specific hardware that is needed.

Kevin J. Leonard; George Pink; Lina M. Johnson; Ellen G. Schraa

2000-01-01T23:59:59.000Z

443

Informing the next nuclear generation - how does the Ginna plant branch do it?  

SciTech Connect

Most of us are familiar with the latest advertising phrase, ``Our children are our future.`` This phrase has been used in so many instances - from concerns about waste, Social Security, and the federal deficit to drug abuse and violence. One more area can be added to the list and advertised nuclear power. Since the establishment of the Ginna plant branch (GPB) in 1992, our target audience has been the next nuclear generation (our children), but our vehicle for dissemination has been the current generation (the adults). Have you ever thought about how often your opinions affect the children you come in contact with? One of GPB`s goals is to provide as much information as possible to teachers, neighbors, and civic organizations of our community so that there is a nuclear future that can be carried on by the next generation.

Saavedra, A. [Rochester Gas and Electric Corporation, Ontario, NY (United States)

1995-12-31T23:59:59.000Z

444

Design and Implement for Information System Intelligent Monitoring System of Power Grid  

Science Journals Connector (OSTI)

Information system intelligent monitoring system (ISIMS) can be used to monitoring and manage data which are separate in different information systems in power grid. With the help of ISIMS, the ... source can be ...

Lei Huang; Taotao Ma; Jufang Li

2011-01-01T23:59:59.000Z

445

Transition to cloud computing in healthcare information systems  

E-Print Network (OSTI)

This thesis is a study on the adoption of cloud computing in healthcare information technology industry. It provides a guideline for people who are trying to bring cloud computing into healthcare information systems through ...

Ren, Haiying, S.M. Massachusetts Institute of Technology

2012-01-01T23:59:59.000Z

446

Quantitative information-flow tracking for real systems  

E-Print Network (OSTI)

An information-flow security policy constrains a computer system's end-to-end use of information, even as it is transformed in computation. For instance, a policy would not just restrict what secret data could be revealed ...

McCamant, Stephen

2008-01-01T23:59:59.000Z

447

Information Ecology: Open System Environment for Data, Memories and Knowing  

E-Print Network (OSTI)

Information Ecology: Open System Environment for Data, Memories and Knowing Karen S. Baker@scu.edu Abstract. An information ecology provides a conceptual framework to consider data, the creation Ecological Research (LTER) community, presents some manifestations of traditionally unreported `invisible

Bowker, Geoffrey C.

448

Coal-fired high performance power generating system. Final report  

SciTech Connect

As a result of the investigations carried out during Phase 1 of the Engineering Development of Coal-Fired High-Performance Power Generation Systems (Combustion 2000), the UTRC-led Combustion 2000 Team is recommending the development of an advanced high performance power generation system (HIPPS) whose high efficiency and minimal pollutant emissions will enable the US to use its abundant coal resources to satisfy current and future demand for electric power. The high efficiency of the power plant, which is the key to minimizing the environmental impact of coal, can only be achieved using a modern gas turbine system. Minimization of emissions can be achieved by combustor design, and advanced air pollution control devices. The commercial plant design described herein is a combined cycle using either a frame-type gas turbine or an intercooled aeroderivative with clean air as the working fluid. The air is heated by a coal-fired high temperature advanced furnace (HITAF). The best performance from the cycle is achieved by using a modern aeroderivative gas turbine, such as the intercooled FT4000. A simplified schematic is shown. In the UTRC HIPPS, the conversion efficiency for the heavy frame gas turbine version will be 47.4% (HHV) compared to the approximately 35% that is achieved in conventional coal-fired plants. This cycle is based on a gas turbine operating at turbine inlet temperatures approaching 2,500 F. Using an aeroderivative type gas turbine, efficiencies of over 49% could be realized in advanced cycle configuration (Humid Air Turbine, or HAT). Performance of these power plants is given in a table.

NONE

1995-08-31T23:59:59.000Z

449

MHK Technologies/Sea wave Slot cone Generator SSG | Open Energy Information  

Open Energy Info (EERE)

Sea wave Slot cone Generator SSG Sea wave Slot cone Generator SSG < MHK Technologies Jump to: navigation, search << Return to the MHK database homepage Sea wave Slot cone Generator SSG.jpg Technology Profile Primary Organization Wave Energy AS Project(s) where this technology is utilized *MHK Projects/Wave Energy AS Project 1 Technology Resource Click here Wave Technology Type Click here Overtopping Device Technology Readiness Level Click here TRL 5/6: System Integration and Technology Laboratory Demonstration Technology Description The Sea Wave Slot-Cone Generator (SSG) is based on the overtopping principle. It utilizes a total of three reservoirs stacked on top of one other (referred to as a 'multi-stage water turbine') in which the potential energy of the incoming wave will be stored. The water captured in the reservoirs will then run through the multi-stage turbine for highly efficient electricity production.

450

International Recognition for OSTI-Based Information Systems | OSTI, US  

Office of Scientific and Technical Information (OSTI)

International Recognition for OSTI-Based Information Systems International Recognition for OSTI-Based Information Systems September 20, 2005 Oak Ridge, TN - The U.S. Department of Energy Office of Scientific and Technical Information (OSTI) and the Energy Technology Data Exchange (ETDE) were recently cited in a European Commission study as key information systems that could serve as models in the development of a European Union-focused energy portal. ETDE is a multilateral information exchange agreement to which OSTI serves as the Operating Agent. The May 2005 report, "Energy RTD Information Systems in the ERA (European Research Area)," found that, "Today's situation regarding EU energy RTD (research and technological development) information systems is no longer satisfactory. To meet future challenges, a clear structure and

451

Aperion Energy Systems | Open Energy Information  

Open Energy Info (EERE)

system controls, and fuel options with various stack technologies to supply optimized fuel cell systems. References: Aperion Energy Systems1 This article is a stub. You can...

452

Future Generation Computer Systems 16 (2000) 851871 Ant algorithms and stigmergy  

E-Print Network (OSTI)

Future Generation Computer Systems 16 (2000) 851­871 Ant algorithms and stigmergy Marco Dorigoa Generation Computer Systems 16 (2000) 851­871 The term stigmergy was introduced by Grassé [39] to describe

Theraulaz, Guy

453

DC Connected Hybrid Offshore-Wind and Tidal Turbine Generation System  

Science Journals Connector (OSTI)

Hybrid Offshore-wind and Tidal Turbine (HOTT) generation system (Rahman and ... interconnecting method for a DC side cluster of wind and tidal turbine generators system are proposed. This method can be achieved...

Mohammad Lutfur Rahman; Yasuyuki Shirai

2010-01-01T23:59:59.000Z

454

The B F Goodrich Information Retrieval System and Automatic Information Distribution Using Computer-Compiled Thesaurus and Dual Dictionary  

Science Journals Connector (OSTI)

The B F Goodrich Information Retrieval System and Automatic Information Distribution Using Computer-Compiled Thesaurus and Dual Dictionary ...

Paul J. Horvath; Alice Yanosko. Chamis; Robert F. Carroll; Joyce. Dlugos

1967-08-01T23:59:59.000Z

455

Health Information Systems for Primary Health Care: Thinking About Participation  

E-Print Network (OSTI)

Health Information Systems for Primary Health Care: Thinking About Participation Elaine Byrne in supporting primary health care functioning, the design, development and implementation of these systems information systems, human rights 1. Introduction: Primary health care is a crucial element of national health

Sahay, Sundeep

456

GENERATING CLIMBING PLANTS USING L-SYSTEMS Johan Knutzen1  

E-Print Network (OSTI)

and heliotropism, as well pseudo- tropisms. The structure of the generated climbing plants is discretized

Assarsson, Ulf

457

An Optimized Adaptive Protection Scheme for Distribution Systems Penetrated with Distributed Generators  

Science Journals Connector (OSTI)

An intelligent adaptive protection scheme for distribution systems penetrated with distributed generators is proposed in this chapter. The scheme...

Ahmed H. Osman; Mohamed S. Hassan

2014-01-01T23:59:59.000Z

458

Low and high Temperature Dual Thermoelectric Generation Waste Heat Recovery System for Light-Duty Vehicles  

Energy.gov (U.S. Department of Energy (DOE))

Developing a low and high temperature dual thermoelectric generation waste heat recovery system for light-duty vehicles.

459

Rucio, the next-generation Data Management system in ATLAS  

E-Print Network (OSTI)

Rucio is the next-generation of Distributed Data Management (DDM) system benefiting from recent advances in cloud and "Big Data" computing to address HEP experiments scaling requirements. Rucio is an evolution of the ATLAS DDM system Don Quijote 2 (DQ2), which has demonstrated very large scale data management capabilities with more than 160 petabytes spread worldwide across 130 sites, and accesses from 1,000 active users. However, DQ2 is reaching its limits in terms of scalability, requiring a large number of support staff to operate and being hard to extend with new technologies. Rucio addresses these issues by relying on new technologies to ensure system scalability, cover new user requirements and employ new automation framework to reduce operational overheads. This paper shows the key concepts of Rucio, details the Rucio design, and the technology it employs, the tests that were conducted to validate it and finally describes the migration steps that were conducted to move from DQ2 to Rucio.

Serfon, C; The ATLAS collaboration; Beermann, T; Garonne, V; Goossens, L; Lassnig, M; Nairz, A; Vigne, R

2014-01-01T23:59:59.000Z

460

SYSTEM OPTIMIZTION OF HOT WATER CONCENTRATED SOLAR THERMOELECTRIC GENERATION  

E-Print Network (OSTI)

In this report, we describe the design of a concentrated solar thermoelectric (TE) system which can provide both electricity and hot water. Todays thermoelectric materials have a relatively low efficiency (~6 % for temperature difference across the thermoelement on the order of 300 o C). However since thermoelectrics dont need their cold side to be near room temperature, (in another word, one can chose the particular thermoelectric material to match to the operational temperature) it is possible to use the waste heat to provide hot water and this makes the overall efficiency of the combined system to be quite high. A key factor in the optimization of the thermoelectric module is the thermal impedance matching with the incident solar radiation, and also with the hot water heat exchanger on the cold side of the thermoelectric module. We have developed an analytic model for the whole system and optimized each component in order to minimize the material cost. TE element fill factor is found to be an important parameter to optimize at low solar concentrations (generated per mass of the thermoelectric elements. Similarly the co-optimization of the microchannel heat exchanger and the TE module can be used to minimize the amount of material in the heat exchanger and the pumping power required for forced convection liquid cooling. Changing the amount of solar concentration, changes the input heat flux and this is another parameter that can be optimized in order to reduce the cost of heat exchanger (by size), the tracking requirement and the whole system. A series of design curves for different solar concentration are obtained. It is shown that the overall efficiency of the system can be more than 80 % at 200x concentration which is independent of the material ZT (TE figure-of-merit). For a material with ZThot~0.9, the electrical conversion efficiency is ~10%. For advanced materials with ZThot ~ 2.8, the electrical conversion efficiency could reach ~21%. 1.

Kazuaki Yazawa; Ali Shakouri

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Onsite Distributed Generation Systems For Laboratories, Laboratories for the 21st Century: Best Practices (Brochure)  

SciTech Connect

This guide provides general information on implementing onsite distributed generation systems in laboratory environments. Specific technology applications, general performance information, and cost data are provided to educate and encourage laboratory energy managers to consider onsite power generation or combined heat and power (CHP) systems for their facilities. After conducting an initial screening, energy managers are encouraged to conduct a detailed feasibility study with actual cost and performance data for technologies that look promising. Onsite distributed generation systems are small, modular, decentralized, grid-connected, or off-grid energy systems. These systems are located at or near the place where the energy is used. These systems are also known as distributed energy or distributed power systems. DG technologies are generally considered those that produce less than 20 megawatts (MW) of power. A number of technologies can be applied as effective onsite DG systems, including: (1) Diesel, natural gas, and dual-fuel reciprocating engines; (2) Combustion turbines and steam turbines; (3) Fuel cells; (4) Biomass heating; (5) Biomass combined heat and power; (6) Photovoltaics; and (7) Wind turbines. These systems can provide a number of potential benefits to an individual laboratory facility or campus, including: (1) High-quality, reliable, and potentially dispatchable power; (2) Low-cost energy and long-term utility cost assurance, especially where electricity and/or fuel costs are high; (3) Significantly reduced greenhouse gas (GHG) emissions. Typical CHP plants reduce onsite GHG by 40 to 60 percent; (4) Peak demand shaving where demand costs are high; (5) CHP where thermal energy can be used in addition to electricity; (6) The ability to meet standby power needs, especially where utility-supplied power is interrupted frequently or for long periods and where standby power is required for safety or emergencies; and (7) Use for standalone or off-grid systems where extending the grid is too expensive or impractical. Because they are installed close to the load, DG systems avoid some of the disadvantages of large, central power plants, such as transmission and distribution losses over long electric lines.

Not Available

2011-09-01T23:59:59.000Z

462

Generation of energy-efficient architecture solutions applying GENE_ARCH: An evolution-based generative design system  

Science Journals Connector (OSTI)

As the field of design automation and generative design systems (GDS) evolve, more emphasis is placed on issues of design evaluation. This paper focus on the presentation of different applications of GENE_ARCH, an evolution-based GDS aimed at helping ... Keywords: Bioclimatic architecture, Design automation, Embodied energy, Energy efficiency, Generative design systems, Genetic algorithms, Life-cycle analysis, Pareto multicriteria optimization, Sustainable construction

Luisa Caldas

2008-01-01T23:59:59.000Z

463

Sequentric Energy Systems | Open Energy Information  

Open Energy Info (EERE)

NC Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building...

464

Service-oriented design of environmental information systems.  

E-Print Network (OSTI)

??Service-orientation has an increasing impact upon the design process and the architecture of environmental information systems. This thesis specifies the SERVUS design methodology for geospatial (more)

Uslnder, Thomas

2010-01-01T23:59:59.000Z

465

Geographic Information System At U.S. West Region (Williams ...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At U.S. West Region (Williams & Deangelo, 2008) Exploration Activity Details...

466

Geographic Information System At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Geographic Information System At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2012) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

467

Information capacity and resolution in an optical system  

Science Journals Connector (OSTI)

The concept of invariance of information capacity is discussed and applied to the resolution of an optical system. Methods of obtaining superresolution in microscopy are discussed, and...

Cox, I J; Sheppard, C J R

1986-01-01T23:59:59.000Z

468

Geographic Information System At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Details Location Dixie Valley Geothermal Area Exploration Technique Geographic Information System Activity Date 1996 - 1997 Usefulness not indicated DOE-funding Unknown...

469

Geographic Information System At Chena Geothermal Area (Holdmann...  

Open Energy Info (EERE)

Activity Details Location Chena Geothermal Area Exploration Technique Geographic Information System Activity Date 2005 - 2007 Usefulness useful DOE-funding Unknown Exploration...

470

Geographic Information System (Nash, Et Al., 2002) | Open Energy...  

Open Energy Info (EERE)

Exploration Activity Details Location Unspecified Exploration Technique Geographic Information System Activity Date Usefulness useful DOE-funding Unknown References Gregory D....

471

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Northern Basin & Range Region (Coolbaugh, Et Al., 2005 - 2) Exploration...

472

Geographic Information System At Central Nevada Seismic Zone...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Central Nevada Seismic Zone Region (Coolbaugh, Et Al., 2005 - 2)...

473

Geographic Information System At Cove Fort Area - Vapor (Nash...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Cove Fort Area - Vapor (Nash, Et Al., 2002) Exploration Activity Details...

474

Geographic Information System At Nevada Test And Training Range...  

Open Energy Info (EERE)

Geographic Information System At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity:...

475

Geographic Information System At Northern Basin & Range Region...  

Open Energy Info (EERE)

Activity: Geographic Information System At Northern Basin & Range Region (Nash & Johnson, 2003) Exploration Activity Details Location Northern Basin and Range Geothermal...

476

Geographic Information System At Nw Basin & Range Region (Nash...  

Open Energy Info (EERE)

Geographic Information System At Nw Basin & Range Region (Nash & Johnson, 2003) Exploration Activity Details Location Northwest Basin and Range Geothermal Region Exploration...

477

NREL: Dynamic Maps, Geographic Information System (GIS) Data...  

NLE Websites -- All DOE Office Websites (Extended Search)

August 2012 The Geographic Information System (GIS) Team at the National Renewable Energy Laboratory (NREL) encompasses a broad range of scientific research and reporting activity...

478

NREL: Dynamic Maps, Geographic Information System (GIS) Data...  

NLE Websites -- All DOE Office Websites (Extended Search)

April 2012 The Geographic Information System (GIS) Team at the National Renewable Energy Laboratory (NREL) encompasses a broad range of scientific research and reporting activity...

479

Geographic information system (GIS) analysis of ecosystem invasion ...  

Science Journals Connector (OSTI)

Geographic information system (GIS) analysis with bathymetric, substrate, and side scan sonar (SSS) data was used to assess both spatial and temporal...

cbrown@sun10

1910-01-12T23:59:59.000Z

480

Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters  

E-Print Network (OSTI)

1 Subsystem Interaction Analysis in Power Distribution Systems of Next Generation Airlifters Sriram power distribution system of a next generation transport aircraft is addressed. Detailed analysis with the analysis of subsystem integration in power distribution systems of next generation transport aircraft

Lindner, Douglas K.

Note: This page contains sample records for the topic "generation information system" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Enhanced Geothermal Systems (EGS) | Open Energy Information  

Open Energy Info (EERE)

Enhanced Geothermal Systems (EGS) Enhanced Geothermal Systems (EGS) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Enhanced Geothermal Systems (EGS) Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps EGS Links Related documents and websites DOE EGS Technical Roadmap DOE EGS Systems Demonstration Projects How EGS Works (Animation) EGS Development (Animation) EGS Schematic.jpg ] Dictionary.png Enhanced Geothermal Systems: Enhanced Geothermal Systems (EGS) are human engineered hydrothermal reservoirs developed for commercial use as an alternative to naturally

482

Coal-fired high performance power generating system. Quarterly progress report, April 1--June 30, 1993  

SciTech Connect

This report covers work carried out under Task 2, Concept Definition and Analysis, Task 3, Preliminary R&D and Task 4, Commercial Generating Plant Design, under Contract AC22-92PC91155, ``Engineering Development of a Coal Fired High Performance Power Generation System`` between DOE Pittsburgh Energy Technology Center and United Technologies Research Center. The goals of the program are to develop a coal-fired high performance power generation system (HIPPS) by the year 2000 that is capable of: >47% thermal efficiency; NO{sub x}, SO{sub x} and Particulates {le}25% NSPS; cost {ge}65% of heat input; all solid wastes benign. In order to achieve these goals our team has outlined a research plan based on an optimized analysis of a 250 MW{sub e} combined cycle system applicable to both frame type and aeroderivative gas turbines. Under the constraints of the cycle analysis we have designed a high temperature advanced furnace (HITAF) which integrates several combustor and air heater designs with appropriate ash management procedures. A survey of currently available high temperature alloys has been completed and some of their high temperature properties are shown for comparison. Several of the most promising candidates will be selected for testing to determine corrosion resistance and high temperature strength. The corrosion resistance testing of candidate refractory coatings is continuing and some of the recent results are presented. This effort will provide important design information that will ultimately establish the operating ranges of the HITAF.

Not Available

1993-11-01T23:59:59.000Z

483

Multiple layer optical memory system using second-harmonic-generation readout  

DOE Patents (OSTI)

A novel optical read and write information storage system is described which comprises a radiation source such as a laser for writing and illumination, the radiation source being capable of radiating a preselected first frequency; a storage medium including at least one layer of material for receiving radiation from the radiation source and capable of being surface modified in response to said radiation source when operated in a writing mode and capable of generating a pattern of radiation of the second harmonic of the preselected frequency when illuminated by the radiation source at the preselected frequency corresponding to the surface modifications on the storage medium; and a detector to receive the pattern of second harmonic frequency generated.

Boyd, Gary T. (Woodbury, MN); Shen, Yuen-Ron (Berkeley, CA)

1989-01-01T23:59:59.000Z

484

The Information System The ideal system manager has the curiosity of a cat,  

E-Print Network (OSTI)

Chapter 2 The Information System Manager #12;The ideal system manager has the curiosity of a cat manage? As a property level information system manager, you may manage the following 3 types of computer #12;Who should manage the information system? O Patience and good communication skills O Hands

485

Sedimentary Geothermal Systems | Open Energy Information  

Open Energy Info (EERE)

Sedimentary Geothermal Systems Sedimentary Geothermal Systems Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geopressured Geothermal Systems Geothermal Technologies There are many types of Geothermal Technologies that take advantage of the earth's heat: Hydrothermal Systems Enhanced Geothermal Systems (EGS) Sedimentary Geothermal Systems Co-Produced Geothermal Systems Geothermal Direct Use Ground Source Heat Pumps Sedimentary Geothermal Links Related documents and websites Estimate of the Geothermal Energy Resource in the Major Sedimentary Basins in the United States Recoverable Resource Estimate of Identified Onshore Geopressured Geothermal Energy in Texas and Louisiana EGS Schematic.jpg ] Dictionary.png Sedimentary Geothermal Systems: Sedimentary Geothermal Systems produce electricity from medium temperature,

486

The role of hydroelectric generation in electric power systems with large scale wind generation .  

E-Print Network (OSTI)

??An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to (more)

Hagerty, John Michael

2012-01-01T23:59:59.000Z

487

Borrego Solar Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Solar Systems Inc Place: El Cajon, California Zip: 92020 Product: US-based installer of PV systems for commercial and public projects. References: Borrego Solar Systems Inc1 This...

488

Computer controlled MHD power consolidation and pulse generation system  

SciTech Connect

The major goal of this research project is to establish the feasibility of a power conversion technology which will permit the direct synthesis of computer programmable pulse power. Feasibility has been established in this project by demonstration of direct synthesis of commercial frequency power by means of computer control. The power input to the conversion system is assumed to be a Faraday connected MHD generator which may be viewed as a multi-terminal dc source and is simulated for the purpose of this demonstration by a set of dc power supplies. This consolidation/inversion (CI), process will be referred to subsequently as Pulse Amplitude Synthesis and Control (PASC). A secondary goal is to deliver a controller subsystem consisting of a computer, software, and computer interface board which can serve as one of the building blocks for a possible phase II prototype system. This report period work summarizes the accomplishments and covers the high points of the two year project. 6 refs., 41 figs.

Johnson, R.; Marcotte, K.; Donnelly, M.

1990-01-01T23:59:59.000Z

489

T-582: RSA systems has resulted in certain information being...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

certain information being extracted from RSA systems that relates to RSA SecurID March 17, 2011 - 11:45pm Addthis PROBLEM: Recently EMC's security systems identified an extremely...

490

Vaillant Solar Systems | Open Energy Information  

Open Energy Info (EERE)

Vaillant Solar Systems Jump to: navigation, search Name: Vaillant Solar Systems Place: Solana Beach, California Zip: 92075 Sector: Solar Product: California-based solar company...

491

Rand Solar Energy Systems | Open Energy Information  

Open Energy Info (EERE)

Rand Solar Energy Systems Jump to: navigation, search Name: Rand Solar Energy Systems Place: Petach Tikva, Israel Zip: 49130 Sector: Solar Product: Israel-based manufacturer and...